NASA Astrophysics Data System (ADS)
Nagarajan, K.; Shashidharan Nair, C. K.
2007-07-01
The channelled spectrum employing polarized light interference is a very convenient method for the study of dispersion of birefringence. However, while using this method, the absolute order of the polarized light interference fringes cannot be determined easily. Approximate methods are therefore used to estimate the order. One of the approximations is that the dispersion of birefringence across neighbouring integer order fringes is negligible. In this paper, we show how this approximation can cause errors. A modification is reported whereby the error in the determination of absolute fringe order can be reduced using fractional orders instead of integer orders. The theoretical background for this method supported with computer simulation is presented. An experimental arrangement implementing these modifications is described. This method uses a Constant Deviation Spectrometer (CDS) and a Soleil Babinet Compensator (SBC).
NASA Astrophysics Data System (ADS)
Muhiddin, F. A.; Sulaiman, J.
2017-09-01
The aim of this paper is to investigate the effectiveness of the Successive Over-Relaxation (SOR) iterative method by using the fourth-order Crank-Nicolson (CN) discretization scheme to derive a five-point Crank-Nicolson approximation equation in order to solve diffusion equation. From this approximation equation, clearly, it can be shown that corresponding system of five-point approximation equations can be generated and then solved iteratively. In order to access the performance results of the proposed iterative method with the fourth-order CN scheme, another point iterative method which is Gauss-Seidel (GS), also presented as a reference method. Finally the numerical results obtained from the use of the fourth-order CN discretization scheme, it can be pointed out that the SOR iterative method is superior in terms of number of iterations, execution time, and maximum absolute error.
An Extension of the Krieger-Li-Iafrate Approximation to the Optimized-Effective-Potential Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, B.G.
1999-11-11
The Krieger-Li-Iafrate approximation can be expressed as the zeroth order result of an unstable iterative method for solving the integral equation form of the optimized-effective-potential method. By pre-conditioning the iterate a first order correction can be obtained which recovers the bulk of quantal oscillations missing in the zeroth order approximation. A comparison of calculated total energies are given with Krieger-Li-Iafrate, Local Density Functional, and Hyper-Hartree-Fock results for non-relativistic atoms and ions.
Structural Reliability Analysis and Optimization: Use of Approximations
NASA Technical Reports Server (NTRS)
Grandhi, Ramana V.; Wang, Liping
1999-01-01
This report is intended for the demonstration of function approximation concepts and their applicability in reliability analysis and design. Particularly, approximations in the calculation of the safety index, failure probability and structural optimization (modification of design variables) are developed. With this scope in mind, extensive details on probability theory are avoided. Definitions relevant to the stated objectives have been taken from standard text books. The idea of function approximations is to minimize the repetitive use of computationally intensive calculations by replacing them with simpler closed-form equations, which could be nonlinear. Typically, the approximations provide good accuracy around the points where they are constructed, and they need to be periodically updated to extend their utility. There are approximations in calculating the failure probability of a limit state function. The first one, which is most commonly discussed, is how the limit state is approximated at the design point. Most of the time this could be a first-order Taylor series expansion, also known as the First Order Reliability Method (FORM), or a second-order Taylor series expansion (paraboloid), also known as the Second Order Reliability Method (SORM). From the computational procedure point of view, this step comes after the design point identification; however, the order of approximation for the probability of failure calculation is discussed first, and it is denoted by either FORM or SORM. The other approximation of interest is how the design point, or the most probable failure point (MPP), is identified. For iteratively finding this point, again the limit state is approximated. The accuracy and efficiency of the approximations make the search process quite practical for analysis intensive approaches such as the finite element methods; therefore, the crux of this research is to develop excellent approximations for MPP identification and also different approximations including the higher-order reliability methods (HORM) for representing the failure surface. This report is divided into several parts to emphasize different segments of the structural reliability analysis and design. Broadly, it consists of mathematical foundations, methods and applications. Chapter I discusses the fundamental definitions of the probability theory, which are mostly available in standard text books. Probability density function descriptions relevant to this work are addressed. In Chapter 2, the concept and utility of function approximation are discussed for a general application in engineering analysis. Various forms of function representations and the latest developments in nonlinear adaptive approximations are presented with comparison studies. Research work accomplished in reliability analysis is presented in Chapter 3. First, the definition of safety index and most probable point of failure are introduced. Efficient ways of computing the safety index with a fewer number of iterations is emphasized. In chapter 4, the probability of failure prediction is presented using first-order, second-order and higher-order methods. System reliability methods are discussed in chapter 5. Chapter 6 presents optimization techniques for the modification and redistribution of structural sizes for improving the structural reliability. The report also contains several appendices on probability parameters.
ACCESS 3. Approximation concepts code for efficient structural synthesis: User's guide
NASA Technical Reports Server (NTRS)
Fleury, C.; Schmit, L. A., Jr.
1980-01-01
A user's guide is presented for ACCESS-3, a research oriented program which combines dual methods and a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and dual algorithms of mathematical programming are applied in the design optimization procedure. This program retains all of the ACCESS-2 capabilities and the data preparation formats are fully compatible. Four distinct optimizer options were added: interior point penalty function method (NEWSUMT); second order primal projection method (PRIMAL2); second order Newton-type dual method (DUAL2); and first order gradient projection-type dual method (DUAL1). A pure discrete and mixed continuous-discrete design variable capability, and zero order approximation of the stress constraints are also included.
The arbitrary order mixed mimetic finite difference method for the diffusion equation
Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco
2016-05-01
Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less
NASA Astrophysics Data System (ADS)
Bause, Markus
2008-02-01
In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.
Representation of the exact relativistic electronic Hamiltonian within the regular approximation
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2003-12-01
The exact relativistic Hamiltonian for electronic states is expanded in terms of energy-independent linear operators within the regular approximation. An effective relativistic Hamiltonian has been obtained, which yields in lowest order directly the infinite-order regular approximation (IORA) rather than the zeroth-order regular approximation method. Further perturbational expansion of the exact relativistic electronic energy utilizing the effective Hamiltonian leads to new methods based on ordinary (IORAn) or double [IORAn(2)] perturbation theory (n: order of expansion), which provide improved energies in atomic calculations. Energies calculated with IORA4 and IORA3(2) are accurate up to c-20. Furthermore, IORA is improved by using the IORA wave function to calculate the Rayleigh quotient, which, if minimized, leads to the exact relativistic energy. The outstanding performance of this new IORA method coined scaled IORA is documented in atomic and molecular calculations.
Highly Accurate Analytical Approximate Solution to a Nonlinear Pseudo-Oscillator
NASA Astrophysics Data System (ADS)
Wu, Baisheng; Liu, Weijia; Lim, C. W.
2017-07-01
A second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.
Approach for Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
NASA Technical Reports Server (NTRS)
Putko, Michele M.; Taylor, Arthur C., III; Newman, Perry A.; Green, Lawrence L.
2002-01-01
An implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for quasi 3-D Euler CFD code is presented. Given uncertainties in statistically independent, random, normally distributed input variables, first- and second-order statistical moment procedures are performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, these moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.
A general moment expansion method for stochastic kinetic models
NASA Astrophysics Data System (ADS)
Ale, Angelique; Kirk, Paul; Stumpf, Michael P. H.
2013-05-01
Moment approximation methods are gaining increasing attention for their use in the approximation of the stochastic kinetics of chemical reaction systems. In this paper we derive a general moment expansion method for any type of propensities and which allows expansion up to any number of moments. For some chemical reaction systems, more than two moments are necessary to describe the dynamic properties of the system, which the linear noise approximation is unable to provide. Moreover, also for systems for which the mean does not have a strong dependence on higher order moments, moment approximation methods give information about higher order moments of the underlying probability distribution. We demonstrate the method using a dimerisation reaction, Michaelis-Menten kinetics and a model of an oscillating p53 system. We show that for the dimerisation reaction and Michaelis-Menten enzyme kinetics system higher order moments have limited influence on the estimation of the mean, while for the p53 system, the solution for the mean can require several moments to converge to the average obtained from many stochastic simulations. We also find that agreement between lower order moments does not guarantee that higher moments will agree. Compared to stochastic simulations, our approach is numerically highly efficient at capturing the behaviour of stochastic systems in terms of the average and higher moments, and we provide expressions for the computational cost for different system sizes and orders of approximation. We show how the moment expansion method can be employed to efficiently quantify parameter sensitivity. Finally we investigate the effects of using too few moments on parameter estimation, and provide guidance on how to estimate if the distribution can be accurately approximated using only a few moments.
Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.; Korte, John J.; Mauery, Timothy M.; Mistree, Farrokh
1998-01-01
In this paper, we compare and contrast the use of second-order response surface models and kriging models for approximating non-random, deterministic computer analyses. After reviewing the response surface method for constructing polynomial approximations, kriging is presented as an alternative approximation method for the design and analysis of computer experiments. Both methods are applied to the multidisciplinary design of an aerospike nozzle which consists of a computational fluid dynamics model and a finite-element model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations, and four optimization problems m formulated and solved using both sets of approximation models. The second-order response surface models and kriging models-using a constant underlying global model and a Gaussian correlation function-yield comparable results.
Pseudospectral collocation methods for fourth order differential equations
NASA Technical Reports Server (NTRS)
Malek, Alaeddin; Phillips, Timothy N.
1994-01-01
Collocation schemes are presented for solving linear fourth order differential equations in one and two dimensions. The variational formulation of the model fourth order problem is discretized by approximating the integrals by a Gaussian quadrature rule generalized to include the values of the derivative of the integrand at the boundary points. Collocation schemes are derived which are equivalent to this discrete variational problem. An efficient preconditioner based on a low-order finite difference approximation to the same differential operator is presented. The corresponding multidomain problem is also considered and interface conditions are derived. Pseudospectral approximations which are C1 continuous at the interfaces are used in each subdomain to approximate the solution. The approximations are also shown to be C3 continuous at the interfaces asymptotically. A complete analysis of the collocation scheme for the multidomain problem is provided. The extension of the method to the biharmonic equation in two dimensions is discussed and results are presented for a problem defined in a nonrectangular domain.
An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order
Almeida, Ricardo
2013-01-01
We obtain approximation formulas for fractional integrals and derivatives of Riemann-Liouville and Marchaud types with a variable fractional order. The approximations involve integer-order derivatives only. An estimation for the error is given. The efficiency of the approximation method is illustrated with examples. As applications, we show how the obtained results are useful to solve differential equations, and problems of the calculus of variations that depend on fractional derivatives of Marchaud type. PMID:24319382
NASA Technical Reports Server (NTRS)
Laurenson, R. M.; Baumgarten, J. R.
1975-01-01
An approximation technique has been developed for determining the transient response of a nonlinear dynamic system. The nonlinearities in the system which has been considered appear in the system's dissipation function. This function was expressed as a second order polynomial in the system's velocity. The developed approximation is an extension of the classic Kryloff-Bogoliuboff technique. Two examples of the developed approximation are presented for comparative purposes with other approximation methods.
Test particle propagation in magnetostatic turbulence. 2: The local approximation method
NASA Technical Reports Server (NTRS)
Klimas, A. J.; Sandri, G.; Scudder, J. D.; Howell, D. R.
1976-01-01
An approximation method for statistical mechanics is presented and applied to a class of problems which contains a test particle propagation problem. All of the available basic equations used in statistical mechanics are cast in the form of a single equation which is integrodifferential in time and which is then used as the starting point for the construction of the local approximation method. Simplification of the integrodifferential equation is achieved through approximation to the Laplace transform of its kernel. The approximation is valid near the origin in the Laplace space and is based on the assumption of small Laplace variable. No other small parameter is necessary for the construction of this approximation method. The n'th level of approximation is constructed formally, and the first five levels of approximation are calculated explicitly. It is shown that each level of approximation is governed by an inhomogeneous partial differential equation in time with time independent operator coefficients. The order in time of these partial differential equations is found to increase as n does. At n = 0 the most local first order partial differential equation which governs the Markovian limit is regained.
Periodic response of nonlinear systems
NASA Technical Reports Server (NTRS)
Nataraj, C.; Nelson, H. D.
1988-01-01
A procedure is developed to determine approximate periodic solutions of autonomous and non-autonomous systems. The trignometric collocation method (TCM) is formalized to allow for the analysis of relatively small order systems directly in physical coordinates. The TCM is extended to large order systems by utilizing modal analysis in a component mode synthesis strategy. The procedure was coded and verified by several check cases. Numerical results for two small order mechanical systems and one large order rotor dynamic system are presented. The method allows for the possibility of approximating periodic responses for large order forced and self-excited nonlinear systems.
Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
NASA Technical Reports Server (NTRS)
Putko, Michele M.; Newman, Perry A.; Taylor, Arthur C., III; Green, Lawrence L.
2001-01-01
This paper presents an implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for a quasi 1-D Euler CFD (computational fluid dynamics) code. Given uncertainties in statistically independent, random, normally distributed input variables, a first- and second-order statistical moment matching procedure is performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, the moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2005-02-01
The regular approximation to the normalized elimination of the small component (NESC) in the modified Dirac equation has been developed and presented in matrix form. The matrix form of the infinite-order regular approximation (IORA) expressions, obtained in [Filatov and Cremer, J. Chem. Phys. 118, 6741 (2003)] using the resolution of the identity, is the exact matrix representation and corresponds to the zeroth-order regular approximation to NESC (NESC-ZORA). Because IORA (=NESC-ZORA) is a variationally stable method, it was used as a suitable starting point for the development of the second-order regular approximation to NESC (NESC-SORA). As shown for hydrogenlike ions, NESC-SORA energies are closer to the exact Dirac energies than the energies from the fifth-order Douglas-Kroll approximation, which is much more computationally demanding than NESC-SORA. For the application of IORA (=NESC-ZORA) and NESC-SORA to many-electron systems, the number of the two-electron integrals that need to be evaluated (identical to the number of the two-electron integrals of a full Dirac-Hartree-Fock calculation) was drastically reduced by using the resolution of the identity technique. An approximation was derived, which requires only the two-electron integrals of a nonrelativistic calculation. The accuracy of this approach was demonstrated for heliumlike ions. The total energy based on the approximate integrals deviates from the energy calculated with the exact integrals by less than 5×10-9hartree units. NESC-ZORA and NESC-SORA can easily be implemented in any nonrelativistic quantum chemical program. Their application is comparable in cost with that of nonrelativistic methods. The methods can be run with density functional theory and any wave function method. NESC-SORA has the advantage that it does not imply a picture change.
Lagrangian particle method for compressible fluid dynamics
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang
2018-06-01
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.
NASA Astrophysics Data System (ADS)
Sasano, Koji; Okajima, Hiroshi; Matsunaga, Nobutomo
Recently, the fractional order PID (FO-PID) control, which is the extension of the PID control, has been focused on. Even though the FO-PID requires the high-order filter, it is difficult to realize the high-order filter due to the memory limitation of digital computer. For implementation of FO-PID, approximation of the fractional integrator and differentiator are required. Short memory principle (SMP) is one of the effective approximation methods. However, there is a disadvantage that the approximated filter with SMP cannot eliminate the steady-state error. For this problem, we introduce the distributed implementation of the integrator and the dynamic quantizer to make the efficient use of permissible memory. The objective of this study is to clarify how to implement the accurate FO-PID with limited memories. In this paper, we propose the implementation method of FO-PID with memory constraint using dynamic quantizer. And the trade off between approximation of fractional elements and quantized data size are examined so as to close to the ideal FO-PID responses. The effectiveness of proposed method is evaluated by numerical example and experiment in the temperature control of heat plate.
Piecewise-homotopy analysis method (P-HAM) for first order nonlinear ODE
NASA Astrophysics Data System (ADS)
Chin, F. Y.; Lem, K. H.; Chong, F. S.
2013-09-01
In homotopy analysis method (HAM), the determination for the value of the auxiliary parameter h is based on the valid region of the h-curve in which the horizontal segment of the h-curve will decide the valid h-region. All h-value taken from the valid region, provided that the order of deformation is large enough, will in principle yield an approximation series that converges to the exact solution. However it is found out that the h-value chosen within this valid region does not always promise a good approximation under finite order. This paper suggests an improved method called Piecewise-HAM (P-HAM). In stead of a single h-value, this method suggests using many h-values. Each of the h-values comes from an individual h-curve while each h-curve is plotted by fixing the time t at a different value. Each h-value is claimed to produce a good approximation only about a neighborhood centered at the corresponding t which the h-curve is based on. Each segment of these good approximations is then joined to form the approximation curve. By this, the convergence region is enhanced further. The P-HAM is illustrated and supported by examples.
NASA Technical Reports Server (NTRS)
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Scattering from very rough layers under the geometric optics approximation: further investigation.
Pinel, Nicolas; Bourlier, Christophe
2008-06-01
Scattering from very rough homogeneous layers is studied in the high-frequency limit (under the geometric optics approximation) by taking the shadowing effect into account. To do so, the iterated Kirchhoff approximation, recently developed by Pinel et al. [Waves Random Complex Media17, 283 (2007)] and reduced to the geometric optics approximation, is used and investigated in more detail. The contributions from the higher orders of scattering inside the rough layer are calculated under the iterated Kirchhoff approximation. The method can be applied to rough layers of either very rough or perfectly flat lower interfaces, separating either lossless or lossy media. The results are compared with the PILE (propagation-inside-layer expansion) method, recently developed by Déchamps et al. [J. Opt. Soc. Am. A23, 359 (2006)], and accelerated by the forward-backward method with spectral acceleration. They highlight that there is very good agreement between the developed method and the reference numerical method for all scattering orders and that the method can be applied to root-mean-square (RMS) heights at least down to 0.25lambda.
NASA Technical Reports Server (NTRS)
Desmarais, R. N.
1982-01-01
The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the nonelementary integrals in the kernel by exponential functions and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. The method can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.
Cosmological collapse and the improved Zel'dovich approximation.
NASA Astrophysics Data System (ADS)
Salopek, D. S.; Stewart, J. M.; Croudace, K. M.; Parry, J.
Using a general relativistic formulation, the authors show how to compute the higher order terms in the Zel'dovich approximation which describes cosmological collapse. They evolve the 3-metric in a spatial gradient expansion. Their method is an advance over earlier work because it is local at each order. Using the improved Zel'dovich approximation, they compute the epoch of collapse.
Second order upwind Lagrangian particle method for Euler equations
Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin
2016-06-01
A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less
Second order upwind Lagrangian particle method for Euler equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin
A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less
NASA Astrophysics Data System (ADS)
Katori, Makoto
1988-12-01
A new scheme of the coherent-anomaly method (CAM) is proposed to study critical phenomena in the models for which a mean-field description gives spurious first-order phase transition. A canonical series of mean-field-type approximations are constructed so that the spurious discontinuity should vanish asymptotically as the approximate critical temperature approachs the true value. The true value of the critical exponents β and γ are related to the coherent-anomaly exponents defined among the classical approximations. The formulation is demonstrated in the two-dimensional q-state Potts models for q{=}3 and 4. The result shows that the present method enables us to estimate the critical exponents with high accuracy by using the date of the cluster-mean-field approximations.
Computational methods for estimation of parameters in hyperbolic systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.; Murphy, K. A.
1983-01-01
Approximation techniques for estimating spatially varying coefficients and unknown boundary parameters in second order hyperbolic systems are discussed. Methods for state approximation (cubic splines, tau-Legendre) and approximation of function space parameters (interpolatory splines) are outlined and numerical findings for use of the resulting schemes in model "one dimensional seismic inversion' problems are summarized.
Some problems of nonlinear waves in solid propellant rocket motors
NASA Technical Reports Server (NTRS)
Culick, F. E. C.
1979-01-01
An approximate technique for analyzing nonlinear waves in solid propellant rocket motors is presented which inexpensively provides accurate results up to amplitudes of ten percent. The connection with linear stability analysis is shown. The method is extended to third order in the amplitude of wave motion in order to study nonlinear stability, or triggering. Application of the approximate method to the behavior of pulses is described.
Lagrangian particle method for compressible fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less
Lagrangian particle method for compressible fluid dynamics
Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang
2018-02-09
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less
NASA Astrophysics Data System (ADS)
Doha, E. H.; Bhrawy, A. H.; Abdelkawy, M. A.; Van Gorder, Robert A.
2014-03-01
A Jacobi-Gauss-Lobatto collocation (J-GL-C) method, used in combination with the implicit Runge-Kutta method of fourth order, is proposed as a numerical algorithm for the approximation of solutions to nonlinear Schrödinger equations (NLSE) with initial-boundary data in 1+1 dimensions. Our procedure is implemented in two successive steps. In the first one, the J-GL-C is employed for approximating the functional dependence on the spatial variable, using (N-1) nodes of the Jacobi-Gauss-Lobatto interpolation which depends upon two general Jacobi parameters. The resulting equations together with the two-point boundary conditions induce a system of 2(N-1) first-order ordinary differential equations (ODEs) in time. In the second step, the implicit Runge-Kutta method of fourth order is applied to solve this temporal system. The proposed J-GL-C method, used in combination with the implicit Runge-Kutta method of fourth order, is employed to obtain highly accurate numerical approximations to four types of NLSE, including the attractive and repulsive NLSE and a Gross-Pitaevskii equation with space-periodic potential. The numerical results obtained by this algorithm have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively few nodes used, the absolute error in our numerical solutions is sufficiently small.
Symmetric Positive 4th Order Tensors & Their Estimation from Diffusion Weighted MRI⋆
Barmpoutis, Angelos; Jian, Bing; Vemuri, Baba C.; Shepherd, Timothy M.
2009-01-01
In Diffusion Weighted Magnetic Resonance Image (DW-MRI) processing a 2nd order tensor has been commonly used to approximate the diffusivity function at each lattice point of the DW-MRI data. It is now well known that this 2nd-order approximation fails to approximate complex local tissue structures, such as fibers crossings. In this paper we employ a 4th order symmetric positive semi-definite (PSD) tensor approximation to represent the diffusivity function and present a novel technique to estimate these tensors from the DW-MRI data guaranteeing the PSD property. There have been several published articles in literature on higher order tensor approximations of the diffusivity function but none of them guarantee the positive semi-definite constraint, which is a fundamental constraint since negative values of the diffusivity coefficients are not meaningful. In our methods, we parameterize the 4th order tensors as a sum of squares of quadratic forms by using the so called Gram matrix method from linear algebra and its relation to the Hilbert’s theorem on ternary quartics. This parametric representation is then used in a nonlinear-least squares formulation to estimate the PSD tensors of order 4 from the data. We define a metric for the higher-order tensors and employ it for regularization across the lattice. Finally, performance of this model is depicted on synthetic data as well as real DW-MRI from an isolated rat hippocampus. PMID:17633709
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Hou, Gene J. W.
1994-01-01
A method for eigenvalue and eigenvector approximate analysis for the case of repeated eigenvalues with distinct first derivatives is presented. The approximate analysis method developed involves a reparameterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations to changes in the eigenvalues and the eigenvectors associated with the repeated eigenvalue problem. This work also presents a numerical technique that facilitates the definition of an eigenvector derivative for the case of repeated eigenvalues with repeated eigenvalue derivatives (of all orders). Examples are given which demonstrate the application of such equations for sensitivity and approximate analysis. Emphasis is placed on the application of sensitivity analysis to large-scale structural and controls-structures optimization problems.
Parametric instability analysis of truncated conical shells using the Haar wavelet method
NASA Astrophysics Data System (ADS)
Dai, Qiyi; Cao, Qingjie
2018-05-01
In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.
Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process
Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.
1998-04-28
Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.
Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process
Gschneidner, K.A. Jr.; Pecharsky, V.K.
1998-04-28
Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broda, Jill Terese
The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the samemore » order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined.« less
New Operational Matrices for Solving Fractional Differential Equations on the Half-Line
2015-01-01
In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. PMID:25996369
New operational matrices for solving fractional differential equations on the half-line.
Bhrawy, Ali H; Taha, Taha M; Alzahrani, Ebraheem O; Alzahrani, Ebrahim O; Baleanu, Dumitru; Alzahrani, Abdulrahim A
2015-01-01
In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.
Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus
2014-01-01
In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.
Semismooth Newton method for gradient constrained minimization problem
NASA Astrophysics Data System (ADS)
Anyyeva, Serbiniyaz; Kunisch, Karl
2012-08-01
In this paper we treat a gradient constrained minimization problem, particular case of which is the elasto-plastic torsion problem. In order to get the numerical approximation to the solution we have developed an algorithm in an infinite dimensional space framework using the concept of the generalized (Newton) differentiation. Regularization was done in order to approximate the problem with the unconstrained minimization problem and to make the pointwise maximum function Newton differentiable. Using semismooth Newton method, continuation method was developed in function space. For the numerical implementation the variational equations at Newton steps are discretized using finite elements method.
A stable second order method for training back propagation networks
NASA Technical Reports Server (NTRS)
Nachtsheim, Philip R.
1993-01-01
A simple method for improving the learning rate of the back-propagation algorithm is described. The basis of the method is that approximate second order corrections can be incorporated in the output units. The extended method leads to significant improvements in the convergence rate.
NASA Technical Reports Server (NTRS)
Desmarais, R. N.
1982-01-01
This paper describes an accurate economical method for generating approximations to the kernel of the integral equation relating unsteady pressure to normalwash in nonplanar flow. The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the non elementary integrals in the kernel by exponential approximations and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. Coefficients for 8, 12, 24, and 72 term approximations are tabulated in the report. Also, since the method is automated, it can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.
An approximation method for configuration optimization of trusses
NASA Technical Reports Server (NTRS)
Hansen, Scott R.; Vanderplaats, Garret N.
1988-01-01
Two- and three-dimensional elastic trusses are designed for minimum weight by varying the areas of the members and the location of the joints. Constraints on member stresses and Euler buckling are imposed and multiple static loading conditions are considered. The method presented here utilizes an approximate structural analysis based on first order Taylor series expansions of the member forces. A numerical optimizer minimizes the weight of the truss using information from the approximate structural analysis. Comparisons with results from other methods are made. It is shown that the method of forming an approximate structural analysis based on linearized member forces leads to a highly efficient method of truss configuration optimization.
Stable multi-domain spectral penalty methods for fractional partial differential equations
NASA Astrophysics Data System (ADS)
Xu, Qinwu; Hesthaven, Jan S.
2014-01-01
We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.
Barros, Wilson; Gochberg, Daniel F.; Gore, John C.
2009-01-01
The description of the nuclear magnetic resonance magnetization dynamics in the presence of long-range dipolar interactions, which is based upon approximate solutions of Bloch–Torrey equations including the effect of a distant dipolar field, has been revisited. New experiments show that approximate analytic solutions have a broader regime of validity as well as dependencies on pulse-sequence parameters that seem to have been overlooked. In order to explain these experimental results, we developed a new method consisting of calculating the magnetization via an iterative formalism where both diffusion and distant dipolar field contributions are treated as integral operators incorporated into the Bloch–Torrey equations. The solution can be organized as a perturbative series, whereby access to higher order terms allows one to set better boundaries on validity regimes for analytic first-order approximations. Finally, the method legitimizes the use of simple analytic first-order approximations under less demanding experimental conditions, it predicts new pulse-sequence parameter dependencies for the range of validity, and clarifies weak points in previous calculations. PMID:19425789
Efficient High-Order Accurate Methods using Unstructured Grids for Hydrodynamics and Acoustics
2007-08-31
Leer. On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1):35-61, 1983. [46] F . Eleuterio Toro ...early stage [4-61. The basic idea can be surmised from simple approximation theory. If a continuous function f is to be approximated over a set of...a2f 4h4 a4ff(x+eh) = f (x)+-- + _ •-+• e +0 +... (1) where 0 < e < 1 for approximations inside the interval of width h. For a second-order approximation
On singlet s-wave electron-hydrogen scattering.
NASA Technical Reports Server (NTRS)
Madan, R. N.
1973-01-01
Discussion of various zeroth-order approximations to s-wave scattering of electrons by hydrogen atoms below the first excitation threshold. The formalism previously developed by the author (1967, 1968) is applied to Feshbach operators to derive integro-differential equations, with the optical-potential set equal to zero, for the singlet and triplet cases. Phase shifts of s-wave scattering are computed in the zeroth-order approximation of the Feshbach operator method and in the static-exchange approximation. It is found that the convergence of numerical computations is faster in the former approximation than in the latter.
Uniformly high-order accurate non-oscillatory schemes, 1
NASA Technical Reports Server (NTRS)
Harten, A.; Osher, S.
1985-01-01
The construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws was begun. These schemes share many desirable properties with total variation diminishing schemes (TVD), but TVD schemes have at most first order accuracy, in the sense of truncation error, at extreme of the solution. A uniformly second order approximation was constucted, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell.
A comparison of matrix methods for calculating eigenvalues in acoustically lined ducts
NASA Technical Reports Server (NTRS)
Watson, W.; Lansing, D. L.
1976-01-01
Three approximate methods - finite differences, weighted residuals, and finite elements - were used to solve the eigenvalue problem which arises in finding the acoustic modes and propagation constants in an absorptively lined two-dimensional duct without airflow. The matrix equations derived for each of these methods were solved for the eigenvalues corresponding to various values of wall impedance. Two matrix orders, 20 x 20 and 40 x 40, were used. The cases considered included values of wall admittance for which exact eigenvalues were known and for which several nearly equal roots were present. Ten of the lower order eigenvalues obtained from the three approximate methods were compared with solutions calculated from the exact characteristic equation in order to make an assessment of the relative accuracy and reliability of the three methods. The best results were given by the finite element method using a cubic polynomial. Excellent accuracy was consistently obtained, even for nearly equal eigenvalues, by using a 20 x 20 order matrix.
Eigenvalue and eigenvector sensitivity and approximate analysis for repeated eigenvalue problems
NASA Technical Reports Server (NTRS)
Hou, Gene J. W.; Kenny, Sean P.
1991-01-01
A set of computationally efficient equations for eigenvalue and eigenvector sensitivity analysis are derived, and a method for eigenvalue and eigenvector approximate analysis in the presence of repeated eigenvalues is presented. The method developed for approximate analysis involves a reparamaterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations of changes in both the eigenvalues and eigenvectors associated with the repeated eigenvalue problem. Examples are given to demonstrate the application of such equations for sensitivity and approximate analysis.
Monotonically improving approximate answers to relational algebra queries
NASA Technical Reports Server (NTRS)
Smith, Kenneth P.; Liu, J. W. S.
1989-01-01
We present here a query processing method that produces approximate answers to queries posed in standard relational algebra. This method is monotone in the sense that the accuracy of the approximate result improves with the amount of time spent producing the result. This strategy enables us to trade the time to produce the result for the accuracy of the result. An approximate relational model that characterizes appromimate relations and a partial order for comparing them is developed. Relational operators which operate on and return approximate relations are defined.
NASA Technical Reports Server (NTRS)
Bey, Kim S.; Oden, J. Tinsley
1993-01-01
A priori error estimates are derived for hp-versions of the finite element method for discontinuous Galerkin approximations of a model class of linear, scalar, first-order hyperbolic conservation laws. These estimates are derived in a mesh dependent norm in which the coefficients depend upon both the local mesh size h(sub K) and a number p(sub k) which can be identified with the spectral order of the local approximations over each element.
a Numerical Comparison of Langrange and Kane's Methods of AN Arm Segment
NASA Astrophysics Data System (ADS)
Rambely, Azmin Sham; Halim, Norhafiza Ab.; Ahmad, Rokiah Rozita
A 2-D model of a two-link kinematic chain is developed using two dynamics equations of motion, namely Kane's and Lagrange Methods. The dynamics equations are reduced to first order differential equation and solved using modified Euler and fourth order Runge Kutta to approximate the shoulder and elbow joint angles during a smash performance in badminton. Results showed that Runge-Kutta produced a better and exact approximation than that of modified Euler and both dynamic equations produced better absolute errors.
On the superconvergence of Galerkin methods for hyperbolic IBVP
NASA Technical Reports Server (NTRS)
Gottlieb, David; Gustafsson, Bertil; Olsson, Pelle; Strand, BO
1993-01-01
Finite element Galerkin methods for periodic first order hyperbolic equations exhibit superconvergence on uniform grids at the nodes, i.e., there is an error estimate 0(h(sup 2r)) instead of the expected approximation order 0(h(sup r)). It will be shown that no matter how the approximating subspace S(sup h) is chosen, the superconvergence property is lost if there are characteristics leaving the domain. The implications of this result when constructing compact implicit difference schemes is also discussed.
Errors from approximation of ODE systems with reduced order models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassilevska, Tanya
2016-12-30
This is a code to calculate the error from approximation of systems of ordinary differential equations (ODEs) by using Proper Orthogonal Decomposition (POD) Reduced Order Models (ROM) methods and to compare and analyze the errors for two POD ROM variants. The first variant is the standard POD ROM, the second variant is a modification of the method using the values of the time derivatives (a.k.a. time-derivative snapshots). The code compares the errors from the two variants under different conditions.
Giese, Timothy J; York, Darrin M
2010-12-28
We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.
Physical Applications of a Simple Approximation of Bessel Functions of Integer Order
ERIC Educational Resources Information Center
Barsan, V.; Cojocaru, S.
2007-01-01
Applications of a simple approximation of Bessel functions of integer order, in terms of trigonometric functions, are discussed for several examples from electromagnetism and optics. The method may be applied in the intermediate regime, bridging the "small values regime" and the "asymptotic" one, and covering, in this way, an area of great…
Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems
NASA Astrophysics Data System (ADS)
Razzak, M. A.; Alam, M. Z.; Sharif, M. N.
2018-03-01
In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.
Blending Velocities In Task Space In Computing Robot Motions
NASA Technical Reports Server (NTRS)
Volpe, Richard A.
1995-01-01
Blending of linear and angular velocities between sequential specified points in task space constitutes theoretical basis of improved method of computing trajectories followed by robotic manipulators. In method, generalized velocity-vector-blending technique provides relatively simple, common conceptual framework for blending linear, angular, and other parametric velocities. Velocity vectors originate from straight-line segments connecting specified task-space points, called "via frames" and represent specified robot poses. Linear-velocity-blending functions chosen from among first-order, third-order-polynomial, and cycloidal options. Angular velocities blended by use of first-order approximation of previous orientation-matrix-blending formulation. Angular-velocity approximation yields small residual error, quantified and corrected. Method offers both relative simplicity and speed needed for generation of robot-manipulator trajectories in real time.
A study on Marangoni convection by the variational iteration method
NASA Astrophysics Data System (ADS)
Karaoǧlu, Onur; Oturanç, Galip
2012-09-01
In this paper, we will consider the use of the variational iteration method and Padé approximant for finding approximate solutions for a Marangoni convection induced flow over a free surface due to an imposed temperature gradient. The solutions are compared with the numerical (fourth-order Runge Kutta) solutions.
High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Bryson, Steve; Levy, Doron; Biegel, Bran R. (Technical Monitor)
2002-01-01
We present high-order semi-discrete central-upwind numerical schemes for approximating solutions of multi-dimensional Hamilton-Jacobi (HJ) equations. This scheme is based on the use of fifth-order central interpolants like those developed in [1], in fluxes presented in [3]. These interpolants use the weighted essentially nonoscillatory (WENO) approach to avoid spurious oscillations near singularities, and become "central-upwind" in the semi-discrete limit. This scheme provides numerical approximations whose error is as much as an order of magnitude smaller than those in previous WENO-based fifth-order methods [2, 1]. Thee results are discussed via examples in one, two and three dimensions. We also pregnant explicit N-dimensional formulas for the fluxes, discuss their monotonicity and tl!e connection between this method and that in [2].
NASA Technical Reports Server (NTRS)
Mickens, Ronald E.
1987-01-01
It is shown that a discrete multi-time method can be constructed to obtain approximations to the periodic solutions of a special class of second-order nonlinear difference equations containing a small parameter. Three examples illustrating the method are presented.
Optimizing some 3-stage W-methods for the time integration of PDEs
NASA Astrophysics Data System (ADS)
Gonzalez-Pinto, S.; Hernandez-Abreu, D.; Perez-Rodriguez, S.
2017-07-01
The optimization of some W-methods for the time integration of time-dependent PDEs in several spatial variables is considered. In [2, Theorem 1] several three-parametric families of three-stage W-methods for the integration of IVPs in ODEs were studied. Besides, the optimization of several specific methods for PDEs when the Approximate Matrix Factorization Splitting (AMF) is used to define the approximate Jacobian matrix (W ≈ fy(yn)) was carried out. Also, some convergence and stability properties were presented [2]. The derived methods were optimized on the base that the underlying explicit Runge-Kutta method is the one having the largest Monotonicity interval among the thee-stage order three Runge-Kutta methods [1]. Here, we propose an optimization of the methods by imposing some additional order condition [7] to keep order three for parabolic PDE problems [6] but at the price of reducing substantially the length of the nonlinear Monotonicity interval of the underlying explicit Runge-Kutta method.
Second-order singular pertubative theory for gravitational lenses
NASA Astrophysics Data System (ADS)
Alard, C.
2018-03-01
The extension of the singular perturbative approach to the second order is presented in this paper. The general expansion to the second order is derived. The second-order expansion is considered as a small correction to the first-order expansion. Using this approach, it is demonstrated that in practice the second-order expansion is reducible to a first order expansion via a re-definition of the first-order pertubative fields. Even if in usual applications the second-order correction is small the reducibility of the second-order expansion to the first-order expansion indicates a potential degeneracy issue. In general, this degeneracy is hard to break. A useful and simple second-order approximation is the thin source approximation, which offers a direct estimation of the correction. The practical application of the corrections derived in this paper is illustrated by using an elliptical NFW lens model. The second-order pertubative expansion provides a noticeable improvement, even for the simplest case of thin source approximation. To conclude, it is clear that for accurate modelization of gravitational lenses using the perturbative method the second-order perturbative expansion should be considered. In particular, an evaluation of the degeneracy due to the second-order term should be performed, for which the thin source approximation is particularly useful.
NASA Technical Reports Server (NTRS)
Mostrel, M. M.
1988-01-01
New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.
Hybrid perturbation methods based on statistical time series models
NASA Astrophysics Data System (ADS)
San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario
2016-04-01
In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.
Singh, Brajesh K; Srivastava, Vineet K
2015-04-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.
Singh, Brajesh K.; Srivastava, Vineet K.
2015-01-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639
Fourth order difference methods for hyperbolic IBVP's
NASA Technical Reports Server (NTRS)
Gustafsson, Bertil; Olsson, Pelle
1994-01-01
Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.
Polynomial probability distribution estimation using the method of moments
Mattsson, Lars; Rydén, Jesper
2017-01-01
We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram–Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation. PMID:28394949
Polynomial probability distribution estimation using the method of moments.
Munkhammar, Joakim; Mattsson, Lars; Rydén, Jesper
2017-01-01
We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram-Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation.
Density-functional expansion methods: Grand challenges.
Giese, Timothy J; York, Darrin M
2012-03-01
We discuss the source of errors in semiempirical density functional expansion (VE) methods. In particular, we show that VE methods are capable of well-reproducing their standard Kohn-Sham density functional method counterparts, but suffer from large errors upon using one or more of these approximations: the limited size of the atomic orbital basis, the Slater monopole auxiliary basis description of the response density, and the one- and two-body treatment of the core-Hamiltonian matrix elements. In the process of discussing these approximations and highlighting their symptoms, we introduce a new model that supplements the second-order density-functional tight-binding model with a self-consistent charge-dependent chemical potential equalization correction; we review our recently reported method for generalizing the auxiliary basis description of the atomic orbital response density; and we decompose the first-order potential into a summation of additive atomic components and many-body corrections, and from this examination, we provide new insights and preliminary results that motivate and inspire new approximate treatments of the core-Hamiltonian.
NASA Astrophysics Data System (ADS)
Elgohary, T.; Kim, D.; Turner, J.; Junkins, J.
