Sample records for order compact scheme

  1. A Two Colorable Fourth Order Compact Difference Scheme and Parallel Iterative Solution of the 3D Convection Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Zhang, Jun; Ge, Lixin; Kouatchou, Jules

    2000-01-01

    A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.

  2. Comparative study of numerical schemes of TVD3, UNO3-ACM and optimized compact scheme

    NASA Technical Reports Server (NTRS)

    Lee, Duck-Joo; Hwang, Chang-Jeon; Ko, Duck-Kon; Kim, Jae-Wook

    1995-01-01

    Three different schemes are employed to solve the benchmark problem. The first one is a conventional TVD-MUSCL (Monotone Upwind Schemes for Conservation Laws) scheme. The second scheme is a UNO3-ACM (Uniformly Non-Oscillatory Artificial Compression Method) scheme. The third scheme is an optimized compact finite difference scheme modified by us: the 4th order Runge Kutta time stepping, the 4th order pentadiagonal compact spatial discretization with the maximum resolution characteristics. The problems of category 1 are solved by using the second (UNO3-ACM) and third (Optimized Compact) schemes. The problems of category 2 are solved by using the first (TVD3) and second (UNO3-ACM) schemes. The problem of category 5 is solved by using the first (TVD3) scheme. It can be concluded from the present calculations that the Optimized Compact scheme and the UN03-ACM show good resolutions for category 1 and category 2 respectively.

  3. Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul

    1993-01-01

    We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.

  4. Explicit and implicit compact high-resolution shock-capturing methods for multidimensional Euler equations 1: Formulation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1995-01-01

    Two classes of explicit compact high-resolution shock-capturing methods for the multidimensional compressible Euler equations for fluid dynamics are constructed. Some of these schemes can be fourth-order accurate away from discontinuities. For the semi-discrete case their shock-capturing properties are of the total variation diminishing (TVD), total variation bounded (TVB), total variation diminishing in the mean (TVDM), essentially nonoscillatory (ENO), or positive type of scheme for 1-D scalar hyperbolic conservation laws and are positive schemes in more than one dimension. These fourth-order schemes require the same grid stencil as their second-order non-compact cousins. One class does not require the standard matrix inversion or a special numerical boundary condition treatment associated with typical compact schemes. Due to the construction, these schemes can be viewed as approximations to genuinely multidimensional schemes in the sense that they might produce less distortion in spherical type shocks and are more accurate in vortex type flows than schemes based purely on one-dimensional extensions. However, one class has a more desirable high-resolution shock-capturing property and a smaller operation count in 3-D than the other class. The extension of these schemes to coupled nonlinear systems can be accomplished using the Roe approximate Riemann solver, the generalized Steger and Warming flux-vector splitting or the van Leer type flux-vector splitting. Modification to existing high-resolution second- or third-order non-compact shock-capturing computer codes is minimal. High-resolution shock-capturing properties can also be achieved via a variant of the second-order Lax-Friedrichs numerical flux without the use of Riemann solvers for coupled nonlinear systems with comparable operations count to their classical shock-capturing counterparts. The simplest extension to viscous flows can be achieved by using the standard fourth-order compact or non-compact formula for the viscous terms.

  5. Weighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debojyoti; Baeder, James D.

    2014-01-21

    A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678–A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order compact scheme for smooth solutions and a non-oscillatory compact scheme near discontinuities. The new schemes result in lower absolute errors, and improved resolution of discontinuities and smaller length scales, compared to the weighted essentially non-oscillatory (WENO) scheme of the same order of convergence. Several improvements to the smoothness-dependent weights, proposed inmore » the literature in the context of the WENO schemes, address the drawbacks of the original formulation. This paper explores these improvements in the context of the CRWENO schemes and compares the different formulations of the non-linear weights for flow problems with small length scales as well as discontinuities. Simplified one- and two-dimensional inviscid flow problems are solved to demonstrate the numerical properties of the CRWENO schemes and its different formulations. Canonical turbulent flow problems—the decay of isotropic turbulence and the shock-turbulence interaction—are solved to assess the performance of the schemes for the direct numerical simulation of compressible, turbulent flows« less

  6. Compact high order schemes with gradient-direction derivatives for absorbing boundary conditions

    NASA Astrophysics Data System (ADS)

    Gordon, Dan; Gordon, Rachel; Turkel, Eli

    2015-09-01

    We consider several compact high order absorbing boundary conditions (ABCs) for the Helmholtz equation in three dimensions. A technique called "the gradient method" (GM) for ABCs is also introduced and combined with the high order ABCs. GM is based on the principle of using directional derivatives in the direction of the wavefront propagation. The new ABCs are used together with the recently introduced compact sixth order finite difference scheme for variable wave numbers. Experiments on problems with known analytic solutions produced very accurate results, demonstrating the efficacy of the high order schemes, particularly when combined with GM. The new ABCs are then applied to the SEG/EAGE Salt model, showing the advantages of the new schemes.

  7. Numerical pricing of options using high-order compact finite difference schemes

    NASA Astrophysics Data System (ADS)

    Tangman, D. Y.; Gopaul, A.; Bhuruth, M.

    2008-09-01

    We consider high-order compact (HOC) schemes for quasilinear parabolic partial differential equations to discretise the Black-Scholes PDE for the numerical pricing of European and American options. We show that for the heat equation with smooth initial conditions, the HOC schemes attain clear fourth-order convergence but fail if non-smooth payoff conditions are used. To restore the fourth-order convergence, we use a grid stretching that concentrates grid nodes at the strike price for European options. For an American option, an efficient procedure is also described to compute the option price, Greeks and the optimal exercise curve. Comparisons with a fourth-order non-compact scheme are also done. However, fourth-order convergence is not experienced with this strategy. To improve the convergence rate for American options, we discuss the use of a front-fixing transformation with the HOC scheme. We also show that the HOC scheme with grid stretching along the asset price dimension gives accurate numerical solutions for European options under stochastic volatility.

  8. Performance of Low Dissipative High Order Shock-Capturing Schemes for Shock-Turbulence Interactions

    NASA Technical Reports Server (NTRS)

    Sandham, N. D.; Yee, H. C.

    1998-01-01

    Accurate and efficient direct numerical simulation of turbulence in the presence of shock waves represents a significant challenge for numerical methods. The objective of this paper is to evaluate the performance of high order compact and non-compact central spatial differencing employing total variation diminishing (TVD) shock-capturing dissipations as characteristic based filters for two model problems combining shock wave and shear layer phenomena. A vortex pairing model evaluates the ability of the schemes to cope with shear layer instability and eddy shock waves, while a shock wave impingement on a spatially-evolving mixing layer model studies the accuracy of computation of vortices passing through a sequence of shock and expansion waves. A drastic increase in accuracy is observed if a suitable artificial compression formulation is applied to the TVD dissipations. With this modification to the filter step the fourth-order non-compact scheme shows improved results in comparison to second-order methods, while retaining the good shock resolution of the basic TVD scheme. For this characteristic based filter approach, however, the benefits of compact schemes or schemes with higher than fourth order are not sufficient to justify the higher complexity near the boundary and/or the additional computational cost.

  9. High-Order Methods for Computational Fluid Dynamics: A Brief Review of Compact Differential Formulations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Huynh, H. T.; Wang, Z. J.; Vincent, P. E.

    2013-01-01

    Popular high-order schemes with compact stencils for Computational Fluid Dynamics (CFD) include Discontinuous Galerkin (DG), Spectral Difference (SD), and Spectral Volume (SV) methods. The recently proposed Flux Reconstruction (FR) approach or Correction Procedure using Reconstruction (CPR) is based on a differential formulation and provides a unifying framework for these high-order schemes. Here we present a brief review of recent developments for the FR/CPR schemes as well as some pacing items.

  10. Fourth-order convergence of a compact scheme for the one-dimensional biharmonic equation

    NASA Astrophysics Data System (ADS)

    Fishelov, D.; Ben-Artzi, M.; Croisille, J.-P.

    2012-09-01

    The convergence of a fourth-order compact scheme to the one-dimensional biharmonic problem is established in the case of general Dirichlet boundary conditions. The compact scheme invokes value of the unknown function as well as Pade approximations of its first-order derivative. Using the Pade approximation allows us to approximate the first-order derivative within fourth-order accuracy. However, although the truncation error of the discrete biharmonic scheme is of fourth-order at interior point, the truncation error drops to first-order at near-boundary points. Nonetheless, we prove that the scheme retains its fourth-order (optimal) accuracy. This is done by a careful inspection of the matrix elements of the discrete biharmonic operator. A number of numerical examples corroborate this effect. We also present a study of the eigenvalue problem uxxxx = νu. We compute and display the eigenvalues and the eigenfunctions related to the continuous and the discrete problems. By the positivity of the eigenvalues, one can deduce the stability of of the related time-dependent problem ut = -uxxxx. In addition, we study the eigenvalue problem uxxxx = νuxx. This is related to the stability of the linear time-dependent equation uxxt = νuxxxx. Its continuous and discrete eigenvalues and eigenfunction (or eigenvectors) are computed and displayed graphically.

  11. A new family of high-order compact upwind difference schemes with good spectral resolution

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Yao, Zhaohui; He, Feng; Shen, M. Y.

    2007-12-01

    This paper presents a new family of high-order compact upwind difference schemes. Unknowns included in the proposed schemes are not only the values of the function but also those of its first and higher derivatives. Derivative terms in the schemes appear only on the upwind side of the stencil. One can calculate all the first derivatives exactly as one solves explicit schemes when the boundary conditions of the problem are non-periodic. When the proposed schemes are applied to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inversions are required. Resolution optimization is used to enhance the spectral representation of the first derivative, and this produces a scheme with the highest spectral accuracy among all known compact schemes. For non-periodic boundary conditions, boundary schemes constructed in virtue of the assistant scheme make the schemes not only possess stability for any selective length scale on every point in the computational domain but also satisfy the principle of optimal resolution. Also, an improved shock-capturing method is developed. Finally, both the effectiveness of the new hybrid method and the accuracy of the proposed schemes are verified by executing four benchmark test cases.

  12. A novel family of DG methods for diffusion problems

    NASA Astrophysics Data System (ADS)

    Johnson, Philip; Johnsen, Eric

    2017-11-01

    We describe and demonstrate a novel family of numerical schemes for handling elliptic/parabolic PDE behavior within the discontinuous Galerkin (DG) framework. Starting from the mixed-form approach commonly applied for handling diffusion (examples include Local DG and BR2), the new schemes apply the Recovery concept of Van Leer to handle cell interface terms. By applying recovery within the mixed-form approach, we have designed multiple schemes that show better accuracy than other mixed-form approaches while being more flexible and easier to implement than the Recovery DG schemes of Van Leer. While typical mixed-form approaches converge at rate 2p in the cell-average or functional error norms (where p is the order of the solution polynomial), many of our approaches achieve order 2p +2 convergence. In this talk, we will describe multiple schemes, including both compact and non-compact implementations; the compact approaches use only interface-connected neighbors to form the residual for each element, while the non-compact approaches add one extra layer to the stencil. In addition to testing the schemes on purely parabolic PDE problems, we apply them to handle the diffusive flux terms in advection-diffusion systems, such as the compressible Navier-Stokes equations.

  13. Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.; Carpenter, Mark

    1998-01-01

    A higher order accurate numerical procedure has been developed for solving incompressible Navier-Stokes equations for 2D or 3D fluid flow problems. It is based on low-storage Runge-Kutta schemes for temporal discretization and fourth and sixth order compact finite-difference schemes for spatial discretization. The particular difficulty of satisfying the divergence-free velocity field required in incompressible fluid flow is resolved by solving a Poisson equation for pressure. It is demonstrated that for consistent global accuracy, it is necessary to employ the same order of accuracy in the discretization of the Poisson equation. Special care is also required to achieve the formal temporal accuracy of the Runge-Kutta schemes. The accuracy of the present procedure is demonstrated by application to several pertinent benchmark problems.

  14. One-dimensional high-order compact method for solving Euler's equations

    NASA Astrophysics Data System (ADS)

    Mohamad, M. A. H.; Basri, S.; Basuno, B.

    2012-06-01

    In the field of computational fluid dynamics, many numerical algorithms have been developed to simulate inviscid, compressible flows problems. Among those most famous and relevant are based on flux vector splitting and Godunov-type schemes. Previously, this system was developed through computational studies by Mawlood [1]. However the new test cases for compressible flows, the shock tube problems namely the receding flow and shock waves were not investigated before by Mawlood [1]. Thus, the objective of this study is to develop a high-order compact (HOC) finite difference solver for onedimensional Euler equation. Before developing the solver, a detailed investigation was conducted to assess the performance of the basic third-order compact central discretization schemes. Spatial discretization of the Euler equation is based on flux-vector splitting. From this observation, discretization of the convective flux terms of the Euler equation is based on a hybrid flux-vector splitting, known as the advection upstream splitting method (AUSM) scheme which combines the accuracy of flux-difference splitting and the robustness of flux-vector splitting. The AUSM scheme is based on the third-order compact scheme to the approximate finite difference equation was completely analyzed consequently. In one-dimensional problem for the first order schemes, an explicit method is adopted by using time integration method. In addition to that, development and modification of source code for the one-dimensional flow is validated with four test cases namely, unsteady shock tube, quasi-one-dimensional supersonic-subsonic nozzle flow, receding flow and shock waves in shock tubes. From these results, it was also carried out to ensure that the definition of Riemann problem can be identified. Further analysis had also been done in comparing the characteristic of AUSM scheme against experimental results, obtained from previous works and also comparative analysis with computational results generated by van Leer, KFVS and AUSMPW schemes. Furthermore, there is a remarkable improvement with the extension of the AUSM scheme from first-order to third-order accuracy in terms of shocks, contact discontinuities and rarefaction waves.

  15. A Hermite WENO reconstruction for fourth order temporal accurate schemes based on the GRP solver for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Du, Zhifang; Li, Jiequan

    2018-02-01

    This paper develops a new fifth order accurate Hermite WENO (HWENO) reconstruction method for hyperbolic conservation schemes in the framework of the two-stage fourth order accurate temporal discretization in Li and Du (2016) [13]. Instead of computing the first moment of the solution additionally in the conventional HWENO or DG approach, we can directly take the interface values, which are already available in the numerical flux construction using the generalized Riemann problem (GRP) solver, to approximate the first moment. The resulting scheme is fourth order temporal accurate by only invoking the HWENO reconstruction twice so that it becomes more compact. Numerical experiments show that such compactness makes significant impact on the resolution of nonlinear waves.

  16. A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena

    NASA Technical Reports Server (NTRS)

    Zingg, David W.

    1996-01-01

    This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.

  17. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme

    NASA Astrophysics Data System (ADS)

    Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang

    2013-04-01

    A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.

  18. A New Family of Compact High Order Coupled Time-Space Unconditionally Stable Vertical Advection Schemes

    NASA Astrophysics Data System (ADS)

    Lemarié, F.; Debreu, L.

    2016-02-01

    Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost. To our knowledge no unconditionally stable scheme with such high order accuracy in time and space have been presented so far in the literature. Furthermore, we show how those schemes can be made monotonic without compromising their stability properties.

  19. Multi-dimensional high order essentially non-oscillatory finite difference methods in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1992-01-01

    The nonlinear stability of compact schemes for shock calculations is investigated. In recent years compact schemes were used in various numerical simulations including direct numerical simulation of turbulence. However to apply them to problems containing shocks, one has to resolve the problem of spurious numerical oscillation and nonlinear instability. A framework to apply nonlinear limiting to a local mean is introduced. The resulting scheme can be proven total variation (1D) or maximum norm (multi D) stable and produces nice numerical results in the test cases. The result is summarized in the preprint entitled 'Nonlinearly Stable Compact Schemes for Shock Calculations', which was submitted to SIAM Journal on Numerical Analysis. Research was continued on issues related to two and three dimensional essentially non-oscillatory (ENO) schemes. The main research topics include: parallel implementation of ENO schemes on Connection Machines; boundary conditions; shock interaction with hydrogen bubbles, a preparation for the full combustion simulation; and direct numerical simulation of compressible sheared turbulence.

  20. Experimental Studies on a Compact Storage Scheme for Wavelet-based Multiresolution Subregion Retrieval

    NASA Technical Reports Server (NTRS)

    Poulakidas, A.; Srinivasan, A.; Egecioglu, O.; Ibarra, O.; Yang, T.

    1996-01-01

    Wavelet transforms, when combined with quantization and a suitable encoding, can be used to compress images effectively. In order to use them for image library systems, a compact storage scheme for quantized coefficient wavelet data must be developed with a support for fast subregion retrieval. We have designed such a scheme and in this paper we provide experimental studies to demonstrate that it achieves good image compression ratios, while providing a natural indexing mechanism that facilitates fast retrieval of portions of the image at various resolutions.

  1. A family of compact high order coupled time-space unconditionally stable vertical advection schemes

    NASA Astrophysics Data System (ADS)

    Lemarié, Florian; Debreu, Laurent

    2016-04-01

    Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost.

  2. Construction of Three Dimensional Solutions for the Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Yefet, A.; Turkel, E.

    1998-01-01

    We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.

  3. A compact finite element method for elastic bodies

    NASA Technical Reports Server (NTRS)

    Rose, M. E.

    1984-01-01

    A nonconforming finite method is described for treating linear equilibrium problems, and a convergence proof showing second order accuracy is given. The close relationship to a related compact finite difference scheme due to Phillips and Rose is examined. A condensation technique is shown to preserve the compactness property and suggests an approach to a certain type of homogenization.

  4. ICASE Semiannual Report, October 1, 1992 through March 31, 1993

    DTIC Science & Technology

    1993-06-01

    NUMERICAL MATHEMATICS Saul Abarbanel Further results have been obtained regarding long time integration of high order compact finite difference schemes...overall accuracy. These problems are common to all numerical methods: finite differences , finite elements and spectral methods. It should be noted that...fourth order finite difference scheme. * In the same case, the D6 wavelets provide a sixth order finite difference , noncompact formula. * The wavelets

  5. Validation of a High-Order Prefactored Compact Scheme on Nonlinear Flows with Complex Geometries

    NASA Technical Reports Server (NTRS)

    Hixon, Ray; Mankbadi, Reda R.; Povinelli, L. A. (Technical Monitor)

    2000-01-01

    Three benchmark problems are solved using a sixth-order prefactored compact scheme employing an explicit 10th-order filter with optimized fourth-order Runge-Kutta time stepping. The problems solved are the following: (1) propagation of sound waves through a transonic nozzle; (2) shock-sound interaction; and (3) single airfoil gust response. In the first two problems, the spatial accuracy of the scheme is tested on a stretched grid, and the effectiveness of boundary conditions is shown. The solution stability and accuracy near a shock discontinuity is shown as well. Also, 1-D nonlinear characteristic boundary conditions will be evaluated. In the third problem, a nonlinear Euler solver will be used that solves the equations in generalized curvilinear coordinates using the chain rule transformation. This work, continuing earlier work on flat-plate cascades and Joukowski airfoils, will focus mainly on the effect of the grid and boundary conditions on the accuracy of the solution. The grids were generated using a commercially available grid generator, GridPro/az3000.

  6. Progress in the Development of a Class of Efficient Low Dissipative High Order Shock-capturing Methods

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.; Sandham, N. D.; Hadjadj, A.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    In a series of papers, Olsson (1994, 1995), Olsson & Oliger (1994), Strand (1994), Gerritsen Olsson (1996), Yee et al. (1999a,b, 2000) and Sandham & Yee (2000), the issue of nonlinear stability of the compressible Euler and Navier-Stokes Equations, including physical boundaries, and the corresponding development of the discrete analogue of nonlinear stable high order schemes, including boundary schemes, were developed, extended and evaluated for various fluid flows. High order here refers to spatial schemes that are essentially fourth-order or higher away from shock and shear regions. The objective of this paper is to give an overview of the progress of the low dissipative high order shock-capturing schemes proposed by Yee et al. (1999a,b, 2000). This class of schemes consists of simple non-dissipative high order compact or non-compact central spatial differencings and adaptive nonlinear numerical dissipation operators to minimize the use of numerical dissipation. The amount of numerical dissipation is further minimized by applying the scheme to the entropy splitting form of the inviscid flux derivatives, and by rewriting the viscous terms to minimize odd-even decoupling before the application of the central scheme (Sandham & Yee). The efficiency and accuracy of these scheme are compared with spectral, TVD and fifth- order WENO schemes. A new approach of Sjogreen & Yee (2000) utilizing non-orthogonal multi-resolution wavelet basis functions as sensors to dynamically determine the appropriate amount of numerical dissipation to be added to the non-dissipative high order spatial scheme at each grid point will be discussed. Numerical experiments of long time integration of smooth flows, shock-turbulence interactions, direct numerical simulations of a 3-D compressible turbulent plane channel flow, and various mixing layer problems indicate that these schemes are especially suitable for practical complex problems in nonlinear aeroacoustics, rotorcraft dynamics, direct numerical simulation or large eddy simulation of compressible turbulent flows at various speeds including high-speed shock-turbulence interactions, and general long time wave propagation problems. These schemes, including entropy splitting, have also been extended to freestream preserving schemes on curvilinear moving grids for a thermally perfect gas (Vinokur & Yee 2000).

  7. Finite difference schemes for long-time integration

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1993-01-01

    Finite difference schemes for the evaluation of first and second derivatives are presented. These second order compact schemes were designed for long-time integration of evolution equations by solving a quadratic constrained minimization problem. The quadratic cost function measures the global truncation error while taking into account the initial data. The resulting schemes are applicable for integration times fourfold, or more, longer than similar previously studied schemes. A similar approach was used to obtain improved integration schemes.

  8. A finite difference scheme for the equilibrium equations of elastic bodies

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.; Rose, M. E.

    1984-01-01

    A compact difference scheme is described for treating the first-order system of partial differential equations which describe the equilibrium equations of an elastic body. An algebraic simplification enables the solution to be obtained by standard direct or iterative techniques.

  9. Low Dissipative High Order Shock-Capturing Methods Using Characteristic-Based Filters

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sandham, N. D.; Djomehri, M. J.

    1998-01-01

    An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Oisson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.

  10. Low Dissipative High Order Shock-Capturing Methods using Characteristic-Based Filters

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sandham, N. D.; Djomehri, M. J.

    1998-01-01

    An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Olsson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.

  11. An energy-efficient and compact clustering scheme with temporary support nodes for cognitive radio sensor networks.

    PubMed

    Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong

    2014-08-11

    A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members.

  12. An Energy-Efficient and Compact Clustering Scheme with Temporary Support Nodes for Cognitive Radio Sensor Networks

    PubMed Central

    Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong

    2014-01-01

    A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members. PMID:25116905

  13. Compact exponential product formulas and operator functional derivative

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    1997-02-01

    A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin-Specht-Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians.

  14. Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials

    NASA Astrophysics Data System (ADS)

    Britt, S.; Tsynkov, S.; Turkel, E.

    2018-02-01

    We solve the wave equation with variable wave speed on nonconforming domains with fourth order accuracy in both space and time. This is accomplished using an implicit finite difference (FD) scheme for the wave equation and solving an elliptic (modified Helmholtz) equation at each time step with fourth order spatial accuracy by the method of difference potentials (MDP). High-order MDP utilizes compact FD schemes on regular structured grids to efficiently solve problems on nonconforming domains while maintaining the design convergence rate of the underlying FD scheme. Asymptotically, the computational complexity of high-order MDP scales the same as that for FD.

  15. Multi-dimensional Upwind Fluctuation Splitting Scheme with Mesh Adaption for Hypersonic Viscous Flow. Degree awarded by Virginia Polytechnic Inst. and State Univ., 9 Nov. 2001

    NASA Technical Reports Server (NTRS)

    Wood, William A., III

    2002-01-01

    A multi-dimensional upwind fluctuation splitting scheme is developed and implemented for two-dimensional and axisymmetric formulations of the Navier-Stokes equations on unstructured meshes. Key features of the scheme are the compact stencil, full upwinding, and non-linear discretization which allow for second-order accuracy with enforced positivity. Throughout, the fluctuation splitting scheme is compared to a current state-of-the-art finite volume approach, a second-order, dual mesh upwind flux difference splitting scheme (DMFDSFV), and is shown to produce more accurate results using fewer computer resources for a wide range of test cases. A Blasius flat plate viscous validation case reveals a more accurate upsilon-velocity profile for fluctuation splitting, and the reduced artificial dissipation production is shown relative to DMFDSFV. Remarkably, the fluctuation splitting scheme shows grid converged skin friction coefficients with only five points in the boundary layer for this case. The second half of the report develops a local, compact, anisotropic unstructured mesh adaptation scheme in conjunction with the multi-dimensional upwind solver, exhibiting a characteristic alignment behavior for scalar problems. The adaptation strategy is extended to the two-dimensional and axisymmetric Navier-Stokes equations of motion through the concept of fluctuation minimization.

  16. Comparison of Several Numerical Methods for Simulation of Compressible Shear Layers

    NASA Technical Reports Server (NTRS)

    Kennedy, Christopher A.; Carpenter, Mark H.

    1997-01-01

    An investigation is conducted on several numerical schemes for use in the computation of two-dimensional, spatially evolving, laminar variable-density compressible shear layers. Schemes with various temporal accuracies and arbitrary spatial accuracy for both inviscid and viscous terms are presented and analyzed. All integration schemes use explicit or compact finite-difference derivative operators. Three classes of schemes are considered: an extension of MacCormack's original second-order temporally accurate method, a new third-order variant of the schemes proposed by Rusanov and by Kutier, Lomax, and Warming (RKLW), and third- and fourth-order Runge-Kutta schemes. In each scheme, stability and formal accuracy are considered for the interior operators on the convection-diffusion equation U(sub t) + aU(sub x) = alpha U(sub xx). Accuracy is also verified on the nonlinear problem, U(sub t) + F(sub x) = 0. Numerical treatments of various orders of accuracy are chosen and evaluated for asymptotic stability. Formally accurate boundary conditions are derived for several sixth- and eighth-order central-difference schemes. Damping of high wave-number data is accomplished with explicit filters of arbitrary order. Several schemes are used to compute variable-density compressible shear layers, where regions of large gradients exist.

  17. Power corrections in the N -jettiness subtraction scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boughezal, Radja; Liu, Xiaohui; Petriello, Frank

    We discuss the leading-logarithmic power corrections in the N-jettiness subtraction scheme for higher-order perturbative QCD calculations. We compute the next-to-leading order power corrections for an arbitrary N-jet process, and we explicitly calculate the power correction through next-to-next-to-leading order for color-singlet production for bothmore » $$q\\bar{q}$$ and gg initiated processes. Our results are compact and simple to implement numerically. Including the leading power correction in the N-jettiness subtraction scheme substantially improves its numerical efficiency. Finally, we discuss what features of our techniques extend to processes containing final-state jets.« less

  18. Power corrections in the N -jettiness subtraction scheme

    DOE PAGES

    Boughezal, Radja; Liu, Xiaohui; Petriello, Frank

    2017-03-30

    We discuss the leading-logarithmic power corrections in the N-jettiness subtraction scheme for higher-order perturbative QCD calculations. We compute the next-to-leading order power corrections for an arbitrary N-jet process, and we explicitly calculate the power correction through next-to-next-to-leading order for color-singlet production for bothmore » $$q\\bar{q}$$ and gg initiated processes. Our results are compact and simple to implement numerically. Including the leading power correction in the N-jettiness subtraction scheme substantially improves its numerical efficiency. Finally, we discuss what features of our techniques extend to processes containing final-state jets.« less

  19. High-Order Multioperator Compact Schemes for Numerical Simulation of Unsteady Subsonic Airfoil Flow

    NASA Astrophysics Data System (ADS)

    Savel'ev, A. D.

    2018-02-01

    On the basis of high-order schemes, the viscous gas flow over the NACA2212 airfoil is numerically simulated at a free-stream Mach number of 0.3 and Reynolds numbers ranging from 103 to 107. Flow regimes sequentially varying due to variations in the free-stream viscosity are considered. Vortex structures developing on the airfoil surface are investigated, and a physical interpretation of this phenomenon is given.

  20. Compact exponential product formulas and operator functional derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, M.

    1997-02-01

    A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin{endash}Specht{endash}Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians. {copyright} {ital 1997 American Institute of Physics.}

  1. On a fourth order accurate implicit finite difference scheme for hyperbolic conservation laws. II - Five-point schemes

    NASA Technical Reports Server (NTRS)

    Harten, A.; Tal-Ezer, H.

    1981-01-01

    This paper presents a family of two-level five-point implicit schemes for the solution of one-dimensional systems of hyperbolic conservation laws, which generalized the Crank-Nicholson scheme to fourth order accuracy (4-4) in both time and space. These 4-4 schemes are nondissipative and unconditionally stable. Special attention is given to the system of linear equations associated with these 4-4 implicit schemes. The regularity of this system is analyzed and efficiency of solution-algorithms is examined. A two-datum representation of these 4-4 implicit schemes brings about a compactification of the stencil to three mesh points at each time-level. This compact two-datum representation is particularly useful in deriving boundary treatments. Numerical results are presented to illustrate some properties of the proposed scheme.

  2. Finite volume treatment of dispersion-relation-preserving and optimized prefactored compact schemes for wave propagation

    NASA Astrophysics Data System (ADS)

    Popescu, Mihaela; Shyy, Wei; Garbey, Marc

    2005-12-01

    In developing suitable numerical techniques for computational aero-acoustics, the dispersion-relation-preserving (DRP) scheme by Tam and co-workers and the optimized prefactored compact (OPC) scheme by Ashcroft and Zhang have shown desirable properties of reducing both dissipative and dispersive errors. These schemes, originally based on the finite difference, attempt to optimize the coefficients for better resolution of short waves with respect to the computational grid while maintaining pre-determined formal orders of accuracy. In the present study, finite volume formulations of both schemes are presented to better handle the nonlinearity and complex geometry encountered in many engineering applications. Linear and nonlinear wave equations, with and without viscous dissipation, have been adopted as the test problems. Highlighting the principal characteristics of the schemes and utilizing linear and nonlinear wave equations with different wavelengths as the test cases, the performance of these approaches is documented. For the linear wave equation, there is no major difference between the DRP and OPC schemes. For the nonlinear wave equations, the finite volume version of both DRP and OPC schemes offers substantially better solutions in regions of high gradient or discontinuity.

  3. Implicit and Multigrid Method for Ideal Multigrid Convergence: Direct Numerical Simulation of Separated Flow Around NACA 0012 Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Chao-Qun; Shan, H.; Jiang, L.

    1999-01-01

    Numerical investigation of flow separation over a NACA 0012 airfoil at large angles of attack has been carried out. The numerical calculation is performed by solving the full Navier-Stokes equations in generalized curvilinear coordinates. The second-order LU-SGS implicit scheme is applied for time integration. This scheme requires no tridiagonal inversion and is capable of being completely vectorized, provided the corresponding Jacobian matrices are properly selected. A fourth-order centered compact scheme is used for spatial derivatives. In order to reduce numerical oscillation, a sixth-order implicit filter is employed. Non-reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible non-physical wave reflection. Complex flow separation and vortex shedding phenomenon have been observed and discussed.

  4. Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Viscous Fluxes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.

    2010-01-01

    Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and complexity are studied for four nominally second-order accurate schemes: a node-centered scheme and three cell-centered schemes - a node-averaging scheme and two schemes with nearest-neighbor and adaptive compact stencils for least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Tests from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The tests of the second class are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes may degenerate on mixed grids, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to that of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping based on a distance function commonly available in practical schemes or modifying the scheme stencil to reflect the direction of strong coupling. The major conclusion is that accuracies of the node centered and the best cell-centered schemes are comparable at equivalent number of degrees of freedom.

  5. A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.

    2018-06-01

    A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.

  6. Uncertainty in Damage Detection, Dynamic Propagation and Just-in-Time Networks

    DTIC Science & Technology

    2015-08-03

    estimated parameter uncertainty in dynamic data sets; high order compact finite difference schemes for Helmholtz equations with discontinuous wave numbers...delay differential equations with a Gamma distributed delay. We found that with the same population size the histogram plots for the solution to the...schemes for Helmholtz equations with discontinuous wave numbers across interfaces. • We carried out numerical sensitivity analysis with respect to

  7. Research in computational fluid dynamics and analysis of algorithms

    NASA Technical Reports Server (NTRS)

    Gottlieb, David

    1992-01-01

    Recently, higher-order compact schemes have seen increasing use in the DNS (Direct Numerical Simulations) of the Navier-Stokes equations. Although they do not have the spatial resolution of spectral methods, they offer significant increases in accuracy over conventional second order methods. They can be used on any smooth grid, and do not have an overly restrictive CFL dependence as compared with the O(N(exp -2)) CFL dependence observed in Chebyshev spectral methods on finite domains. In addition, they are generally more robust and less costly than spectral methods. The issue of the relative cost of higher-order schemes (accuracy weighted against physical and numerical cost) is a far more complex issue, depending ultimately on what features of the solution are sought and how accurately they must be resolved. In any event, the further development of the underlying stability theory of these schemes is important. The approach of devising suitable boundary clusters and then testing them with various stability techniques (such as finding the norm) is entirely the wrong approach when dealing with high-order methods. Very seldom are high-order boundary closures stable, making them difficult to isolate. An alternative approach is to begin with a norm which satisfies all the stability criteria for the hyperbolic system, and look for the boundary closure forms which will match the norm exactly. This method was used recently by Strand to isolate stable boundary closure schemes for the explicit central fourth- and sixth-order schemes. The norm used was an energy norm mimicking the norm for the differential equations. Further research should be devoted to BC for high order schemes in order to make sure that the results obtained are reliable. The compact fourth order and sixth order finite difference scheme had been incorporated into a code to simulate flow past circular cylinders. This code will serve as a verification of the full spectral codes. A detailed stability analysis by Carpenter (from the fluid Mechanics Division) and Gottlieb gave analytic conditions for stability as well as asymptotic stability. This had been incorporated in the code in form of stable boundary conditions. Effects of the cylinder rotations had been studied. The results differ from the known theoretical results. We are in the middle of analyzing the results. A detailed analysis of the effects of the heating of the cylinder on the shedding frequency had been studied using the above schemes. It has been found that the shedding frequency decreases when the wire was heated. Experimental work is being carried out to affirm this result.

  8. Adaptive Numerical Dissipative Control in High Order Schemes for Multi-D Non-Ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.

    2004-01-01

    The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free of numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multi-resolution wavelets (WAV) (for the above types of flow feature). These filter approaches also provide a natural and efficient way for the minimization of Div(B) numerical error. The filter scheme consists of spatially sixth order or higher non-dissipative spatial difference operators as the base scheme for the inviscid flux derivatives. If necessary, a small amount of high order linear dissipation is used to remove spurious high frequency oscillations. For example, an eighth-order centered linear dissipation (AD8) might be included in conjunction with a spatially sixth-order base scheme. The inviscid difference operator is applied twice for the viscous flux derivatives. After the completion of a full time step of the base scheme step, the solution is adaptively filtered by the product of a 'flow detector' and the 'nonlinear dissipative portion' of a high-resolution shock-capturing scheme. In addition, the scheme independent wavelet flow detector can be used in conjunction with spatially compact, spectral or spectral element type of base schemes. The ACM and wavelet filter schemes using the dissipative portion of a second-order shock-capturing scheme with sixth-order spatial central base scheme for both the inviscid and viscous MHD flux derivatives and a fourth-order Runge-Kutta method are denoted.

  9. Unification of some advection schemes in two dimensions

    NASA Technical Reports Server (NTRS)

    Sidilkover, D.; Roe, P. L.

    1995-01-01

    The relationship between two approaches towards construction of genuinely two-dimensional upwind advection schemes is established. One of these approaches is of the control volume type applicable on structured cartesian meshes. It resulted in the compact high resolution schemes capable of maintaining second order accuracy in both homogeneous and inhomogeneous cases. Another one is the fluctuation splitting approach, which is well suited for triangular (and possibly) unstructured meshes. Understanding the relationship between these two approaches allows us to formulate here a new fluctuation splitting high resolution (i.e. possible use of artificial compression, while maintaining positivity property) scheme. This scheme is shown to be linearity preserving in inhomogeneous as well as homogeneous cases.

  10. A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Qiu, Jianxian

    2017-11-01

    In this paper a third order finite volume weighted essentially non-oscillatory scheme is designed for solving hyperbolic conservation laws on tetrahedral meshes. Comparing with other finite volume WENO schemes designed on tetrahedral meshes, the crucial advantages of such new WENO scheme are its simplicity and compactness with the application of only six unequal size spatial stencils for reconstructing unequal degree polynomials in the WENO type spatial procedures, and easy choice of the positive linear weights without considering the topology of the meshes. The original innovation of such scheme is to use a quadratic polynomial defined on a big central spatial stencil for obtaining third order numerical approximation at any points inside the target tetrahedral cell in smooth region and switch to at least one of five linear polynomials defined on small biased/central spatial stencils for sustaining sharp shock transitions and keeping essentially non-oscillatory property simultaneously. By performing such new procedures in spatial reconstructions and adopting a third order TVD Runge-Kutta time discretization method for solving the ordinary differential equation (ODE), the new scheme's memory occupancy is decreased and the computing efficiency is increased. So it is suitable for large scale engineering requirements on tetrahedral meshes. Some numerical results are provided to illustrate the good performance of such scheme.

  11. Nonlinear gravitational self-force: Field outside a small body

    NASA Astrophysics Data System (ADS)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  12. A High-Order Direct Solver for Helmholtz Equations with Neumann Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Zhuang, Yu

    1997-01-01

    In this study, a compact finite-difference discretization is first developed for Helmholtz equations on rectangular domains. Special treatments are then introduced for Neumann and Neumann-Dirichlet boundary conditions to achieve accuracy and separability. Finally, a Fast Fourier Transform (FFT) based technique is used to yield a fast direct solver. Analytical and experimental results show this newly proposed solver is comparable to the conventional second-order elliptic solver when accuracy is not a primary concern, and is significantly faster than that of the conventional solver if a highly accurate solution is required. In addition, this newly proposed fourth order Helmholtz solver is parallel in nature. It is readily available for parallel and distributed computers. The compact scheme introduced in this study is likely extendible for sixth-order accurate algorithms and for more general elliptic equations.

  13. Runge-Kutta methods combined with compact difference schemes for the unsteady Euler equations

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao

    1992-01-01

    Recent development using compact difference schemes to solve the Navier-Stokes equations show spectral-like accuracy. A study was made of the numerical characteristics of various combinations of the Runge-Kutta (RK) methods and compact difference schemes to calculate the unsteady Euler equations. The accuracy of finite difference schemes is assessed based on the evaluations of dissipative error. The objectives are reducing the numerical damping and, at the same time, preserving numerical stability. While this approach has tremendous success solving steady flows, numerical characteristics of unsteady calculations remain largely unclear. For unsteady flows, in addition to the dissipative errors, phase velocity and harmonic content of the numerical results are of concern. As a result of the discretization procedure, the simulated unsteady flow motions actually propagate in a dispersive numerical medium. Consequently, the dispersion characteristics of the numerical schemes which relate the phase velocity and wave number may greatly impact the numerical accuracy. The aim is to assess the numerical accuracy of the simulated results. To this end, the Fourier analysis is to provide the dispersive correlations of various numerical schemes. First, a detailed investigation of the existing RK methods is carried out. A generalized form of an N-step RK method is derived. With this generalized form, the criteria are derived for the three and four-step RK methods to be third and fourth-order time accurate for the non-linear equations, e.g., flow equations. These criteria are then applied to commonly used RK methods such as Jameson's 3-step and 4-step schemes and Wray's algorithm to identify the accuracy of the methods. For the spatial discretization, compact difference schemes are presented. The schemes are formulated in the operator-type to render themselves suitable for the Fourier analyses. The performance of the numerical methods is shown by numerical examples. These examples are detailed. described. The third case is a two-dimensional simulation of a Lamb vortex in an uniform flow. This calculation provides a realistic assessment of various finite difference schemes in terms of the conservation of the vortex strength and the harmonic content after travelling a substantial distance. The numerical implementation of Giles' non-refelctive equations coupled with the characteristic equations as the boundary condition is discussed in detail. Finally, the single vortex calculation is extended to simulate vortex pairing. For the distance between two vortices less than a threshold value, numerical results show crisp resolution of the vortex merging.

  14. Transport and energy selection of laser generated protons for postacceleration with a compact linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Londrillo, Pasquale; Rossi, Francesco; Giove, Dario; De Martinis, Carlo; Sumini, Marco

    2013-03-01

    Laser accelerated proton beams have a considerable potential for various applications including oncological therapy. However, the most consolidated target normal sheath acceleration regime based on irradiation of solid targets provides an exponential energy spectrum with a significant divergence. The low count number at the cutoff energy seriously limits at present its possible use. One realistic scenario for the near future is offered by hybrid schemes. The use of transport lines for collimation and energy selection has been considered. We present here a scheme based on a high field pulsed solenoid and collimators which allows one to select a beam suitable for injection at 30 MeV into a compact linac in order to double its energy while preserving a significant intensity. The results are based on a fully 3D simulation starting from laser acceleration.

  15. On the spline-based wavelet differentiation matrix

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1993-01-01

    The differentiation matrix for a spline-based wavelet basis is constructed. Given an n-th order spline basis it is proved that the differentiation matrix is accurate of order 2n + 2 when periodic boundary conditions are assumed. This high accuracy, or superconvergence, is lost when the boundary conditions are no longer periodic. Furthermore, it is shown that spline-based bases generate a class of compact finite difference schemes.

  16. Aeroacoustic simulation of a linear cascade by a prefactored compact scheme

    NASA Astrophysics Data System (ADS)

    Ghillani, Pietro

    This work documents the development of a three-dimensional high-order prefactored compact finite-difference solver for computational aeroacoustics (CAA) based on the inviscid Euler equations. This time explicit scheme is applied to representative problems of sound generation by flow interacting with solid boundaries. Four aeroacoustic problems are explored and the results validated against available reference analytical solution. Selected mesh convergence studies are conducted to determine the effective order of accuracy of the complete scheme. The first test case simulates the noise emitted by a still cylinder in an oscillating field. It provides a simple validation for the CAA-compatible solid wall condition used in the remainder of the work. The following test cases are increasingly complex versions of the turbomachinery rotor-stator interaction problem taken from NASA CAA workshops. In all the cases the results are compared against the available literature. The numerical method features some appreciable contributions to computational aeroacoustics. A reduced data exchange technique for parallel computations is implemented, which requires the exchange of just two values for each boundary node, independently of the size of the zone overlap. A modified version of the non-reflecting buffer layer by Chen is used to allow aerodynamic perturbations at the through flow boundaries. The Giles subsonic boundary conditions are extended to three-dimensional curvilinear coordinates. These advances have enabled to resolve the aerodynamic noise generation and near-field propagation on a representative cascade geometry with a time-marching scheme, with accuracy similar to spectral methods..

  17. Quasi-disjoint pentadiagonal matrix systems for the parallelization of compact finite-difference schemes and filters

    NASA Astrophysics Data System (ADS)

    Kim, Jae Wook

    2013-05-01

    This paper proposes a novel systematic approach for the parallelization of pentadiagonal compact finite-difference schemes and filters based on domain decomposition. The proposed approach allows a pentadiagonal banded matrix system to be split into quasi-disjoint subsystems by using a linear-algebraic transformation technique. As a result the inversion of pentadiagonal matrices can be implemented within each subdomain in an independent manner subject to a conventional halo-exchange process. The proposed matrix transformation leads to new subdomain boundary (SB) compact schemes and filters that require three halo terms to exchange with neighboring subdomains. The internode communication overhead in the present approach is equivalent to that of standard explicit schemes and filters based on seven-point discretization stencils. The new SB compact schemes and filters demand additional arithmetic operations compared to the original serial ones. However, it is shown that the additional cost becomes sufficiently low by choosing optimal sizes of their discretization stencils. Compared to earlier published results, the proposed SB compact schemes and filters successfully reduce parallelization artifacts arising from subdomain boundaries to a level sufficiently negligible for sophisticated aeroacoustic simulations without degrading parallel efficiency. The overall performance and parallel efficiency of the proposed approach are demonstrated by stringent benchmark tests.