2014-09-01
Several methods exist for integrating the motion in high order gravity fields. Some recent methods use an approximate starting orbit, and an efficient method is needed for generating warm starts that account for specific low order gravity approximations. By introducing two scalar Lagrange-like invariants and employing Leibniz product rule, the perturbed motion is integrated by a novel recursive formulation. The Lagrange-like invariants allow exact arbitrary order time derivatives. Restricting attention to the perturbations due to the zonal harmonics J2 through J6, we illustrate an idea. The recursively generated vector-valued time derivatives for the trajectory are used to develop a continuation series-based solution for propagating position and velocity. Numerical comparisons indicate performance improvements of ~ 70X over existing explicit Runge-Kutta methods while maintaining mm accuracy for the orbit predictions. The Modified Chebyshev Picard Iteration (MCPI) is an iterative path approximation method to solve nonlinear ordinary differential equations. The MCPI utilizes Picard iteration with orthogonal Chebyshev polynomial basis functions to recursively update the states. The key advantages of the MCPI are as follows: 1) Large segments of a trajectory can be approximated by evaluating the forcing function at multiple nodes along the current approximation during each iteration. 2) It can readily handle general gravity perturbations as well as non-conservative forces. 3) Parallel applications are possible. The Picard sequence converges to the solution over large time intervals when the forces are continuous and differentiable. According to the accuracy of the starting solutions, however, the MCPI may require significant number of iterations and function evaluations compared to other integrators. In this work, we provide an efficient methodology to establish good starting solutions from the continuation series method; this warm start improves the performance of the MCPI significantly and will likely be useful for other applications where efficiently computed approximate orbit solutions are needed.
Intermediate boundary conditions for LOD, ADI and approximate factorization methods
NASA Technical Reports Server (NTRS)
Leveque, R. J.
1985-01-01
A general approach to determining the correct intermediate boundary conditions for dimensional splitting methods is presented. The intermediate solution U is viewed as a second order accurate approximation to a modified equation. Deriving the modified equation and using the relationship between this equation and the original equation allows us to determine the correct boundary conditions for U*. This technique is illustrated by applying it to locally one dimensional (LOD) and alternating direction implicit (ADI) methods for the heat equation in two and three space dimensions. The approximate factorization method is considered in slightly more generality.
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
Identification of stochastic interactions in nonlinear models of structural mechanics
NASA Astrophysics Data System (ADS)
Kala, Zdeněk
2017-07-01
In the paper, the polynomial approximation is presented by which the Sobol sensitivity analysis can be evaluated with all sensitivity indices. The nonlinear FEM model is approximated. The input area is mapped using simulations runs of Latin Hypercube Sampling method. The domain of the approximation polynomial is chosen so that it were possible to apply large number of simulation runs of Latin Hypercube Sampling method. The method presented also makes possible to evaluate higher-order sensitivity indices, which could not be identified in case of nonlinear FEM.
NASA Technical Reports Server (NTRS)
Shinar, J.
1982-01-01
A zero order feedback solution of a variable speed interception game between two aircraft in the horizontal plane, obtained by using the method of forced singular perturbation (FSP), is compared with the exact open loop solution. The comparison indicates that for initial distances of separation larger than eight turning radii of the evader, the accuracy of the feedback approximation is better than one percent. The result validates the zero order FSP approximation for medium range air combat analysis.
The nonconforming virtual element method for eigenvalue problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardini, Francesca; Manzini, Gianmarco; Vacca, Giuseppe
We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L 2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problems. The proposed schemes provide a correct approximation of the spectrum and we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numericalmore » tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice.« less
NASA Astrophysics Data System (ADS)
Lee, Y.; Bescond, M.; Logoteta, D.; Cavassilas, N.; Lannoo, M.; Luisier, M.
2018-05-01
We propose an efficient method to quantum mechanically treat anharmonic interactions in the atomistic nonequilibrium Green's function simulation of phonon transport. We demonstrate that the so-called lowest-order approximation, implemented through a rescaling technique and analytically continued by means of the Padé approximants, can be used to accurately model third-order anharmonic effects. Although the paper focuses on a specific self-energy, the method is applicable to a very wide class of physical interactions. We apply this approach to the simulation of anharmonic phonon transport in realistic Si and Ge nanowires with uniform or discontinuous cross sections. The effect of increasing the temperature above 300 K is also investigated. In all the considered cases, we are able to obtain a good agreement with the routinely adopted self-consistent Born approximation, at a remarkably lower computational cost. In the more complicated case of high temperatures (≫300 K), we find that the first-order Richardson extrapolation applied to the sequence of the Padé approximants N -1 /N results in a significant acceleration of the convergence.
Electroencephalography in ellipsoidal geometry with fourth-order harmonics.
Alcocer-Sosa, M; Gutierrez, D
2016-08-01
We present a solution to the electroencephalographs (EEG) forward problem of computing the scalp electric potentials for the case when the head's geometry is modeled using a four-shell ellipsoidal geometry and the brain sources with an equivalent current dipole (ECD). The proposed solution includes terms up to the fourth-order ellipsoidal harmonics and we compare this new approximation against those that only considered up to second- and third-order harmonics. Our comparisons use as reference a solution in which a tessellated volume approximates the head and the forward problem is solved through the boundary element method (BEM). We also assess the solution to the inverse problem of estimating the magnitude of an ECD through different harmonic approximations. Our results show that the fourth-order solution provides a better estimate of the ECD in comparison to lesser order ones.
NASA Astrophysics Data System (ADS)
Liu, Jiangguo; Tavener, Simon; Wang, Zhuoran
2018-04-01
This paper investigates the lowest-order weak Galerkin finite element method for solving the Darcy equation on quadrilateral and hybrid meshes consisting of quadrilaterals and triangles. In this approach, the pressure is approximated by constants in element interiors and on edges. The discrete weak gradients of these constant basis functions are specified in local Raviart-Thomas spaces, specifically RT0 for triangles and unmapped RT[0] for quadrilaterals. These discrete weak gradients are used to approximate the classical gradient when solving the Darcy equation. The method produces continuous normal fluxes and is locally mass-conservative, regardless of mesh quality, and has optimal order convergence in pressure, velocity, and normal flux, when the quadrilaterals are asymptotically parallelograms. Implementation is straightforward and results in symmetric positive-definite discrete linear systems. We present numerical experiments and comparisons with other existing methods.
Chen, Zhenhua; Hoffmann, Mark R
2012-07-07
A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and BeH(2), are performed in order to test the new methods on problems where full configuration interaction results are available.
Weak periodic solutions of xẍ + 1 = 0 and the Harmonic Balance Method
NASA Astrophysics Data System (ADS)
García-Saldaña, J. D.; Gasull, A.
2017-02-01
We prove that the differential equation xẍ + 1 = 0 has continuous weak periodic solutions and compute their periods. Then, we use the Harmonic Balance Method until order six to approximate these periods and to illustrate how the accuracy of the method increases with the order. Our computations rely on the Gröbner basis approach.
NASA Astrophysics Data System (ADS)
Izsák, Róbert; Neese, Frank
2013-07-01
The 'chain of spheres' approximation, developed earlier for the efficient evaluation of the self-consistent field exchange term, is introduced here into the evaluation of the external exchange term of higher order correlation methods. Its performance is studied in the specific case of the spin-component-scaled third-order Møller--Plesset perturbation (SCS-MP3) theory. The results indicate that the approximation performs excellently in terms of both computer time and achievable accuracy. Significant speedups over a conventional method are obtained for larger systems and basis sets. Owing to this development, SCS-MP3 calculations on molecules of the size of penicillin (42 atoms) with a polarised triple-zeta basis set can be performed in ∼3 hours using 16 cores of an Intel Xeon E7-8837 processor with a 2.67 GHz clock speed, which represents a speedup by a factor of 8-9 compared to the previously most efficient algorithm. Thus, the increased accuracy offered by SCS-MP3 can now be explored for at least medium-sized molecules.
Seismic waves in heterogeneous material: subcell resolution of the discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Castro, Cristóbal E.; Käser, Martin; Brietzke, Gilbert B.
2010-07-01
We present an important extension of the arbitrary high-order discontinuous Galerkin (DG) finite-element method to model 2-D elastic wave propagation in highly heterogeneous material. In this new approach we include space-variable coefficients to describe smooth or discontinuous material variations inside each element using the same numerical approximation strategy as for the velocity-stress variables in the formulation of the elastic wave equation. The combination of the DG method with a time integration scheme based on the solution of arbitrary accuracy derivatives Riemann problems still provides an explicit, one-step scheme which achieves arbitrary high-order accuracy in space and time. Compared to previous formulations the new scheme contains two additional terms in the form of volume integrals. We show that the increasing computational cost per element can be overcompensated due to the improved material representation inside each element as coarser meshes can be used which reduces the total number of elements and therefore computational time to reach a desired error level. We confirm the accuracy of the proposed scheme performing convergence tests and several numerical experiments considering smooth and highly heterogeneous material. As the approximation of the velocity and stress variables in the wave equation and of the material properties in the model can be chosen independently, we investigate the influence of the polynomial material representation on the accuracy of the synthetic seismograms with respect to computational cost. Moreover, we study the behaviour of the new method on strong material discontinuities, in the case where the mesh is not aligned with such a material interface. In this case second-order linear material approximation seems to be the best choice, with higher-order intra-cell approximation leading to potential instable behaviour. For all test cases we validate our solution against the well-established standard fourth-order finite difference and spectral element method.
A diffusion approximation for ocean wave scatterings by randomly distributed ice floes
NASA Astrophysics Data System (ADS)
Zhao, Xin; Shen, Hayley
2016-11-01
This study presents a continuum approach using a diffusion approximation method to solve the scattering of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, the proposed method decomposes the wave action density function into two parts: the transmitted part and the scattered part. For a given wave direction, the transmitted part of the wave action density is defined as the part of wave action density in the same direction before the scattering; and the scattered part is a first order Fourier series approximation for the directional spreading caused by scattering. An additional approximation is also adopted for simplification, in which the net directional redistribution of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the diffusion approximation is found to be in reasonable agreement with the previous solution using the Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering into an operational wave model.
Minimal-Approximation-Based Decentralized Backstepping Control of Interconnected Time-Delay Systems.
Choi, Yun Ho; Yoo, Sung Jin
2016-12-01
A decentralized adaptive backstepping control design using minimal function approximators is proposed for nonlinear large-scale systems with unknown unmatched time-varying delayed interactions and unknown backlash-like hysteresis nonlinearities. Compared with existing decentralized backstepping methods, the contribution of this paper is to design a simple local control law for each subsystem, consisting of an actual control with one adaptive function approximator, without requiring the use of multiple function approximators and regardless of the order of each subsystem. The virtual controllers for each subsystem are used as intermediate signals for designing a local actual control at the last step. For each subsystem, a lumped unknown function including the unknown nonlinear terms and the hysteresis nonlinearities is derived at the last step and is estimated by one function approximator. Thus, the proposed approach only uses one function approximator to implement each local controller, while existing decentralized backstepping control methods require the number of function approximators equal to the order of each subsystem and a calculation of virtual controllers to implement each local actual controller. The stability of the total controlled closed-loop system is analyzed using the Lyapunov stability theorem.
NASA Astrophysics Data System (ADS)
Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe
2018-02-01
A stable numerical solution of the steady Stokes problem requires compatibility between the choice of velocity and pressure approximation that has traditionally proven problematic for meshless methods. In this work, we present a discretization that couples a staggered scheme for pressure approximation with a divergence-free velocity reconstruction to obtain an adaptive, high-order, finite difference-like discretization that can be efficiently solved with conventional algebraic multigrid techniques. We use analytic benchmarks to demonstrate equal-order convergence for both velocity and pressure when solving problems with curvilinear geometries. In order to study problems in dense suspensions, we couple the solution for the flow to the equations of motion for freely suspended particles in an implicit monolithic scheme. The combination of high-order accuracy with fully-implicit schemes allows the accurate resolution of stiff lubrication forces directly from the solution of the Stokes problem without the need to introduce sub-grid lubrication models.
Approximating genomic reliabilities for national genomic evaluation
USDA-ARS?s Scientific Manuscript database
With the introduction of standard methods for approximating effective daughter/data contribution by Interbull in 2001, conventional EDC or reliabilities contributed by daughter phenotypes are directly comparable across countries and used in routine conventional evaluations. In order to make publishe...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haut, T. S.; Babb, T.; Martinsson, P. G.
2015-06-16
Our manuscript demonstrates a technique for efficiently solving the classical wave equation, the shallow water equations, and, more generally, equations of the form ∂u/∂t=Lu∂u/∂t=Lu, where LL is a skew-Hermitian differential operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(τL)exp(τL) for a relatively large time-step ττ. Recently developed techniques for approximating oscillatory scalar functions by rational functions, and accelerated algorithms for computing functions of discretized differential operators are exploited. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large speed-ups over existingmore » methods in situations where simulation over long times are required. Numerical examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomogenous medium are presented, and the method is compared to the 4th order Runge–Kutta (RK4) method and to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals, and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.« less
NASA Technical Reports Server (NTRS)
Walden, H.
1974-01-01
Methods for obtaining approximate solutions for the fundamental eigenvalue of the Laplace-Beltrami operator (also referred to as the membrane eigenvalue problem for the vibration equation) on the unit spherical surface are developed. Two specific types of spherical surface domains are considered: (1) the interior of a spherical triangle, i.e., the region bounded by arcs of three great circles, and (2) the exterior of a great circle arc extending for less than pi radians on the sphere (a spherical surface with a slit). In both cases, zero boundary conditions are imposed. In order to solve the resulting second-order elliptic partial differential equations in two independent variables, a finite difference approximation is derived. The symmetric (generally five-point) finite difference equations that develop are written in matrix form and then solved by the iterative method of point successive overrelaxation. Upon convergence of this iterative method, the fundamental eigenvalue is approximated by iteration utilizing the power method as applied to the finite Rayleigh quotient.
Reduced size first-order subsonic and supersonic aeroelastic modeling
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1990-01-01
Various aeroelastic, aeroservoelastic, dynamic-response, and sensitivity analyses are based on a time-domain first-order (state-space) formulation of the equations of motion. The formulation of this paper is based on the minimum-state (MS) aerodynamic approximation method, which yields a low number of aerodynamic augmenting states. Modifications of the MS and the physical weighting procedures make the modeling method even more attractive. The flexibility of constraint selection is increased without increasing the approximation problem size; the accuracy of dynamic residualization of high-frequency modes is improved; and the resulting model is less sensitive to parametric changes in subsequent analyses. Applications to subsonic and supersonic cases demonstrate the generality, flexibility, accuracy, and efficiency of the method.
NASA Astrophysics Data System (ADS)
Kamibayashi, Yuki; Miura, Shinichi
2016-08-01
In the present study, variational path integral molecular dynamics and associated hybrid Monte Carlo (HMC) methods have been developed on the basis of a fourth order approximation of a density operator. To reveal various parameter dependence of physical quantities, we analytically solve one dimensional harmonic oscillators by the variational path integral; as a byproduct, we obtain the analytical expression of the discretized density matrix using the fourth order approximation for the oscillators. Then, we apply our methods to realistic systems like a water molecule and a para-hydrogen cluster. In the HMC, we adopt two level description to avoid the time consuming Hessian evaluation. For the systems examined in this paper, the HMC method is found to be about three times more efficient than the molecular dynamics method if appropriate HMC parameters are adopted; the advantage of the HMC method is suggested to be more evident for systems described by many body interaction.
Approximated analytical solution to an Ebola optimal control problem
NASA Astrophysics Data System (ADS)
Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.
2016-11-01
An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.
UNAERO: A package of FORTRAN subroutines for approximating unsteady aerodynamics in the time domain
NASA Technical Reports Server (NTRS)
Dunn, H. J.
1985-01-01
This report serves as an instruction and maintenance manual for a collection of CDC CYBER FORTRAN IV subroutines for approximating the unsteady aerodynamic forces in the time domain. The result is a set of constant-coefficient first-order differential equations that approximate the dynamics of the vehicle. Provisions are included for adjusting the number of modes used for calculating the approximations so that an accurate approximation is generated. The number of data points at different values of reduced frequency can also be varied to adjust the accuracy of the approximation over the reduced-frequency range. The denominator coefficients of the approximation may be calculated by means of a gradient method or a least-squares approximation technique. Both the approximation methods use weights on the residual error. A new set of system equations, at a different dynamic pressure, can be generated without the approximations being recalculated.
Path integrals with higher order actions: Application to realistic chemical systems
NASA Astrophysics Data System (ADS)
Lindoy, Lachlan P.; Huang, Gavin S.; Jordan, Meredith J. T.
2018-02-01
Quantum thermodynamic parameters can be determined using path integral Monte Carlo (PIMC) simulations. These simulations, however, become computationally demanding as the quantum nature of the system increases, although their efficiency can be improved by using higher order approximations to the thermal density matrix, specifically the action. Here we compare the standard, primitive approximation to the action (PA) and three higher order approximations, the Takahashi-Imada action (TIA), the Suzuki-Chin action (SCA) and the Chin action (CA). The resulting PIMC methods are applied to two realistic potential energy surfaces, for H2O and HCN-HNC, both of which are spectroscopically accurate and contain three-body interactions. We further numerically optimise, for each potential, the SCA parameter and the two free parameters in the CA, obtaining more significant improvements in efficiency than seen previously in the literature. For both H2O and HCN-HNC, accounting for all required potential and force evaluations, the optimised CA formalism is approximately twice as efficient as the TIA formalism and approximately an order of magnitude more efficient than the PA. The optimised SCA formalism shows similar efficiency gains to the CA for HCN-HNC but has similar efficiency to the TIA for H2O at low temperature. In H2O and HCN-HNC systems, the optimal value of the a1 CA parameter is approximately 1/3 , corresponding to an equal weighting of all force terms in the thermal density matrix, and similar to previous studies, the optimal α parameter in the SCA was ˜0.31. Importantly, poor choice of parameter significantly degrades the performance of the SCA and CA methods. In particular, for the CA, setting a1 = 0 is not efficient: the reduction in convergence efficiency is not offset by the lower number of force evaluations. We also find that the harmonic approximation to the CA parameters, whilst providing a fourth order approximation to the action, is not optimal for these realistic potentials: numerical optimisation leads to better approximate cancellation of the fifth order terms, with deviation between the harmonic and numerically optimised parameters more marked in the more quantum H2O system. This suggests that numerically optimising the CA or SCA parameters, which can be done at high temperature, will be important in fully realising the efficiency gains of these formalisms for realistic potentials.
A 2D Gaussian-Beam-Based Method for Modeling the Dichroic Surfaces of Quasi-Optical Systems
NASA Astrophysics Data System (ADS)
Elis, Kevin; Chabory, Alexandre; Sokoloff, Jérôme; Bolioli, Sylvain
2016-08-01
In this article, we propose an approach in the spectral domain to treat the interaction of a field with a dichroic surface in two dimensions. For a Gaussian beam illumination of the surface, the reflected and transmitted fields are approximated by one reflected and one transmitted Gaussian beams. Their characteristics are determined by means of a matching in the spectral domain, which requires a second-order approximation of the dichroic surface response when excited by plane waves. This approximation is of the same order as the one used in Gaussian beam shooting algorithm to model curved interfaces associated with lenses, reflector, etc. The method uses general analytical formulations for the GBs that depend either on a paraxial or far-field approximation. Numerical experiments are led to test the efficiency of the method in terms of accuracy and computation time. They include a parametric study and a case for which the illumination is provided by a horn antenna. For the latter, the incident field is firstly expressed as a sum of Gaussian beams by means of Gabor frames.
Numerical solution of the unsteady Navier-Stokes equation
NASA Technical Reports Server (NTRS)
Osher, Stanley J.; Engquist, Bjoern
1985-01-01
The construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws are discussed. These schemes share many desirable properties with total variation diminishing schemes, but TVD schemes have at most first-order accuracy, in the sense of truncation error, at extrema of the solution. In this paper a uniformly second-order approximation is constructed, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell.
On High-Order Upwind Methods for Advection
NASA Technical Reports Server (NTRS)
Huynh, H. T.
2017-01-01
In the fourth installment of the celebrated series of five papers entitled "Towards the ultimate conservative difference scheme", Van Leer (1977) introduced five schemes for advection, the first three are piecewise linear, and the last two, piecewise parabolic. Among the five, scheme I, which is the least accurate, extends with relative ease to systems of equations in multiple dimensions. As a result, it became the most popular and is widely known as the MUSCL scheme (monotone upstream-centered schemes for conservation laws). Schemes III and V have the same accuracy, are the most accurate, and are closely related to current high-order methods. Scheme III uses a piecewise linear approximation that is discontinuous across cells, and can be considered as a precursor of the discontinuous Galerkin methods. Scheme V employs a piecewise quadratic approximation that is, as opposed to the case of scheme III, continuous across cells. This method is the basis for the on-going "active flux scheme" developed by Roe and collaborators. Here, schemes III and V are shown to be equivalent in the sense that they yield identical (reconstructed) solutions, provided the initial condition for scheme III is defined from that of scheme V in a manner dependent on the CFL number. This equivalence is counter intuitive since it is generally believed that piecewise linear and piecewise parabolic methods cannot produce the same solutions due to their different degrees of approximation. The finding also shows a key connection between the approaches of discontinuous and continuous polynomial approximations. In addition to the discussed equivalence, a framework using both projection and interpolation that extends schemes III and V into a single family of high-order schemes is introduced. For these high-order extensions, it is demonstrated via Fourier analysis that schemes with the same number of degrees of freedom ?? per cell, in spite of the different piecewise polynomial degrees, share the same sets of eigenvalues and thus, have the same stability and accuracy. Moreover, these schemes are accurate to order 2??-1, which is higher than the expected order of ??.
NASA Astrophysics Data System (ADS)
Stefanucci, G.; Pavlyukh, Y.; Uimonen, A.-M.; van Leeuwen, R.
2014-09-01
We present a diagrammatic approach to construct self-energy approximations within many-body perturbation theory with positive spectral properties. The method cures the problem of negative spectral functions which arises from a straightforward inclusion of vertex diagrams beyond the GW approximation. Our approach consists of a two-step procedure: We first express the approximate many-body self-energy as a product of half-diagrams and then identify the minimal number of half-diagrams to add in order to form a perfect square. The resulting self-energy is an unconventional sum of self-energy diagrams in which the internal lines of half a diagram are time-ordered Green's functions, whereas those of the other half are anti-time-ordered Green's functions, and the lines joining the two halves are either lesser or greater Green's functions. The theory is developed using noninteracting Green's functions and subsequently extended to self-consistent Green's functions. Issues related to the conserving properties of diagrammatic approximations with positive spectral functions are also addressed. As a major application of the formalism we derive the minimal set of additional diagrams to make positive the spectral function of the GW approximation with lowest-order vertex corrections and screened interactions. The method is then applied to vertex corrections in the three-dimensional homogeneous electron gas by using a combination of analytical frequency integrations and numerical Monte Carlo momentum integrations to evaluate the diagrams.
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray; ...
2018-04-09
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less
NASA Technical Reports Server (NTRS)
Pratt, D. T.
1984-01-01
Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.
NASA Astrophysics Data System (ADS)
Macías-Díaz, J. E.
In the present manuscript, we introduce a finite-difference scheme to approximate solutions of the two-dimensional version of Fisher's equation from population dynamics, which is a model for which the existence of traveling-wave fronts bounded within (0,1) is a well-known fact. The method presented here is a nonstandard technique which, in the linear regime, approximates the solutions of the original model with a consistency of second order in space and first order in time. The theory of M-matrices is employed here in order to elucidate conditions under which the method is able to preserve the positivity and the boundedness of solutions. In fact, our main result establishes relatively flexible conditions under which the preservation of the positivity and the boundedness of new approximations is guaranteed. Some simulations of the propagation of a traveling-wave solution confirm the analytical results derived in this work; moreover, the experiments evince a good agreement between the numerical result and the analytical solutions.
Decentralized Quasi-Newton Methods
NASA Astrophysics Data System (ADS)
Eisen, Mark; Mokhtari, Aryan; Ribeiro, Alejandro
2017-05-01
We introduce the decentralized Broyden-Fletcher-Goldfarb-Shanno (D-BFGS) method as a variation of the BFGS quasi-Newton method for solving decentralized optimization problems. The D-BFGS method is of interest in problems that are not well conditioned, making first order decentralized methods ineffective, and in which second order information is not readily available, making second order decentralized methods impossible. D-BFGS is a fully distributed algorithm in which nodes approximate curvature information of themselves and their neighbors through the satisfaction of a secant condition. We additionally provide a formulation of the algorithm in asynchronous settings. Convergence of D-BFGS is established formally in both the synchronous and asynchronous settings and strong performance advantages relative to first order methods are shown numerically.
NASA Technical Reports Server (NTRS)
Connor, J. N. L.; Curtis, P. R.; Farrelly, D.
1984-01-01
Methods that can be used in the numerical implementation of the uniform swallowtail approximation are described. An explicit expression for that approximation is presented to the lowest order, showing that there are three problems which must be overcome in practice before the approximation can be applied to any given problem. It is shown that a recently developed quadrature method can be used for the accurate numerical evaluation of the swallowtail canonical integral and its partial derivatives. Isometric plots of these are presented to illustrate some of their properties. The problem of obtaining the arguments of the swallowtail integral from an analytical function of its argument is considered, describing two methods of solving this problem. The asymptotic evaluation of the butterfly canonical integral is addressed.
Higher-order force moments of active particles
NASA Astrophysics Data System (ADS)
Nasouri, Babak; Elfring, Gwynn J.
2018-04-01
Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.
Improved phase shift approach to the energy correction of the infinite order sudden approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, B.; Eno, L.; Rabitz, H.
1980-07-15
A new method is presented for obtaining energy corrections to the infinite order sudden (IOS) approximation by incorporating the effect of the internal molecular Hamiltonian into the IOS wave function. This is done by utilizing the JWKB approximation to transform the Schroedinger equation into a differential equation for the phase. It is found that the internal Hamiltonian generates an effective potential from which a new improved phase shift is obtained. This phase shift is then used in place of the IOS phase shift to generate new transition probabilities. As an illustration the resulting improved phase shift (IPS) method is appliedmore » to the Secrest--Johnson model for the collinear collision of an atom and diatom. In the vicinity of the sudden limit, the IPS method gives results for transition probabilities, P/sub n/..-->..n+..delta..n, in significantly better agreement with the 'exact' close coupling calculations than the IOS method, particularly for large ..delta..n. However, when the IOS results are not even qualitatively correct, the IPS method is unable to satisfactorily provide improvements.« less
NASA Technical Reports Server (NTRS)
Bailey, Harry E.; Beam, Richard M.
1991-01-01
Finite-difference approximations for steady-state compressible Navier-Stokes equations, whose two spatial dimensions are written in generalized curvilinear coordinates and strong conservation-law form, are presently solved by means of Newton's method in order to obtain a lifting-airfoil flow field under subsonic and transonnic conditions. In addition to ascertaining the computational requirements of an initial guess ensuring convergence and the degree of computational efficiency obtainable via the approximate Newton method's freezing of the Jacobian matrices, attention is given to the need for auxiliary methods assessing the temporal stability of steady-state solutions. It is demonstrated that nonunique solutions of the finite-difference equations are obtainable by Newton's method in conjunction with a continuation method.
Transient analysis of an adaptive system for optimization of design parameters
NASA Technical Reports Server (NTRS)
Bayard, D. S.
1992-01-01
Averaging methods are applied to analyzing and optimizing the transient response associated with the direct adaptive control of an oscillatory second-order minimum-phase system. The analytical design methods developed for a second-order plant can be applied with some approximation to a MIMO flexible structure having a single dominant mode.
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Mohammadi, Vahid
2017-08-01
In this research, we investigate the numerical solution of nonlinear Schrödinger equations in two and three dimensions. The numerical meshless method which will be used here is RBF-FD technique. The main advantage of this method is the approximation of the required derivatives based on finite difference technique at each local-support domain as Ωi. At each Ωi, we require to solve a small linear system of algebraic equations with a conditionally positive definite matrix of order 1 (interpolation matrix). This scheme is efficient and its computational cost is same as the moving least squares (MLS) approximation. A challengeable issue is choosing suitable shape parameter for interpolation matrix in this way. In order to overcome this matter, an algorithm which was established by Sarra (2012), will be applied. This algorithm computes the condition number of the local interpolation matrix using the singular value decomposition (SVD) for obtaining the smallest and largest singular values of that matrix. Moreover, an explicit method based on Runge-Kutta formula of fourth-order accuracy will be applied for approximating the time variable. It also decreases the computational costs at each time step since we will not solve a nonlinear system. On the other hand, to compare RBF-FD method with another meshless technique, the moving kriging least squares (MKLS) approximation is considered for the studied model. Our results demonstrate the ability of the present approach for solving the applicable model which is investigated in the current research work.
Similarity-transformed equation-of-motion vibrational coupled-cluster theory.
Faucheaux, Jacob A; Nooijen, Marcel; Hirata, So
2018-02-07
A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.
Similarity-transformed equation-of-motion vibrational coupled-cluster theory
NASA Astrophysics Data System (ADS)
Faucheaux, Jacob A.; Nooijen, Marcel; Hirata, So
2018-02-01
A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Karpel, Mordechay
1989-01-01
Various control analysis, design, and simulation techniques for aeroelastic applications require the equations of motion to be cast in a linear time-invariant state-space form. Unsteady aerodynamics forces have to be approximated as rational functions of the Laplace variable in order to put them in this framework. For the minimum-state method, the number of denominator roots in the rational approximation. Results are shown of applying various approximation enhancements (including optimization, frequency dependent weighting of the tabular data, and constraint selection) with the minimum-state formulation to the active flexible wing wind-tunnel model. The results demonstrate that good models can be developed which have an order of magnitude fewer augmenting aerodynamic equations more than traditional approaches. This reduction facilitates the design of lower order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena.
Physical foundation of the fluid particle dynamics method for colloid dynamics simulation.
Furukawa, Akira; Tateno, Michio; Tanaka, Hajime
2018-05-16
Colloid dynamics is significantly influenced by many-body hydrodynamic interactions mediated by a suspending fluid. However, theoretical and numerical treatments of such interactions are extremely difficult. To overcome this situation, we developed a fluid particle dynamics (FPD) method [H. Tanaka and T. Araki, Phys. Rev. Lett., 2000, 35, 3523], which is based on two key approximations: (i) a colloidal particle is treated as a highly viscous particle and (ii) the viscosity profile is described by a smooth interfacial profile function. Approximation (i) makes our method free from the solid-fluid boundary condition, significantly simplifying the treatment of many-body hydrodynamic interactions while satisfying the incompressible condition without the Stokes approximation. Approximation (ii) allows us to incorporate an extra degree of freedom in a fluid, e.g., orientational order and concentration, as an additional field variable. Here, we consider two fundamental problems associated with these approximations. One is the introduction of thermal noise and the other is the incorporation of coupling of the colloid surface with an order parameter introduced into a fluid component, which is crucial when considering colloidal particles suspended in a complex fluid. Here, we show that our FPD method makes it possible to simulate colloid dynamics properly while including full hydrodynamic interactions, inertia effects, incompressibility, thermal noise, and additional degrees of freedom of a fluid, which may be relevant for wide applications in colloidal and soft matter science.
On the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws
NASA Technical Reports Server (NTRS)
Bryson, Steve; Levy, Doron
2004-01-01
We discuss a new fifth-order, semi-discrete, central-upwind scheme for solving one-dimensional systems of conservation laws. This scheme combines a fifth-order WENO reconstruction, a semi-discrete central-upwind numerical flux, and a strong stability preserving Runge-Kutta method. We test our method with various examples, and give particular attention to the evolution of the total variation of the approximations.
Semi-Analytic Reconstruction of Flux in Finite Volume Formulations
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2006-01-01
Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.
A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less
A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations
Mu, Lin; Wang, Junping; Ye, Xiu
2017-08-17
Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less
An Exact Model-Based Method for Near-Field Sources Localization with Bistatic MIMO System.
Singh, Parth Raj; Wang, Yide; Chargé, Pascal
2017-03-30
In this paper, we propose an exact model-based method for near-field sources localization with a bistatic multiple input, multiple output (MIMO) radar system, and compare it with an approximated model-based method. The aim of this paper is to propose an efficient way to use the exact model of the received signals of near-field sources in order to eliminate the systematic error introduced by the use of approximated model in most existing near-field sources localization techniques. The proposed method uses parallel factor (PARAFAC) decomposition to deal with the exact model. Thanks to the exact model, the proposed method has better precision and resolution than the compared approximated model-based method. The simulation results show the performance of the proposed method.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1988-01-01
The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.
NASA Astrophysics Data System (ADS)
Gurrala, Praveen; Downs, Andrew; Chen, Kun; Song, Jiming; Roberts, Ron
2018-04-01
Full wave scattering models for ultrasonic waves are necessary for the accurate prediction of voltage signals received from complex defects/flaws in practical nondestructive evaluation (NDE) measurements. We propose the high-order Nyström method accelerated by the multilevel fast multipole algorithm (MLFMA) as an improvement to the state-of-the-art full-wave scattering models that are based on boundary integral equations. We present numerical results demonstrating improvements in simulation time and memory requirement. Particularly, we demonstrate the need for higher order geom-etry and field approximation in modeling NDE measurements. Also, we illustrate the importance of full-wave scattering models using experimental pulse-echo data from a spherical inclusion in a solid, which cannot be modeled accurately by approximation-based scattering models such as the Kirchhoff approximation.
Some spectral approximation of one-dimensional fourth-order problems
NASA Technical Reports Server (NTRS)
Bernardi, Christine; Maday, Yvon
1989-01-01
Some spectral type collocation method well suited for the approximation of fourth-order systems are proposed. The model problem is the biharmonic equation, in one and two dimensions when the boundary conditions are periodic in one direction. It is proved that the standard Gauss-Lobatto nodes are not the best choice for the collocation points. Then, a new set of nodes related to some generalized Gauss type quadrature formulas is proposed. Also provided is a complete analysis of these formulas including some new issues about the asymptotic behavior of the weights and we apply these results to the analysis of the collocation method.
Turbofan Duct Propagation Model
NASA Technical Reports Server (NTRS)
Lan, Justin H.; Posey, Joe W. (Technical Monitor)
2001-01-01
The CDUCT code utilizes a parabolic approximation to the convected Helmholtz equation in order to efficiently model acoustic propagation in acoustically treated, complex shaped ducts. The parabolic approximation solves one-way wave propagation with a marching method which neglects backwards reflected waves. The derivation of the parabolic approximation is presented. Several code validation cases are given. An acoustic lining design process for an example aft fan duct is discussed. It is noted that the method can efficiently model realistic three-dimension effects, acoustic lining, and flow within the computational capabilities of a typical computer workstation.
Distorted-wave methods for electron capture in ion-atom collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgdoerfer, J.; Taulbjerg, K.
1986-05-01
Distorted-wave methods for electron capture are discussed with emphasis on the surface term in the T matrix and on the properties of the associated integral equations. The surface term is generally nonvanishing if the distorted waves are sufficiently accurate to include parts of the considered physical process. Two examples are considered in detail. If distorted waves of the strong-potential Born-approximation (SPB) type are employed the surface term supplies the first-Born-approximation part of the T matrix. The surface term is shown to vanish in the continuum-distorted-wave (CDW) method. The integral kernel is in either case free of the dangerous disconnected termsmore » discussed by Greider and Dodd but the CDW theory is peculiar in the sense that its first-order approximation (CDW1) excludes a specific on-shell portion of the double-scattering term that is closely connected with the classical Thomas process. The latter is described by the second-order term in the CDW series. The distorted-wave Born approximation with SPB waves is shown to be free of divergences. In the limit of asymmetric collisions the DWB suggests a modification of the SPB approximation to avoid the divergence problem recently identified by Dewangan and Eichler.« less
An Iterative Solver in the Presence and Absence of Multiplicity for Nonlinear Equations
Özkum, Gülcan
2013-01-01
We develop a high-order fixed point type method to approximate a multiple root. By using three functional evaluations per full cycle, a new class of fourth-order methods for this purpose is suggested and established. The methods from the class require the knowledge of the multiplicity. We also present a method in the absence of multiplicity for nonlinear equations. In order to attest the efficiency of the obtained methods, we employ numerical comparisons alongside obtaining basins of attraction to compare them in the complex plane according to their convergence speed and chaotic behavior. PMID:24453914
On cell entropy inequality for discontinuous Galerkin methods
NASA Technical Reports Server (NTRS)
Jiang, Guangshan; Shu, Chi-Wang
1993-01-01
We prove a cell entropy inequality for a class of high order discontinuous Galerkin finite element methods approximating conservation laws, which implies convergence for the one dimensional scalar convex case.
WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS
MU, LIN; WANG, JUNPING; WEI, GUOWEI; YE, XIU; ZHAO, SHAN
2013-01-01
Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2 and L∞ norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order O(h) to O(h1.5) for the solution itself in L∞ norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order O(h1.75) to O(h2) in the L∞ norm for C1 or Lipschitz continuous interfaces associated with a C1 or H2 continuous solution. PMID:24072935
Kernel Wiener filter and its application to pattern recognition.
Yoshino, Hirokazu; Dong, Chen; Washizawa, Yoshikazu; Yamashita, Yukihiko
2010-11-01
The Wiener filter (WF) is widely used for inverse problems. From an observed signal, it provides the best estimated signal with respect to the squared error averaged over the original and the observed signals among linear operators. The kernel WF (KWF), extended directly from WF, has a problem that an additive noise has to be handled by samples. Since the computational complexity of kernel methods depends on the number of samples, a huge computational cost is necessary for the case. By using the first-order approximation of kernel functions, we realize KWF that can handle such a noise not by samples but as a random variable. We also propose the error estimation method for kernel filters by using the approximations. In order to show the advantages of the proposed methods, we conducted the experiments to denoise images and estimate errors. We also apply KWF to classification since KWF can provide an approximated result of the maximum a posteriori classifier that provides the best recognition accuracy. The noise term in the criterion can be used for the classification in the presence of noise or a new regularization to suppress changes in the input space, whereas the ordinary regularization for the kernel method suppresses changes in the feature space. In order to show the advantages of the proposed methods, we conducted experiments of binary and multiclass classifications and classification in the presence of noise.
Optimal sixteenth order convergent method based on quasi-Hermite interpolation for computing roots.
Zafar, Fiza; Hussain, Nawab; Fatimah, Zirwah; Kharal, Athar
2014-01-01
We have given a four-step, multipoint iterative method without memory for solving nonlinear equations. The method is constructed by using quasi-Hermite interpolation and has order of convergence sixteen. As this method requires four function evaluations and one derivative evaluation at each step, it is optimal in the sense of the Kung and Traub conjecture. The comparisons are given with some other newly developed sixteenth-order methods. Interval Newton's method is also used for finding the enough accurate initial approximations. Some figures show the enclosure of finitely many zeroes of nonlinear equations in an interval. Basins of attractions show the effectiveness of the method.
Laplace transform homotopy perturbation method for the approximation of variational problems.
Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R
2016-01-01
This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.
Fast and Analytical EAP Approximation from a 4th-Order Tensor.
Ghosh, Aurobrata; Deriche, Rachid
2012-01-01
Generalized diffusion tensor imaging (GDTI) was developed to model complex apparent diffusivity coefficient (ADC) using higher-order tensors (HOTs) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP). Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.
Fast and Analytical EAP Approximation from a 4th-Order Tensor
Ghosh, Aurobrata; Deriche, Rachid
2012-01-01
Generalized diffusion tensor imaging (GDTI) was developed to model complex apparent diffusivity coefficient (ADC) using higher-order tensors (HOTs) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP). Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data. PMID:23365552
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul
1993-01-01
We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.
Double power series method for approximating cosmological perturbations
NASA Astrophysics Data System (ADS)
Wren, Andrew J.; Malik, Karim A.
2017-04-01
We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a noncosmological context, by Feshchenko, Shkil' and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on subhorizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this model's well-known growing and decaying Mészáros solutions, these oscillating modes provide a complete set of subhorizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.
A NURBS-enhanced finite volume solver for steady Euler equations
NASA Astrophysics Data System (ADS)
Meng, Xucheng; Hu, Guanghui
2018-04-01
In Hu and Yi (2016) [20], a non-oscillatory k-exact reconstruction method was proposed towards the high-order finite volume methods for steady Euler equations, which successfully demonstrated the high-order behavior in the simulations. However, the degeneracy of the numerical accuracy of the approximate solutions to problems with curved boundary can be observed obviously. In this paper, the issue is resolved by introducing the Non-Uniform Rational B-splines (NURBS) method, i.e., with given discrete description of the computational domain, an approximate NURBS curve is reconstructed to provide quality quadrature information along the curved boundary. The advantages of using NURBS include i). both the numerical accuracy of the approximate solutions and convergence rate of the numerical methods are improved simultaneously, and ii). the NURBS curve generation is independent of other modules of the numerical framework, which makes its application very flexible. It is also shown in the paper that by introducing more elements along the normal direction for the reconstruction patch of the boundary element, significant improvement in the convergence to steady state can be achieved. The numerical examples confirm the above features very well.