  18. Higher order explicit symmetric integrators for inseparable forms of coordinates and momenta

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wu, Xin; Huang, Guoqing; Liu, Fuyao

    2016-06-01

    Pihajoki proposed the extended phase-space second-order explicit symmetric leapfrog methods for inseparable Hamiltonian systems. On the basis of this work, we survey a critical problem on how to mix the variables in the extended phase space. Numerical tests show that sequent permutations of coordinates and momenta can make the leapfrog-like methods yield the most accurate results and the optimal long-term stabilized error behaviour. We also present a novel method to construct many fourth-order extended phase-space explicit symmetric integration schemes. Each scheme represents the symmetric production of six usual second-order leapfrogs without any permutations. This construction consists of four segments: the permuted coordinates, triple product of the usual second-order leapfrog without permutations, the permuted momenta and the triple product of the usual second-order leapfrog without permutations. Similarly, extended phase-space sixth, eighth and other higher order explicit symmetric algorithms are available. We used several inseparable Hamiltonian examples, such as the post-Newtonian approach of non-spinning compact binaries, to show that one of the proposed fourth-order methods is more efficient than the existing methods; examples include the fourth-order explicit symplectic integrators of Chin and the fourth-order explicit and implicit mixed symplectic integrators of Zhong et al. Given a moderate choice for the related mixing and projection maps, the extended phase-space explicit symplectic-like methods are well suited for various inseparable Hamiltonian problems. Samples of these problems involve the algorithmic regularization of gravitational systems with velocity-dependent perturbations in the Solar system and post-Newtonian Hamiltonian formulations of spinning compact objects.

  19. A finite-difference method for the variable coefficient Poisson equation on hierarchical Cartesian meshes

    NASA Astrophysics Data System (ADS)

    Raeli, Alice; Bergmann, Michel; Iollo, Angelo

    2018-02-01

    We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations.

  20. Multigrid method for the equilibrium equations of elasticity using a compact scheme

    NASA Technical Reports Server (NTRS)

    Taasan, S.

    1986-01-01

    A compact difference scheme is derived for treating the equilibrium equations of elasticity. The scheme is inconsistent and unstable. A multigrid method which takes into account these properties is described. The solution of the discrete equations, up to the level of discretization errors, is obtained by this method in just two multigrid cycles.

  1. Passive and active plasma deceleration for the compact disposal of electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonatto, A., E-mail: abonatto@lbl.gov; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 700040-020; Schroeder, C. B.

    2015-08-15

    Plasma-based decelerating schemes are investigated as compact alternatives for the disposal of high-energy beams (beam dumps). Analytical solutions for the energy loss of electron beams propagating in passive and active (laser-driven) schemes are derived. These solutions, along with numerical modeling, are used to investigate the evolution of the electron distribution, including energy chirp and total beam energy. In the active beam dump scheme, a laser-driver allows a more homogeneous beam energy extraction and drastically reduces the energy chirp observed in the passive scheme. These concepts could benefit applications requiring overall compactness, such as transportable light sources, or facilities operating atmore » high beam power.« less

  2. High-Order Accurate Solutions to the Helmholtz Equation in the Presence of Boundary Singularities

    NASA Astrophysics Data System (ADS)

    Britt, Darrell Steven, Jr.

    Problems of time-harmonic wave propagation arise in important fields of study such as geological surveying, radar detection/evasion, and aircraft design. These often involve highfrequency waves, which demand high-order methods to mitigate the dispersion error. We propose a high-order method for computing solutions to the variable-coefficient inhomogeneous Helmholtz equation in two dimensions on domains bounded by piecewise smooth curves of arbitrary shape with a finite number of boundary singularities at known locations. We utilize compact finite difference (FD) schemes on regular structured grids to achieve highorder accuracy due to their efficiency and simplicity, as well as the capability to approximate variable-coefficient differential operators. In this work, a 4th-order compact FD scheme for the variable-coefficient Helmholtz equation on a Cartesian grid in 2D is derived and tested. The well known limitation of finite differences is that they lose accuracy when the boundary curve does not coincide with the discretization grid, which is a severe restriction on the geometry of the computational domain. Therefore, the algorithm presented in this work combines high-order FD schemes with the method of difference potentials (DP), which retains the efficiency of FD while allowing for boundary shapes that are not aligned with the grid without sacrificing the accuracy of the FD scheme. Additionally, the theory of DP allows for the universal treatment of the boundary conditions. One of the significant contributions of this work is the development of an implementation that accommodates general boundary conditions (BCs). In particular, Robin BCs with discontinuous coefficients are studied, for which we introduce a piecewise parameterization of the boundary curve. Problems with discontinuities in the boundary data itself are also studied. We observe that the design convergence rate suffers whenever the solution loses regularity due to the boundary conditions. This is because the FD scheme is only consistent for classical solutions of the PDE. For this reason, we implement the method of singularity subtraction as a means for restoring the design accuracy of the scheme in the presence of singularities at the boundary. While this method is well studied for low order methods and for problems in which singularities arise from the geometry (e.g., corners), we adapt it to our high-order scheme for curved boundaries via a conformal mapping and show that it can also be used to restore accuracy when the singularity arises from the BCs rather than the geometry. Altogether, the proposed methodology for 2D boundary value problems is computationally efficient, easily handles a wide class of boundary conditions and boundary shapes that are not aligned with the discretization grid, and requires little modification for solving new problems.

  3. MHD simulation of transition process from the magneto-rotational instability to magnetic turbulence by using a high-order MHD simulation scheme

    NASA Astrophysics Data System (ADS)

    Hirai, K.; Katoh, Y.; Terada, N.; Kawai, S.

    2016-12-01

    In accretion disks, magneto-rotational instability (MRI; Balbus & Hawley, 1991) makes the disk gas in the magnetic turbulent state and drives efficient mass accretion into a central star. MRI drives turbulence through the evolution of the parasitic instability (PI; Goodman & Xu, 1994), which is related to both Kelvin-Helmholtz (K-H) instability and magnetic reconnection. The wave number vector of PI is strongly affected by both magnetic diffusivity and fluid viscosity (Pessah, 2010). This fact makes MHD simulation of MRI difficult, because we need to employ the numerical diffusivity for treating discontinuities in compressible MHD simulation schemes. Therefore, it is necessary to use an MHD scheme that has both high-order accuracy so as to resolve MRI driven turbulence and small numerical diffusivity enough to treat discontinuities. We have originally developed an MHD code by employing the scheme proposed by Kawai (2013). This scheme focuses on resolving turbulence accurately by using a high-order compact difference scheme (Lele, 1992), and meanwhile, the scheme treats discontinuities by using the localized artificial diffusivity method (Kawai, 2013). Our code also employs the pipeline algorithm (Matsuura & Kato, 2007) for MPI parallelization without diminishing the accuracy of the compact difference scheme. We carry out a 3-dimensional ideal MHD simulation with a net vertical magnetic field in the local shearing box disk model. We use 256x256x128 grids. Simulation results show that the spatially averaged turbulent stress induced by MRI linearly grows until around 2.8 orbital periods, and decreases after the saturation. We confirm the strong enhancement of the K-H mode PI at a timing just before the saturation, identified by the enhancement of its anisotropic wavenumber spectra in the 2-dimensional wavenumber space. The wave number of the maximum growth of PI reproduced in the simulation result is larger than the linear analysis. This discrepancy is explained by the simulation result that a shear flow created by MRI locally becomes thinner and faster due to interactions between antiparallel vortices induced by K-H mode PI, and this structure induces small scale waves which break the shear flow itself. We report the results of the simulation, and discuss how the saturation amplitude of MRI is determined.

  4. A robust H.264/AVC video watermarking scheme with drift compensation.

    PubMed

    Jiang, Xinghao; Sun, Tanfeng; Zhou, Yue; Wang, Wan; Shi, Yun-Qing

    2014-01-01

    A robust H.264/AVC video watermarking scheme for copyright protection with self-adaptive drift compensation is proposed. In our scheme, motion vector residuals of macroblocks with the smallest partition size are selected to hide copyright information in order to hold visual impact and distortion drift to a minimum. Drift compensation is also implemented to reduce the influence of watermark to the most extent. Besides, discrete cosine transform (DCT) with energy compact property is applied to the motion vector residual group, which can ensure robustness against intentional attacks. According to the experimental results, this scheme gains excellent imperceptibility and low bit-rate increase. Malicious attacks with different quantization parameters (QPs) or motion estimation algorithms can be resisted efficiently, with 80% accuracy on average after lossy compression.

  5. A Robust H.264/AVC Video Watermarking Scheme with Drift Compensation

    PubMed Central

    Sun, Tanfeng; Zhou, Yue; Shi, Yun-Qing

    2014-01-01

    A robust H.264/AVC video watermarking scheme for copyright protection with self-adaptive drift compensation is proposed. In our scheme, motion vector residuals of macroblocks with the smallest partition size are selected to hide copyright information in order to hold visual impact and distortion drift to a minimum. Drift compensation is also implemented to reduce the influence of watermark to the most extent. Besides, discrete cosine transform (DCT) with energy compact property is applied to the motion vector residual group, which can ensure robustness against intentional attacks. According to the experimental results, this scheme gains excellent imperceptibility and low bit-rate increase. Malicious attacks with different quantization parameters (QPs) or motion estimation algorithms can be resisted efficiently, with 80% accuracy on average after lossy compression. PMID:24672376

  6. Compactness of viral genomes: effect of disperse and localized random mutations

    NASA Astrophysics Data System (ADS)

    Lošdorfer Božič, Anže; Micheletti, Cristian; Podgornik, Rudolf; Tubiana, Luca

    2018-02-01

    Genomes of single-stranded RNA viruses have evolved to optimize several concurrent properties. One of them is the architecture of their genomic folds, which must not only feature precise structural elements at specific positions, but also allow for overall spatial compactness. The latter was shown to be disrupted by random synonymous mutations, a disruption which can consequently negatively affect genome encapsidation. In this study, we use three mutation schemes with different degrees of locality to mutate the genomes of phage MS2 and Brome Mosaic virus in order to understand the observed sensitivity of the global compactness of their folds. We find that mutating local stretches of their genomes’ sequence or structure is less disruptive to their compactness compared to inducing randomly-distributed mutations. Our findings are indicative of a mechanism for the conservation of compactness acting on a global scale of the genomes, and have several implications for understanding the interplay between local and global architecture of viral RNA genomes.

  7. Scale-Free Compact Routing Schemes in Networks of Low Doubling Dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konjevod, Goran; Richa, Andréa W.; Xia, Donglin

    In this work, we consider compact routing schemes in networks of low doubling dimension, where the doubling dimension is the least value α such that any ball in the network can be covered by at most 2 α balls of half radius. There are two variants of routing-scheme design: (i) labeled (name-dependent) routing, in which the designer is allowed to rename the nodes so that the names (labels) can contain additional routing information, for example, topological information; and (ii) name-independent routing, which works on top of the arbitrary original node names in the network, that is, the node names aremore » independent of the routing scheme. In this article, given any constant ε ϵ (0, 1) and an n-node edge-weighted network of doubling dimension α ϵ O(loglog n), we present —a (1 + ε)-stretch labeled compact routing scheme with Γlog n-bit routing labels, O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node; —a (9 + ε)-stretch name-independent compact routing scheme with O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node. In addition, we prove a lower bound: any name-independent routing scheme with o(n (ε/60)2) bits of storage at each node has stretch no less than 9 - ε for any ε ϵ (0, 8). Therefore, our name-independent routing scheme achieves asymptotically optimal stretch with polylogarithmic storage at each node and packet headers. Note that both schemes are scale-free in the sense that their space requirements do not depend on the normalized diameter Δ of the network. Finally, we also present a simpler nonscale-free (9 + ε)-stretch name-independent compact routing scheme with improved space requirements if Δ is polynomial in n.« less

  8. Scale-Free Compact Routing Schemes in Networks of Low Doubling Dimension

    DOE PAGES

    Konjevod, Goran; Richa, Andréa W.; Xia, Donglin

    2016-06-15

    In this work, we consider compact routing schemes in networks of low doubling dimension, where the doubling dimension is the least value α such that any ball in the network can be covered by at most 2 α balls of half radius. There are two variants of routing-scheme design: (i) labeled (name-dependent) routing, in which the designer is allowed to rename the nodes so that the names (labels) can contain additional routing information, for example, topological information; and (ii) name-independent routing, which works on top of the arbitrary original node names in the network, that is, the node names aremore » independent of the routing scheme. In this article, given any constant ε ϵ (0, 1) and an n-node edge-weighted network of doubling dimension α ϵ O(loglog n), we present —a (1 + ε)-stretch labeled compact routing scheme with Γlog n-bit routing labels, O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node; —a (9 + ε)-stretch name-independent compact routing scheme with O(log 2 n/loglog n)-bit packet headers, and ((1/ε) O(α) log 3 n)-bit routing information at each node. In addition, we prove a lower bound: any name-independent routing scheme with o(n (ε/60)2) bits of storage at each node has stretch no less than 9 - ε for any ε ϵ (0, 8). Therefore, our name-independent routing scheme achieves asymptotically optimal stretch with polylogarithmic storage at each node and packet headers. Note that both schemes are scale-free in the sense that their space requirements do not depend on the normalized diameter Δ of the network. Finally, we also present a simpler nonscale-free (9 + ε)-stretch name-independent compact routing scheme with improved space requirements if Δ is polynomial in n.« less

  9. a Cell Vertex Algorithm for the Incompressible Navier-Stokes Equations on Non-Orthogonal Grids

    NASA Astrophysics Data System (ADS)

    Jessee, J. P.; Fiveland, W. A.

    1996-08-01

    The steady, incompressible Navier-Stokes (N-S) equations are discretized using a cell vertex, finite volume method. Quadrilateral and hexahedral meshes are used to represent two- and three-dimensional geometries respectively. The dependent variables include the Cartesian components of velocity and pressure. Advective fluxes are calculated using bounded, high-resolution schemes with a deferred correction procedure to maintain a compact stencil. This treatment insures bounded, non-oscillatory solutions while maintaining low numerical diffusion. The mass and momentum equations are solved with the projection method on a non-staggered grid. The coupling of the pressure and velocity fields is achieved using the Rhie and Chow interpolation scheme modified to provide solutions independent of time steps or relaxation factors. An algebraic multigrid solver is used for the solution of the implicit, linearized equations.A number of test cases are anlaysed and presented. The standard benchmark cases include a lid-driven cavity, flow through a gradual expansion and laminar flow in a three-dimensional curved duct. Predictions are compared with data, results of other workers and with predictions from a structured, cell-centred, control volume algorithm whenever applicable. Sensitivity of results to the advection differencing scheme is investigated by applying a number of higher-order flux limiters: the MINMOD, MUSCL, OSHER, CLAM and SMART schemes. As expected, studies indicate that higher-order schemes largely mitigate the diffusion effects of first-order schemes but also shown no clear preference among the higher-order schemes themselves with respect to accuracy. The effect of the deferred correction procedure on global convergence is discussed.

  10. Multiple-correction hybrid k-exact schemes for high-order compressible RANS-LES simulations on fully unstructured grids

    NASA Astrophysics Data System (ADS)

    Pont, Grégoire; Brenner, Pierre; Cinnella, Paola; Maugars, Bruno; Robinet, Jean-Christophe

    2017-12-01

    A Godunov's type unstructured finite volume method suitable for highly compressible turbulent scale-resolving simulations around complex geometries is constructed by using a successive correction technique. First, a family of k-exact Godunov schemes is developed by recursively correcting the truncation error of the piecewise polynomial representation of the primitive variables. The keystone of the proposed approach is a quasi-Green gradient operator which ensures consistency on general meshes. In addition, a high-order single-point quadrature formula, based on high-order approximations of the successive derivatives of the solution, is developed for flux integration along cell faces. The proposed family of schemes is compact in the algorithmic sense, since it only involves communications between direct neighbors of the mesh cells. The numerical properties of the schemes up to fifth-order are investigated, with focus on their resolvability in terms of number of mesh points required to resolve a given wavelength accurately. Afterwards, in the aim of achieving the best possible trade-off between accuracy, computational cost and robustness in view of industrial flow computations, we focus more specifically on the third-order accurate scheme of the family, and modify locally its numerical flux in order to reduce the amount of numerical dissipation in vortex-dominated regions. This is achieved by switching from the upwind scheme, mostly applied in highly compressible regions, to a fourth-order centered one in vortex-dominated regions. An analytical switch function based on the local grid Reynolds number is adopted in order to warrant numerical stability of the recentering process. Numerical applications demonstrate the accuracy and robustness of the proposed methodology for compressible scale-resolving computations. In particular, supersonic RANS/LES computations of the flow over a cavity are presented to show the capability of the scheme to predict flows with shocks, vortical structures and complex geometries.

  11. On the superconvergence of Galerkin methods for hyperbolic IBVP

    NASA Technical Reports Server (NTRS)

    Gottlieb, David; Gustafsson, Bertil; Olsson, Pelle; Strand, BO

    1993-01-01

    Finite element Galerkin methods for periodic first order hyperbolic equations exhibit superconvergence on uniform grids at the nodes, i.e., there is an error estimate 0(h(sup 2r)) instead of the expected approximation order 0(h(sup r)). It will be shown that no matter how the approximating subspace S(sup h) is chosen, the superconvergence property is lost if there are characteristics leaving the domain. The implications of this result when constructing compact implicit difference schemes is also discussed.

  12. Evaluation of Euler fluxes by a high-order CFD scheme: shock instability

    NASA Astrophysics Data System (ADS)

    Tu, Guohua; Zhao, Xiaohui; Mao, Meiliang; Chen, Jianqiang; Deng, Xiaogang; Liu, Huayong

    2014-05-01

    The construction of Euler fluxes is an important step in shock-capturing/upwind schemes. It is well known that unsuitable fluxes are responsible for many shock anomalies, such as the carbuncle phenomenon. Three kinds of flux vector splittings (FVSs) as well as three kinds of flux difference splittings (FDSs) are evaluated for the shock instability by a fifth-order weighted compact nonlinear scheme. The three FVSs are Steger-Warming splitting, van Leer splitting and kinetic flux vector splitting (KFVS). The three FDSs are Roe's splitting, advection upstream splitting method (AUSM) type splitting and Harten-Lax-van Leer (HLL) type splitting. Numerical results indicate that FVSs and high dissipative FDSs undergo a relative lower risk on the shock instability than that of low dissipative FDSs. However, none of the fluxes evaluated in the present study can entirely avoid the shock instability. Generally, the shock instability may be caused by any of the following factors: low dissipation, high Mach number, unsuitable grid distribution, large grid aspect ratio, and the relative shock-internal flow state (or position) between upstream and downstream shock waves. It comes out that the most important factor is the relative shock-internal state. If the shock-internal state is closer to the downstream state, the computation is at higher susceptibility to the shock instability. Wall-normal grid distribution has a greater influence on the shock instability than wall-azimuthal grid distribution because wall-normal grids directly impact on the shock-internal position. High shock intensity poses a high risk on the shock instability, but its influence is not as much as the shock-internal state. Large grid aspect ratio is also a source of the shock instability. Some results of a second-order scheme and a first-order scheme are also given. The comparison between the high-order scheme and the two low-order schemes indicates that high-order schemes are at a higher risk of the shock instability. Adding an entropy fix is very helpful in suppressing the shock instability for the two low-order schemes. When the high-order scheme is used, the entropy fix still works well for Roe's flux, but its effect on the Steger-Warming flux is trivial and not much clear.

  13. Compact Plasma Accelerator for Micropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    There is a need for a low power, light-weight (compact), high specific impulse electric propulsion device to satisfy mission requirements for microsatellite (1 to 20 kg) class missions. Satisfying these requirements entails addressing the general problem of generating a sufficiently dense plasma within a relatively small volume and then accelerating it. In the work presented here, the feasibility of utilizing a magnetic cusp to generate a dense plasma over small length scales of order 1 mm is investigated. This approach could potentially mitigate scaling issues associated with conventional ion thruster plasma containment schemes. Plume and discharge characteristics were documented using a Faraday probe and a retarding potential analyzer.

  14. A space-time discretization procedure for wave propagation problems

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1989-01-01

    Higher order compact algorithms are developed for the numerical simulation of wave propagation by using the concept of a discrete dispersion relation. The dispersion relation is the imprint of any linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion relation by examining the process by which locally plane waves propagate through a chosen grid. The exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that involve only three or five spatial grid points. These algorithms are subject to the same restrictions that govern the use of dispersion relations in the constructions of asymptotic expansions to nonlinear evolution equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3, and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.

  15. Computations of Complex Three-Dimensional Turbulent Free Jets

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.

    1997-01-01

    Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-sections are simulated with a finite-difference numerical method. The full Navier- Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporary discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jets. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets.

  16. Numerical simulation of turbulence in the presence of shear

    NASA Technical Reports Server (NTRS)

    Shaanan, S.; Ferziger, J. H.; Reynolds, W. C.

    1975-01-01

    The numerical calculations are presented of the large eddy structure of turbulent flows, by use of the averaged Navier-Stokes equations, where averages are taken over spatial regions small compared to the size of the computational grid. The subgrid components of motion are modeled by a local eddy-viscosity model. A new finite-difference scheme is proposed to represent the nonlinear average advective term which has fourth-order accuracy. This scheme exhibits several advantages over existing schemes with regard to the following: (1) the scheme is compact as it extends only one point away in each direction from the point to which it is applied; (2) it gives better resolution for high wave-number waves in the solution of Poisson equation, and (3) it reduces programming complexity and computation time. Examples worked out in detail are the decay of isotropic turbulence, homogeneous turbulent shear flow, and homogeneous turbulent shear flow with system rotation.

  17. The Bassi Rebay 1 scheme is a special case of the Symmetric Interior Penalty formulation for discontinuous Galerkin discretisations with Gauss-Lobatto points

    NASA Astrophysics Data System (ADS)

    Manzanero, Juan; Rueda-Ramírez, Andrés M.; Rubio, Gonzalo; Ferrer, Esteban

    2018-06-01

    In the discontinuous Galerkin (DG) community, several formulations have been proposed to solve PDEs involving second-order spatial derivatives (e.g. elliptic problems). In this paper, we show that, when the discretisation is restricted to the usage of Gauss-Lobatto points, there are important similarities between two common choices: the Bassi-Rebay 1 (BR1) method, and the Symmetric Interior Penalty (SIP) formulation. This equivalence enables the extrapolation of properties from one scheme to the other: a sharper estimation of the minimum penalty parameter for the SIP stability (compared to the more general estimate proposed by Shahbazi [1]), more efficient implementations of the BR1 scheme, and the compactness of the BR1 method for straight quadrilateral and hexahedral meshes.

  18. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes

    NASA Astrophysics Data System (ADS)

    Don, Wai-Sun; Borges, Rafael

    2013-10-01

    In the reconstruction step of (2r-1) order weighted essentially non-oscillatory conservative finite difference schemes (WENO) for solving hyperbolic conservation laws, nonlinear weights αk and ωk, such as the WENO-JS weights by Jiang et al. and the WENO-Z weights by Borges et al., are designed to recover the formal (2r-1) order (optimal order) of the upwinded central finite difference scheme when the solution is sufficiently smooth. The smoothness of the solution is determined by the lower order local smoothness indicators βk in each substencil. These nonlinear weight formulations share two important free parameters in common: the power p, which controls the amount of numerical dissipation, and the sensitivity ε, which is added to βk to avoid a division by zero in the denominator of αk. However, ε also plays a role affecting the order of accuracy of WENO schemes, especially in the presence of critical points. It was recently shown that, for any design order (2r-1), ε should be of Ω(Δx2) (Ω(Δxm) means that ε⩾CΔxm for some C independent of Δx, as Δx→0) for the WENO-JS scheme to achieve the optimal order, regardless of critical points. In this paper, we derive an alternative proof of the sufficient condition using special properties of βk. Moreover, it is unknown if the WENO-Z scheme should obey the same condition on ε. Here, using same special properties of βk, we prove that in fact the optimal order of the WENO-Z scheme can be guaranteed with a much weaker condition ε=Ω(Δxm), where m(r,p)⩾2 is the optimal sensitivity order, regardless of critical points. Both theoretical results are confirmed numerically on smooth functions with arbitrary order of critical points. This is a highly desirable feature, as illustrated with the Lax problem and the Mach 3 shock-density wave interaction of one dimensional Euler equations, for a smaller ε allows a better essentially non-oscillatory shock capturing as it does not over-dominate over the size of βk. We also show that numerical oscillations can be further attenuated by increasing the power parameter 2⩽p⩽r-1, at the cost of increased numerical dissipation. Compact formulas of βk for WENO schemes are also presented.

  19. Compact Spreader Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placidi, M.; Jung, J. -Y.; Ratti, A.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibilitymore » when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.« less

  20. Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations. Part 1; Viscous Fluxes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.

    2009-01-01

    Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and approximately mapped least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Results from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The second class of tests are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes are less accurate, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to the complexity of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping of the surface anisotropy or modifying the scheme stencil to reflect the direction of strong coupling.

  1. Two-dimensional mesh embedding for Galerkin B-spline methods

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Moser, Robert D.

    1995-01-01

    A number of advantages result from using B-splines as basis functions in a Galerkin method for solving partial differential equations. Among them are arbitrary order of accuracy and high resolution similar to that of compact schemes but without the aliasing error. This work develops another property, namely, the ability to treat semi-structured embedded or zonal meshes for two-dimensional geometries. This can drastically reduce the number of grid points in many applications. Both integer and non-integer refinement ratios are allowed. The report begins by developing an algorithm for choosing basis functions that yield the desired mesh resolution. These functions are suitable products of one-dimensional B-splines. Finally, test cases for linear scalar equations such as the Poisson and advection equation are presented. The scheme is conservative and has uniformly high order of accuracy throughout the domain.

  2. Post-acceleration of laser driven protons with a compact high field linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  3. Advances in the Application of High-order Techniques in Simulation of Multi-disciplinary Phenomena

    NASA Astrophysics Data System (ADS)

    Gaitonde, D. V.; Visbal, M. R.

    2003-03-01

    This paper describes the development of a comprehensive high-fidelity algorithmic framework to simulate the three-dimensional fields associated with multi-disciplinary physics. A wide range of phenomena is considered, from aero-acoustics and turbulence to electromagnetics, non-linear fluid-structure interactions, and magnetogasdynamics. The scheme depends primarily on "spectral-like," up to sixth-order accurate compact-differencing and up to tenth-order filtering techniques. The tightly coupled procedure suppresses numerical instabilities commonly encountered with high-order methods on non-uniform meshes, near computational boundaries or in the simulation of nonlinear dynamics. Particular emphasis is placed on developing the proper metric evaluation procedures for three-dimensional moving and curvilinear meshes so that the advantages of higher-order schemes are retained in practical calculations. A domain-decomposition strategy based on finite-sized overlap regions and interface boundary treatments enables the development of highly scalable solvers. The utility of the method to simulate problems governed by widely disparate governing equations is demonstrated with several examples encompassing vortex dynamics, wave scattering, electro-fluid plasma interactions, and panel flutter.

  4. Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levi, Michele; Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de

    2016-01-01

    The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there ismore » an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.« less

  5. Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levi, Michele; Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de

    2016-01-01

    We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail themore » evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation.« less

  6. Exploring the free-energy landscape of a short peptide using an average force

    NASA Astrophysics Data System (ADS)

    Chipot, Christophe; Hénin, Jérôme

    2005-12-01

    The reversible folding of deca-alanine is chosen as a test case for characterizing a method that uses an adaptive biasing force (ABF) to escape from the minima and overcome the barriers of the free-energy landscape. This approach relies on the continuous estimation of a biasing force that yields a Hamiltonian in which no average force is exerted along the ordering parameter ξ. Optimizing the parameters that control how the ABF is applied, the method is shown to be extremely effective when a nonequivocal ordering parameter can be defined to explore the folding pathway of the peptide. Starting from a β-turn motif and restraining ξ to a region of the conformational space that extends from the α-helical state to an ensemble of extended structures, the ABF scheme is successful in folding the peptide chain into a compact α helix. Sampling of this conformation is, however, marginal when the range of ξ values embraces arrangements of greater compactness, hence demonstrating the inherent limitations of free-energy methods when ambiguous ordering parameters are utilized.

  7. On the Conservation and Convergence to Weak Solutions of Global Schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Shu, Chi-Wang

    2001-01-01

    In this paper we discuss the issue of conservation and convergence to weak solutions of several global schemes, including the commonly used compact schemes and spectral collocation schemes, for solving hyperbolic conservation laws. It is shown that such schemes, if convergent boundedly almost everywhere, will converge to weak solutions. The results are extensions of the classical Lax-Wendroff theorem concerning conservative schemes.

  8. Thermal management methods for compact high power LED arrays

    NASA Astrophysics Data System (ADS)

    Christensen, Adam; Ha, Minseok; Graham, Samuel

    2007-09-01

    The package and system level temperature distributions of a high power (>1W) light emitting diode (LED) array has been investigated using numerical heat flow models. For this analysis, a thermal resistor network model was combined with a 3D finite element submodel of an LED structure to predict system and die level temperatures. The impact of LED array density, LED power density, and active versus passive cooling methods on device operation were calculated. In order to help understand the role of various thermal resistances in cooling such compact arrays, the thermal resistance network was analyzed in order to estimate the contributions from materials as well as active and passive cooling schemes. An analysis of thermal stresses and residual stresses in the die are also calculated based on power dissipation and convection heat transfer coefficients. Results show that the thermal stress in the GaN layer are compressive which can impact the band gap and performance of the LEDs.

  9. Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements

    NASA Astrophysics Data System (ADS)

    Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso

    2017-09-01

    This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.

  10. Computational unsteady aerodynamics for lifting surfaces

    NASA Technical Reports Server (NTRS)

    Edwards, John W.

    1988-01-01

    Two dimensional problems are solved using numerical techniques. Navier-Stokes equations are studied both in the vorticity-stream function formulation which appears to be the optimal choice for two dimensional problems, using a storage approach, and in the velocity pressure formulation which minimizes the number of unknowns in three dimensional problems. Analysis shows that compact centered conservative second order schemes for the vorticity equation are the most robust for high Reynolds number flows. Serious difficulties remain in the choice of turbulent models, to keep reasonable CPU efficiency.

  11. Comparison of Implicit Collocation Methods for the Heat Equation

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules; Jezequel, Fabienne; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    We combine a high-order compact finite difference scheme to approximate spatial derivatives arid collocation techniques for the time component to numerically solve the two dimensional heat equation. We use two approaches to implement the collocation methods. The first one is based on an explicit computation of the coefficients of polynomials and the second one relies on differential quadrature. We compare them by studying their merits and analyzing their numerical performance. All our computations, based on parallel algorithms, are carried out on the CRAY SV1.

  12. Progress in multi-dimensional upwind differencing

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1992-01-01

    Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.

  13. Frequency and time-domain inspiral templates for comparable mass compact binaries in eccentric orbits

    NASA Astrophysics Data System (ADS)

    Tanay, Sashwat; Haney, Maria; Gopakumar, Achamveedu

    2016-03-01

    Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the postcircular scheme of Yunes et al. [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN-order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN-consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasicircular time-domain TaylorT4 approximant at 2PN order. New features include the use of rational functions in orbital eccentricity to implement the 1.5PN-order tail contributions to the far-zone fluxes. This leads to closed form PN-accurate differential equations for evolving eccentric orbits, and the resulting time-domain approximant is accurate and efficient to handle initial orbital eccentricities ≤0.9 . Preliminary GW data analysis implications are probed using match estimates.

  14. Recovery Schemes for Primitive Variables in General-relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Siegel, Daniel M.; Mösta, Philipp; Desai, Dhruv; Wu, Samantha

    2018-05-01

    General-relativistic magnetohydrodynamic (GRMHD) simulations are an important tool to study a variety of astrophysical systems such as neutron star mergers, core-collapse supernovae, and accretion onto compact objects. A conservative GRMHD scheme numerically evolves a set of conservation equations for “conserved” quantities and requires the computation of certain primitive variables at every time step. This recovery procedure constitutes a core part of any conservative GRMHD scheme and it is closely tied to the equation of state (EOS) of the fluid. In the quest to include nuclear physics, weak interactions, and neutrino physics, state-of-the-art GRMHD simulations employ finite-temperature, composition-dependent EOSs. While different schemes have individually been proposed, the recovery problem still remains a major source of error, failure, and inefficiency in GRMHD simulations with advanced microphysics. The strengths and weaknesses of the different schemes when compared to each other remain unclear. Here we present the first systematic comparison of various recovery schemes used in different dynamical spacetime GRMHD codes for both analytic and tabulated microphysical EOSs. We assess the schemes in terms of (i) speed, (ii) accuracy, and (iii) robustness. We find large variations among the different schemes and that there is not a single ideal scheme. While the computationally most efficient schemes are less robust, the most robust schemes are computationally less efficient. More robust schemes may require an order of magnitude more calls to the EOS, which are computationally expensive. We propose an optimal strategy of an efficient three-dimensional Newton–Raphson scheme and a slower but more robust one-dimensional scheme as a fall-back.

  15. Simulating superradiance from higher-order-intensity-correlation measurements: Single atoms

    NASA Astrophysics Data System (ADS)

    Wiegner, R.; Oppel, S.; Bhatti, D.; von Zanthier, J.; Agarwal, G. S.

    2015-09-01

    Superradiance typically requires preparation of atoms in highly entangled multiparticle states, the so-called Dicke states. In this paper we discuss an alternative route where we prepare such states from initially uncorrelated atoms by a measurement process. By measuring higher-order intensity-intensity correlations we demonstrate that we can simulate the emission characteristics of Dicke superradiance by starting with atoms in the fully excited state. We describe the essence of the scheme by first investigating two excited atoms. Here we demonstrate how via Hanbury Brown and Twiss type of measurements we can produce Dicke superradiance and subradiance displayed commonly with two atoms in the single excited symmetric and antisymmetric Dicke states, respectively. We thereafter generalize the scheme to arbitrary numbers of atoms and detectors, and explain in detail the mechanism which leads to this result. The approach shows that the Hanbury Brown and Twiss type of intensity interference and the phenomenon of Dicke superradiance can be regarded as two sides of the same coin. We also present a compact result for the characteristic functional which generates all order intensity-intensity correlations.

  16. Compact scheme for systems of equations applied to fundamental problems of mechanics of continua

    NASA Technical Reports Server (NTRS)

    Klimkowski, Jerzy Z.

    1990-01-01

    Compact scheme formulation was used in the treatment of boundary conditions for a system of coupled diffusion and Poisson equations. Models and practical solutions of specific engineering problems arising in solid mechanics, chemical engineering, heat transfer and fuid mechanics are described and analyzed for efficiency and accuracy. Only 2-D cases are discussed and a new method of numerical treatment of boundary conditions common in the fundamental problems of mechanics of continua is presented.

  17. Exploring Model Assumptions Through Three Dimensional Mixing Simulations Using a High-order Hydro Option in the Ares Code

    NASA Astrophysics Data System (ADS)

    White, Justin; Olson, Britton; Morgan, Brandon; McFarland, Jacob; Lawrence Livermore National Laboratory Team; University of Missouri-Columbia Team

    2015-11-01

    This work presents results from a large eddy simulation of a high Reynolds number Rayleigh-Taylor instability and Richtmyer-Meshkov instability. A tenth-order compact differencing scheme on a fixed Eulerian mesh is utilized within the Ares code developed at Lawrence Livermore National Laboratory. (LLNL) We explore the self-similar limit of the mixing layer growth in order to evaluate the k-L-a Reynolds Averaged Navier Stokes (RANS) model (Morgan and Wickett, Phys. Rev. E, 2015). Furthermore, profiles of turbulent kinetic energy, turbulent length scale, mass flux velocity, and density-specific-volume correlation are extracted in order to aid the creation a high fidelity LES data set for RANS modeling. Prepared by LLNL under Contract DE-AC52-07NA27344.

  18. Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems

    NASA Astrophysics Data System (ADS)

    Ge, Yongbin; Cao, Fujun

    2011-05-01

    In this paper, a multigrid method based on the high order compact (HOC) difference scheme on nonuniform grids, which has been proposed by Kalita et al. [J.C. Kalita, A.K. Dass, D.C. Dalal, A transformation-free HOC scheme for steady convection-diffusion on non-uniform grids, Int. J. Numer. Methods Fluids 44 (2004) 33-53], is proposed to solve the two-dimensional (2D) convection diffusion equation. The HOC scheme is not involved in any grid transformation to map the nonuniform grids to uniform grids, consequently, the multigrid method is brand-new for solving the discrete system arising from the difference equation on nonuniform grids. The corresponding multigrid projection and interpolation operators are constructed by the area ratio. Some boundary layer and local singularity problems are used to demonstrate the superiority of the present method. Numerical results show that the multigrid method with the HOC scheme on nonuniform grids almost gets as equally efficient convergence rate as on uniform grids and the computed solution on nonuniform grids retains fourth order accuracy while on uniform grids just gets very poor solution for very steep boundary layer or high local singularity problems. The present method is also applied to solve the 2D incompressible Navier-Stokes equations using the stream function-vorticity formulation and the numerical solutions of the lid-driven cavity flow problem are obtained and compared with solutions available in the literature.

  19. Solution of the one-dimensional consolidation theory equation with a pseudospectral method

    USGS Publications Warehouse

    Sepulveda, N.; ,

    1991-01-01

    The one-dimensional consolidation theory equation is solved for an aquifer system using a pseudospectral method. The spatial derivatives are computed using Fast Fourier Transforms and the time derivative is solved using a fourth-order Runge-Kutta scheme. The computer model calculates compaction based on the void ratio changes accumulated during the simulated periods of time. Compactions and expansions resulting from groundwater withdrawals and recharges are simulated for two observation wells in Santa Clara Valley and two in San Joaquin Valley, California. Field data previously published are used to obtain mean values for the soil grain density and the compression index and to generate depth-dependent profiles for hydraulic conductivity and initial void ratio. The water-level plots for the wells studied were digitized and used to obtain the time dependent profiles of effective stress.

  20. Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jing; Yun, Peter; Tian, Yuan

    2014-03-07

    A scheme for a Ramsey-coherent population trapping (CPT) atomic clock that eliminates the acousto-optic modulator (AOM) is proposed and experimentally studied. Driven by a periodically microwave modulated current, the vertical-cavity surface-emitting laser emits a continuous beam that switches between monochromatic and multichromatic modes. Ramsey-CPT interference has been studied with this mode-switching beam. In eliminating the AOM, which is used to generate pulsed laser in conventional Ramsey-CPT atomic clock, the physics package of the proposed scheme is virtually the same as that of a conventional compact CPT atomic clock, although the resource budget for the electronics will slightly increase as amore » microwave switch should be added. By evaluating and comparing experimentally recorded signals from the two Ramsey-CPT schemes, the short-term frequency stability of the proposed scheme was found to be 46% better than the scheme with AOM. The experimental results suggest that the implementation of a compact Ramsey-CPT atomic clock promises better frequency stability.« less

  1. An upwind method for the solution of the 3D Euler and Navier-Stokes equations on adaptively refined meshes

    NASA Astrophysics Data System (ADS)

    Aftosmis, Michael J.

    1992-10-01

    A new node based upwind scheme for the solution of the 3D Navier-Stokes equations on adaptively refined meshes is presented. The method uses a second-order upwind TVD scheme to integrate the convective terms, and discretizes the viscous terms with a new compact central difference technique. Grid adaptation is achieved through directional division of hexahedral cells in response to evolving features as the solution converges. The method is advanced in time with a multistage Runge-Kutta time stepping scheme. Two- and three-dimensional examples establish the accuracy of the inviscid and viscous discretization. These investigations highlight the ability of the method to produce crisp shocks, while accurately and economically resolving viscous layers. The representation of these and other structures is shown to be comparable to that obtained by structured methods. Further 3D examples demonstrate the ability of the adaptive algorithm to effectively locate and resolve multiple scale features in complex 3D flows with many interacting, viscous, and inviscid structures.

  2. Numerical methods for incompressible viscous flows with engineering applications

    NASA Technical Reports Server (NTRS)

    Rose, M. E.; Ash, R. L.

    1988-01-01

    A numerical scheme has been developed to solve the incompressible, 3-D Navier-Stokes equations using velocity-vorticity variables. This report summarizes the development of the numerical approximation schemes for the divergence and curl of the velocity vector fields and the development of compact schemes for handling boundary and initial boundary value problems.

  3. Crab Cavity and Cryomodule Prototype Development for the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H; Ciovati, G; Clemens, W A

    2011-03-01

    We review the single-cell, superconducting crab cavity designs for the short-pulse x-ray (SPX) project at the Advanced Photon Source (APS). The 'on-cell' waveguide scheme is expected to have a more margin for the impedance budget of the APS storage ring, as well as offering a more compact design compared with the original design consisting of a low order mode damping waveguide on the beam pipe. We will report recent fabrication progress, cavity test performance on original and alternate prototypes, and concept designs and analysis for various cryomodule components.

  4. Discretisation Schemes for Level Sets of Planar Gaussian Fields

    NASA Astrophysics Data System (ADS)

    Beliaev, D.; Muirhead, S.

    2018-01-01

    Smooth random Gaussian functions play an important role in mathematical physics, a main example being the random plane wave model conjectured by Berry to give a universal description of high-energy eigenfunctions of the Laplacian on generic compact manifolds. Our work is motivated by questions about the geometry of such random functions, in particular relating to the structure of their nodal and level sets. We study four discretisation schemes that extract information about level sets of planar Gaussian fields. Each scheme recovers information up to a different level of precision, and each requires a maximum mesh-size in order to be valid with high probability. The first two schemes are generalisations and enhancements of similar schemes that have appeared in the literature (Beffara and Gayet in Publ Math IHES, 2017. https://doi.org/10.1007/s10240-017-0093-0; Mischaikow and Wanner in Ann Appl Probab 17:980-1018, 2007); these give complete topological information about the level sets on either a local or global scale. As an application, we improve the results in Beffara and Gayet (2017) on Russo-Seymour-Welsh estimates for the nodal set of positively-correlated planar Gaussian fields. The third and fourth schemes are, to the best of our knowledge, completely new. The third scheme is specific to the nodal set of the random plane wave, and provides global topological information about the nodal set up to `visible ambiguities'. The fourth scheme gives a way to approximate the mean number of excursion domains of planar Gaussian fields.

  5. A compact bipolar pulse-forming network-Marx generator based on pulse transformers.

    PubMed

    Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao

    2013-11-01

    A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.

  6. One-step formation of straight nanostripes from a mammal lipid-oleamide directly on highly oriented pyrolytic graphite.

    PubMed

    Zhang, Renjie; Möhwald, Helmuth; Kurth, Dirk G

    2009-02-17

    Hierarchical nanostructures are obtained directly on highly oriented pyrolytic graphite (HOPG) by spin coating of dilute chloroform solution of 9-Z-octadecenamide (oleamide), a natural lipid with cis-CdC- conformation, existing in the cerebrospinal fluid of mammal animals and being an additive for medical use and food packaging. Straight separated nanostripes with a length of 70-300 nm exist in the topmost layer and compact nanostripes in the bottom layer contacting HOPG. Compact nanostripes have a periodicity spacing of 3.8 nm, indicating H-bonding between two rows of oleamide molecules. The orientation of the hierarchical nanostructures differs by n60 degrees+/-8 degrees (n=1 or 2), reflecting the epitaxial ordering along theHOPGsubstrate. The nanostripes are stable against annealing.Amolecular packing scheme for the nanostructures is proposed, where the -C=C bond angle in oleamide is 120 degrees and the plane of the carbon skeleton lies parallel to the HOPG substrate. Nanostripes in the topmost layer are formed from separated rows of oleamide molecules, due to the short-range surface potential of the substrate. The scheme involves direct influence ofHOPGon the orientation of oleamide molecules to form nanostripes without any purposely added saturated alkanes and H-bonds between amide groups in adjacent two rows of oleamide molecules.

  7. Unsteady jet flow computation towards noise prediction

    NASA Technical Reports Server (NTRS)

    Soh, Woo-Yung

    1994-01-01

    An attempt has been made to combine a wave solution method and an unsteady flow computation to produce an integrated aeroacoustic code to predict far-field jet noise. An axisymmetric subsonic jet is considered for this purpose. A fourth order space accurate Pade compact scheme is used for the unsteady Navier-Stokes solution. A Kirchhoff surface integral for the wave equation is employed through the use of an imaginary surface which is a circular cylinder enclosing the jet at a distance. Information such as pressure and its time and normal derivatives is provided on the surface. The sound prediction is performed side by side with the jet flow computation. Retarded time is also taken into consideration since the cylinder body is not acoustically compact. The far-field sound pressure has the directivity and spectra show that low frequency peaks shift toward higher frequency region as the observation angle increases from the jet flow axis.

  8. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer

    NASA Astrophysics Data System (ADS)

    Xu, Chuanfu; Deng, Xiaogang; Zhang, Lilun; Fang, Jianbin; Wang, Guangxue; Jiang, Yi; Cao, Wei; Che, Yonggang; Wang, Yongxian; Wang, Zhenghua; Liu, Wei; Cheng, Xinghua

    2014-12-01

    Programming and optimizing complex, real-world CFD codes on current many-core accelerated HPC systems is very challenging, especially when collaborating CPUs and accelerators to fully tap the potential of heterogeneous systems. In this paper, with a tri-level hybrid and heterogeneous programming model using MPI + OpenMP + CUDA, we port and optimize our high-order multi-block structured CFD software HOSTA on the GPU-accelerated TianHe-1A supercomputer. HOSTA adopts two self-developed high-order compact definite difference schemes WCNS and HDCS that can simulate flows with complex geometries. We present a dual-level parallelization scheme for efficient multi-block computation on GPUs and perform particular kernel optimizations for high-order CFD schemes. The GPU-only approach achieves a speedup of about 1.3 when comparing one Tesla M2050 GPU with two Xeon X5670 CPUs. To achieve a greater speedup, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present a novel scheme to balance the loads between the store-poor GPU and the store-rich CPU. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per TianHe-1A node for HOSTA by 2.3×, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Further, to scale HOSTA on TianHe-1A, we propose a gather/scatter optimization to minimize PCI-e data transfer times for ghost and singularity data of 3D grid blocks, and overlap the collaborative computation and communication as far as possible using some advanced CUDA and MPI features. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 TianHe-1A nodes. With our method, we have successfully simulated an EET high-lift airfoil configuration containing 800M cells and China's large civil airplane configuration containing 150M cells. To our best knowledge, those are the largest-scale CPU-GPU collaborative simulations that solve realistic CFD problems with both complex configurations and high-order schemes.

  9. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chuanfu, E-mail: xuchuanfu@nudt.edu.cn; Deng, Xiaogang; Zhang, Lilun

    Programming and optimizing complex, real-world CFD codes on current many-core accelerated HPC systems is very challenging, especially when collaborating CPUs and accelerators to fully tap the potential of heterogeneous systems. In this paper, with a tri-level hybrid and heterogeneous programming model using MPI + OpenMP + CUDA, we port and optimize our high-order multi-block structured CFD software HOSTA on the GPU-accelerated TianHe-1A supercomputer. HOSTA adopts two self-developed high-order compact definite difference schemes WCNS and HDCS that can simulate flows with complex geometries. We present a dual-level parallelization scheme for efficient multi-block computation on GPUs and perform particular kernel optimizations formore » high-order CFD schemes. The GPU-only approach achieves a speedup of about 1.3 when comparing one Tesla M2050 GPU with two Xeon X5670 CPUs. To achieve a greater speedup, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present a novel scheme to balance the loads between the store-poor GPU and the store-rich CPU. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per TianHe-1A node for HOSTA by 2.3×, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Further, to scale HOSTA on TianHe-1A, we propose a gather/scatter optimization to minimize PCI-e data transfer times for ghost and singularity data of 3D grid blocks, and overlap the collaborative computation and communication as far as possible using some advanced CUDA and MPI features. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 TianHe-1A nodes. With our method, we have successfully simulated an EET high-lift airfoil configuration containing 800M cells and China's large civil airplane configuration containing 150M cells. To our best knowledge, those are the largest-scale CPU–GPU collaborative simulations that solve realistic CFD problems with both complex configurations and high-order schemes.« less

  10. [A Compact Source of Terahertz Radiation Based on Interaction of Electrons in à Quantum Well with an Electromagnetic Wave of a Corrugated Waveguide].

    PubMed

    Shchurova, L Yu; Namiot, V A; Sarkisyan, D R

    2015-01-01

    Coherent sources of electromagnetic waves in the terahertz frequency range are very promising for various applications, including biology and medicine. In this paper we propose a scheme of a compact terahertz source, in which terahertz radiation is generated due to effective interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. We have shown that the generation of electromagnetic waves with a frequency of 1012 sec(-1) and an output power of up to 25. mW is possible in the proposed scheme.

  11. An Improved Pathological Brain Detection System Based on Two-Dimensional PCA and Evolutionary Extreme Learning Machine.

    PubMed

    Nayak, Deepak Ranjan; Dash, Ratnakar; Majhi, Banshidhar

    2017-12-07

    Pathological brain detection has made notable stride in the past years, as a consequence many pathological brain detection systems (PBDSs) have been proposed. But, the accuracy of these systems still needs significant improvement in order to meet the necessity of real world diagnostic situations. In this paper, an efficient PBDS based on MR images is proposed that markedly improves the recent results. The proposed system makes use of contrast limited adaptive histogram equalization (CLAHE) to enhance the quality of the input MR images. Thereafter, two-dimensional PCA (2DPCA) strategy is employed to extract the features and subsequently, a PCA+LDA approach is used to generate a compact and discriminative feature set. Finally, a new learning algorithm called MDE-ELM is suggested that combines modified differential evolution (MDE) and extreme learning machine (ELM) for segregation of MR images as pathological or healthy. The MDE is utilized to optimize the input weights and hidden biases of single-hidden-layer feed-forward neural networks (SLFN), whereas an analytical method is used for determining the output weights. The proposed algorithm performs optimization based on both the root mean squared error (RMSE) and norm of the output weights of SLFNs. The suggested scheme is benchmarked on three standard datasets and the results are compared against other competent schemes. The experimental outcomes show that the proposed scheme offers superior results compared to its counterparts. Further, it has been noticed that the proposed MDE-ELM classifier obtains better accuracy with compact network architecture than conventional algorithms.

  12. Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Long, Gui Lu

    2015-03-01

    We propose two compact, economic, and scalable schemes for implementing optical controlled-phase-flip and controlled-controlled-phase-flip gates by using the input-output process of a single-sided cavity strongly coupled to a single nitrogen-vacancy-center defect in diamond. Additional photonic qubits, necessary for procedures based on the parity-check measurement or controlled-path and merging gates, are not employed in our schemes. In the controlled-path gate, the paths of the target photon are conditionally controlled by the control photon, and these two paths can be merged back into one by using a merging gate. Only one half-wave plate is employed in our scheme for the controlled-phase-flip gate. Compared with the conventional synthesis procedures for constructing a controlled-controlled-phase-flip gate, the cost of which is two controlled-path gates and two merging gates, or six controlled-not gates, our scheme is more compact and simpler. Our schemes could be performed with a high fidelity and high efficiency with current achievable experimental techniques.

  13. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.

    PubMed

    Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit

    2013-11-01

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Compact low-cost detection electronics for optical coherence imaging

    PubMed Central

    Akcay, A. C.; Lee, K. S.; Furenlid, L. R.; Costa, M. A.; Rolland, J. P.

    2015-01-01

    A compact and low-cost detection electronics scheme for optical coherence imaging is demonstrated. The performance of the designed electronics is analyzed in comparison to a commercial lock-in amplifier of equal bandwidth. Images of a fresh-onion sample are presented for each detection configuration. PMID:26617422

  15. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    NASA Astrophysics Data System (ADS)

    Chen, H. J.; Gao, B. T.; Zhang, X. H.; Deng2, Z. Q.

    2006-10-01

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot.

  16. Compact electrochemical sensor system and method for field testing for metals in saliva or other fluids

    DOEpatents

    Lin, Yuehe; Bennett, Wendy D.; Timchalk, Charles; Thrall, Karla D.

    2004-03-02

    Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating "plug and play" concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform. Another integration scheme was based on a multilayer lamination method utilizing stacking modules with different functionality to achieve a compact microanalytical device. Application of the microanalytical system for detection of lead in, for example, river water and saliva samples using stripping voltammetry is described.

  17. Numerical Methods Using B-Splines

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Merriam, Marshal (Technical Monitor)

    1997-01-01

    The seminar will discuss (1) The current range of applications for which B-spline schemes may be appropriate (2) The property of high-resolution and the relationship between B-spline and compact schemes (3) Comparison between finite-element, Hermite finite element and B-spline schemes (4) Mesh embedding using B-splines (5) A method for the incompressible Navier-Stokes equations in curvilinear coordinates using divergence-free expansions.

  18. SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures

    PubMed Central

    Chen, Qun

    2013-01-01

    Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes. PMID:23818830

  19. SGC tests for influence of material composition on compaction characteristic of asphalt mixtures.

    PubMed

    Chen, Qun; Li, Yuzhi

    2013-01-01

    Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes.

  20. High Order Discontinuous Gelerkin Methods for Convection Dominated Problems with Application to Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    2000-01-01

    This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. On the analysis side, we have studied the efficient and stable discontinuous Galerkin framework for small second derivative terms, for example in Navier-Stokes equations, and also for related equations such as the Hamilton-Jacobi equations. This is a truly local discontinuous formulation where derivatives are considered as new variables. On the applied side, we have implemented and tested the efficiency of different approaches numerically. Related issues in high order ENO and WENO finite difference methods and spectral methods have also been investigated. Jointly with Hu, we have presented a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the RungeKutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method. Jointly with Hu, we have constructed third and fourth order WENO schemes on two dimensional unstructured meshes (triangles) in the finite volume formulation. The third order schemes are based on a combination of linear polynomials with nonlinear weights, and the fourth order schemes are based on combination of quadratic polynomials with nonlinear weights. We have addressed several difficult issues associated with high order WENO schemes on unstructured mesh, including the choice of linear and nonlinear weights, what to do with negative weights, etc. Numerical examples are shown to demonstrate the accuracies and robustness of the methods for shock calculations. Jointly with P. Montarnal, we have used a recently developed energy relaxation theory by Coquel and Perthame and high order weighted essentially non-oscillatory (WENO) schemes to simulate the Euler equations of real gas. The main idea is an energy decomposition under the form epsilon = epsilon(sub 1) + epsilon(sub 2), where epsilon(sub 1) is associated with a simpler pressure law (gamma)-law in this paper) and the nonlinear deviation epsilon(sub 2) is convected with the flow. A relaxation process is performed for each time step to ensure that the original pressure law is satisfied. The necessary characteristic decomposition for the high order WENO schemes is performed on the characteristic fields based on the epsilon(sub l) gamma-law. The algorithm only calls for the original pressure law once per grid point per time step, without the need to compute its derivatives or any Riemann solvers. Both one and two dimensional numerical examples are shown to illustrate the effectiveness of this approach.

  1. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    DOE PAGES

    Zhang, Xiaomei; Tajima, Toshiki; Farinella, Deano; ...

    2016-10-18

    Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In additionmore » to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10–100) MeV. Here, our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.« less

  2. Artificial boundary conditions for certain evolution PDEs with cubic nonlinearity for non-compactly supported initial data

    NASA Astrophysics Data System (ADS)

    Vaibhav, V.

    2011-04-01

    The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrödinger (NLS) equation, ∂tu+Lu-iχ|u|2u=0 with L≡-i∂x2, and the equation obtained by letting L≡∂x3. The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness.

  3. Holographic Compact Disk Read-Only Memories

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi

    1996-01-01

    Compact disk read-only memories (CD-ROMs) of proposed type store digital data in volume holograms instead of in surface differentially reflective elements. Holographic CD-ROM consist largely of parts similar to those used in conventional CD-ROMs. However, achieves 10 or more times data-storage capacity and throughput by use of wavelength-multiplexing/volume-hologram scheme.

  4. A fourth order Euler/Navier-Stokes prediction method for the aerodynamics and aeroelasticity of hovering rotor blades

    NASA Astrophysics Data System (ADS)

    Smith, Marilyn Jones

    Some of the computational issues relating to the development of a three-dimensional fourth-order compact Euler/Navier-Stokes methodology for rotary wing flows and its coupling with an elastic rotor blade beam structural model have been explored. The compact Euler/NavierStokes method is used to predict the aerodynamic loads on an isolated rotor blade. Because the scheme is fourth-order, fewer grid nodes are necessary to predict loads with the same accuracy as traditional second order methodologies on finer grids. Grid and numerical parameter optimizations were performed to examine the changes in the predictive capabilities of the higher-order scheme. Comparisons were made with experimental data for a rotor using NACA 0012 airfoil sections and a rectangular planform with no twist. Simulations for both lifting and non-lifting configurations at various tip Mach numbers were performed. This Euler/Navier-Stokes methodology can be applied to rotor blades with either rigid-blade or elastic-beam-structural models to determine the steady-state response in hovering flight. The blade is represented by a geometrically nonlinear beam model which accounts for coupled flap bending, lead-lag bending and torsion. Moderately large displacements and rotations due to structural deformations can be simulated. The analysis has been performed for blade configurations having uniform mass and stiffness, no twist, and no chordwise offsets of the elastic and tension axes, as well as the center of mass. The results are compared with a panel method coupled with the same structural dynamics model. Computations have been made to predict the aerodynamic deflections for the rotor in hover. A starting solution using initial deflections predicted by aeroelastic analyses with a two-dimensional aerodynamic model was investigated. The present Euler/Navier-Stokes method using a momentum wake and a contracting vortex wake shows the impact on the aeroelastic deflections of a three-dimensional aerodynamic module which includes rotational and viscous effects, particularly at higher collective pitch angles. The differences in the aeroelastic predictions using fully coupled and loosely coupled aerodynamic analyses are examined. The induced wake plays a critical role in determining the final equilibrium tip deflections.

  5. Discretizing singular point sources in hyperbolic wave propagation problems

    DOE PAGES

    Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; ...

    2016-06-01

    Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as themore » number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.« less

  6. A second order discontinuous Galerkin fast sweeping method for Eikonal equations

    NASA Astrophysics Data System (ADS)

    Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai

    2008-09-01

    In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xuenan; Zhang Yundong; Tian He

    We propose to employ the storage of light in a dynamically tuned add-drop resonator to realize an optical gyroscope of ultrahigh sensitivity and compact size. Taking the impact of the linewidth of incident light on the sensitivity into account, we investigate the effect of rotation on the propagation of a partially coherent light field in this dynamically tuned slow-light structure. It is demonstrated that the fundamental trade-off between the rotation-detection sensitivity and the linewidth will be overcome and the sensitivity-linewidth product will be enhanced by two orders of magnitude in comparison to that of the corresponding static slow-light structure. Furthermore,more » the optical gyroscope employing the storage of light in the dynamically tuned add-drop resonator can acquire ultrahigh sensitivity by extremely short fiber length without a high-performance laser source of narrow linewidth and a complex laser frequency stabilization system. Thus the proposal in this paper provides a promising and feasible scheme to realize highly sensitive and compact integrated optical gyroscopes by slow-light structures.« less

  8. Six dimensional X-ray Tensor Tomography with a compact laboratory setup

    NASA Astrophysics Data System (ADS)

    Sharma, Y.; Wieczorek, M.; Schaff, F.; Seyyedi, S.; Prade, F.; Pfeiffer, F.; Lasser, T.

    2016-09-01

    Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images with micrometer resolution. However, there is a trade-off between the smallest size of the structures that can be resolved and the measurable sample size. In this letter, we present an imaging method using a compact laboratory setup that reveals information about micrometer-sized structures within samples that are several orders of magnitudes larger. We combine the anisotropic dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimensions. The scattering tensor, thus obtained, encodes information about the orientation of micron-sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse acquisition schemes presented in this letter enable the measurement of the full scattering tensor at every spatial location and can be easily incorporated in a practical, commercially feasible laboratory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.

  9. VAVUQ, Python and Matlab freeware for Verification and Validation, Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Courtney, J. E.; Zamani, K.; Bombardelli, F. A.; Fleenor, W. E.

    2015-12-01

    A package of scripts is presented for automated Verification and Validation (V&V) and Uncertainty Quantification (UQ) for engineering codes that approximate Partial Differential Equations (PDFs). The code post-processes model results to produce V&V and UQ information. This information can be used to assess model performance. Automated information on code performance can allow for a systematic methodology to assess the quality of model approximations. The software implements common and accepted code verification schemes. The software uses the Method of Manufactured Solutions (MMS), the Method of Exact Solution (MES), Cross-Code Verification, and Richardson Extrapolation (RE) for solution (calculation) verification. It also includes common statistical measures that can be used for model skill assessment. Complete RE can be conducted for complex geometries by implementing high-order non-oscillating numerical interpolation schemes within the software. Model approximation uncertainty is quantified by calculating lower and upper bounds of numerical error from the RE results. The software is also able to calculate the Grid Convergence Index (GCI), and to handle adaptive meshes and models that implement mixed order schemes. Four examples are provided to demonstrate the use of the software for code and solution verification, model validation and uncertainty quantification. The software is used for code verification of a mixed-order compact difference heat transport solver; the solution verification of a 2D shallow-water-wave solver for tidal flow modeling in estuaries; the model validation of a two-phase flow computation in a hydraulic jump compared to experimental data; and numerical uncertainty quantification for 3D CFD modeling of the flow patterns in a Gust erosion chamber.

  10. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  11. High-Accuracy Comparison Between the Post-Newtonian and Self-Force Dynamics of Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc; Detweiler, Steven; Le Tiec, Alexandre; Whiting, Bernard F.

    The relativistic motion of a compact binary system moving in circular orbit is investigated using the post-Newtonian (PN) approximation and the perturbative self-force (SF) formalism. A particular gauge-invariant observable quantity is computed as a function of the binary's orbital frequency. The conservative effect induced by the gravitational SF is obtained numerically with high precision, and compared to the PN prediction developed to high order. The PN calculation involves the computation of the 3PN regularized metric at the location of the particle. Its divergent self-field is regularized by means of dimensional regularization. The poles ∝ {(d - 3)}^{-1} that occur within dimensional regularization at the 3PN order disappear from the final gauge-invariant result. The leading 4PN and next-to-leading 5PN conservative logarithmic contributions originating from gravitational wave tails are also obtained. Making use of these exact PN results, some previously unknown PN coefficients are measured up to the very high 7PN order by fitting to the numerical SF data. Using just the 2PN and new logarithmic terms, the value of the 3PN coefficient is also confirmed numerically with very high precision. The consistency of this cross-cultural comparison provides a crucial test of the very different regularization methods used in both SF and PN formalisms, and illustrates the complementarity of these approximation schemes when modeling compact binary systems.

  12. Post-Newtonian and numerical calculations of the gravitational self-force for circular orbits in the Schwarzschild geometry

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc; Detweiler, Steven; Le Tiec, Alexandre; Whiting, Bernard F.

    2010-03-01

    The problem of a compact binary system whose components move on circular orbits is addressed using two different approximation techniques in general relativity. The post-Newtonian (PN) approximation involves an expansion in powers of v/c≪1, and is most appropriate for small orbital velocities v. The perturbative self-force analysis requires an extreme mass ratio m1/m2≪1 for the components of the binary. A particular coordinate-invariant observable is determined as a function of the orbital frequency of the system using these two different approximations. The post-Newtonian calculation is pushed up to the third post-Newtonian (3PN) order. It involves the metric generated by two point particles and evaluated at the location of one of the particles. We regularize the divergent self-field of the particle by means of dimensional regularization. We show that the poles ∝(d-3)-1 appearing in dimensional regularization at the 3PN order cancel out from the final gauge invariant observable. The 3PN analytical result, through first order in the mass ratio, and the numerical self-force calculation are found to agree well. The consistency of this cross cultural comparison confirms the soundness of both approximations in describing compact binary systems. In particular, it provides an independent test of the very different regularization procedures invoked in the two approximation schemes.

  13. Embedded wavelet packet transform technique for texture compression

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-09-01

    A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.

  14. Finite spaces and schemes

    NASA Astrophysics Data System (ADS)

    Sancho de Salas, Fernando

    2017-12-01

    A ringed finite space is a ringed space whose underlying topological space is finite. The category of ringed finite spaces contains, fully faithfully, the category of finite topological spaces and the category of affine schemes. Any ringed space, endowed with a finite open covering, produces a ringed finite space. We introduce the notions of schematic finite space and schematic morphism, showing that they behave, with respect to quasi-coherence, like schemes and morphisms of schemes do. Finally, we construct a fully faithful and essentially surjective functor from a localization of a full subcategory of the category of schematic finite spaces and schematic morphisms to the category of quasi-compact and quasi-separated schemes.

  15. Development of a High-Order Navier-Stokes Solver Using Flux Reconstruction to Simulate Three-Dimensional Vortex Structures in a Curved Artery Model

    NASA Astrophysics Data System (ADS)

    Cox, Christopher

    Low-order numerical methods are widespread in academic solvers and ubiquitous in industrial solvers due to their robustness and usability. High-order methods are less robust and more complicated to implement; however, they exhibit low numerical dissipation and have the potential to improve the accuracy of flow simulations at a lower computational cost when compared to low-order methods. This motivates our development of a high-order compact method using Huynh's flux reconstruction scheme for solving unsteady incompressible flow on unstructured grids. We use Chorin's classic artificial compressibility formulation with dual time stepping to solve unsteady flow problems. In 2D, an implicit non-linear lower-upper symmetric Gauss-Seidel scheme with backward Euler discretization is used to efficiently march the solution in pseudo time, while a second-order backward Euler discretization is used to march in physical time. We verify and validate implementation of the high-order method coupled with our implicit time stepping scheme using both steady and unsteady incompressible flow problems. The current implicit time stepping scheme is proven effective in satisfying the divergence-free constraint on the velocity field in the artificial compressibility formulation. The high-order solver is extended to 3D and parallelized using MPI. Due to its simplicity, time marching for 3D problems is done explicitly. The feasibility of using the current implicit time stepping scheme for large scale three-dimensional problems with high-order polynomial basis still remains to be seen. We directly use the aforementioned numerical solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180-degree curved artery model. One of the most physiologically relevant forces within the cardiovascular system is the wall shear stress. This force is important because atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. The aim of this research as it relates to cardiovascular fluid dynamics is to predict the spatial and temporal evolution of vortical structures generated by secondary flows, as well as to assess the correlation between multiple vortex pairs and wall shear stress. We use a physiologically (pulsatile) relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter being motivated by the fact that flow upstream of a curved artery may not have sufficient straight entrance length to become fully developed. Under the two pulsatile inflow conditions, we characterize the morphology and evolution of various vortex pairs and their subsequent effect on relevant haemodynamic wall shear stress metrics.

  16. Force-Induced Unfolding of Fibronectin in the Extracellular Matrix of Living Cells

    PubMed Central

    Smith, Michael L; Gourdon, Delphine; Little, William C; Kubow, Kristopher E; Eguiluz, R. Andresen; Luna-Morris, Sheila; Vogel, Viola

    2007-01-01

    Whether mechanically unfolded fibronectin (Fn) is present within native extracellular matrix fibrils is controversial. Fn extensibility under the influence of cell traction forces has been proposed to originate either from the force-induced lengthening of an initially compact, folded quaternary structure as is found in solution (quaternary structure model, where the dimeric arms of Fn cross each other), or from the force-induced unfolding of type III modules (unfolding model). Clarification of this issue is central to our understanding of the structural arrangement of Fn within fibrils, the mechanism of fibrillogenesis, and whether cryptic sites, which are exposed by partial protein unfolding, can be exposed by cell-derived force. In order to differentiate between these two models, two fluorescence resonance energy transfer schemes to label plasma Fn were applied, with sensitivity to either compact-to-extended conformation (arm separation) without loss of secondary structure or compact-to-unfolded conformation. Fluorescence resonance energy transfer studies revealed that a significant fraction of fibrillar Fn within a three-dimensional human fibroblast matrix is partially unfolded. Complete relaxation of Fn fibrils led to a refolding of Fn. The compactly folded quaternary structure with crossed Fn arms, however, was never detected within extracellular matrix fibrils. We conclude that the resting state of Fn fibrils does not contain Fn molecules with crossed-over arms, and that the several-fold extensibility of Fn fibrils involves the unfolding of type III modules. This could imply that Fn might play a significant role in mechanotransduction processes. PMID:17914904

  17. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

  18. Experimental Satellite Quantum Communications

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-01

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER =4.6 % for a total link duration of 85 s. The mean photon number per pulse μsat leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  19. Development of a coupled level set and immersed boundary method for predicting dam break flows

    NASA Astrophysics Data System (ADS)

    Yu, C. H.; Sheu, Tony W. H.

    2017-12-01

    Dam-break flow over an immersed stationary object is investigated using a coupled level set (LS)/immersed boundary (IB) method developed in Cartesian grids. This approach adopts an improved interface preserving level set method which includes three solution steps and the differential-based interpolation immersed boundary method to treat fluid-fluid and solid-fluid interfaces, respectively. In the first step of this level set method, the level set function ϕ is advected by a pure advection equation. The intermediate step is performed to obtain a new level set value through a new smoothed Heaviside function. In the final solution step, a mass correction term is added to the re-initialization equation to ensure the new level set is a distance function and to conserve the mass bounded by the interface. For accurately calculating the level set value, the four-point upwinding combined compact difference (UCCD) scheme with three-point boundary combined compact difference scheme is applied to approximate the first-order derivative term shown in the level set equation. For the immersed boundary method, application of the artificial momentum forcing term at points in cells consisting of both fluid and solid allows an imposition of velocity condition to account for the presence of solid object. The incompressible Navier-Stokes solutions are calculated using the projection method. Numerical results show that the coupled LS/IB method can not only predict interface accurately but also preserve the mass conservation excellently for the dam-break flow.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, Akira; Iwashita, Yoshihisa; Souda, Hikaru

    A phase rotation scheme of laser-produced ions from a solid target by the application of a synchronized RF electric voltage with a pulsed laser has been experimentally investigated with the use of a 100 TW laser, J-KAREN at JAEA, KPSI. Up to now, energy peaks of up to around 2.0 MeV have been created with a FWHM of 2.6% with good reproducibility using a two-gap resonator of a quarter wave length with the same frequency as the source laser (approx80 MHz). It is also found that the position of the peak can be well controlled by adjusting the relative phasemore » between the RF electric field and the laser, which is very promising for real applications of such laser-produced protons. In order to also apply such a phase rotation system for higher energy protons (<200 MeV), a scheme to use a small linear accelerator (LINAC) with multi-gaps is proposed as a phase rotator. With multi-gap structure, alternating focusing between longitudinal and transverse degrees of freedoms can be realized. From the point of compactness and realizing a small focused spot, however, a scheme combining separate quadrupole magnets just before and after the RF cavity excited with the Wideroee mode, might be more effective. The scheme presented here will realize laser-produced ions (protons) with good reproducibility by combining with RF technology.« less

  1. Constraint damping for the Z4c formulation of general relativity

    NASA Astrophysics Data System (ADS)

    Weyhausen, Andreas; Bernuzzi, Sebastiano; Hilditch, David

    2012-01-01

    One possibility for avoiding constraint violation in numerical relativity simulations adopting free-evolution schemes is to modify the continuum evolution equations so that constraint violations are damped away. Gundlach et al. demonstrated that such a scheme damps low-amplitude, high-frequency constraint-violating modes exponentially for the Z4 formulation of general relativity. Here we analyze the effect of the damping scheme in numerical applications on a conformal decomposition of Z4. After reproducing the theoretically predicted damping rates of constraint violations in the linear regime, we explore numerical solutions not covered by the theoretical analysis. In particular we examine the effect of the damping scheme on low-frequency and on high-amplitude perturbations of flat spacetime as well and on the long-term dynamics of puncture and compact star initial data in the context of spherical symmetry. We find that the damping scheme is effective provided that the constraint violation is resolved on the numerical grid. On grid noise the combination of artificial dissipation and damping helps to suppress constraint violations. We find that care must be taken in choosing the damping parameter in simulations of puncture black holes. Otherwise the damping scheme can cause undesirable growth of the constraints, and even qualitatively incorrect evolutions. In the numerical evolution of a compact static star we find that the choice of the damping parameter is even more delicate, but may lead to a small decrease of constraint violation. For a large range of values it results in unphysical behavior.

  2. Quasi-periodic solutions to nonlinear beam equations on compact Lie groups with a multiplicative potential

    NASA Astrophysics Data System (ADS)

    Chen, Bochao; Gao, Yixian; Jiang, Shan; Li, Yong

    2018-06-01

    The goal of this work is to study the existence of quasi-periodic solutions to nonlinear beam equations with a multiplicative potential. The nonlinearity is required to only finitely differentiable and the frequency is along a pre-assigned direction. The result holds on any compact Lie group or homogeneous manifold with respect to a compact Lie group, which includes standard torus Td, special orthogonal group SO (d), special unitary group SU (d), spheres Sd and the real and complex Grassmannians. The proof is based on a differentiable Nash-Moser iteration scheme.

  3. A numerical study of the steady scalar convective diffusion equation for small viscosity

    NASA Technical Reports Server (NTRS)

    Giles, M. B.; Rose, M. E.

    1983-01-01

    A time-independent convection diffusion equation is studied by means of a compact finite difference scheme and numerical solutions are compared to the analytic inviscid solutions. The correct internal and external boundary layer behavior is observed, due to an inherent feature of the scheme which automatically produces upwind differencing in inviscid regions and the correct viscous behavior in viscous regions.

  4. Chem Ed Compacts

    ERIC Educational Resources Information Center

    Wolf, Walter A., Ed.

    1977-01-01

    Presents a convenient notation for powers of ten and logarithms, a demonstration of the nonstoichiometry of nickel oxide, a simplification for obtaining Russell-Saunders term symbols, and a scheme for biochemistry laboratory experiments. (SL)

  5. High-order Two-Fluid Plasma Solver for Direct Numerical Simulations of Magnetic Flows with Realistic Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Li, Zhaorui; Livescu, Daniel

    2017-11-01

    The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.

  6. A high order compact least-squares reconstructed discontinuous Galerkin method for the steady-state compressible flows on hybrid grids

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Zhang, Fan; Liu, Tiegang

    2018-06-01

    In this paper, a class of new high order reconstructed DG (rDG) methods based on the compact least-squares (CLS) reconstruction [23,24] is developed for simulating the two dimensional steady-state compressible flows on hybrid grids. The proposed method combines the advantages of the DG discretization with the flexibility of the compact least-squares reconstruction, which exhibits its superior potential in enhancing the level of accuracy and reducing the computational cost compared to the underlying DG methods with respect to the same number of degrees of freedom. To be specific, a third-order compact least-squares rDG(p1p2) method and a fourth-order compact least-squares rDG(p2p3) method are developed and investigated in this work. In this compact least-squares rDG method, the low order degrees of freedom are evolved through the underlying DG(p1) method and DG(p2) method, respectively, while the high order degrees of freedom are reconstructed through the compact least-squares reconstruction, in which the constitutive relations are built by requiring the reconstructed polynomial and its spatial derivatives on the target cell to conserve the cell averages and the corresponding spatial derivatives on the face-neighboring cells. The large sparse linear system resulted by the compact least-squares reconstruction can be solved relatively efficient when it is coupled with the temporal discretization in the steady-state simulations. A number of test cases are presented to assess the performance of the high order compact least-squares rDG methods, which demonstrates their potential to be an alternative approach for the high order numerical simulations of steady-state compressible flows.

  7. Progress towards the development of a source of entangled photons for Space

    NASA Astrophysics Data System (ADS)

    Fedrizzi, Alessandro; Jennewein, Thomas; Ursin, Rupert; Zeilinger, Anton

    2007-03-01

    Quantum entanglement offers exciting applications like quantum computing, quantum teleportation and quantum cryptography. Ground based quantum communication schemes in optical fibres however are limited to a distance of the order of ˜100 km. In order to extend this limit to a global scale we are working on the realization of an entanglement-based quantum communication transceiver for space deployment. Here we report on a compact, extremely bright source for polarization entangled photons meeting the scientific requirements for a potential space to ground optical link. The pair production rate exceeds 4*10̂6 pairs/s at just 20mW of laser diode pump power. Furthermore, we will present the results of various experiments proving the feasibility of quantum information in space, including a weak coherent pulse single-photon downlink from a LEO satellite and the distribution of entanglement over a 144km free space link, using ESAs optical ground station.

  8. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  9. Influence of temporary organic bond nature on the properties of compacts and ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditts, A., E-mail: ditts@tpu.ru; Revva, I., E-mail: revva@tpu.ru; Pogrebenkov, V.

    2016-01-15

    This work contains results of investigation of obtaining high thermally conductive ceramics from commercial powders of aluminum nitride and yttrium oxide by the method of monoaxial compaction of granulate. The principal scheme of preparation is proposed and technological properties of granulate are defined. Compaction conditions for simple items to use as heat removal in microelectronics and power electrical engineering have been established. Investigations of thermophysical properties of obtained ceramics and its structure by the XRD and SEM methods have been carried out. Ceramics with thermal conductivity from 172 to 174 W/m·K has been obtained as result of this work.

  10. FIBER AND INTEGRATED OPTICS: Compact fiber-optic compressor of ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Nikitin, S. P.; Onishchukov, G. I.; Fomichev, A. A.

    1992-02-01

    A theoretical design of a universal compact fiber-optic compressor based on a monochromator with a spherical mirror in the plane of its exit slit was considered. Ultrashort pulses emitted by an actively mode-locked YAG:Nd3+ laser, whose spectrum was broadened in a fiber-optic waveguide, were compressed experimentally to 2.7 ns. A universal compact compressor was developed: it produced 4-ns pulses with an average radiation power of about 1 W. The dimensions of this compressor were several times smaller than those of a traditional scheme using a diffraction grating to compress pulses having an initial duration of about 100 ns.

  11. Development and evaluation of statistical shape modeling for principal inner organs on torso CT images.

    PubMed

    Zhou, Xiangrong; Xu, Rui; Hara, Takeshi; Hirano, Yasushi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Kido, Shoji; Fujita, Hiroshi

    2014-07-01

    The shapes of the inner organs are important information for medical image analysis. Statistical shape modeling provides a way of quantifying and measuring shape variations of the inner organs in different patients. In this study, we developed a universal scheme that can be used for building the statistical shape models for different inner organs efficiently. This scheme combines the traditional point distribution modeling with a group-wise optimization method based on a measure called minimum description length to provide a practical means for 3D organ shape modeling. In experiments, the proposed scheme was applied to the building of five statistical shape models for hearts, livers, spleens, and right and left kidneys by use of 50 cases of 3D torso CT images. The performance of these models was evaluated by three measures: model compactness, model generalization, and model specificity. The experimental results showed that the constructed shape models have good "compactness" and satisfied the "generalization" performance for different organ shape representations; however, the "specificity" of these models should be improved in the future.

  12. Compact dry chemistry instruments.

    PubMed

    Terashima, K; Tatsumi, N

    1999-01-01

    Compact dry chemistry instruments are designed for use in point-of-care-testing (POCT). These instruments have a number of advantages, including light weight, compactness, ease of operation, and the ability to provide accurate results in a short time with a very small sample volume. On the other hand, reagent costs are high compared to liquid method. Moreover, differences in accuracy have been found between dry chemistry and the liquid method in external quality assessment scheme. This report examines reagent costs and shows how the total running costs associated with dry chemistry are actually lower than those associated with the liquid method. This report also describes methods for minimizing differences in accuracy between dry chemistry and the liquid method. Use of these measures is expected to increase the effectiveness of compact dry chemistry instruments in POCT applications.

  13. Numerical Study of Boundary Layer Interaction with Shocks: Method Improvement and Test Computation

    NASA Technical Reports Server (NTRS)

    Adams, N. A.

    1995-01-01

    The objective is the development of a high-order and high-resolution method for the direct numerical simulation of shock turbulent-boundary-layer interaction. Details concerning the spatial discretization of the convective terms can be found in Adams and Shariff (1995). The computer code based on this method as introduced in Adams (1994) was formulated in Cartesian coordinates and thus has been limited to simple rectangular domains. For more general two-dimensional geometries, as a compression corner, an extension to generalized coordinates is necessary. To keep the requirements or limitations for grid generation low, the extended formulation should allow for non-orthogonal grids. Still, for simplicity and cost efficiency, periodicity can be assumed in one cross-flow direction. For easy vectorization, the compact-ENO coupling algorithm as used in Adams (1994) treated whole planes normal to the derivative direction with the ENO scheme whenever at least one point of this plane satisfied the detection criterion. This is apparently too restrictive for more general geometries and more complex shock patterns. Here we introduce a localized compact-ENO coupling algorithm, which is efficient as long as the overall number of grid points treated by the ENO scheme is small compared to the total number of grid points. Validation and test computations with the final code are performed to assess the efficiency and suitability of the computer code for the problems of interest. We define a set of parameters where a direct numerical simulation of a turbulent boundary layer along a compression corner with reasonably fine resolution is affordable.

  14. Three-dimensional compact explicit-finite difference time domain scheme with density variation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takao; Maruta, Naoki

    2018-07-01

    In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.

  15. Use of a residual distribution Euler solver to study the occurrence of transonic flow in Wells turbine rotor blades

    NASA Astrophysics Data System (ADS)

    Henriques, J. C. C.; Gato, L. M. C.

    The aim of the present study is to investigate the occurrence of transonic flow in several cascade geometries and blade sections that have been considered in the design of Wells turbine rotor blades. The calculations were performed using an implicit Euler solver for two-dimensional flow. The numerical method uses a multi-dimensional upwind matrix residual distribution scheme formulated on a new symmetrized form of the Euler equations, both in time and in space, that decouples the entropy and the enthalpy equations. Second-order accurate steady-state solutions where obtained using a compact three-point stencil. The results show that unwanted transonic flow may occur in the turbine rotor at relatively low mean-flow Mach numbers.

  16. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection

    NASA Astrophysics Data System (ADS)

    Yang, Ruitao; Pollinger, Florian; Meiners-Hagen, Karl; Krystek, Michael; Tan, Jiubin; Bosse, Harald

    2015-08-01

    We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 × 10-7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications.

  17. Multigrid Method for Modeling Multi-Dimensional Combustion with Detailed Chemistry

    NASA Technical Reports Server (NTRS)

    Zheng, Xiaoqing; Liu, Chaoqun; Liao, Changming; Liu, Zhining; McCormick, Steve

    1996-01-01

    A highly accurate and efficient numerical method is developed for modeling 3-D reacting flows with detailed chemistry. A contravariant velocity-based governing system is developed for general curvilinear coordinates to maintain simplicity of the continuity equation and compactness of the discretization stencil. A fully-implicit backward Euler technique and a third-order monotone upwind-biased scheme on a staggered grid are used for the respective temporal and spatial terms. An efficient semi-coarsening multigrid method based on line-distributive relaxation is used as the flow solver. The species equations are solved in a fully coupled way and the chemical reaction source terms are treated implicitly. Example results are shown for a 3-D gas turbine combustor with strong swirling inflows.

  18. Microlocal approach towards construction of nonreflecting boundary conditions

    NASA Astrophysics Data System (ADS)

    Vaibhav, V.

    2014-09-01

    This paper addresses the problem of construction of non-reflecting boundary condition for certain second-order nonlinear dispersive equations. It is shown that using the concept of microlocality it is possible to relax the requirement of compact support of the initial data. The method is demonstrated for a class of initial data such that outside the computational domain it behaves like a continuous-wave. The generalization is detailed for two existing schemes in the framework of pseudo-differential calculus, namely, Szeftel's method (Szeftel (2006) [1]) and gauge transformation strategy (Antoine et al. (2006) [2]). Efficient numerical implementation is discussed and a comparative performance analysis is presented. The paper also briefly surveys the possibility of extension of the method to higher-dimensional PDEs.

  19. Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis

    NASA Astrophysics Data System (ADS)

    Jiao, Yujian; Wang, Li-Lian; Huang, Can

    2016-01-01

    The purpose of this paper is twofold. Firstly, we provide explicit and compact formulas for computing both Caputo and (modified) Riemann-Liouville (RL) fractional pseudospectral differentiation matrices (F-PSDMs) of any order at general Jacobi-Gauss-Lobatto (JGL) points. We show that in the Caputo case, it suffices to compute F-PSDM of order μ ∈ (0 , 1) to compute that of any order k + μ with integer k ≥ 0, while in the modified RL case, it is only necessary to evaluate a fractional integral matrix of order μ ∈ (0 , 1). Secondly, we introduce suitable fractional JGL Birkhoff interpolation problems leading to new interpolation polynomial basis functions with remarkable properties: (i) the matrix generated from the new basis yields the exact inverse of F-PSDM at "interior" JGL points; (ii) the matrix of the highest fractional derivative in a collocation scheme under the new basis is diagonal; and (iii) the resulted linear system is well-conditioned in the Caputo case, while in the modified RL case, the eigenvalues of the coefficient matrix are highly concentrated. In both cases, the linear systems of the collocation schemes using the new basis can be solved by an iterative solver within a few iterations. Notably, the inverse can be computed in a very stable manner, so this offers optimal preconditioners for usual fractional collocation methods for fractional differential equations (FDEs). It is also noteworthy that the choice of certain special JGL points with parameters related to the order of the equations can ease the implementation. We highlight that the use of the Bateman's fractional integral formulas and fast transforms between Jacobi polynomials with different parameters, is essential for our algorithm development.

  20. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas

    PubMed Central

    Zhu, Xing-Long; Yu, Tong-Pu; Sheng, Zheng-Ming; Yin, Yan; Turcu, Ion Cristian Edmond; Pukhov, Alexander

    2016-01-01

    Pair production can be triggered by high-intensity lasers via the Breit–Wheeler process. However, the straightforward laser–laser colliding for copious numbers of pair creation requires light intensities several orders of magnitude higher than possible with the ongoing laser facilities. Despite the numerous proposed approaches, creating high-energy-density pair plasmas in laboratories is still challenging. Here we present an all-optical scheme for overdense pair production by two counter-propagating lasers irradiating near-critical-density plasmas at only ∼1022 W cm−2. In this scheme, bright γ-rays are generated by radiation-trapped electrons oscillating in the laser fields. The dense γ-photons then collide with the focused counter-propagating lasers to initiate the multi-photon Breit–Wheeler process. Particle-in-cell simulations indicate that one may generate a high-yield (1.05 × 1011) overdense (4 × 1022 cm−3) GeV positron beam using 10 PW scale lasers. Such a bright pair source has many practical applications and could be basis for future compact high-luminosity electron–positron colliders. PMID:27966530

  1. Comb-referenced ultra-high sensitivity spectroscopic molecular detection by compact non-linear sources

    NASA Astrophysics Data System (ADS)

    Cancio, P.; Gagliardi, G.; Galli, I.; Giusfredi, G.; Maddaloni, P.; Malara, P.; Mazzotti, D.; De Natale, P.

    2017-11-01

    We present a new generation of compact and rugged mid-infrared (MIR) difference-frequency coherent radiation sources referenced to fiber-based optical frequency comb synthesizers (OFCSs). By coupling the MIR radiation to high-finesse optical cavities, high-resolution and high-sensitivity spectroscopy is demonstrated for CH4 and CO2 around 3.3 and 4.5 μm respectively. Finally, the most effective detection schemes for space-craft trace-gas monitoring applications are singled out.

  2. Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities

    PubMed Central

    Wei, Hai-Rui; Lu Long, Gui

    2015-01-01

    Hybrid quantum gates hold great promise for quantum information processing since they preserve the advantages of different quantum systems. Here we present compact quantum circuits to deterministically implement controlled-NOT, Toffoli, and Fredkin gates between a flying photon qubit and diamond nitrogen-vacancy (NV) centers assisted by microcavities. The target qubits of these universal quantum gates are encoded on the spins of the electrons associated with the diamond NV centers and they have long coherence time for storing information, and the control qubit is encoded on the polarizations of the flying photon and can be easily manipulated. Our quantum circuits are compact, economic, and simple. Moreover, they do not require additional qubits. The complexity of our schemes for universal three-qubit gates is much reduced, compared to the synthesis with two-qubit entangling gates. These schemes have high fidelities and efficiencies, and they are feasible in experiment. PMID:26271899

  3. Principles of control automation of soil compacting machine operating mechanism

    NASA Astrophysics Data System (ADS)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.