Theoretical studies of floating-reference method for NIR blood glucose sensing
NASA Astrophysics Data System (ADS)
Shi, Zhenzhi; Yang, Yue; Zhao, Huijuan; Chen, Wenliang; Liu, Rong; Xu, Kexin
2011-03-01
Non-invasive blood glucose monitoring using NIR light has been suffered from the variety of optical background that is mainly caused by the change of human body, such as the change of temperature, water concentration, and so on. In order to eliminate these internal influence and external interference a so called floating-reference method has been proposed to provide an internal reference. From the analysis of the diffuse reflectance spectrum, a position has been found where diffuse reflection of light is not sensitive to the glucose concentrations. Our previous work has proved the existence of reference position using diffusion equation. However, since glucose monitoring generally use the NIR light in region of 1000-2000nm, diffusion equation is not valid because of the high absorption coefficient and small source-detector separations. In this paper, steady-state high-order approximate model is used to further investigate the existence of the floating reference position in semi-infinite medium. Based on the analysis of different optical parameters on the impact of spatially resolved reflectance of light, we find that the existence of the floating-reference position is the result of the interaction of optical parameters. Comparing to the results of Monte Carlo simulation, the applicable region of diffusion approximation and higher-order approximation for the calculation of floating-reference position is discussed at the wavelength of 1000nm-1800nm, using the intralipid solution of different concentrations. The results indicate that when the reduced albedo is greater than 0.93, diffusion approximation results are more close to simulation results, otherwise the high order approximation is more applicable.
High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs
NASA Technical Reports Server (NTRS)
Nielsen, Tanner B.; Carpenter, Mark H.; Fisher, Travis C.; Frankel, Steven H.
2014-01-01
This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.
NASA Astrophysics Data System (ADS)
Pathak, Harshavardhana S.; Shukla, Ratnesh K.
2016-08-01
A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.
Discrete conservation laws and the convergence of long time simulations of the mkdv equation
NASA Astrophysics Data System (ADS)
Gorria, C.; Alejo, M. A.; Vega, L.
2013-02-01
Pseudospectral collocation methods and finite difference methods have been used for approximating an important family of soliton like solutions of the mKdV equation. These solutions present a structural instability which make difficult to approximate their evolution in long time intervals with enough accuracy. The standard numerical methods do not guarantee the convergence to the proper solution of the initial value problem and often fail by approaching solutions associated to different initial conditions. In this frame the numerical schemes that preserve the discrete invariants related to some conservation laws of this equation produce better results than the methods which only take care of a high consistency order. Pseudospectral spatial discretization appear as the most robust of the numerical methods, but finite difference schemes are useful in order to analyze the rule played by the conservation of the invariants in the convergence.
A Runge-Kutta discontinuous finite element method for high speed flows
NASA Technical Reports Server (NTRS)
Bey, Kim S.; Oden, J. T.
1991-01-01
A Runge-Kutta discontinuous finite element method is developed for hyperbolic systems of conservation laws in two space variables. The discontinuous Galerkin spatial approximation to the conservation laws results in a system of ordinary differential equations which are marched in time using Runge-Kutta methods. Numerical results for the two-dimensional Burger's equation show that the method is (p+1)-order accurate in time and space, where p is the degree of the polynomial approximation of the solution within an element and is capable of capturing shocks over a single element without oscillations. Results for this problem also show that the accuracy of the solution in smooth regions is unaffected by the local projection and that the accuracy in smooth regions increases as p increases. Numerical results for the Euler equations show that the method captures shocks without oscillations and with higher resolution than a first-order scheme.
Approximation of the exponential integral (well function) using sampling methods
NASA Astrophysics Data System (ADS)
Baalousha, Husam Musa
2015-04-01
Exponential integral (also known as well function) is often used in hydrogeology to solve Theis and Hantush equations. Many methods have been developed to approximate the exponential integral. Most of these methods are based on numerical approximations and are valid for a certain range of the argument value. This paper presents a new approach to approximate the exponential integral. The new approach is based on sampling methods. Three different sampling methods; Latin Hypercube Sampling (LHS), Orthogonal Array (OA), and Orthogonal Array-based Latin Hypercube (OA-LH) have been used to approximate the function. Different argument values, covering a wide range, have been used. The results of sampling methods were compared with results obtained by Mathematica software, which was used as a benchmark. All three sampling methods converge to the result obtained by Mathematica, at different rates. It was found that the orthogonal array (OA) method has the fastest convergence rate compared with LHS and OA-LH. The root mean square error RMSE of OA was in the order of 1E-08. This method can be used with any argument value, and can be used to solve other integrals in hydrogeology such as the leaky aquifer integral.
Parallel Implementation of a High Order Implicit Collocation Method for the Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules; Halem, Milton (Technical Monitor)
2000-01-01
We combine a high order compact finite difference approximation and collocation techniques to numerically solve the two dimensional heat equation. The resulting method is implicit arid can be parallelized with a strategy that allows parallelization across both time and space. We compare the parallel implementation of the new method with a classical implicit method, namely the Crank-Nicolson method, where the parallelization is done across space only. Numerical experiments are carried out on the SGI Origin 2000.
An accurate method for solving a class of fractional Sturm-Liouville eigenvalue problems
NASA Astrophysics Data System (ADS)
Kashkari, Bothayna S. H.; Syam, Muhammed I.
2018-06-01
This article is devoted to both theoretical and numerical study of the eigenvalues of nonsingular fractional second-order Sturm-Liouville problem. In this paper, we implement a fractional-order Legendre Tau method to approximate the eigenvalues. This method transforms the Sturm-Liouville problem to a sparse nonsingular linear system which is solved using the continuation method. Theoretical results for the considered problem are provided and proved. Numerical results are presented to show the efficiency of the proposed method.
Tencer, John; Carlberg, Kevin; Larsen, Marvin; ...
2017-06-17
Radiation heat transfer is an important phenomenon in many physical systems of practical interest. When participating media is important, the radiative transfer equation (RTE) must be solved for the radiative intensity as a function of location, time, direction, and wavelength. In many heat-transfer applications, a quasi-steady assumption is valid, thereby removing time dependence. The dependence on wavelength is often treated through a weighted sum of gray gases (WSGG) approach. The discrete ordinates method (DOM) is one of the most common methods for approximating the angular (i.e., directional) dependence. The DOM exactly solves for the radiative intensity for a finite numbermore » of discrete ordinate directions and computes approximations to integrals over the angular space using a quadrature rule; the chosen ordinate directions correspond to the nodes of this quadrature rule. This paper applies a projection-based model-reduction approach to make high-order quadrature computationally feasible for the DOM for purely absorbing applications. First, the proposed approach constructs a reduced basis from (high-fidelity) solutions of the radiative intensity computed at a relatively small number of ordinate directions. Then, the method computes inexpensive approximations of the radiative intensity at the (remaining) quadrature points of a high-order quadrature using a reduced-order model constructed from the reduced basis. Finally, this results in a much more accurate solution than might have been achieved using only the ordinate directions used to compute the reduced basis. One- and three-dimensional test problems highlight the efficiency of the proposed method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tencer, John; Carlberg, Kevin; Larsen, Marvin
Radiation heat transfer is an important phenomenon in many physical systems of practical interest. When participating media is important, the radiative transfer equation (RTE) must be solved for the radiative intensity as a function of location, time, direction, and wavelength. In many heat-transfer applications, a quasi-steady assumption is valid, thereby removing time dependence. The dependence on wavelength is often treated through a weighted sum of gray gases (WSGG) approach. The discrete ordinates method (DOM) is one of the most common methods for approximating the angular (i.e., directional) dependence. The DOM exactly solves for the radiative intensity for a finite numbermore » of discrete ordinate directions and computes approximations to integrals over the angular space using a quadrature rule; the chosen ordinate directions correspond to the nodes of this quadrature rule. This paper applies a projection-based model-reduction approach to make high-order quadrature computationally feasible for the DOM for purely absorbing applications. First, the proposed approach constructs a reduced basis from (high-fidelity) solutions of the radiative intensity computed at a relatively small number of ordinate directions. Then, the method computes inexpensive approximations of the radiative intensity at the (remaining) quadrature points of a high-order quadrature using a reduced-order model constructed from the reduced basis. Finally, this results in a much more accurate solution than might have been achieved using only the ordinate directions used to compute the reduced basis. One- and three-dimensional test problems highlight the efficiency of the proposed method.« less
Fully decoupled monolithic projection method for natural convection problems
NASA Astrophysics Data System (ADS)
Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il
2017-04-01
To solve time-dependent natural convection problems, we propose a fully decoupled monolithic projection method. The proposed method applies the Crank-Nicolson scheme in time and the second-order central finite difference in space. To obtain a non-iterative monolithic method from the fully discretized nonlinear system, we first adopt linearizations of the nonlinear convection terms and the general buoyancy term with incurring second-order errors in time. Approximate block lower-upper decompositions, along with an approximate factorization technique, are additionally employed to a global linearly coupled system, which leads to several decoupled subsystems, i.e., a fully decoupled monolithic procedure. We establish global error estimates to verify the second-order temporal accuracy of the proposed method for velocity, pressure, and temperature in terms of a discrete l2-norm. Moreover, according to the energy evolution, the proposed method is proved to be stable if the time step is less than or equal to a constant. In addition, we provide numerical simulations of two-dimensional Rayleigh-Bénard convection and periodic forced flow. The results demonstrate that the proposed method significantly mitigates the time step limitation, reduces the computational cost because only one Poisson equation is required to be solved, and preserves the second-order temporal accuracy for velocity, pressure, and temperature. Finally, the proposed method reasonably predicts a three-dimensional Rayleigh-Bénard convection for different Rayleigh numbers.
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.
1998-01-01
The use of response surface models and kriging models are compared for approximating non-random, deterministic computer analyses. After discussing the traditional response surface approach for constructing polynomial models for approximation, kriging is presented as an alternative statistical-based approximation method for the design and analysis of computer experiments. Both approximation methods are applied to the multidisciplinary design and analysis of an aerospike nozzle which consists of a computational fluid dynamics model and a finite element analysis model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations. Four optimization problems are formulated and solved using both approximation models. While neither approximation technique consistently outperforms the other in this example, the kriging models using only a constant for the underlying global model and a Gaussian correlation function perform as well as the second order polynomial response surface models.
Numerical solution of distributed order fractional differential equations
NASA Astrophysics Data System (ADS)
Katsikadelis, John T.
2014-02-01
In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.
NASA Astrophysics Data System (ADS)
Gorthi, Sai Siva; Rajshekhar, G.; Rastogi, Pramod
2010-04-01
For three-dimensional (3D) shape measurement using fringe projection techniques, the information about the 3D shape of an object is encoded in the phase of a recorded fringe pattern. The paper proposes a high-order instantaneous moments based method to estimate phase from a single fringe pattern in fringe projection. The proposed method works by approximating the phase as a piece-wise polynomial and subsequently determining the polynomial coefficients using high-order instantaneous moments to construct the polynomial phase. Simulation results are presented to show the method's potential.
Exponential Methods for the Time Integration of Schroedinger Equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano, B.; Gonzalez-Pachon, A.
2010-09-30
We consider exponential methods of second order in time in order to integrate the cubic nonlinear Schroedinger equation. We are interested in taking profit of the special structure of this equation. Therefore, we look at symmetry, symplecticity and approximation of invariants of the proposed methods. That will allow to integrate till long times with reasonable accuracy. Computational efficiency is also our aim. Therefore, we make numerical computations in order to compare the methods considered and so as to conclude that explicit Lawson schemes projected on the norm of the solution are an efficient tool to integrate this equation.
On the acceleration of charged particles at relativistic shock fronts
NASA Technical Reports Server (NTRS)
Kirk, J. G.; Schneider, P.
1987-01-01
The diffusive acceleration of highly relativistic particles at a shock is reconsidered. Using the same physical assumptions as Blandford and Ostriker (1978), but dropping the restriction to nonrelativistic shock velocities, the authors find approximate solutions of the particle kinetic equation by generalizing the diffusion approximation to higher order terms in the anisotropy of the particle distribution. The general solution of the transport equation on either side of the shock is constructed, which involves the solution of an eigenvalue problem. By matching the two solutions at the shock, the spectral index of the resulting power law is found by taking into account a sufficiently large number of eigenfunctions. Low-order truncation corresponds to the standard diffusion approximation and to a somewhat more general method described by Peacock (1981). In addition to the energy spectrum, the method yields the angular distribution of the particles and its spatial dependence.
A point-value enhanced finite volume method based on approximate delta functions
NASA Astrophysics Data System (ADS)
Xuan, Li-Jun; Majdalani, Joseph
2018-02-01
We revisit the concept of an approximate delta function (ADF), introduced by Huynh (2011) [1], in the form of a finite-order polynomial that holds identical integral properties to the Dirac delta function when used in conjunction with a finite-order polynomial integrand over a finite domain. We show that the use of generic ADF polynomials can be effective at recovering and generalizing several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements saves the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Here, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to the linear wave and nonlinear Burgers' equations in one-dimensional space.
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
NASA Technical Reports Server (NTRS)
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
High order filtering methods for approximating hyperbolic systems of conservation laws
NASA Technical Reports Server (NTRS)
Lafon, F.; Osher, S.
1991-01-01
The essentially nonoscillatory (ENO) schemes, while potentially useful in the computation of discontinuous solutions of hyperbolic conservation-law systems, are computationally costly relative to simple central-difference methods. A filtering technique is presented which employs central differencing of arbitrarily high-order accuracy except where a local test detects the presence of spurious oscillations and calls upon the full ENO apparatus to remove them. A factor-of-three speedup is thus obtained over the full-ENO method for a wide range of problems, with high-order accuracy in regions of smooth flow.
Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules
1999-01-01
In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.
The Adams formulas for numerical integration of differential equations from 1st to 20th order
NASA Technical Reports Server (NTRS)
Kirkpatrick, J. C.
1976-01-01
The Adams Bashforth predictor coefficients and the Adams Moulton corrector coefficients for the integration of differential equations are presented for methods of 1st to 20th order. The order of the method as presented refers to the highest order difference formula used in Newton's backward difference interpolation formula, on which the Adams method is based. The Adams method is a polynomial approximation method derived from Newton's backward difference interpolation formula. The Newton formula is derived and expanded to 20th order. The Adams predictor and corrector formulas are derived and expressed in terms of differences of the derivatives, as well as in terms of the derivatives themselves. All coefficients are given to 18 significant digits. For the difference formula only, the ratio coefficients are given to 10th order.
NASA Astrophysics Data System (ADS)
Herath, Narmada; Del Vecchio, Domitilla
2018-03-01
Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.
Weak Galerkin method for the Biot’s consolidation model
Hu, Xiaozhe; Mu, Lin; Ye, Xiu
2017-08-23
In this study, we develop a weak Galerkin (WG) finite element method for the Biot’s consolidation model in the classical displacement–pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure withoutmore » special treatment. Lastlyl, numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method.« less
Weak Galerkin method for the Biot’s consolidation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiaozhe; Mu, Lin; Ye, Xiu
In this study, we develop a weak Galerkin (WG) finite element method for the Biot’s consolidation model in the classical displacement–pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure withoutmore » special treatment. Lastlyl, numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method.« less
NASA Astrophysics Data System (ADS)
Sayevand, K.; Pichaghchi, K.
2018-04-01
In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.
NASA Astrophysics Data System (ADS)
Priya, B. Ganesh; Muthukumar, P.
2018-02-01
This paper deals with the trajectory controllability for a class of multi-order fractional linear systems subject to a constant delay in state vector. The solution for the coupled fractional delay differential equation is established by the Mittag-Leffler function. The necessary and sufficient condition for the trajectory controllability is formulated and proved by the generalized Gronwall's inequality. The approximate trajectory for the proposed system is obtained through the shifted Jacobi operational matrix method. The numerical simulation of the approximate solution shows the theoretical results. Finally, some remarks and comments on the existing results of constrained controllability for the fractional dynamical system are also presented.
Testing higher-order Lagrangian perturbation theory against numerical simulation. 1: Pancake models
NASA Technical Reports Server (NTRS)
Buchert, T.; Melott, A. L.; Weiss, A. G.
1993-01-01
We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of quasi-linear scales. The Lagrangian theory of gravitational instability of an Einstein-de Sitter dust cosmogony investigated and solved up to the third order is compared with numerical simulations. In this paper we study the dynamics of pancake models as a first step. In previous work the accuracy of several analytical approximations for the modeling of large-scale structure in the mildly non-linear regime was analyzed in the same way, allowing for direct comparison of the accuracy of various approximations. In particular, the Zel'dovich approximation (hereafter ZA) as a subclass of the first-order Lagrangian perturbation solutions was found to provide an excellent approximation to the density field in the mildly non-linear regime (i.e. up to a linear r.m.s. density contrast of sigma is approximately 2). The performance of ZA in hierarchical clustering models can be greatly improved by truncating the initial power spectrum (smoothing the initial data). We here explore whether this approximation can be further improved with higher-order corrections in the displacement mapping from homogeneity. We study a single pancake model (truncated power-spectrum with power-spectrum with power-index n = -1) using cross-correlation statistics employed in previous work. We found that for all statistical methods used the higher-order corrections improve the results obtained for the first-order solution up to the stage when sigma (linear theory) is approximately 1. While this improvement can be seen for all spatial scales, later stages retain this feature only above a certain scale which is increasing with time. However, third-order is not much improvement over second-order at any stage. The total breakdown of the perturbation approach is observed at the stage, where sigma (linear theory) is approximately 2, which corresponds to the onset of hierarchical clustering. This success is found at a considerable higher non-linearity than is usual for perturbation theory. Whether a truncation of the initial power-spectrum in hierarchical models retains this improvement will be analyzed in a forthcoming work.
Liang, Xiao; Khaliq, Abdul Q. M.; Xing, Yulong
2015-01-23
In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.
Projection-free approximate balanced truncation of large unstable systems
NASA Astrophysics Data System (ADS)
Flinois, Thibault L. B.; Morgans, Aimee S.; Schmid, Peter J.
2015-08-01
In this article, we show that the projection-free, snapshot-based, balanced truncation method can be applied directly to unstable systems. We prove that even for unstable systems, the unmodified balanced proper orthogonal decomposition algorithm theoretically yields a converged transformation that balances the Gramians (including the unstable subspace). We then apply the method to a spatially developing unstable system and show that it results in reduced-order models of similar quality to the ones obtained with existing methods. Due to the unbounded growth of unstable modes, a practical restriction on the final impulse response simulation time appears, which can be adjusted depending on the desired order of the reduced-order model. Recommendations are given to further reduce the cost of the method if the system is large and to improve the performance of the method if it does not yield acceptable results in its unmodified form. Finally, the method is applied to the linearized flow around a cylinder at Re = 100 to show that it actually is able to accurately reproduce impulse responses for more realistic unstable large-scale systems in practice. The well-established approximate balanced truncation numerical framework therefore can be safely applied to unstable systems without any modifications. Additionally, balanced reduced-order models can readily be obtained even for large systems, where the computational cost of existing methods is prohibitive.
On shifted Jacobi spectral method for high-order multi-point boundary value problems
NASA Astrophysics Data System (ADS)
Doha, E. H.; Bhrawy, A. H.; Hafez, R. M.
2012-10-01
This paper reports a spectral tau method for numerically solving multi-point boundary value problems (BVPs) of linear high-order ordinary differential equations. The construction of the shifted Jacobi tau approximation is based on conventional differentiation. This use of differentiation allows the imposition of the governing equation at the whole set of grid points and the straight forward implementation of multiple boundary conditions. Extension of the tau method for high-order multi-point BVPs with variable coefficients is treated using the shifted Jacobi Gauss-Lobatto quadrature. Shifted Jacobi collocation method is developed for solving nonlinear high-order multi-point BVPs. The performance of the proposed methods is investigated by considering several examples. Accurate results and high convergence rates are achieved.
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1978-01-01
The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.
Numerical solution of second order ODE directly by two point block backward differentiation formula
NASA Astrophysics Data System (ADS)
Zainuddin, Nooraini; Ibrahim, Zarina Bibi; Othman, Khairil Iskandar; Suleiman, Mohamed; Jamaludin, Noraini
2015-12-01
Direct Two Point Block Backward Differentiation Formula, (BBDF2) for solving second order ordinary differential equations (ODEs) will be presented throughout this paper. The method is derived by differentiating the interpolating polynomial using three back values. In BBDF2, two approximate solutions are produced simultaneously at each step of integration. The method derived is implemented by using fixed step size and the numerical results that follow demonstrate the advantage of the direct method as compared to the reduction method.
Spectral Element Method for the Simulation of Unsteady Compressible Flows
NASA Technical Reports Server (NTRS)
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.
A method for reducing the order of nonlinear dynamic systems
NASA Astrophysics Data System (ADS)
Masri, S. F.; Miller, R. K.; Sassi, H.; Caughey, T. K.
1984-06-01
An approximate method that uses conventional condensation techniques for linear systems together with the nonparametric identification of the reduced-order model generalized nonlinear restoring forces is presented for reducing the order of discrete multidegree-of-freedom dynamic systems that possess arbitrary nonlinear characteristics. The utility of the proposed method is demonstrated by considering a redundant three-dimensional finite-element model half of whose elements incorporate hysteretic properties. A nonlinear reduced-order model, of one-third the order of the original model, is developed on the basis of wideband stationary random excitation and the validity of the reduced-order model is subsequently demonstrated by its ability to predict with adequate accuracy the transient response of the original nonlinear model under a different nonstationary random excitation.
An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.
Ilias, Miroslav; Saue, Trond
2007-02-14
The authors report the implementation of a simple one-step method for obtaining an infinite-order two-component (IOTC) relativistic Hamiltonian using matrix algebra. They apply the IOTC Hamiltonian to calculations of excitation and ionization energies as well as electric and magnetic properties of the radon atom. The results are compared to corresponding calculations using identical basis sets and based on the four-component Dirac-Coulomb Hamiltonian as well as Douglas-Kroll-Hess and zeroth-order regular approximation Hamiltonians, all implemented in the DIRAC program package, thus allowing a comprehensive comparison of relativistic Hamiltonians within the finite basis approximation.
Effective quadrature formula in solving linear integro-differential equations of order two
NASA Astrophysics Data System (ADS)
Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.
2017-08-01
In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.
NASA Astrophysics Data System (ADS)
Geng, Xin; Zhang, Wenjun; Jin, Fei-Fei; Stuecker, Malte F.
2018-01-01
We here propose a new statistical method to interpret nonstationary running correlations by decomposing them into a stationary part and a first-order Taylor expansion approximation for the nonstationary part. Then, this method is applied to investigate the nonstationary behavior of the El Niño-Southern Oscillation (ENSO)-East Asian winter monsoon (EAWM) relationship, which exhibits prominent multidecadal variations. It is demonstrated that the first-order approximation of the nonstationary part can be expressed to a large extent by the impact of the nonlinear interaction between the Atlantic Multidecadal Oscillation (AMO) and ENSO (AMO*Niño3.4) on the EAWM. Therefore, the nonstationarity in the ENSO-EAWM relationship comes predominantly from the impact of an AMO modulation on the ENSO-EAWM teleconnection via this key nonlinear interaction. This general method can be applied to investigate nonstationary relationships that are often observed between various different climate phenomena.
Multigrid methods for isogeometric discretization
Gahalaut, K.P.S.; Kraus, J.K.; Tomar, S.K.
2013-01-01
We present (geometric) multigrid methods for isogeometric discretization of scalar second order elliptic problems. The smoothing property of the relaxation method, and the approximation property of the intergrid transfer operators are analyzed. These properties, when used in the framework of classical multigrid theory, imply uniform convergence of two-grid and multigrid methods. Supporting numerical results are provided for the smoothing property, the approximation property, convergence factor and iterations count for V-, W- and F-cycles, and the linear dependence of V-cycle convergence on the smoothing steps. For two dimensions, numerical results include the problems with variable coefficients, simple multi-patch geometry, a quarter annulus, and the dependence of convergence behavior on refinement levels ℓ, whereas for three dimensions, only the constant coefficient problem in a unit cube is considered. The numerical results are complete up to polynomial order p=4, and for C0 and Cp-1 smoothness. PMID:24511168
High Order Approximations for Compressible Fluid Dynamics on Unstructured and Cartesian Meshes
NASA Technical Reports Server (NTRS)
Barth, Timothy (Editor); Deconinck, Herman (Editor)
1999-01-01
The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining challenges facing the field of computational fluid dynamics. In structural mechanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the computation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order accuracy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence suggests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Center. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18, 1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25, 1998 at the NASA Ames Research Center in the United States. During this special course, lecturers from Europe and the United States gave a series of comprehensive lectures on advanced topics related to the high-order numerical discretization of partial differential equations with primary emphasis given to computational fluid dynamics (CFD). Additional consideration was given to topics in computational physics such as the high-order discretization of the Hamilton-Jacobi, Helmholtz, and elasticity equations. This volume consists of five articles prepared by the special course lecturers. These articles should be of particular relevance to those readers with an interest in numerical discretization techniques which generalize to very high-order accuracy. The articles of Professors Abgrall and Shu consider the mathematical formulation of high-order accurate finite volume schemes utilizing essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) reconstruction together with upwind flux evaluation. These formulations are particularly effective in computing numerical solutions of conservation laws containing solution discontinuities. Careful attention is given by the authors to implementational issues and techniques for improving the overall efficiency of these methods. The article of Professor Cockburn discusses the discontinuous Galerkin finite element method. This method naturally extends to high-order accuracy and has an interpretation as a finite volume method. Cockburn addresses two important issues associated with the discontinuous Galerkin method: controlling spurious extrema near solution discontinuities via "limiting" and the extension to second order advective-diffusive equations (joint work with Shu). The articles of Dr. Henderson and Professor Schwab consider the mathematical formulation and implementation of the h-p finite element methods using hierarchical basis functions and adaptive mesh refinement. These methods are particularly useful in computing high-order accurate solutions containing perturbative layers and corner singularities. Additional flexibility is obtained using a mortar FEM technique whereby nonconforming elements are interfaced together. Numerous examples are given by Henderson applying the h-p FEM method to the simulation of turbulence and turbulence transition.
On simulating flow with multiple time scales using a method of averages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margolin, L.G.
1997-12-31
The author presents a new computational method based on averaging to efficiently simulate certain systems with multiple time scales. He first develops the method in a simple one-dimensional setting and employs linear stability analysis to demonstrate numerical stability. He then extends the method to multidimensional fluid flow. His method of averages does not depend on explicit splitting of the equations nor on modal decomposition. Rather he combines low order and high order algorithms in a generalized predictor-corrector framework. He illustrates the methodology in the context of a shallow fluid approximation to an ocean basin circulation. He finds that his newmore » method reproduces the accuracy of a fully explicit second-order accurate scheme, while costing less than a first-order accurate scheme.« less
Numerical investigation of sixth order Boussinesq equation
NASA Astrophysics Data System (ADS)
Kolkovska, N.; Vucheva, V.
2017-10-01
We propose a family of conservative finite difference schemes for the Boussinesq equation with sixth order dispersion terms. The schemes are of second order of approximation. The method is conditionally stable with a mild restriction τ = O(h) on the step sizes. Numerical tests are performed for quadratic and cubic nonlinearities. The numerical experiments show second order of convergence of the discrete solution to the exact one.
Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method
NASA Astrophysics Data System (ADS)
Sohaib, Muhammad; Haq, Sirajul; Mukhtar, Safyan; Khan, Imad
2018-03-01
An efficient method is proposed to approximate sixth order boundary value problems. The proposed method is based on Legendre wavelet in which Legendre polynomial is used. The mechanism of the method is to use collocation points that converts the differential equation into a system of algebraic equations. For validation two test problems are discussed. The results obtained from proposed method are quite accurate, also close to exact solution, and other different methods. The proposed method is computationally more effective and leads to more accurate results as compared to other methods from literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochiai, Yoshihiro
Heat-conduction analysis under steady state without heat generation can easily be treated by the boundary element method. However, in the case with heat conduction with heat generation can approximately be solved without a domain integral by an improved multiple-reciprocity boundary element method. The convention multiple-reciprocity boundary element method is not suitable for complicated heat generation. In the improved multiple-reciprocity boundary element method, on the other hand, the domain integral in each step is divided into point, line, and area integrals. In order to solve the problem, the contour lines of heat generation, which approximate the actual heat generation, are used.
NASA Astrophysics Data System (ADS)
Alam Khan, Najeeb; Razzaq, Oyoon Abdul
2016-03-01
In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.
NASA Technical Reports Server (NTRS)
Bardina, J. E.
1994-01-01
A new computational efficient 3-D compressible Reynolds-averaged implicit Navier-Stokes method with advanced two equation turbulence models for high speed flows is presented. All convective terms are modeled using an entropy satisfying higher-order Total Variation Diminishing (TVD) scheme based on implicit upwind flux-difference split approximations and arithmetic averaging procedure of primitive variables. This method combines the best features of data management and computational efficiency of space marching procedures with the generality and stability of time dependent Navier-Stokes procedures to solve flows with mixed supersonic and subsonic zones, including streamwise separated flows. Its robust stability derives from a combination of conservative implicit upwind flux-difference splitting with Roe's property U to provide accurate shock capturing capability that non-conservative schemes do not guarantee, alternating symmetric Gauss-Seidel 'method of planes' relaxation procedure coupled with a three-dimensional two-factor diagonal-dominant approximate factorization scheme, TVD flux limiters of higher-order flux differences satisfying realizability, and well-posed characteristic-based implicit boundary-point a'pproximations consistent with the local characteristics domain of dependence. The efficiency of the method is highly increased with Newton Raphson acceleration which allows convergence in essentially one forward sweep for supersonic flows. The method is verified by comparing with experiment and other Navier-Stokes methods. Here, results of adiabatic and cooled flat plate flows, compression corner flow, and 3-D hypersonic shock-wave/turbulent boundary layer interaction flows are presented. The robust 3-D method achieves a better computational efficiency of at least one order of magnitude over the CNS Navier-Stokes code. It provides cost-effective aerodynamic predictions in agreement with experiment, and the capability of predicting complex flow structures in complex geometries with good accuracy.
An h-p Taylor-Galerkin finite element method for compressible Euler equations
NASA Technical Reports Server (NTRS)
Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O.
1991-01-01
An extension of the familiar Taylor-Galerkin method to arbitrary h-p spatial approximations is proposed. Boundary conditions are analyzed, and a linear stability result for arbitrary meshes is given, showing the unconditional stability for the parameter of implicitness alpha not less than 0.5. The wedge and blunt body problems are solved with both linear, quadratic, and cubic elements and h-adaptivity, showing the feasibility of higher orders of approximation for problems with shocks.
Transport of phase space densities through tetrahedral meshes using discrete flow mapping
NASA Astrophysics Data System (ADS)
Bajars, Janis; Chappell, David J.; Søndergaard, Niels; Tanner, Gregor
2017-01-01
Discrete flow mapping was recently introduced as an efficient ray based method determining wave energy distributions in complex built up structures. Wave energy densities are transported along ray trajectories through polygonal mesh elements using a finite dimensional approximation of a ray transfer operator. In this way the method can be viewed as a smoothed ray tracing method defined over meshed surfaces. Many applications require the resolution of wave energy distributions in three-dimensional domains, such as in room acoustics, underwater acoustics and for electromagnetic cavity problems. In this work we extend discrete flow mapping to three-dimensional domains by propagating wave energy densities through tetrahedral meshes. The geometric simplicity of the tetrahedral mesh elements is utilised to efficiently compute the ray transfer operator using a mixture of analytic and spectrally accurate numerical integration. The important issue of how to choose a suitable basis approximation in phase space whilst maintaining a reasonable computational cost is addressed via low order local approximations on tetrahedral faces in the position coordinate and high order orthogonal polynomial expansions in momentum space.
NASA Astrophysics Data System (ADS)
Rachmawati, Vimala; Khusnul Arif, Didik; Adzkiya, Dieky
2018-03-01
The systems contained in the universe often have a large order. Thus, the mathematical model has many state variables that affect the computation time. In addition, generally not all variables are known, so estimations are needed to measure the magnitude of the system that cannot be measured directly. In this paper, we discuss the model reduction and estimation of state variables in the river system to measure the water level. The model reduction of a system is an approximation method of a system with a lower order without significant errors but has a dynamic behaviour that is similar to the original system. The Singular Perturbation Approximation method is one of the model reduction methods where all state variables of the equilibrium system are partitioned into fast and slow modes. Then, The Kalman filter algorithm is used to estimate state variables of stochastic dynamic systems where estimations are computed by predicting state variables based on system dynamics and measurement data. Kalman filters are used to estimate state variables in the original system and reduced system. Then, we compare the estimation results of the state and computational time between the original and reduced system.
NASA Astrophysics Data System (ADS)
Do, Seongju; Li, Haojun; Kang, Myungjoo
2017-06-01
In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.
Numerical scheme approximating solution and parameters in a beam equation
NASA Astrophysics Data System (ADS)
Ferdinand, Robert R.
2003-12-01
We present a mathematical model which describes vibration in a metallic beam about its equilibrium position. This model takes the form of a nonlinear second-order (in time) and fourth-order (in space) partial differential equation with boundary and initial conditions. A finite-element Galerkin approximation scheme is used to estimate model solution. Infinite-dimensional model parameters are then estimated numerically using an inverse method procedure which involves the minimization of a least-squares cost functional. Numerical results are presented and future work to be done is discussed.
NASA Technical Reports Server (NTRS)
Tsai, C.; Szabo, B. A.
1973-01-01
An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.
NASA Technical Reports Server (NTRS)
Karpel, M.
1994-01-01
Various control analysis, design, and simulation techniques of aeroservoelastic systems require the equations of motion to be cast in a linear, time-invariant state-space form. In order to account for unsteady aerodynamics, rational function approximations must be obtained to represent them in the first order equations of the state-space formulation. A computer program, MIST, has been developed which determines minimum-state approximations of the coefficient matrices of the unsteady aerodynamic forces. The Minimum-State Method facilitates the design of lower-order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena such as the outboard-wing acceleration response to gust velocity. Engineers using this program will be able to calculate minimum-state rational approximations of the generalized unsteady aerodynamic forces. Using the Minimum-State formulation of the state-space equations, they will be able to obtain state-space models with good open-loop characteristics while reducing the number of aerodynamic equations by an order of magnitude more than traditional approaches. These low-order state-space mathematical models are good for design and simulation of aeroservoelastic systems. The computer program, MIST, accepts tabular values of the generalized aerodynamic forces over a set of reduced frequencies. It then determines approximations to these tabular data in the LaPlace domain using rational functions. MIST provides the capability to select the denominator coefficients in the rational approximations, to selectably constrain the approximations without increasing the problem size, and to determine and emphasize critical frequency ranges in determining the approximations. MIST has been written to allow two types data weighting options. The first weighting is a traditional normalization of the aerodynamic data to the maximum unit value of each aerodynamic coefficient. The second allows weighting the importance of different tabular values in determining the approximations based upon physical characteristics of the system. Specifically, the physical weighting capability is such that each tabulated aerodynamic coefficient, at each reduced frequency value, is weighted according to the effect of an incremental error of this coefficient on aeroelastic characteristics of the system. In both cases, the resulting approximations yield a relatively low number of aerodynamic lag states in the subsequent state-space model. MIST is written in ANSI FORTRAN 77 for DEC VAX series computers running VMS. It requires approximately 1Mb of RAM for execution. The standard distribution medium for this package is a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. MIST was developed in 1991. DEC VAX and VMS are trademarks of Digital Equipment Corporation. FORTRAN 77 is a registered trademark of Lahey Computer Systems, Inc.
Method of implementing digital phase-locked loops
NASA Technical Reports Server (NTRS)
Stephens, Scott A. (Inventor); Thomas, Jess Brooks, Jr. (Inventor)
1993-01-01
In a new formulation for digital phase-locked loops, loop-filter constants are determined from loop roots that can each be selectively placed in the s-plane on the basis of a new set of parameters, each with simple and direct physical meaning in terms of loop noise bandwidth, root-specific decay rate, or root-specific damping. Loops of first to fourth order are treated in the continuous-update approximation (BLT yields 0) and in a discrete-update formulation with arbitrary BLT. Deficiencies of the continuous-update approximation in large-BLT applications are avoided in the new discrete-update formulation. A new method for direct, transient-free acquisition with third- and fourth-order loops can improve the versatility and reliability of acquisition with such loops.
Computational methods of robust controller design for aerodynamic flutter suppression
NASA Technical Reports Server (NTRS)
Anderson, L. R.
1981-01-01
The development of Riccati iteration, a tool for the design and analysis of linear control systems is examined. First, Riccati iteration is applied to the problem of pole placement and order reduction in two-time scale control systems. Order reduction, yielding a good approximation to the original system, is demonstrated using a 16th order linear model of a turbofan engine. Next, a numerical method for solving the Riccati equation is presented and demonstrated for a set of eighth order random examples. A literature review of robust controller design methods follows which includes a number of methods for reducing the trajectory and performance index sensitivity in linear regulators. Lastly, robust controller design for large parameter variations is discussed.
NASA Astrophysics Data System (ADS)
Xing, Yanyuan; Yan, Yubin
2018-03-01
Gao et al. [11] (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 by directly approximating the integer-order derivative with some finite difference quotients in the definition of the Caputo fractional derivative, see also Lv and Xu [20] (2016), where k is the time step size. Under the assumption that the solution of the time fractional partial differential equation is sufficiently smooth, Lv and Xu [20] (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. However, in general the solution of the time fractional partial differential equation has low regularity and in this case the numerical method fails to have the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. In this paper, we first obtain a similar approximation scheme to the Riemann-Liouville fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 as in Gao et al. [11] (2014) by approximating the Hadamard finite-part integral with the piecewise quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate O (k 3 - α), 0 < α < 1 for any fixed tn > 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.
Edge-augmented Fourier partial sums with applications to Magnetic Resonance Imaging (MRI)
NASA Astrophysics Data System (ADS)
Larriva-Latt, Jade; Morrison, Angela; Radgowski, Alison; Tobin, Joseph; Iwen, Mark; Viswanathan, Aditya
2017-08-01
Certain applications such as Magnetic Resonance Imaging (MRI) require the reconstruction of functions from Fourier spectral data. When the underlying functions are piecewise-smooth, standard Fourier approximation methods suffer from the Gibbs phenomenon - with associated oscillatory artifacts in the vicinity of edges and an overall reduced order of convergence in the approximation. This paper proposes an edge-augmented Fourier reconstruction procedure which uses only the first few Fourier coefficients of an underlying piecewise-smooth function to accurately estimate jump information and then incorporate it into a Fourier partial sum approximation. We provide both theoretical and empirical results showing the improved accuracy of the proposed method, as well as comparisons demonstrating superior performance over existing state-of-the-art sparse optimization-based methods.
High order filtering methods for approximating hyberbolic systems of conservation laws
NASA Technical Reports Server (NTRS)
Lafon, F.; Osher, S.
1990-01-01
In the computation of discontinuous solutions of hyperbolic systems of conservation laws, the recently developed essentially non-oscillatory (ENO) schemes appear to be very useful. However, they are computationally costly compared to simple central difference methods. A filtering method which is developed uses simple central differencing of arbitrarily high order accuracy, except when a novel local test indicates the development of spurious oscillations. At these points, the full ENO apparatus is used, maintaining the high order of accuracy, but removing spurious oscillations. Numerical results indicate the success of the method. High order of accuracy was obtained in regions of smooth flow without spurious oscillations for a wide range of problems and a significant speed up of generally a factor of almost three over the full ENO method.