  4. New high order schemes in BATS-R-US

    NASA Astrophysics Data System (ADS)

    Toth, G.; van der Holst, B.; Daldorff, L.; Chen, Y.; Gombosi, T. I.

    2013-12-01

    The University of Michigan global magnetohydrodynamics code BATS-R-US has long relied on the block-adaptive mesh refinement (AMR) to increase accuracy in regions of interest, and we used a second order accurate TVD scheme. While AMR can in principle produce arbitrarily accurate results, there are still practical limitations due to computational resources. To further improve the accuracy of the BATS-R-US code, recently, we have implemented a 4th order accurate finite volume scheme (McCorquodale and Colella, 2011}), the 5th order accurate Monotonicity Preserving scheme (MP5, Suresh and Huynh, 1997) and the 5th order accurate CWENO5 scheme (Capdeville, 2008). In the first implementation the high order accuracy is achieved in the uniform parts of the Cartesian grids, and we still use the second order TVD scheme at resolution changes. For spherical grids the new schemes are only second order accurate so far, but still much less diffusive than the TVD scheme. We show a few verification tests that demonstrate the order of accuracy as well as challenging space physics applications. The high order schemes are less robust than the TVD scheme, and it requires some tricks and effort to make the code work. When the high order scheme works, however, we find that in most cases it can obtain similar or better results than the TVD scheme on twice finer grids. For three dimensional time dependent simulations this means that the high order scheme is almost 10 times faster requires 8 times less storage than the second order method.

  5. High-Order Residual-Distribution Schemes for Discontinuous Problems on Irregular Triangular Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2016-01-01

    In this paper, we develop second- and third-order non-oscillatory shock-capturing hyperbolic residual distribution schemes for irregular triangular grids, extending our second- and third-order schemes to discontinuous problems. We present extended first-order N- and Rusanov-scheme formulations for hyperbolic advection-diffusion system, and demonstrate that the hyperbolic diffusion term does not affect the solution of inviscid problems for vanishingly small viscous coefficient. We then propose second- and third-order blended hyperbolic residual-distribution schemes with the extended first-order Rusanov-scheme. We show that these proposed schemes are extremely accurate in predicting non-oscillatory solutions for discontinuous problems. We also propose a characteristics-based nonlinear wave sensor for accurately detecting shocks, compression, and expansion regions. Using this proposed sensor, we demonstrate that the developed hyperbolic blended schemes do not produce entropy-violating solutions (unphysical stocks). We then verify the design order of accuracy of these blended schemes on irregular triangular grids.

  6. High-resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1982-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.

  7. High-Order Central WENO Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present new third- and fifth-order Godunov-type central schemes for approximating solutions of the Hamilton-Jacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greater than two. In two space dimensions we present two versions for the third-order scheme: one scheme that is based on a genuinely two-dimensional Central WENO reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruction. The simpler dimension-by-dimension variant is then extended to a multi-dimensional fifth-order scheme. Our numerical examples in one, two and three space dimensions verify the expected order of accuracy of the schemes.

  8. General Relativistic Non-radial Oscillations of Compact Stars

    NASA Astrophysics Data System (ADS)

    Hall, Zack, II; Jaikumar, Prashanth

    2017-01-01

    Currently, we lack a means of identifying the type of matter at the core of compact stars, but in the future, we may be able to use gravitational wave signals produced by fluid oscillations inside compact stars to discover new phases of dense matter. To this end, we study the fluid perturbations inside compact stars such as Neutron Stars and Strange Quark Stars, focusing on modes that couple to gravitational waves. Using a modern equation of state for quark matter that incorporates interactions at moderately high densities, we implement an efficient computational scheme to solve the oscillation equations in the framework of General Relativity, and determine the complex eigenfrequencies that describe the oscillation and damping of the non-radial fluid modes. We discuss the significance of our results for future detection of these modes through gravitational waves. This work is supported in part by the CSULB Graduate Research Fellowship and by the National Science Foundation NSF PHY-1608959.

  9. Multipass OPCPA system at 100 kHz pumped by a CPA-free solid-state amplifier.

    PubMed

    Ahrens, J; Prochnow, O; Binhammer, T; Lang, T; Schulz, B; Frede, M; Morgner, U

    2016-04-18

    We present a compact few-cycle 100 kHz OPCPA system pumped by a CPA-free picosecond Nd:YVO4 solid-state amplifier with all-optical synchronization to an ultra-broadband Ti:sapphire oscillator. This pump approach shows an exceptional conversion rate into the second harmonic of almost 78%. Efficient parametric amplification was realized by a two stage double-pass scheme with following chirped mirror compressor. The amount of superfluorescence was measured by an optical cross-correlation. Pulses with a duration of 8.7 fs at energies of 18 µJ are demonstrated. Due to the peak power of 1.26 GW, this simple OPCPA approach forms an ideal high repetition rate driving source for high-order harmonic generation.

  10. Multi-scale Eulerian model within the new National Environmental Modeling System

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Janjic, Tijana; Vasic, Ratko

    2010-05-01

    The unified Non-hydrostatic Multi-scale Model on the Arakawa B grid (NMMB) is being developed at NCEP within the National Environmental Modeling System (NEMS). The finite-volume horizontal differencing employed in the model preserves important properties of differential operators and conserves a variety of basic and derived dynamical and quadratic quantities. Among these, conservation of energy and enstrophy improves the accuracy of nonlinear dynamics of the model. Within further model development, advection schemes of fourth order of formal accuracy have been developed. It is argued that higher order advection schemes should not be used in the thermodynamic equation in order to preserve consistency with the second order scheme used for computation of the pressure gradient force. Thus, the fourth order scheme is applied only to momentum advection. Three sophisticated second order schemes were considered for upgrade. Two of them, proposed in Janjic(1984), conserve energy and enstrophy, but with enstrophy calculated differently. One of them conserves enstrophy as computed by the most accurate second order Laplacian operating on stream function. The other scheme conserves enstrophy as computed from the B grid velocity. The third scheme (Arakawa 1972) is arithmetic mean of the former two. It does not conserve enstrophy strictly, but it conserves other quadratic quantities that control the nonlinear energy cascade. Linearization of all three schemes leads to the same second order linear advection scheme. The second order term of the truncation error of the linear advection scheme has a special form so that it can be eliminated by simply preconditioning the advected quantity. Tests with linear advection of a cone confirm the advantage of the fourth order scheme. However, if a localized, large amplitude and high wave-number pattern is present in initial conditions, the clear advantage of the fourth order scheme disappears. In real data runs, problems with noisy data may appear due to mountains. Thus, accuracy and formal accuracy may not be synonymous. The nonlinear fourth order schemes are quadratic conservative and reduce to the Arakawa Jacobian in case of non-divergent flow. In case of general flow the conservation properties of the new momentum advection schemes impose stricter constraint on the nonlinear cascade than the original second order schemes. However, for non-divergent flow, the conservation properties of the fourth order schemes cannot be proven in the same way as those of the original second order schemes. Therefore, nonlinear tests were carried out in order to check how well the fourth order schemes control the nonlinear energy cascade. In the tests nonlinear shallow water equations are solved in a rotating rectangular domain (Janjic, 1984). The domain is covered with only 17 x 17 grid points. A diagnostic quantity is used to monitor qualitative changes in the spectrum over 116 days of simulated time. All schemes maintained meaningful solutions throughout the test. Among the second order schemes, the best result was obtained with the scheme that conserved enstrophy as computed by the second order Laplacian of the stream function. It was closely followed by the Arakawa (1972) scheme, while the remaining scheme was distant third. The fourth order schemes ranked in the same order, and were competitive throughout the experiments with their second order counterparts in preventing accumulation of energy at small scales. Finally, the impact was examined of the fourth order momentum advection on global medium range forecasts. The 500 mb anomaly correlation coefficient is used as a measure of success of the forecasts. Arakawa, A., 1972: Design of the UCLA general circulation model. Tech. Report No. 7, Department of Meteorology, University of California, Los Angeles, 116 pp. Janjic, Z. I., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Monthly Weather Review, 112, 1234-1245.

  11. Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Rumsey, Christopher L.; Rubinstein, Robert; Balakumar, Ponnampalam; Zang, Thomas A.

    2012-01-01

    Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum.

  12. A 300 GHz collective scattering diagnostic for low temperature plasmas.

    PubMed

    Hardin, Robert A; Scime, Earl E; Heard, John

    2008-10-01

    A compact and portable 300 GHz collective scattering diagnostic employing a homodyne detection scheme has been constructed and installed on the hot helicon experiment (HELIX). Verification of the homodyne detection scheme was accomplished with a rotating grooved aluminum wheel to Doppler shift the interaction beam. The HELIX chamber geometry and collection optics allow measurement of scattering angles ranging from 60 degrees to 90 degrees. Artificially driven ion-acoustic waves are also being investigated as a proof-of-principle test for the diagnostic system.

  13. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  14. Sixth- and eighth-order Hermite integrator for N-body simulations

    NASA Astrophysics Data System (ADS)

    Nitadori, Keigo; Makino, Junichiro

    2008-10-01

    We present sixth- and eighth-order Hermite integrators for astrophysical N-body simulations, which use the derivatives of accelerations up to second-order ( snap) and third-order ( crackle). These schemes do not require previous values for the corrector, and require only one previous value to construct the predictor. Thus, they are fairly easy to implement. The additional cost of the calculation of the higher-order derivatives is not very high. Even for the eighth-order scheme, the number of floating-point operations for force calculation is only about two times larger than that for traditional fourth-order Hermite scheme. The sixth-order scheme is better than the traditional fourth-order scheme for most cases. When the required accuracy is very high, the eighth-order one is the best. These high-order schemes have several practical advantages. For example, they allow a larger number of particles to be integrated in parallel than the fourth-order scheme does, resulting in higher execution efficiency in both general-purpose parallel computers and GRAPE systems.

  15. Total Variation Diminishing (TVD) schemes of uniform accuracy

    NASA Technical Reports Server (NTRS)

    Hartwich, PETER-M.; Hsu, Chung-Hao; Liu, C. H.

    1988-01-01

    Explicit second-order accurate finite-difference schemes for the approximation of hyperbolic conservation laws are presented. These schemes are nonlinear even for the constant coefficient case. They are based on first-order upwind schemes. Their accuracy is enhanced by locally replacing the first-order one-sided differences with either second-order one-sided differences or central differences or a blend thereof. The appropriate local difference stencils are selected such that they give TVD schemes of uniform second-order accuracy in the scalar, or linear systems, case. Like conventional TVD schemes, the new schemes avoid a Gibbs phenomenon at discontinuities of the solution, but they do not switch back to first-order accuracy, in the sense of truncation error, at extrema of the solution. The performance of the new schemes is demonstrated in several numerical tests.

  16. UV diode-pumped solid state laser for medical applications

    NASA Astrophysics Data System (ADS)

    Apollonov, Victor V.; Konstantinov, K. V.; Sirotkin, A. A.

    1999-07-01

    A compact, solid-state, high-efficiency, and safe UV laser medical system with optical fiber output was created for treatment of destructive forms of pulmonary tuberculosis. A frequency-quadruped quasi-CW Nd:YVO4 laser system pumped by laser-diode array is investigated with various resonator configurations. A longitudinal end-pumping scheme was used in a compact acousto-optical Q-switched laser for producing stable pulses of UV radiation at the repetition frequency 10-20 kHz and the duration 7-10 ns with the fiber-guide output power exceeding 10 mW.

  17. A numerical study of the 2- and 3-dimensional unsteady Navier-Stokes equations in velocity-vorticity variables using compact difference schemes

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Grosch, C. E.

    1984-01-01

    A compact finite-difference approximation to the unsteady Navier-Stokes equations in velocity-vorticity variables is used to numerically simulate a number of flows. These include two-dimensional laminar flow of a vortex evolving over a flat plate with an embedded cavity, the unsteady flow over an elliptic cylinder, and aspects of the transient dynamics of the flow over a rearward facing step. The methodology required to extend the two-dimensional formulation to three-dimensions is presented.

  18. Generalized energy and potential enstrophy conserving finite difference schemes for the shallow water equations

    NASA Technical Reports Server (NTRS)

    Abramopoulos, Frank

    1988-01-01

    The conditions under which finite difference schemes for the shallow water equations can conserve both total energy and potential enstrophy are considered. A method of deriving such schemes using operator formalism is developed. Several such schemes are derived for the A-, B- and C-grids. The derived schemes include second-order schemes and pseudo-fourth-order schemes. The simplest B-grid pseudo-fourth-order schemes are presented.

  19. High-Order Residual-Distribution Hyperbolic Advection-Diffusion Schemes: 3rd-, 4th-, and 6th-Order

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza R.; Nishikawa, Hiroaki

    2014-01-01

    In this paper, spatially high-order Residual-Distribution (RD) schemes using the first-order hyperbolic system method are proposed for general time-dependent advection-diffusion problems. The corresponding second-order time-dependent hyperbolic advection- diffusion scheme was first introduced in [NASA/TM-2014-218175, 2014], where rapid convergences over each physical time step, with typically less than five Newton iterations, were shown. In that method, the time-dependent hyperbolic advection-diffusion system (linear and nonlinear) was discretized by the second-order upwind RD scheme in a unified manner, and the system of implicit-residual-equations was solved efficiently by Newton's method over every physical time step. In this paper, two techniques for the source term discretization are proposed; 1) reformulation of the source terms with their divergence forms, and 2) correction to the trapezoidal rule for the source term discretization. Third-, fourth, and sixth-order RD schemes are then proposed with the above techniques that, relative to the second-order RD scheme, only cost the evaluation of either the first derivative or both the first and the second derivatives of the source terms. A special fourth-order RD scheme is also proposed that is even less computationally expensive than the third-order RD schemes. The second-order Jacobian formulation was used for all the proposed high-order schemes. The numerical results are then presented for both steady and time-dependent linear and nonlinear advection-diffusion problems. It is shown that these newly developed high-order RD schemes are remarkably efficient and capable of producing the solutions and the gradients to the same order of accuracy of the proposed RD schemes with rapid convergence over each physical time step, typically less than ten Newton iterations.

  20. High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2015-01-01

    In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.

  1. Third-order 2N-storage Runge-Kutta schemes with error control

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Kennedy, Christopher A.

    1994-01-01

    A family of four-stage third-order explicit Runge-Kutta schemes is derived that requires only two storage locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.

  2. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  3. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE PAGES

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2017-09-28

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  4. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    NASA Astrophysics Data System (ADS)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2018-01-01

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.

  5. Some implementational issues of convection schemes for finite volume formulations

    NASA Technical Reports Server (NTRS)

    Thakur, Siddharth; Shyy, Wei

    1993-01-01

    Two higher-order upwind schemes - second-order upwind and QUICK - are examined in terms of their interpretation, implementation as well as performance for a recirculating flow in a lid-driven cavity, in the context of a control volume formulation using the SIMPLE algorithm. The present formulation of these schemes is based on a unified framework wherein the first-order upwind scheme is chosen as the basis, with the remaining terms being assigned to the source term. The performance of these schemes is contrasted with the first-order upwind and second-order central difference schemes. Also addressed in this study is the issue of boundary treatment associated with these higher-order upwind schemes. Two different boundary treatments - one that uses a two-point scheme consistently within a given control volume at the boundary, and the other that maintains consistency of flux across the interior face between the adjacent control volumes - are formulated and evaluated.

  6. Some implementational issues of convection schemes for finite-volume formulations

    NASA Technical Reports Server (NTRS)

    Thakur, Siddharth; Shyy, Wei

    1993-01-01

    Two higher-order upwind schemes - second-order upwind and QUICK - are examined in terms of their interpretation, implementations, as well as performance for a recirculating flow in a lid-driven cavity, in the context of a control-volume formulation using the SIMPLE algorithm. The present formulation of these schemes is based on a unified framework wherein the first-order upwind scheme is chosen as the basis, with the remaining terms being assigned to the source term. The performance of these schemes is contrasted with the first-order upwind and second-order central difference schemes. Also addressed in this study is the issue of boundary treatment associated with these higher-order upwind schemes. Two different boundary treatments - one that uses a two-point scheme consistently within a given control volume at the boundary, and the other that maintains consistency of flux across the interior face between the adjacent control volumes - are formulated and evaluated.

  7. Multi-dimensional upwinding-based implicit LES for the vorticity transport equations

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Duraisamy, Karthik

    2017-11-01

    Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.

  8. Robustness-Based Simplification of 2D Steady and Unsteady Vector Fields.

    PubMed

    Skraba, Primoz; Bei Wang; Guoning Chen; Rosen, Paul

    2015-08-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications for steady as well as unsteady vector fields.

  9. A continuum treatment of sliding in Eulerian simulations of solid-solid and solid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Subramaniam, Akshay; Ghaisas, Niranjan; Lele, Sanjiva

    2017-11-01

    A novel treatment of sliding is developed for use in an Eulerian framework for simulating elastic-plastic deformations of solids coupled with fluids. In this method, embedded interfacial boundary conditions for perfect sliding are imposed by enforcing the interface normal to be a principal direction of the Cauchy stress and appropriate consistency conditions ensure correct transmission and reflection of waves at the interface. This sliding treatment may be used either to simulate a solid-solid sliding interface or to incorporate an internal slip boundary condition at a solid-fluid interface. Sliding laws like the Coulomb friction law can also be incorporated with relative ease into this framework. Simulations of sliding interfaces are conducted using a 10th order compact finite difference scheme and a Localized Artificial Diffusivity (LAD) scheme for shock and interface capturing. 1D and 2D simulations are used to assess the accuracy of the sliding treatment. The Richmyer-Meshkov instability between copper and aluminum is simulated with this sliding treatment as a demonstration test case. Support for this work was provided through Grant B612155 from the Lawrence Livermore National Laboratory, US Department of Energy.

  10. High-Order Central WENO Schemes for 1D Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In this paper we derive fully-discrete Central WENO (CWENO) schemes for approximating solutions of one dimensional Hamilton-Jacobi (HJ) equations, which combine our previous works. We introduce third and fifth-order accurate schemes, which are the first central schemes for the HJ equations of order higher than two. The core ingredient is the derivation of our schemes is a high-order CWENO reconstructions in space.

  11. Dual-beam laser autofocusing system based on liquid lens

    NASA Astrophysics Data System (ADS)

    Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing

    2017-02-01

    A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme ;Time-sharing focus, fast conversion; is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.

  12. High Order Schemes in BATS-R-US: Is it OK to Simplify Them?

    NASA Astrophysics Data System (ADS)

    Tóth, G.; Chen, Y.; van der Holst, B.; Daldorff, L. K. S.

    2014-09-01

    We describe a number of high order schemes and their simplified variants that have been implemented into the University of Michigan global magnetohydrodynamics code BATS-R-US. We compare the various schemes with each other and the legacy 2nd order TVD scheme for various test problems and two space physics applications. We find that the simplified schemes are often quite competitive with the more complex and expensive full versions, despite the fact that the simplified versions are only high order accurate for linear systems of equations. We find that all the high order schemes require some fixes to ensure positivity in the space physics applications. On the other hand, they produce superior results as compared with the second order scheme and/or produce the same quality of solution at a much reduced computational cost.

  13. Higher-order accurate space-time schemes for computational astrophysics—Part I: finite volume methods

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.

    2017-12-01

    As computational astrophysics comes under pressure to become a precision science, there is an increasing need to move to high accuracy schemes for computational astrophysics. The algorithmic needs of computational astrophysics are indeed very special. The methods need to be robust and preserve the positivity of density and pressure. Relativistic flows should remain sub-luminal. These requirements place additional pressures on a computational astrophysics code, which are usually not felt by a traditional fluid dynamics code. Hence the need for a specialized review. The focus here is on weighted essentially non-oscillatory (WENO) schemes, discontinuous Galerkin (DG) schemes and PNPM schemes. WENO schemes are higher order extensions of traditional second order finite volume schemes. At third order, they are most similar to piecewise parabolic method schemes, which are also included. DG schemes evolve all the moments of the solution, with the result that they are more accurate than WENO schemes. PNPM schemes occupy a compromise position between WENO and DG schemes. They evolve an Nth order spatial polynomial, while reconstructing higher order terms up to Mth order. As a result, the timestep can be larger. Time-dependent astrophysical codes need to be accurate in space and time with the result that the spatial and temporal accuracies must be matched. This is realized with the help of strong stability preserving Runge-Kutta schemes and ADER (Arbitrary DERivative in space and time) schemes, both of which are also described. The emphasis of this review is on computer-implementable ideas, not necessarily on the underlying theory.

  14. Ultra-precision fabrication of high density micro-optical backbone interconnections for data center and mobile application

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Jahns, J.; Wagner, T.; Werner, C.

    2012-10-01

    A microoptical 3D interconnection scheme and fabricated samples of this fiberoptical multi-channel interconnec- tion with an actual capacity of 144 channels were shown. Additionally the aspects of micrometer-fabrication of such microoptical interconnection modules in the view of alignment-tolerances were considered. For the realiza- tion of the interconnection schemes, the approach of planar-integrated free space optics (PIFSO) is used with its well known advantages. This approach offers the potential for complex interconnectivity, and yet compact size.

  15. Measurement and analysis of chatter in a compliant model of a drillstring equipped with a PDC bit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsayed, M.A.; Raymond, D.W.

    1999-11-09

    Typical laboratory testing of Polycrystalline Diamond Compact (PDC) bits is performed on relatively rigid setups. Even in hard rock, PDC bits exhibit reasonable life using such testing schemes. Unfortunately, field experience indicates otherwise. In this paper, the authors show that introducing compliance in testing setups provides better simulation of actual field conditions. Using such a scheme, they show that chatter can be severe even in softer rock, such as sandstone, and very destructive to the cutters in hard rock, such as sierra white granite.

  16. Broadband and stable acoustic vortex emitter with multi-arm coiling slits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xue; Liang, Bin, E-mail: liangbin@nju.edu.cn, E-mail: eleqc@nus.edu.sg, E-mail: jccheng@nju.edu.cn; Zou, Xin-ye

    2016-05-16

    We present the analytical design and experimental realization of a scheme based on multi-arm coiling slits to generate the stable acoustic vortices in a broadband. The proposed structure is able to spiral the acoustic wave spatially and generate the twisted acoustic vortices with invariant topological charge for a long propagation distance. Compared with conventional methods which require the electronic control of a bulky loudspeaker, this scheme provides an effective and compact solution to generate acoustic vortices with controllable topological charge in the broadband, which offers more initiatives in the demanding applications.

  17. Design of extraction system in BRing at HIAF

    NASA Astrophysics Data System (ADS)

    Ruan, Shuang; Yang, Jiancheng; Zhang, Jinquan; Shen, Guodong; Ren, Hang; Liu, Jie; Shangguan, Jingbing; Zhang, Xiaoying; Zhang, Jingjing; Mao, Lijun; Sheng, Lina; Yin, Dayu; Wang, Geng; Wu, Bo; Yao, Liping; Tang, Meitang; Cai, Fucheng; Chen, Xiaoqiang

    2018-06-01

    The Booster Ring (BRing), which is the key part of HIAF (High Intensity heavy ion Accelerator Facility) complex at IMP (Institute of Modern Physics, Chinese Academy of Sciences), can provide uranium (A / q = 7) beam with a wide extraction energy range of 200-800 MeV/u. To fulfill a flexible beam extraction for multi-purpose experiments, both fast and slow extraction systems will be accommodated in the BRing. The fast extraction system is used for extracting short bunched beam horizontally in single-turn. The slow extraction system is used to provide quasi-continuous beam by the third order resonance and RF-knockout scheme. To achieve a compact structure, the two extraction systems are designed to share the same extraction channel. The general design of the fast and slow extraction systems and simulation results are discussed in this paper.

  18. Spectral properties from Matsubara Green's function approach: Application to molecules

    NASA Astrophysics Data System (ADS)

    Schüler, M.; Pavlyukh, Y.

    2018-03-01

    We present results for many-body perturbation theory for the one-body Green's function at finite temperatures using the Matsubara formalism. Our method relies on the accurate representation of the single-particle states in standard Gaussian basis sets, allowing to efficiently compute, among other observables, quasiparticle energies and Dyson orbitals of atoms and molecules. In particular, we challenge the second-order treatment of the Coulomb interaction by benchmarking its accuracy for a well-established test set of small molecules, which includes also systems where the usual Hartree-Fock treatment encounters difficulties. We discuss different schemes how to extract quasiparticle properties and assess their range of applicability. With an accurate solution and compact representation, our method is an ideal starting point to study electron dynamics in time-resolved experiments by the propagation of the Kadanoff-Baym equations.

  19. B-spline Method in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Botella, Olivier; Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    B-spline functions are bases for piecewise polynomials that possess attractive properties for complex flow simulations : they have compact support, provide a straightforward handling of boundary conditions and grid nonuniformities, and yield numerical schemes with high resolving power, where the order of accuracy is a mere input parameter. This paper reviews the progress made on the development and application of B-spline numerical methods to computational fluid dynamics problems. Basic B-spline approximation properties is investigated, and their relationship with conventional numerical methods is reviewed. Some fundamental developments towards efficient complex geometry spline methods are covered, such as local interpolation methods, fast solution algorithms on cartesian grid, non-conformal block-structured discretization, formulation of spline bases of higher continuity over triangulation, and treatment of pressure oscillations in Navier-Stokes equations. Application of some of these techniques to the computation of viscous incompressible flows is presented.

  20. Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Arenas, Gustavo; Noriega, Sergio; Vallo, Claudia; Duchowicz, Ricardo

    2007-03-01

    A fiber optic sensing method based on a Fizeau-type interferometric scheme was employed for monitoring linear polymerization shrinkage in dental restoratives. This technique offers several advantages over the conventional methods of measuring polymerization contraction. This simple, compact, non-invasive and self-calibrating system competes with both conventional and other high-resolution bulk interferometric techniques. In this work, an analysis of the quality of interference signal and fringes visibility was performed in order to characterize their resolution and application range. The measurements of percent linear contraction as a function of the sample thickness were carried out in this study on two dental composites: Filtek P60 (3M ESPE) Posterior Restorer and Filtek Z250 (3M ESPE) Universal Restorer. The results were discussed with respect to others obtained employing alternative techniques.

  1. A new stylolite classification scheme to estimate compaction and local permeability variations

    NASA Astrophysics Data System (ADS)

    Koehn, D.; Rood, M. P.; Beaudoin, N.; Chung, P.; Bons, P. D.; Gomez-Rivas, E.

    2016-12-01

    We modeled the geometrical roughening of bedding-parallel, mainly layer-dominated stylolites in order to understand their structural evolution, to present an advanced classification of stylolite shapes and to relate this classification to chemical compaction and permeability variations at stylolites. Stylolites are rough dissolution seams that develop in sedimentary basins during chemical compaction. In the Zechstein 2 carbonate units, an important lean gas reservoir in the southern Permian Zechstein basin in Germany, stylolites influence local fluid flow, mineral replacement reactions and hence the permeability of the reservoir. Our simulations demonstrate that layer-dominated stylolites can grow in three distinct stages: an initial slow nucleation phase, a fast layer-pinning phase and a final freezing phase if the layer is completely dissolved during growth. Dissolution of the pinning layer and thus destruction of the stylolite's compaction tracking capabilities is a function of the background noise in the rock and the dissolution rate of the layer itself. Low background noise needs a slower dissolving layer for pinning to be successful but produces flatter teeth than higher background noise. We present an advanced classification based on our simulations and separate stylolites into four classes: (1) rectangular layer type, (2) seismogram pinning type, (3) suture/sharp peak type and (4) simple wave-like type. Rectangular layer type stylolites are the most appropriate for chemical compaction estimates because they grow linearly and record most of the actual compaction (up to 40 mm in the Zechstein example). Seismogram pinning type stylolites also provide good tracking capabilities, with the largest teeth tracking most of the compaction. Suture/sharp peak type stylolites grow in a non-linear fashion and thus do not record most of the actual compaction. However, when a non-linear growth law is used, the compaction estimates are similar to those making use of the rectangular layer type stylolites. Simple wave-like stylolites are not useful for compaction estimates, since their growth is highly non-linear with a very low growth exponent. In the case where sealing material is collected at the tooth during dissolution, stylolites can act as barriers for local fluid flow as they intensify sealing capabilities of pinning layers. However, the development of teeth and spikes offsets and thus destroys continuous stylolite seams so that the permeability across the stylolite becomes very heterogeneous and they are no continuous barriers. This behavior is best shown in rectangular layer and seismogram pinning type stylolites that develop efficient fluid barriers at teeth tips but destroy sealing capabilities of layers by offsetting them at the flank, leading to a permeability anisotropy along 2-D stylolite planes. Suture/sharp peak stylolites can create fluid barriers if they collect enough sealing material. However, if the collecting material does not seal or if spikes offset the sealing material the stylolite leaks. We propose that our classification can be used to realistically estimate chemical compaction in reservoirs and gives an indication on how heterogeneous the permeability of stylolites can be.

  2. Compact Empirical Mode Decomposition: An Algorithm to Reduce Mode Mixing, End Effect, and Detrend Uncertainty

    DTIC Science & Technology

    2012-01-01

    2, . . . , L), G1 = F1(x (ext) 1 , x (ext) 2 , . . . , x (ext) L ). (18) Similarly, GN is a function of (x (ext) l , l = M , M − 1, . . . , M − L+ 1...EMD and EEMD. Since the observational data contain errors, four time series sm(ti) ( m = 1, 2, 3) are constructed each by a signal [components of (25...three-point non-uniform combined compact difference scheme. J. Comput. Phys., 148: 663–674. Huang, N. E., Shen, Z., Long, S . R., Wu, M . C., Shih, H. H

  3. Berezin-Toeplitz quantization and naturally defined star products for Kähler manifolds

    NASA Astrophysics Data System (ADS)

    Schlichenmaier, Martin

    2018-04-01

    For compact quantizable Kähler manifolds the Berezin-Toeplitz quantization schemes, both operator and deformation quantization (star product) are reviewed. The treatment includes Berezin's covariant symbols and the Berezin transform. The general compact quantizable case was done by Bordemann-Meinrenken-Schlichenmaier, Schlichenmaier, and Karabegov-Schlichenmaier. For star products on Kähler manifolds, separation of variables, or equivalently star product of (anti-) Wick type, is a crucial property. As canonically defined star products the Berezin-Toeplitz, Berezin, and the geometric quantization are treated. It turns out that all three are equivalent, but different.

  4. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton

    PubMed Central

    Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu

    2018-01-01

    To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human–robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human–robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility. PMID:29562684

  5. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton.

    PubMed

    Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu

    2018-03-19

    To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human-robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human-robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility.

  6. Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-11-01

    In this paper, we extend the range of targeted ENO (TENO) schemes (Fu et al. (2016) [18]) by proposing an eighth-order TENO8 scheme. A general formulation to construct the high-order undivided difference τK within the weighting strategy is proposed. With the underlying scale-separation strategy, sixth-order accuracy for τK in the smooth solution regions is designed for good performance and robustness. Furthermore, a unified framework to optimize independently the dispersion and dissipation properties of high-order finite-difference schemes is proposed. The new framework enables tailoring of dispersion and dissipation as function of wavenumber. The optimal linear scheme has minimum dispersion error and a dissipation error that satisfies a dispersion-dissipation relation. Employing the optimal linear scheme, a sixth-order TENO8-opt scheme is constructed. A set of benchmark cases involving strong discontinuities and broadband fluctuations is computed to demonstrate the high-resolution properties of the new schemes.

  7. A Non-Dissipative Staggered Fourth-Order Accurate Explicit Finite Difference Scheme for the Time-Domain Maxwell's Equations

    NASA Technical Reports Server (NTRS)

    Yefet, Amir; Petropoulos, Peter G.

    1999-01-01

    We consider a divergence-free non-dissipative fourth-order explicit staggered finite difference scheme for the hyperbolic Maxwell's equations. Special one-sided difference operators are derived in order to implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not aligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.

  8. X-ray and gamma ray detector readout system

    DOEpatents

    Tumer, Tumay O; Clajus, Martin; Visser, Gerard

    2010-10-19

    A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.

  9. A Compact, Pi-Mode Extraction Scheme for the Axial B-Field Recirculating Planar Magnetron

    DTIC Science & Technology

    2012-07-23

    Figure 4). Thus, in a planar magnetron, the minimum phase velocity, vph , to stay above cutoff in the rectangular waveguide is ℎ = ...as magnetrons, electrons must be accelerated such that they are in synchronism with the phase velocity, vph , of the electromagnetic wave for an

  10. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  11. The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs scheme

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1983-01-01

    The Lax-Friedrichs scheme, approximating the scalar, genuinely nonlinear conservation law u sub t + f sub x (u) = 0 where f(u) is, say, strictly convex double dot f dot a sub asterisk 0 is studied. The divided differences of the numerical solution at time t do not exceed 2 (t dot a sub asterisk) to the -1. This one-sided Lipschitz boundedness is in complete agreement with the corresponding estimate one has in the differential case; in particular, it is independent of the initial amplitude in sharp contrast to liner problems. It guarantees the entropy compactness of the scheme in this case, as well as providing a quantitive insight into the large-time behavior of the numerical computation.

  12. Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor

    NASA Astrophysics Data System (ADS)

    Ma, Rong; Liu, Wei; Qin, Zhongzhong; Su, Xiaolong; Jia, Xiaojun; Zhang, Junxiang; Gao, Jiangrui

    2018-03-01

    Using a nondegenerate four-wave mixing (FWM) process based on a double-{\\Lambda} scheme in hot cesium vapor, we demonstrate a compact diode-laser-pumped quantum light source for the generation of quantum correlated twin beams with a maximum squeezing of 6.5 dB. The squeezing is observed at a Fourier frequency in the audio band down to 0.7 kHz which, to the best of our knowledge, is the first observation of sub-kilohertz intensity-difference squeezing in an atomic system so far. A phase-matching condition is also investigated in our system, which confirms the spatial-multi-mode characteristics of the FWM process. Our compact low-frequency squeezed light source may find applications in quantum imaging, quantum metrology, and the transfer of optical squeezing onto a matter wave.

  13. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Project

    NASA Astrophysics Data System (ADS)

    McGuire, Thomas

    2017-10-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. The CFR uses a diamagnetic, high beta, magnetically encapsulated, linear ring cusp plasma confinement scheme. Major project activities will be reviewed, including the T4B and T5 plasma heating experiments. The goal of the experiments is to demonstrate a suitable plasma target for heating experiments, to characterize the behavior of plasma sources in the CFR configuration and to then heat the plasma with neutral beams, with the plasma transitioning into the high Beta confinement regime. The design and preliminary results of the experiments will be presented, including discussion of predicted behavior, plasma sources, heating mechanisms, diagnostics suite and relevant numerical modeling. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  14. Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.

    2015-01-01

    Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the isotropic turbulent flow decay, at a relatively high turbulent Mach number, show a nicely behaved spectral decay rate for medium to high wave numbers. The high-order CESE schemes offer very robust solutions even with the presence of strong shocks or widespread shocklets. The explicit formulation in conjunction with a close to unity theoretical upper Courant number bound has the potential to offer an efficient numerical framework for general compressible turbulent flow simulations with unstructured meshes.

  15. On-chip broadband ultra-compact optical couplers and polarization splitters based on off-centered and non-symmetric slotted Si-wire waveguides

    NASA Astrophysics Data System (ADS)

    Haldar, Raktim; Mishra, V.; Dutt, Avik; Varshney, Shailendra K.

    2016-10-01

    In this work, we propose novel schemes to design on-chip ultra-compact optical directional couplers (DC) and broadband polarization beam splitters (PBS) based on off-centered and asymmetric dielectric slot waveguides, respectively. Slot dimensions and positions are optimized to achieve maximum coupling coefficients between two symmetric and non-symmetric slotted Si wire waveguides through overlap integral method. We observe >88% of enhancement in the coupling coefficients when the size-optimized slots are placed in optimal positions, with respect to the same waveguides with no slot. When the waveguides are parallel, in that case, a coupling length as short as 1.73 μm is accomplished for TM mode with the off-centered and optimized slots. This scheme enables us to design optical DC with very small footprint, L c ∼ 0.9 μm in the presence of S-bends. We also report a compact (L c ∼ 1.1 μm) on-chip broadband PBS with hybrid slots. Extinction ratios of 13 dB and 22.3 dB are realized with very low insertion loss (0.055 dB and 0.008 dB) for TM and TE modes at 1.55 μm, respectively. The designed PBS exhibits a bandwidth of 78 nm for the TM mode (C-and partial L-bands) and >100 nm for the TE mode (S + C + L wavelength bands). Such on-chip devices can be used to design compact photonic interconnects and quantum information processing units efficiently. We have also investigated the fabrication tolerances of the proposed devices and described the fabrication steps to realize such hybrid devices. Our results are in good agreement with 3D FDTD simulations.

  16. The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan

    1995-01-01

    The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.

  17. On-chip passive three-port circuit of all-optical ordered-route transmission.

    PubMed

    Liu, Li; Dong, Jianji; Gao, Dingshan; Zheng, Aoling; Zhang, Xinliang

    2015-05-13

    On-chip photonic circuits of different specific functions are highly desirable and becoming significant demands in all-optical communication network. Especially, the function to control the transmission directions of the optical signals in integrated circuits is a fundamental research. Previous schemes, such as on-chip optical circulators, are mostly realized by Faraday effect which suffers from material incompatibilities between semiconductors and magneto-optical materials. Achieving highly functional circuits in which light circulates in a particular direction with satisfied performances are still difficult in pure silicon photonics platform. Here, we propose and experimentally demonstrate a three-port passive device supporting optical ordered-route transmission based on silicon thermo-optic effect for the first time. By injecting strong power from only one port, the light could transmit through the three ports in a strict order (1→2, 2→3, 3→1) while be blocked in the opposite order (1→3, 3→2, 2→1). The blocking extinction ratios and operation bandwidths have been investigated in this paper. Moreover, with compact size, economic fabrication process and great extensibility, this proposed photonic integrated circuit is competitive to be applied in on-chip all-optical information processing systems, such as path priority selector.

  18. On-chip passive three-port circuit of all-optical ordered-route transmission

    PubMed Central

    Liu, Li; Dong, Jianji; Gao, Dingshan; Zheng, Aoling; Zhang, Xinliang

    2015-01-01

    On-chip photonic circuits of different specific functions are highly desirable and becoming significant demands in all-optical communication network. Especially, the function to control the transmission directions of the optical signals in integrated circuits is a fundamental research. Previous schemes, such as on-chip optical circulators, are mostly realized by Faraday effect which suffers from material incompatibilities between semiconductors and magneto-optical materials. Achieving highly functional circuits in which light circulates in a particular direction with satisfied performances are still difficult in pure silicon photonics platform. Here, we propose and experimentally demonstrate a three-port passive device supporting optical ordered-route transmission based on silicon thermo-optic effect for the first time. By injecting strong power from only one port, the light could transmit through the three ports in a strict order (1→2, 2→3, 3→1) while be blocked in the opposite order (1→3, 3→2, 2→1). The blocking extinction ratios and operation bandwidths have been investigated in this paper. Moreover, with compact size, economic fabrication process and great extensibility, this proposed photonic integrated circuit is competitive to be applied in on-chip all-optical information processing systems, such as path priority selector. PMID:25970855

  19. Coherent Population Trapping and Optical Ramsey Interference for Compact Rubidium Clock Development

    NASA Astrophysics Data System (ADS)

    Warren, Zachary Aron

    Coherent population trapping (CPT) and optical Ramsey interference provide new avenues for developing compact, high-performance atomic clocks. In this work, I have studied the fundamental aspects of CPT and optical Ramsey interference for Raman clock development. This thesis research is composed of two parts: theoretical and experimental studies. The theoretical component of the research was initially based on pre-existing atomic models of a three-level ?-type system in which the phenomena of CPT and Ramsey interference are formed. This model served as a starting point for studying basic characteristics of CPT and Ramsey interference such as power dependence of CPT, effects of average detuning, and ground-state decoherence on linewidth, which directly impact the performance of the Raman clock. The basic three-level model was also used to model pulsed CPT excitation and measure light shift in Ramsey interference which imposes a fundamental limit on the long-term frequency stability of the Raman clock. The theoretical calculations illustrate reduction (or suppression) of light shift in Ramsey interference as an important advantage over CPT for Raman clock development. To make the model more accurate than an ideal three-level system, I developed a comprehensive atomic model using density-matrix equations including all sixteen Zeeman sublevels in the D1 manifold of 87Rb atoms in a vapor medium. The multi-level atomic model has been used for investigating characteristics of CPT and Ramsey interference under different optical excitation schemes pertaining to the polarization states of the frequency-modulated CPT beam in a Raman clock. It is also used to study the effects of axial and traverse magnetic fields on the contrast of CPT and Ramsey interference. More importantly, the multi-level atomic model is also used to accurately calculate light shift in Ramsey interference in the D1 manifold of 87Rb atoms by taking into account all possible off-resonant excitations and the ground-state decoherence among the Zeeman sublevels. Light shift suppression in Ramsey interference with pulse saturation is also found to be evident in this comprehensive model. In the experimental component of the research, I designed a prototype of the Raman clock using a small (2 cm in length), buffer-gas filled, and isotopically pure 87Rb cell. A fiber-coupled waveguide electro-optic modulator was used to generate the frequency-modulated CPT beam for the experiments. The experimental setup was operated either by continuous excitation or pulsed excitation for experimentally characterizing CPT and Ramsey interference under different experimental conditions and for testing different optical excitation schemes which were investigated theoretically. Several iterations of the clock physics package were developed in order to attain better frequency stability performance in the Raman clock. The experimental work also provided a basis to develop a new repeated-query technique for producing an ultra-narrow linewidth central fringe with a high S/N ratio, and suppressing the side fringes in Ramsey interference. The above described research was carried out keeping in mind compact, high-performance clock development, which relies on technologies that can be miniaturized. Vapor cell based atomic clocks are ideal candidates for compact clock technology. The CPT phenomenon, observed by Raman excitation in a vapor medium, is a promising candidate for compact, high-performance Raman clock development. However, atom-field interaction involved in a vapor medium is often more complex than other media such as cold atom or atomic beam. It is difficult to model this interaction in order to predict its influence on CPT characteristics and, hence, the performance of the Raman clock. This dissertation addresses one such problem by developing a comprehensive atomic model to investigate light shift and modification of light shift in the Raman clock, particularly with pulsed excitation. It demonstrates a clear possibility of reducing (or suppressing) the light shift associated with Ramsey interference in a vapor medium for achieving higher frequency stability in the Raman clock. Additionally, theoretical comparisons of various optical excitation techniques have been calculated to demonstrate the relative strengths and weaknesses of different schemes for Raman clock development. (Abstract shortened by ProQuest.).

  20. Universal block diagram based modeling and simulation schemes for fractional-order control systems.

    PubMed

    Bai, Lu; Xue, Dingyü

    2017-05-08

    Universal block diagram based schemes are proposed for modeling and simulating the fractional-order control systems in this paper. A fractional operator block in Simulink is designed to evaluate the fractional-order derivative and integral. Based on the block, the fractional-order control systems with zero initial conditions can be modeled conveniently. For modeling the system with nonzero initial conditions, the auxiliary signal is constructed in the compensation scheme. Since the compensation scheme is very complicated, therefore the integrator chain scheme is further proposed to simplify the modeling procedures. The accuracy and effectiveness of the schemes are assessed in the examples, the computation results testify the block diagram scheme is efficient for all Caputo fractional-order ordinary differential equations (FODEs) of any complexity, including the implicit Caputo FODEs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Construction of Low Dissipative High Order Well-Balanced Filter Schemes for Non-Equilibrium Flows

    NASA Technical Reports Server (NTRS)

    Wang, Wei; Yee, H. C.; Sjogreen, Bjorn; Magin, Thierry; Shu, Chi-Wang

    2009-01-01

    The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. [26] to a class of low dissipative high order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. The class of filter schemes developed by Yee et al. [30], Sjoegreen & Yee [24] and Yee & Sjoegreen [35] consist of two steps, a full time step of spatially high order non-dissipative base scheme and an adaptive nonlinear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order). A typical class of these schemes shown in this paper is the high order central difference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady state solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations; it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.

  2. Multipole and field uniformity tailoring of a 750 MHz rf dipole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delayen, Jean R.; Castillo, Alejandro

    2014-12-01

    In recent years great interest has been shown in developing rf structures for beam separation, correction of geometrical degradation on luminosity, and diagnostic applications in both lepton and hadron machines. The rf dipole being a very promising one among all of them. The rf dipole has been tested and proven to have attractive properties that include high shunt impedance, low and balance surface fields, absence of lower order modes and far-spaced higher order modes that simplify their damping scheme. As well as to be a compact and versatile design in a considerable range of frequencies, its fairly simple geometry dependencymore » is suitable both for fabrication and surface treatment. The rf dipole geometry can also be optimized for lowering multipacting risk and multipole tailoring to meet machine specific field uniformity tolerances. In the present work a survey of field uniformities, and multipole contents for a set of 750 MHz rf dipole designs is presented as both a qualitative and quantitative analysis of the inherent flexibility of the structure and its limitations.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, Arno; Li, Z.; Ng, C.

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedentedmore » accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.« less

  4. Recent advances in laser-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  5. Compact OXC architecture, design and prototype development for flexible waveband routing optical networks.

    PubMed

    Ishikawa, Tomohiro; Mori, Yojiro; Hasegawa, Hiroshi; Subramaniam, Suresh; Sato, Ken-Ichi; Moriwaki, Osamu

    2017-07-10

    A novel compact OXC node architecture that combines WSSs and arrays of small scale optical delivery-coupling type switches ("DCSWs") is proposed. Unlike conventional OXC nodes, the WSSs are only responsible for dynamic path bundling ("flexible waveband") while the small scale optical switches route bundled path groups. A network design algorithm that is aware of the routing scheme is also proposed, and numerical experiments elucidate that the necessary number of WSSs and amplifiers can be significantly reduced. A prototype of the proposed OXC is also developed using monolithic arrayed DCSWs. Transmission experiments on the prototype verify the proposal's technical feasibility.

  6. Special issue on compact x-ray sources

    NASA Astrophysics Data System (ADS)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities. New schemes for compact accelerators: laser- and beam-driven plasma accelerators; dielectric laser accelerators; THz accelerators. Latest results for compact accelerators. Target design and staging of advanced accelerators. Advanced injection and phase space manipulation techniques. Novel diagnostics: single-shot measurement of sub-fs bunch duration; measurement of ultra-low emittance. Generation and characterization of incoherent radiation: betatron and undulator radiation; Thomson/Compton scattering sources, novel THz sources. Generation and characterization of coherent radiation. Novel FEL simulation techniques. Advances in simulations of novel accelerators: simulations of injection and acceleration processes; simulations of coherent and incoherent radiation sources; start-to-end simulations of fifth generation light sources. Novel undulator schemes. Novel laser drivers for laser-driven accelerators: high-repetition rate laser systems; high wall-plug efficiency systems. Applications of compact accelerators: imaging; radiography; medical applications; electron diffraction and microscopy. Please submit your article by 15 May 2014 (expected web publication: winter 2014); submissions received after this date will be considered for the journal, but may not be included in the special issue.

  7. EEHG Performance and Scaling Laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penn, Gregory

    This note will calculate the idealized performance of echo-enabled harmonic generation performance (EEHG), explore the parameter settings, and look at constraints determined by incoherent synchrotron radiation (ISR) and intrabeam scattering (IBS). Another important effect, time-of-flight variations related to transverse emittance, is included here but without detailed explanation because it has been described previously. The importance of ISR and IBS is that they lead to random energy shifts that lead to temporal shifts after the various beam manipulations required by the EEHG scheme. These effects give competing constraints on the beamline. For chicane magnets which are too compact for a givenmore » R56, the magnetic fields will be sufficiently strong that ISR will blur out the complex phase space structure of the echo scheme to the point where the bunching is strongly suppressed. The effect of IBS is more omnipresent, and requires an overall compact beamline. It is particularly challenging for the second pulse in a two-color attosecond beamline, due to the long delay between the first energy modulation and the modulator for the second pulse.« less

  8. Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Inviscid Fluxes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2010-01-01

    Cell-centered and node-centered approaches have been compared for unstructured finite-volume discretization of inviscid fluxes. The grids range from regular grids to irregular grids, including mixed-element grids and grids with random perturbations of nodes. Accuracy, complexity, and convergence rates of defect-correction iterations are studied for eight nominally second-order accurate schemes: two node-centered schemes with weighted and unweighted least-squares (LSQ) methods for gradient reconstruction and six cell-centered schemes two node-averaging with and without clipping and four schemes that employ different stencils for LSQ gradient reconstruction. The cell-centered nearest-neighbor (CC-NN) scheme has the lowest complexity; a version of the scheme that involves smart augmentation of the LSQ stencil (CC-SA) has only marginal complexity increase. All other schemes have larger complexity; complexity of node-centered (NC) schemes are somewhat lower than complexity of cell-centered node-averaging (CC-NA) and full-augmentation (CC-FA) schemes. On highly anisotropic grids typical of those encountered in grid adaptation, discretization errors of five of the six cell-centered schemes converge with second order on all tested grids; the CC-NA scheme with clipping degrades solution accuracy to first order. The NC schemes converge with second order on regular and/or triangular grids and with first order on perturbed quadrilaterals and mixed-element grids. All schemes may produce large relative errors in gradient reconstruction on grids with perturbed nodes. Defect-correction iterations for schemes employing weighted least-square gradient reconstruction diverge on perturbed stretched grids. Overall, the CC-NN and CC-SA schemes offer the best options of the lowest complexity and secondorder discretization errors. On anisotropic grids over a curved body typical of turbulent flow simulations, the discretization errors converge with second order and are small for the CC-NN, CC-SA, and CC-FA schemes on all grids and for NC schemes on triangular grids; the discretization errors of the CC-NA scheme without clipping do not converge on irregular grids. Accurate gradient reconstruction can be achieved by introducing a local approximate mapping; without approximate mapping, only the NC scheme with weighted LSQ method provides accurate gradients. Defect correction iterations for the CC-NA scheme without clipping diverge; for the NC scheme with weighted LSQ method, the iterations either diverge or converge very slowly. The best option in curved geometries is the CC-SA scheme that offers low complexity, second-order discretization errors, and fast convergence.

  9. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator.

    PubMed

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-07-04

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing.

  10. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator

    PubMed Central

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-01-01

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing. PMID:24993440

  11. Implicit Large-Eddy Simulations of Zero-Pressure Gradient, Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Sekhar, Susheel; Mansour, Nagi N.

    2015-01-01

    A set of direct simulations of zero-pressure gradient, turbulent boundary layer flows are conducted using various span widths (62-630 wall units), to document their influence on the generated turbulence. The FDL3DI code that solves compressible Navier-Stokes equations using high-order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Results are analyzed at two different Re values (500 and 1,400), and compared with spectral DNS data. They show that a minimum span width is required for the mere initiation of numerical turbulence. Narrower domains ((is) less than 100 w.u.) result in relaminarization. Wider spans ((is) greater than 600 w.u.) are required for the turbulent statistics to match reference DNS. The upper-wall boundary condition for this setup spawns marginal deviations in the mean velocity and Reynolds stress profiles, particularly in the buffer region.

  12. Artificial fluid properties for large-eddy simulation of compressible turbulent mixing

    NASA Astrophysics Data System (ADS)

    Cook, Andrew W.

    2007-05-01

    An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion.

  13. Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs

    NASA Astrophysics Data System (ADS)

    Ritter, Patxi; Aoudia, Sofiane; Spallicci, Alessandro D. A. M.; Cordier, Stéphane

    2016-12-01

    The Regge-Wheeler-Zerilli (RWZ) wave-equation describes Schwarzschild-Droste black hole perturbations. The source term contains a Dirac distribution and its derivative. We have previously designed a method of integration in time domain. It consists of a finite difference scheme where analytic expressions, dealing with the wave-function discontinuity through the jump conditions, replace the direct integration of the source and the potential. Herein, we successfully apply the same method to the geodesic generic orbits of EMRI (Extreme Mass Ratio Inspiral) sources, at second order. An EMRI is a Compact Star (CS) captured by a Super-Massive Black Hole (SMBH). These are considered the best probes for testing gravitation in strong regime. The gravitational wave-forms, the radiated energy and angular momentum at infinity are computed and extensively compared with other methods, for different orbits (circular, elliptic, parabolic, including zoom-whirl).

  14. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    NASA Astrophysics Data System (ADS)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  15. Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers.

    PubMed

    Mattiello, Mario; Niklès, Marc; Schilt, Stéphane; Thévenaz, Luc; Salhi, Abdelmajid; Barat, David; Vicet, Aurore; Rouillard, Yves; Werner, Ralph; Koeth, Johannes

    2006-04-01

    A new and compact photoacoustic sensor for trace gas detection in the 2-2.5 microm atmospheric window is reported. Both the development of antimonide-based DFB lasers with singlemode emission in this spectral range and a novel design of photoacoustic cell adapted to the characteristics of these lasers are discussed. The laser fabrication was made in two steps. The structure was firstly grown by molecular beam epitaxy then a metallic DFB grating was processed. The photoacoustic cell is based on a Helmholtz resonator that was designed in order to fully benefit from the highly divergent emission of the antimonide laser. An optimized modulation scheme based on wavelength modulation of the laser source combined with second harmonic detection has been implemented for efficient suppression of wall noise. Using a 2211 nm laser, sub-ppm detection limit has been demonstrated for ammonia.

  16. High Order Schemes in Bats-R-US for Faster and More Accurate Predictions

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Toth, G.; Gombosi, T. I.

    2014-12-01

    BATS-R-US is a widely used global magnetohydrodynamics model that originally employed second order accurate TVD schemes combined with block based Adaptive Mesh Refinement (AMR) to achieve high resolution in the regions of interest. In the last years we have implemented fifth order accurate finite difference schemes CWENO5 and MP5 for uniform Cartesian grids. Now the high order schemes have been extended to generalized coordinates, including spherical grids and also to the non-uniform AMR grids including dynamic regridding. We present numerical tests that verify the preservation of free-stream solution and high-order accuracy as well as robust oscillation-free behavior near discontinuities. We apply the new high order accurate schemes to both heliospheric and magnetospheric simulations and show that it is robust and can achieve the same accuracy as the second order scheme with much less computational resources. This is especially important for space weather prediction that requires faster than real time code execution.

  17. LES of Temporally Evolving Mixing Layers by Three High Order Schemes

    NASA Astrophysics Data System (ADS)

    Yee, H.; Sjögreen, B.; Hadjadj, A.

    2011-10-01

    The performance of three high order shock-capturing schemes is compared for large eddy simulations (LES) of temporally evolving mixing layers for different convective Mach number (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7), and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (Yee & Sjögreen 2009) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) by Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.

  18. Gradient Pre-Emphasis to Counteract First-Order Concomitant Fields on Asymmetric MRI Gradient Systems

    PubMed Central

    Tao, Shengzhen; Weavers, Paul T.; Trzasko, Joshua D.; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M.; Bernstein, Matt A.

    2016-01-01

    PURPOSE To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. METHODS After reviewing the first-order concomitant fields that are present on asymmetric gradients, a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms is developed to counteract their effects. A numerically straightforward, simple to implement approximate solution to this pre-emphasis problem is derived, which is compatible with the current hardware infrastructure used on conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver sub-system, and its real-time use was tested using a series of phantom and in vivo data acquired from 2D Cartesian phase-difference, echo-planar imaging (EPI) and spiral acquisitions. RESULTS The phantom and in vivo results demonstrate that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images exhibiting spatially dependent blurring/distortion. The resulting artifacts are effectively prevented using the proposed gradient pre-emphasis. CONCLUSION An efficient and effective gradient pre-emphasis framework is developed to counteract the effects of first-order concomitant fields of asymmetric gradient systems. PMID:27373901

  19. Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xia, E-mail: cui_xia@iapcm.ac.cn; Yuan, Guang-wei; Shen, Zhi-jun

    Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-ordermore » accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.« less

  20. High-Order Energy Stable WENO Schemes

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2009-01-01

    A third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables 'energy stable' modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.

  1. Design of an anti-Rician-fading modem for mobile satellite communication systems

    NASA Technical Reports Server (NTRS)

    Kojima, Toshiharu; Ishizu, Fumio; Miyake, Makoto; Murakami, Keishi; Fujino, Tadashi

    1995-01-01

    To design a demodulator applicable to mobile satellite communication systems using differential phase shift keying modulation, we have developed key technologies including an anti-Rician-fading demodulation scheme, an initial acquisition scheme, automatic gain control (AGC), automatic frequency control (AFC), and bit timing recovery (BTR). Using these technologies, we have developed one-chip digital signal processor (DSP) modem for mobile terminal, which is compact, of light weight, and of low power consumption. Results of performance test show that the developed DSP modem achieves good performance in terms of bit error ratio in mobile satellite communication environment, i.e., Rician fading channel. It is also shown that the initial acquisition scheme acquires received signal rapidly even if the carrier-to-noise power ratio (CNR) of the received signal is considerably low.

  2. Robust information encryption diffractive-imaging-based scheme with special phase retrieval algorithm for a customized data container

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Wang, Zhipeng; Wang, Hongjuan; Gong, Qiong; Zhou, Nanrun

    2018-06-01

    The diffractive-imaging-based encryption (DIBE) scheme has aroused wide interesting due to its compact architecture and low requirement of conditions. Nevertheless, the primary information can hardly be recovered exactly in the real applications when considering the speckle noise and potential occlusion imposed on the ciphertext. To deal with this issue, the customized data container (CDC) into DIBE is introduced and a new phase retrieval algorithm (PRA) for plaintext retrieval is proposed. The PRA, designed according to the peculiarity of the CDC, combines two key techniques from previous approaches, i.e., input-support-constraint and median-filtering. The proposed scheme can guarantee totally the reconstruction of the primary information despite heavy noise or occlusion and its effectiveness and feasibility have been demonstrated with simulation results.

  3. Generalization of the NpNn scheme to nonyrast levels of even-even nuclei

    NASA Astrophysics Data System (ADS)

    Zhao, Y. M.; Arima, A.

    2003-07-01

    In this Brief Report we present the systematics of excitation energies for even-even nuclei in two regions: the 50

  4. High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present the first fifth order, semi-discrete central upwind method for approximating solutions of multi-dimensional Hamilton-Jacobi equations. Unlike most of the commonly used high order upwind schemes, our scheme is formulated as a Godunov-type scheme. The scheme is based on the fluxes of Kurganov-Tadmor and Kurganov-Tadmor-Petrova, and is derived for an arbitrary number of space dimensions. A theorem establishing the monotonicity of these fluxes is provided. The spacial discretization is based on a weighted essentially non-oscillatory reconstruction of the derivative. The accuracy and stability properties of our scheme are demonstrated in a variety of examples. A comparison between our method and other fifth-order schemes for Hamilton-Jacobi equations shows that our method exhibits smaller errors without any increase in the complexity of the computations.

  5. Asynchronous error-correcting secure communication scheme based on fractional-order shifting chaotic system

    NASA Astrophysics Data System (ADS)

    Chao, Luo

    2015-11-01

    In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.

  6. Three-dimensional simulations of nanopowder compaction processes by granular dynamics method.

    PubMed

    Boltachev, G Sh; Lukyashin, K E; Shitov, V A; Volkov, N B

    2013-07-01

    In order to describe and to study the processes of cold compaction within the discrete element method a three-dimensional model of nanosized powder is developed. The elastic forces of repulsion, the tangential forces of "friction" (Cattaneo-Mindlin), and the dispersion forces of attraction (van der Waals-Hamaker), as well as the formation and destruction of hard bonds between the individual particles are taken into account. The monosized powders with the size of particles in the range 10-40 nm are simulated. The simulation results are compared to the experimental data of the alumina nanopowders compaction. It is shown that the model allows us to reproduce experimental data reliably and, in particular, describes the size effect in the compaction processes. A number of different external loading conditions is used in order to perform the theoretical and experimental researches. The uniaxial compaction (the closed-die compaction), the biaxial (radial) compaction, and the isotropic compaction (the cold isostatic pressing) are studied. The real and computed results are in a good agreement with each other. They reveal a weak sensitivity of the oxide nanopowders to the loading condition (compaction geometry). The application of the continuum theory of the plastically hardening porous body, which is usually used for the description of powders, is discussed.

  7. Three-dimensional simulations of nanopowder compaction processes by granular dynamics method

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Lukyashin, K. E.; Shitov, V. A.; Volkov, N. B.

    2013-07-01

    In order to describe and to study the processes of cold compaction within the discrete element method a three-dimensional model of nanosized powder is developed. The elastic forces of repulsion, the tangential forces of “friction” (Cattaneo-Mindlin), and the dispersion forces of attraction (van der Waals-Hamaker), as well as the formation and destruction of hard bonds between the individual particles are taken into account. The monosized powders with the size of particles in the range 10-40 nm are simulated. The simulation results are compared to the experimental data of the alumina nanopowders compaction. It is shown that the model allows us to reproduce experimental data reliably and, in particular, describes the size effect in the compaction processes. A number of different external loading conditions is used in order to perform the theoretical and experimental researches. The uniaxial compaction (the closed-die compaction), the biaxial (radial) compaction, and the isotropic compaction (the cold isostatic pressing) are studied. The real and computed results are in a good agreement with each other. They reveal a weak sensitivity of the oxide nanopowders to the loading condition (compaction geometry). The application of the continuum theory of the plastically hardening porous body, which is usually used for the description of powders, is discussed.

  8. An experimental/theoretical method to measure the capacitive compactness of an aqueous electrolyte surrounding a spherical charged colloid

    NASA Astrophysics Data System (ADS)

    Moraila-Martínez, Carmen Lucía; Guerrero-García, Guillermo Iván; Chávez-Páez, Martín; González-Tovar, Enrique

    2018-04-01

    The capacitive compactness has been introduced very recently [G. I. Guerrero-García et al., Phys. Chem. Chem. Phys. 20, 262-275 (2018)] as a robust and accurate measure to quantify the thickness, or spatial extension, of the electrical double layer next to either an infinite charged electrode or a spherical macroion. We propose here an experimental/theoretical scheme to determine the capacitive compactness of a spherical electrical double layer that relies on the calculation of the electrokinetic charge and the associated mean electrostatic potential at the macroparticle's surface. This is achieved by numerically solving the non-linear Poisson-Boltzmann equation of point ions around a colloidal sphere and matching the corresponding theoretical mobility, predicted by the O'Brien and White theory [J. Chem. Soc., Faraday Trans. 2 74, 1607-1626 (1978)], with experimental measurements of the electrophoretic mobility under the same conditions. This novel method is used to calculate the capacitive compactness of NaCl and CaCl2 electrolytes surrounding a negatively charged polystyrene particle as a function of the salt concentration.

  9. Smoothing and the second law

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1987-01-01

    The technique of obtaining second-order oscillation-free total -variation-diminishing (TVD), scalar difference schemes by adding a limited diffusive flux ('smoothing') to a second-order centered scheme is explored. It is shown that such schemes do not always converge to the correct physical answer. The approach presented here is to construct schemes that numerically satisfy the second law of thermodynamics on a cell-by-cell basis. Such schemes can only converge to the correct physical solution and in some cases can be shown to be TVD. An explicit scheme with this property and second-order spatial accuracy was found to have extremely restrictive time-step limitation. Switching to an implicit scheme removed the time-step limitation.

  10. Shock-induced compaction of nanoparticle layers into nanostructured coating

    NASA Astrophysics Data System (ADS)

    Mayer, Alexander E.; Ebel, Andrei A.

    2017-10-01

    A new process of shock wave consolidation of nanoparticles into a nanocrystalline coating is theoretically considered. In the proposed scheme, the nanoparticle layers, which are attached to the substrate surface by adhesion, are compacted by plane ultra-short shock waves coming from the substrate. The initial adhesion is self-arisen at any contact between the nanoparticles without a pre-compression. The absence of the nanoparticle ejections due to the shock wave action is connected with the strong adhesive forces, which allow nanoparticles to be attached to each other and to substrate while they are being compacted; this should be valid for small enough nanoparticles. Severe plastic deformation of the nanoparticles and the increased temperature due to collapse of voids between them facilitate their compaction into the monolithic nanocrystalline layer. We consider the examples of Cu and Ni nanoparticles on Al substrate using molecular dynamic simulations. We show the efficiency of the action of multiple shock waves with the duration in the range 2-20 ps and the amplitude in the range 4-12 GPa for sequential layerwise compaction of nanoparticles. A series of shock waves can be created by a repetitive powerful pulsed laser irradiation of the opposite surface of the substrate. The method offers the challenge for the formation of nanostructured coatings of various compositions. The thickness of the compacted nanocrystalline coating can be locally varied and controlled by the number of acting pulses.

  11. Spontaneous breaking of discrete symmetries in QCD on a small volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucini, B.; Patella, A.; Pica, C.

    2007-11-20

    In a compact space with non-trivial cycles, for sufficiently small values of the compact dimensions, charge conjugation (C), spatial reflection (P) and time reversal (J) are spontaneously broken in QCD. The order parameter for the symmetry breaking is the trace of the Wilson line wrapping around the compact dimension, which acquires an imaginary part in the broken phase. We show that a physical signature for the symmetry breaking is a persistent baryonic current wrapping in the compact directions. The existence of such a current is derived analytically at first order in perturbation theory and confirmed in the non-perturbative regime bymore » lattice simulations.« less

  12. Implementation of the high-order schemes QUICK and LECUSSO in the COMMIX-1C Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, K.; Sun, J.G.; Sha, W.T.

    Multidimensional analysis computer programs based on the finite volume method, such as COMMIX-1C, have been commonly used to simulate thermal-hydraulic phenomena in engineering systems such as nuclear reactors. In COMMIX-1C, the first-order schemes with respect to both space and time are used. In many situations such as flow recirculations and stratifications with steep gradient of velocity and temperature fields, however, high-order difference schemes are necessary for an accurate prediction of the fields. For these reasons, two second-order finite difference numerical schemes, QUICK (Quadratic Upstream Interpolation for Convective Kinematics) and LECUSSO (Local Exact Consistent Upwind Scheme of Second Order), have beenmore » implemented in the COMMIX-1C computer code. The formulations were derived for general three-dimensional flows with nonuniform grid sizes. Numerical oscillation analyses for QUICK and LECUSSO were performed. To damp the unphysical oscillations which occur in calculations with high-order schemes at high mesh Reynolds numbers, a new FRAM (Filtering Remedy and Methodology) scheme was developed and implemented. To be consistent with the high-order schemes, the pressure equation and the boundary conditions for all the conservation equations were also modified to be of second order. The new capabilities in the code are listed. Test calculations were performed to validate the implementation of the high-order schemes. They include the test of the one-dimensional nonlinear Burgers equation, two-dimensional scalar transport in two impinging streams, von Karmann vortex shedding, shear driven cavity flow, Couette flow, and circular pipe flow. The calculated results were compared with available data; the agreement is good.« less

  13. A Systematic Methodology for Constructing High-Order Energy-Stable WENO Schemes

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2008-01-01

    A third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter (AIAA 2008-2876, 2008) was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables \\energy stable" modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.

  14. A Systematic Methodology for Constructing High-Order Energy Stable WENO Schemes

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2009-01-01

    A third-order Energy Stable Weighted Essentially Non{Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter [1] was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables "energy stable" modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.

  15. On High-Order Upwind Methods for Advection

    NASA Technical Reports Server (NTRS)

    Huynh, H. T.

    2017-01-01

    In the fourth installment of the celebrated series of five papers entitled "Towards the ultimate conservative difference scheme", Van Leer (1977) introduced five schemes for advection, the first three are piecewise linear, and the last two, piecewise parabolic. Among the five, scheme I, which is the least accurate, extends with relative ease to systems of equations in multiple dimensions. As a result, it became the most popular and is widely known as the MUSCL scheme (monotone upstream-centered schemes for conservation laws). Schemes III and V have the same accuracy, are the most accurate, and are closely related to current high-order methods. Scheme III uses a piecewise linear approximation that is discontinuous across cells, and can be considered as a precursor of the discontinuous Galerkin methods. Scheme V employs a piecewise quadratic approximation that is, as opposed to the case of scheme III, continuous across cells. This method is the basis for the on-going "active flux scheme" developed by Roe and collaborators. Here, schemes III and V are shown to be equivalent in the sense that they yield identical (reconstructed) solutions, provided the initial condition for scheme III is defined from that of scheme V in a manner dependent on the CFL number. This equivalence is counter intuitive since it is generally believed that piecewise linear and piecewise parabolic methods cannot produce the same solutions due to their different degrees of approximation. The finding also shows a key connection between the approaches of discontinuous and continuous polynomial approximations. In addition to the discussed equivalence, a framework using both projection and interpolation that extends schemes III and V into a single family of high-order schemes is introduced. For these high-order extensions, it is demonstrated via Fourier analysis that schemes with the same number of degrees of freedom ?? per cell, in spite of the different piecewise polynomial degrees, share the same sets of eigenvalues and thus, have the same stability and accuracy. Moreover, these schemes are accurate to order 2??-1, which is higher than the expected order of ??.

  16. Spatial Power Combining Amplifier for Ground and Flight Applications

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.; Taylor, M.

    2016-11-01

    Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross-sections than comparable klystrons and traveling-wave tube counterparts and thus avoid RF breakdown and thermal issues common to vacuum tubes. We present a basic description of the SPCA mechanism and initial results of an S-band (2.4 GHz) 100-W, 45-dB gain SPCA prototype. We also discuss future X-band (8.4 GHz), Ka-band (32 GHz), and W-band (94 GHz) SPCA designs for both radar and communications applications.

  17. Comparative Study of Three High Order Schemes for LES of Temporally Evolving Mixing Layers

    NASA Technical Reports Server (NTRS)

    Yee, Helen M. C.; Sjogreen, Biorn Axel; Hadjadj, C.

    2012-01-01

    Three high order shock-capturing schemes are compared for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7) and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.

  18. Ambiguity-free completion of the equations of motion of compact binary systems at the fourth post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Marchand, Tanguy; Bernard, Laura; Blanchet, Luc; Faye, Guillaume

    2018-02-01

    We present the first complete (i.e., ambiguity-free) derivation of the equations of motion of two nonspinning compact objects up to the 4PN (post-Newtonian) order, based on the Fokker action of point particles in harmonic coordinates. The last ambiguity parameter is determined from first principle, by resorting to a matching between the near-zone and far-zone fields, and a consistent computation of the 4PN tail effect in d dimensions. Dimensional regularization is used throughout for treating IR divergences appearing at 4PN order, as well as UV divergences due to the modeling of the compact objects as point particles.

  19. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport

    PubMed Central

    2010-01-01

    Background The finite volume solver Fluent (Lebanon, NH, USA) is a computational fluid dynamics software employed to analyse biological mass-transport in the vasculature. A principal consideration for computational modelling of blood-side mass-transport is convection-diffusion discretisation scheme selection. Due to numerous discretisation schemes available when developing a mass-transport numerical model, the results obtained should either be validated against benchmark theoretical solutions or experimentally obtained results. Methods An idealised aneurysm model was selected for the experimental and computational mass-transport analysis of species concentration due to its well-defined recirculation region within the aneurysmal sac, allowing species concentration to vary slowly with time. The experimental results were obtained from fluid samples extracted from a glass aneurysm model, using the direct spectrophometric concentration measurement technique. The computational analysis was conducted using the four convection-diffusion discretisation schemes available to the Fluent user, including the First-Order Upwind, the Power Law, the Second-Order Upwind and the Quadratic Upstream Interpolation for Convective Kinetics (QUICK) schemes. The fluid has a diffusivity of 3.125 × 10-10 m2/s in water, resulting in a Peclet number of 2,560,000, indicating strongly convection-dominated flow. Results The discretisation scheme applied to the solution of the convection-diffusion equation, for blood-side mass-transport within the vasculature, has a significant influence on the resultant species concentration field. The First-Order Upwind and the Power Law schemes produce similar results. The Second-Order Upwind and QUICK schemes also correlate well but differ considerably from the concentration contour plots of the First-Order Upwind and Power Law schemes. The computational results were then compared to the experimental findings. An average error of 140% and 116% was demonstrated between the experimental results and those obtained from the First-Order Upwind and Power Law schemes, respectively. However, both the Second-Order upwind and QUICK schemes accurately predict species concentration under high Peclet number, convection-dominated flow conditions. Conclusion Convection-diffusion discretisation scheme selection has a strong influence on resultant species concentration fields, as determined by CFD. Furthermore, either the Second-Order or QUICK discretisation schemes should be implemented when numerically modelling convection-dominated mass-transport conditions. Finally, care should be taken not to utilize computationally inexpensive discretisation schemes at the cost of accuracy in resultant species concentration. PMID:20642816

  20. Smoothing and the second law

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1986-01-01

    The technique of obtaining second order, oscillation free, total variation diminishing (TVD), scalar difference schemes by adding a limited diffusion flux (smoothing) to a second order centered scheme is explored. It is shown that such schemes do not always converge to the correct physical answer. The approach presented here is to construct schemes that numerically satisfy the second law of thermodynamics on a cell by cell basis. Such schemes can only converge to the correct physical solution and in some cases can be shown to be TVD. An explicit scheme with this property and second order spatial accuracy was found to have an extremely restrictive time step limitation (Delta t less than Delta x squared). Switching to an implicit scheme removed the time step limitation.

  1. On the use of higher order wave forms in the search for gravitational waves emitted by compact binary coalescences

    NASA Astrophysics Data System (ADS)

    McKechan, David J. A.

    2010-11-01

    This thesis concerns the use, in gravitational wave data analysis, of higher order wave form models of the gravitational radiation emitted by compact binary coalescences. We begin with an introductory chapter that includes an overview of the theory of general relativity, gravitational radiation and ground-based interferometric gravitational wave detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact binary coalescences, with an explanation of higher order waveforms and how they differ from leading order waveforms we also introduce the post-Newtonian formalism. In Chapter 3 the method and results of a gravitational wave search for low mass compact binary coalescences using a subset of LIGO's 5th science run data are presented and in the subsequent chapter we examine how one could use higher order waveforms in such analyses. We follow the development of a new search algorithm that incorporates higher order waveforms with promising results for detection efficiency and parameter estimation. In Chapter 5, a new method of windowing time-domain waveforms that offers benefit to gravitational wave searches is presented. The final chapter covers the development of a game designed as an outreach project to raise public awareness and understanding of the search for gravitational waves.

  2. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great challenge to algorithm development. In addition, controlling the numerical error of the divergence free condition of the magnetic fields for high order methods has been a stumbling block. Lower order methods are not practical for the astrophysical problems in question. We propose to extend our hydrodynamics schemes to the MHD equations with several desired properties over commonly used MHD schemes.

  3. Application of TVD schemes for the Euler equations of gas dynamics. [total variation diminishing for nonlinear hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1985-01-01

    First-order, second-order, and implicit total variation diminishing (TVD) schemes are reviewed using the modified flux approach. Some transient and steady-state calculations are then carried out to illustrate the applicability of these schemes to the Euler equations. It is shown that the second-order explicit TVD schemes generate good shock resolution for both transient and steady-state one-dimensional and two-dimensional problems. Numerical experiments for a quasi-one-dimensional nozzle problem show that the second-order implicit TVD scheme produces a fairly rapid convergence rate and remains stable even when running with a Courant number of 10 to the 6th.

  4. Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofeng, E-mail: xfyang@math.sc.edu; Han, Daozhi, E-mail: djhan@iu.edu

    2017-02-01

    In this paper, we develop a series of linear, unconditionally energy stable numerical schemes for solving the classical phase field crystal model. The temporal discretizations are based on the first order Euler method, the second order backward differentiation formulas (BDF2) and the second order Crank–Nicolson method, respectively. The schemes lead to linear elliptic equations to be solved at each time step, and the induced linear systems are symmetric positive definite. We prove that all three schemes are unconditionally energy stable rigorously. Various classical numerical experiments in 2D and 3D are performed to validate the accuracy and efficiency of the proposedmore » schemes.« less

  5. Mid-Infrared Trace Gas Sensor Technology Based on Intracavity Quartz-Enhanced Photoacoustic Spectroscopy.

    PubMed

    Wojtas, Jacek; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Tittel, Frank K

    2017-03-04

    The application of compact inexpensive trace gas sensor technology to a mid-infrared nitric oxide (NO) detectoion using intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) is reported. A minimum detection limit of 4.8 ppbv within a 30 ms integration time was demonstrated by using a room-temperature, continuous-wave, distributed-feedback quantum cascade laser (QCL) emitting at 5.263 µm (1900.08 cm -1 ) and a new compact design of a high-finesse bow-tie optical cavity with an integrated resonant quartz tuning fork (QTF). The optimum configuration of the bow-tie cavity was simulated using custom software. Measurements were performed with a wavelength modulation scheme (WM) using a 2f detection procedure.

  6. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    PubMed

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  7. Maisotsenko cycle applications for multistage compressors cooling

    NASA Astrophysics Data System (ADS)

    Levchenko, D.; Yurko, I.; Artyukhov, A.; Baga, V.

    2017-08-01

    The present study provides the overview of Maisotsenko Cycle (M-Cycle) applications for gas cooling in compressor systems. Various schemes of gas cooling systems are considered regarding to their thermal efficiency and cooling capacity. Preliminary calculation of M-cycle HMX has been conducted. It is found that M-cycle HMX scheme allows to brake the limit of the ambient wet bulb temperature for evaporative cooling. It has demonstrated that a compact integrated heat and moisture exchange process can cool product fluid to the level below the ambient wet bulb temperature, even to the level of dew point temperature of the incoming air with substantially lower water and energy consumption requirements.

  8. Compact millijoule diode-seeded two-stage fiber master oscillator power amplifier using a multipass and forward pumping scheme.

    PubMed

    Lai, Po-Yen; Chang, Chun-Lin; Huang, Sheng-Lung; Chen, Shih-Hung

    2018-05-01

    The multipass scheme for a diode-seeded fiber master oscillator power amplifier with a nanojoule-to-millijoule output energy level at a repetition rate of <100  kHz is numerically analyzed for comparison to an experimental benchmark. For a 6/125 single-mode preamplifier with a small input energy (<1  nJ), there is a significant improvement in the output energy from 0.7% to 80% and 95% of the maximum extractable energy using the double-pass and four-pass schemes, respectively. For a 30/250 large-mode-area power amplifier using the double-pass and forward pumping scheme, the required input energy is decreased from 100 μJ to 18 μJ for millijoule energy extraction with accompanying Stokes waves of less than 10% of the total energy. The system based on the full master oscillator power amplifier configuration with an output energy exceeding millijoule level can be optimally simplified to two stages for commercialization.

  9. Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks.

    PubMed

    Shelley, M J; Tao, L

    2001-01-01

    To avoid the numerical errors associated with resetting the potential following a spike in simulations of integrate-and-fire neuronal networks, Hansel et al. and Shelley independently developed a modified time-stepping method. Their particular scheme consists of second-order Runge-Kutta time-stepping, a linear interpolant to find spike times, and a recalibration of postspike potential using the spike times. Here we show analytically that such a scheme is second order, discuss the conditions under which efficient, higher-order algorithms can be constructed to treat resets, and develop a modified fourth-order scheme. To support our analysis, we simulate a system of integrate-and-fire conductance-based point neurons with all-to-all coupling. For six-digit accuracy, our modified Runge-Kutta fourth-order scheme needs a time-step of Delta(t) = 0.5 x 10(-3) seconds, whereas to achieve comparable accuracy using a recalibrated second-order or a first-order algorithm requires time-steps of 10(-5) seconds or 10(-9) seconds, respectively. Furthermore, since the cortico-cortical conductances in standard integrate-and-fire neuronal networks do not depend on the value of the membrane potential, we can attain fourth-order accuracy with computational costs normally associated with second-order schemes.

  10. Computational AeroAcoustics for Fan Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Ed; Hixon, Ray; Dyson, Rodger; Huff, Dennis (Technical Monitor)

    2002-01-01

    An overview of the current state-of-the-art in computational aeroacoustics as applied to fan noise prediction at NASA Glenn is presented. Results from recent modeling efforts using three dimensional inviscid formulations in both frequency and time domains are summarized. In particular, the application of a frequency domain method, called LINFLUX, to the computation of rotor-stator interaction tone noise is reviewed and the influence of the background inviscid flow on the acoustic results is analyzed. It has been shown that the noise levels are very sensitive to the gradients of the mean flow near the surface and that the correct computation of these gradients for highly loaded airfoils is especially problematic using an inviscid formulation. The ongoing development of a finite difference time marching code that is based on a sixth order compact scheme is also reviewed. Preliminary results from the nonlinear computation of a gust-airfoil interaction model problem demonstrate the fidelity and accuracy of this approach. Spatial and temporal features of the code as well as its multi-block nature are discussed. Finally, latest results from an ongoing effort in the area of arbitrarily high order methods are reviewed and technical challenges associated with implementing correct high order boundary conditions are discussed and possible strategies for addressing these challenges ore outlined.

  11. The concentration of manganese, iron and strontium in bone of red fox Vulpes vulpes (L. 1758).

    PubMed

    Budis, Halina; Kalisinska, Elzbieta; Lanocha, Natalia; Kosik-Bogacka, Danuta I

    2013-12-01

    The aims of the study were to determine manganese (Mn), iron (Fe) and strontium (Sr) concentrations in fox bone samples from north-western Poland and to examine the relationships between the bone Mn, Fe and Sr concentrations and the sex and age of the foxes. In the studied samples of fox cartilage, cartilage with adjacent compact bone, compact bone and spongy bone, the concentrations of the analysed metals had the following descending order: Fe > Sr > Mn. The only exception was in compact bone, in which the concentrations were arranged in the order Sr > Fe > Mn. Manganese concentrations were significantly higher in cartilage, compact bone and cartilage with compact bone than in spongy bone. Iron concentrations were higher in cartilage and spongy bone compared with compact bone. Strontium concentrations were greater in compact bone than in cartilage and spongy bone. The manganese, iron and strontium concentrations in the same type of bone material in many cases correlated with each other, with the strongest correlation (r > 0.70) between Mn and Fe in almost all types of samples. In addition, concentrations of the same metals in different bone materials were closely correlated for Mn and Fe in cartilage and cartilage with adjacent compact bone, and for Sr in compact bone and cartilage with compact bone. In the fox from NW Poland, there were no statistically significant differences in Mn, Fe and Sr in any of the types of bone material between the sexes and immature and adult foxes.

  12. 76 FR 61712 - Deborah Martinez Seldon: Debarment Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ..., devised a scheme and artifice to fraudulently obtain money from patients by substituting the cheaper, non... marketed by Allergan, Inc.. As part of the scheme Ms. Seldon ordered and caused to be ordered 38 vials of... purchasing the approved BOTOX in October 2003. In January 2005, as part of the scheme and artifice, Ms...

  13. On Richardson extrapolation for low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes

    NASA Astrophysics Data System (ADS)

    Havasi, Ágnes; Kazemi, Ehsan

    2018-04-01

    In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.

  14. A New Approach for Constructing Highly Stable High Order CESE Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    2010-01-01

    A new approach is devised to construct high order CESE schemes which would avoid the common shortcomings of traditional high order schemes including: (a) susceptibility to computational instabilities; (b) computational inefficiency due to their local implicit nature (i.e., at each mesh points, need to solve a system of linear/nonlinear equations involving all the mesh variables associated with this mesh point); (c) use of large and elaborate stencils which complicates boundary treatments and also makes efficient parallel computing much harder; (d) difficulties in applications involving complex geometries; and (e) use of problem-specific techniques which are needed to overcome stability problems but often cause undesirable side effects. In fact it will be shown that, with the aid of a conceptual leap, one can build from a given 2nd-order CESE scheme its 4th-, 6th-, 8th-,... order versions which have the same stencil and same stability conditions of the 2nd-order scheme, and also retain all other advantages of the latter scheme. A sketch of multidimensional extensions will also be provided.

  15. The discrete one-sided Lipschitz condition for convex scalar conservation laws

    NASA Technical Reports Server (NTRS)

    Brenier, Yann; Osher, Stanley

    1986-01-01

    Physical solutions to convex scalar conservation laws satisfy a one-sided Lipschitz condition (OSLC) that enforces both the entropy condition and their variation boundedness. Consistency with this condition is therefore desirable for a numerical scheme and was proved for both the Godunov and the Lax-Friedrichs scheme--also, in a weakened version, for the Roe scheme, all of them being only first order accurate. A new, fully second order scheme is introduced here, which is consistent with the OSLC. The modified equation is considered and shows interesting features. Another second order scheme is then considered and numerical results are discussed.

  16. ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.

    2018-07-01

    We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved space-times. In this paper, we assume the background space-time to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local time-stepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed space-times. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.

  17. ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.

    2018-03-01

    We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved spacetimes. In this paper we assume the background spacetime to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully-discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local timestepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a-posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed spacetimes. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.

  18. Higher Order Time Integration Schemes for the Unsteady Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.

  19. Re-evaluation of an Optimized Second Order Backward Difference (BDF2OPT) Scheme for Unsteady Flow Applications

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Carpenter, Mark H.; Lockard, David P.

    2009-01-01

    Recent experience in the application of an optimized, second-order, backward-difference (BDF2OPT) temporal scheme is reported. The primary focus of the work is on obtaining accurate solutions of the unsteady Reynolds-averaged Navier-Stokes equations over long periods of time for aerodynamic problems of interest. The baseline flow solver under consideration uses a particular BDF2OPT temporal scheme with a dual-time-stepping algorithm for advancing the flow solutions in time. Numerical difficulties are encountered with this scheme when the flow code is run for a large number of time steps, a behavior not seen with the standard second-order, backward-difference, temporal scheme. Based on a stability analysis, slight modifications to the BDF2OPT scheme are suggested. The performance and accuracy of this modified scheme is assessed by comparing the computational results with other numerical schemes and experimental data.

  20. A fourth order accurate finite difference scheme for the computation of elastic waves

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Jordan, K. E.; Lemesurier, B. J.; Turkel, E.

    1986-01-01

    A finite difference for elastic waves is introduced. The model is based on the first order system of equations for the velocities and stresses. The differencing is fourth order accurate on the spatial derivatives and second order accurate in time. The model is tested on a series of examples including the Lamb problem, scattering from plane interf aces and scattering from a fluid-elastic interface. The scheme is shown to be effective for these problems. The accuracy and stability is insensitive to the Poisson ratio. For the class of problems considered here it is found that the fourth order scheme requires for two-thirds to one-half the resolution of a typical second order scheme to give comparable accuracy.

  1. Flow Field Dynamics in a High-g Ultra-Compact Combustor

    DTIC Science & Technology

    2016-12-01

    6.1.3.1. Baseline Exit Temperatures .............................................................. 308 x 6.1.3.2. Exit Temperature Effects Due to...through improved thrust-specific fuel consumption ; however, implementation of an effective combustion scheme in the constrained space between turbine...their influence on the combustion process, and the resultant effect on exit temperature profiles and emissions (as detailed in the following section

  2. The a(3) Scheme--A Fourth-Order Space-Time Flux-Conserving and Neutrally Stable CESE Solver

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    2008-01-01

    The CESE development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a non-dissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To initiate a systematic CESE development of high order schemes, in this paper we provide a thorough discussion on the structure, consistency, stability, phase error, and accuracy of a new 4th-order space-time flux-conserving and neutrally stable CESE solver of an 1D scalar advection equation. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and three points at the lower time level. Because it is associated with three independent mesh variables (the numerical analogues of the dependent variable and its 1st-order and 2ndorder spatial derivatives, respectively) and three equations per mesh point, the new scheme is referred to as the a(3) scheme. Through the von Neumann analysis, it is shown that the a(3) scheme is stable if and only if the Courant number is less than 0.5. Moreover, it is established numerically that the a(3) scheme is 4th-order accurate.

  3. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy

    NASA Astrophysics Data System (ADS)

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-02-01

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes.

  4. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy

    PubMed Central

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-01-01

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes. PMID:28233829

  5. Semi-Analytic Reconstruction of Flux in Finite Volume Formulations

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2006-01-01

    Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.