A model of head-related transfer functions based on a state-space analysis
NASA Astrophysics Data System (ADS)
Adams, Norman Herkamp
This dissertation develops and validates a novel state-space method for binaural auditory display. Binaural displays seek to immerse a listener in a 3D virtual auditory scene with a pair of headphones. The challenge for any binaural display is to compute the two signals to supply to the headphones. The present work considers a general framework capable of synthesizing a wide variety of auditory scenes. The framework models collections of head-related transfer functions (HRTFs) simultaneously. This framework improves the flexibility of contemporary displays, but it also compounds the steep computational cost of the display. The cost is reduced dramatically by formulating the collection of HRTFs in the state-space and employing order-reduction techniques to design efficient approximants. Order-reduction techniques based on the Hankel-operator are found to yield accurate low-cost approximants. However, the inter-aural time difference (ITD) of the HRTFs degrades the time-domain response of the approximants. Fortunately, this problem can be circumvented by employing a state-space architecture that allows the ITD to be modeled outside of the state-space. Accordingly, three state-space architectures are considered. Overall, a multiple-input, single-output (MISO) architecture yields the best compromise between performance and flexibility. The state-space approximants are evaluated both empirically and psychoacoustically. An array of truncated FIR filters is used as a pragmatic reference system for comparison. For a fixed cost bound, the state-space systems yield lower approximation error than FIR arrays for D>10, where D is the number of directions in the HRTF collection. A series of headphone listening tests are also performed to validate the state-space approach, and to estimate the minimum order N of indiscriminable approximants. For D = 50, the state-space systems yield order thresholds less than half those of the FIR arrays. Depending upon the stimulus uncertainty, a minimum state-space order of 7≤N≤23 appears to be adequate. In conclusion, the proposed state-space method enables a more flexible and immersive binaural display with low computational cost.
A-posteriori error estimation for the finite point method with applications to compressible flow
NASA Astrophysics Data System (ADS)
Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio
2017-08-01
An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.
Restoring the Pauli principle in the random phase approximation ground state
NASA Astrophysics Data System (ADS)
Kosov, D. S.
2017-12-01
Random phase approximation ground state contains electronic configurations where two (and more) identical electrons can occupy the same molecular spin-orbital violating the Pauli exclusion principle. This overcounting of electronic configurations happens due to quasiboson approximation in the treatment of electron-hole pair operators. We describe the method to restore the Pauli principle in the RPA wavefunction. The proposed theory is illustrated by the calculations of molecular dipole moments and electronic kinetic energies. The Hartree-Fock based RPA, which is corrected for the Pauli principle, gives the results of comparable accuracy with Møller-Plesset second order perturbation theory and coupled-cluster singles and doubles method.
White, Alec F.; Head-Gordon, Martin; McCurdy, C. William
2017-01-30
The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. Here, we critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the 2Π g shape resonance of N 2 - whichmore » has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We then conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Alec F.; Head-Gordon, Martin; McCurdy, C. William
The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. Here, we critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the 2Π g shape resonance of N 2 - whichmore » has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We then conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.« less
Momentum-space cluster dual-fermion method
NASA Astrophysics Data System (ADS)
Iskakov, Sergei; Terletska, Hanna; Gull, Emanuel
2018-03-01
Recent years have seen the development of two types of nonlocal extensions to the single-site dynamical mean field theory. On one hand, cluster approximations, such as the dynamical cluster approximation, recover short-range momentum-dependent correlations nonperturbatively. On the other hand, diagrammatic extensions, such as the dual-fermion theory, recover long-ranged corrections perturbatively. The correct treatment of both strong short-ranged and weak long-ranged correlations within the same framework is therefore expected to lead to a quick convergence of results, and offers the potential of obtaining smooth self-energies in nonperturbative regimes of phase space. In this paper, we present an exact cluster dual-fermion method based on an expansion around the dynamical cluster approximation. Unlike previous formulations, our method does not employ a coarse-graining approximation to the interaction, which we show to be the leading source of error at high temperature, and converges to the exact result independently of the size of the underlying cluster. We illustrate the power of the method with results for the second-order cluster dual-fermion approximation to the single-particle self-energies and double occupancies.
Matveev, Alexei V; Rösch, Notker
2008-06-28
We suggest an approximate relativistic model for economical all-electron calculations on molecular systems that exploits an atomic ansatz for the relativistic projection transformation. With such a choice, the projection transformation matrix is by definition both transferable and independent of the geometry. The formulation is flexible with regard to the level at which the projection transformation is approximated; we employ the free-particle Foldy-Wouthuysen and the second-order Douglas-Kroll-Hess variants. The (atomic) infinite-order decoupling scheme shows little effect on structural parameters in scalar-relativistic calculations; also, the use of a screened nuclear potential in the definition of the projection transformation shows hardly any effect in the context of the present work. Applications to structural and energetic parameters of various systems (diatomics AuH, AuCl, and Au(2), two structural isomers of Ir(4), and uranyl dication UO(2) (2+) solvated by 3-6 water ligands) show that the atomic approximation to the conventional second-order Douglas-Kroll-Hess projection (ADKH) transformation yields highly accurate results at substantial computational savings, in particular, when calculating energy derivatives of larger systems. The size-dependence of the intrinsic error of the ADKH method in extended systems of heavy elements is analyzed for the atomization energies of Pd(n) clusters (n=116).
NASA Astrophysics Data System (ADS)
Hohenstein, Edward G.; Parrish, Robert M.; Martínez, Todd J.
2012-07-01
Many approximations have been developed to help deal with the O(N4) growth of the electron repulsion integral (ERI) tensor, where N is the number of one-electron basis functions used to represent the electronic wavefunction. Of these, the density fitting (DF) approximation is currently the most widely used despite the fact that it is often incapable of altering the underlying scaling of computational effort with respect to molecular size. We present a method for exploiting sparsity in three-center overlap integrals through tensor decomposition to obtain a low-rank approximation to density fitting (tensor hypercontraction density fitting or THC-DF). This new approximation reduces the 4th-order ERI tensor to a product of five matrices, simultaneously reducing the storage requirement as well as increasing the flexibility to regroup terms and reduce scaling behavior. As an example, we demonstrate such a scaling reduction for second- and third-order perturbation theory (MP2 and MP3), showing that both can be carried out in O(N4) operations. This should be compared to the usual scaling behavior of O(N5) and O(N6) for MP2 and MP3, respectively. The THC-DF technique can also be applied to other methods in electronic structure theory, such as coupled-cluster and configuration interaction, promising significant gains in computational efficiency and storage reduction.
Approximate optimal guidance for the advanced launch system
NASA Technical Reports Server (NTRS)
Feeley, T. S.; Speyer, J. L.
1993-01-01
A real-time guidance scheme for the problem of maximizing the payload into orbit subject to the equations of motion for a rocket over a spherical, non-rotating earth is presented. An approximate optimal launch guidance law is developed based upon an asymptotic expansion of the Hamilton - Jacobi - Bellman or dynamic programming equation. The expansion is performed in terms of a small parameter, which is used to separate the dynamics of the problem into primary and perturbation dynamics. For the zeroth-order problem the small parameter is set to zero and a closed-form solution to the zeroth-order expansion term of Hamilton - Jacobi - Bellman equation is obtained. Higher-order terms of the expansion include the effects of the neglected perturbation dynamics. These higher-order terms are determined from the solution of first-order linear partial differential equations requiring only the evaluation of quadratures. This technique is preferred as a real-time, on-line guidance scheme to alternative numerical iterative optimization schemes because of the unreliable convergence properties of these iterative guidance schemes and because the quadratures needed for the approximate optimal guidance law can be performed rapidly and by parallel processing. Even if the approximate solution is not nearly optimal, when using this technique the zeroth-order solution always provides a path which satisfies the terminal constraints. Results for two-degree-of-freedom simulations are presented for the simplified problem of flight in the equatorial plane and compared to the guidance scheme generated by the shooting method which is an iterative second-order technique.
Arbitrary-level hanging nodes for adaptive hphp-FEM approximations in 3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavel Kus; Pavel Solin; David Andrs
2014-11-01
In this paper we discuss constrained approximation with arbitrary-level hanging nodes in adaptive higher-order finite element methods (hphp-FEM) for three-dimensional problems. This technique enables using highly irregular meshes, and it greatly simplifies the design of adaptive algorithms as it prevents refinements from propagating recursively through the finite element mesh. The technique makes it possible to design efficient adaptive algorithms for purely hexahedral meshes. We present a detailed mathematical description of the method and illustrate it with numerical examples.
General relaxation schemes in multigrid algorithms for higher order singularity methods
NASA Technical Reports Server (NTRS)
Oskam, B.; Fray, J. M. J.
1981-01-01
Relaxation schemes based on approximate and incomplete factorization technique (AF) are described. The AF schemes allow construction of a fast multigrid method for solving integral equations of the second and first kind. The smoothing factors for integral equations of the first kind, and comparison with similar results from the second kind of equations are a novel item. Application of the MD algorithm shows convergence to the level of truncation error of a second order accurate panel method.
NASA Astrophysics Data System (ADS)
Miskevich, Alexander A.; Loiko, Valery A.
2015-01-01
A method to retrieve characteristics of ordered particulate structures, such as photonic crystals, is proposed. It is based on the solution of the inverse problem using data on the photonic band gap (PBG). The quasicrystalline approximation (QCA) of the theory of multiple scattering of waves and the transfer matrix method (TMM) are used. Retrieval of the refractive index of particles is demonstrated. Refractive indices of the artificial opal particles are estimated using the published experimental data.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-01-01
The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.
The effect of compressive viscosity and thermal conduction on the longitudinal MHD waves
NASA Astrophysics Data System (ADS)
Bahari, K.; Shahhosaini, N.
2018-05-01
longitudinal Magnetohydrodynamic (MHD) oscillations have been studied in a slowly cooling coronal loop, in the presence of thermal conduction and compressive viscosity, in the linear MHD approximation. WKB method has been used to solve the governing equations. In the leading order approximation the dispersion relation has been obtained, and using the first order approximation the time dependent amplitude has been determined. Cooling causes the oscillations to amplify and damping mechanisms are more efficient in hot loops. In cool loops the oscillation amplitude increases with time but in hot loops the oscillation amplitude decreases with time. Our conclusion is that in hot loops the efficiency of the compressive viscosity in damping longitudinal waves is comparable to that of the thermal conduction.
The effect of compressive viscosity and thermal conduction on the longitudinal MHD waves
NASA Astrophysics Data System (ADS)
Bahari, K.; Shahhosaini, N.
2018-07-01
Longitudinal magnetohydrodynamic (MHD) oscillations have been studied in a slowly cooling coronal loop, in the presence of thermal conduction and compressive viscosity, in the linear MHD approximation. The WKB method has been used to solve the governing equations. In the leading order approximation the dispersion relation has been obtained, and using the first-order approximation the time-dependent amplitude has been determined. Cooling causes the oscillations to amplify and damping mechanisms are more efficient in hot loops. In cool loops the oscillation amplitude increases with time but in hot loops the oscillation amplitude decreases with time. Our conclusion is that in hot loops the efficiency of the compressive viscosity in damping longitudinal waves is comparable to that of the thermal conduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal-Codina, F., E-mail: fvidal@mit.edu; Nguyen, N.C., E-mail: cuongng@mit.edu; Giles, M.B., E-mail: mike.giles@maths.ox.ac.uk
We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basismore » approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.« less
Modeling and control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Mingori, D. L.
1988-01-01
This monograph presents integrated modeling and controller design methods for flexible structures. The controllers, or compensators, developed are optimal in the linear-quadratic-Gaussian sense. The performance objectives, sensor and actuator locations and external disturbances influence both the construction of the model and the design of the finite dimensional compensator. The modeling and controller design procedures are carried out in parallel to ensure compatibility of these two aspects of the design problem. Model reduction techniques are introduced to keep both the model order and the controller order as small as possible. A linear distributed, or infinite dimensional, model is the theoretical basis for most of the text, but finite dimensional models arising from both lumped-mass and finite element approximations also play an important role. A central purpose of the approach here is to approximate an optimal infinite dimensional controller with an implementable finite dimensional compensator. Both convergence theory and numerical approximation methods are given. Simple examples are used to illustrate the theory.
NASA Technical Reports Server (NTRS)
Greene, William H.
1989-01-01
A study has been performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semianalytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models.
Calibration Method to Eliminate Zeroth Order Effect in Lateral Shearing Interferometry
NASA Astrophysics Data System (ADS)
Fang, Chao; Xiang, Yang; Qi, Keqi; Chen, Dawei
2018-04-01
In this paper, a calibration method is proposed which eliminates the zeroth order effect in lateral shearing interferometry. An analytical expression of the calibration error function is deduced, and the relationship between the phase-restoration error and calibration error is established. The analytical results show that the phase-restoration error introduced by the calibration error is proportional to the phase shifting error and zeroth order effect. The calibration method is verified using simulations and experiments. The simulation results show that the phase-restoration error is approximately proportional to the phase shift error and zeroth order effect, when the phase shifting error is less than 2° and the zeroth order effect is less than 0.2. The experimental result shows that compared with the conventional method with 9-frame interferograms, the calibration method with 5-frame interferograms achieves nearly the same restoration accuracy.
Spectral/ hp element methods: Recent developments, applications, and perspectives
NASA Astrophysics Data System (ADS)
Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.
2018-02-01
The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.
A high-order staggered meshless method for elliptic problems
Trask, Nathaniel; Perego, Mauro; Bochev, Pavel Blagoveston
2017-03-21
Here, we present a new meshless method for scalar diffusion equations, which is motivated by their compatible discretizations on primal-dual grids. Unlike the latter though, our approach is truly meshless because it only requires the graph of nearby neighbor connectivity of the discretization points. This graph defines a local primal-dual grid complex with a virtual dual grid, in the sense that specification of the dual metric attributes is implicit in the method's construction. Our method combines a topological gradient operator on the local primal grid with a generalized moving least squares approximation of the divergence on the local dual grid. We show that the resulting approximation of the div-grad operator maintains polynomial reproduction to arbitrary orders and yields a meshless method, which attainsmore » $$O(h^{m})$$ convergence in both $L^2$- and $H^1$-norms, similar to mixed finite element methods. We demonstrate this convergence on curvilinear domains using manufactured solutions in two and three dimensions. Application of the new method to problems with discontinuous coefficients reveals solutions that are qualitatively similar to those of compatible mesh-based discretizations.« less
Zeng, Cheng; Liang, Shan; Xiang, Shuwen
2017-05-01
Continuous-time systems are usually modelled by the form of ordinary differential equations arising from physical laws. However, the use of these models in practice and utilizing, analyzing or transmitting these data from such systems must first invariably be discretized. More importantly, for digital control of a continuous-time nonlinear system, a good sampled-data model is required. This paper investigates the new consistency condition which is weaker than the previous similar results presented. Moreover, given the stability of the high-order approximate model with stable zero dynamics, the novel condition presented stabilizes the exact sampled-data model of the nonlinear system for sufficiently small sampling periods. An insightful interpretation of the obtained results can be made in terms of the stable sampling zero dynamics, and the new consistency condition is surprisingly associated with the relative degree of the nonlinear continuous-time system. Our controller design, based on the higher-order approximate discretized model, extends the existing methods which mainly deal with the Euler approximation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Low temperature simulation of subliming boundary layer flow in Jupiter atmosphere
NASA Technical Reports Server (NTRS)
Chen, C. J.
1976-01-01
A low-temperature approximate simulation for the sublimation of a graphite heat shield under Jovian entry conditions is studied. A set of algebraic equations is derived to approximate the governing equation and boundary conditions, based on order-of-magnitude analysis. Characteristic quantities such as the wall temperature and the subliming velocity are predicted. Similarity parameters that are needed to simulate the most dominant phenomena of the Jovian entry flow are also given. An approximate simulation of the sublimation of the graphite heat shield is performed with an air-dry-ice model. The simulation with the air-dry-ice model may be carried out experimentally at a lower temperature of 3000 to 6000 K instead of the entry temperature of 14,000 K. The rate of graphite sublimation predicted by the present algebraic approximation agrees to the order of magnitude with extrapolated data. The limitations of the simulation method and its utility are discussed.
Iterative CT reconstruction using coordinate descent with ordered subsets of data
NASA Astrophysics Data System (ADS)
Noo, F.; Hahn, K.; Schöndube, H.; Stierstorfer, K.
2016-04-01
Image reconstruction based on iterative minimization of a penalized weighted least-square criteria has become an important topic of research in X-ray computed tomography. This topic is motivated by increasing evidence that such a formalism may enable a significant reduction in dose imparted to the patient while maintaining or improving image quality. One important issue associated with this iterative image reconstruction concept is slow convergence and the associated computational effort. For this reason, there is interest in finding methods that produce approximate versions of the targeted image with a small number of iterations and an acceptable level of discrepancy. We introduce here a novel method to produce such approximations: ordered subsets in combination with iterative coordinate descent. Preliminary results demonstrate that this method can produce, within 10 iterations and using only a constant image as initial condition, satisfactory reconstructions that retain the noise properties of the targeted image.
A third-order approximation method for three-dimensional wheel-rail contact
NASA Astrophysics Data System (ADS)
Negretti, Daniele
2012-03-01
Multibody train analysis is used increasingly by railway operators whenever a reliable and time-efficient method to evaluate the contact between wheel and rail is needed; particularly, the wheel-rail contact is one of the most important aspects that affects a reliable and time-efficient vehicle dynamics computation. The focus of the approach proposed here is to carry out such tasks by means of online wheel-rail elastic contact detection. In order to improve efficiency and save time, a main analytical approach is used for the definition of wheel and rail surfaces as well as for contact detection, then a final numerical evaluation is used to locate contact. The final numerical procedure consists in finding the zeros of a nonlinear function in a single variable. The overall method is based on the approximation of the wheel surface, which does not influence the contact location significantly, as shown in the paper.
Computation of turbulent pipe and duct flow using third order upwind scheme
NASA Technical Reports Server (NTRS)
Kawamura, T.
1986-01-01
The fully developed turbulence in a circular pipe and in a square duct is simulated directly without using turbulence models in the Navier-Stokes equations. The utilized method employs a third-order upwind scheme for the approximation to the nonlinear term and the second-order Adams-Bashforth method for the time derivative in the Navier-Stokes equation. The computational results appear to capture the large-scale turbulent structures at least qualitatively. The significance of the artificial viscosity inherent in the present scheme is discussed.
Biochemical simulations: stochastic, approximate stochastic and hybrid approaches.
Pahle, Jürgen
2009-01-01
Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem.
Biochemical simulations: stochastic, approximate stochastic and hybrid approaches
2009-01-01
Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem. PMID:19151097
Song, Junqiang; Leng, Hongze; Lu, Fengshun
2014-01-01
We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which can avoid “noise terms” is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique. PMID:24511303
Accurate upwind methods for the Euler equations
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1993-01-01
A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.
NASA Astrophysics Data System (ADS)
Monovasilis, Theodore; Kalogiratou, Zacharoula; Simos, T. E.
2014-10-01
In this work we derive exponentially fitted symplectic Runge-Kutta-Nyström (RKN) methods from symplectic exponentially fitted partitioned Runge-Kutta (PRK) methods methods (for the approximate solution of general problems of this category see [18] - [40] and references therein). We construct RKN methods from PRK methods with up to five stages and fourth algebraic order.
Examining the accuracy of the infinite order sudden approximation using sensitivity analysis
NASA Astrophysics Data System (ADS)
Eno, Larry; Rabitz, Herschel
1981-08-01
A method is developed for assessing the accuracy of scattering observables calculated within the framework of the infinite order sudden (IOS) approximation. In particular, we focus on the energy sudden assumption of the IOS method and our approach involves the determination of the sensitivity of the IOS scattering matrix SIOS with respect to a parameter which reintroduces the internal energy operator ?0 into the IOS Hamiltonian. This procedure is an example of sensitivity analysis of missing model components (?0 in this case) in the reference Hamiltonian. In contrast to simple first-order perturbation theory a finite result is obtained for the effect of ?0 on SIOS. As an illustration, our method of analysis is applied to integral state-to-state cross sections for the scattering of an atom and rigid rotor. Results are generated within the He+H2 system and a comparison is made between IOS and coupled states cross sections and the corresponding IOS sensitivities. It is found that the sensitivity coefficients are very useful indicators of the accuracy of the IOS results. Finally, further developments and applications are discussed.
2007-08-01
Infinite plate with a hole: sequence of meshes produced by h-refinement. The geometry of the coarsest mesh...recalled with an emphasis on k -refinement. In Section 3, the use of high-order NURBS within a projection technique is studied in the geometri - cally linear...case with a B̄ method to investigate the choice of approximation and projection spaces with NURBS.
Limitations of the method of complex basis functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumel, R.T.; Crocker, M.C.; Nuttall, J.
1975-08-01
The method of complex basis functions proposed by Rescigno and Reinhardt is applied to the calculation of the amplitude in a model problem which can be treated analytically. It is found for an important class of potentials, including some of infinite range and also the square well, that the method does not provide a converging sequence of approximations. However, in some cases, approximations of relatively low order might be close to the correct result. The method is also applied to S-wave e-H elastic scattering above the ionization threshold, and spurious ''convergence'' to the wrong result is found. A procedure whichmore » might overcome the difficulties of the method is proposed.« less
Ledermüller, Katrin; Schütz, Martin
2014-04-28
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.
Second derivatives for approximate spin projection methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Lee M.; Hratchian, Hrant P., E-mail: hhratchian@ucmerced.edu
2015-02-07
The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical secondmore » derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.« less
ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations
NASA Astrophysics Data System (ADS)
Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil
2018-04-01
In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.
Uniform high order spectral methods for one and two dimensional Euler equations
NASA Technical Reports Server (NTRS)
Cai, Wei; Shu, Chi-Wang
1991-01-01
Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraysse, F., E-mail: francois.fraysse@rs2n.eu; E. T. S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid; Redondo, C.
This article is devoted to the numerical discretisation of the hyperbolic two-phase flow model of Baer and Nunziato. A special attention is paid on the discretisation of intercell flux functions in the framework of Finite Volume and Discontinuous Galerkin approaches, where care has to be taken to efficiently approximate the non-conservative products inherent to the model equations. Various upwind approximate Riemann solvers have been tested on a bench of discontinuous test cases. New discretisation schemes are proposed in a Discontinuous Galerkin framework following the criterion of Abgrall and the path-conservative formalism. A stabilisation technique based on artificial viscosity is appliedmore » to the high-order Discontinuous Galerkin method and compared against classical TVD-MUSCL Finite Volume flux reconstruction.« less
Stochastic Optimal Prediction with Application to Averaged Euler Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, John; Chorin, Alexandre J.; Crutchfield, William
Optimal prediction (OP) methods compensate for a lack of resolution in the numerical solution of complex problems through the use of an invariant measure as a prior measure in the Bayesian sense. In first-order OP, unresolved information is approximated by its conditional expectation with respect to the invariant measure. In higher-order OP, unresolved information is approximated by a stochastic estimator, leading to a system of random or stochastic differential equations. We explain the ideas through a simple example, and then apply them to the solution of Averaged Euler equations in two space dimensions.
NASA Technical Reports Server (NTRS)
Diosady, Laslo; Murman, Scott; Blonigan, Patrick; Garai, Anirban
2017-01-01
Presented space-time adjoint solver for turbulent compressible flows. Confirmed failure of traditional sensitivity methods for chaotic flows. Assessed rate of exponential growth of adjoint for practical 3D turbulent simulation. Demonstrated failure of short-window sensitivity approximations.
Error analysis of finite difference schemes applied to hyperbolic initial boundary value problems
NASA Technical Reports Server (NTRS)
Skollermo, G.
1979-01-01
Finite difference methods for the numerical solution of mixed initial boundary value problems for hyperbolic equations are studied. The reported investigation has the objective to develop a technique for the total error analysis of a finite difference scheme, taking into account initial approximations, boundary conditions, and interior approximation. Attention is given to the Cauchy problem and the initial approximation, the homogeneous problem in an infinite strip with inhomogeneous boundary data, the reflection of errors in the boundaries, and two different boundary approximations for the leapfrog scheme with a fourth order accurate difference operator in space.
NASA Astrophysics Data System (ADS)
Belyaev, V. A.; Shapeev, V. P.
2017-10-01
New versions of the collocations and least squares method of high-order accuracy are proposed and implemented for the numerical solution of the boundary value problems for the biharmonic equation in non-canonical domains. The solution of the biharmonic equation is used for simulating the stress-strain state of an isotropic plate under the action of transverse load. The differential problem is projected into a space of fourth-degree polynomials by the CLS method. The boundary conditions for the approximate solution are put down exactly on the boundary of the computational domain. The versions of the CLS method are implemented on the grids which are constructed in two different ways. It is shown that the approximate solution of problems converges with high order. Thus it matches with high accuracy with the analytical solution of the test problems in the case of known solution in the numerical experiments on the convergence of the solution of various problems on a sequence of grids.
NASA Astrophysics Data System (ADS)
Chen, Liping; Zheng, Renhui; Shi, Qiang; Yan, YiJing
2010-01-01
We extend our previous study of absorption line shapes of molecular aggregates using the Liouville space hierarchical equations of motion (HEOM) method [L. P. Chen, R. H. Zheng, Q. Shi, and Y. J. Yan, J. Chem. Phys. 131, 094502 (2009)] to calculate third order optical response functions and two-dimensional electronic spectra of model dimers. As in our previous work, we have focused on the applicability of several approximate methods related to the HEOM method. We show that while the second order perturbative quantum master equations are generally inaccurate in describing the peak shapes and solvation dynamics, they can give reasonable peak amplitude evolution even in the intermediate coupling regime. The stochastic Liouville equation results in good peak shapes, but does not properly describe the excited state dynamics due to the lack of detailed balance. A modified version of the high temperature approximation to the HEOM gives the best agreement with the exact result.
First-Order System Least-Squares for Second-Order Elliptic Problems with Discontinuous Coefficients
NASA Technical Reports Server (NTRS)
Manteuffel, Thomas A.; McCormick, Stephen F.; Starke, Gerhard
1996-01-01
The first-order system least-squares methodology represents an alternative to standard mixed finite element methods. Among its advantages is the fact that the finite element spaces approximating the pressure and flux variables are not restricted by the inf-sup condition and that the least-squares functional itself serves as an appropriate error measure. This paper studies the first-order system least-squares approach for scalar second-order elliptic boundary value problems with discontinuous coefficients. Ellipticity of an appropriately scaled least-squares bilinear form of the size of the jumps in the coefficients leading to adequate finite element approximation results. The occurrence of singularities at interface corners and cross-points is discussed. and a weighted least-squares functional is introduced to handle such cases. Numerical experiments are presented for two test problems to illustrate the performance of this approach.
NASA Astrophysics Data System (ADS)
Shefer, V. A.
2014-12-01
Two methods that the author developed earlier for finding the intermediate perturbed orbit of a small celestial body from three pairs of range and range rate observations [1, 2] are applied to the determination of orbits of Near-Earth asteroids. The methods are based on using the superosculating orbits with three- and fourth-order tangency. The degrees of approximation of the real motion by the constructed intermediate orbits near the middle measurement time are two and three orders of magnitude higher than by the Keplerian orbit determined with the help of traditional methods. We calculated the orbits of the asteroids 99942 Apophis, 1566 Icarus, 4179 Toutatis, 2007 DN41 and 2012 DA14. For the sake of brevity, we call the method based on the orbit with third-order tangency as Algorithm A1 and the method based on the orbit with fourth-order tangency -- as Algorithm A2. The results of the calculations are compared with the results of the calculations by the version of the methods mentioned that allows us to construct the unperturbed Keplerian orbit. We call this version of the methods as Algorithm A. The observational data were simulated using the nominal trajectories of the selected asteroids. These trajectories were obtained by the numerical integration of the differential equations of motion subject to the perturbations from the eight major planets, Pluto, and the Moon. The integration was carried out with the help of the 15-order Everhart procedure [3]. The main results of the calculations are the following. When the reference time interval is shortened by half (for small sizes of this interval), the errors in the compared algorithms A, A1, A2 decrease approximately by the factors 4, 16, 64 in coordinates and by the factors 2, 8, 16 in velocities, respectively. Such behavior of the errors is most clearly seen with the asteroids 2007 DN41 and 2012 DA14. This leads to a significant increase in the accuracy of the real motion approximation by the intermediate orbits constructed using the A1 and A2 algorithms (2-4 orders of magnitude in coordinates and 4-7 orders of magnitude in velocities higher) compared to the accuracy of the approximation by Keplerian orbits with decreasing the reference arc of the trajectory. Here, the higher is the efficiency of the algorithms A1 and A2, the smaller are the values of the topocentric distances, i.e., the greater are the perturbations caused by the Earth's gravitation. The advantage of Algorithm A2 over Algorithm A1 in accuracy extends approximately one order of magnitude. The minimal methodic errors of the position vector by using the A1 and A2 algorithms range from several meters in the case of the asteroid Apophis to several millimeters in the case of the asteroid 2012 DA14. Hence, the numerical examples analyzed in this work lead us to conclude that the proposed in [1, 2] methods for determination of an intermediate perturbed orbit from range and range rate measurements at three time points allow for significantly raising the accuracy of the calculation of the initial asteroid orbits in comparison with the algorithm based on the finding the unperturbed Keplerian orbit. The shorter is the orbital arc specified by the extreme time points, the greater is the advantage of the algorithms suggested over the algorithms of the traditional approach in the accuracy. The advantage of the algorithms suggested in the accuracy increases with raising the perturbations too, which is especially important for calculation of the initial trajectories of the space objects detected in the Earth's neighbourhood. The work was supported by the Ministry of Education and Science of the Russian Federation, project no. 2014/223(1567).
NASA Technical Reports Server (NTRS)
Greene, William H.
1990-01-01
A study was performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal of the study was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semi-analytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models. In several cases this fixed mode approach resulted in very poor approximations of the stress sensitivities. Almost all of the original modes were required for an accurate sensitivity and for small numbers of modes, the accuracy was extremely poor. To overcome this poor accuracy, two semi-analytical techniques were developed. The first technique accounts for the change in eigenvectors through approximate eigenvector derivatives. The second technique applies the mode acceleration method of transient analysis to the sensitivity calculations. Both result in accurate values of the stress sensitivities with a small number of modes and much lower computational costs than if the vibration modes were recalculated and then used in an overall finite difference method.
Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications
2016-10-17
finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16
Radiative corrections to quantum sticking on graphene
NASA Astrophysics Data System (ADS)
Sengupta, Sanghita; Clougherty, Dennis P.
2017-07-01
We study the sticking rate of atomic hydrogen to suspended graphene using four different methods that include contributions from processes with multiphonon emission. We compare the numerical results of the sticking rate obtained by: (i) the loop expansion of the atom self-energy; (ii) the noncrossing approximation (NCA); (iii) the independent boson model approximation (IBMA); and (iv) a leading-order soft-phonon resummation method (SPR). The loop expansion reveals an infrared problem, analogous to the infamous infrared problem in QED. The two-loop contribution to the sticking rate gives a result that tends to diverge for large membranes. The latter three methods remedy this infrared problem and give results that are finite in the limit of an infinite membrane. We find that for micromembranes (sizes ranging 100 nm to 10 μ m ), the latter three methods give results that are in good agreement with each other and yield sticking rates that are mildly suppressed relative to the lowest-order golden rule rate. Lastly, we find that the SPR sticking rate decreases slowly to zero with increasing membrane size, while both the NCA and IBMA rates tend to a nonzero constant in this limit. Thus, approximations to the sticking rate can be sensitive to the effects of soft-phonon emission for large membranes.
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.; ...
2017-04-18
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
Seo, Jung Hee; Mittal, Rajat
2010-01-01
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129
NASA Astrophysics Data System (ADS)
Vilar, François; Shu, Chi-Wang; Maire, Pierre-Henri
2016-05-01
One of the main issues in the field of numerical schemes is to ally robustness with accuracy. Considering gas dynamics, numerical approximations may generate negative density or pressure, which may lead to nonlinear instability and crash of the code. This phenomenon is even more critical using a Lagrangian formalism, the grid moving and being deformed during the calculation. Furthermore, most of the problems studied in this framework contain very intense rarefaction and shock waves. In this paper, the admissibility of numerical solutions obtained by high-order finite-volume-scheme-based methods, such as the discontinuous Galerkin (DG) method, the essentially non-oscillatory (ENO) and the weighted ENO (WENO) finite volume schemes, is addressed in the one-dimensional Lagrangian gas dynamics framework. After briefly recalling how to derive Lagrangian forms of the 1D gas dynamics system of equations, a discussion on positivity-preserving approximate Riemann solvers, ensuring first-order finite volume schemes to be positive, is then given. This study is conducted for both ideal gas and non-ideal gas equations of state (EOS), such as the Jones-Wilkins-Lee (JWL) EOS or the Mie-Grüneisen (MG) EOS, and relies on two different techniques: either a particular definition of the local approximation of the acoustic impedances arising from the approximate Riemann solver, or an additional time step constraint relative to the cell volume variation. Then, making use of the work presented in [89,90,22], this positivity study is extended to high-orders of accuracy, where new time step constraints are obtained, and proper limitation is required. Through this new procedure, scheme robustness is highly improved and hence new problems can be tackled. Numerical results are provided to demonstrate the effectiveness of these methods. This paper is the first part of a series of two. The whole analysis presented here is extended to the two-dimensional case in [85], and proves to fit a wide range of numerical schemes in the literature, such as those presented in [19,64,15,82,84].
Lin, Ying-Tsong; Collis, Jon M; Duda, Timothy F
2012-11-01
An alternating direction implicit (ADI) three-dimensional fluid parabolic equation solution method with enhanced accuracy is presented. The method uses a square-root Helmholtz operator splitting algorithm that retains cross-multiplied operator terms that have been previously neglected. With these higher-order cross terms, the valid angular range of the parabolic equation solution is improved. The method is tested for accuracy against an image solution in an idealized wedge problem. Computational efficiency improvements resulting from the ADI discretization are also discussed.
Quantum Enhanced Inference in Markov Logic Networks
NASA Astrophysics Data System (ADS)
Wittek, Peter; Gogolin, Christian
2017-04-01
Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2005-01-01
Solutions are derived for the generalized mutual coherence function (MCF), i.e., the second order moment, of a random wave field propagating through a random medium within the context of the extended parabolic equation. Here, "generalized" connotes the consideration of both the transverse as well as the longitudinal second order moments (with respect to the direction of propagation). Such solutions will afford a comparison between the results of the parabolic equation within the pararaxial approximation and those of the wide-angle extended theory. To this end, a statistical operator method is developed which gives a general equation for an arbitrary spatial statistical moment of the wave field. The generality of the operator method allows one to obtain an expression for the second order field moment in the direction longitudinal to the direction of propagation. Analytical solutions to these equations are derived for the Kolmogorov and Tatarskii spectra of atmospheric permittivity fluctuations within the Markov approximation.
From the Boltzmann to the Lattice-Boltzmann Equation:. Beyond BGK Collision Models
NASA Astrophysics Data System (ADS)
Philippi, Paulo Cesar; Hegele, Luiz Adolfo; Surmas, Rodrigo; Siebert, Diogo Nardelli; Dos Santos, Luís Orlando Emerich
In this work, we present a derivation for the lattice-Boltzmann equation directly from the linearized Boltzmann equation, combining the following main features: multiple relaxation times and thermodynamic consistency in the description of non isothermal compressible flows. The method presented here is based on the discretization of increasingly order kinetic models of the Boltzmann equation. Following a Gross-Jackson procedure, the linearized collision term is developed in Hermite polynomial tensors and the resulting infinite series is diagonalized after a chosen integer N, establishing the order of approximation of the collision term. The velocity space is discretized, in accordance with a quadrature method based on prescribed abscissas (Philippi et al., Phys. Rev E 73, 056702, 2006). The problem of describing the energy transfer is discussed, in relation with the order of approximation of a two relaxation-times lattice Boltzmann model. The velocity-step, temperature-step and the shock tube problems are investigated, adopting lattices with 37, 53 and 81 velocities.
Quantum Enhanced Inference in Markov Logic Networks.
Wittek, Peter; Gogolin, Christian
2017-04-19
Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.
Quantum Enhanced Inference in Markov Logic Networks
Wittek, Peter; Gogolin, Christian
2017-01-01
Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning. PMID:28422093
Dense grid sibling frames with linear phase filters
NASA Astrophysics Data System (ADS)
Abdelnour, Farras
2013-09-01
We introduce new 5-band dyadic sibling frames with dense time-frequency grid. Given a lowpass filter satisfying certain conditions, the remaining filters are obtained using spectral factorization. The analysis and synthesis filterbanks share the same lowpass and bandpass filters but have different and oversampled highpass filters. This leads to wavelets approximating shift-invariance. The filters are FIR, have linear phase, and the resulting wavelets have vanishing moments. The filters are designed using spectral factorization method. The proposed method leads to smooth limit functions with higher approximation order, and computationally stable filterbanks.
NASA Astrophysics Data System (ADS)
Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod
2010-04-01
For phase estimation in digital holographic interferometry, a high-order instantaneous moments (HIM) based method was recently developed which relies on piecewise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients using the HIM operator. A crucial step in the method is mapping the polynomial coefficient estimation to single-tone frequency determination for which various techniques exist. The paper presents a comparative analysis of the performance of the HIM operator based method in using different single-tone frequency estimation techniques for phase estimation. The analysis is supplemented by simulation results.
NASA Astrophysics Data System (ADS)
Mester, Dávid; Nagy, Péter R.; Kállay, Mihály
2018-03-01
A reduced-cost implementation of the second-order algebraic-diagrammatic construction [ADC(2)] method is presented. We introduce approximations by restricting virtual natural orbitals and natural auxiliary functions, which results, on average, in more than an order of magnitude speedup compared to conventional, density-fitting ADC(2) algorithms. The present scheme is the successor of our previous approach [D. Mester, P. R. Nagy, and M. Kállay, J. Chem. Phys. 146, 194102 (2017)], which has been successfully applied to obtain singlet excitation energies with the linear-response second-order coupled-cluster singles and doubles model. Here we report further methodological improvements and the extension of the method to compute singlet and triplet ADC(2) excitation energies and transition moments. The various approximations are carefully benchmarked, and conservative truncation thresholds are selected which guarantee errors much smaller than the intrinsic error of the ADC(2) method. Using the canonical values as reference, we find that the mean absolute error for both singlet and triplet ADC(2) excitation energies is 0.02 eV, while that for oscillator strengths is 0.001 a.u. The rigorous cutoff parameters together with the significantly reduced operation count and storage requirements allow us to obtain accurate ADC(2) excitation energies and transition properties using triple-ζ basis sets for systems of up to one hundred atoms.
NASA Astrophysics Data System (ADS)
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2016-10-01
This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.
The NonConforming Virtual Element Method for the Stokes Equations
Cangiani, Andrea; Gyrya, Vitaliy; Manzini, Gianmarco
2016-01-01
In this paper, we present the nonconforming virtual element method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable nonpolynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functionsmore » is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two- and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the nonconforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Finally, numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.« less
A class of reduced-order models in the theory of waves and stability.
Chapman, C J; Sorokin, S V
2016-02-01
This paper presents a class of approximations to a type of wave field for which the dispersion relation is transcendental. The approximations have two defining characteristics: (i) they give the field shape exactly when the frequency and wavenumber lie on a grid of points in the (frequency, wavenumber) plane and (ii) the approximate dispersion relations are polynomials that pass exactly through points on this grid. Thus, the method is interpolatory in nature, but the interpolation takes place in (frequency, wavenumber) space, rather than in physical space. Full details are presented for a non-trivial example, that of antisymmetric elastic waves in a layer. The method is related to partial fraction expansions and barycentric representations of functions. An asymptotic analysis is presented, involving Stirling's approximation to the psi function, and a logarithmic correction to the polynomial dispersion relation.
Herschlag, Gregory J; Mitran, Sorin; Lin, Guang
2015-06-21
We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.
Lag and anticipating synchronization without time-delay coupling.
Corron, Ned J; Blakely, Jonathan N; Pethel, Shawn D
2005-06-01
We describe a new method for achieving approximate lag and anticipating synchronization in unidirectionally coupled chaotic oscillators. The method uses a specific parameter mismatch between the drive and response that is a first-order approximation to true time-delay coupling. As a result, an adjustable lag or anticipation effect can be achieved without the need for a variable delay line, making the method simpler and more economical to implement in many physical systems. We present a stability analysis, demonstrate the method numerically, and report experimental observation of the effect in radio-frequency electronic oscillators. In the circuit experiments, both lag and anticipation are controlled by tuning a single capacitor in the response oscillator.
A Weak Galerkin Method for the Reissner–Mindlin Plate in Primary Form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
We developed a new finite element method for the Reissner–Mindlin equations in its primary form by using the weak Galerkin approach. Like other weak Galerkin finite element methods, this one is highly flexible and robust by allowing the use of discontinuous approximating functions on arbitrary shape of polygons and, at the same time, is parameter independent on its stability and convergence. Furthermore, error estimates of optimal order in mesh size h are established for the corresponding weak Galerkin approximations. Numerical experiments are conducted for verifying the convergence theory, as well as suggesting some superconvergence and a uniform convergence of themore » method with respect to the plate thickness.« less
A Weak Galerkin Method for the Reissner–Mindlin Plate in Primary Form
Mu, Lin; Wang, Junping; Ye, Xiu
2017-10-04
We developed a new finite element method for the Reissner–Mindlin equations in its primary form by using the weak Galerkin approach. Like other weak Galerkin finite element methods, this one is highly flexible and robust by allowing the use of discontinuous approximating functions on arbitrary shape of polygons and, at the same time, is parameter independent on its stability and convergence. Furthermore, error estimates of optimal order in mesh size h are established for the corresponding weak Galerkin approximations. Numerical experiments are conducted for verifying the convergence theory, as well as suggesting some superconvergence and a uniform convergence of themore » method with respect to the plate thickness.« less
Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus
2007-10-25
The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.
Improved first-order uncertainty method for water-quality modeling
Melching, C.S.; Anmangandla, S.
1992-01-01
Uncertainties are unavoidable in water-quality modeling and subsequent management decisions. Monte Carlo simulation and first-order uncertainty analysis (involving linearization at central values of the uncertain variables) have been frequently used to estimate probability distributions for water-quality model output due to their simplicity. Each method has its drawbacks: Monte Carlo simulation's is mainly computational time; and first-order analysis are mainly questions of accuracy and representativeness, especially for nonlinear systems and extreme conditions. An improved (advanced) first-order method is presented, where the linearization point varies to match the output level whose exceedance probability is sought. The advanced first-order method is tested on the Streeter-Phelps equation to estimate the probability distribution of critical dissolved-oxygen deficit and critical dissolved oxygen using two hypothetical examples from the literature. The advanced first-order method provides a close approximation of the exceedance probability for the Streeter-Phelps model output estimated by Monte Carlo simulation using less computer time - by two orders of magnitude - regardless of the probability distributions assumed for the uncertain model parameters.
An almost symmetric Strang splitting scheme for nonlinear evolution equations.
Einkemmer, Lukas; Ostermann, Alexander
2014-07-01
In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.
An almost symmetric Strang splitting scheme for nonlinear evolution equations☆
Einkemmer, Lukas; Ostermann, Alexander
2014-01-01
In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation. PMID:25844017
On processed splitting methods and high-order actions in path-integral Monte Carlo simulations.
Casas, Fernando
2010-10-21
Processed splitting methods are particularly well adapted to carry out path-integral Monte Carlo (PIMC) simulations: since one is mainly interested in estimating traces of operators, only the kernel of the method is necessary to approximate the thermal density matrix. Unfortunately, they suffer the same drawback as standard, nonprocessed integrators: kernels of effective order greater than two necessarily involve some negative coefficients. This problem can be circumvented, however, by incorporating modified potentials into the composition, thus rendering schemes of higher effective order. In this work we analyze a family of fourth-order schemes recently proposed in the PIMC setting, paying special attention to their linear stability properties, and justify their observed behavior in practice. We also propose a new fourth-order scheme requiring the same computational cost but with an enlarged stability interval.
Crystal structure and phase stability in Fe{sub 1{minus}x}Co{sub x} from AB initio theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soederlind, P.; Abrikosov, I.A.; James, P.
1996-06-01
For alloys between Fe and Co, their magnetic properties determine their structure. From the occupation of d states, a phase diagram is expected which depend largely on the spin polarization. A method more elaborate than canonical band models is used to calculate the spin moment and crystal structure energies. This method was the multisublattice generalization of the coherent potential approximation in conjunction with the Linear-Muffin-Tin-Orbital method in the atomic sphere approximation. To treat itinerant magnetism, the Vosko-Wilk-Nusair parameterization was used for the local spin density approximation. The fcc, bcc, and hcp phases were studied as completely random alloys, while themore » {alpha}{prime} phase for off-stoichiometries were considered as partially ordered. Results are compared with experiment and canonical band model.« less
NASA Astrophysics Data System (ADS)
Tayebi, A.; Shekari, Y.; Heydari, M. H.
2017-07-01
Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.
Random function theory revisited - Exact solutions versus the first order smoothing conjecture
NASA Technical Reports Server (NTRS)
Lerche, I.; Parker, E. N.
1975-01-01
We remark again that the mathematical conjecture known as first order smoothing or the quasi-linear approximation does not give the correct dependence on correlation length (time) in many cases, although it gives the correct limit as the correlation length (time) goes to zero. In this sense, then, the method is unreliable.
ASP: Automated symbolic computation of approximate symmetries of differential equations
NASA Astrophysics Data System (ADS)
Jefferson, G. F.; Carminati, J.
2013-03-01
A recent paper (Pakdemirli et al. (2004) [12]) compared three methods of determining approximate symmetries of differential equations. Two of these methods are well known and involve either a perturbation of the classical Lie symmetry generator of the differential system (Baikov, Gazizov and Ibragimov (1988) [7], Ibragimov (1996) [6]) or a perturbation of the dependent variable/s and subsequent determination of the classical Lie point symmetries of the resulting coupled system (Fushchych and Shtelen (1989) [11]), both up to a specified order in the perturbation parameter. The third method, proposed by Pakdemirli, Yürüsoy and Dolapçi (2004) [12], simplifies the calculations required by Fushchych and Shtelen's method through the assignment of arbitrary functions to the non-linear components prior to computing symmetries. All three methods have been implemented in the new MAPLE package ASP (Automated Symmetry Package) which is an add-on to the MAPLE symmetry package DESOLVII (Vu, Jefferson and Carminati (2012) [25]). To our knowledge, this is the first computer package to automate all three methods of determining approximate symmetries for differential systems. Extensions to the theory have also been suggested for the third method and which generalise the first method to systems of differential equations. Finally, a number of approximate symmetries and corresponding solutions are compared with results in the literature.
NASA Technical Reports Server (NTRS)
Kvernadze, George; Hagstrom,Thomas; Shapiro, Henry
1997-01-01
A key step for some methods dealing with the reconstruction of a function with jump discontinuities is the accurate approximation of the jumps and their locations. Various methods have been suggested in the literature to obtain this valuable information. In the present paper, we develop an algorithm based on identities which determine the jumps of a 2(pi)-periodic bounded not-too-highly oscillating function by the partial sums of its differentiated Fourier series. The algorithm enables one to approximate the locations of discontinuities and the magnitudes of jumps of a bounded function. We study the accuracy of approximation and establish asymptotic expansions for the approximations of a 27(pi)-periodic piecewise smooth function with one discontinuity. By an appropriate linear combination, obtained via derivatives of different order, we significantly improve the accuracy. Next, we use Richardson's extrapolation method to enhance the accuracy even more. For a function with multiple discontinuities we establish simple formulae which "eliminate" all discontinuities of the function but one. Then we treat the function as if it had one singularity following the method described above.
Ju, Daeyoung; Young, Thomas M.; Ginn, Timothy R.
2012-01-01
An innovative method is proposed for approximation of the set of radial diffusion equations governing mass exchange between aqueous bulk phase and intra-particle phase for a hetero-disperse mixture of particles such as occur in suspension in surface water, in riverine/estuarine sediment beds, in soils and in aquifer materials. For this purpose the temporal variation of concentration at several uniformly distributed points within a normalized representative particle with spherical, cylindrical or planar shape is fitted with a 2-domain linear reversible mass exchange model. The approximation method is then superposed in order to generalize the model to a hetero-disperse mixture of particles. The method can reduce the computational effort needed in solving the intra-particle mass exchange of a hetero-disperse mixture of particles significantly and also the error due to the approximation is shown to be relatively small. The method is applied to describe desorption batch experiment of 1,2-Dichlorobenzene from four different soils with known particle size distributions and it could produce good agreement with experimental data. PMID:18304692
A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems
NASA Astrophysics Data System (ADS)
Caponetto, Riccardo; Fazzino, Stefano
2013-01-01
Fractional-order differential equations are interesting for their applications in the construction of mathematical models in finance, materials science or diffusion. In this paper, an application of a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equation is employed for calculating Lyapunov exponents of fractional order systems. It is known that the Lyapunov exponents, first introduced by Oseledec, play a crucial role in characterizing the behaviour of dynamical systems. They can be used to analyze the sensitive dependence on initial conditions and the presence of chaotic attractors. The results reveal that the proposed method is very effective and simple and leads to accurate, approximately convergent solutions.
Preparation and magnetic properties of multiferroic CuMnO2 nanoparticles.
Kurokawa, Akinobu; Yanoh, Tkuya; Yano, Shinya; Ichiyanagi, Yuko
2014-03-01
CuMnO2 nanoparticles with diameters of 64 nm were synthesized by a novel wet chemical method. An optimized two-step annealing method was developed through the analysis of thermogravimetric differential thermal analysis (TG-DTA) measurements in order to obtain single-phase CuMnO2. A sharp exothermic peak was observed in the DTA curve at approximately 500 K where structural changes of the copper oxides and manganese oxides in the precursor are expected to occur. It is believed that Cu+ ions were oxidized to Cu2+ ions and that Mn2+ ions were oxidized to Mn3+ ions in the Cu-Mn-O system. Deoxidization reactions were also found at approximately 1200 K. The optimized annealing temperature for the first step was determined to be 623 K in air. The optimized annealing temperature for the second step was 1173 K in an Ar atmosphere. Magnetization measurements suggested an antiferromagnetic spin ordering at approximately 50 K. It was expected that Mn3+ spin interactions induced magnetic phase transition affected by definite temperature.
NASA Astrophysics Data System (ADS)
Dutta, Ivy; Chowdhury, Anirban Roy; Kumbhakar, Dharmadas
2013-03-01
Using Chebyshev power series approach, accurate description for the first higher order (LP11) mode of graded index fibers having three different profile shape functions are presented in this paper and applied to predict their propagation characteristics. These characteristics include fractional power guided through the core, excitation efficiency and Petermann I and II spot sizes with their approximate analytic formulations. We have shown that where two and three Chebyshev points in LP11 mode approximation present fairly accurate results, the values based on our calculations involving four Chebyshev points match excellently with available exact numerical results.
Kurtosis Approach Nonlinear Blind Source Separation
NASA Technical Reports Server (NTRS)
Duong, Vu A.; Stubbemd, Allen R.
2005-01-01
In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation Keywords: Independent Component Analysis, Kurtosis, Higher order statistics.
Numerical computations on one-dimensional inverse scattering problems
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Hariharan, S. I.
1983-01-01
An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.
NASA Astrophysics Data System (ADS)
Díaz, M.; Hirsch, M.; Porod, W.; Romão, J.; Valle, J.
2003-07-01
We give an analytical calculation of solar neutrino masses and mixing at one-loop order within bilinear R-parity breaking supersymmetry, and compare our results to the exact numerical calculation. Our method is based on a systematic perturbative expansion of R-parity violating vertices to leading order. We find in general quite good agreement between the approximate and full numerical calculations, but the approximate expressions are much simpler to implement. Our formalism works especially well for the case of the large mixing angle Mikheyev-Smirnov-Wolfenstein solution, now strongly favored by the recent KamLAND reactor neutrino data.
Occurrence probability of structured motifs in random sequences.
Robin, S; Daudin, J-J; Richard, H; Sagot, M-F; Schbath, S
2002-01-01
The problem of extracting from a set of nucleic acid sequences motifs which may have biological function is more and more important. In this paper, we are interested in particular motifs that may be implicated in the transcription process. These motifs, called structured motifs, are composed of two ordered parts separated by a variable distance and allowing for substitutions. In order to assess their statistical significance, we propose approximations of the probability of occurrences of such a structured motif in a given sequence. An application of our method to evaluate candidate promoters in E. coli and B. subtilis is presented. Simulations show the goodness of the approximations.
Spike solutions in Gierer#x2013;Meinhardt model with a time dependent anomaly exponent
NASA Astrophysics Data System (ADS)
Nec, Yana
2018-01-01
Experimental evidence of complex dispersion regimes in natural systems, where the growth of the mean square displacement in time cannot be characterised by a single power, has been accruing for the past two decades. In such processes the exponent γ(t) in ⟨r2⟩ ∼ tγ(t) at times might be approximated by a piecewise constant function, or it can be a continuous function. Variable order differential equations are an emerging mathematical tool with a strong potential to model these systems. However, variable order differential equations are not tractable by the classic differential equations theory. This contribution illustrates how a classic method can be adapted to gain insight into a system of this type. Herein a variable order Gierer-Meinhardt model is posed, a generic reaction- diffusion system of a chemical origin. With a fixed order this system possesses a solution in the form of a constellation of arbitrarily situated localised pulses, when the components' diffusivity ratio is asymptotically small. The pattern was shown to exist subject to multiple step-like transitions between normal diffusion and sub-diffusion, as well as between distinct sub-diffusive regimes. The analytical approximation obtained permits qualitative analysis of the impact thereof. Numerical solution for typical cross-over scenarios revealed such features as earlier equilibration and non-monotonic excursions before attainment of equilibrium. The method is general and allows for an approximate numerical solution with any reasonably behaved γ(t).
A Family of Ellipse Methods for Solving Non-Linear Equations
ERIC Educational Resources Information Center
Gupta, K. C.; Kanwar, V.; Kumar, Sanjeev
2009-01-01
This note presents a method for the numerical approximation of simple zeros of a non-linear equation in one variable. In order to do so, the method uses an ellipse rather than a tangent approach. The main advantage of our method is that it does not fail even if the derivative of the function is either zero or very small in the vicinity of the…
A simple finite element method for linear hyperbolic problems
Mu, Lin; Ye, Xiu
2017-09-14
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for linear hyperbolic problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
Lognormal Approximations of Fault Tree Uncertainty Distributions.
El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P
2018-01-26
Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.
NASA Technical Reports Server (NTRS)
Barnwell, R. W.; Davis, R. M.
1975-01-01
A user's manual is presented for a computer program which calculates inviscid flow about lifting configurations in the free-stream Mach-number range from zero to low supersonic. Angles of attack of the order of the configuration thickness-length ratio and less can be calculated. An approximate formulation was used which accounts for shock waves, leading-edge separation and wind-tunnel wall effects.
Comments on localized and integral localized approximations in spherical coordinates
NASA Astrophysics Data System (ADS)
Gouesbet, Gérard; Lock, James A.
2016-08-01
Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Comments on these procedures are, however, required in order to help researchers make correct decisions concerning their use. This paper has the flavor of a short review and takes the opportunity to attract the attention of the readers to a required refinement of terminology.
NASA Astrophysics Data System (ADS)
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Approximate solution of space and time fractional higher order phase field equation
NASA Astrophysics Data System (ADS)
Shamseldeen, S.
2018-03-01
This paper is concerned with a class of space and time fractional partial differential equation (STFDE) with Riesz derivative in space and Caputo in time. The proposed STFDE is considered as a generalization of a sixth-order partial phase field equation. We describe the application of the optimal homotopy analysis method (OHAM) to obtain an approximate solution for the suggested fractional initial value problem. An averaged-squared residual error function is defined and used to determine the optimal convergence control parameter. Two numerical examples are studied, considering periodic and non-periodic initial conditions, to justify the efficiency and the accuracy of the adopted iterative approach. The dependence of the solution on the order of the fractional derivative in space and time and model parameters is investigated.
Yao, Yanping; Kou, Ziming; Meng, Wenjun; Han, Gang
2014-01-01
Properly evaluating the overall performance of tubular scraper conveyors (TSCs) can increase their overall efficiency and reduce economic investments, but such methods have rarely been studied. This study evaluated the overall performance of TSCs based on the technique for order of preference by similarity to ideal solution (TOPSIS). Three conveyors of the same type produced in the same factory were investigated. Their scraper space, material filling coefficient, and vibration coefficient of the traction components were evaluated. A mathematical model of the multiattribute decision matrix was constructed; a weighted judgment matrix was obtained using the DELPHI method. The linguistic positive-ideal solution (LPIS), the linguistic negative-ideal solution (LNIS), and the distance from each solution to the LPIS and the LNIS, that is, the approximation degrees, were calculated. The optimal solution was determined by ordering the approximation degrees for each solution. The TOPSIS-based results were compared with the measurement results provided by the manufacturer. The ordering result based on the three evaluated parameters was highly consistent with the result provided by the manufacturer. The TOPSIS-based method serves as a suitable evaluation tool for the overall performance of TSCs. It facilitates the optimal deployment of TSCs for industrial purposes. PMID:24991646
High-order cyclo-difference techniques: An alternative to finite differences
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Otto, John C.
1993-01-01
The summation-by-parts energy norm is used to establish a new class of high-order finite-difference techniques referred to here as 'cyclo-difference' techniques. These techniques are constructed cyclically from stable subelements, and require no numerical boundary conditions; when coupled with the simultaneous approximation term (SAT) boundary treatment, they are time asymptotically stable for an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are ideally suited for parallel implementation, but do not require special collocation points or orthogonal basis functions. The principal focus is on methods of sixth-order formal accuracy or less; however, these methods could be extended in principle to any arbitrary order of accuracy.
Examining the accuracy of the infinite order sudden approximation using sensitivity analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eno, L.; Rabitz, H.
1981-08-15
A method is developed for assessing the accuracy of scattering observables calculated within the framework of the infinite order sudden (IOS) approximation. In particular, we focus on the energy sudden assumption of the IOS method and our approach involves the determination of the sensitivity of the IOS scattering matrix S/sup IOS/ with respect to a parameter which reintroduces the internal energy operator h/sub 0/ into the IOS Hamiltonian. This procedure is an example of sensitivity analysis of missing model components (h/sub 0/ in this case) in the reference Hamiltonian. In contrast to simple first-order perturbation theory a finite result ismore » obtained for the effect of h/sub 0/ on S/sup IOS/. As an illustration, our method of analysis is applied to integral state-to-state cross sections for the scattering of an atom and rigid rotor. Results are generated within the He+H/sub 2/ system and a comparison is made between IOS and coupled states cross sections and the corresponding IOS sensitivities. It is found that the sensitivity coefficients are very useful indicators of the accuracy of the IOS results. Finally, further developments and applications are discussed.« less
Design and simulation of origami structures with smooth folds
Peraza Hernandez, E. A.; Lagoudas, D. C.
2017-01-01
Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds. This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh. PMID:28484322
Design and simulation of origami structures with smooth folds.
Peraza Hernandez, E A; Hartl, D J; Lagoudas, D C
2017-04-01
Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds . This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh ), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh.
Propagation of Computational Uncertainty Using the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2007-01-01
This paper describes the use of formally designed experiments to aid in the error analysis of a computational experiment. A method is described by which the underlying code is approximated with relatively low-order polynomial graduating functions represented by truncated Taylor series approximations to the true underlying response function. A resource-minimal approach is outlined by which such graduating functions can be estimated from a minimum number of case runs of the underlying computational code. Certain practical considerations are discussed, including ways and means of coping with high-order response functions. The distributional properties of prediction residuals are presented and discussed. A practical method is presented for quantifying that component of the prediction uncertainty of a computational code that can be attributed to imperfect knowledge of independent variable levels. This method is illustrated with a recent assessment of uncertainty in computational estimates of Space Shuttle thermal and structural reentry loads attributable to ice and foam debris impact on ascent.
Parallel Computing of Upwelling in a Rotating Stratified Flow
NASA Astrophysics Data System (ADS)
Cui, A.; Street, R. L.
1997-11-01
A code for the three-dimensional, unsteady, incompressible, and turbulent flow has been implemented on the IBM SP2, using message passing. The effects of rotation and variable density are included. A finite volume method is used to discretize the Navier-Stokes equations in general curvilinear coordinates on a non-staggered grid. All the spatial derivatives are approximated using second-order central differences with the exception of the convection terms, which are handled with special upwind-difference schemes. The semi-implicit, second-order accurate, time-advancement scheme employs the Adams-Bashforth method for the explicit terms and Crank-Nicolson for the implicit terms. A multigrid method, with the four-color ZEBRA as smoother, is used to solve the Poisson equation for pressure, while the momentum equations are solved with an approximate factorization technique. The code was successfully validated for a variety test cases. Simulations of a laboratory model of coastal upwelling in a rotating annulus are in progress and will be presented.
Harmonic-phase path-integral approximation of thermal quantum correlation functions
NASA Astrophysics Data System (ADS)
Robertson, Christopher; Habershon, Scott
2018-03-01
We present an approximation to the thermal symmetric form of the quantum time-correlation function in the standard position path-integral representation. By transforming to a sum-and-difference position representation and then Taylor-expanding the potential energy surface of the system to second order, the resulting expression provides a harmonic weighting function that approximately recovers the contribution of the phase to the time-correlation function. This method is readily implemented in a Monte Carlo sampling scheme and provides exact results for harmonic potentials (for both linear and non-linear operators) and near-quantitative results for anharmonic systems for low temperatures and times that are likely to be relevant to condensed phase experiments. This article focuses on one-dimensional examples to provide insights into convergence and sampling properties, and we also discuss how this approximation method may be extended to many-dimensional systems.
Multipolar Ewald methods, 1: theory, accuracy, and performance.
Giese, Timothy J; Panteva, Maria T; Chen, Haoyuan; York, Darrin M
2015-02-10
The Ewald, Particle Mesh Ewald (PME), and Fast Fourier–Poisson (FFP) methods are developed for systems composed of spherical multipole moment expansions. A unified set of equations is derived that takes advantage of a spherical tensor gradient operator formalism in both real space and reciprocal space to allow extension to arbitrary multipole order. The implementation of these methods into a novel linear-scaling modified “divide-and-conquer” (mDC) quantum mechanical force field is discussed. The evaluation times and relative force errors are compared between the three methods, as a function of multipole expansion order. Timings and errors are also compared within the context of the quantum mechanical force field, which encounters primary errors related to the quality of reproducing electrostatic forces for a given density matrix and secondary errors resulting from the propagation of the approximate electrostatics into the self-consistent field procedure, which yields a converged, variational, but nonetheless approximate density matrix. Condensed-phase simulations of an mDC water model are performed with the multipolar PME method and compared to an electrostatic cutoff method, which is shown to artificially increase the density of water and heat of vaporization relative to full electrostatic treatment.
Matrix form of Legendre polynomials for solving linear integro-differential equations of high order
NASA Astrophysics Data System (ADS)
Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.
2017-04-01
This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.
Multicriteria approaches for a private equity fund
NASA Astrophysics Data System (ADS)
Tammer, Christiane; Tannert, Johannes
2012-09-01
We develop a new model for a Private Equity Fund based on stochastic differential equations. In order to find efficient strategies for the fund manager we formulate a multicriteria optimization problem for a Private Equity Fund. Using the e-constraint method we solve this multicriteria optimization problem. Furthermore, a genetic algorithm is applied in order to get an approximation of the efficient frontier.
Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2).
Schütz, Martin
2015-06-07
We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.
The application of the Routh approximation method to turbofan engine models
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1977-01-01
The Routh approximation technique is applied in the frequency domain to a 16th order state variable turbofan engine model. The results obtained motivate the extension of the frequency domain formulation of the Routh method to the time domain to handle the state variable formulation directly. The time domain formulation is derived, and a characterization, which specifies all possible Routh similarity transformations, is given. The characterization is computed by the solution of two eigenvalue eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given.
NASA Technical Reports Server (NTRS)
Cheatwood, F. Mcneil; Dejarnette, Fred R.
1991-01-01
An approximate axisymmetric method was developed which can reliably calculate fully viscous hypersonic flows over blunt nosed bodies. By substituting Maslen's second order pressure expression for the normal momentum equation, a simplified form of the viscous shock layer (VSL) equations is obtained. This approach can solve both the subsonic and supersonic regions of the shock layer without a starting solution for the shock shape. The approach is applicable to perfect gas, equilibrium, and nonequilibrium flowfields. Since the method is fully viscous, the problems associated with a boundary layer solution with an inviscid layer solution are avoided. This procedure is significantly faster than the parabolized Navier-Stokes (PNS) or VSL solvers and would be useful in a preliminary design environment. Problems associated with a previously developed approximate VSL technique are addressed before extending the method to nonequilibrium calculations. Perfect gas (laminar and turbulent), equilibrium, and nonequilibrium solutions were generated for airflows over several analytic body shapes. Surface heat transfer, skin friction, and pressure predictions are comparable to VSL results. In addition, computed heating rates are in good agreement with experimental data. The present technique generates its own shock shape as part of its solution, and therefore could be used to provide more accurate initial shock shapes for higher order procedures which require starting solutions.
Wang, Wansheng; Chen, Long; Zhou, Jie
2015-01-01
A postprocessing technique for mixed finite element methods for the Cahn-Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on the coarser mesh, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures. PMID:27110063
Approximate Dispersion Relations for Waves on Arbitrary Shear Flows
NASA Astrophysics Data System (ADS)
Ellingsen, S. À.; Li, Y.
2017-12-01
An approximate dispersion relation is derived and presented for linear surface waves atop a shear current whose magnitude and direction can vary arbitrarily with depth. The approximation, derived to first order of deviation from potential flow, is shown to produce good approximations at all wavelengths for a wide range of naturally occuring shear flows as well as widely used model flows. The relation reduces in many cases to a 3-D generalization of the much used approximation by Skop (1987), developed further by Kirby and Chen (1989), but is shown to be more robust, succeeding in situations where the Kirby and Chen model fails. The two approximations incur the same numerical cost and difficulty. While the Kirby and Chen approximation is excellent for a wide range of currents, the exact criteria for its applicability have not been known. We explain the apparently serendipitous success of the latter and derive proper conditions of applicability for both approximate dispersion relations. Our new model has a greater range of applicability. A second order approximation is also derived. It greatly improves accuracy, which is shown to be important in difficult cases. It has an advantage over the corresponding second-order expression proposed by Kirby and Chen that its criterion of accuracy is explicitly known, which is not currently the case for the latter to our knowledge. Our second-order term is also arguably significantly simpler to implement, and more physically transparent, than its sibling due to Kirby and Chen.
Accurate Projection Methods for the Incompressible Navier–Stokes Equations
Brown, David L.; Cortez, Ricardo; Minion, Michael L.
2001-04-10
This paper considers the accuracy of projection method approximations to the initial–boundary-value problem for the incompressible Navier–Stokes equations. The issue of how to correctly specify numerical boundary conditions for these methods has been outstanding since the birth of the second-order methodology a decade and a half ago. It has been observed that while the velocity can be reliably computed to second-order accuracy in time and space, the pressure is typically only first-order accurate in the L ∞-norm. Here, we identify the source of this problem in the interplay of the global pressure-update formula with the numerical boundary conditions and presentsmore » an improved projection algorithm which is fully second-order accurate, as demonstrated by a normal mode analysis and numerical experiments. In addition, a numerical method based on a gauge variable formulation of the incompressible Navier–Stokes equations, which provides another option for obtaining fully second-order convergence in both velocity and pressure, is discussed. The connection between the boundary conditions for projection methods and the gauge method is explained in detail.« less
Wave vector modification of the infinite order sudden approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachs, J.G.; Bowman, J.M.
1980-10-15
A simple method is proposed to modify the infinite order sudden approximation (IOS) in order to extend its region of quantitative validity. The method involves modifying the phase of the IOS scattering matrix to include a part calculated at the outgoing relative kinetic energy as well as a part calculated at the incoming kinetic energy. An immediate advantage of this modification is that the resulting S matrix is symmetric. We also present a closely related method in which the relative kinetic energies used in the calculation of the phase are determined from quasiclassical trajectory calculations. A set of trajectories ismore » run with the initial state being the incoming state, and another set is run with the initial state being the outgoing state, and the average final relative kinetic energy of each set is obtained. One part of the S-operator phase is then calculated at each of these kinetic energies. We apply these methods to vibrationally inelastic collinear collisions of an atom and a harmonic oscillator, and calculate transition probabilities P/sub n/1..-->..nf for three model systems. For systems which are sudden, or nearly so, the agreement with exact quantum close-coupling calculations is substantially improved over standard IOS ones when ..delta..n=such thatub f/-n/sub i/ is large, and the corresponding transition probability is small, i.e., less than 0.1. However, the modifications we propose will not improve the accuracy of the IOS transition probabilities for any collisional system unless the standard form of IOS already gives at least qualitative agreement with exact quantal calculations. We also suggest comparisons between some classical quantities and sudden predictions which should help in determining the validity of the sudden approximation. This is useful when exact quantal data is not available for comparison.« less
Wave vector modification of the infinite order sudden approximation
NASA Astrophysics Data System (ADS)
Sachs, Judith Grobe; Bowman, Joel M.
1980-10-01
A simple method is proposed to modify the infinite order sudden approximation (IOS) in order to extend its region of quantitative validity. The method involves modifying the phase of the IOS scattering matrix to include a part calculated at the outgoing relative kinetic energy as well as a part calculated at the incoming kinetic energy. An immediate advantage of this modification is that the resulting S matrix is symmetric. We also present a closely related method in which the relative kinetic energies used in the calculation of the phase are determined from quasiclassical trajectory calculations. A set of trajectories is run with the initial state being the incoming state, and another set is run with the initial state being the outgoing state, and the average final relative kinetic energy of each set is obtained. One part of the S-operator phase is then calculated at each of these kinetic energies. We apply these methods to vibrationally inelastic collinear collisions of an atom and a harmonic oscillator, and calculate transition probabilities Pn1→nf for three model systems. For systems which are sudden, or nearly so, the agreement with exact quantum close-coupling calculations is substantially improved over standard IOS ones when Δn=‖nf-ni‖ is large, and the corresponding transition probability is small, i.e., less than 0.1. However, the modifications we propose will not improve the accuracy of the IOS transition probabilities for any collisional system unless the standard form of IOS already gives at least qualitative agreement with exact quantal calculations. We also suggest comparisons between some classical quantities and sudden predictions which should help in determining the validity of the sudden approximation. This is useful when exact quantal data is not available for comparison.
Liu, Jian; Miller, William H
2007-06-21
It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be expressed, without approximation, in the same form as the linearized approximation of the semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the exact theory they evolve according to generalized equations of motion that are derived here. Approximations to the exact equations of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the paper--the full Wigner dynamics (full WD) and the second order WD based on "Wigner trajectories" [H. W. Lee and M. D. Scully, J. Chem. Phys. 77, 4604 (1982)] and the full Donoso-Martens dynamics (full DMD) and the second order DMD based on "Donoso-Martens trajectories" [A. Donoso and C. C. Martens, Phys. Rev. Lett. 8722, 223202 (2001)]--all of which can be viewed as generalizations of the original LSC-IVR method. Numerical tests of the four versions of this new approach are made for two anharmonic model problems, and for each the momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation function (nonlinear operators) have been calculated. These four new approximate treatments are indeed seen to be significant improvements to the original LSC-IVR approximation.
Modal Substructuring of Geometrically Nonlinear Finite Element Models with Interface Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
Substructuring methods have been widely used in structural dynamics to divide large, complicated finite element models into smaller substructures. For linear systems, many methods have been developed to reduce the subcomponents down to a low order set of equations using a special set of component modes, and these are then assembled to approximate the dynamics of a large scale model. In this paper, a substructuring approach is developed for coupling geometrically nonlinear structures, where each subcomponent is drastically reduced to a low order set of nonlinear equations using a truncated set of fixedinterface and characteristic constraint modes. The method usedmore » to extract the coefficients of the nonlinear reduced order model (NLROM) is non-intrusive in that it does not require any modification to the commercial FEA code, but computes the NLROM from the results of several nonlinear static analyses. The NLROMs are then assembled to approximate the nonlinear differential equations of the global assembly. The method is demonstrated on the coupling of two geometrically nonlinear plates with simple supports at all edges. The plates are joined at a continuous interface through the rotational degrees-of-freedom (DOF), and the nonlinear normal modes (NNMs) of the assembled equations are computed to validate the models. The proposed substructuring approach reduces a 12,861 DOF nonlinear finite element model down to only 23 DOF, while still accurately reproducing the first three NNMs of the full order model.« less
Modal Substructuring of Geometrically Nonlinear Finite Element Models with Interface Reduction
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2017-03-29
Substructuring methods have been widely used in structural dynamics to divide large, complicated finite element models into smaller substructures. For linear systems, many methods have been developed to reduce the subcomponents down to a low order set of equations using a special set of component modes, and these are then assembled to approximate the dynamics of a large scale model. In this paper, a substructuring approach is developed for coupling geometrically nonlinear structures, where each subcomponent is drastically reduced to a low order set of nonlinear equations using a truncated set of fixedinterface and characteristic constraint modes. The method usedmore » to extract the coefficients of the nonlinear reduced order model (NLROM) is non-intrusive in that it does not require any modification to the commercial FEA code, but computes the NLROM from the results of several nonlinear static analyses. The NLROMs are then assembled to approximate the nonlinear differential equations of the global assembly. The method is demonstrated on the coupling of two geometrically nonlinear plates with simple supports at all edges. The plates are joined at a continuous interface through the rotational degrees-of-freedom (DOF), and the nonlinear normal modes (NNMs) of the assembled equations are computed to validate the models. The proposed substructuring approach reduces a 12,861 DOF nonlinear finite element model down to only 23 DOF, while still accurately reproducing the first three NNMs of the full order model.« less
A review of the matrix-exponential formalism in radiative transfer
NASA Astrophysics Data System (ADS)
Efremenko, Dmitry S.; Molina García, Víctor; Gimeno García, Sebastián; Doicu, Adrian
2017-07-01
This paper outlines the matrix exponential description of radiative transfer. The eigendecomposition method which serves as a basis for computing the matrix exponential and for representing the solution in a discrete ordinate setting is considered. The mathematical equivalence of the discrete ordinate method, the matrix operator method, and the matrix Riccati equations method is proved rigorously by means of the matrix exponential formalism. For optically thin layers, approximate solution methods relying on the Padé and Taylor series approximations to the matrix exponential, as well as on the matrix Riccati equations, are presented. For optically thick layers, the asymptotic theory with higher-order corrections is derived, and parameterizations of the asymptotic functions and constants for a water-cloud model with a Gamma size distribution are obtained.
Deep learning and model predictive control for self-tuning mode-locked lasers
NASA Astrophysics Data System (ADS)
Baumeister, Thomas; Brunton, Steven L.; Nathan Kutz, J.
2018-03-01
Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require {\\em intelligent} algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a {\\em deep learning} (DL) architecture with {\\em model predictive control} (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser which is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers.
New approach to CT pixel-based photon dose calculations in heterogeneous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, J.W.; Henkelman, R.M.
The effects of small cavities on dose in water and the dose in a homogeneous nonunit density medium illustrate that inhomogeneities do not act independently in photon dose perturbation, and serve as two constraints which should be satisfied by approximate methods of computed tomography (CT) pixel-based dose calculations. Current methods at best satisfy only one of the two constraints and show inadequacies in some intermediate geometries. We have developed an approximate method that satisfies both these constraints and treats much of the synergistic effect of multiple inhomogeneities correctly. The method calculates primary and first-scatter doses by first-order ray tracing withmore » the first-scatter contribution augmented by a component of second scatter that behaves like first scatter. Multiple-scatter dose perturbation values extracted from small cavity experiments are used in a function which approximates the small residual multiple-scatter dose. For a wide range of geometries tested, our method agrees very well with measurements. The average deviation is less than 2% with a maximum of 3%. In comparison, calculations based on existing methods can have errors larger than 10%.« less
NASA Technical Reports Server (NTRS)
Tadmor, Eitan
1988-01-01
A convergence theory for semi-discrete approximations to nonlinear systems of conservation laws is developed. It is shown, by a series of scalar counter-examples, that consistency with the conservation law alone does not guarantee convergence. Instead, a notion of consistency which takes into account both the conservation law and its augmenting entropy condition is introduced. In this context it is concluded that consistency and L(infinity)-stability guarantee for a relevant class of admissible entropy functions, that their entropy production rate belongs to a compact subset of H(loc)sup -1 (x,t). One can now use compensated compactness arguments in order to turn this conclusion into a convergence proof. The current state of the art for these arguments includes the scalar and a wide class of 2 x 2 systems of conservation laws. The general framework of the vanishing viscosity method is studied as an effective way to meet the consistency and L(infinity)-stability requirements. How this method is utilized to enforce consistency and stability for scalar conservation laws is shown. In this context we prove, under the appropriate assumptions, the convergence of finite difference approximations (e.g., the high resolution TVD and UNO methods), finite element approximations (e.g., the Streamline-Diffusion methods) and spectral and pseudospectral approximations (e.g., the Spectral Viscosity methods).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadmor, E.
1988-07-01
A convergence theory for semi-discrete approximations to nonlinear systems of conservation laws is developed. It is shown, by a series of scalar counter-examples, that consistency with the conservation law alone does not guarantee convergence. Instead, a notion of consistency which takes into account both the conservation law and its augmenting entropy condition is introduced. In this context it is concluded that consistency and L(infinity)-stability guarantee for a relevant class of admissible entropy functions, that their entropy production rate belongs to a compact subset of H(loc)sup -1 (x,t). One can now use compensated compactness arguments in order to turn this conclusionmore » into a convergence proof. The current state of the art for these arguments includes the scalar and a wide class of 2 x 2 systems of conservation laws. The general framework of the vanishing viscosity method is studied as an effective way to meet the consistency and L(infinity)-stability requirements. How this method is utilized to enforce consistency and stability for scalar conservation laws is shown. In this context we prove, under the appropriate assumptions, the convergence of finite difference approximations (e.g., the high resolution TVD and UNO methods), finite element approximations (e.g., the Streamline-Diffusion methods) and spectral and pseudospectral approximations (e.g., the Spectral Viscosity methods).« less
NASA Astrophysics Data System (ADS)
Käser, Martin; Dumbser, Michael; de la Puente, Josep; Igel, Heiner
2007-01-01
We present a new numerical method to solve the heterogeneous anelastic, seismic wave equations with arbitrary high order accuracy in space and time on 3-D unstructured tetrahedral meshes. Using the velocity-stress formulation provides a linear hyperbolic system of equations with source terms that is completed by additional equations for the anelastic functions including the strain history of the material. These additional equations result from the rheological model of the generalized Maxwell body and permit the incorporation of realistic attenuation properties of viscoelastic material accounting for the behaviour of elastic solids and viscous fluids. The proposed method combines the Discontinuous Galerkin (DG) finite element (FE) method with the ADER approach using Arbitrary high order DERivatives for flux calculations. The DG approach, in contrast to classical FE methods, uses a piecewise polynomial approximation of the numerical solution which allows for discontinuities at element interfaces. Therefore, the well-established theory of numerical fluxes across element interfaces obtained by the solution of Riemann problems can be applied as in the finite volume framework. The main idea of the ADER time integration approach is a Taylor expansion in time in which all time derivatives are replaced by space derivatives using the so-called Cauchy-Kovalewski procedure which makes extensive use of the governing PDE. Due to the ADER time integration technique the same approximation order in space and time is achieved automatically and the method is a one-step scheme advancing the solution for one time step without intermediate stages. To this end, we introduce a new unrolled recursive algorithm for efficiently computing the Cauchy-Kovalewski procedure by making use of the sparsity of the system matrices. The numerical convergence analysis demonstrates that the new schemes provide very high order accuracy even on unstructured tetrahedral meshes while computational cost and storage space for a desired accuracy can be reduced when applying higher degree approximation polynomials. In addition, we investigate the increase in computing time, when the number of relaxation mechanisms due to the generalized Maxwell body are increased. An application to a well-acknowledged test case and comparisons with analytic and reference solutions, obtained by different well-established numerical methods, confirm the performance of the proposed method. Therefore, the development of the highly accurate ADER-DG approach for tetrahedral meshes including viscoelastic material provides a novel, flexible and efficient numerical technique to approach 3-D wave propagation problems including realistic attenuation and complex geometry.