  6. A point-value enhanced finite volume method based on approximate delta functions

    NASA Astrophysics Data System (ADS)

    Xuan, Li-Jun; Majdalani, Joseph

    2018-02-01

    We revisit the concept of an approximate delta function (ADF), introduced by Huynh (2011) [1], in the form of a finite-order polynomial that holds identical integral properties to the Dirac delta function when used in conjunction with a finite-order polynomial integrand over a finite domain. We show that the use of generic ADF polynomials can be effective at recovering and generalizing several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements saves the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Here, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to the linear wave and nonlinear Burgers' equations in one-dimensional space.

  7. Gradient pre-emphasis to counteract first-order concomitant fields on asymmetric MRI gradient systems.

    PubMed

    Tao, Shengzhen; Weavers, Paul T; Trzasko, Joshua D; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M; Bernstein, Matt A

    2017-06-01

    To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. After reviewing the first-order concomitant fields that are present on asymmetric gradients, we developed a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms to counteract their effects. A numerically straightforward, easily implemented approximate solution to this pre-emphasis problem was derived that was compatible with the current hardware infrastructure of conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver subsystem, and its real-time use was tested using a series of phantom and in vivo data acquired from two-dimensional Cartesian phase-difference, echo-planar imaging, and spiral acquisitions. The phantom and in vivo results demonstrated that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images with spatially dependent blurring/distortion. The resulting artifacts were effectively prevented using the proposed gradient pre-emphasis. We have developed an efficient and effective gradient pre-emphasis framework to counteract the effects of first-order concomitant fields of asymmetric gradient systems. Magn Reson Med 77:2250-2262, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Searching for the full symphony of black hole binary mergers

    NASA Astrophysics Data System (ADS)

    Harry, Ian; Bustillo, Juan Calderón; Nitz, Alex

    2018-01-01

    Current searches for the gravitational-wave signature of compact binary mergers rely on matched-filtering data from interferometric observatories with sets of modeled gravitational waveforms. These searches currently use model waveforms that do not include the higher-order mode content of the gravitational-wave signal. Higher-order modes are important for many compact binary mergers and their omission reduces the sensitivity to such sources. In this work we explore the sensitivity loss incurred from omitting higher-order modes. We present a new method for searching for compact binary mergers using waveforms that include higher-order mode effects, and evaluate the sensitivity increase that using our new method would allow. We find that, when evaluating sensitivity at a constant rate-of-false alarm, and when including the fact that signal-consistency tests can reject some signals that include higher-order mode content, we observe a sensitivity increase of up to a factor of 2 in volume for high mass ratio, high total-mass systems. For systems with equal mass, or with total mass ˜50 M⊙, we see more modest sensitivity increases, <10 %, which indicates that the existing search is already performing well. Our new search method is also directly applicable in searches for generic compact binaries.

  9. An exponential time-integrator scheme for steady and unsteady inviscid flows

    NASA Astrophysics Data System (ADS)

    Li, Shu-Jie; Luo, Li-Shi; Wang, Z. J.; Ju, Lili

    2018-07-01

    An exponential time-integrator scheme of second-order accuracy based on the predictor-corrector methodology, denoted PCEXP, is developed to solve multi-dimensional nonlinear partial differential equations pertaining to fluid dynamics. The effective and efficient implementation of PCEXP is realized by means of the Krylov method. The linear stability and truncation error are analyzed through a one-dimensional model equation. The proposed PCEXP scheme is applied to the Euler equations discretized with a discontinuous Galerkin method in both two and three dimensions. The effectiveness and efficiency of the PCEXP scheme are demonstrated for both steady and unsteady inviscid flows. The accuracy and efficiency of the PCEXP scheme are verified and validated through comparisons with the explicit third-order total variation diminishing Runge-Kutta scheme (TVDRK3), the implicit backward Euler (BE) and the implicit second-order backward difference formula (BDF2). For unsteady flows, the PCEXP scheme generates a temporal error much smaller than the BDF2 scheme does, while maintaining the expected acceleration at the same time. Moreover, the PCEXP scheme is also shown to achieve the computational efficiency comparable to the implicit schemes for steady flows.

  10. Hidden secrets of deformation: Impact-induced compaction within a CV chondrite

    NASA Astrophysics Data System (ADS)

    Forman, L. V.; Bland, P. A.; Timms, N. E.; Collins, G. S.; Davison, T. M.; Ciesla, F. J.; Benedix, G. K.; Daly, L.; Trimby, P. W.; Yang, L.; Ringer, S. P.

    2016-10-01

    The CV3 Allende is one of the most extensively studied meteorites in worldwide collections. It is currently classified as S1-essentially unshocked-using the classification scheme of Stöffler et al. (1991), however recent modelling suggests the low porosity observed in Allende indicates the body should have undergone compaction-related deformation. In this study, we detail previously undetected evidence of impact through use of Electron Backscatter Diffraction mapping to identify deformation microstructures in chondrules, AOAs and matrix grains. Our results demonstrate that forsterite-rich chondrules commonly preserve crystal-plastic microstructures (particularly at their margins); that low-angle boundaries in deformed matrix grains of olivine have a preferred orientation; and that disparities in deformation occur between chondrules, surrounding and non-adjacent matrix grains. We find heterogeneous compaction effects present throughout the matrix, consistent with a highly porous initial material. Given the spatial distribution of these crystal-plastic deformation microstructures, we suggest that this is evidence that Allende has undergone impact-induced compaction from an initially heterogeneous and porous parent body. We suggest that current shock classifications (Stöffler et al., 1991) relying upon data from chondrule interiors do not constrain the complete shock history of a sample.

  11. Design of algorithms for a dispersive hyperbolic problem

    NASA Technical Reports Server (NTRS)

    Roe, Philip L.; Arora, Mohit

    1991-01-01

    In order to develop numerical schemes for stiff problems, a model of relaxing heat flow is studied. To isolate those errors unavoidably associated with discretization, a method of characteristics is developed, containing three free parameters depending on the stiffness ratio. It is shown that such 'decoupled' schemes do not take into account the interaction between the wave families, and hence result in incorrect wavespeeds. Schemes can differ by up to two orders of magnitude in their rms errors, even while maintaining second-order accuracy. 'Coupled' schemes which account for the interactions are developed to obtain two additional free parameters. Numerical results are given for several decoupled and coupled schemes.

  12. Investigation on improved Gabor order tracking technique

    NASA Astrophysics Data System (ADS)

    Pan, Min-Chun; Chiu, Chun-Ching

    2004-07-01

    The study proposes an improved Gabor order tracking (GOT) technique to cope with crossing orders that cannot be effectively separated using the original GOT scheme. The improvement aids both the reconstruction and interpretation of two crossing orders such as a transmission-element-regarding order component and a structural resonant component. In the paper, the influence of the dual function to Gabor expansion coefficients is investigated, which can affect the precision of the tracked order component. Additionally, using the GOT scheme in noise conditions is demonstrated as well. For applying the improved GOT in real tasks, separation and extraction of close-order components of vibration signals measured from a transmission-element test bench is illustrated using both the GOT and Vold-Kalman filtering (VKF) OT schemes. Finally, comprehensive comparisons between the improved GOT and VKF_OT schemes are made from processing results.

  13. The method of space-time conservation element and solution element-applications to one-dimensional and two-dimensional time-marching flow problems

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen

    1995-01-01

    A nontraditional numerical method for solving conservation laws is being developed. The new method is designed from a physicist's perspective, i.e., its development is based more on physics than numerics. Even though it uses only the simplest approximation techniques, a 2D time-marching Euler solver developed recently using the new method is capable of generating nearly perfect solutions for a 2D shock reflection problem used by Helen Yee and others. Moreover, a recent application of this solver to computational aeroacoustics (CAA) problems reveals that: (1) accuracy of its results is comparable to that of a 6th order compact difference scheme even though nominally the current solver is only of 2nd-order accuracy; (2) generally, the non-reflecting boundary condition can be implemented in a simple way without involving characteristic variables; and (3) most importantly, the current solver is capable of handling both continuous and discontinuous flows very well and thus provides a unique numerical tool for solving those flow problems where the interactions between sound waves and shocks are important, such as the noise field around a supersonic over- or under-expansion jet.

  14. Lessons Learned from Numerical Simulations of Interfacial Instabilities

    NASA Astrophysics Data System (ADS)

    Cook, Andrew

    2015-11-01

    Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instabilities serve as efficient mixing mechanisms in a wide variety of flows, from supernovae to jet engines. Over the past decade, we have used the Miranda code to temporally integrate the multi-component Navier-Stokes equations at spatial resolutions up to 29 billion grid points. The code employs 10th-order compact schemes for spatial derivatives, combined with 4th-order Runge-Kutta time advancement. Some of our major findings are as follows: The rate of growth of a mixing layer is equivalent to the net mass flux through the equi-molar plane. RT growth rates can be significantly reduced by adding shear. RT instability can produce shock waves. The growth rate of RM instability can be predicted from known interfacial perturbations. RM vortex projectiles can far outrun the mixing region. Thermal fluctuations in molecular dynamics simulations can seed instabilities along the braids in KH instability. And finally, enthalpy diffusion is essential in preserving the second law of thermodynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Waste collection subsystem study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Practical ways were explored of improving waste compaction and of providing rapid turnaround between flights at essentially no cost for the space shuttle waste collection subsystem commode. Because of the possible application of a fully developed shuttle commode to the space station, means of providing waste treatment without overboard venting were also considered. Three basic schemes for compaction and rapid turnaround, each fully capable of meeting the objectives, were explored in sufficient depth to bring out the characteristic advantages and disadvantages of each. Tradeoff comparisons were very close between leading contenders and efforts were made to refine the design concepts sufficiently to justify a selection. The concept selected makes use of a sealed canister containing wastes that have been forcibly compacted, which is removable in flight. No selection was made between three superior non-venting treatment methods owing to the need for experimental evaluations of the processes involved. A system requirements definition document has been prepared to define the task for a test embodiment of the selected concept.

  16. An ultra-compact rejection filter based on spoof surface plasmon polaritons.

    PubMed

    Zhao, Shumin; Zhang, Hao Chi; Zhao, Jiahao; Tang, Wen Xuan

    2017-09-05

    In this paper, we propose a scheme to construct a new type of ultra-compact rejection filter by loading split-ring resonators (SRRs) on the transmission line of spoof surface plasmon polaritons (SPPs). From the dispersion analysis of the spoof SPP transmission line with and without the SRR loading, we clearly reveal the mechanism of the rejection characteristic for this compact filter. Meanwhile, we fabricate two spoof SPPs waveguides loaded with different amounts of metamaterials particles, and experimentally test them using an Agilent Vector Network Analyzer (VNA) and a homemade near-field scanning system. Both the simulated and measured results agree well with our theoretical analysis and demonstrate the excellent filtering characteristics of our design. The isolation of both filters can be less than -20 dB, and even reach -40 dB at rejection frequencies. The proposed rejection and stop-band filters show important potentials to develop integrated plasmonic functional devices and circuits at microwave and terahertz frequencies.

  17. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels.

    PubMed

    Luo, J; Chen, M; Wu, W Y; Weng, S M; Sheng, Z M; Schroeder, C B; Jaroszynski, D A; Esarey, E; Leemans, W P; Mori, W B; Zhang, J

    2018-04-13

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  18. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    NASA Astrophysics Data System (ADS)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  19. Relativistic and Slowing Down: The Flow in the Hotspots of Powerful Radio Galaxies and Quasars

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    2003-01-01

    The 'hotspots' of powerful radio galaxies (the compact, high brightness regions, where the jet flow collides with the intergalactic medium (IGM)) have been imaged in radio, optical and recently in X-ray frequencies. We propose a scheme that unifies their, at first sight, disparate broad band (radio to X-ray) spectral properties. This scheme involves a relativistic flow upstream of the hotspot that decelerates to the sub-relativistic speed of its inferred advance through the IGM and it is viewed at different angles to its direction of motion, as suggested by two independent orientation estimators (the presence or not of broad emission lines in their optical spectra and the core-to-extended radio luminosity). This scheme, besides providing an account of the hotspot spectral properties with jet orientation, it also suggests that the large-scale jets remain relativistic all the way to the hotspots.

  20. AN ADVANCED LEAKAGE SCHEME FOR NEUTRINO TREATMENT IN ASTROPHYSICAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perego, A.; Cabezón, R. M.; Käppeli, R., E-mail: albino.perego@physik.tu-darmstadt.de

    We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmannmore » transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.« less

  1. APPLICATION OF FLOW SIMULATION FOR EVALUATION OF FILLING-ABILITY OF SELF-COMPACTING CONCRETE

    NASA Astrophysics Data System (ADS)

    Urano, Shinji; Nemoto, Hiroshi; Sakihara, Kohei

    In this paper, MPS method was applied to fluid an alysis of self-compacting concrete. MPS method is one of the particle method, and it is suitable for the simulation of moving boundary or free surface problems and large deformation problems. The constitutive equation of self-compacting concrete is assumed as bingham model. In order to investigate flow Stoppage and flow speed of self-compacting concrete, numerical analysis examples of slump flow and L-flow test were performed. In addition, to evaluate verification of compactability of self-compacting concrete, numerical analys is examples of compaction at the part of CFT diaphragm were performed. As a result, it was found that the MPS method was suitable for the simulation of compaction of self-compacting concrete, and a just appraisal was obtained by setting shear strain rate of flow-limit πc and limitation point of segregation.

  2. Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method.

    PubMed

    Chai, Zhenhua; Zhao, T S

    2014-07-01

    In this paper, we propose a local nonequilibrium scheme for computing the flux of the convection-diffusion equation with a source term in the framework of the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). Both the Chapman-Enskog analysis and the numerical results show that, at the diffusive scaling, the present nonequilibrium scheme has a second-order convergence rate in space. A comparison between the nonequilibrium scheme and the conventional second-order central-difference scheme indicates that, although both schemes have a second-order convergence rate in space, the present nonequilibrium scheme is more accurate than the central-difference scheme. In addition, the flux computation rendered by the present scheme also preserves the parallel computation feature of the LBM, making the scheme more efficient than conventional finite-difference schemes in the study of large-scale problems. Finally, a comparison between the single-relaxation-time model and the MRT model is also conducted, and the results show that the MRT model is more accurate than the single-relaxation-time model, both in solving the convection-diffusion equation and in computing the flux.

  3. Pixel-Level Digital-to-Analog Conversion Scheme with Compensation of Thin-Film-Transistor Variations for Compact Integrated Data Drivers of Active Matrix Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Wook; Park, Sang-Gyu; Choi, Byong-Deok

    2011-03-01

    The previous pixel-level digital-to-analog-conversion (DAC) scheme that implements a part of a DAC in a pixel circuit turned out to be very efficient for reducing the peripheral area of an integrated data driver fabricated with low-temperature polycrystalline silicon thin-film transistors (LTPS TFTs). However, how the pixel-level DAC can be compatible with the existing pixel circuits including compensation schemes of TFT variations and IR drops on supply rails, which is of primary importance for active matrix organic light emitting diodes (AMOLEDs) is an issue in this scheme, because LTPS TFTs suffer from random variations in their characteristics. In this paper, we show that the pixel-level DAC scheme can be successfully used with the previous compensation schemes by giving two examples of voltage- and current-programming pixels. The previous pixel-level DAC schemes require additional two TFTs and one capacitor, but for these newly proposed pixel circuits, the overhead is no more than two TFTs by utilizing the already existing capacitor. In addition, through a detailed analysis, it has been shown that the pixel-level DAC can be expanded to a 4-bit resolution, or be applied together with 1:2 demultiplexing driving for 6- to 8-in. diagonal XGA AMOLED display panels.

  4. A second-order accurate finite volume scheme with the discrete maximum principle for solving Richards’ equation on unstructured meshes

    DOE PAGES

    Svyatsky, Daniil; Lipnikov, Konstantin

    2017-03-18

    Richards’s equation describes steady-state or transient flow in a variably saturated medium. For a medium having multiple layers of soils that are not aligned with coordinate axes, a mesh fitted to these layers is no longer orthogonal and the classical two-point flux approximation finite volume scheme is no longer accurate. Here, we propose new second-order accurate nonlinear finite volume (NFV) schemes for the head and pressure formulations of Richards’ equation. We prove that the discrete maximum principles hold for both formulations at steady-state which mimics similar properties of the continuum solution. The second-order accuracy is achieved using high-order upwind algorithmsmore » for the relative permeability. Numerical simulations of water infiltration into a dry soil show significant advantage of the second-order NFV schemes over the first-order NFV schemes even on coarse meshes. Since explicit calculation of the Jacobian matrix becomes prohibitively expensive for high-order schemes due to build-in reconstruction and slope limiting algorithms, we study numerically the preconditioning strategy introduced recently in Lipnikov et al. (2016) that uses a stable approximation of the continuum Jacobian. Lastly, numerical simulations show that the new preconditioner reduces computational cost up to 2–3 times in comparison with the conventional preconditioners.« less

  5. A second-order accurate finite volume scheme with the discrete maximum principle for solving Richards’ equation on unstructured meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svyatsky, Daniil; Lipnikov, Konstantin

    Richards’s equation describes steady-state or transient flow in a variably saturated medium. For a medium having multiple layers of soils that are not aligned with coordinate axes, a mesh fitted to these layers is no longer orthogonal and the classical two-point flux approximation finite volume scheme is no longer accurate. Here, we propose new second-order accurate nonlinear finite volume (NFV) schemes for the head and pressure formulations of Richards’ equation. We prove that the discrete maximum principles hold for both formulations at steady-state which mimics similar properties of the continuum solution. The second-order accuracy is achieved using high-order upwind algorithmsmore » for the relative permeability. Numerical simulations of water infiltration into a dry soil show significant advantage of the second-order NFV schemes over the first-order NFV schemes even on coarse meshes. Since explicit calculation of the Jacobian matrix becomes prohibitively expensive for high-order schemes due to build-in reconstruction and slope limiting algorithms, we study numerically the preconditioning strategy introduced recently in Lipnikov et al. (2016) that uses a stable approximation of the continuum Jacobian. Lastly, numerical simulations show that the new preconditioner reduces computational cost up to 2–3 times in comparison with the conventional preconditioners.« less

  6. A compact, coherent light source system architecture

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Dattoli, G.; DiPalma, E.; Einstein, J.; Milton, S. V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I. P.; van der Slot, P. J. M.

    2016-09-01

    Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise light sources that are more accessible by industry and in smaller laboratory settings. Although we cannot and do not want to compete directly with sources such as third-generation light sources or that of national-laboratory-based free-electron lasers, we have several interesting schemes that could bring useful and more coherent, short-wavelength light source to more researchers. Here, we present and discuss several results of recent simulations and our future steps for such dissemination.

  7. Mid-Infrared Trace Gas Sensor Technology Based on Intracavity Quartz-Enhanced Photoacoustic Spectroscopy

    PubMed Central

    Wojtas, Jacek; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Tittel, Frank K.

    2017-01-01

    The application of compact inexpensive trace gas sensor technology to a mid-infrared nitric oxide (NO) detectoion using intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) is reported. A minimum detection limit of 4.8 ppbv within a 30 ms integration time was demonstrated by using a room-temperature, continuous-wave, distributed-feedback quantum cascade laser (QCL) emitting at 5.263 µm (1900.08 cm−1) and a new compact design of a high-finesse bow-tie optical cavity with an integrated resonant quartz tuning fork (QTF). The optimum configuration of the bow-tie cavity was simulated using custom software. Measurements were performed with a wavelength modulation scheme (WM) using a 2f detection procedure. PMID:28273836

  8. Design of CMOS compatible and compact, thermally-compensated electro-optic modulator based on off-axis microring resonator for dense wavelength division multiplexing applications.

    PubMed

    Haldar, Raktim; Banik, Abhik D; Varshney, Shailendra K

    2014-09-22

    In this work, we propose and demonstrate the performance of silicon-on-insulator (SOI) off-axis microring resonator (MRR) as electro-optic modulator (EOM). Adding an extra off-axis inner-ring in conventional microring structure provides control to compensate thermal effects on EOM. It is shown that dynamically controlled bias-voltage applied to the outer ring has the potency to quell the thermal effects over a wide range of temperature. Thus, besides the appositely biased conventional microring, off-axis inner microring with pre-emphasized electrical input message signal enables our proposed structure suitable for high data-rate dense wavelength division multiplexing scheme of optical communication within a very compact device size.

  9. A three-dimensional finite element model of human atrial anatomy: New methods for cubic Hermite meshes with extraordinary vertices

    PubMed Central

    Gonzales, Matthew J.; Sturgeon, Gregory; Krishnamurthy, Adarsh; Hake, Johan; Jonas, René; Stark, Paul; Rappel, Wouter-Jan; Narayan, Sanjiv M.; Zhang, Yongjie; Segars, W. Paul; McCulloch, Andrew D.

    2013-01-01

    High-order cubic Hermite finite elements have been valuable in modeling cardiac geometry, fiber orientations, biomechanics, and electrophysiology, but their use in solving three-dimensional problems has been limited to ventricular models with simple topologies. Here, we utilized a subdivision surface scheme and derived a generalization of the “local-to-global” derivative mapping scheme of cubic Hermite finite elements to construct bicubic and tricubic Hermite models of the human atria with extraordinary vertices from computed tomography images of a patient with atrial fibrillation. To an accuracy of 0.6 millimeters, we were able to capture the left atrial geometry with only 142 bicubic Hermite finite elements, and the right atrial geometry with only 90. The left and right atrial bicubic Hermite meshes were G1 continuous everywhere except in the one-neighborhood of extraordinary vertices, where the mean dot products of normals at adjacent elements were 0.928 and 0.925. We also constructed two biatrial tricubic Hermite models and defined fiber orientation fields in agreement with diagrammatic data from the literature using only 42 angle parameters. The meshes all have good quality metrics, uniform element sizes, and elements with aspect ratios near unity, and are shared with the public. These new methods will allow for more compact and efficient patient-specific models of human atrial and whole heart physiology. PMID:23602918

  10. Investigation of obstacle effect to improve conjugate heat transfer in backward facing step channel using fast simulation of incompressible flow

    NASA Astrophysics Data System (ADS)

    Nouri-Borujerdi, Ali; Moazezi, Arash

    2018-01-01

    The current study investigates the conjugate heat transfer characteristics for laminar flow in backward facing step channel. All of the channel walls are insulated except the lower thick wall under a constant temperature. The upper wall includes a insulated obstacle perpendicular to flow direction. The effect of obstacle height and location on the fluid flow and heat transfer are numerically explored for the Reynolds number in the range of 10 ≤ Re ≤ 300. Incompressible Navier-Stokes and thermal energy equations are solved simultaneously in fluid region by the upwind compact finite difference scheme based on flux-difference splitting in conjunction with artificial compressibility method. In the thick wall, the energy equation is obtained by Laplace equation. A multi-block approach is used to perform parallel computing to reduce the CPU time. Each block is modeled separately by sharing boundary conditions with neighbors. The developed program for modeling was written in FORTRAN language with OpenMP API. The obtained results showed that using of the multi-block parallel computing method is a simple robust scheme with high performance and high-order accurate. Moreover, the obtained results demonstrated that the increment of Reynolds number and obstacle height as well as decrement of horizontal distance between the obstacle and the step improve the heat transfer.

  11. A family of high-order gas-kinetic schemes and its comparison with Riemann solver based high-order methods

    NASA Astrophysics Data System (ADS)

    Ji, Xing; Zhao, Fengxiang; Shyy, Wei; Xu, Kun

    2018-03-01

    Most high order computational fluid dynamics (CFD) methods for compressible flows are based on Riemann solver for the flux evaluation and Runge-Kutta (RK) time stepping technique for temporal accuracy. The advantage of this kind of space-time separation approach is the easy implementation and stability enhancement by introducing more middle stages. However, the nth-order time accuracy needs no less than n stages for the RK method, which can be very time and memory consuming due to the reconstruction at each stage for a high order method. On the other hand, the multi-stage multi-derivative (MSMD) method can be used to achieve the same order of time accuracy using less middle stages with the use of the time derivatives of the flux function. For traditional Riemann solver based CFD methods, the lack of time derivatives in the flux function prevents its direct implementation of the MSMD method. However, the gas kinetic scheme (GKS) provides such a time accurate evolution model. By combining the second-order or third-order GKS flux functions with the MSMD technique, a family of high order gas kinetic methods can be constructed. As an extension of the previous 2-stage 4th-order GKS, the 5th-order schemes with 2 and 3 stages will be developed in this paper. Based on the same 5th-order WENO reconstruction, the performance of gas kinetic schemes from the 2nd- to the 5th-order time accurate methods will be evaluated. The results show that the 5th-order scheme can achieve the theoretical order of accuracy for the Euler equations, and present accurate Navier-Stokes solutions as well due to the coupling of inviscid and viscous terms in the GKS formulation. In comparison with Riemann solver based 5th-order RK method, the high order GKS has advantages in terms of efficiency, accuracy, and robustness, for all test cases. The 4th- and 5th-order GKS have the same robustness as the 2nd-order scheme for the capturing of discontinuous solutions. The current high order MSMD GKS is a multi-dimensional scheme with incorporation of both normal and tangential spatial derivatives of flow variables at a cell interface in the flux evaluation. The scheme can be extended straightforwardly to viscous flow computation in unstructured mesh. It provides a promising direction for the development of high-order CFD methods for the computation of complex flows, such as turbulence and acoustics with shock interactions.

  12. Invited Article: Mask-modulated lensless imaging with multi-angle illuminations

    NASA Astrophysics Data System (ADS)

    Zhang, Zibang; Zhou, You; Jiang, Shaowei; Guo, Kaikai; Hoshino, Kazunori; Zhong, Jingang; Suo, Jinli; Dai, Qionghai; Zheng, Guoan

    2018-06-01

    The use of multiple diverse measurements can make lensless phase retrieval more robust. Conventional diversity functions include aperture diversity, wavelength diversity, translational diversity, and defocus diversity. Here we discuss a lensless imaging scheme that employs multiple spherical-wave illuminations from a light-emitting diode array as diversity functions. In this scheme, we place a binary mask between the sample and the detector for imposing support constraints for the phase retrieval process. This support constraint enforces the light field to be zero at certain locations and is similar to the aperture constraint in Fourier ptychographic microscopy. We use a self-calibration algorithm to correct the misalignment of the binary mask. The efficacy of the proposed scheme is first demonstrated by simulations where we evaluate the reconstruction quality using mean square error and structural similarity index. The scheme is then experimentally tested by recovering images of a resolution target and biological samples. The proposed scheme may provide new insights for developing compact and large field-of-view lensless imaging platforms. The use of the binary mask can also be combined with other diversity functions for better constraining the phase retrieval solution space. We provide the open-source implementation code for the broad research community.

  13. Scheme for generating distillation-favorable continuous-variable entanglement via three concurrent parametric down-conversions in a single χ(2) nonlinear photonic crystal.

    PubMed

    Gong, Yan-Xiao; Zhang, ShengLi; Xu, P; Zhu, S N

    2016-03-21

    We propose to generate a single-mode-squeezing two-mode squeezed vacuum state via a single χ(2) nonlinear photonic crystal. The state is favorable for existing Gaussian entanglement distillation schemes, since local squeezing operations can enhance the final entanglement and the success probability. The crystal is designed for enabling three concurrent quasi-phase-matching parametric-down conversions, and hence relieves the auxiliary on-line bi-side local squeezing operations. The compact source opens up a way for continuous-variable quantum technologies and could find more potential applications in future large-scale quantum networks.

  14. Compact continuous-variable entanglement distillation.

    PubMed

    Datta, Animesh; Zhang, Lijian; Nunn, Joshua; Langford, Nathan K; Feito, Alvaro; Plenio, Martin B; Walmsley, Ian A

    2012-02-10

    We introduce a new scheme for continuous-variable entanglement distillation that requires only linear temporal and constant physical or spatial resources. Distillation is the process by which high-quality entanglement may be distributed between distant nodes of a network in the unavoidable presence of decoherence. The known versions of this protocol scale exponentially in space and doubly exponentially in time. Our optimal scheme therefore provides exponential improvements over existing protocols. It uses a fixed-resource module-an entanglement distillery-comprising only four quantum memories of at most 50% storage efficiency and allowing a feasible experimental implementation. Tangible quantum advantages are obtainable by using existing off-resonant Raman quantum memories outside their conventional role of storage.

  15. Low-power chip-level optical interconnects based on bulk-silicon single-chip photonic transceivers

    NASA Astrophysics Data System (ADS)

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Kim, Sun Ae; Oh, Jin Hyuk; Park, Jaegyu; Kim, Sanggi

    2016-03-01

    We present new scheme for chip-level photonic I/Os, based on monolithically integrated vertical photonic devices on bulk silicon, which increases the integration level of PICs to a complete photonic transceiver (TRx) including chip-level light source. A prototype of the single-chip photonic TRx based on a bulk silicon substrate demonstrated 20 Gb/s low power chip-level optical interconnects between fabricated chips, proving that this scheme can offer compact low-cost chip-level I/O solutions and have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, 3D-IC, and LAN/SAN/data-center and network applications.

  16. Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - Part II, higher order FVTD schemes

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Garain, Sudip; Taflove, Allen; Montecinos, Gino

    2018-02-01

    The Finite Difference Time Domain (FDTD) scheme has served the computational electrodynamics community very well and part of its success stems from its ability to satisfy the constraints in Maxwell's equations. Even so, in the previous paper of this series we were able to present a second order accurate Godunov scheme for computational electrodynamics (CED) which satisfied all the same constraints and simultaneously retained all the traditional advantages of Godunov schemes. In this paper we extend the Finite Volume Time Domain (FVTD) schemes for CED in material media to better than second order of accuracy. From the FDTD method, we retain a somewhat modified staggering strategy of primal variables which enables a very beneficial constraint-preservation for the electric displacement and magnetic induction vector fields. This is accomplished with constraint-preserving reconstruction methods which are extended in this paper to third and fourth orders of accuracy. The idea of one-dimensional upwinding from Godunov schemes has to be significantly modified to use the multidimensionally upwinded Riemann solvers developed by the first author. In this paper, we show how they can be used within the context of a higher order scheme for CED. We also report on advances in timestepping. We show how Runge-Kutta IMEX schemes can be adapted to CED even in the presence of stiff source terms brought on by large conductivities as well as strong spatial variations in permittivity and permeability. We also formulate very efficient ADER timestepping strategies to endow our method with sub-cell resolving capabilities. As a result, our method can be stiffly-stable and resolve significant sub-cell variation in the material properties within a zone. Moreover, we present ADER schemes that are applicable to all hyperbolic PDEs with stiff source terms and at all orders of accuracy. Our new ADER formulation offers a treatment of stiff source terms that is much more efficient than previous ADER schemes. The computer algebra system scripts for generating ADER time update schemes for any general PDE with stiff source terms are also given in the electronic supplements to this paper. Second, third and fourth order accurate schemes for numerically solving Maxwell's equations in material media are presented in this paper. Several stringent tests are also presented to show that the method works and meets its design goals even when material permittivity and permeability vary by an order of magnitude over just a few zones. Furthermore, since the method is unconditionally stable and sub-cell-resolving in the presence of stiff source terms (i.e. for problems involving giant variations in conductivity over just a few zones), it can accurately handle such problems without any reduction in timestep. We also show that increasing the order of accuracy offers distinct advantages for resolving sub-cell variations in material properties. Most importantly, we show that when the accuracy requirements are stringent the higher order schemes offer the shortest time to solution. This makes a compelling case for the use of higher order, sub-cell resolving schemes in CED.

  17. A simple, robust and efficient high-order accurate shock-capturing scheme for compressible flows: Towards minimalism

    NASA Astrophysics Data System (ADS)

    Ohwada, Taku; Shibata, Yuki; Kato, Takuma; Nakamura, Taichi

    2018-06-01

    Developed is a high-order accurate shock-capturing scheme for the compressible Euler/Navier-Stokes equations; the formal accuracy is 5th order in space and 4th order in time. The performance and efficiency of the scheme are validated in various numerical tests. The main ingredients of the scheme are nothing special; they are variants of the standard numerical flux, MUSCL, the usual Lagrange's polynomial and the conventional Runge-Kutta method. The scheme can compute a boundary layer accurately with a rational resolution and capture a stationary contact discontinuity sharply without inner points. And yet it is endowed with high resistance against shock anomalies (carbuncle phenomenon, post-shock oscillations, etc.). A good balance between high robustness and low dissipation is achieved by blending three types of numerical fluxes according to physical situation in an intuitively easy-to-understand way. The performance of the scheme is largely comparable to that of WENO5-Rusanov, while its computational cost is 30-40% less than of that of the advanced scheme.

  18. Order of accuracy of QUICK and related convection-diffusion schemes

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1993-01-01

    This report attempts to correct some misunderstandings that have appeared in the literature concerning the order of accuracy of the QUICK scheme for steady-state convective modeling. Other related convection-diffusion schemes are also considered. The original one-dimensional QUICK scheme written in terms of nodal-point values of the convected variable (with a 1/8-factor multiplying the 'curvature' term) is indeed a third-order representation of the finite volume formulation of the convection operator average across the control volume, written naturally in flux-difference form. An alternative single-point upwind difference scheme (SPUDS) using node values (with a 1/6-factor) is a third-order representation of the finite difference single-point formulation; this can be written in a pseudo-flux difference form. These are both third-order convection schemes; however, the QUICK finite volume convection operator is 33 percent more accurate than the single-point implementation of SPUDS. Another finite volume scheme, writing convective fluxes in terms of cell-average values, requires a 1/6-factor for third-order accuracy. For completeness, one can also write a single-point formulation of the convective derivative in terms of cell averages, and then express this in pseudo-flux difference form; for third-order accuracy, this requires a curvature factor of 5/24. Diffusion operators are also considered in both single-point and finite volume formulations. Finite volume formulations are found to be significantly more accurate. For example, classical second-order central differencing for the second derivative is exactly twice as accurate in a finite volume formulation as it is in single-point.

  19. Structure, phase content and mechanical properties of aluminium with hard particles after shock-wave compaction

    NASA Astrophysics Data System (ADS)

    Kulkov, S.; Vorozhtsov, S.; Turuntaev, I.

    2015-04-01

    The possibilities to combine metal and metal oxide powders in various compositions open a broad range of mechanical and thermal behavior. When using in nanostructured components the resulting materials might exhibit even more interesting properties, like product effectiveness, tensile strength, wear resistance, endurance and corrosion resistance. Intermetallics like TiAl could be obtained as TiAlx in a quality similar to that obtained from melting where only eutectic mixture can be produced. Similar effects are possible when compacting nanoceramic powders whereas these can be combined with intermetallics. Currently, it is very difficult to produce wires and special shaped parts from high temperature superconducting materials. The compacting by explosives could solve this problem.The present paper uses explosion compacting of Al nanoparticles to create nanocomposite with increased physico-mechanical properties. Russian civil explosive Uglenit was chosen as high energy material (HEM) for shock-wave compaction. The different schemes and conditions were suggested to run the explosion process. Al nanoparticles as produced by electric wire explosion contain 8-10% of aluminum oxide. That aluminum oxide can serve as strengthening material in the final nanocomposite which may be generated in various compositions by explosive compacting. Further modifications of nanocomposites were obtained when including nanodiamonds into the mixture with aluminum nanoparticles with different percentages. The addition of nanodiamonds results in a substantial strengthening effect. The experiments with compacting aluminum nanoparticles by explosives are described in detail including the process variations and conditions. The physico-mechanical properties of the nanocomposites are determined and discussed by considering the applied conditions. Especially, microstructure and phases of the obtained nanocomposites are analyzed by X-ray diffraction.

  20. Boundary Closures for Fourth-order Energy Stable Weighted Essentially Non-Oscillatory Finite Difference Schemes

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.; Yamaleev, Nail K.; Frankel, Steven H.

    2009-01-01

    A general strategy exists for constructing Energy Stable Weighted Essentially Non Oscillatory (ESWENO) finite difference schemes up to eighth-order on periodic domains. These ESWENO schemes satisfy an energy norm stability proof for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, boundary closures are developed for the fourth-order ESWENO scheme that maintain wherever possible the WENO stencil biasing properties, while satisfying the summation-by-parts (SBP) operator convention, thereby ensuring stability in an L2 norm. Second-order, and third-order boundary closures are developed that achieve stability in diagonal and block norms, respectively. The global accuracy for the second-order closures is three, and for the third-order closures is four. A novel set of non-uniform flux interpolation points is necessary near the boundaries to simultaneously achieve 1) accuracy, 2) the SBP convention, and 3) WENO stencil biasing mechanics.

  1. High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner B.; Carpenter, Mark H.; Fisher, Travis C.; Frankel, Steven H.

    2014-01-01

    This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.

  2. Mache: No-Loss Trace Compaction

    DTIC Science & Technology

    1988-09-15

    Data Compression . IEEE Computer 176 (June 1984), 8-19. 10. ZIV , J. AND LEMPEL , A. A Universal Algorithm for Sequential Data Com- pression. IEEE... compression scheme which takes ad- vantage of repeating patterns in the sequence of bytes. I have used the Lempel - Ziv compression algorithm [9,10,11...Transactions on Information Theory 23 (1976), 75-81. 11. ZIV , J. AND LEMPEL , A. Compression of Individual Sequences via Variable-

  3. Bit-systolic arithmetic arrays using dynamic differential gallium arsenide circuits

    NASA Technical Reports Server (NTRS)

    Beagles, Grant; Winters, Kel; Eldin, A. G.

    1992-01-01

    A new family of gallium arsenide circuits for fine grained bit-systolic arithmetic arrays is introduced. This scheme combines features of two recent techniques of dynamic gallium arsenide FET logic and differential dynamic single-clock CMOS logic. The resulting circuits are fast and compact, with tightly constrained series FET propagation paths, low fanout, no dc power dissipation, and depletion FET implementation without level shifting diodes.

  4. Conservative properties of finite difference schemes for incompressible flow

    NASA Technical Reports Server (NTRS)

    Morinishi, Youhei

    1995-01-01

    The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.

  5. An Investigation of High-Order Shock-Capturing Methods for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Baysal, Oktay

    1997-01-01

    Topics covered include: Low-dispersion scheme for nonlinear acoustic waves in nonuniform flow; Computation of acoustic scattering by a low-dispersion scheme; Algorithmic extension of low-dispersion scheme and modeling effects for acoustic wave simulation; The accuracy of shock capturing in two spatial dimensions; Using high-order methods on lower-order geometries; and Computational considerations for the simulation of discontinuous flows.

  6. Parameterization of turbulence and the planetary boundary layer in the GLA Fourth Order GCM

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1985-01-01

    A new scheme has been developed to model the planetary boundary layer in the GLAS Fourth Order GCM through explicit resolution of its vertical structure into two or more vertical layers. This involves packing the lowest layers of the GCM close to the ground and developing new parameterization schemes that can express the turbulent vertical fluxes of heat, momentum and moisture at the earth's surface and between the layers that are contained with the PBL region. Offline experiments indicate that the combination of the modified level 2.5 second-order turbulent closure scheme and the 'extended surface layer' similarity scheme should work well to simulate the behavior of the turbulent PBL even at the coarsest vertical resolution with which such schemes will conceivably be used in the GLA Fourth Order GCM.

  7. Compact Interconnection Networks Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary-signal wires described in the cited prior article. One of these advances would be the development of QCA-based wires capable of bidirectional transmission of signals. The other advance would be the development of QCA circuits capable of high-impedance state outputs. The high-impedance states would be utilized along with the 0- and 1-state outputs of QCA.

  8. A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael; Loubère, Raphaël; Maire, Pierre-Henri

    2018-04-01

    In this paper we develop a conservative cell-centered Lagrangian finite volume scheme for the solution of the hydrodynamics equations on unstructured multidimensional grids. The method is derived from the Eucclhyd scheme discussed in [47,43,45]. It is second-order accurate in space and is combined with the a posteriori Multidimensional Optimal Order Detection (MOOD) limiting strategy to ensure robustness and stability at shock waves. Second-order of accuracy in time is achieved via the ADER (Arbitrary high order schemes using DERivatives) approach. A large set of numerical test cases is proposed to assess the ability of the method to achieve effective second order of accuracy on smooth flows, maintaining an essentially non-oscillatory behavior on discontinuous profiles, general robustness ensuring physical admissibility of the numerical solution, and precision where appropriate.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain

    In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strongmore » laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to increase the local character in phase-space of the numerical scheme, by considering multiscale reconstruction with more compact support and by replacing the semi-Lagrangian method with more local - in space - numerical scheme as compact finite difference schemes, discontinuous-Galerkin method or finite element residual schemes which are well suited for parallel domain decomposition techniques.« less

  10. An implicit spatial and high-order temporal finite difference scheme for 2D acoustic modelling

    NASA Astrophysics Data System (ADS)

    Wang, Enjiang; Liu, Yang

    2018-01-01

    The finite difference (FD) method exhibits great superiority over other numerical methods due to its easy implementation and small computational requirement. We propose an effective FD method, characterised by implicit spatial and high-order temporal schemes, to reduce both the temporal and spatial dispersions simultaneously. For the temporal derivative, apart from the conventional second-order FD approximation, a special rhombus FD scheme is included to reach high-order accuracy in time. Compared with the Lax-Wendroff FD scheme, this scheme can achieve nearly the same temporal accuracy but requires less floating-point operation times and thus less computational cost when the same operator length is adopted. For the spatial derivatives, we adopt the implicit FD scheme to improve the spatial accuracy. Apart from the existing Taylor series expansion-based FD coefficients, we derive the least square optimisation based implicit spatial FD coefficients. Dispersion analysis and modelling examples demonstrate that, our proposed method can effectively decrease both the temporal and spatial dispersions, thus can provide more accurate wavefields.

  11. Compact whole-body fluorescent imaging of nude mice bearing EGFP expressing tumor

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Xiong, Tao; Chu, Jun; Yu, Li; Zeng, Shaoqun; Luo, Qingming

    2005-01-01

    Issue of tumor has been a hotspot of current medicine. It is important for tumor research to detect tumors bearing in animal models easily, fast, repetitively and noninvasivly. Many researchers have paid their increasing interests on the detecting. Some contrast agents, such as green fluorescent protein (GFP) and Discosoma red fluorescent protein (Dsred) were applied to enhance image quality. Three main kinds of imaging scheme were adopted to visualize fluorescent protein expressing tumors in vivo. These schemes based on fluorescence stereo microscope, cooled charge-coupled-device (CCD) or camera as imaging set, and laser or mercury lamp as excitation light source. Fluorescence stereo microscope, laser and cooled CCD are expensive to many institutes. The authors set up an inexpensive compact whole-body fluorescent imaging tool, which consisted of a Kodak digital camera (model DC290), fluorescence filters(B and G2;HB Optical, Shenyang, Liaoning, P.R. China) and a mercury 50-W lamp power supply (U-LH50HG;Olympus Optical, Japan) as excitation light source. The EGFP was excited directly by mercury lamp with D455/70 nm band-pass filter and fluorescence was recorded by digital camera with 520nm long-pass filter. By this easy operation tool, the authors imaged, in real time, fluorescent tumors growing in live mice. The imaging system is external and noninvasive. For half a year our experiments suggested the imaging scheme was feasible. Whole-body fluorescence optical imaging for fluorescent expressing tumors in nude mouse is an ideal tool for antitumor, antimetastatic, and antiangiogenesis drug screening.