High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)
2002-01-01
We present the first fifth order, semi-discrete central upwind method for approximating solutions of multi-dimensional Hamilton-Jacobi equations. Unlike most of the commonly used high order upwind schemes, our scheme is formulated as a Godunov-type scheme. The scheme is based on the fluxes of Kurganov-Tadmor and Kurganov-Tadmor-Petrova, and is derived for an arbitrary number of space dimensions. A theorem establishing the monotonicity of these fluxes is provided. The spacial discretization is based on a weighted essentially non-oscillatory reconstruction of the derivative. The accuracy and stability properties of our scheme are demonstrated in a variety of examples. A comparison between our method and other fifth-order schemes for Hamilton-Jacobi equations shows that our method exhibits smaller errors without any increase in the complexity of the computations.
NASA Astrophysics Data System (ADS)
Želi, Velibor; Zorica, Dušan
2018-02-01
Generalization of the heat conduction equation is obtained by considering the system of equations consisting of the energy balance equation and fractional-order constitutive heat conduction law, assumed in the form of the distributed-order Cattaneo type. The Cauchy problem for system of energy balance equation and constitutive heat conduction law is treated analytically through Fourier and Laplace integral transform methods, as well as numerically by the method of finite differences through Adams-Bashforth and Grünwald-Letnikov schemes for approximation derivatives in temporal domain and leap frog scheme for spatial derivatives. Numerical examples, showing time evolution of temperature and heat flux spatial profiles, demonstrate applicability and good agreement of both methods in cases of multi-term and power-type distributed-order heat conduction laws.
NASA Astrophysics Data System (ADS)
Canhanga, Betuel; Ni, Ying; Rančić, Milica; Malyarenko, Anatoliy; Silvestrov, Sergei
2017-01-01
After Black-Scholes proposed a model for pricing European Options in 1973, Cox, Ross and Rubinstein in 1979, and Heston in 1993, showed that the constant volatility assumption made by Black-Scholes was one of the main reasons for the model to be unable to capture some market details. Instead of constant volatilities, they introduced stochastic volatilities to the asset dynamic modeling. In 2009, Christoffersen empirically showed "why multifactor stochastic volatility models work so well". Four years later, Chiarella and Ziveyi solved the model proposed by Christoffersen. They considered an underlying asset whose price is governed by two factor stochastic volatilities of mean reversion type. Applying Fourier transforms, Laplace transforms and the method of characteristics they presented a semi-analytical formula to compute an approximate price for American options. The huge calculation involved in the Chiarella and Ziveyi approach motivated the authors of this paper in 2014 to investigate another methodology to compute European Option prices on a Christoffersen type model. Using the first and second order asymptotic expansion method we presented a closed form solution for European option, and provided experimental and numerical studies on investigating the accuracy of the approximation formulae given by the first order asymptotic expansion. In the present paper we will perform experimental and numerical studies for the second order asymptotic expansion and compare the obtained results with results presented by Chiarella and Ziveyi.
Data approximation using a blending type spline construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalmo, Rune; Bratlie, Jostein
2014-11-18
Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended together by C{sup k}-smooth basis functions. One way of approximating discrete regular data using GERBS is by partitioning the data set into subsets and fit a local function to each subset. Partitioning and fitting strategies can be devised such that important or interesting data points are interpolated in order to preserve certain features. We present a method for fitting discrete data using a tensor product GERBS construction. The method is based on detection of feature points using differential geometry. Derivatives, which aremore » necessary for feature point detection and used to construct local surface patches, are approximated from the discrete data using finite differences.« less
Asymptotic-induced numerical methods for conservation laws
NASA Technical Reports Server (NTRS)
Garbey, Marc; Scroggs, Jeffrey S.
1990-01-01
Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.
Solving the Hamilton-Jacobi equation for general relativity
NASA Astrophysics Data System (ADS)
Parry, J.; Salopek, D. S.; Stewart, J. M.
1994-03-01
We demonstrate a systematic method for solving the Hamilton-Jacobi equation for general relativity with the inclusion of matter fields. The generating functional is expanded in a series of spatial gradients. Each term is manifestly invariant under reparametrizations of the spatial coordinates (``gauge invariant''). At each order we solve the Hamiltonian constraint using a conformal transformation of the three-metric as well as a line integral in superspace. This gives a recursion relation for the generating functional which then may be solved to arbitrary order simply by functionally differentiating previous orders. At fourth order in spatial gradients we demonstrate solutions for irrotational dust as well as for a scalar field. We explicitly evolve the three-metric to the same order. This method can be used to derive the Zel'dovich approximation for general relativity.
The terminal area simulation system. Volume 1: Theoretical formulation
NASA Technical Reports Server (NTRS)
Proctor, F. H.
1987-01-01
A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.
A unitary convolution approximation for the impact-parameter dependent electronic energy loss
NASA Astrophysics Data System (ADS)
Schiwietz, G.; Grande, P. L.
1999-06-01
In this work, we propose a simple method to calculate the impact-parameter dependence of the electronic energy loss of bare ions for all impact parameters. This perturbative convolution approximation (PCA) is based on first-order perturbation theory, and thus, it is only valid for fast particles with low projectile charges. Using Bloch's stopping-power result and a simple scaling, we get rid of the restriction to low charge states and derive the unitary convolution approximation (UCA). Results of the UCA are then compared with full quantum-mechanical coupled-channel calculations for the impact-parameter dependent electronic energy loss.
Complex space monofilar approximation of diffraction currents on a conducting half plane
NASA Technical Reports Server (NTRS)
Lindell, I. V.
1987-01-01
Simple approximation of diffraction surface currents on a conducting half plane, due to an incoming plane wave, is obtained with a line current (monofile) in complex space. When compared to an approximating current at the edge, the diffraction pattern is seen to improve by an order of magnitude for a minimal increase of computation effort. Thus, the inconvient Fresnel integral functions can be avoided for quick calculations of diffracted fields and the accuracy is good in other directions than along the half plane. The method can be applied to general problems involving planar metal edges.
Triangle based TVD schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Durlofsky, Louis J.; Osher, Stanley; Engquist, Bjorn
1990-01-01
A triangle based total variation diminishing (TVD) scheme for the numerical approximation of hyperbolic conservation laws in two space dimensions is constructed. The novelty of the scheme lies in the nature of the preprocessing of the cell averaged data, which is accomplished via a nearest neighbor linear interpolation followed by a slope limiting procedures. Two such limiting procedures are suggested. The resulting method is considerably more simple than other triangle based non-oscillatory approximations which, like this scheme, approximate the flux up to second order accuracy. Numerical results for linear advection and Burgers' equation are presented.
Approximation methods for combined thermal/structural design
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Shore, C. P.
1979-01-01
Two approximation concepts for combined thermal/structural design are evaluated. The first concept is an approximate thermal analysis based on the first derivatives of structural temperatures with respect to design variables. Two commonly used first-order Taylor series expansions are examined. The direct and reciprocal expansions are special members of a general family of approximations, and for some conditions other members of that family of approximations are more accurate. Several examples are used to compare the accuracy of the different expansions. The second approximation concept is the use of critical time points for combined thermal and stress analyses of structures with transient loading conditions. Significant time savings are realized by identifying critical time points and performing the stress analysis for those points only. The design of an insulated panel which is exposed to transient heating conditions is discussed.
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1985-01-01
The classical method of equivalent linearization is extended to a particular class of nonlinear difference equations. It is shown that the method can be used to obtain an approximation of the periodic solutions of these equations. In particular, the parameters of the limit cycle and the limit points can be determined. Three examples illustrating the method are presented.
Two-level Schwartz methods for nonconforming finite elements and discontinuous coefficients
NASA Technical Reports Server (NTRS)
Sarkis, Marcus
1993-01-01
Two-level domain decomposition methods are developed for a simple nonconforming approximation of second order elliptic problems. A bound is established for the condition number of these iterative methods, which grows only logarithmically with the number of degrees of freedom in each subregion. This bound holds for two and three dimensions and is independent of jumps in the value of the coefficients.
ERIC Educational Resources Information Center
Navarro-Leal, Marco Aurelio; Garcia, Concepcion Nino; Saldivar, Luisa Caballero
2012-01-01
For a preliminary exploration of management models between two secondary schools, a Delphi method was used in order to identify and focus relevant topics for a larger research. A first approximation with this method proved to be a heuristic tool to focus and define some categories and guidelines of enquiry. It was found that in both of the schools…
An improved 3D MoF method based on analytical partial derivatives
NASA Astrophysics Data System (ADS)
Chen, Xiang; Zhang, Xiong
2016-12-01
MoF (Moment of Fluid) method is one of the most accurate approaches among various surface reconstruction algorithms. As other second order methods, MoF method needs to solve an implicit optimization problem to obtain the optimal approximate surface. Therefore, the partial derivatives of the objective function have to be involved during the iteration for efficiency and accuracy. However, to the best of our knowledge, the derivatives are currently estimated numerically by finite difference approximation because it is very difficult to obtain the analytical derivatives of the object function for an implicit optimization problem. Employing numerical derivatives in an iteration not only increase the computational cost, but also deteriorate the convergence rate and robustness of the iteration due to their numerical error. In this paper, the analytical first order partial derivatives of the objective function are deduced for 3D problems. The analytical derivatives can be calculated accurately, so they are incorporated into the MoF method to improve its accuracy, efficiency and robustness. Numerical studies show that by using the analytical derivatives the iterations are converged in all mixed cells with the efficiency improvement of 3 to 4 times.
NASA Astrophysics Data System (ADS)
Kudo, K.; Maeda, H.; Kawakubo, T.; Ootani, Y.; Funaki, M.; Fukui, H.
2006-06-01
The normalized elimination of the small component (NESC) theory, recently proposed by Filatov and Cremer [J. Chem. Phys. 122, 064104 (2005)], is extended to include magnetic interactions and applied to the calculation of the nuclear magnetic shielding in HX (X =F,Cl,Br,I) systems. The NESC calculations are performed at the levels of the zeroth-order regular approximation (ZORA) and the second-order regular approximation (SORA). The calculations show that the NESC-ZORA results are very close to the NESC-SORA results, except for the shielding of the I nucleus. Both the NESC-ZORA and NESC-SORA calculations yield very similar results to the previously reported values obtained using the relativistic infinite-order two-component coupled Hartree-Fock method. The difference between NESC-ZORA and NESC-SORA results is significant for the shieldings of iodine.
NASA Astrophysics Data System (ADS)
Macomber, B.; Woollands, R. M.; Probe, A.; Younes, A.; Bai, X.; Junkins, J.
2013-09-01
Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear or non-linear Ordinary Differential Equations (ODEs) to obtain time histories of system state trajectories. Unlike other step-by-step differential equation solvers, the Runge-Kutta family of numerical integrators for example, MCPI approximates long arcs of the state trajectory with an iterative path approximation approach, and is ideally suited to parallel computation. Orthogonal Chebyshev Polynomials are used as basis functions during each path iteration; the integrations of the Picard iteration are then done analytically. Due to the orthogonality of the Chebyshev basis functions, the least square approximations are computed without matrix inversion; the coefficients are computed robustly from discrete inner products. As a consequence of discrete sampling and weighting adopted for the inner product definition, Runge phenomena errors are minimized near the ends of the approximation intervals. The MCPI algorithm utilizes a vector-matrix framework for computational efficiency. Additionally, all Chebyshev coefficients and integrand function evaluations are independent, meaning they can be simultaneously computed in parallel for further decreased computational cost. Over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional order of magnitude is achievable in parallel architectures. This paper presents a new MCPI library, a modular toolset designed to allow MCPI to be easily applied to a wide variety of ODE systems. Library users will not have to concern themselves with the underlying mathematics behind the MCPI method. Inputs are the boundary conditions of the dynamical system, the integrand function governing system behavior, and the desired time interval of integration, and the output is a time history of the system states over the interval of interest. Examples from the field of astrodynamics are presented to compare the output from the MCPI library to current state-of-practice numerical integration methods. It is shown that MCPI is capable of out-performing the state-of-practice in terms of computational cost and accuracy.
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2005-01-01
A simple modification of the zeroth-order regular approximation (ZORA) in relativistic theory is suggested to suppress its erroneous gauge dependence to a high level of approximation. The method, coined gauge-independent ZORA (ZORA-GI), can be easily installed in any existing nonrelativistic quantum chemical package by programming simple one-electron matrix elements for the quasirelativistic Hamiltonian. Results of benchmark calculations obtained with ZORA-GI at the Hartree-Fock (HF) and second-order Møller-Plesset perturbation theory (MP2) level for dihalogens X2 (X=F,Cl,Br,I,At) are in good agreement with the results of four-component relativistic calculations (HF level) and experimental data (MP2 level). ZORA-GI calculations based on MP2 or coupled-cluster theory with single and double perturbations and a perturbative inclusion of triple excitations [CCSD(T)] lead to accurate atomization energies and molecular geometries for the tetroxides of group VIII elements. With ZORA-GI/CCSD(T), an improved estimate for the atomization energy of hassium (Z=108) tetroxide is obtained.
A High-Order Finite Spectral Volume Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2001-01-01
A time accurate, high-order, conservative, yet efficient method named Finite Spectral Volume (FSV) is developed for conservation laws on unstructured grids. The concept of a 'spectral volume' is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multi-domain spectral methods. In addition, each spectral volume is further sub-divided into control volumes (CVs), and cell-averaged data from these control volumes is used to reconstruct a high-order approximation in the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume boundaries. Then cell-averaged state variables in the control volumes are updated independently. Furthermore, TVD (Total Variation Diminishing) and TVB (Total Variation Bounded) limiters are introduced in the FSV method to remove/reduce spurious oscillations near discontinuities. A very desirable feature of the FSV method is that the reconstruction is carried out only once, and analytically, and is the same for all cells of the same type, and that the reconstruction stencil is always non-singular, in contrast to the memory and CPU-intensive reconstruction in a high-order finite volume (FV) method. Discussions are made concerning why the FSV method is significantly more efficient than high-order finite volume and the Discontinuous Galerkin (DG) methods. Fundamental properties of the FSV method are studied and high-order accuracy is demonstrated for several model problems with and without discontinuities.
Wolf, Alexander; Reiher, Markus; Hess, Bernd Artur
2004-05-08
The first molecular calculations with the generalized Douglas-Kroll method up to fifth order in the external potential (DKH5) are presented. We study the spectroscopic parameters and electron affinity of the tin oxide molecule SnO and its anion SnO(-) applying nonrelativistic as well as relativistic calculations with higher orders of the DK approximation. In order to guarantee highly accurate results close to the basis set limit, an all-electron basis for Sn of at least quintuple-zeta quality has been constructed and optimized. All-electron CCSD(T) calculations of the potential energy curves of both SnO and SnO(-) reproduce the experimental values very well. Relative energies and valence properties are already well described with the established standard second-order approximation DKH2 and the higher-order corrections DKH3-DKH5 hardly affect these quantities. However, an accurate description of total energies and inner-shell properties requires superior relativistic schemes up to DKH5. (c) 2004 American Institute of Physics.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.
Modelling and simulation of a heat exchanger
NASA Technical Reports Server (NTRS)
Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.
1991-01-01
Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.
Aerodynamic Modeling of Oscillating Wing in Hypersonic Flow: a Numerical Study
NASA Astrophysics Data System (ADS)
Zhu, Jian; Hou, Ying-Yu; Ji, Chen; Liu, Zi-Qiang
2016-06-01
Various approximations to unsteady aerodynamics are examined for the unsteady aerodynamic force of a pitching thin double wedge airfoil in hypersonic flow. Results of piston theory, Van Dyke’s second-order theory, Newtonian impact theory, and CFD method are compared in the same motion and Mach number effects. The results indicate that, for this thin double wedge airfoil, Newtonian impact theory is not suitable for these Mach number, while piston theory and Van Dyke’s second-order theory are in good agreement with CFD method for Ma<7.
Computation of Nonlinear Backscattering Using a High-Order Numerical Method
NASA Technical Reports Server (NTRS)
Fibich, G.; Ilan, B.; Tsynkov, S.
2001-01-01
The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.
Márk, Géza I; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P
2009-11-01
In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.
NASA Astrophysics Data System (ADS)
Márk, Géza I.; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P.
2009-11-01
In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.
ERIC Educational Resources Information Center
Hubert, Lawrence; Arabie, Phipps; Meulman, Jacqueline
1998-01-01
Introduces a method for fitting order-constrained matrices that satisfy the strongly anti-Robinson restrictions (SAR). The method permits a representation of the fitted values in a (least-squares) SAR approximating matrix as lengths of paths in a graph. The approach is illustrated with a published proximity matrix. (SLD)
NASA Astrophysics Data System (ADS)
Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.
2017-12-01
The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well-balanced nature of the scheme and its convergence properties. We conclude with well-known benchmark problems including the Malpasset dam break (see the attached figure). All numerical experiments are performed and available in the Proteus toolkit, which is an open source python package for modeling continuum mechanical processes and fluid flow.
Radiation/convection coupling in rocket motors and plumes
NASA Technical Reports Server (NTRS)
Farmer, R. C.; Saladino, A. J.
1993-01-01
The three commonly used propellant systems - H2/O2, RP-1/O2, and solid propellants - primarily radiate as molecular emitters, non-scattering small particles, and scattering larger particles, respectively. Present technology has accepted the uncoupling of the radiation analysis from that of the flowfield. This approximation becomes increasingly inaccurate as one considers plumes, interior rocket chambers, and nuclear rocket propulsion devices. This study will develop a hierarchy of methods which will address radiation/convection coupling in all of the aforementioned propulsion systems. The nature of the radiation/convection coupled problem is that the divergence of the radiative heat flux must be included in the energy equation and that the local, volume-averaged intensity of the radiation must be determined by a solution of the radiative transfer equation (RTE). The intensity is approximated by solving the RTE along several lines of sight (LOS) for each point in the flowfield. Such a procedure is extremely costly; therefore, further approximations are needed. Modified differential approximations are being developed for this purpose. It is not obvious which order of approximations are required for a given rocket motor analysis. Therefore, LOS calculations have been made for typical rocket motor operating conditions in order to select the type approximations required. The results of these radiation calculations, and the interpretation of these intensity predictions are presented herein.
NASA Astrophysics Data System (ADS)
Pineda, M.; Stamatakis, M.
2017-07-01
Modeling the kinetics of surface catalyzed reactions is essential for the design of reactors and chemical processes. The majority of microkinetic models employ mean-field approximations, which lead to an approximate description of catalytic kinetics by assuming spatially uncorrelated adsorbates. On the other hand, kinetic Monte Carlo (KMC) methods provide a discrete-space continuous-time stochastic formulation that enables an accurate treatment of spatial correlations in the adlayer, but at a significant computation cost. In this work, we use the so-called cluster mean-field approach to develop higher order approximations that systematically increase the accuracy of kinetic models by treating spatial correlations at a progressively higher level of detail. We further demonstrate our approach on a reduced model for NO oxidation incorporating first nearest-neighbor lateral interactions and construct a sequence of approximations of increasingly higher accuracy, which we compare with KMC and mean-field. The latter is found to perform rather poorly, overestimating the turnover frequency by several orders of magnitude for this system. On the other hand, our approximations, while more computationally intense than the traditional mean-field treatment, still achieve tremendous computational savings compared to KMC simulations, thereby opening the way for employing them in multiscale modeling frameworks.
A new approximation of Fermi-Dirac integrals of order 1/2 for degenerate semiconductor devices
NASA Astrophysics Data System (ADS)
AlQurashi, Ahmed; Selvakumar, C. R.
2018-06-01
There had been tremendous growth in the field of Integrated circuits (ICs) in the past fifty years. Scaling laws mandated both lateral and vertical dimensions to be reduced and a steady increase in doping densities. Most of the modern semiconductor devices have invariably heavily doped regions where Fermi-Dirac Integrals are required. Several attempts have been devoted to developing analytical approximations for Fermi-Dirac Integrals since numerical computations of Fermi-Dirac Integrals are difficult to use in semiconductor devices, although there are several highly accurate tabulated functions available. Most of these analytical expressions are not sufficiently suitable to be employed in semiconductor device applications due to their poor accuracy, the requirement of complicated calculations, and difficulties in differentiating and integrating. A new approximation has been developed for the Fermi-Dirac integrals of the order 1/2 by using Prony's method and discussed in this paper. The approximation is accurate enough (Mean Absolute Error (MAE) = 0.38%) and easy enough to be used in semiconductor device equations. The new approximation of Fermi-Dirac Integrals is applied to a more generalized Einstein Relation which is an important relation in semiconductor devices.
NASA Astrophysics Data System (ADS)
Ma, Sangback
In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wave-fronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i. e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The results show that in general ILU(0) in the Multi-Color ordering ahd ILU(0) in the Wavefront ordering outperform the other methods but for symmetric and nearly symmetric 5-point matrices Multi-Color Block SOR gives the best performance, except for a few cases with a small number of processors.
High-order centered difference methods with sharp shock resolution
NASA Technical Reports Server (NTRS)
Gustafsson, Bertil; Olsson, Pelle
1994-01-01
In this paper we consider high-order centered finite difference approximations of hyperbolic conservation laws. We propose different ways of adding artificial viscosity to obtain sharp shock resolution. For the Riemann problem we give simple explicit formulas for obtaining stationary one and two-point shocks. This can be done for any order of accuracy. It is shown that the addition of artificial viscosity is equivalent to ensuring the Lax k-shock condition. We also show numerical experiments that verify the theoretical results.
NASA Astrophysics Data System (ADS)
Arshad, Muhammad; Lu, Dianchen; Wang, Jun
2017-07-01
In this paper, we pursue the general form of the fractional reduced differential transform method (DTM) to (N+1)-dimensional case, so that fractional order partial differential equations (PDEs) can be resolved effectively. The most distinct aspect of this method is that no prescribed assumptions are required, and the huge computational exertion is reduced and round-off errors are also evaded. We utilize the proposed scheme on some initial value problems and approximate numerical solutions of linear and nonlinear time fractional PDEs are obtained, which shows that the method is highly accurate and simple to apply. The proposed technique is thus an influential technique for solving the fractional PDEs and fractional order problems occurring in the field of engineering, physics etc. Numerical results are obtained for verification and demonstration purpose by using Mathematica software.
NASA Astrophysics Data System (ADS)
Heumann, Holger; Rapetti, Francesca
2017-04-01
Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.
Application of a low order panel method to complex three-dimensional internal flow problems
NASA Technical Reports Server (NTRS)
Ashby, D. L.; Sandlin, D. R.
1986-01-01
An evaluation of the ability of a low order panel method to predict complex three-dimensional internal flow fields was made. The computer code VSAERO was used as a basis for the evaluation. Guidelines for modeling internal flow geometries were determined and the effects of varying the boundary conditions and the use of numerical approximations on the solutions accuracy were studied. Several test cases were run and the results were compared with theoretical or experimental results. Modeling an internal flow geometry as a closed box with normal velocities specified on an inlet and exit face provided accurate results and gave the user control over the boundary conditions. The values of the boundary conditions greatly influenced the amount of leakage an internal flow geometry suffered and could be adjusted to eliminate leakage. The use of the far-field approximation to reduce computation time influenced the accuracy of a solution and was coupled with the values of the boundary conditions needed to eliminate leakage. The error induced in the influence coefficients by using the far-field approximation was found to be dependent on the type of influence coefficient, the far-field radius, and the aspect ratio of the panels.
Fast computation of the electrolyte-concentration transfer function of a lithium-ion cell model
NASA Astrophysics Data System (ADS)
Rodríguez, Albert; Plett, Gregory L.; Trimboli, M. Scott
2017-08-01
One approach to creating physics-based reduced-order models (ROMs) of battery-cell dynamics requires first generating linearized Laplace-domain transfer functions of all cell internal electrochemical variables of interest. Then, the resulting infinite-dimensional transfer functions can be reduced by various means in order to find an approximate low-dimensional model. These methods include Padé approximation or the Discrete-Time Realization algorithm. In a previous article, Lee and colleagues developed a transfer function of the electrolyte concentration for a porous-electrode pseudo-two-dimensional lithium-ion cell model. Their approach used separation of variables and Sturm-Liouville theory to compute an infinite-series solution to the transfer function, which they then truncated to a finite number of terms for reasons of practicality. Here, we instead use a variation-of-parameters approach to arrive at a different representation of the identical solution that does not require a series expansion. The primary benefits of the new approach are speed of computation of the transfer function and the removal of the requirement to approximate the transfer function by truncating the number of terms evaluated. Results show that the speedup of the new method can be more than 3800.
Resumming the large-N approximation for time evolving quantum systems
NASA Astrophysics Data System (ADS)
Mihaila, Bogdan; Dawson, John F.; Cooper, Fred
2001-05-01
In this paper we discuss two methods of resumming the leading and next to leading order in 1/N diagrams for the quartic O(N) model. These two approaches have the property that they preserve both boundedness and positivity for expectation values of operators in our numerical simulations. These approximations can be understood either in terms of a truncation to the infinitely coupled Schwinger-Dyson hierarchy of equations, or by choosing a particular two-particle irreducible vacuum energy graph in the effective action of the Cornwall-Jackiw-Tomboulis formalism. We confine our discussion to the case of quantum mechanics where the Lagrangian is L(x,ẋ)=(12)∑Ni=1x˙2i-(g/8N)[∑Ni=1x2i- r20]2. The key to these approximations is to treat both the x propagator and the x2 propagator on similar footing which leads to a theory whose graphs have the same topology as QED with the x2 propagator playing the role of the photon. The bare vertex approximation is obtained by replacing the exact vertex function by the bare one in the exact Schwinger-Dyson equations for the one and two point functions. The second approximation, which we call the dynamic Debye screening approximation, makes the further approximation of replacing the exact x2 propagator by its value at leading order in the 1/N expansion. These two approximations are compared with exact numerical simulations for the quantum roll problem. The bare vertex approximation captures the physics at large and modest N better than the dynamic Debye screening approximation.
A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems
NASA Technical Reports Server (NTRS)
Larson, Mats G.; Barth, Timothy J.
1999-01-01
This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.
Nonlinear programming extensions to rational function approximations of unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1987-01-01
This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.
Interface conditions for domain decomposition with radical grid refinement
NASA Technical Reports Server (NTRS)
Scroggs, Jeffrey S.
1991-01-01
Interface conditions for coupling the domains in a physically motivated domain decomposition method are discussed. The domain decomposition is based on an asymptotic-induced method for the numerical solution of hyperbolic conservation laws with small viscosity. The method consists of multiple stages. The first stage is to obtain a first approximation using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problem via a domain decomposition. The method is derived and justified via singular perturbation techniques.
Heskes, Tom; Eisinga, Rob; Breitling, Rainer
2014-11-21
The rank product method is a powerful statistical technique for identifying differentially expressed molecules in replicated experiments. A critical issue in molecule selection is accurate calculation of the p-value of the rank product statistic to adequately address multiple testing. Both exact calculation and permutation and gamma approximations have been proposed to determine molecule-level significance. These current approaches have serious drawbacks as they are either computationally burdensome or provide inaccurate estimates in the tail of the p-value distribution. We derive strict lower and upper bounds to the exact p-value along with an accurate approximation that can be used to assess the significance of the rank product statistic in a computationally fast manner. The bounds and the proposed approximation are shown to provide far better accuracy over existing approximate methods in determining tail probabilities, with the slightly conservative upper bound protecting against false positives. We illustrate the proposed method in the context of a recently published analysis on transcriptomic profiling performed in blood. We provide a method to determine upper bounds and accurate approximate p-values of the rank product statistic. The proposed algorithm provides an order of magnitude increase in throughput as compared with current approaches and offers the opportunity to explore new application domains with even larger multiple testing issue. The R code is published in one of the Additional files and is available at http://www.ru.nl/publish/pages/726696/rankprodbounds.zip .
High-Order Space-Time Methods for Conservation Laws
NASA Technical Reports Server (NTRS)
Huynh, H. T.
2013-01-01
Current high-order methods such as discontinuous Galerkin and/or flux reconstruction can provide effective discretization for the spatial derivatives. Together with a time discretization, such methods result in either too small a time step size in the case of an explicit scheme or a very large system in the case of an implicit one. To tackle these problems, two new high-order space-time schemes for conservation laws are introduced: the first is explicit and the second, implicit. The explicit method here, also called the moment scheme, achieves a Courant-Friedrichs-Lewy (CFL) condition of 1 for the case of one-spatial dimension regardless of the degree of the polynomial approximation. (For standard explicit methods, if the spatial approximation is of degree p, then the time step sizes are typically proportional to 1/p(exp 2)). Fourier analyses for the one and two-dimensional cases are carried out. The property of super accuracy (or super convergence) is discussed. The implicit method is a simplified but optimal version of the discontinuous Galerkin scheme applied to time. It reduces to a collocation implicit Runge-Kutta (RK) method for ordinary differential equations (ODE) called Radau IIA. The explicit and implicit schemes are closely related since they employ the same intermediate time levels, and the former can serve as a key building block in an iterative procedure for the latter. A limiting technique for the piecewise linear scheme is also discussed. The technique can suppress oscillations near a discontinuity while preserving accuracy near extrema. Preliminary numerical results are shown
Analysis of the iteratively regularized Gauss-Newton method under a heuristic rule
NASA Astrophysics Data System (ADS)
Jin, Qinian; Wang, Wei
2018-03-01
The iteratively regularized Gauss-Newton method is one of the most prominent regularization methods for solving nonlinear ill-posed inverse problems when the data is corrupted by noise. In order to produce a useful approximate solution, this iterative method should be terminated properly. The existing a priori and a posteriori stopping rules require accurate information on the noise level, which may not be available or reliable in practical applications. In this paper we propose a heuristic selection rule for this regularization method, which requires no information on the noise level. By imposing certain conditions on the noise, we derive a posteriori error estimates on the approximate solutions under various source conditions. Furthermore, we establish a convergence result without using any source condition. Numerical results are presented to illustrate the performance of our heuristic selection rule.
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-07
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The parallelization efficiency for the Coulomb terms can be somewhat smaller (speedup ~15-25 for 30 processors), but their contribution to the total calculation time is small. Thus, the parallel program completes a Becke3-Lee-Yang-Parr energy and gradient calculation on the Ag-TB2-helicate in less than 4 h on 30 processors. We also present the necessary extension of the Lagrangian formalism, which enables the calculation of the TDDFT excited state properties in the frozen-core approximation. The algorithms described in this work are implemented into the ORCA electronic structure system.
NASA Astrophysics Data System (ADS)
Wei, En-Bo
2011-10-01
The microwave vector radiative transfer (VRT) equation of a coated spherical bubble layer is derived by means of the second-order Rayleigh approximation field when the microwave wavelength is larger than the coated spherical particle diameter. Meanwhile, the perturbation method is developed to solve the second-order Rayleigh VRT equation for the small ratio of the volume scattering coefficient to the extinction coefficient. As an example, the emissive properties of a sea surface foam layer, which consists of seawater coated bubbles, are investigated. The extinction, absorption, and scattering coefficients of sea foam are obtained by the second-order Rayleigh approximation fields and discussed for the different microwave frequencies and the ratio of inner radius to outer radius of a coated bubble. Our results show that in the dilute limit, the volume scattering coefficient decreases with increasing the ratio of inner radius to outer radius and decreasing the frequencies. It is also found that the microwave emissivity and the extinction coefficient have a peak at very thin seawater coating and its peak value decreases with frequency decrease. Furthermore, with the VRT equation and effective medium approximation of densely coated bubbles, the mechanism of sea foam enhancing the emissivity of a sea surface is disclosed. In addition, excellent agreement is obtained by comparing our VRT results with the experimental data of microwave emissivities of sea surface covered by a sea foam layer at L-band (1.4 GHz) and the Camps' model.
Enriched reproducing kernel particle method for fractional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Ying, Yuping; Lian, Yanping; Tang, Shaoqiang; Liu, Wing Kam
2018-06-01
The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection-diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.
Unified framework to evaluate panmixia and migration direction among multiple sampling locations.
Beerli, Peter; Palczewski, Michal
2010-05-01
For many biological investigations, groups of individuals are genetically sampled from several geographic locations. These sampling locations often do not reflect the genetic population structure. We describe a framework using marginal likelihoods to compare and order structured population models, such as testing whether the sampling locations belong to the same randomly mating population or comparing unidirectional and multidirectional gene flow models. In the context of inferences employing Markov chain Monte Carlo methods, the accuracy of the marginal likelihoods depends heavily on the approximation method used to calculate the marginal likelihood. Two methods, modified thermodynamic integration and a stabilized harmonic mean estimator, are compared. With finite Markov chain Monte Carlo run lengths, the harmonic mean estimator may not be consistent. Thermodynamic integration, in contrast, delivers considerably better estimates of the marginal likelihood. The choice of prior distributions does not influence the order and choice of the better models when the marginal likelihood is estimated using thermodynamic integration, whereas with the harmonic mean estimator the influence of the prior is pronounced and the order of the models changes. The approximation of marginal likelihood using thermodynamic integration in MIGRATE allows the evaluation of complex population genetic models, not only of whether sampling locations belong to a single panmictic population, but also of competing complex structured population models.
Propagation of coherent light pulses with PHASE
NASA Astrophysics Data System (ADS)
Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.
2014-09-01
The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.
Microscopic Lagrangian description of warm plasmas. IV - Macroscopic approximation
NASA Technical Reports Server (NTRS)
Kim, H.; Crawford, F. W.
1983-01-01
The averaged-Lagrangian method is applied to linear wave propagation and nonlinear three-wave interaction in a warm magnetoplasma, in the macroscopic approximation. The microscopic Lagrangian treated by Kim and Crawford (1977) and by Galloway and Crawford (1977) is first expanded to third order in perturbation. Velocity integration is then carried out, before applying Hamilton's principle to obtain a general description of wave propagation and coupling. The results are specialized to the case of interaction between two electron plasma waves and an Alfven wave. The method is shown to be more powerful than the alternative possibility of working from the beginning with a macroscopic Lagrangian density.
Constructing analytic solutions on the Tricomi equation
NASA Astrophysics Data System (ADS)
Ghiasi, Emran Khoshrouye; Saleh, Reza
2018-04-01
In this paper, homotopy analysis method (HAM) and variational iteration method (VIM) are utilized to derive the approximate solutions of the Tricomi equation. Afterwards, the HAM is optimized to accelerate the convergence of the series solution by minimizing its square residual error at any order of the approximation. It is found that effect of the optimal values of auxiliary parameter on the convergence of the series solution is not negligible. Furthermore, the present results are found to agree well with those obtained through a closed-form equation available in the literature. To conclude, it is seen that the two are effective to achieve the solution of the partial differential equations.
Dynamical analysis of the avian-human influenza epidemic model using the semi-analytical method
NASA Astrophysics Data System (ADS)
Jabbari, Azizeh; Kheiri, Hossein; Bekir, Ahmet
2015-03-01
In this work, we present a dynamic behavior of the avian-human influenza epidemic model by using efficient computational algorithm, namely the multistage differential transform method(MsDTM). The MsDTM is used here as an algorithm for approximating the solutions of the avian-human influenza epidemic model in a sequence of time intervals. In order to show the efficiency of the method, the obtained numerical results are compared with the fourth-order Runge-Kutta method (RK4M) and differential transform method(DTM) solutions. It is shown that the MsDTM has the advantage of giving an analytical form of the solution within each time interval which is not possible in purely numerical techniques like RK4M.
Multi-level methods and approximating distribution functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, D., E-mail: daniel.wilson@dtc.ox.ac.uk; Baker, R. E.
2016-07-15
Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparablemore » to Gillespie’s direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146–179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cangiani, Andrea; Gyrya, Vitaliy; Manzini, Gianmarco
In this paper, we present the nonconforming virtual element method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable nonpolynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functionsmore » is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two- and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the nonconforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Finally, numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.« less
A Method for Calculating Viscosity and Thermal Conductivity of a Helium-Xenon Gas Mixture
NASA Technical Reports Server (NTRS)
Johnson, Paul K.
2006-01-01
A method for calculating viscosity and thermal conductivity of a helium-xenon (He-Xe) gas mixture was employed, and results were compared to AiResearch (part of Honeywell) analytical data. The method of choice was that presented by Hirschfelder with Singh's third-order correction factor applied to thermal conductivity. Values for viscosity and thermal conductivity were calculated over a temperature range of 400 to 1200 K for He-Xe gas mixture molecular weights of 20.183, 39.94, and 83.8 kg/kmol. First-order values for both transport properties were in good agreement with AiResearch analytical data. Third-order-corrected thermal conductivity values were all greater than AiResearch data, but were considered to be a better approximation of thermal conductivity because higher-order effects of mass and temperature were taken into consideration. Viscosity, conductivity, and Prandtl number were then compared to experimental data presented by Taylor.
A finite element analysis of viscoelastically damped sandwich plates
NASA Astrophysics Data System (ADS)
Ma, B.-A.; He, J.-F.
1992-01-01
A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.
Analytical Plug-In Method for Kernel Density Estimator Applied to Genetic Neutrality Study
NASA Astrophysics Data System (ADS)
Troudi, Molka; Alimi, Adel M.; Saoudi, Samir
2008-12-01
The plug-in method enables optimization of the bandwidth of the kernel density estimator in order to estimate probability density functions (pdfs). Here, a faster procedure than that of the common plug-in method is proposed. The mean integrated square error (MISE) depends directly upon [InlineEquation not available: see fulltext.] which is linked to the second-order derivative of the pdf. As we intend to introduce an analytical approximation of [InlineEquation not available: see fulltext.], the pdf is estimated only once, at the end of iterations. These two kinds of algorithm are tested on different random variables having distributions known for their difficult estimation. Finally, they are applied to genetic data in order to provide a better characterisation in the mean of neutrality of Tunisian Berber populations.
A moment-convergence method for stochastic analysis of biochemical reaction networks.
Zhang, Jiajun; Nie, Qing; Zhou, Tianshou
2016-05-21
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
Liu, Yan; Guenneau, Sébastien; Gralak, Boris
2013-01-01
We investigate a high-order homogenization (HOH) algorithm for periodic multi-layered stacks. The mathematical tool of choice is a transfer matrix method. Expressions for effective permeability, permittivity and magnetoelectric coupling are explored by frequency power expansions. On the physical side, this HOH uncovers a magnetoelectric coupling effect (odd-order approximation) and artificial magnetism (even-order approximation) in moderate contrast photonic crystals. Comparing the effective parameters' expressions of a stack with three layers against that of a stack with two layers, we note that the magnetoelectric coupling effect vanishes while the artificial magnetism can still be achieved in a centre-symmetric periodic structure. Furthermore, we numerically check the effective parameters through the dispersion law and transmission property of a stack with two dielectric layers against that of an effective bianisotropic medium: they are in good agreement throughout the low-frequency (acoustic) band until the first stop band, where the analyticity of the logarithm function of the transfer matrix () breaks down. PMID:24101891
An HP Adaptive Discontinuous Galerkin Method for Hyperbolic Conservation Laws. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1994-01-01
This dissertation addresses various issues for model classes of hyperbolic conservation laws. The basic approach developed in this work employs a new family of adaptive, hp-version, finite element methods based on a special discontinuous Galerkin formulation for hyperbolic problems. The discontinuous Galerkin formulation admits high-order local approximations on domains of quite general geometry, while providing a natural framework for finite element approximations and for theoretical developments. The use of hp-versions of the finite element method makes possible exponentially convergent schemes with very high accuracies in certain cases; the use of adaptive hp-schemes allows h-refinement in regions of low regularity and p-enrichment to deliver high accuracy, while keeping problem sizes manageable and dramatically smaller than many conventional approaches. The use of discontinuous Galerkin methods is uncommon in applications, but the methods rest on a reasonable mathematical basis for low-order cases and has local approximation features that can be exploited to produce very efficient schemes, especially in a parallel, multiprocessor environment. The place of this work is to first and primarily focus on a model class of linear hyperbolic conservation laws for which concrete mathematical results, methodologies, error estimates, convergence criteria, and parallel adaptive strategies can be developed, and to then briefly explore some extensions to more general cases. Next, we provide preliminaries to the study and a review of some aspects of the theory of hyperbolic conservation laws. We also provide a review of relevant literature on this subject and on the numerical analysis of these types of problems.
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Zaky, M. A.