  12. Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Juan, E-mail: cheng_juan@iapcm.ac.cn; Shu, Chi-Wang, E-mail: shu@dam.brown.edu

    In applications such as astrophysics and inertial confinement fusion, there are many three-dimensional cylindrical-symmetric multi-material problems which are usually simulated by Lagrangian schemes in the two-dimensional cylindrical coordinates. For this type of simulation, a critical issue for the schemes is to keep spherical symmetry in the cylindrical coordinate system if the original physical problem has this symmetry. In the past decades, several Lagrangian schemes with such symmetry property have been developed, but all of them are only first order accurate. In this paper, we develop a second order cell-centered Lagrangian scheme for solving compressible Euler equations in cylindrical coordinates, basedmore » on the control volume discretizations, which is designed to have uniformly second order accuracy and capability to preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid. The scheme maintains several good properties such as conservation for mass, momentum and total energy, and the geometric conservation law. Several two-dimensional numerical examples in cylindrical coordinates are presented to demonstrate the good performance of the scheme in terms of accuracy, symmetry, non-oscillation and robustness. The advantage of higher order accuracy is demonstrated in these examples.« less

  13. Feature selection with harmony search.

    PubMed

    Diao, Ren; Shen, Qiang

    2012-12-01

    Many search strategies have been exploited for the task of feature selection (FS), in an effort to identify more compact and better quality subsets. Such work typically involves the use of greedy hill climbing (HC), or nature-inspired heuristics, in order to discover the optimal solution without going through exhaustive search. In this paper, a novel FS approach based on harmony search (HS) is presented. It is a general approach that can be used in conjunction with many subset evaluation techniques. The simplicity of HS is exploited to reduce the overall complexity of the search process. The proposed approach is able to escape from local solutions and identify multiple solutions owing to the stochastic nature of HS. Additional parameter control schemes are introduced to reduce the effort and impact of parameter configuration. These can be further combined with the iterative refinement strategy, tailored to enforce the discovery of quality subsets. The resulting approach is compared with those that rely on HC, genetic algorithms, and particle swarm optimization, accompanied by in-depth studies of the suggested improvements.

  14. NASA Tech Briefs, March 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: WRATS Integrated Data Acquisition System; Breadboard Signal Processor for Arraying DSN Antennas; Digital Receiver Phase Meter; Split-Block Waveguide Polarization Twist for 220 to 325 GHz; Nano-Multiplication-Region Avalanche Photodiodes and Arrays; Tailored Asymmetry for Enhanced Coupling to WGM Resonators; Disabling CNT Electronic Devices by Use of Electron Beams; Conical Bearingless Motor/Generators; Integrated Force Method for Indeterminate Structures; Carbon-Nanotube-Based Electrodes for Biomedical Applications; Compact Directional Microwave Antenna for Localized Heating; Using Hyperspectral Imagery to Identify Turfgrass Stresses; Shaping Diffraction-Grating Grooves to Optimize Efficiency; Low-Light-Shift Cesium Fountain without Mechanical Shutters; Magnetic Compensation for Second-Order Doppler Shift in LITS; Nanostructures Exploit Hybrid-Polariton Resonances; Microfluidics, Chromatography, and Atomic-Force Microscopy; Model of Image Artifacts from Dust Particles; Pattern-Recognition System for Approaching a Known Target; Orchestrator Telemetry Processing Pipeline; Scheme for Quantum Computing Immune to Decoherence; Spin-Stabilized Microsatellites with Solar Concentrators; Phase Calibration of Antenna Arrays Aimed at Spacecraft; Ring Bus Architecture for a Solid-State Recorder; and Image Compression Algorithm Altered to Improve Stereo Ranging.

  15. Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.

    PubMed

    Chou, Cheng-Ying; Dong, Yun; Hung, Yukai; Kao, Yu-Jiun; Wang, Weichung; Kao, Chien-Min; Chen, Chin-Tu

    2012-01-01

    Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.

  16. Efficient acceleration of neutral atoms in laser produced plasma

    DOE PAGES

    Dalui, M.; Trivikram, T. M.; Colgan, James Patrick; ...

    2017-06-20

    Recent advances in high-intensity laser-produced plasmas have demonstrated their potential as compact charge particle accelerators. Unlike conventional accelerators, transient quasi-static charge separation acceleration fields in laser produced plasmas are highly localized and orders of magnitude larger. Manipulating these ion accelerators, to convert the fast ions to neutral atoms with little change in momentum, transform these to a bright source of MeV atoms. The emittance of the neutral atom beam would be similar to that expected for an ion beam. Since intense laser-produced plasmas have been demonstrated to produce high-brightness-low-emittance beams, it is possible to envisage generation of high-flux, low-emittance, highmore » energy neutral atom beams in length scales of less than a millimeter. Here, we show a scheme where more than 80% of the fast ions are reduced to energetic neutral atoms and demonstrate the feasibility of a high energy neutral atom accelerator that could significantly impact applications in neutral atom lithography and diagnostics.« less

  17. Performance demonstration of a single-frequency optically-pumped cesium beam frequency standard for space applications

    NASA Astrophysics Data System (ADS)

    Lecomte, S.; Haldimann, M.; Ruffieux, R.; Thomann, P.; Berthoud, P.

    2017-11-01

    Observatoire de Neuchâtel (ON) is developing a compact optically-pumped cesium beam frequency standard in the frame of an ESA-ARTES 5 project. The simplest optical scheme, which is based on a single optical frequency for both preparation and detection processes of atoms, has been chosen to fulfill reliability constraints of space applications. With our laboratory demonstrator operated at 852 nm (D2 line), we have measured a frequency stability of σy=2.74x10-12 τ -1/2, which is compliant with the Galileo requirement. The atomic resonator is fully compliant to be operated with a single diode laser at 894 nm (D1 line). Sensitivity measurements of the clock signal to the microwave power and to the optical pumping power are also presented. Present performance limitations are discussed and further improvements are proposed in order to reach our ultimate frequency stability goal of σy=1x10-12 τ -1/2. The clock driving software is also briefly described.

  18. FPGA based digital phase-coding quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Lu, XiaoMing; Zhang, LiJun; Wang, YongGang; Chen, Wei; Huang, DaJun; Li, Deng; Wang, Shuang; He, DeYong; Yin, ZhenQiang; Zhou, Yu; Hui, Cong; Han, ZhengFu

    2015-12-01

    Quantum key distribution (QKD) is a technology with the potential capability to achieve information-theoretic security. Phasecoding is an important approach to develop practical QKD systems in fiber channel. In order to improve the phase-coding modulation rate, we proposed a new digital-modulation method in this paper and constructed a compact and robust prototype of QKD system using currently available components in our lab to demonstrate the effectiveness of the method. The system was deployed in laboratory environment over a 50 km fiber and continuously operated during 87 h without manual interaction. The quantum bit error rate (QBER) of the system was stable with an average value of 3.22% and the secure key generation rate is 8.91 kbps. Although the modulation rate of the photon in the demo system was only 200 MHz, which was limited by the Faraday-Michelson interferometer (FMI) structure, the proposed method and the field programmable gate array (FPGA) based electronics scheme have a great potential for high speed QKD systems with Giga-bits/second modulation rate.

  19. Simulation of proton-boron nuclear burning in the potential well of virtual cathode at nanosecond vacuum discharge

    NASA Astrophysics Data System (ADS)

    Kurilenkov, Yu K.; Tarakanov, V. P.; Gus'kov, S. Yu

    2016-11-01

    The neutron-free reaction of proton-boron nuclear burning accompanied with the yield of three alpha particles (p + 11B → α + 8Be* → 3α) is of great fundamental and applied interest. However, the implementation of the synthesis of p +11B requires such extreme plasma parameters that are difficult to achieve at well-known schemes of controlled thermonuclear fusion. Earlier, the yield of DD neutrons in a compact nanosecond vacuum discharge (NVD) of low energy with deuterated Pd anode have been observed. Further detailed particle-in-cell simulation by the electrodynamic code have recognized that this experiment represents the realization of rather old scheme of inertial electrostatic confinement (IEC). This IEC scheme is one of the few where the energies of ions needed for p + 11B reaction are quite possible. The purpose of this work on simulation of proton-boron reaction is studying the features of possible p + 11B burning at the IEC scheme based on NVD, thus, to look forward and planning the real experiment.

  20. Second-order accurate nonoscillatory schemes for scalar conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1989-01-01

    Explicit finite difference schemes for the computation of weak solutions of nonlinear scalar conservation laws is presented and analyzed. These schemes are uniformly second-order accurate and nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time.

  1. High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bran R. (Technical Monitor)

    2002-01-01

    We present high-order semi-discrete central-upwind numerical schemes for approximating solutions of multi-dimensional Hamilton-Jacobi (HJ) equations. This scheme is based on the use of fifth-order central interpolants like those developed in [1], in fluxes presented in [3]. These interpolants use the weighted essentially nonoscillatory (WENO) approach to avoid spurious oscillations near singularities, and become "central-upwind" in the semi-discrete limit. This scheme provides numerical approximations whose error is as much as an order of magnitude smaller than those in previous WENO-based fifth-order methods [2, 1]. Thee results are discussed via examples in one, two and three dimensions. We also pregnant explicit N-dimensional formulas for the fluxes, discuss their monotonicity and tl!e connection between this method and that in [2].

  2. Factorized Runge-Kutta-Chebyshev Methods

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Stephen

    2017-05-01

    The second-order extended stability Factorized Runge-Kutta-Chebyshev (FRKC2) explicit schemes for the integration of large systems of PDEs with diffusive terms are presented. The schemes are simple to implement through ordered sequences of forward Euler steps with complex stepsizes, and easily parallelised for large scale problems on distributed architectures. Preserving 7 digits for accuracy at 16 digit precision, the schemes are theoretically capable of maintaining internal stability for acceleration factors in excess of 6000 with respect to standard explicit Runge-Kutta methods. The extent of the stability domain is approximately the same as that of RKC schemes, and a third longer than in the case of RKL2 schemes. Extension of FRKC methods to fourth-order, by both complex splitting and Butcher composition techniques, is also discussed. A publicly available implementation of FRKC2 schemes may be obtained from maths.dit.ie/frkc

  3. Improved diffusion Monte Carlo propagators for bosonic systems using Itô calculus

    NASA Astrophysics Data System (ADS)

    Hâkansson, P.; Mella, M.; Bressanini, Dario; Morosi, Gabriele; Patrone, Marta

    2006-11-01

    The construction of importance sampled diffusion Monte Carlo (DMC) schemes accurate to second order in the time step is discussed. A central aspect in obtaining efficient second order schemes is the numerical solution of the stochastic differential equation (SDE) associated with the Fokker-Plank equation responsible for the importance sampling procedure. In this work, stochastic predictor-corrector schemes solving the SDE and consistent with Itô calculus are used in DMC simulations of helium clusters. These schemes are numerically compared with alternative algorithms obtained by splitting the Fokker-Plank operator, an approach that we analyze using the analytical tools provided by Itô calculus. The numerical results show that predictor-corrector methods are indeed accurate to second order in the time step and that they present a smaller time step bias and a better efficiency than second order split-operator derived schemes when computing ensemble averages for bosonic systems. The possible extension of the predictor-corrector methods to higher orders is also discussed.

  4. High-order flux correction/finite difference schemes for strand grids

    NASA Astrophysics Data System (ADS)

    Katz, Aaron; Work, Dalon

    2015-02-01

    A novel high-order method combining unstructured flux correction along body surfaces and high-order finite differences normal to surfaces is formulated for unsteady viscous flows on strand grids. The flux correction algorithm is applied in each unstructured layer of the strand grid, and the layers are then coupled together via a source term containing derivatives in the strand direction. Strand-direction derivatives are approximated to high-order via summation-by-parts operators for first derivatives and second derivatives with variable coefficients. We show how this procedure allows for the proper truncation error canceling properties required for the flux correction scheme. The resulting scheme possesses third-order design accuracy, but often exhibits fourth-order accuracy when higher-order derivatives are employed in the strand direction, especially for highly viscous flows. We prove discrete conservation for the new scheme and time stability in the absence of the flux correction terms. Results in two dimensions are presented that demonstrate improvements in accuracy with minimal computational and algorithmic overhead over traditional second-order algorithms.

  5. On the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron

    2004-01-01

    We discuss a new fifth-order, semi-discrete, central-upwind scheme for solving one-dimensional systems of conservation laws. This scheme combines a fifth-order WENO reconstruction, a semi-discrete central-upwind numerical flux, and a strong stability preserving Runge-Kutta method. We test our method with various examples, and give particular attention to the evolution of the total variation of the approximations.

  6. Studying the Mars atmosphere using a SOIR Instrument

    NASA Astrophysics Data System (ADS)

    Drummond, R.; Vandaele, A.; Daerden, F.; Neefs, E.; Mahieux, A.; Wilquet, V.; Montmessin, F.; Bertaux, J.; McConnell, J. C.; Kaminski, J. W.

    2009-05-01

    SOIR (Solar Occultation InfraRed spectrometer) is currently part of the SPICAV/SOIR instrument on board the Venus Express orbiter (VEX). SOIR, an Echelle infrared spectrometer using an acousto-optic tunable filter (AOTF) for the order selection, is probing the atmosphere by solar occultation, operating between 2.2 and 4.3 μm, with a resolution of 0.15 cm-1. This spectral range is suitable for the detection of several key components of planetary atmospheres, including H2O and its isotopologue HDO, CH4 and other trace species. The SOIR instrument was designed to have a minimum of moving parts, to be light and compact in order to fit on top of the SPICAV instrument. The AOTF allows a narrow range of wavelengths to pass, according to the radio frequency applied to the TeO2 crystal; this selects the order. The advantage of the AOTF is that different orders can be observed quickly and easily during one occultation. To obtain a compact optical scheme, a Littrow configuration was implemented in which the usual collimating and imaging lenses are merged into a single off-axis parabolic mirror. The light is diffracted on the echelle grating, where orders overlap and addition occurs, and finally is recorded by the detector. The detector is 320x256 pixels and is cooled to 88K during an occultation measurement, to maximise the signal to noise ratio. SOIR on VEX has been in orbit around Venus since April 2006, allowing us to characterise the instrument and study its performance. These data have allowed the engineering team to devise several instrumental improvements. The next step in further improving the readiness for Martian atmospheric studies comes in close collaboration with the Mars Atmospheric Modelling group at BIRA-IASB. A General Circulation Model is used to simulate the Martian atmosphere. Currently work is underway with SPICAM data to verify the GCM inputs and outputs. Later the GCM output will be used as feedback for instrumental design of both an improved version of SOIR and the UVIS instrument for the ExoMars mission. We will show Mars data as could be observed by a SOIR instrument to demonstrate what SOIR would be capable of in Mars orbit.

  7. Multiresolution With Super-Compact Wavelets

    NASA Technical Reports Server (NTRS)

    Lee, Dohyung

    2000-01-01

    The solution data computed from large scale simulations are sometimes too big for main memory, for local disks, and possibly even for a remote storage disk, creating tremendous processing time as well as technical difficulties in analyzing the data. The excessive storage demands a corresponding huge penalty in I/O time, rendering time and transmission time between different computer systems. In this paper, a multiresolution scheme is proposed to compress field simulation or experimental data without much loss of important information in the representation. Originally, the wavelet based multiresolution scheme was introduced in image processing, for the purposes of data compression and feature extraction. Unlike photographic image data which has rather simple settings, computational field simulation data needs more careful treatment in applying the multiresolution technique. While the image data sits on a regular spaced grid, the simulation data usually resides on a structured curvilinear grid or unstructured grid. In addition to the irregularity in grid spacing, the other difficulty is that the solutions consist of vectors instead of scalar values. The data characteristics demand more restrictive conditions. In general, the photographic images have very little inherent smoothness with discontinuities almost everywhere. On the other hand, the numerical solutions have smoothness almost everywhere and discontinuities in local areas (shock, vortices, and shear layers). The wavelet bases should be amenable to the solution of the problem at hand and applicable to constraints such as numerical accuracy and boundary conditions. In choosing a suitable wavelet basis for simulation data among a variety of wavelet families, the supercompact wavelets designed by Beam and Warming provide one of the most effective multiresolution schemes. Supercompact multi-wavelets retain the compactness of Haar wavelets, are piecewise polynomial and orthogonal, and can have arbitrary order of approximation. The advantages of the multiresolution algorithm are that no special treatment is required at the boundaries of the interval, and that the application to functions which are only piecewise continuous (internal boundaries) can be efficiently implemented. In this presentation, Beam's supercompact wavelets are generalized to higher dimensions using multidimensional scaling and wavelet functions rather than alternating the directions as in the 1D version. As a demonstration of actual 3D data compression, supercompact wavelet transforms are applied to a 3D data set for wing tip vortex flow solutions (2.5 million grid points). It is shown that high data compression ratio can be achieved (around 50:1 ratio) in both vector and scalar data set.

  8. A High-Resolution Capability for Large-Eddy Simulation of Jet Flows

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2011-01-01

    A large-eddy simulation (LES) code that utilizes high-resolution numerical schemes is described and applied to a compressible jet flow. The code is written in a general manner such that the accuracy/resolution of the simulation can be selected by the user. Time discretization is performed using a family of low-dispersion Runge-Kutta schemes, selectable from first- to fourth-order. Spatial discretization is performed using central differencing schemes. Both standard schemes, second- to twelfth-order (3 to 13 point stencils) and Dispersion Relation Preserving schemes from 7 to 13 point stencils are available. The code is written in Fortran 90 and uses hybrid MPI/OpenMP parallelization. The code is applied to the simulation of a Mach 0.9 jet flow. Four-stage third-order Runge-Kutta time stepping and the 13 point DRP spatial discretization scheme of Bogey and Bailly are used. The high resolution numerics used allows for the use of relatively sparse grids. Three levels of grid resolution are examined, 3.5, 6.5, and 9.2 million points. Mean flow, first-order turbulent statistics and turbulent spectra are reported. Good agreement with experimental data for mean flow and first-order turbulent statistics is shown.

  9. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen

    2015-04-01

    This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive, nevertheless, the present GKUAs for kinetic model Boltzmann equations in conjunction with current available high-performance parallel computer power can provide a vital engineering tool for analyzing rarefied gas flows covering the whole range of flow regimes in aerospace engineering applications.

  10. Spatial and temporal accuracy of asynchrony-tolerant finite difference schemes for partial differential equations at extreme scales

    NASA Astrophysics Data System (ADS)

    Kumari, Komal; Donzis, Diego

    2017-11-01

    Highly resolved computational simulations on massively parallel machines are critical in understanding the physics of a vast number of complex phenomena in nature governed by partial differential equations. Simulations at extreme levels of parallelism present many challenges with communication between processing elements (PEs) being a major bottleneck. In order to fully exploit the computational power of exascale machines one needs to devise numerical schemes that relax global synchronizations across PEs. This asynchronous computations, however, have a degrading effect on the accuracy of standard numerical schemes.We have developed asynchrony-tolerant (AT) schemes that maintain order of accuracy despite relaxed communications. We show, analytically and numerically, that these schemes retain their numerical properties with multi-step higher order temporal Runge-Kutta schemes. We also show that for a range of optimized parameters,the computation time and error for AT schemes is less than their synchronous counterpart. Stability of the AT schemes which depends upon history and random nature of delays, are also discussed. Support from NSF is gratefully acknowledged.

  11. A Survey of Compact Star Clusters in the South-West Field of the M 31 Disk

    NASA Astrophysics Data System (ADS)

    Kodaira, Keiichi; Vansevičius, Vladas; Bridzius, Audrius; Komiyama, Yutaka; Miyazaki, Satoshi; Stonkute, Rima; Šablevičiutė, Ieva; Narbutis, Donatas

    2004-12-01

    A survey for compact clusters with a dimension of 10pc order was conducted in an area of about 500 square arc-minutes of the south-west part of the M31 disk, making use of the high-resolution capability of Suprime-Cam. Photometry in the B, V, and R broad-bands, and in the R* medium-band centered around Hα with varying apertures was carried out for about 1200 targets, which are related to about 300 compact objects detected in the survey. The results for 101 prominent compact objects are presented as photometric catalogues and morphological atlases, separately for samples with and without strong Hα emission. Many of the compact objects, which were previously suspected to be globular cluster candidates, are judged to be open clusters based upon their internal structures of sub-arc-second order. The majority of the 49 listed compact non-emission objects, which are restricted to be brighter than MV ˜ -5, have colors of 0 < B - V < 1.0, indicating their nature of massive evolved clusters. In contrast, only about 10% of the 52 listed compact emission objects are brighter than MiV ˜ -5, probably reflecting the short period of the emission phase and the substantial effects of the circum-stellar extinction. The detection of a few candidates of background galaxies is also reported.

  12. Filter design for the detection of compact sources based on the Neyman-Pearson detector

    NASA Astrophysics Data System (ADS)

    López-Caniego, M.; Herranz, D.; Barreiro, R. B.; Sanz, J. L.

    2005-05-01

    This paper considers the problem of compact source detection on a Gaussian background. We present a one-dimensional treatment (though a generalization to two or more dimensions is possible). Two relevant aspects of this problem are considered: the design of the detector and the filtering of the data. Our detection scheme is based on local maxima and it takes into account not only the amplitude but also the curvature of the maxima. A Neyman-Pearson test is used to define the region of acceptance, which is given by a sufficient linear detector that is independent of the amplitude distribution of the sources. We study how detection can be enhanced by means of linear filters with a scaling parameter, and compare some filters that have been proposed in the literature [the Mexican hat wavelet, the matched filter (MF) and the scale-adaptive filter (SAF)]. We also introduce a new filter, which depends on two free parameters (the biparametric scale-adaptive filter, BSAF). The value of these two parameters can be determined, given the a priori probability density function of the amplitudes of the sources, such that the filter optimizes the performance of the detector in the sense that it gives the maximum number of real detections once it has fixed the number density of spurious sources. The new filter includes as particular cases the standard MF and the SAF. As a result of its design, the BSAF outperforms these filters. The combination of a detection scheme that includes information on the curvature and a flexible filter that incorporates two free parameters (one of them a scaling parameter) improves significantly the number of detections in some interesting cases. In particular, for the case of weak sources embedded in white noise, the improvement with respect to the standard MF is of the order of 40 per cent. Finally, an estimation of the amplitude of the source (most probable value) is introduced and it is proven that such an estimator is unbiased and has maximum efficiency. We perform numerical simulations to test these theoretical ideas in a practical example and conclude that the results of the simulations agree with the analytical results.

  13. Efficient high-order structure-preserving methods for the generalized Rosenau-type equation with power law nonlinearity

    NASA Astrophysics Data System (ADS)

    Cai, Jiaxiang; Liang, Hua; Zhang, Chun

    2018-06-01

    Based on the multi-symplectic Hamiltonian formula of the generalized Rosenau-type equation, a multi-symplectic scheme and an energy-preserving scheme are proposed. To improve the accuracy of the solution, we apply the composition technique to the obtained schemes to develop high-order schemes which are also multi-symplectic and energy-preserving respectively. Discrete fast Fourier transform makes a significant improvement to the computational efficiency of schemes. Numerical results verify that all the proposed schemes have satisfactory performance in providing accurate solution and preserving the discrete mass and energy invariants. Numerical results also show that although each basic time step is divided into several composition steps, the computational efficiency of the composition schemes is much higher than that of the non-composite schemes.

  14. An Optimally Stable and Accurate Second-Order SSP Runge-Kutta IMEX Scheme for Atmospheric Applications

    NASA Astrophysics Data System (ADS)

    Rokhzadi, Arman; Mohammadian, Abdolmajid; Charron, Martin

    2018-01-01

    The objective of this paper is to develop an optimized implicit-explicit (IMEX) Runge-Kutta scheme for atmospheric applications focusing on stability and accuracy. Following the common terminology, the proposed method is called IMEX-SSP2(2,3,2), as it has second-order accuracy and is composed of diagonally implicit two-stage and explicit three-stage parts. This scheme enjoys the Strong Stability Preserving (SSP) property for both parts. This new scheme is applied to nonhydrostatic compressible Boussinesq equations in two different arrangements, including (i) semiimplicit and (ii) Horizontally Explicit-Vertically Implicit (HEVI) forms. The new scheme preserves the SSP property for larger regions of absolute monotonicity compared to the well-studied scheme in the same class. In addition, numerical tests confirm that the IMEX-SSP2(2,3,2) improves the maximum stable time step as well as the level of accuracy and computational cost compared to other schemes in the same class. It is demonstrated that the A-stability property as well as satisfying "second-stage order" and stiffly accurate conditions lead the proposed scheme to better performance than existing schemes for the applications examined herein.

  15. A Technique of Treating Negative Weights in WENO Schemes

    NASA Technical Reports Server (NTRS)

    Shi, Jing; Hu, Changqing; Shu, Chi-Wang

    2000-01-01

    High order accurate weighted essentially non-oscillatory (WENO) schemes have recently been developed for finite difference and finite volume methods both in structural and in unstructured meshes. A key idea in WENO scheme is a linear combination of lower order fluxes or reconstructions to obtain a high order approximation. The combination coefficients, also called linear weights, are determined by local geometry of the mesh and order of accuracy and may become negative. WENO procedures cannot be applied directly to obtain a stable scheme if negative linear weights are present. Previous strategy for handling this difficulty is by either regrouping of stencils or reducing the order of accuracy to get rid of the negative linear weights. In this paper we present a simple and effective technique for handling negative linear weights without a need to get rid of them.

  16. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1994-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth-order central differences through fast Fourier transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large scale features, such as the total circulation around the roll-up region, are adequately resolved.

  17. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth order central differences through Fast Fourier Transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large-scale features, such as the total circulation around the roll-up region, are adequately resolved.

  18. FDTD simulation of EM wave propagation in 3-D media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Tripp, A.C.

    1996-01-01

    A finite-difference, time-domain solution to Maxwell`s equations has been developed for simulating electromagnetic wave propagation in 3-D media. The algorithm allows arbitrary electrical conductivity and permittivity variations within a model. The staggered grid technique of Yee is used to sample the fields. A new optimized second-order difference scheme is designed to approximate the spatial derivatives. Like the conventional fourth-order difference scheme, the optimized second-order scheme needs four discrete values to calculate a single derivative. However, the optimized scheme is accurate over a wider wavenumber range. Compared to the fourth-order scheme, the optimized scheme imposes stricter limitations on the time stepmore » sizes but allows coarser grids. The net effect is that the optimized scheme is more efficient in terms of computation time and memory requirement than the fourth-order scheme. The temporal derivatives are approximated by second-order central differences throughout. The Liao transmitting boundary conditions are used to truncate an open problem. A reflection coefficient analysis shows that this transmitting boundary condition works very well. However, it is subject to instability. A method that can be easily implemented is proposed to stabilize the boundary condition. The finite-difference solution is compared to closed-form solutions for conducting and nonconducting whole spaces and to an integral-equation solution for a 3-D body in a homogeneous half-space. In all cases, the finite-difference solutions are in good agreement with the other solutions. Finally, the use of the algorithm is demonstrated with a 3-D model. Numerical results show that both the magnetic field response and electric field response can be useful for shallow-depth and small-scale investigations.« less

  19. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  20. Numerical simulation of stratified flows from laboratory experiments to coastal ocean

    NASA Astrophysics Data System (ADS)

    Fraunie, Philippe

    2014-05-01

    Numeric modeling of a flow past vertical strip uniformly towing with permanent velocity in horizontal direction in a linearly stratified talk which was based on a finite differences solver adapted to the low Reynolds Navier-Stokes equation with transport equation for salinity (LES simulation [6]) has demonstrated reasonable agreement with data of schlieren visualization, density marker and probe measurements of internal wave fields. Another approach based on two different numerical methods for one specific case of stably stratified incompressible flow was developed, using the compact finite-difference discretizations. The numerical scheme itself follows the principle of semi-discretisation, with high order compact discretisation in space, while the time integration is carried out by the Strong Stability Preserving Runge-Kutta scheme. Results were compared against the reference solution obtained by the AUSM finite volume method [7]. The test case allowed demonstrating the ability of selected numerical methods to represent stably stratified flows over horizontal strip [4] and hill type 2D obstacles [1, 3] with generation of internal waves. From previous LES [4] and RANS [8] realistic simulations code, the ability of research codes to reproduce field observations is discussed. ACKNOWLEDGMENTS This research work was supported by Region Provence Alpes Côte d'Azur - Modtercom project, the Research Plan MSM 6840770010 of the Ministry of education of Czech Republic and the Russian Foundation for Basic Research (grant 12-01-00128). REFERENCES 1. Chashechkin Yu.D., Mitkin V.V. Experimental study of a fine structure of 2D wakes and mixing past an obstacle in a continuously stratified fluid // Dynamics of Atmosphere and Oceans. 2001. V. 34. P. 165-187. 2. Chashechkin, Yu. D. Hydrodynamics of a sphere in a stratified fluid // Fluid Dyn. 1989. V.24(1) P. 1-7. 3. Mitkin V. V., Chashechkin Yu. D. Transformation of hanging discontinuities into vortex systems in a stratified flow behind a cylinder // 2007. Fluid Dyn. V. 42 (1). P. 12-23. 4. Bardakov R. N., Mitkin V. V., Chashechkin Yu. D. Fine structure of a stratified flow near a flat-plate surface // J. Appl. Mech. Tech. Phys. 2007. V. 48(6) P. 840-851. 5. Chashechkin Yu. D., Mitkin V. V. An effect of a lift force on the structure of attached internal waves in a continuously stratified fluid // Dokl. Phys. 2001. V. 46 (6). P. 425-428. 6. Houcine H., Chashechkin Yu.D, Fraunié P., Fernando H.J.S., Gharbi A., Lili T. Numerical modeling of the generation of internal waves by uniform stratified flow over a thin vertical barrier // Int J. Num Methods in Fluids. 2012. V.68(4). P. 451-466. DOI: 10.1002/fld.2513 7. Bodnar T., Benes , Fraunié P., Kozel K.. Application of Compact Finite-Difference Schemes to Simulations of Stably Stratified Fluid Flows. Applied Mathematics and Computation 219 : 3336-3353 2012. doi:10.1016/j.amc.2011.08.058 8. Schaeffer A. Molcard A. Forget P. Fraunié P. Garreau P. Generation mechanisms for mesoscale eddies in the Gulf of Lions: radar observation and modelling. Ocean Dynamics vol 61, 10, pp1587-1609, 2011. DOI.1007/s10236-011-0482-8.

  1. Er:Yb phosphate glass laser with nonlinear absorber for phase-sensitive optical time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Zhirnov, A. A.; Pnev, A. B.; Svelto, C.; Norgia, M.; Pesatori, A.; Galzerano, G.; Laporta, P.; Shelestov, D. A.; Karasik, V. E.

    2017-11-01

    A novel laser for phase-sensitive optical time-domain reflectometry (Φ-OTDR) is presented. The advantages of a compact solid-state laser are listed, current problems are shown. Experiments with a microchip single-optical-element laser, from setup construction to usage in Φ-OTDR system, are presented. New laser scheme with two-photon intracavity absorber is suggested and its advantages are described.

  2. A comparative study of Rosenbrock-type and implicit Runge-Kutta time integration for discontinuous Galerkin method for unsteady 3D compressible Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaodong; Xia, Yidong; Luo, Hong

    A comparative study of two classes of third-order implicit time integration schemes is presented for a third-order hierarchical WENO reconstructed discontinuous Galerkin (rDG) method to solve the 3D unsteady compressible Navier-Stokes equations: — 1) the explicit first stage, single diagonally implicit Runge-Kutta (ESDIRK3) scheme, and 2) the Rosenbrock-Wanner (ROW) schemes based on the differential algebraic equations (DAEs) of Index-2. Compared with the ESDIRK3 scheme, a remarkable feature of the ROW schemes is that, they only require one approximate Jacobian matrix calculation every time step, thus considerably reducing the overall computational cost. A variety of test cases, ranging from inviscid flowsmore » to DNS of turbulent flows, are presented to assess the performance of these schemes. Here, numerical experiments demonstrate that the third-order ROW scheme for the DAEs of index-2 can not only achieve the designed formal order of temporal convergence accuracy in a benchmark test, but also require significantly less computing time than its ESDIRK3 counterpart to converge to the same level of discretization errors in all of the flow simulations in this study, indicating that the ROW methods provide an attractive alternative for the higher-order time-accurate integration of the unsteady compressible Navier-Stokes equations.« less

  3. A comparative study of Rosenbrock-type and implicit Runge-Kutta time integration for discontinuous Galerkin method for unsteady 3D compressible Navier-Stokes equations

    DOE PAGES

    Liu, Xiaodong; Xia, Yidong; Luo, Hong; ...

    2016-10-05

    A comparative study of two classes of third-order implicit time integration schemes is presented for a third-order hierarchical WENO reconstructed discontinuous Galerkin (rDG) method to solve the 3D unsteady compressible Navier-Stokes equations: — 1) the explicit first stage, single diagonally implicit Runge-Kutta (ESDIRK3) scheme, and 2) the Rosenbrock-Wanner (ROW) schemes based on the differential algebraic equations (DAEs) of Index-2. Compared with the ESDIRK3 scheme, a remarkable feature of the ROW schemes is that, they only require one approximate Jacobian matrix calculation every time step, thus considerably reducing the overall computational cost. A variety of test cases, ranging from inviscid flowsmore » to DNS of turbulent flows, are presented to assess the performance of these schemes. Here, numerical experiments demonstrate that the third-order ROW scheme for the DAEs of index-2 can not only achieve the designed formal order of temporal convergence accuracy in a benchmark test, but also require significantly less computing time than its ESDIRK3 counterpart to converge to the same level of discretization errors in all of the flow simulations in this study, indicating that the ROW methods provide an attractive alternative for the higher-order time-accurate integration of the unsteady compressible Navier-Stokes equations.« less

  4. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    PubMed

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  5. A multithreaded and GPU-optimized compact finite difference algorithm for turbulent mixing at high Schmidt number using petascale computing

    NASA Astrophysics Data System (ADS)

    Clay, M. P.; Yeung, P. K.; Buaria, D.; Gotoh, T.

    2017-11-01

    Turbulent mixing at high Schmidt number is a multiscale problem which places demanding requirements on direct numerical simulations to resolve fluctuations down the to Batchelor scale. We use a dual-grid, dual-scheme and dual-communicator approach where velocity and scalar fields are computed by separate groups of parallel processes, the latter using a combined compact finite difference (CCD) scheme on finer grid with a static 3-D domain decomposition free of the communication overhead of memory transposes. A high degree of scalability is achieved for a 81923 scalar field at Schmidt number 512 in turbulence with a modest inertial range, by overlapping communication with computation whenever possible. On the Cray XE6 partition of Blue Waters, use of a dedicated thread for communication combined with OpenMP locks and nested parallelism reduces CCD timings by 34% compared to an MPI baseline. The code has been further optimized for the 27-petaflops Cray XK7 machine Titan using GPUs as accelerators with the latest OpenMP 4.5 directives, giving 2.7X speedup compared to CPU-only execution at the largest problem size. Supported by NSF Grant ACI-1036170, the NCSA Blue Waters Project with subaward via UIUC, and a DOE INCITE allocation at ORNL.

  6. Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers

    NASA Astrophysics Data System (ADS)

    Cassinerio, Marco; Gambetta, Alessio; Coluccelli, Nicola; Laporta, Paolo; Galzerano, Gianluca

    2014-06-01

    We report on a compact scheme for absolute referencing and coherent averaging for dual-comb based spectrometers, exploiting a single continuous-wave (CW) laser in a transfer oscillator configuration. The same CW laser is used for both absolute calibration of the optical frequency axis and the generation of a correction signal which is used for a real-time jitter compensation in a fully electrical feed-forward scheme. The technique is applied to a near-infrared spectrometer based on a pair of free-running mode-locked Er:fiber lasers, allowing to perform real-time absolute-frequency measurements over an optical bandwidth of more than 25 nm, with coherent interferogram averaging over 1-s acquisition time, leading to a signal-to-noise ratio improvement of 29 dB over the 50 μs single shot acquisition. Using 10-cm single pass cell, a value of 1.9 × 10-4 cm-1 Hz-0.5 noise-equivalent-absorption over 1 s integration time is obtained, which can be further scaled down with a multi-pass or resonant cavity. The adoption of a single CW laser, together with the absence of optical locks, and the full-fiber design makes this spectrometer a robust and compact system to be employed in gas-sensing applications.

  7. Integrating laboratory creep compaction data with numerical fault models: A Bayesian framework

    USGS Publications Warehouse

    Fitzenz, D.D.; Jalobeanu, A.; Hickman, S.H.

    2007-01-01

    We developed a robust Bayesian inversion scheme to plan and analyze laboratory creep compaction experiments. We chose a simple creep law that features the main parameters of interest when trying to identify rate-controlling mechanisms from experimental data. By integrating the chosen creep law or an approximation thereof, one can use all the data, either simultaneously or in overlapping subsets, thus making more complete use of the experiment data and propagating statistical variations in the data through to the final rate constants. Despite the nonlinearity of the problem, with this technique one can retrieve accurate estimates of both the stress exponent and the activation energy, even when the porosity time series data are noisy. Whereas adding observation points and/or experiments reduces the uncertainty on all parameters, enlarging the range of temperature or effective stress significantly reduces the covariance between stress exponent and activation energy. We apply this methodology to hydrothermal creep compaction data on quartz to obtain a quantitative, semiempirical law for fault zone compaction in the interseismic period. Incorporating this law into a simple direct rupture model, we find marginal distributions of the time to failure that are robust with respect to errors in the initial fault zone porosity. Copyright 2007 by the American Geophysical Union.

  8. Compact FEL-driven inverse compton scattering gamma-ray source

    DOE PAGES

    Placidi, M.; Di Mitri, Simone; Pellegrini, C.; ...

    2017-02-28

    Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scatteringmore » (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. As a result, the same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4 × 22 m 2 footprint system.« less

  9. Compact Modbus TCP/IP protocol for data acquisition systems based on limited hardware resources

    NASA Astrophysics Data System (ADS)

    Bai, Q.; Jin, B.; Wang, D.; Wang, Y.; Liu, X.

    2018-04-01

    The Modbus TCP/IP has been a standard industry communication protocol and widely utilized for establishing sensor-cloud platforms on the Internet. However, numerous existing data acquisition systems built on traditional single-chip microcontrollers without sufficient resources cannot support it, because the complete Modbus TCP/IP protocol always works dependent on a full operating system which occupies abundant hardware resources. Hence, a compact Modbus TCP/IP protocol is proposed in this work to make it run efficiently and stably even on a resource-limited hardware platform. Firstly, the Modbus TCP/IP protocol stack is analyzed and the refined protocol suite is rebuilt by streamlining the typical TCP/IP suite. Then, specific implementation of every hierarchical layer is respectively presented in detail according to the protocol structure. Besides, the compact protocol is implemented in a traditional microprocessor to validate the feasibility of the scheme. Finally, the performance of the proposed scenario is assessed. The experimental results demonstrate that message packets match the frame format of Modbus TCP/IP protocol and the average bandwidth reaches to 1.15 Mbps. The compact protocol operates stably even based on a traditional microcontroller with only 4-kB RAM and 12-MHz system clock, and no communication congestion or frequent packet loss occurs.

  10. Compact FEL-driven inverse compton scattering gamma-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placidi, M.; Di Mitri, Simone; Pellegrini, C.

    Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scatteringmore » (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. As a result, the same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4 × 22 m 2 footprint system.« less

  11. The a(4) Scheme-A High Order Neutrally Stable CESE Solver

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    2009-01-01

    The CESE development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a nondissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To provide a solid foundation for a systematic CESE development of high order schemes, in this paper we describe a new high order (4-5th order) and neutrally stable CESE solver of a 1D advection equation with a constant advection speed a. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and two points at the lower time level. Because it is associated with four independent mesh variables (the numerical analogues of the dependent variable and its first, second, and third-order spatial derivatives) and four equations per mesh point, the new scheme is referred to as the a(4) scheme. As in the case of other similar CESE neutrally stable solvers, the a(4) scheme enforces conservation laws in space-time locally and globally, and it has the basic, forward marching, and backward marching forms. Except for a singular case, these forms are equivalent and satisfy a space-time inversion (STI) invariant property which is shared by the advection equation. Based on the concept of STI invariance, a set of algebraic relations is developed and used to prove the a(4) scheme must be neutrally stable when it is stable. Numerically, it has been established that the scheme is stable if the value of the Courant number is less than 1/3

  12. Explicit robust schemes for implementation of a class of principal value-based constitutive models: Theoretical development

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Arnold, S. M.

    1991-01-01

    The issue of developing effective and robust schemes to implement a class of the Ogden-type hyperelastic constitutive models is addressed. To this end, explicit forms for the corresponding material tangent stiffness tensors are developed, and these are valid for the entire deformation range; i.e., with both distinct as well as repeated principal-stretch values. Throughout the analysis the various implications of the underlying property of separability of the strain-energy functions are exploited, thus leading to compact final forms of the tensor expressions. In particular, this facilitated the treatment of complex cases of uncoupled volumetric/deviatoric formulations for incompressible materials. The forms derived are also amenable for use with symbolic-manipulation packages for systematic code generation.

  13. On intrinsic nonlinear particle motion in compact synchrotrons

    NASA Astrophysics Data System (ADS)

    Hwang, Kyung Ryun

    Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.

  14. Renormalization scheme and gauge (in)dependence of the generalized Crewther relation: what are the real grounds of the β-factorization property?

    NASA Astrophysics Data System (ADS)

    Garkusha, A. V.; Kataev, A. L.; Molokoedov, V. S.

    2018-02-01

    The problem of scheme and gauge dependence of the factorization property of the renormalization group β-function in the SU( N c ) QCD generalized Crewther relation (GCR), which connects the flavor non-singlet contributions to the Adler and Bjorken polarized sum rule functions, is investigated at the O({a}_s^4) level of perturbation theory. It is known that in the gauge-invariant renormalization \\overline{MS} -scheme this property holds in the QCD GCR at least at this order. To study whether this factorization property is true in all gauge-invariant schemes, we consider the MS-like schemes in QCD and the QED-limit of the GCR in the \\overline{MS} -scheme and in two other gauge-independent subtraction schemes, namely in the momentum MOM and the on-shell OS schemes. In these schemes we confirm the existence of the β-function factorization in the QCD and QED variants of the GCR. The problem of the possible β-factorization in the gauge-dependent renormalization schemes in QCD is studied. To investigate this problem we consider the gauge non-invariant mMOM and MOMgggg-schemes. We demonstrate that in the mMOM scheme at the O({a}_s^3) level the β-factorization is valid for three values of the gauge parameter ξ only, namely for ξ = -3 , -1 and ξ = 0. In the O({a}_s^4) order of PT it remains valid only for case of the Landau gauge ξ = 0. The consideration of these two gauge-dependent schemes for the QCD GCR allows us to conclude that the factorization of RG β-function will always be implemented in any MOM-like renormalization schemes with linear covariant gauge at ξ = 0 and ξ = -3 at the O({a}_s^3) approximation. It is demonstrated that if factorization property for the MS-like schemes is true in all orders of PT, as theoretically indicated in the several works on the subject, then the factorization will also occur in the arbitrary MOM-like scheme in the Landau gauge in all orders of perturbation theory as well.

  15. Application of a Chimera Full Potential Algorithm for Solving Aerodynamic Problems

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1997-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the three dimensional full potential equation is described. Special emphasis is placed on describing the spatial differencing algorithm around the chimera interface. Results from two spatial discretization variations are presented; one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The presentation is highlighted with a number of transonic wing flow field computations.

  16. A dispersion minimizing scheme for the 3-D Helmholtz equation based on ray theory

    NASA Astrophysics Data System (ADS)

    Stolk, Christiaan C.

    2016-06-01

    We develop a new dispersion minimizing compact finite difference scheme for the Helmholtz equation in 2 and 3 dimensions. The scheme is based on a newly developed ray theory for difference equations. A discrete Helmholtz operator and a discrete operator to be applied to the source and the wavefields are constructed. Their coefficients are piecewise polynomial functions of hk, chosen such that phase and amplitude errors are minimal. The phase errors of the scheme are very small, approximately as small as those of the 2-D quasi-stabilized FEM method and substantially smaller than those of alternatives in 3-D, assuming the same number of gridpoints per wavelength is used. In numerical experiments, accurate solutions are obtained in constant and smoothly varying media using meshes with only five to six points per wavelength and wave propagation over hundreds of wavelengths. When used as a coarse level discretization in a multigrid method the scheme can even be used with down to three points per wavelength. Tests on 3-D examples with up to 108 degrees of freedom show that with a recently developed hybrid solver, the use of coarser meshes can lead to corresponding savings in computation time, resulting in good simulation times compared to the literature.

  17. A third-order computational method for numerical fluxes to guarantee nonnegative difference coefficients for advection-diffusion equations in a semi-conservative form

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Watabe, D.; Minamidani, T.; Zhang, G. S.