2015-01-01
In this paper, we propose and analyze an efficient operational formulation of spectral tau method for multi-term time-space fractional differential equation with Dirichlet boundary conditions. The shifted Jacobi operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided Caputo fractional derivatives are presented. By using these operational matrices, we propose a shifted Jacobi tau method for both temporal and spatial discretizations, which allows us to present an efficient spectral method for solving such problem. Furthermore, the error is estimated and the proposed method has reasonable convergence rates in spatial and temporal discretizations. In addition, some known spectral tau approximations can be derived as special cases from our algorithm if we suitably choose the corresponding special cases of Jacobi parameters θ and ϑ. Finally, in order to demonstrate its accuracy, we compare our method with those reported in the literature.
Investigation of approximate models of experimental temperature characteristics of machines
NASA Astrophysics Data System (ADS)
Parfenov, I. V.; Polyakov, A. N.
2018-05-01
This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.
Note on the eigensolution of a homogeneous equation with semi-infinite domain
NASA Technical Reports Server (NTRS)
Wadia, A. R.
1980-01-01
The 'variation-iteration' method using Green's functions to find the eigenvalues and the corresponding eigenfunctions of a homogeneous Fredholm integral equation is employed for the stability analysis of fluid hydromechanics problems with a semiinfinite (infinite) domain of application. The objective of the study is to develop a suitable numerical approach to the solution of such equations in order to better understand the full set of equations for 'real-world' flow models. The study involves a search for a suitable value of the length of the domain which is a fair finite approximation to infinity, which makes the eigensolution an approximation dependent on the length of the interval chosen. In the examples investigated y = 1 = a seems to be the best approximation of infinity; for y greater than unity this method fails due to the polynomial nature of Green's functions.
An efficient higher order family of root finders
NASA Astrophysics Data System (ADS)
Petkovic, Ljiljana D.; Rancic, Lidija; Petkovic, Miodrag S.
2008-06-01
A one parameter family of iterative methods for the simultaneous approximation of simple complex zeros of a polynomial, based on a cubically convergent Hansen-Patrick's family, is studied. We show that the convergence of the basic family of the fourth order can be increased to five and six using Newton's and Halley's corrections, respectively. Since these corrections use the already calculated values, the computational efficiency of the accelerated methods is significantly increased. Further acceleration is achieved by applying the Gauss-Seidel approach (single-step mode). One of the most important problems in solving nonlinear equations, the construction of initial conditions which provide both the guaranteed and fast convergence, is considered for the proposed accelerated family. These conditions are computationally verifiable; they depend only on the polynomial coefficients, its degree and initial approximations, which is of practical importance. Some modifications of the considered family, providing the computation of multiple zeros of polynomials and simple zeros of a wide class of analytic functions, are also studied. Numerical examples demonstrate the convergence properties of the presented family of root-finding methods.
NASA Technical Reports Server (NTRS)
Furlong, K. L.; Fearn, R. L.
1983-01-01
A method is proposed to combine a numerical description of a jet in a crossflow with a lifting surface panel code to calculate the jet/aerodynamic-surface interference effects on a V/STOL aircraft. An iterative technique is suggested that starts with a model for the properties of a jet/flat plate configuration and modifies these properties based on the flow field calculated for the configuration of interest. The method would estimate the pressures, forces, and moments on an aircraft out of ground effect. A first-order approximation to the method suggested is developed and applied to two simple configurations. The first-order approximation is a noniterative precedure which does not allow for interactions between multiple jets in a crossflow and also does not account for the influence of lifting surfaces on the jet properties. The jet/flat plate model utilized in the examples presented is restricted to a uniform round jet injected perpendicularly into a uniform crossflow for a range of jet-to-crossflow velocity ratios from three to ten.
Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T.; ...
2016-06-07
The Magneli phase Ti 4O 7 is an important transition metal oxide with a wide range of applications because of its interplay between charge, spin, and lattice degrees of freedom. At low temperatures, it has non-trivial magnetic states very close in energy, driven by electronic exchange and correlation interactions. We have examined three low- lying states, one ferromagnetic and two antiferromagnetic, and calculated their energies as well as Ti spin moment distributions using highly accurate Quantum Monte Carlo methods. We compare our results to those obtained from density functional theory- based methods that include approximate corrections for exchange and correlation.more » Our results confirm the nature of the states and their ordering in energy, as compared with density-functional theory methods. However, the energy differences and spin distributions differ. Here, a detailed analysis suggests that non-local exchange-correlation functionals, in addition to other approximations such as LDA+U to account for correlations, are needed to simultaneously obtain better estimates for spin moments, distributions, energy differences and energy gaps.« less
A Simple Method for High-Lift Propeller Conceptual Design
NASA Technical Reports Server (NTRS)
Patterson, Michael; Borer, Nick; German, Brian
2016-01-01
In this paper, we present a simple method for designing propellers that are placed upstream of the leading edge of a wing in order to augment lift. Because the primary purpose of these "high-lift propellers" is to increase lift rather than produce thrust, these props are best viewed as a form of high-lift device; consequently, they should be designed differently than traditional propellers. We present a theory that describes how these props can be designed to provide a relatively uniform axial velocity increase, which is hypothesized to be advantageous for lift augmentation based on a literature survey. Computational modeling indicates that such propellers can generate the same average induced axial velocity while consuming less power and producing less thrust than conventional propeller designs. For an example problem based on specifications for NASA's Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) flight demonstrator, a propeller designed with the new method requires approximately 15% less power and produces approximately 11% less thrust than one designed for minimum induced loss. Higher-order modeling and/or wind tunnel testing are needed to verify the predicted performance.
The use of fractional order derivatives for eddy current non-destructive testing
NASA Astrophysics Data System (ADS)
Sikora, Ryszard; Grzywacz, Bogdan; Chady, Tomasz
2018-04-01
The paper presents the possibility of using the fractional derivatives for non-destructive testing when a multi-frequency method based on eddy current is applied. It is shown that frequency characteristics obtained during tests can be approximated by characteristics of a proposed model in the form of fractional order transfer function, and values of parameters of this model can be utilized for detection and identification of defects.
Neural Network Assisted Inverse Dynamic Guidance for Terminally Constrained Entry Flight
Chen, Wanchun
2014-01-01
This paper presents a neural network assisted entry guidance law that is designed by applying Bézier approximation. It is shown that a fully constrained approximation of a reference trajectory can be made by using the Bézier curve. Applying this approximation, an inverse dynamic system for an entry flight is solved to generate guidance command. The guidance solution thus gotten ensures terminal constraints for position, flight path, and azimuth angle. In order to ensure terminal velocity constraint, a prediction of the terminal velocity is required, based on which, the approximated Bézier curve is adjusted. An artificial neural network is used for this prediction of the terminal velocity. The method enables faster implementation in achieving fully constrained entry flight. Results from simulations indicate improved performance of the neural network assisted method. The scheme is expected to have prospect for further research on automated onboard control of terminal velocity for both reentry and terminal guidance laws. PMID:24723821
Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.
2018-01-09
Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less
Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N
2018-02-13
Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.
Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1995-01-01
Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.
Alternating direction implicit methods for parabolic equations with a mixed derivative
NASA Technical Reports Server (NTRS)
Beam, R. M.; Warming, R. F.
1980-01-01
Alternating direction implicit (ADI) schemes for two-dimensional parabolic equations with a mixed derivative are constructed by using the class of all A(0)-stable linear two-step methods in conjunction with the method of approximate factorization. The mixed derivative is treated with an explicit two-step method which is compatible with an implicit A(0)-stable method. The parameter space for which the resulting ADI schemes are second-order accurate and unconditionally stable is determined. Some numerical examples are given.
Alternating direction implicit methods for parabolic equations with a mixed derivative
NASA Technical Reports Server (NTRS)
Beam, R. M.; Warming, R. F.
1979-01-01
Alternating direction implicit (ADI) schemes for two-dimensional parabolic equations with a mixed derivative are constructed by using the class of all A sub 0-stable linear two-step methods in conjunction with the method of approximation factorization. The mixed derivative is treated with an explicit two-step method which is compatible with an implicit A sub 0-stable method. The parameter space for which the resulting ADI schemes are second order accurate and unconditionally stable is determined. Some numerical examples are given.
NASA Astrophysics Data System (ADS)
Zolfaghari, M.; Ghaderi, R.; Sheikhol Eslami, A.; Ranjbar, A.; Hosseinnia, S. H.; Momani, S.; Sadati, J.
2009-10-01
The enhanced homotopy perturbation method (EHPM) is applied for finding improved approximate solutions of the well-known Bagley-Torvik equation for three different cases. The main characteristic of the EHPM is using a stabilized linear part, which guarantees the stability and convergence of the overall solution. The results are finally compared with the Adams-Bashforth-Moulton numerical method, the Adomian decomposition method (ADM) and the fractional differential transform method (FDTM) to verify the performance of the EHPM.
An implicit spatial and high-order temporal finite difference scheme for 2D acoustic modelling
NASA Astrophysics Data System (ADS)
Wang, Enjiang; Liu, Yang
2018-01-01
The finite difference (FD) method exhibits great superiority over other numerical methods due to its easy implementation and small computational requirement. We propose an effective FD method, characterised by implicit spatial and high-order temporal schemes, to reduce both the temporal and spatial dispersions simultaneously. For the temporal derivative, apart from the conventional second-order FD approximation, a special rhombus FD scheme is included to reach high-order accuracy in time. Compared with the Lax-Wendroff FD scheme, this scheme can achieve nearly the same temporal accuracy but requires less floating-point operation times and thus less computational cost when the same operator length is adopted. For the spatial derivatives, we adopt the implicit FD scheme to improve the spatial accuracy. Apart from the existing Taylor series expansion-based FD coefficients, we derive the least square optimisation based implicit spatial FD coefficients. Dispersion analysis and modelling examples demonstrate that, our proposed method can effectively decrease both the temporal and spatial dispersions, thus can provide more accurate wavefields.
An Immersed-Boundary Method for Fluid-Structure Interaction in the Human Larynx
NASA Astrophysics Data System (ADS)
Luo, Haoxiang; Zheng, Xudong; Mittal, Rajat; Bielamowicz, Steven
2006-11-01
We describe a novel and accurate computational methodology for modeling the airflow and vocal fold dynamics in human larynx. The model is useful in helping us gain deeper insight into the complicated bio-physics of phonation, and may have potential clinical application in design and placement of synthetic implant in vocal fold surgery. The numerical solution of the airflow employs a previously developed immersed-boundary solver. However, in order to incorporate the vocal fold into the model, we have developed a new immersed-boundary method that can simulate the dynamics of the multi-layered, viscoelastic solids. In this method, a finite-difference scheme is used to approximate the derivatives and ghost cells are defined near the boundary. To impose the traction boundary condition, a third-order polynomial is obtained using the weighted least squares fitting to approximate the function locally. Like its analogue for the flow solver, this immersed-boundary method for the solids has the advantage of simple grid generation, and may be easily implemented on parallel computers. In the talk, we will present the simulation results on both the specified vocal fold motion and the flow-induced vocal fold vibration. Supported by NIDCD Grant R01 DC007125-01A1.
NASA Astrophysics Data System (ADS)
Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.
2018-03-01
The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.
Second-Order Slender-Body Theory-Axisymmetric Flow
NASA Technical Reports Server (NTRS)
VanDyke, Milton D.
1959-01-01
Slender-body theory for subsonic and supersonic flow past bodies of revolution is extended to a second approximation, Methods are developed for handling the difficulties that arise at round ends, Comparison is made with experiment and with other theories for several simple shapes.
First and second order derivatives for optimizing parallel RF excitation waveforms.
Majewski, Kurt; Ritter, Dieter
2015-09-01
For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations. Copyright © 2015 Elsevier Inc. All rights reserved.
First and second order derivatives for optimizing parallel RF excitation waveforms
NASA Astrophysics Data System (ADS)
Majewski, Kurt; Ritter, Dieter
2015-09-01
For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations.
Using Diffraction Tomography to Estimate Marine Animal Size
NASA Astrophysics Data System (ADS)
Jaffe, J. S.; Roberts, P.
In this article we consider the development of acoustic methods which have the potential to size marine animals. The proposed technique uses scattered sound in order to invert for both animal size and shape. The technique uses the Distorted Wave Born Approximation (DWBA) in order to model sound scattered from these organisms. The use of the DWBA also provides a valuable context for formulating data analysis techniques in order to invert for parameters of the animal. Although 3-dimensional observations can be obtained from a complete set of views, due to the difficulty of collecting full 3-dimensional scatter, it is useful to simplify the inversion by approximating the animal by a few parameters. Here, the animals are modeled as 3-dimensional ellipsoids. This reduces the complexity of the problem to a determination of the 3 semi axes for the x, y and z dimensions from just a few radial spokes through the 3-dimensional Fourier Transform. In order to test the idea, simulated scatter data is taken from a 3-dimensional model of a marine animal and the resultant data are inverted in order to estimate animal shape
NASA Astrophysics Data System (ADS)
Bellecci, Carlo; Gaudio, Pasquale; Gelfusa, Michela; Lo Feudo, Teresa; Murari, Andrea; Richetta, Maria; de Leo, Leonerdo
2010-12-01
In the lidar-dial method, the amount of the water vapor present in the smoke of the vegetable fuel is detected to reduce the number of false alarms. We report the measurements of the smoke backscattering coefficients for the CO2 laser lines 10R20 and 10R18 as determined in an absorption cell for two different vegetable fuels (eucalyptus and conifer). These experimental backscattering coefficients enable us to determine the error to be associated to the water vapor measurements when the traditional first-order approximation is assumed. We find that this first-order approximation is valid for combustion rates as low as 100 g/s.
Noniterative estimation of a nonlinear parameter
NASA Technical Reports Server (NTRS)
Bergstroem, A.
1973-01-01
An algorithm is described which solves the parameters X = (x1,x2,...,xm) and p in an approximation problem Ax nearly equal to y(p), where the parameter p occurs nonlinearly in y. Instead of linearization methods, which require an approximate value of p to be supplied as a priori information, and which may lead to the finding of local minima, the proposed algorithm finds the global minimum by permitting the use of series expansions of arbitrary order, exploiting an a priori knowledge that the addition of a particular function, corresponding to a new column in A, will not improve the goodness of the approximation.
Simulation of temperature distribution in tumor Photothermal treatment
NASA Astrophysics Data System (ADS)
Zhang, Xiyang; Qiu, Shaoping; Wu, Shulian; Li, Zhifang; Li, Hui
2018-02-01
The light transmission in biological tissue and the optical properties of biological tissue are important research contents of biomedical photonics. It is of great theoretical and practical significance in medical diagnosis and light therapy of disease. In this paper, the temperature feedback-controller was presented for monitoring photothermal treatment in realtime. Two-dimensional Monte Carlo (MC) and diffuse approximation were compared and analyzed. The results demonstrated that diffuse approximation using extrapolated boundary conditions by finite element method is a good approximation to MC simulation. Then in order to minimize thermal damage, real-time temperature monitoring was appraised by proportional-integral-differential (PID) controller in the process of photothermal treatment.
Electronic structure properties of UO2 as a Mott insulator
NASA Astrophysics Data System (ADS)
Sheykhi, Samira; Payami, Mahmoud
2018-06-01
In this work using the density functional theory (DFT), we have studied the structural, electronic and magnetic properties of uranium dioxide with antiferromagnetic 1k-, 2k-, and 3k-order structures. Ordinary approximations in DFT, such as the local density approximation (LDA) or generalized gradient approximation (GGA), usually predict incorrect metallic behaviors for this strongly correlated electron system. Using Hubbard term correction for f-electrons, LDA+U method, as well as using the screened Heyd-Scuseria-Ernzerhof (HSE) hybrid functional for the exchange-correlation (XC), we have obtained the correct ground-state behavior as an insulator, with band gaps in good agreement with experiment.
Summation rules for a fully nonlocal energy-based quasicontinuum method
NASA Astrophysics Data System (ADS)
Amelang, J. S.; Venturini, G. N.; Kochmann, D. M.
2015-09-01
The quasicontinuum (QC) method coarse-grains crystalline atomic ensembles in order to bridge the scales from individual atoms to the micro- and mesoscales. A crucial cornerstone of all QC techniques, summation or quadrature rules efficiently approximate the thermodynamic quantities of interest. Here, we investigate summation rules for a fully nonlocal, energy-based QC method to approximate the total Hamiltonian of a crystalline atomic ensemble by a weighted sum over a small subset of all atoms in the crystal lattice. Our formulation does not conceptually differentiate between atomistic and coarse-grained regions and thus allows for seamless bridging without domain-coupling interfaces. We review traditional summation rules and discuss their strengths and weaknesses with a focus on energy approximation errors and spurious force artifacts. Moreover, we introduce summation rules which produce no residual or spurious force artifacts in centrosymmetric crystals in the large-element limit under arbitrary affine deformations in two dimensions (and marginal force artifacts in three dimensions), while allowing us to seamlessly bridge to full atomistics. Through a comprehensive suite of examples with spatially non-uniform QC discretizations in two and three dimensions, we compare the accuracy of the new scheme to various previous ones. Our results confirm that the new summation rules exhibit significantly smaller force artifacts and energy approximation errors. Our numerical benchmark examples include the calculation of elastic constants from completely random QC meshes and the inhomogeneous deformation of aggressively coarse-grained crystals containing nano-voids. In the elastic regime, we directly compare QC results to those of full atomistics to assess global and local errors in complex QC simulations. Going beyond elasticity, we illustrate the performance of the energy-based QC method with the new second-order summation rule by the help of nanoindentation examples with automatic mesh adaptation. Overall, our findings provide guidelines for the selection of summation rules for the fully nonlocal energy-based QC method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coombe, D.A.; Snider, R.F.
1979-12-01
Rotational invariance is applied to the description of atom--diatom collisions in a translational--internal coupling scheme, to obtain energy sudden (ES), centrifugal sudden (CS), and infinite order sudden (IOS) approximations to the reduced scattering S matrix S (j-barlambda-bar;L;jlambda). The method of presentation emphasizes that the translational--internal coupling scheme is actually the more natural description of collision processes in which one or more directions are assumed to be conserved.
Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic.
Francesco, Marco Di; Fagioli, Simone; Rosini, Massimiliano D
2017-02-01
We consider the follow-the-leader approximation of the Aw-Rascle-Zhang (ARZ) model for traffic flow in a multi population formulation. We prove rigorous convergence to weak solutions of the ARZ system in the many particle limit in presence of vacuum. The result is based on uniform BV estimates on the discrete particle velocity. We complement our result with numerical simulations of the particle method compared with some exact solutions to the Riemann problem of the ARZ system.
Asymptotic approximations for pure bending of thin cylindrical shells
NASA Astrophysics Data System (ADS)
Coman, Ciprian D.
2017-08-01
A simplified partial wrinkling scenario for in-plane bending of thin cylindrical shells is explored by using several asymptotic strategies. The eighth-order boundary eigenvalue problem investigated here originates in the Donnel-Mushtari-Vlasov shallow shell theory coupled with a linear membrane pre-bifurcation state. It is shown that the corresponding neutral stability curve is amenable to a detailed asymptotic analysis based on the method of multiple scales. This is further complemented by an alternative WKB approximation that provides comparable information with significantly less effort.
Nanophotonic particle simulation and inverse design using artificial neural networks.
Peurifoy, John; Shen, Yichen; Jing, Li; Yang, Yi; Cano-Renteria, Fidel; DeLacy, Brendan G; Joannopoulos, John D; Tegmark, Max; Soljačić, Marin
2018-06-01
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.
2008-10-30
rigorous Poisson-based methods generally apply a Lee-Richards mo- lecular surface.9 This surface is considered the de facto description for continuum...definition and calculation of the Born radii. To evaluate the Born radii, two approximations are invoked. The first is the Coulomb field approximation (CFA...energy term, and depending on the particular GB formulation, higher-order non- Coulomb correction terms may be added to the Born radii to account for the
NASA Technical Reports Server (NTRS)
Ghil, M.; Balgovind, R.
1979-01-01
The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley W.
2009-01-01
Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics and Space Administration [NASA] Dryden Flight Research Center is developing a multidisciplinary design, analysis, and optimization [MDAO] tool. This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Today s modern aircraft designs in transonic speed are a challenging task due to the computation time required for the unsteady aeroelastic analysis using a Computational Fluid Dynamics [CFD] code. Design approaches in this speed regime are mainly based on the manual trial and error. Because of the time required for unsteady CFD computations in time-domain, this will considerably slow down the whole design process. These analyses are usually performed repeatedly to optimize the final design. As a result, there is considerable motivation to be able to perform aeroelastic calculations more quickly and inexpensively. This paper will describe the development of unsteady transonic aeroelastic design methodology for design optimization using reduced modeling method and unsteady aerodynamic approximation. The method requires the unsteady transonic aerodynamics be represented in the frequency or Laplace domain. Dynamically linear assumption is used for creating Aerodynamic Influence Coefficient [AIC] matrices in transonic speed regime. Unsteady CFD computations are needed for the important columns of an AIC matrix which corresponded to the primary modes for the flutter. Order reduction techniques, such as Guyan reduction and improved reduction system, are used to reduce the size of problem transonic flutter can be found by the classic methods, such as Rational function approximation, p-k, p, root-locus etc. Such a methodology could be incorporated into MDAO tool for design optimization at a reasonable computational cost. The proposed technique is verified using the Aerostructures Test Wing 2 actually designed, built, and tested at NASA Dryden Flight Research Center. The results from the full order model and the approximate reduced order model are analyzed and compared.
Liu, Ruili; Shi, Yifeng; Wan, Ying; Meng, Yan; Zhang, Fuqiang; Gu, Dong; Chen, Zhenxia; Tu, Bo; Zhao, Dongyuan
2006-09-06
Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.
Very high order discontinuous Galerkin method in elliptic problems
NASA Astrophysics Data System (ADS)
Jaśkowiec, Jan
2017-09-01
The paper deals with high-order discontinuous Galerkin (DG) method with the approximation order that exceeds 20 and reaches 100 and even 1000 with respect to one-dimensional case. To achieve such a high order solution, the DG method with finite difference method has to be applied. The basis functions of this method are high-order orthogonal Legendre or Chebyshev polynomials. These polynomials are defined in one-dimensional space (1D), but they can be easily adapted to two-dimensional space (2D) by cross products. There are no nodes in the elements and the degrees of freedom are coefficients of linear combination of basis functions. In this sort of analysis the reference elements are needed, so the transformations of the reference element into the real one are needed as well as the transformations connected with the mesh skeleton. Due to orthogonality of the basis functions, the obtained matrices are sparse even for finite elements with more than thousands degrees of freedom. In consequence, the truncation errors are limited and very high-order analysis can be performed. The paper is illustrated with a set of benchmark examples of 1D and 2D for the elliptic problems. The example presents the great effectiveness of the method that can shorten the length of calculation over hundreds times.
Very high order discontinuous Galerkin method in elliptic problems
NASA Astrophysics Data System (ADS)
Jaśkowiec, Jan
2018-07-01
The paper deals with high-order discontinuous Galerkin (DG) method with the approximation order that exceeds 20 and reaches 100 and even 1000 with respect to one-dimensional case. To achieve such a high order solution, the DG method with finite difference method has to be applied. The basis functions of this method are high-order orthogonal Legendre or Chebyshev polynomials. These polynomials are defined in one-dimensional space (1D), but they can be easily adapted to two-dimensional space (2D) by cross products. There are no nodes in the elements and the degrees of freedom are coefficients of linear combination of basis functions. In this sort of analysis the reference elements are needed, so the transformations of the reference element into the real one are needed as well as the transformations connected with the mesh skeleton. Due to orthogonality of the basis functions, the obtained matrices are sparse even for finite elements with more than thousands degrees of freedom. In consequence, the truncation errors are limited and very high-order analysis can be performed. The paper is illustrated with a set of benchmark examples of 1D and 2D for the elliptic problems. The example presents the great effectiveness of the method that can shorten the length of calculation over hundreds times.
NASA Astrophysics Data System (ADS)
Qi, D.; Majda, A.
2017-12-01
A low-dimensional reduced-order statistical closure model is developed for quantifying the uncertainty in statistical sensitivity and intermittency in principal model directions with largest variability in high-dimensional turbulent system and turbulent transport models. Imperfect model sensitivity is improved through a recent mathematical strategy for calibrating model errors in a training phase, where information theory and linear statistical response theory are combined in a systematic fashion to achieve the optimal model performance. The idea in the reduced-order method is from a self-consistent mathematical framework for general systems with quadratic nonlinearity, where crucial high-order statistics are approximated by a systematic model calibration procedure. Model efficiency is improved through additional damping and noise corrections to replace the expensive energy-conserving nonlinear interactions. Model errors due to the imperfect nonlinear approximation are corrected by tuning the model parameters using linear response theory with an information metric in a training phase before prediction. A statistical energy principle is adopted to introduce a global scaling factor in characterizing the higher-order moments in a consistent way to improve model sensitivity. Stringent models of barotropic and baroclinic turbulence are used to display the feasibility of the reduced-order methods. Principal statistical responses in mean and variance can be captured by the reduced-order models with accuracy and efficiency. Besides, the reduced-order models are also used to capture crucial passive tracer field that is advected by the baroclinic turbulent flow. It is demonstrated that crucial principal statistical quantities like the tracer spectrum and fat-tails in the tracer probability density functions in the most important large scales can be captured efficiently with accuracy using the reduced-order tracer model in various dynamical regimes of the flow field with distinct statistical structures.
NASA Astrophysics Data System (ADS)
Cheng, Rongjun; Sun, Fengxin; Wei, Qi; Wang, Jufeng
2018-02-01
Space-fractional advection-dispersion equation (SFADE) can describe particle transport in a variety of fields more accurately than the classical models of integer-order derivative. Because of nonlocal property of integro-differential operator of space-fractional derivative, it is very challenging to deal with fractional model, and few have been reported in the literature. In this paper, a numerical analysis of the two-dimensional SFADE is carried out by the element-free Galerkin (EFG) method. The trial functions for the SFADE are constructed by the moving least-square (MLS) approximation. By the Galerkin weak form, the energy functional is formulated. Employing the energy functional minimization procedure, the final algebraic equations system is obtained. The Riemann-Liouville operator is discretized by the Grünwald formula. With center difference method, EFG method and Grünwald formula, the fully discrete approximation schemes for SFADE are established. Comparing with exact results and available results by other well-known methods, the computed approximate solutions are presented in the format of tables and graphs. The presented results demonstrate the validity, efficiency and accuracy of the proposed techniques. Furthermore, the error is computed and the proposed method has reasonable convergence rates in spatial and temporal discretizations.
NASA Astrophysics Data System (ADS)
Shefer, V. A.
2015-12-01
We examine intermediate perturbed orbit proposed by the author previously, defined from the three position vectors of a small celestial body. It is shown theoretically, that at a small reference time interval covering the body positions the approximation accuracy of real motion by this orbit corresponds approximately to the fourth order of tangency. The smaller reference interval of time, the better this correspondence. Laws of variation of the methodical errors in constructing intermediate orbit subject to the length of reference time interval are deduced. According to these laws, the convergence rate of the method to the exact solution (upon reducing the reference interval of time) in the general case is higher by three orders of magnitude than in the case of conventional methods using Keplerian unperturbed orbit. The considered orbit is among the most accurate in set of orbits of their class determined by the order of tangency. The theoretical results are validated by numerical examples. The work was supported by the Ministry of Education and Science of the Russian Federation, project no. 2014/223(1567).
Time-Domain Evaluation of Fractional Order Controllers’ Direct Discretization Methods
NASA Astrophysics Data System (ADS)
Ma, Chengbin; Hori, Yoichi
Fractional Order Control (FOC), in which the controlled systems and/or controllers are described by fractional order differential equations, has been applied to various control problems. Though it is not difficult to understand FOC’s theoretical superiority, realization issue keeps being somewhat problematic. Since the fractional order systems have an infinite dimension, proper approximation by finite difference equation is needed to realize the designed fractional order controllers. In this paper, the existing direct discretization methods are evaluated by their convergences and time-domain comparison with the baseline case. Proposed sampling time scaling property is used to calculate the baseline case with full memory length. This novel discretization method is based on the classical trapezoidal rule but with scaled sampling time. Comparative studies show good performance and simple algorithm make the Short Memory Principle method most practically superior. The FOC research is still at its primary stage. But its applications in modeling and robustness against non-linearities reveal the promising aspects. Parallel to the development of FOC theories, applying FOC to various control problems is also crucially important and one of top priority issues.
Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism
NASA Astrophysics Data System (ADS)
Beuerle, Matthias; Graf, Daniel; Schurkus, Henry F.; Ochsenfeld, Christian
2018-05-01
We present efficient methods to calculate beyond random phase approximation (RPA) correlation energies for molecular systems with up to 500 atoms. To reduce the computational cost, we employ the resolution-of-the-identity and a double-Laplace transform of the non-interacting polarization propagator in conjunction with an atomic orbital formalism. Further improvements are achieved using integral screening and the introduction of Cholesky decomposed densities. Our methods are applicable to the dielectric matrix formalism of RPA including second-order screened exchange (RPA-SOSEX), the RPA electron-hole time-dependent Hartree-Fock (RPA-eh-TDHF) approximation, and RPA renormalized perturbation theory using an approximate exchange kernel (RPA-AXK). We give an application of our methodology by presenting RPA-SOSEX benchmark results for the L7 test set of large, dispersion dominated molecules, yielding a mean absolute error below 1 kcal/mol. The present work enables calculating beyond RPA correlation energies for significantly larger molecules than possible to date, thereby extending the applicability of these methods to a wider range of chemical systems.
A variable-order laminated plate theory based on the variational-asymptotical method
NASA Technical Reports Server (NTRS)
Lee, Bok W.; Sutyrin, Vladislav G.; Hodges, Dewey H.
1993-01-01
The variational-asymptotical method is a mathematical technique by which the three-dimensional analysis of laminated plate deformation can be split into a linear, one-dimensional, through-the-thickness analysis and a nonlinear, two-dimensional, plate analysis. The elastic constants used in the plate analysis are obtained from the through-the-thickness analysis, along with approximate, closed-form three-dimensional distributions of displacement, strain, and stress. In this paper, a theory based on this technique is developed which is capable of approximating three-dimensional elasticity to any accuracy desired. The asymptotical method allows for the approximation of the through-the-thickness behavior in terms of the eigenfunctions of a certain Sturm-Liouville problem associated with the thickness coordinate. These eigenfunctions contain all the necessary information about the nonhomogeneities along the thickness coordinate of the plate and thus possess the appropriate discontinuities in the derivatives of displacement. The theory is presented in this paper along with numerical results for the eigenfunctions of various laminated plates.
Transmission of 100-MHz-range ultrasound through a fused quartz fiber.
Irie, Takasuke; Tagawa, Norio; Tanabe, Masayuki; Moriya, Tadashi; Yoshizawa, Masasumi; Iijima, Takashi; Itoh, Kouichi; Yokoyama, Taku; Kumagai, Hideki; Taniguchi, Nobuyuki
2011-07-01
This paper describes an investigation into direct observation of microscopic images of tissue using a thin acoustic wave guide. First, the characteristics of the ultrasonic wave propagated in a fused quartz fiber were measured using the reflection method in order to study the insertion loss and the frequency shift of the ultrasonic wave transmitted from the transducer. Next, a receiving transducer was placed close to the end of the fiber, and the characteristics of the ultrasonic waves propagated through the acoustic coupling medium were measured using the penetration method in order to study the insertion loss and the frequency-dependent attenuation of the penetrated waves. Finally, a C-mode image was obtained by optimizing the measuring conditions using the results of the above measurements and scanning the ultrasonic beams on a target (coin) in water. A reflected wave with a peak frequency of approximately 220 MHz was obtained from the end of the fiber. The transmitted ultrasonic waves propagated through the acoustic coupling medium were detected with a frequency range of approximately 125-170 MHz, and the maximum detectable distance of the waves was approximately 1.2 mm within the 100-MHz frequency range. Finally, a high-frequency C-mode image of a coin in water was obtained using a tapered fused quartz fiber. The results suggest that it is necessary to improve the signal-to-noise ratio and reduce the insertion loss in the experimental system in order to make it possible to obtain microscopic images of tissue.
NASA Astrophysics Data System (ADS)
Jolivet, R.; Simons, M.
2018-02-01
Interferometric synthetic aperture radar time series methods aim to reconstruct time-dependent ground displacements over large areas from sets of interferograms in order to detect transient, periodic, or small-amplitude deformation. Because of computational limitations, most existing methods consider each pixel independently, ignoring important spatial covariances between observations. We describe a framework to reconstruct time series of ground deformation while considering all pixels simultaneously, allowing us to account for spatial covariances, imprecise orbits, and residual atmospheric perturbations. We describe spatial covariances by an exponential decay function dependent of pixel-to-pixel distance. We approximate the impact of imprecise orbit information and residual long-wavelength atmosphere as a low-order polynomial function. Tests on synthetic data illustrate the importance of incorporating full covariances between pixels in order to avoid biased parameter reconstruction. An example of application to the northern Chilean subduction zone highlights the potential of this method.
A multi-domain spectral method for time-fractional differential equations
NASA Astrophysics Data System (ADS)
Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.
2015-07-01
This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.
Transport coefficient computation based on input/output reduced order models
NASA Astrophysics Data System (ADS)
Hurst, Joshua L.
The guiding purpose of this thesis is to address the optimal material design problem when the material description is a molecular dynamics model. The end goal is to obtain a simplified and fast model that captures the property of interest such that it can be used in controller design and optimization. The approach is to examine model reduction analysis and methods to capture a specific property of interest, in this case viscosity, or more generally complex modulus or complex viscosity. This property and other transport coefficients are defined by a input/output relationship and this motivates model reduction techniques that are tailored to preserve input/output behavior. In particular Singular Value Decomposition (SVD) based methods are investigated. First simulation methods are identified that are amenable to systems theory analysis. For viscosity, these models are of the Gosling and Lees-Edwards type. They are high order nonlinear Ordinary Differential Equations (ODEs) that employ Periodic Boundary Conditions. Properties can be calculated from the state trajectories of these ODEs. In this research local linear approximations are rigorously derived and special attention is given to potentials that are evaluated with Periodic Boundary Conditions (PBC). For the Gosling description LTI models are developed from state trajectories but are found to have limited success in capturing the system property, even though it is shown that full order LTI models can be well approximated by reduced order LTI models. For the Lees-Edwards SLLOD type model nonlinear ODEs will be approximated by a Linear Time Varying (LTV) model about some nominal trajectory and both balanced truncation and Proper Orthogonal Decomposition (POD) will be used to assess the plausibility of reduced order models to this system description. An immediate application of the derived LTV models is Quasilinearization or Waveform Relaxation. Quasilinearization is a Newton's method applied to the ODE operator equation. Its a recursive method that solves nonlinear ODE's by solving a LTV systems at each iteration to obtain a new closer solution. LTV models are derived for both Gosling and Lees-Edwards type models. Particular attention is given to SLLOD Lees-Edwards models because they are in a form most amenable to performing Taylor series expansion, and the most commonly used model to examine viscosity. With linear models developed a method is presented to calculate viscosity based on LTI Gosling models but is shown to have some limitations. To address these issues LTV SLLOD models are analyzed with both Balanced Truncation and POD and both show that significant order reduction is possible. By examining the singular values of both techniques it is shown that Balanced Truncation has a potential to offer greater reduction, which should be expected as it is based on the input/output mapping instead of just the state information as in POD. Obtaining reduced order systems that capture the property of interest is challenging. For Balanced Truncation reduced order models for 1-D LJ and FENE systems are obtained and are shown to capture the output of interest fairly well. However numerical challenges currently limit this analysis to small order systems. Suggestions are presented to extend this method to larger systems. In addition reduced 2nd order systems are obtained from POD. Here the challenge is extending the solution beyond the original period used for the projection, in particular identifying the manifold the solution travels along. The remaining challenges are presented and discussed.
A regularized vortex-particle mesh method for large eddy simulation
NASA Astrophysics Data System (ADS)
Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.
2017-11-01
We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.
A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials
NASA Astrophysics Data System (ADS)
Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing
2015-09-01
The accuracy of metamodelling is determined by both the sampling and approximation. This article proposes a new sampling method based on the zeros of Chebyshev polynomials to capture the sampling information effectively. First, the zeros of one-dimensional Chebyshev polynomials are applied to construct Chebyshev tensor product (CTP) sampling, and the CTP is then used to construct high-order multi-dimensional metamodels using the 'hypercube' polynomials. Secondly, the CTP sampling is further enhanced to develop Chebyshev collocation method (CCM) sampling, to construct the 'simplex' polynomials. The samples of CCM are randomly and directly chosen from the CTP samples. Two widely studied sampling methods, namely the Smolyak sparse grid and Hammersley, are used to demonstrate the effectiveness of the proposed sampling method. Several numerical examples are utilized to validate the approximation accuracy of the proposed metamodel under different dimensions.
Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis
NASA Technical Reports Server (NTRS)
Mcdonald, G. H.
1978-01-01
High frequency combustion instability problems in a liquid fuel annular combustion chamber are examined. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation in order to analyze the problem of instability. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations.
NASA Astrophysics Data System (ADS)
Berbiche, A.; Sadouki, M.; Fellah, Z. E. A.; Ogam, E.; Fellah, M.; Mitri, F. G.; Depollier, C.
2016-01-01
An acoustic reflectivity method is proposed for measuring the permeability or flow resistivity of air-saturated porous materials. In this method, a simplified expression of the reflection coefficient is derived in the Darcy's regime (low frequency range), which does not depend on frequency and porosity. Numerical simulations show that the reflection coefficient of a porous material can be approximated by its simplified expression obtained from its Taylor development to the first order. This approximation is good especially for resistive materials (of low permeability) and for the lower frequencies. The permeability is reconstructed by solving the inverse problem using waves reflected by plastic foam samples, at different frequency bandwidths in the Darcy regime. The proposed method has the advantage of being simple compared to the conventional methods that use experimental reflected data, and is complementary to the transmissivity method, which is more adapted to low resistive materials (high permeability).
Grima, Ramon
2011-11-01
The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.
NASA Astrophysics Data System (ADS)
Gorthi, Sai Siva; Rajshekhar, Gannavarpu; Rastogi, Pramod
2010-06-01
Recently, a high-order instantaneous moments (HIM)-operator-based method was proposed for accurate phase estimation in digital holographic interferometry. The method relies on piece-wise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients from the HIM operator using single-tone frequency estimation. The work presents a comparative analysis of the performance of different single-tone frequency estimation techniques, like Fourier transform followed by optimization, estimation of signal parameters by rotational invariance technique (ESPRIT), multiple signal classification (MUSIC), and iterative frequency estimation by interpolation on Fourier coefficients (IFEIF) in HIM-operator-based methods for phase estimation. Simulation and experimental results demonstrate the potential of the IFEIF technique with respect to computational efficiency and estimation accuracy.
NASA Astrophysics Data System (ADS)
Assous, Franck; Chaskalovic, Joël
2011-06-01
We propose a new approach that consists in using data mining techniques for scientific computing. Indeed, data mining has proved to be efficient in other contexts which deal with huge data like in biology, medicine, marketing, advertising and communications. Our aim, here, is to deal with the important problem of the exploitation of the results produced by any numerical method. Indeed, more and more data are created today by numerical simulations. Thus, it seems necessary to look at efficient tools to analyze them. In this work, we focus our presentation to a test case dedicated to an asymptotic paraxial approximation to model ultrarelativistic particles. Our method directly deals with numerical results of simulations and try to understand what each order of the asymptotic expansion brings to the simulation results over what could be obtained by other lower-order or less accurate means. This new heuristic approach offers new potential applications to treat numerical solutions to mathematical models.
A new numerical approximation of the fractal ordinary differential equation
NASA Astrophysics Data System (ADS)
Atangana, Abdon; Jain, Sonal
2018-02-01
The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.
Välimäki, Vesa; Pekonen, Jussi; Nam, Juhan
2012-01-01
Digital subtractive synthesis is a popular music synthesis method, which requires oscillators that are aliasing-free in a perceptual sense. It is a research challenge to find computationally efficient waveform generation algorithms that produce similar-sounding signals to analog music synthesizers but which are free from audible aliasing. A technique for approximately bandlimited waveform generation is considered that is based on a polynomial correction function, which is defined as the difference of a non-bandlimited step function and a polynomial approximation of the ideal bandlimited step function. It is shown that the ideal bandlimited step function is equivalent to the sine integral, and that integrated polynomial interpolation methods can successfully approximate it. Integrated Lagrange interpolation and B-spline basis functions are considered for polynomial approximation. The polynomial correction function can be added onto samples around each discontinuity in a non-bandlimited waveform to suppress aliasing. Comparison against previously known methods shows that the proposed technique yields the best tradeoff between computational cost and sound quality. The superior method amongst those considered in this study is the integrated third-order B-spline correction function, which offers perceptually aliasing-free sawtooth emulation up to the fundamental frequency of 7.8 kHz at the sample rate of 44.1 kHz. © 2012 Acoustical Society of America.
Design of an essentially non-oscillatory reconstruction procedure in finite-element type meshes
NASA Technical Reports Server (NTRS)
Abgrall, Remi
1992-01-01
An essentially non oscillatory reconstruction for functions defined on finite element type meshes is designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitary meshes and the reconstruction of a function from its averages in the control volumes surrounding the nodes of the mesh. Concerning the first problem, the behavior of the highest coefficients of two polynomial interpolations of a function that may admit discontinuities of locally regular curves is studied: the Lagrange interpolation and an approximation such that the mean of the polynomial on any control volume is equal to that of the function to be approximated. This enables the best stencil for the approximation to be chosen. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, two methods were studied: one based on an adaptation of the so called reconstruction via deconvolution method to irregular meshes and one that lies on the approximation on the mean as defined above. The first method is conservative up to a quadrature formula and the second one is exactly conservative. The two methods have the expected order of accuracy, but the second one is much less expensive than the first one. Some numerical examples are given which demonstrate the efficiency of the reconstruction.
Discrete sudden perturbation theory for inelastic scattering. I. Quantum and semiclassical treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cross, R.J.
1985-12-01
A double perturbation theory is constructed to treat rotationally and vibrationally inelastic scattering. It uses both the elastic scattering from the spherically averaged potential and the infinite-order sudden (IOS) approximation as the unperturbed solutions. First, a standard perturbation expansion is done to express the radial wave functions in terms of the elastic wave functions. The resulting coupled equations are transformed to the discrete-variable representation where the IOS equations are diagonal. Then, the IOS solutions are removed from the equations which are solved by an exponential perturbation approximation. The results for Ar+N/sub 2/ are very much more accurate than the IOSmore » and somewhat more accurate than a straight first-order exponential perturbation theory. The theory is then converted into a semiclassical, time-dependent form by using the WKB approximation. The result is an integral of the potential times a slowly oscillating factor over the classical trajectory. A method of interpolating the result is given so that the calculation is done at the average velocity for a given transition. With this procedure, the semiclassical version of the theory is more accurate than the quantum version and very much faster. Calculations on Ar+N/sub 2/ show the theory to be much more accurate than the infinite-order sudden (IOS) approximation and the exponential time-dependent perturbation theory.« less
Nonlinear oscillator with power-form elastic-term: Fourier series expansion of the exact solution
NASA Astrophysics Data System (ADS)
Beléndez, Augusto; Francés, Jorge; Beléndez, Tarsicio; Bleda, Sergio; Pascual, Carolina; Arribas, Enrique
2015-05-01
A family of conservative, truly nonlinear, oscillators with integer or non-integer order nonlinearity is considered. These oscillators have only one odd power-form elastic-term and exact expressions for their period and solution were found in terms of Gamma functions and a cosine-Ateb function, respectively. Only for a few values of the order of nonlinearity, is it possible to obtain the periodic solution in terms of more common functions. However, for this family of conservative truly nonlinear oscillators we show in this paper that it is possible to obtain the Fourier series expansion of the exact solution, even though this exact solution is unknown. The coefficients of the Fourier series expansion of the exact solution are obtained as an integral expression in which a regularized incomplete Beta function appears. These coefficients are a function of the order of nonlinearity only and are computed numerically. One application of this technique is to compare the amplitudes for the different harmonics of the solution obtained using approximate methods with the exact ones computed numerically as shown in this paper. As an example, the approximate amplitudes obtained via a modified Ritz method are compared with the exact ones computed numerically.
Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics
Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul
2015-03-11
Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less
Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul
Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less
Hamiltonian lattice field theory: Computer calculations using variational methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zako, Robert L.
1991-12-03
I develop a variational method for systematic numerical computation of physical quantities -- bound state energies and scattering amplitudes -- in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. I present an algorithm for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. I also show how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato`s generalizations of Temple`s formula. The algorithm could bemore » adapted to systems such as atoms and molecules. I show how to compute Green`s functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green`s functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. I discuss the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, I do not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. I apply the method to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. I describe a computer implementation of the method and present numerical results for simple quantum mechanical systems.« less
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
Grout, Ray; Kolla, Hemanth; Minion, Michael; ...
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher-order-accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering frommore » soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual of the first correction iteration and changes slowly between successive iterations. Here, we demonstrate the effectiveness of this strategy for both canonical test problems and a comprehensive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray; Kolla, Hemanth; Minion, Michael
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher- order accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited tomore » recovering from soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual on the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehen- sive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray; Kolla, Hemanth; Minion, Michael
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher-order-accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering frommore » soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual of the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehensive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Anisotropic nonequilibrium hydrodynamic attractor
NASA Astrophysics Data System (ADS)
Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.
2018-02-01
We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.
Analytical Algorithms to Quantify the Uncertainty in Remaining Useful Life Prediction
NASA Technical Reports Server (NTRS)
Sankararaman, Shankar; Saxena, Abhinav; Daigle, Matthew; Goebel, Kai
2013-01-01
This paper investigates the use of analytical algorithms to quantify the uncertainty in the remaining useful life (RUL) estimate of components used in aerospace applications. The prediction of RUL is affected by several sources of uncertainty and it is important to systematically quantify their combined effect by computing the uncertainty in the RUL prediction in order to aid risk assessment, risk mitigation, and decisionmaking. While sampling-based algorithms have been conventionally used for quantifying the uncertainty in RUL, analytical algorithms are computationally cheaper and sometimes, are better suited for online decision-making. While exact analytical algorithms are available only for certain special cases (for e.g., linear models with Gaussian variables), effective approximations can be made using the the first-order second moment method (FOSM), the first-order reliability method (FORM), and the inverse first-order reliability method (Inverse FORM). These methods can be used not only to calculate the entire probability distribution of RUL but also to obtain probability bounds on RUL. This paper explains these three methods in detail and illustrates them using the state-space model of a lithium-ion battery.
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2002-01-01
The framework for constructing a high-order, conservative Spectral (Finite) Volume (SV) method is presented for two-dimensional scalar hyperbolic conservation laws on unstructured triangular grids. Each triangular grid cell forms a spectral volume (SV), and the SV is further subdivided into polygonal control volumes (CVs) to supported high-order data reconstructions. Cell-averaged solutions from these CVs are used to reconstruct a high order polynomial approximation in the SV. Each CV is then updated independently with a Godunov-type finite volume method and a high-order Runge-Kutta time integration scheme. A universal reconstruction is obtained by partitioning all SVs in a geometrically similar manner. The convergence of the SV method is shown to depend on how a SV is partitioned. A criterion based on the Lebesgue constant has been developed and used successfully to determine the quality of various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic SVs have been obtained, and many different types of partitions have been evaluated. The SV method is tested for both linear and non-linear model problems with and without discontinuities.
High order Nyström method for elastodynamic scattering
NASA Astrophysics Data System (ADS)
Chen, Kun; Gurrala, Praveen; Song, Jiming; Roberts, Ron
2016-02-01
Elastic waves in solids find important applications in ultrasonic non-destructive evaluation. The scattering of elastic waves has been treated using many approaches like the finite element method, boundary element method and Kirchhoff approximation. In this work, we propose a novel accurate and efficient high order Nyström method to solve the boundary integral equations for elastodynamic scattering problems. This approach employs high order geometry description for the element, and high order interpolation for fields inside each element. Compared with the boundary element method, this approach makes the choice of the nodes for interpolation based on the Gaussian quadrature, which renders matrix elements for far field interaction free from integration, and also greatly simplifies the process for singularity and near singularity treatment. The proposed approach employs a novel efficient near singularity treatment that makes the solver able to handle extreme geometries like very thin penny-shaped crack. Numerical results are presented to validate the approach. By using the frequency domain response and performing the inverse Fourier transform, we also report the time domain response of flaw scattering.
Subsampled Hessian Newton Methods for Supervised Learning.
Wang, Chien-Chih; Huang, Chun-Heng; Lin, Chih-Jen
2015-08-01
Newton methods can be applied in many supervised learning approaches. However, for large-scale data, the use of the whole Hessian matrix can be time-consuming. Recently, subsampled Newton methods have been proposed to reduce the computational time by using only a subset of data for calculating an approximation of the Hessian matrix. Unfortunately, we find that in some situations, the running speed is worse than the standard Newton method because cheaper but less accurate search directions are used. In this work, we propose some novel techniques to improve the existing subsampled Hessian Newton method. The main idea is to solve a two-dimensional subproblem per iteration to adjust the search direction to better minimize the second-order approximation of the function value. We prove the theoretical convergence of the proposed method. Experiments on logistic regression, linear SVM, maximum entropy, and deep networks indicate that our techniques significantly reduce the running time of the subsampled Hessian Newton method. The resulting algorithm becomes a compelling alternative to the standard Newton method for large-scale data classification.
Aerospace plane guidance using geometric control theory
NASA Technical Reports Server (NTRS)
Van Buren, Mark A.; Mease, Kenneth D.
1990-01-01
A reduced-order method employing decomposition, based on time-scale separation, of the 4-D state space in a 2-D slow manifold and a family of 2-D fast manifolds is shown to provide an excellent approximation to the full-order minimum-fuel ascent trajectory. Near-optimal guidance is obtained by tracking the reduced-order trajectory. The tracking problem is solved as regulation problems on the family of fast manifolds, using the exact linearization methodology from nonlinear geometric control theory. The validity of the overall guidance approach is indicated by simulation.
An algorithm for solving the perturbed gas dynamic equations
NASA Technical Reports Server (NTRS)
Davis, Sanford
1993-01-01
The present application of a compact, higher-order central-difference approximation to the linearized Euler equations illustrates the multimodal character of these equations by means of computations for acoustic, vortical, and entropy waves. Such dissipationless central-difference methods are shown to propagate waves exhibiting excellent phase and amplitude resolution on the basis of relatively large time-steps; they can be applied to wave problems governed by systems of first-order partial differential equations.
NASA Astrophysics Data System (ADS)
Endichi, A.; Zaari, H.; Benyoussef, A.; El Kenz, A.
2018-06-01
The magnetic behavior of LaCr2Si2C compound is investigated in this work, using first principle methods, Monte Carlo simulation (MCS) and mean field approximation (MFA). The structural, electronic and magnetic properties are described using ab initio method in the framework of the Generalized Gradient Approximation (GGA), and the Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method implemented in the WIEN2K packages. We have also computed the coupling terms between magnetic atoms which are used in Hamiltonian model. A theoretical study realized by mean field approximation and Monte Carlo Simulation within the Ising model is used to more understand the magnetic properties of this compound. Thereby, our results showed a ferromagnetic ordering of the Cr magnetic moments below the Curie temperature of 30 K (Tc < 30 K) in LaCr2Si2C. Other parameters are also computed as: the magnetization, the energy, the specific heat and the susceptibility. This material shows the small sign of supra-conductivity; and future researches could be focused to enhance the transport and magnetic properties of this system.
Factorized Runge-Kutta-Chebyshev Methods
NASA Astrophysics Data System (ADS)
O'Sullivan, Stephen
2017-05-01
The second-order extended stability Factorized Runge-Kutta-Chebyshev (FRKC2) explicit schemes for the integration of large systems of PDEs with diffusive terms are presented. The schemes are simple to implement through ordered sequences of forward Euler steps with complex stepsizes, and easily parallelised for large scale problems on distributed architectures. Preserving 7 digits for accuracy at 16 digit precision, the schemes are theoretically capable of maintaining internal stability for acceleration factors in excess of 6000 with respect to standard explicit Runge-Kutta methods. The extent of the stability domain is approximately the same as that of RKC schemes, and a third longer than in the case of RKL2 schemes. Extension of FRKC methods to fourth-order, by both complex splitting and Butcher composition techniques, is also discussed. A publicly available implementation of FRKC2 schemes may be obtained from maths.dit.ie/frkc
Decomposition of conditional probability for high-order symbolic Markov chains.
Melnik, S S; Usatenko, O V
2017-07-01
The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.
Decomposition of conditional probability for high-order symbolic Markov chains
NASA Astrophysics Data System (ADS)
Melnik, S. S.; Usatenko, O. V.
2017-07-01
The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.
NASA Astrophysics Data System (ADS)
Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad
2017-07-01
This paper introduces a fractional order total variation (FOTV) based model with three different weights in the fractional order derivative definition for multiplicative noise removal purpose. The fractional-order Euler Lagrange equation which is a highly non-linear partial differential equation (PDE) is obtained by the minimization of the energy functional for image restoration. Two numerical schemes namely an iterative scheme based on the dual theory and majorization- minimization algorithm (MMA) are used. To improve the restoration results, we opt for an adaptive parameter selection procedure for the proposed model by applying the trial and error method. We report numerical simulations which show the validity and state of the art performance of the fractional-order model in visual improvement as well as an increase in the peak signal to noise ratio comparing to corresponding methods. Numerical experiments also demonstrate that MMAbased methodology is slightly better than that of an iterative scheme.
A miniature Marine Aerosol Reference Tank (miniMART) as a compact breaking wave analogue
NASA Astrophysics Data System (ADS)
Stokes, M. Dale; Deane, Grant; Collins, Douglas B.; Cappa, Christopher; Bertram, Timothy; Dommer, Abigail; Schill, Steven; Forestieri, Sara; Survilo, Mathew
2016-09-01
In order to understand the processes governing the production of marine aerosols, repeatable, controlled methods for their generation are required. A new system, the miniature Marine Aerosol Reference Tank (miniMART), has been designed after the success of the original MART system, to approximate a small oceanic spilling breaker by producing an evolving bubble plume and surface foam patch. The smaller tank utilizes an intermittently plunging jet of water produced by a rotating water wheel, into an approximately 6 L reservoir to simulate bubble plume and foam formation and generate aerosols. This system produces bubble plumes characteristic of small whitecaps without the large external pump inherent in the original MART design. Without the pump it is possible to easily culture delicate planktonic and microbial communities in the bulk water during experiments while continuously producing aerosols for study. However, due to the reduced volume and smaller plunging jet, the absolute numbers of particles generated are approximately an order of magnitude less than in the original MART design.
NASA Astrophysics Data System (ADS)
MacArt, Jonathan F.; Mueller, Michael E.
2016-12-01
Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.
Probabilistic Reasoning for Plan Robustness
NASA Technical Reports Server (NTRS)
Schaffer, Steve R.; Clement, Bradley J.; Chien, Steve A.
2005-01-01
A planning system must reason about the uncertainty of continuous variables in order to accurately project the possible system state over time. A method is devised for directly reasoning about the uncertainty in continuous activity duration and resource usage for planning problems. By representing random variables as parametric distributions, computing projected system state can be simplified in some cases. Common approximation and novel methods are compared for over-constrained and lightly constrained domains. The system compares a few common approximation methods for an iterative repair planner. Results show improvements in robustness over the conventional non-probabilistic representation by reducing the number of constraint violations witnessed by execution. The improvement is more significant for larger problems and problems with higher resource subscription levels but diminishes as the system is allowed to accept higher risk levels.
Transformation of general binary MRF minimization to the first-order case.
Ishikawa, Hiroshi
2011-06-01
We introduce a transformation of general higher-order Markov random field with binary labels into a first-order one that has the same minima as the original. Moreover, we formalize a framework for approximately minimizing higher-order multi-label MRF energies that combines the new reduction with the fusion-move and QPBO algorithms. While many computer vision problems today are formulated as energy minimization problems, they have mostly been limited to using first-order energies, which consist of unary and pairwise clique potentials, with a few exceptions that consider triples. This is because of the lack of efficient algorithms to optimize energies with higher-order interactions. Our algorithm challenges this restriction that limits the representational power of the models so that higher-order energies can be used to capture the rich statistics of natural scenes. We also show that some minimization methods can be considered special cases of the present framework, as well as comparing the new method experimentally with other such techniques.
NASA Astrophysics Data System (ADS)
Kono, Naoyuki; Miki, Masahiro; Nakamura, Motoyuki; Ehara, Kazuya
2007-03-01
Phased array techniques are capable of the sensitive detection and precise sizing of flaws or cracks in components of nuclear power plants by using arbitrary focal beams with various depths, positions and angles. Aquantitative investigation of these focal beams is essential for the optimization of array probes, especially for austenitic weld inspection, in order to improve the detectability, sizing accuracy, and signal-to-noise ratio using these beams. In the present work, focal beams generated by phased array probes are calculated based on the Fresnel-Kirchhoff diffraction integral (FKDI) method, and an approximation formula between the actual focal depth and optical focal depth is proposed as an extension of the theory for conventional spherically focusing probes. The validity of the approximation formula for the array probes is confirmed by a comparison with simulation data using the FKDI method, and the experimental data.
NASA Astrophysics Data System (ADS)
Natarajan, Sundararajan
2014-12-01
The main objectives of the paper are to (1) present an overview of nonlocal integral elasticity and Aifantis gradient elasticity theory and (2) discuss the application of partition of unity methods to study the response of low-dimensional structures. We present different choices of approximation functions for gradient elasticity, namely Lagrange intepolants, moving least-squares approximants and non-uniform rational B-splines. Next, we employ these approximation functions to study the response of nanobeams based on Euler-Bernoulli and Timoshenko theories as well as to study nanoplates based on first-order shear deformation theory. The response of nanobeams and nanoplates is studied using Eringen's nonlocal elasticity theory. The influence of the nonlocal parameter, the beam and the plate aspect ratio and the boundary conditions on the global response is numerically studied. The influence of a crack on the axial vibration and buckling characteristics of nanobeams is also numerically studied.
Heßelmann, Andreas
2015-04-14
Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.
Capture approximations beyond a statistical quantum mechanical method for atom-diatom reactions
NASA Astrophysics Data System (ADS)
Barrios, Lizandra; Rubayo-Soneira, Jesús; González-Lezana, Tomás
2016-03-01
Statistical techniques constitute useful approaches to investigate atom-diatom reactions mediated by insertion dynamics which involves complex-forming mechanisms. Different capture schemes based on energy considerations regarding the specific diatom rovibrational states are suggested to evaluate the corresponding probabilities of formation of such collision species between reactants and products in an attempt to test reliable alternatives for computationally demanding processes. These approximations are tested in combination with a statistical quantum mechanical method for the S + H2(v = 0 ,j = 1) → SH + H and Si + O2(v = 0 ,j = 1) → SiO + O reactions, where this dynamical mechanism plays a significant role, in order to probe their validity.
Geodesic regression for image time-series.
Niethammer, Marc; Huang, Yang; Vialard, François-Xavier
2011-01-01
Registration of image-time series has so far been accomplished (i) by concatenating registrations between image pairs, (ii) by solving a joint estimation problem resulting in piecewise geodesic paths between image pairs, (iii) by kernel based local averaging or (iv) by augmenting the joint estimation with additional temporal irregularity penalties. Here, we propose a generative model extending least squares linear regression to the space of images by using a second-order dynamic formulation for image registration. Unlike previous approaches, the formulation allows for a compact representation of an approximation to the full spatio-temporal trajectory through its initial values. The method also opens up possibilities to design image-based approximation algorithms. The resulting optimization problem is solved using an adjoint method.
An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Korte, John J.
1991-01-01
An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required for the upwind PNS code are approximately equal to an explicit PNS MacCormack's code and existing implicit PNS solvers.
Extended polarization in 3rd order SCC-DFTB from chemical potential equilization
Kaminski, Steve; Giese, Timothy J.; Gaus, Michael; York, Darrin M.; Elstner, Marcus
2012-01-01
In this work we augment the approximate density functional method SCC-DFTB (DFTB3) with the chemical potential equilization (CPE) approach in order to improve the performance for molecular electronic polarizabilities. The CPE method, originally implemented for NDDO type methods by Giese and York, has been shown to emend minimal basis methods wrt response properties significantly, and has been applied to SCC-DFTB recently. CPE allows to overcome this inherent limitation of minimal basis methods by supplying an additional response density. The systematic underestimation is thereby corrected quantitatively without the need to extend the atomic orbital basis, i.e. without increasing the overall computational cost significantly. Especially the dependency of polarizability as a function of molecular charge state was significantly improved from the CPE extension of DFTB3. The empirical parameters introduced by the CPE approach were optimized for 172 organic molecules in order to match the results from density functional methods (DFT) methods using large basis sets. However, the first order derivatives of molecular polarizabilities, as e.g. required to compute Raman activities, are not improved by the current CPE implementation, i.e. Raman spectra are not improved. PMID:22894819
NASA Technical Reports Server (NTRS)
Davis, R. B.; Stephens, M. V.
1974-01-01
An approximate method for calculating the longitudinal and torsional natural frequencies and associated modal data of a beamlike, variable cross section multibranch structure is presented. The procedure described is the numerical integration of the first order differential equations that characterize the beam element in longitudinal motion and that satisfy the appropriate boundary conditions.
Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle
Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.
2013-01-01
We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853
Method for making nanomaterials
Fan, Hongyou; Wu, Huimeng
2013-06-04
A method of making a nanostructure by preparing a face centered cubic-ordered metal nanoparticle film from metal nanoparticles, such as gold and silver nanoparticles, exerting a hydrostatic pressure upon the film at pressures of several gigapascals, followed by applying a non-hydrostatic stress perpendicularly at a pressure greater than approximately 10 GPA to form an array of nanowires with individual nanowires having a relatively uniform length, average diameter and density.
Chen, Xihua; Wu, Kechen; Snijders, Jaap G; Lin, Chensheng
2003-01-27
A series of trinuclear metal clusters MS4(M'PPh3)2(M'PPh3) (M = Mo, W; M' = Cu, Ag, Au) have been studied using the density functional theory (DFT) method. The static polarizabilities and hyperpolarizabilities of the model clusters have been calculated using the finite-field (F-F) method. The model clusters, divided into two groups, are alike in the structure of two fragments of rhombic units M-(mu-S)2-M' (M = Mo, W; M' = Cu, Ag, Au), perpendicular to each other, which are joined by sharing the bridge metal M. It is the charge transfer from one of these moieties to the other in these characteristic sulfido-transitional metal cores that is responsible for the polarizabilities and hyperpolarizabilities. This kind of electronic delocalization, different from that of the planar pi-system, is interesting and warrants further investigation. The structural effects on properties are important. In these models, considerable third-order nonlinearities are exhibited. The element substitution effect of Mo and W is weak, while that of Cu and Ag is relatively substantial. An overall order is gamma xxxx(Mo-Ag) > gamma xxxx(W-Ag) > gamma xxxx(Mo-Au) > gamma xxxx(W-Au) > gamma xxxx (Mo-Cu) > gamma xxxx(W-Cu) and gamma av(Mo-Ag) approximately gamma av(W-Ag) > gamma av(Mo-Au) approximately gamma av(W-Au) approximately gamma av (Mo-Cu) approximately gamma av(W-Cu).
DOT National Transportation Integrated Search
1992-08-26
This document provides the basic information needed to estimate a general : probability of collision in Low Earth Orbit (LEO). Although the method : described in this primer is a first order approximation, its results are : reasonable. Furthermore, t...
Sim, K S; Norhisham, S
2016-11-01
A new method based on nonlinear least squares regression (NLLSR) is formulated to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. The estimation of SNR value based on NLLSR method is compared with the three existing methods of nearest neighbourhood, first-order interpolation and the combination of both nearest neighbourhood and first-order interpolation. Samples of SEM images with different textures, contrasts and edges were used to test the performance of NLLSR method in estimating the SNR values of the SEM images. It is shown that the NLLSR method is able to produce better estimation accuracy as compared to the other three existing methods. According to the SNR results obtained from the experiment, the NLLSR method is able to produce approximately less than 1% of SNR error difference as compared to the other three existing methods. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Universal single level implicit algorithm for gasdynamics
NASA Technical Reports Server (NTRS)
Lombard, C. K.; Venkatapthy, E.
1984-01-01
A single level effectively explicit implicit algorithm for gasdynamics is presented. The method meets all the requirements for unconditionally stable global iteration over flows with mixed supersonic and supersonic zones including blunt body flow and boundary layer flows with strong interaction and streamwise separation. For hyperbolic (supersonic flow) regions the method is automatically equivalent to contemporary space marching methods. For elliptic (subsonic flow) regions, rapid convergence is facilitated by alternating direction solution sweeps which bring both sets of eigenvectors and the influence of both boundaries of a coordinate line equally into play. Point by point updating of the data with local iteration on the solution procedure at each spatial step as the sweeps progress not only renders the method single level in storage but, also, improves nonlinear accuracy to accelerate convergence by an order of magnitude over related two level linearized implicit methods. The method derives robust stability from the combination of an eigenvector split upwind difference method (CSCM) with diagonally dominant ADI(DDADI) approximate factorization and computed characteristic boundary approximations.
Few-cycle pulse generation in an x-ray free-electron laser.
Dunning, D J; McNeil, B W J; Thompson, N R
2013-03-08
A method is proposed to generate trains of few-cycle x-ray pulses from a free-electron laser (FEL) amplifier via a compact "afterburner" extension consisting of several few-period undulator sections separated by electron chicane delays. Simulations show that in the hard x ray (wavelength ~0.1 nm; photon energy ~10 keV) and with peak powers approaching normal FEL saturation (GW) levels, root mean square pulse durations of 700 zs may be obtained. This is approximately two orders of magnitude shorter than that possible for normal FEL amplifier operation. The spectrum is discretely multichromatic with a bandwidth envelope increased by approximately 2 orders of magnitude over unseeded FEL amplifier operation. Such a source would significantly enhance research opportunity in atomic dynamics and push capability toward nuclear dynamics.
A Higher Order Iterative Method for Computing the Drazin Inverse
Soleymani, F.; Stanimirović, Predrag S.
2013-01-01
A method with high convergence rate for finding approximate inverses of nonsingular matrices is suggested and established analytically. An extension of the introduced computational scheme to general square matrices is defined. The extended method could be used for finding the Drazin inverse. The application of the scheme on large sparse test matrices alongside the use in preconditioning of linear system of equations will be presented to clarify the contribution of the paper. PMID:24222747
A moment-convergence method for stochastic analysis of biochemical reaction networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiajun; Nie, Qing; Zhou, Tianshou, E-mail: mcszhtsh@mail.sysu.edu.cn
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in termsmore » of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.« less
NASA Astrophysics Data System (ADS)
Thomson, C. J.
2005-10-01
Several observations are made concerning the numerical implementation of wide-angle one-way wave equations, using for illustration scalar waves obeying the Helmholtz equation in two space dimensions. This simple case permits clear identification of a sequence of physically motivated approximations of use when the mathematically exact pseudo-differential operator (PSDO) one-way method is applied. As intuition suggests, these approximations largely depend on the medium gradients in the direction transverse to the main propagation direction. A key point is that narrow-angle approximations are to be avoided in the interests of accuracy. Another key consideration stems from the fact that the so-called `standard-ordering' PSDO indicates how lateral interpolation of the velocity structure can significantly reduce computational costs associated with the Fourier or plane-wave synthesis lying at the heart of the calculations. A third important point is that the PSDO theory shows what approximations are necessary in order to generate an exponential one-way propagator for the laterally varying case, representing the intuitive extension of classical integral-transform solutions for a laterally homogeneous medium. This exponential propagator permits larger forward stepsizes. Numerical comparisons with Helmholtz (i.e. full) wave-equation finite-difference solutions are presented for various canonical problems. These include propagation along an interfacial gradient, the effects of a compact inclusion and the formation of extended transmitted and backscattered wave trains by model roughness. The ideas extend to the 3-D, generally anisotropic case and to multiple scattering by invariant embedding. It is concluded that the method is very competitive, striking a new balance between simplifying approximations and computational labour. Complicated wave-scattering effects are retained without the need for expensive global solutions, providing a robust and flexible modelling tool.
Barmpoutis, Angelos
2010-01-01
Registration of Diffusion-Weighted MR Images (DW-MRI) can be achieved by registering the corresponding 2nd-order Diffusion Tensor Images (DTI). However, it has been shown that higher-order diffusion tensors (e.g. order-4) outperform the traditional DTI in approximating complex fiber structures such as fiber crossings. In this paper we present a novel method for unbiased group-wise non-rigid registration and atlas construction of 4th-order diffusion tensor fields. To the best of our knowledge there is no other existing method to achieve this task. First we define a metric on the space of positive-valued functions based on the Riemannian metric of real positive numbers (denoted by ℝ+). Then, we use this metric in a novel functional minimization method for non-rigid 4th-order tensor field registration. We define a cost function that accounts for the 4th-order tensor re-orientation during the registration process and has analytic derivatives with respect to the transformation parameters. Finally, the tensor field atlas is computed as the minimizer of the variance defined using the Riemannian metric. We quantitatively compare the proposed method with other techniques that register scalar-valued or diffusion tensor (rank-2) representations of the DWMRI. PMID:20436782
Uniform semiclassical sudden approximation for rotationally inelastic scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsch, H.J.; Schinke, R.
1980-08-01
The infinite-order-sudden (IOS) approximation is investigated in the semiclassical limit. A simplified IOS formula for rotationally inelastic differential cross sections is derived involving a uniform stationary phase approximation for two-dimensional oscillatory integrals with two stationary points. The semiclassical analysis provides a quantitative description of the rotational rainbow structure in the differential cross section. The numerical calculation of semiclassical IOS cross sections is extremely fast compared to numerically exact IOS methods, especially if high ..delta..j transitions are involved. Rigid rotor results for He--Na/sub 2/ collisions with ..delta..j< or approx. =26 and for K--CO collisions with ..delta..j< or approx. =70 show satisfactorymore » agreement with quantal IOS calculations.« less
Locating CVBEM collocation points for steady state heat transfer problems
Hromadka, T.V.
1985-01-01
The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.
Testing approximate predictions of displacements of cosmological dark matter halos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munari, Emiliano; Monaco, Pierluigi; Borgani, Stefano
We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing formore » all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z =0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are reconstructed at the object-by-object level.« less
Testing approximate predictions of displacements of cosmological dark matter halos
NASA Astrophysics Data System (ADS)
Munari, Emiliano; Monaco, Pierluigi; Koda, Jun; Kitaura, Francisco-Shu; Sefusatti, Emiliano; Borgani, Stefano
2017-07-01
We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z=0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are reconstructed at the object-by-object level.
Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xia, E-mail: cui_xia@iapcm.ac.cn; Yuan, Guang-wei; Shen, Zhi-jun
Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-ordermore » accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.« less
A simple finite element method for non-divergence form elliptic equation
Mu, Lin; Ye, Xiu
2017-03-01
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for non-divergence form elliptic equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
NASA Astrophysics Data System (ADS)
Bourlier, C.; Berginc, G.
2004-07-01
In this paper the first- and second-order Kirchhoff approximation is applied to study the backscattering enhancement phenomenon, which appears when the surface rms slope is greater than 0.5. The formulation is reduced to the geometric optics approximation in which the second-order illumination function is taken into account. This study is developed for a two-dimensional (2D) anisotropic stationary rough dielectric surface and for any surface slope and height distributions assumed to be statistically even. Using the Weyl representation of the Green function (which introduces an absolute value over the surface elevation in the phase term), the incoherent scattering coefficient under the stationary phase assumption is expressed as the sum of three terms. The incoherent scattering coefficient then requires the numerical computation of a ten- dimensional integral. To reduce the number of numerical integrations, the geometric optics approximation is applied, which assumes that the correlation between two adjacent points is very strong. The model is then proportional to two surface slope probabilities, for which the slopes would specularly reflect the beams in the double scattering process. In addition, the slope distributions are related with each other by a propagating function, which accounts for the second-order illumination function. The companion paper is devoted to the simulation of this model and comparisons with an 'exact' numerical method.
Anisotropic norm-oriented mesh adaptation for a Poisson problem
NASA Astrophysics Data System (ADS)
Brèthes, Gautier; Dervieux, Alain
2016-10-01
We present a novel formulation for the mesh adaptation of the approximation of a Partial Differential Equation (PDE). The discussion is restricted to a Poisson problem. The proposed norm-oriented formulation extends the goal-oriented formulation since it is equation-based and uses an adjoint. At the same time, the norm-oriented formulation somewhat supersedes the goal-oriented one since it is basically a solution-convergent method. Indeed, goal-oriented methods rely on the reduction of the error in evaluating a chosen scalar output with the consequence that, as mesh size is increased (more degrees of freedom), only this output is proven to tend to its continuous analog while the solution field itself may not converge. A remarkable quality of goal-oriented metric-based adaptation is the mathematical formulation of the mesh adaptation problem under the form of the optimization, in the well-identified set of metrics, of a well-defined functional. In the new proposed formulation, we amplify this advantage. We search, in the same well-identified set of metrics, the minimum of a norm of the approximation error. The norm is prescribed by the user and the method allows addressing the case of multi-objective adaptation like, for example in aerodynamics, adaptating the mesh for drag, lift and moment in one shot. In this work, we consider the basic linear finite-element approximation and restrict our study to L2 norm in order to enjoy second-order convergence. Numerical examples for the Poisson problem are computed.
Second-order Born calculation of coplanar symmetric (e, 2e) process on Mg
NASA Astrophysics Data System (ADS)
Zhang, Yong-Zhi; Wang, Yang; Zhou, Ya-Jun
2014-06-01
The second-order distorted wave Born approximation (DWBA) method is employed to investigate the triple differential cross sections (TDCS) of coplanar doubly symmetric (e, 2e) collisions for magnesium at excess energies of 6 eV-20 eV. Comparing with the standard first-order DWBA calculations, the inclusion of the second-order Born term in the scattering amplitude improves the degree of agreement with experiments, especially for backward scattering region of TDCS. This indicates that the present second-order Born term is capable to give a reasonable correction to DWBA model in studying coplanar symmetric (e, 2e) problems of two-valence-electron target in low energy range.
A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation
NASA Astrophysics Data System (ADS)
Terrana, S.; Vilotte, J. P.; Guillot, L.
2018-04-01
We introduce a time-domain, high-order in space, hybridizable discontinuous Galerkin (DG) spectral element method (HDG-SEM) for wave equations in coupled elastic-acoustic media. The method is based on a first-order hyperbolic velocity-strain formulation of the wave equations written in conservative form. This method follows the HDG approach by introducing a hybrid unknown, which is the approximation of the velocity on the elements boundaries, as the only globally (i.e. interelement) coupled degrees of freedom. In this paper, we first present a hybridized formulation of the exact Riemann solver at the element boundaries, taking into account elastic-elastic, acoustic-acoustic and elastic-acoustic interfaces. We then use this Riemann solver to derive an explicit construction of the HDG stabilization function τ for all the above-mentioned interfaces. We thus obtain an HDG scheme for coupled elastic-acoustic problems. This scheme is then discretized in space on quadrangular/hexahedral meshes using arbitrary high-order polynomial basis for both volumetric and hybrid fields, using an approach similar to the spectral element methods. This leads to a semi-discrete system of algebraic differential equations (ADEs), which thanks to the structure of the global conservativity condition can be reformulated easily as a classical system of first-order ordinary differential equations in time, allowing the use of classical explicit or implicit time integration schemes. When an explicit time scheme is used, the HDG method can be seen as a reformulation of a DG with upwind fluxes. The introduction of the velocity hybrid unknown leads to relatively simple computations at the element boundaries which, in turn, makes the HDG approach competitive with the DG-upwind methods. Extensive numerical results are provided to illustrate and assess the accuracy and convergence properties of this HDG-SEM. The approximate velocity is shown to converge with the optimal order of k + 1 in the L2-norm, when element polynomials of order k are used, and to exhibit the classical spectral convergence of SEM. Additional inexpensive local post-processing in both the elastic and the acoustic case allow to achieve higher convergence orders. The HDG scheme provides a natural framework for coupling classical, continuous Galerkin SEM with HDG-SEM in the same simulation, and it is shown numerically in this paper. As such, the proposed HDG-SEM can combine the efficiency of the continuous SEM with the flexibility of the HDG approaches. Finally, more complex numerical results, inspired from real geophysical applications, are presented to illustrate the capabilities of the method for wave propagation in heterogeneous elastic-acoustic media with complex geometries.
NASA Astrophysics Data System (ADS)
Zherebtsov, O. M.; Shabaev, V. M.; Yerokhin, V. A.
2000-12-01
Third-order interelectronic-interaction correction to the energies of (1 s) 22 s and (1 s) 22 p1/2 states of high- Z lithiumlike ions is evaluated within the Breit approximation in the range 20⩽ Z⩽100. The calculation is carried out using both the relativistic configuration-interaction method and perturbation theory. The correction is shown to be important for the comparison of theory and experiment.
The Finite-Surface Method for incompressible flow: a step beyond staggered grid
NASA Astrophysics Data System (ADS)
Hokpunna, Arpiruk; Misaka, Takashi; Obayashi, Shigeru
2017-11-01
We present a newly developed higher-order finite surface method for the incompressible Navier-Stokes equations (NSE). This method defines the velocities as a surface-averaged value on the surfaces of the pressure cells. Consequently, the mass conservation on the pressure cells becomes an exact equation. The only things left to approximate is the momentum equation and the pressure at the new time step. At certain conditions, the exact mass conservation enables the explicit n-th order accurate NSE solver to be used with the pressure treatment that is two or four order less accurate without loosing the apparent convergence rate. This feature was not possible with finite volume of finite difference methods. We use Fourier analysis with a model spectrum to determine the condition and found that the range covers standard boundary layer flows. The formal convergence and the performance of the proposed scheme is compared with a sixth-order finite volume method. Finally, the accuracy and performance of the method is evaluated in turbulent channel flows. This work is partially funded by a research colloaboration from IFS, Tohoku university and ASEAN+3 funding scheme from CMUIC, Chiang Mai University.
Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet
NASA Technical Reports Server (NTRS)
Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.
2000-01-01
This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.
First and second order approximations to stage numbers in multicomponent enrichment cascades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scopatz, A.
2013-07-01
This paper describes closed form, Taylor series approximations to the number product stages in a multicomponent enrichment cascade. Such closed form approximations are required when a symbolic, rather than a numeric, algorithm is used to compute the optimal cascade state. Both first and second order approximations were implemented. The first order solution was found to be grossly incorrect, having the wrong functional form over the entire domain. On the other hand, the second order solution shows excellent agreement with the 'true' solution over the domain of interest. An implementation of the symbolic, second order solver is available in the freemore » and open source PyNE library. (authors)« less
Cryosurgery Planning Using Bubble Packing in 3D
Tanaka, Daigo; Shimada, Kenji; Rossi, Michael R.; Rabin, Yoed
2008-01-01
As part of an ongoing project to develop automated tools for cryosurgery planning, the current study focuses on the development of a 3D bubble packing method. A proof-of-concept for the new method is demonstrated on five prostate models, reconstructed from ultrasound images. The new method is a modification of an established method in 2D. Ellipsoidal bubbles are packed in the volume of the prostate in the current study; such bubbles can be viewed as a first-order approximation of a frozen region around a single cryoprobe. When all cryoprobes are inserted to the same depth, optimum planning was found to occur at about 60% of the length of the prostate (measured from its apex), which leads to cooling of approximately 75% of the prostate volume below a specific temperature threshold of −22°C. Bubble packing has the potential to dramatically reduce the run time for automated planning. PMID:17963095
Cryosurgery planning using bubble packing in 3D.
Tanaka, Daigo; Shimada, Kenji; Rossi, Michael R; Rabin, Yoed
2008-04-01
As part of an ongoing project to develop automated tools for cryosurgery planning, the current study focuses on the development of a 3D bubble packing method. A proof-of-concept for the new method is demonstrated on five prostate models, reconstructed from ultrasound images. The new method is a modification of an established method in 2D. Ellipsoidal bubbles are packed in the volume of the prostate in the current study; such bubbles can be viewed as a first-order approximation of a frozen region around a single cryoprobe. When all cryoprobes are inserted to the same depth, optimum planning was found to occur at about 60% of the length of the prostate (measured from its apex), which leads to cooling of approximately 75% of the prostate volume below a specific temperature threshold of - 22 degrees C. Bubble packing has the potential to dramatically reduce the run time for automated planning.