    2012-10-01

    According to Godunov theorem for numerical calculations of advection equations, there exist no higher-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. We propose a third-order computational scheme for numerical fluxes to guarantee the non-negative difference coefficients of resulting finite difference equations for advection-diffusion equations in a semi-conservative form, in which there exist two kinds of numerical fluxes at a cell surface and these two fluxes are not always coincident in non-uniform velocity fields. The present scheme is optimized so as to minimize truncation errors for the numerical fluxes while fulfilling the positivity condition of the difference coefficients which are variable depending on the local Courant number and diffusion number. The feature of the present optimized scheme consists in keeping the third-order accuracy anywhere without any numerical flux limiter. We extend the present method into multi-dimensional equations. Numerical experiments for advection-diffusion equations showed nonoscillatory solutions.

  18. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, I: Basic Theory

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.

    2003-01-01

    The objective of this paper is to extend our recently developed highly parallelizable nonlinear stable high order schemes for complex multiscale hydrodynamic applications to the viscous MHD equations. These schemes employed multiresolution wavelets as adaptive numerical dissipation controls t o limit the amount of and to aid the selection and/or blending of the appropriate types of dissipation to be used. The new scheme is formulated for both the conservative and non-conservative form of the MHD equations in curvilinear grids. The four advantages of the present approach over existing MHD schemes reported in the open literature are as follows. First, the scheme is constructed for long-time integrations of shock/turbulence/combustion MHD flows. Available schemes are too diffusive for long-time integrations and/or turbulence/combustion problems. Second, unlike exist- ing schemes for the conservative MHD equations which suffer from ill-conditioned eigen- decompositions, the present scheme makes use of a well-conditioned eigen-decomposition obtained from a minor modification of the eigenvectors of the non-conservative MHD equations t o solve the conservative form of the MHD equations. Third, this approach of using the non-conservative eigensystem when solving the conservative equations also works well in the context of standard shock-capturing schemes for the MHD equations. Fourth, a new approach to minimize the numerical error of the divergence-free magnetic condition for high order schemes is introduced. Numerical experiments with typical MHD model problems revealed the applicability of the newly developed schemes for the MHD equations.

  19. Immediate and long term effects of compaction on the stress-strain behaviour of soil

    NASA Astrophysics Data System (ADS)

    Noor, Sarah T.; Chowdhury, Prantick; Chowdhury, Tasnim

    2018-04-01

    This paper explores whether delay in construction after compaction can benefit from the gain in soil’s strength and stability point of view. An experimental investigation has been carried out to examine the gradual development of soil’s shear strength by ageing of mechanically compacted soil at three relative densities. In order to separate the gain in strength due to ageing from that occurring from the reduction in soil moisture, the soil samples prepared in moulds were kept in desiccators for different periods of time (1, 9 and 17 days) before testing unconfined compressive strength test. The soil in densely compacted state is found to gain in strength due to ageing faster than that in medium compacted state. Only due to ageing of 9 days or more, unconfined compressive strength of compacted soil is found about 1.7 to 2.4 times of that attained in day 1 after compaction.

  20. Multiplicative noise removal through fractional order tv-based model and fast numerical schemes for its approximation

    NASA Astrophysics Data System (ADS)

    Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad

    2017-07-01

    This paper introduces a fractional order total variation (FOTV) based model with three different weights in the fractional order derivative definition for multiplicative noise removal purpose. The fractional-order Euler Lagrange equation which is a highly non-linear partial differential equation (PDE) is obtained by the minimization of the energy functional for image restoration. Two numerical schemes namely an iterative scheme based on the dual theory and majorization- minimization algorithm (MMA) are used. To improve the restoration results, we opt for an adaptive parameter selection procedure for the proposed model by applying the trial and error method. We report numerical simulations which show the validity and state of the art performance of the fractional-order model in visual improvement as well as an increase in the peak signal to noise ratio comparing to corresponding methods. Numerical experiments also demonstrate that MMAbased methodology is slightly better than that of an iterative scheme.

  1. A compact, low-loss, tunable phase shifter on defect mitigated dielectrics up to 40 GHz

    NASA Astrophysics Data System (ADS)

    Orloff, Nathan; Long, Christian; Lu, Xifeng; Nair, Hari; Dawley, Natalie; Schlom, Darrell; Booth, James

    With the emergence of the internet-of-things and increased connectivity of modern commerce, consumers have driven demand for wireless spectrum beyond current capacity and infrastructure capabilities. One way the telecommunications industry is addressing this problem is by pushing front-end electronics to higher frequencies, introducing carrier aggregation schemes, and developing spectrum-sharing techniques. Some of these solutions require frequency agile components that are vastly different from what is in today's marketplace. Perhaps the most basic and ubiquitous component in front-end electronics is the phase shifter. Phase shifters are particularly important for compact beam-forming antennas that may soon appear in commercial technology. Here, we demonstrate a compact, tunable phase shifter with very low insertion loss up to 40 GHz on a defect mitigated tunable dielectric. We demonstrate performance compared to barium-doped strontium titanate phase shifters. Such phase shifters could potentially meet the stringent size and performance characteristics demanded by telecommunications industry, readily facilitating massive multiple-input multiple-output antennas in the next-generation of mobile handsets.

  2. Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits.

    PubMed

    Wood, Michael; Sun, Peng; Reano, Ronald M

    2012-01-02

    We demonstrate coupling from tapered optical fibers to 450 nm by 250 nm silicon strip waveguides using compact cantilever couplers. The couplers consist of silicon inverse width tapers embedded within silicon dioxide cantilevers. Finite difference time domain simulations are used to design the length of the silicon inverse width taper to as short as 6.5 μm for a cantilever width of 2 μm. Modeling of various strip waveguide taper profiles shows reduced coupling losses for a quadratic taper profile. Infrared measurements of fabricated devices demonstrate average coupling losses of 0.62 dB per connection for the quasi-TE mode and 0.50 dB per connection for the quasi-TM mode across the optical telecommunications C band. In the wavelength range from 1477 nm to 1580 nm, coupling losses for both polarizations are less than 1 dB per connection. The compact, broadband, and low-loss coupling scheme enables direct access to photonic integrated circuits on an entire chip surface without the need for dicing or cleaving the chip.

  3. Fourth order scheme for wavelet based solution of Black-Scholes equation

    NASA Astrophysics Data System (ADS)

    Finěk, Václav

    2017-12-01

    The present paper is devoted to the numerical solution of the Black-Scholes equation for pricing European options. We apply the Crank-Nicolson scheme with Richardson extrapolation for time discretization and Hermite cubic spline wavelets with four vanishing moments for space discretization. This scheme is the fourth order accurate both in time and in space. Computational results indicate that the Crank-Nicolson scheme with Richardson extrapolation significantly decreases the amount of computational work. We also numerically show that optimal convergence rate for the used scheme is obtained without using startup procedure despite the data irregularities in the model.

  4. A diagnostic signal selection scheme for planetary gearbox vibration monitoring under non-stationary operational conditions

    NASA Astrophysics Data System (ADS)

    Feng, Ke; Wang, KeSheng; Zhang, Mian; Ni, Qing; Zuo, Ming J.

    2017-03-01

    The planetary gearbox, due to its unique mechanical structures, is an important rotating machine for transmission systems. Its engineering applications are often in non-stationary operational conditions, such as helicopters, wind energy systems, etc. The unique physical structures and working conditions make the vibrations measured from planetary gearboxes exhibit a complex time-varying modulation and therefore yield complicated spectral structures. As a result, traditional signal processing methods, such as Fourier analysis, and the selection of characteristic fault frequencies for diagnosis face serious challenges. To overcome this drawback, this paper proposes a signal selection scheme for fault-emphasized diagnostics based upon two order tracking techniques. The basic procedures for the proposed scheme are as follows. (1) Computed order tracking is applied to reveal the order contents and identify the order(s) of interest. (2) Vold-Kalman filter order tracking is used to extract the order(s) of interest—these filtered order(s) constitute the so-called selected vibrations. (3) Time domain statistic indicators are applied to the selected vibrations for faulty information-emphasized diagnostics. The proposed scheme is explained and demonstrated in a signal simulation model and experimental studies and the method proves to be effective for planetary gearbox fault diagnosis.

  5. Numerical applications of the advective-diffusive codes for the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Aseev, N. A.; Shprits, Y. Y.; Drozdov, A. Y.; Kellerman, A. C.

    2016-11-01

    In this study we present analytical solutions for convection and diffusion equations. We gather here the analytical solutions for the one-dimensional convection equation, the two-dimensional convection problem, and the one- and two-dimensional diffusion equations. Using obtained analytical solutions, we test the four-dimensional Versatile Electron Radiation Belt code (the VERB-4D code), which solves the modified Fokker-Planck equation with additional convection terms. The ninth-order upwind numerical scheme for the one-dimensional convection equation shows much more accurate results than the results obtained with the third-order scheme. The universal limiter eliminates unphysical oscillations generated by high-order linear upwind schemes. Decrease in the space step leads to convergence of a numerical solution of the two-dimensional diffusion equation with mixed terms to the analytical solution. We compare the results of the third- and ninth-order schemes applied to magnetospheric convection modeling. The results show significant differences in electron fluxes near geostationary orbit when different numerical schemes are used.

  6. Accuracy Study of the Space-Time CE/SE Method for Computational Aeroacoustics Problems Involving Shock Waves

    NASA Technical Reports Server (NTRS)

    Wang, Xiao Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.

    1999-01-01

    The space-time conservation element and solution element(CE/SE) method is used to study the sound-shock interaction problem. The order of accuracy of numerical schemes is investigated. The linear model problem.govemed by the 1-D scalar convection equation, sound-shock interaction problem governed by the 1-D Euler equations, and the 1-D shock-tube problem which involves moving shock waves and contact surfaces are solved to investigate the order of accuracy of numerical schemes. It is concluded that the accuracy of the CE/SE numerical scheme with designed 2nd-order accuracy becomes 1st order when a moving shock wave exists. However, the absolute error in the CE/SE solution downstream of the shock wave is on the same order as that obtained using a fourth-order accurate essentially nonoscillatory (ENO) scheme. No special techniques are used for either high-frequency low-amplitude waves or shock waves.

  7. Digitally balanced detection for optical tomography.

    PubMed

    Hafiz, Rehan; Ozanyan, Krikor B

    2007-10-01

    Analog balanced Photodetection has found extensive usage for sensing of a weak absorption signal buried in laser intensity noise. This paper proposes schemes for compact, affordable, and flexible digital implementation of the already established analog balanced detection, as part of a multichannel digital tomography system. Variants of digitally balanced detection (DBD) schemes, suitable for weak signals on a largely varying background or weakly varying envelopes of high frequency carrier waves, are introduced analytically and elaborated in terms of algorithmic and hardware flow. The DBD algorithms are implemented on a low-cost general purpose reconfigurable hardware (field-programmable gate array), utilizing less than half of its resources. The performance of the DBD schemes compare favorably with their analog counterpart: A common mode rejection ratio of 50 dB was observed over a bandwidth of 300 kHz, limited mainly by the host digital hardware. The close relationship between the DBD outputs and those of known analog balancing circuits is discussed in principle and shown experimentally in the example case of propane gas detection.

  8. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, J.; Chen, M.; Wu, W. Y.

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. Furthermore, a curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme then benefitsmore » from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. Within moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.« less

  9. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channel

    DOE PAGES

    Luo, J.; Chen, M.; Wu, W. Y.; ...

    2018-04-10

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. Furthermore, a curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme then benefitsmore » from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. Within moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.« less

  10. Image encryption based on a delayed fractional-order chaotic logistic system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Huang, Xia; Li, Ning; Song, Xiao-Na

    2012-05-01

    A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system. In the process of generating a key stream, the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security. Such a scheme is described in detail with security analyses including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. Experimental results show that the newly proposed image encryption scheme possesses high security.

  11. Extending high-order flux operators on spherical icosahedral grids and their application in a Shallow Water Model for transporting the Potential Vorticity

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2017-12-01

    The unstructured formulation of the third/fourth-order flux operators used by the Advanced Research WRF is extended twofold on spherical icosahedral grids. First, the fifth- and sixth-order flux operators of WRF are further extended, and the nominally second- to sixth-order operators are then compared based on the solid body rotation and deformational flow tests. Results show that increasing the nominal order generally leads to smaller absolute errors. Overall, the fifth-order scheme generates the smallest errors in limited and unlimited tests, although it does not enhance the convergence rate. The fifth-order scheme also exhibits smaller sensitivity to the damping coefficient than the third-order scheme. Overall, the even-order schemes have higher limiter sensitivity than the odd-order schemes. Second, a triangular version of these high-order operators is repurposed for transporting the potential vorticity in a space-time-split shallow water framework. Results show that a class of nominally third-order upwind-biased operators generates better results than second- and fourth-order counterparts. The increase of the potential enstrophy over time is suppressed owing to the damping effect. The grid-scale noise in the vorticity is largely alleviated, and the total energy remains conserved. Moreover, models using high-order operators show smaller numerical errors in the vorticity field because of a more accurate representation of the nonlinear Coriolis term. This improvement is especially evident in the Rossby-Haurwitz wave test, in which the fluid is highly rotating. Overall, flux operators with higher damping coefficients, which essentially behaves like the Anticipated Potential Vorticity Method, present optimal results.

  12. Renormalization scheme dependence of high-order perturbative QCD predictions

    NASA Astrophysics Data System (ADS)

    Ma, Yang; Wu, Xing-Gang

    2018-02-01

    Conventionally, one adopts typical momentum flow of a physical observable as the renormalization scale for its perturbative QCD (pQCD) approximant. This simple treatment leads to renormalization scheme-and-scale ambiguities due to the renormalization scheme and scale dependence of the strong coupling and the perturbative coefficients do not exactly cancel at any fixed order. It is believed that those ambiguities will be softened by including more higher-order terms. In the paper, to show how the renormalization scheme dependence changes when more loop terms have been included, we discuss the sensitivity of pQCD prediction on the scheme parameters by using the scheme-dependent {βm ≥2}-terms. We adopt two four-loop examples, e+e-→hadrons and τ decays into hadrons, for detailed analysis. Our results show that under the conventional scale setting, by including more-and-more loop terms, the scheme dependence of the pQCD prediction cannot be reduced as efficiently as that of the scale dependence. Thus a proper scale-setting approach should be important to reduce the scheme dependence. We observe that the principle of minimum sensitivity could be such a scale-setting approach, which provides a practical way to achieve optimal scheme and scale by requiring the pQCD approximate be independent to the "unphysical" theoretical conventions.

  13. Structural Stability of Mathematical Models of National Economy

    NASA Astrophysics Data System (ADS)

    Ashimov, Abdykappar A.; Sultanov, Bahyt T.; Borovskiy, Yuriy V.; Adilov, Zheksenbek M.; Ashimov, Askar A.

    2011-12-01

    In the paper we test robustness of particular dynamic systems in a compact regions of a plane and a weak structural stability of one dynamic system of high order in a compact region of its phase space. The test was carried out based on the fundamental theory of dynamical systems on a plane and based on the conditions for weak structural stability of high order dynamic systems. A numerical algorithm for testing the weak structural stability of high order dynamic systems has been proposed. Based on this algorithm we assess the weak structural stability of one computable general equilibrium model.

  14. Investigating Compaction by Intergranular Pressure Solution Using the Discrete Element Method

    NASA Astrophysics Data System (ADS)

    van den Ende, M. P. A.; Marketos, G.; Niemeijer, A. R.; Spiers, C. J.

    2018-01-01

    Intergranular pressure solution creep is an important deformation mechanism in the Earth's crust. The phenomenon has been frequently studied and several analytical models have been proposed that describe its constitutive behavior. These models require assumptions regarding the geometry of the aggregate and the grain size distribution in order to solve for the contact stresses and often neglect shear tractions. Furthermore, analytical models tend to overestimate experimental compaction rates at low porosities, an observation for which the underlying mechanisms remain to be elucidated. Here we present a conceptually simple, 3-D discrete element method (DEM) approach for simulating intergranular pressure solution creep that explicitly models individual grains, relaxing many of the assumptions that are required by analytical models. The DEM model is validated against experiments by direct comparison of macroscopic sample compaction rates. Furthermore, the sensitivity of the overall DEM compaction rate to the grain size and applied stress is tested. The effects of the interparticle friction and of a distributed grain size on macroscopic strain rates are subsequently investigated. Overall, we find that the DEM model is capable of reproducing realistic compaction behavior, and that the strain rates produced by the model are in good agreement with uniaxial compaction experiments. Characteristic features, such as the dependence of the strain rate on grain size and applied stress, as predicted by analytical models, are also observed in the simulations. DEM results show that interparticle friction and a distributed grain size affect the compaction rates by less than half an order of magnitude.

  15. Compact eccentric long period grating with improved sensitivity in low refractive index region.

    PubMed

    Shen, Fangcheng; Zhou, Kaiming; Gordon, Neil; Zhang, Lin; Shu, Xuewen

    2017-07-10

    We demonstrate a compact eccentric long period grating with enhanced sensitivity in low refractive index region. With a period designed at 15 µm for coupling light to high order cladding modes, the grating is more sensitive to surrounding refractive index in low refractive index region. The intrinsically low coupling coefficients for those high order cladding modes are significantly improved with the eccentric localized inscription induced by the femtosecond laser. The fabricated grating is compact with a length of 4.05 mm, and exhibits an average sensitivity of ~505 nm/RIU in low refractive index region (1.3328-1.3544). The proposed principle can also work in other refractive index region with a proper choice of the resonant cladding modes.

  16. Recirculating Electron Accelerators with Noncircular Electron Orbits as Radiation Sources for Applications (a Review)

    NASA Astrophysics Data System (ADS)

    Dubinov, Alexander E.; Ochkina, Elena I.

    2018-05-01

    State-of-the-art compact recirculating electron accelerators operating at intermediate energies (tens of MeV) are reviewed. The acceleration schemes implemented in the rhodotron, ridgetron, fantron, and cylindertron machines are discussed. Major accelerator components such as the electron guns, accelerating cavities, and bending magnets are described. The parameters of currently operating recirculating accelerators are tabulated, and applications of these accelerators in different processes of irradiation are exemplified.

  17. Method and apparatus for measuring lung density by Compton backscattering

    DOEpatents

    Loo, Billy W.; Goulding, Frederick S.

    1991-01-01

    The density of the lung of a patient suffering from pulmonary edema is monitored by irradiating the lung by a single collimated beam of monochromatic photons and measuring the energies of photons Compton backscattered from the lung by a single high-resolution, high-purity germanium detector. A compact system geometry and a unique data extraction scheme are utilized to monimize systematic errors due to the presence of the chestwall and multiple scattering.

  18. Distributed energy store powered railguns for hypervelocity launch

    NASA Astrophysics Data System (ADS)

    Maas, Brian L.; Bauer, David P.; Marshall, Richard A.

    1993-01-01

    Highly distributed power supplies are proposed as a basis for current difficulties with hypervelocity railgun power-supply compactness. This distributed power supply configuration reduces rail-to-rail voltage behind the main armature, thereby reducing the tendency for secondary armature current formation; secondary current elimination is essential for achieving the efficiencies associated with muzzle velocity above 6 km/sec. Attention is given to analytical and experimental results for two distributed energy storage schemes.

  19. The pentag meridian circle

    NASA Astrophysics Data System (ADS)

    Nemiro, A. A.

    The opticomechanical scheme of a pentag meridian circle is presented. The central rotating part of the instrument, made of sitall (cer-vit), is compact and uniform, making it possible to minimize the gravitational and thermal deformations. It is shown that variations of the orientation of the central part do not affect observations because of the use of the pentag. Formulas are presented for determining the collimation error and zero point of the circle using autocollimation readings.

  20. Privacy-Preserving and Secure Sharing of PHR in the Cloud.

    PubMed

    Zhang, Leyou; Wu, Qing; Mu, Yi; Zhang, Jingxia

    2016-12-01

    As a new summarized record of an individual's medical data and information, Personal Health Record (PHR) can be accessible online. The owner can control fully his/her PHR files to be shared with different users such as doctors, clinic agents, and friends. However, in an open network environment like in the Cloud, these sensitive privacy information may be gotten by those unauthorized parties and users. In this paper, we consider how to achieve PHR data confidentiality and provide fine-grained access control of PHR files in the public Cloud based on Attribute Based Encryption(ABE). Differing from previous works, we also consider the privacy preserving of the receivers since the attributes of the receivers relate to their identity or medical information, which would make some sensitive data exposed to third services. Anonymous ABE(AABE) not only enforces the security of PHR of the owners but also preserves the privacy of the receivers. But a normal AABE with a single private key generation(PKG) center may not match a PHR system in the hierarchical architecture. Therefore, we discuss not only the construction of the PHR sharing system base on AABE but also how to construct the PHR sharing system based on the hierarchical AABE. The proposed schemes(especially based on hierarchical AABE) have many advantages over the available such as short public keys, constant-size private keys, which overcome the weaknesses in the existing works. In the standard model, the introduced schemes achieve compact security in the prime order groups.

  1. Prediction of wrinklings and porosities of thermoplastic composits after thermostamping

    NASA Astrophysics Data System (ADS)

    Hamila, Nahiene; Guzman-Maldonado, Eduardo; Xiong, Hu; Wang, Peng; Boisse, Philippe; Bikard, Jerome

    2018-05-01

    During thermoforming process, the consolidation deformation mode of thermoplastic prepregs is one of the key deformation modes especially in the consolidation step, where the two resin flow phenomena: resin percolation and transverse squeeze flow, play an important role. This occurs a viscosity behavior for consolidation mode. Based on a visco-hyper-elastic model for the characterization of thermoplastic prepregs proposed by Guzman, which involves different independent modes of deformation: elongation mode, bending mode with thermo-dependent, and viscoelastic in-plan shearing mode with thermo-dependent, a viscoelastic model completed with consolidation behavior will be presented in this paper. A completed three-dimensional mechanical behavior with compaction effect for thermoplastic pre-impregnated composites is constituted, and the associated parameters are identified by compaction test. Moreover, a seven-node prismatic solid-shell finite element approach is used for the forming simulation. To subdue transverse shear locking, an intermediate material frame related to the element sides is introduced in order to fix nodal transverse shear strain components. Indeed, the enhanced assumed strain method and a reduced integration scheme are combined offering a linear varying strain field along the thickness direction to circumvent thickness locking, and an hourglass stabilization procedure is employed in order to correct the element's rank deficiency for pinching. An additional node is added at the center providing a quadratic interpolation of the displacement in the thickness direction. The predominance of this element is the ability of three dimensional analysis, especially for the transverse stress existence through the thickness of material, which is essential for the consolidation modelling. Finally, an intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg. Several tests including a thermoforming test are launched to evaluate the consolidation model and the accuracy of the proposed element.

  2. Characterization of oscillator circuits for monitoring the density-viscosity of liquids by means of piezoelectric MEMS microresonators

    NASA Astrophysics Data System (ADS)

    Toledo, J.; Ruiz-Díez, V.; Pfusterschmied, G.; Schmid, U.; Sánchez-Rojas, J. L.

    2017-06-01

    Real-time monitoring of the physical properties of liquids, such as lubricants, is a very important issue for the automotive industry. For example, contamination of lubricating oil by diesel soot has a significant impact on engine wear. Resonant microstructures are regarded as a precise and compact solution for tracking the viscosity and density of lubricant oils. In this work, we report a piezoelectric resonator, designed to resonate with the 4th order out-of-plane modal vibration, 15-mode, and the interface circuit and calibration process for the monitoring of oil dilution with diesel fuel. In order to determine the resonance parameters of interest, i.e. resonant frequency and quality factor, an interface circuit was implemented and included within a closed-loop scheme. Two types of oscillator circuits were tested, a Phase-Locked Loop based on instrumentation, and a more compact version based on discrete electronics, showing similar resolution. Another objective of this work is the assessment of a calibration method for piezoelectric MEMS resonators in simultaneous density and viscosity sensing. An advanced calibration model, based on a Taylor series of the hydrodynamic function, was established as a suitable method for determining the density and viscosity with the lowest calibration error. Our results demonstrate the performance of the resonator in different oil samples with viscosities up to 90 mPa•s. At the highest value, the quality factor measured at 25°C was around 22. The best resolution obtained was 2.4•10-6 g/ml for the density and 2.7•10-3 mPa•s for the viscosity, in pure lubricant oil SAE 0W30 at 90°C. Furthermore, the estimated density and viscosity values with the MEMS resonator were compared to those obtained with a commercial density-viscosity meter, reaching a mean calibration error in the best scenario of around 0.08% for the density and 3.8% for the viscosity.

  3. An artificial nonlinear diffusivity method for supersonic reacting flows with shocks

    NASA Astrophysics Data System (ADS)

    Fiorina, B.; Lele, S. K.

    2007-03-01

    A computational approach for modeling interactions between shocks waves, contact discontinuities and reactions zones with a high-order compact scheme is investigated. To prevent the formation of spurious oscillations around shocks, artificial nonlinear viscosity [A.W. Cook, W.H. Cabot, A high-wavenumber viscosity for high resolution numerical method, J. Comput. Phys. 195 (2004) 594-601] based on high-order derivative of the strain rate tensor is used. To capture temperature and species discontinuities a nonlinear diffusivity based on the entropy gradient is added. It is shown that the damping of 'wiggles' is controlled by the model constants and is largely independent of the mesh size and the shock strength. The same holds for the numerical shock thickness and allows a determination of the L2 error. In the shock tube problem, with fluids of different initial entropy separated by the diaphragm, an artificial diffusivity is required to accurately capture the contact surface. Finally, the method is applied to a shock wave propagating into a medium with non-uniform density/entropy and to a CJ detonation wave. Multi-dimensional formulation of the model is presented and is illustrated by a 2D oblique wave reflection from an inviscid wall, by a 2D supersonic blunt body flow and by a Mach reflection problem.

  4. DNS/LES Simulations of Separated Flows at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.

  5. Third-Order Incremental Dual-Basis Set Zero-Buffer Approach: An Accurate and Efficient Way To Obtain CCSD and CCSD(T) Energies.

    PubMed

    Zhang, Jun; Dolg, Michael

    2013-07-09

    An efficient way to obtain accurate CCSD and CCSD(T) energies for large systems, i.e., the third-order incremental dual-basis set zero-buffer approach (inc3-db-B0), has been developed and tested. This approach combines the powerful incremental scheme with the dual-basis set method, and along with the new proposed K-means clustering (KM) method and zero-buffer (B0) approximation, can obtain very accurate absolute and relative energies efficiently. We tested the approach for 10 systems of different chemical nature, i.e., intermolecular interactions including hydrogen bonding, dispersion interaction, and halogen bonding; an intramolecular rearrangement reaction; aliphatic and conjugated hydrocarbon chains; three compact covalent molecules; and a water cluster. The results show that the errors for relative energies are <1.94 kJ/mol (or 0.46 kcal/mol), for absolute energies of <0.0026 hartree. By parallelization, our approach can be applied to molecules of more than 30 atoms and more than 100 correlated electrons with high-quality basis set such as cc-pVDZ or cc-pVTZ, saving computational cost by a factor of more than 10-20, compared to traditional implementation. The physical reasons of the success of the inc3-db-B0 approach are also analyzed.

  6. High-Performance Integrated Control of water quality and quantity in urban water reservoirs

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.; Goedbloed, A.

    2015-11-01

    This paper contributes a novel High-Performance Integrated Control framework to support the real-time operation of urban water supply storages affected by water quality problems. We use a 3-D, high-fidelity simulation model to predict the main water quality dynamics and inform a real-time controller based on Model Predictive Control. The integration of the simulation model into the control scheme is performed by a model reduction process that identifies a low-order, dynamic emulator running 4 orders of magnitude faster. The model reduction, which relies on a semiautomatic procedural approach integrating time series clustering and variable selection algorithms, generates a compact and physically meaningful emulator that can be coupled with the controller. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm3 storm-water-fed reservoir located in the center of Singapore, operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose behavior is modeled with Delft3D-FLOW. Results show that our control framework reduces the minimum salinity levels by nearly 40% and cuts the average annual deficit of drinking water supply by about 2 times the active storage of the reservoir (about 4% of the total annual demand).

  7. Stirling Analysis Comparison of Commercial vs. High-Order Methods

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2007-01-01

    Recently, three-dimensional Stirling engine simulations have been accomplished utilizing commercial Computational Fluid Dynamics software. The validations reported can be somewhat inconclusive due to the lack of precise time accurate experimental results from engines, export control/ proprietary concerns, and the lack of variation in the methods utilized. The last issue may be addressed by solving the same flow problem with alternate methods. In this work, a comprehensive examination of the methods utilized in the commercial codes is compared with more recently developed high-order methods. Specifically, Lele's Compact scheme and Dyson s Ultra Hi-Fi method will be compared with the SIMPLE and PISO methods currently employed in CFD-ACE, FLUENT, CFX, and STAR-CD (all commercial codes which can in theory solve a three-dimensional Stirling model although sliding interfaces and their moving grids limit the effective time accuracy). We will initially look at one-dimensional flows since the current standard practice is to design and optimize Stirling engines with empirically corrected friction and heat transfer coefficients in an overall one-dimensional model. This comparison provides an idea of the range in which commercial CFD software for modeling Stirling engines may be expected to provide accurate results. In addition, this work provides a framework for improving current one-dimensional analysis codes.

  8. Stirling Analysis Comparison of Commercial Versus High-Order Methods

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2005-01-01

    Recently, three-dimensional Stirling engine simulations have been accomplished utilizing commercial Computational Fluid Dynamics software. The validations reported can be somewhat inconclusive due to the lack of precise time accurate experimental results from engines, export control/proprietary concerns, and the lack of variation in the methods utilized. The last issue may be addressed by solving the same flow problem with alternate methods. In this work, a comprehensive examination of the methods utilized in the commercial codes is compared with more recently developed high-order methods. Specifically, Lele's compact scheme and Dyson's Ultra Hi-Fi method will be compared with the SIMPLE and PISO methods currently employed in CFD-ACE, FLUENT, CFX, and STAR-CD (all commercial codes which can in theory solve a three-dimensional Stirling model with sliding interfaces and their moving grids limit the effective time accuracy). We will initially look at one-dimensional flows since the current standard practice is to design and optimize Stirling engines with empirically corrected friction and heat transfer coefficients in an overall one-dimensional model. This comparison provides an idea of the range in which commercial CFD software for modeling Stirling engines may be expected to provide accurate results. In addition, this work provides a framework for improving current one-dimensional analysis codes.

  9. Uniformly high-order accurate non-oscillatory schemes, 1

    NASA Technical Reports Server (NTRS)

    Harten, A.; Osher, S.

    1985-01-01

    The construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws was begun. These schemes share many desirable properties with total variation diminishing schemes (TVD), but TVD schemes have at most first order accuracy, in the sense of truncation error, at extreme of the solution. A uniformly second order approximation was constucted, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell.

  10. Spurious sea ice formation caused by oscillatory ocean tracer advection schemes

    NASA Astrophysics Data System (ADS)

    Naughten, Kaitlin A.; Galton-Fenzi, Benjamin K.; Meissner, Katrin J.; England, Matthew H.; Brassington, Gary B.; Colberg, Frank; Hattermann, Tore; Debernard, Jens B.

    2017-08-01

    Tracer advection schemes used by ocean models are susceptible to artificial oscillations: a form of numerical error whereby the advected field alternates between overshooting and undershooting the exact solution, producing false extrema. Here we show that these oscillations have undesirable interactions with a coupled sea ice model. When oscillations cause the near-surface ocean temperature to fall below the freezing point, sea ice forms for no reason other than numerical error. This spurious sea ice formation has significant and wide-ranging impacts on Southern Ocean simulations, including the disappearance of coastal polynyas, stratification of the water column, erosion of Winter Water, and upwelling of warm Circumpolar Deep Water. This significantly limits the model's suitability for coupled ocean-ice and climate studies. Using the terrain-following-coordinate ocean model ROMS (Regional Ocean Modelling System) coupled to the sea ice model CICE (Community Ice CodE) on a circumpolar Antarctic domain, we compare the performance of three different tracer advection schemes, as well as two levels of parameterised diffusion and the addition of flux limiters to prevent numerical oscillations. The upwind third-order advection scheme performs better than the centered fourth-order and Akima fourth-order advection schemes, with far fewer incidents of spurious sea ice formation. The latter two schemes are less problematic with higher parameterised diffusion, although some supercooling artifacts persist. Spurious supercooling was eliminated by adding flux limiters to the upwind third-order scheme. We present this comparison as evidence of the problematic nature of oscillatory advection schemes in sea ice formation regions, and urge other ocean/sea-ice modellers to exercise caution when using such schemes.

  11. A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods

    NASA Astrophysics Data System (ADS)

    Syrakos, Alexandros; Varchanis, Stylianos; Dimakopoulos, Yannis; Goulas, Apostolos; Tsamopoulos, John

    2017-12-01

    Finite volume methods (FVMs) constitute a popular class of methods for the numerical simulation of fluid flows. Among the various components of these methods, the discretisation of the gradient operator has received less attention despite its fundamental importance with regards to the accuracy of the FVM. The most popular gradient schemes are the divergence theorem (DT) (or Green-Gauss) scheme and the least-squares (LS) scheme. Both are widely believed to be second-order accurate, but the present study shows that in fact the common variant of the DT gradient is second-order accurate only on structured meshes whereas it is zeroth-order accurate on general unstructured meshes, and the LS gradient is second-order and first-order accurate, respectively. This is explained through a theoretical analysis and is confirmed by numerical tests. The schemes are then used within a FVM to solve a simple diffusion equation on unstructured grids generated by several methods; the results reveal that the zeroth-order accuracy of the DT gradient is inherited by the FVM as a whole, and the discretisation error does not decrease with grid refinement. On the other hand, use of the LS gradient leads to second-order accurate results, as does the use of alternative, consistent, DT gradient schemes, including a new iterative scheme that makes the common DT gradient consistent at almost no extra cost. The numerical tests are performed using both an in-house code and the popular public domain partial differential equation solver OpenFOAM.

  12. Combining states without scale hierarchies with ordered parton showers

    DOE PAGES

    Fischer, Nadine; Prestel, Stefan

    2017-09-12

    Here, we present a parameter-free scheme to combine fixed-order multi-jet results with parton-shower evolution. The scheme produces jet cross sections with leading-order accuracy in the complete phase space of multiple emissions, resumming large logarithms when appropriate, while not arbitrarily enforcing ordering on momentum configurations beyond the reach of the parton-shower evolution equation. This then requires the development of a matrix-element correction scheme for complex phase-spaces including ordering conditions as well as a systematic scale-setting procedure for unordered phase-space points. Our algorithm does not require a merging-scale parameter. We implement the new method in the Vincia framework and compare to LHCmore » data.« less

  13. A simple algorithm to improve the performance of the WENO scheme on non-uniform grids

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Feng; Ren, Yu-Xin; Jiang, Xiong

    2018-02-01

    This paper presents a simple approach for improving the performance of the weighted essentially non-oscillatory (WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifth-order WENO-JS (WENO scheme presented by Jiang and Shu in J. Comput. Phys. 126:202-228, 1995) scheme designed on uniform grids in terms of one cell-averaged value and its left and/or right interfacial values of the dependent variable. The effect of grid non-uniformity is taken into consideration by a proper interpolation of the interfacial values. On non-uniform grids, the proposed scheme is much more accurate than the original WENO-JS scheme, which was designed for uniform grids. When the grid is uniform, the resulting scheme reduces to the original WENO-JS scheme. In the meantime, the proposed scheme is computationally much more efficient than the fifth-order WENO scheme designed specifically for the non-uniform grids. A number of numerical test cases are simulated to verify the performance of the present scheme.

  14. MIMO transmit scheme based on morphological perceptron with competitive learning.

    PubMed

    Valente, Raul Ambrozio; Abrão, Taufik

    2016-08-01

    This paper proposes a new multi-input multi-output (MIMO) transmit scheme aided by artificial neural network (ANN). The morphological perceptron with competitive learning (MP/CL) concept is deployed as a decision rule in the MIMO detection stage. The proposed MIMO transmission scheme is able to achieve double spectral efficiency; hence, in each time-slot the receiver decodes two symbols at a time instead one as Alamouti scheme. Other advantage of the proposed transmit scheme with MP/CL-aided detector is its polynomial complexity according to modulation order, while it becomes linear when the data stream length is greater than modulation order. The performance of the proposed scheme is compared to the traditional MIMO schemes, namely Alamouti scheme and maximum-likelihood MIMO (ML-MIMO) detector. Also, the proposed scheme is evaluated in a scenario with variable channel information along the frame. Numerical results have shown that the diversity gain under space-time coding Alamouti scheme is partially lost, which slightly reduces the bit-error rate (BER) performance of the proposed MP/CL-NN MIMO scheme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. High Order Numerical Methods for the Investigation of the Two Dimensional Richtmyer-Meshkov Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don, W-S; Gotllieb, D; Shu, C-W

    2001-11-26

    For flows that contain significant structure, high order schemes offer large advantages over low order schemes. Fundamentally, the reason comes from the truncation error of the differencing operators. If one examines carefully the expression for the truncation error, one will see that for a fixed computational cost that the error can be made much smaller by increasing the numerical order than by increasing the number of grid points. One can readily derive the following expression which holds for systems dominated by hyperbolic effects and advanced explicitly in time: flops = const * p{sup 2} * k{sup (d+1)(p+1)/p}/E{sup (d+1)/p} where flopsmore » denotes floating point operations, p denotes numerical order, d denotes spatial dimension, where E denotes the truncation error of the difference operator, and where k denotes the Fourier wavenumber. For flows that contain structure, such as turbulent flows or any calculation where, say, vortices are present, there will be significant energy in the high values of k. Thus, one can see that the rate of growth of the flops is very different for different values of p. Further, the constant in front of the expression is also very different. With a low order scheme, one quickly reaches the limit of the computer. With the high order scheme, one can obtain far more modes before the limit of the computer is reached. Here we examine the application of spectral methods and the Weighted Essentially Non-Oscillatory (WENO) scheme to the Richtmyer-Meshkov Instability. We show the intricate structure that these high order schemes can calculate and we show that the two methods, though very different, converge to the same numerical solution indicating that the numerical solution is very likely physically correct.« less

  16. Coherent population trapping with polarization modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Peter, E-mail: enxue.yun@obspm.fr; Guérandel, Stéphane; Clercq, Emeric de

    Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization.more » The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.« less

  17. Numerical solution of transport equation for applications in environmental hydraulics and hydrology

    NASA Astrophysics Data System (ADS)

    Rashidul Islam, M.; Hanif Chaudhry, M.

    1997-04-01

    The advective term in the one-dimensional transport equation, when numerically discretized, produces artificial diffusion. To minimize such artificial diffusion, which vanishes only for Courant number equal to unity, transport owing to advection has been modeled separately. The numerical solution of the advection equation for a Gaussian initial distribution is well established; however, large oscillations are observed when applied to an initial distribution with sleep gradients, such as trapezoidal distribution of a constituent or propagation of mass from a continuous input. In this study, the application of seven finite-difference schemes and one polynomial interpolation scheme is investigated to solve the transport equation for both Gaussian and non-Gaussian (trapezoidal) initial distributions. The results obtained from the numerical schemes are compared with the exact solutions. A constant advective velocity is assumed throughout the transport process. For a Gaussian distribution initial condition, all eight schemes give excellent results, except the Lax scheme which is diffusive. In application to the trapezoidal initial distribution, explicit finite-difference schemes prove to be superior to implicit finite-difference schemes because the latter produce large numerical oscillations near the steep gradients. The Warming-Kutler-Lomax (WKL) explicit scheme is found to be better among this group. The Hermite polynomial interpolation scheme yields the best result for a trapezoidal distribution among all eight schemes investigated. The second-order accurate schemes are sufficiently accurate for most practical problems, but the solution of unusual problems (concentration with steep gradient) requires the application of higher-order (e.g. third- and fourth-order) accurate schemes.

  18. Compact Stars with Sequential QCD Phase Transitions.

    PubMed

    Alford, Mark; Sedrakian, Armen

    2017-10-20

    Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting (2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.

  19. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications.

    PubMed

    Barreiro, M M; Grana, D R; Kokubu, G A; Luppo, M I; Mintzer, S; Vigna, G

    2010-04-01

    Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125 microm in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150 microm. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.

  20. Imaging and identification of waterborne parasites using a chip-scale microscope.

    PubMed

    Lee, Seung Ah; Erath, Jessey; Zheng, Guoan; Ou, Xiaoze; Willems, Phil; Eichinger, Daniel; Rodriguez, Ana; Yang, Changhuei

    2014-01-01

    We demonstrate a compact portable imaging system for the detection of waterborne parasites in resource-limited settings. The previously demonstrated sub-pixel sweeping microscopy (SPSM) technique is a lens-less imaging scheme that can achieve high-resolution (<1 µm) bright-field imaging over a large field-of-view (5.7 mm×4.3 mm). A chip-scale microscope system, based on the SPSM technique, can be used for automated and high-throughput imaging of protozoan parasite cysts for the effective diagnosis of waterborne enteric parasite infection. We successfully imaged and identified three major types of enteric parasite cysts, Giardia, Cryptosporidium, and Entamoeba, which can be found in fecal samples from infected patients. We believe that this compact imaging system can serve well as a diagnostic device in challenging environments, such as rural settings or emergency outbreaks.

  1. Novel demonstration of the renormalization group invariance of the fixed-order predictions using the principle of maximum conformality and the C -scheme coupling

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Gang; Shen, Jian-Ming; Du, Bo-Lun; Brodsky, Stanley J.

    2018-05-01

    As a basic requirement of the renormalization group invariance, any physical observable must be independent of the choice of both the renormalization scheme and the initial renormalization scale. In this paper, we show that by using the newly suggested C -scheme coupling, one can obtain a demonstration that the principle of maximum conformality prediction is scheme-independent to all-orders for any renormalization schemes, thus satisfying all of the conditions of the renormalization group invariance. We illustrate these features for the nonsinglet Adler function and for τ decay to ν + hadrons at the four-loop level.

  2. Compact Focal Plane Assembly for Planetary Science

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Aslam, Shahid; Huang, Wei-Chung; Steptoe-Jackson, Rosalind

    2013-01-01

    A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation. Compact metal mesh bandpass filters were fabricated for the far infrared (FIR) spectral range (17 to 100 microns), a game-changing technology for future planetary FIR instruments. This fabrication approach allows the dimensions of individual metal mesh filters to be tailored with better than 10- micron precision. In contrast, conventional compact filters employed in recent missions and in near-term instruments consist of large filter sheets manually cut into much smaller pieces, which is a much less precise and much more labor-intensive, expensive, and difficult process. Filter performance was validated by integrating them with thermopile arrays. Demonstration of the FPA will require the integration of two technologies. The first technology is compact, lightweight, robust against cryogenic thermal cycling, and radiation-hard micromachined bandpass filters. They consist of a copper mesh supported on a deep reactive ion-etched silicon frame. This design architecture is advantageous when constructing a lightweight and compact instrument because (1) the frame acts like a jig and facilitates filter integration with the FPA, (2) the frame can be designed so as to maximize the FPA field of view, (3) the frame can be simultaneously used as a baffle for mitigating crosstalk, and (4) micron-scale alignment features can be patterned so as to permit high-precision filter stacking and, consequently, increase the filter bandwidth and sharpen the out-of-band rolloff. The second technology consists of leveraging, from another project, compact and lightweight Bi0.87Sb0.13/Sb arrayed thermopiles. These detectors consist of 30-layer thermopiles deposited in series upon a silicon nitride membrane. At 300 K, the thermopile arrays are highly linear over many orders of magnitude of incident IR power, and have a reported specific detectivity that exceeds the requirements imposed on future mission concepts. The bandpass filter array board is integrated with a thermopile array board by mounting both boards on a machined aluminum jig.

  3. A pyramid scheme for three-dimensional diffusion equations on polyhedral meshes

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Hang, Xudeng; Yuan, Guangwei

    2017-12-01

    In this paper, a new cell-centered finite volume scheme is proposed for three-dimensional diffusion equations on polyhedral meshes, which is called as pyramid scheme (P-scheme). The scheme is designed for polyhedral cells with nonplanar cell-faces. The normal flux on a nonplanar cell-face is discretized on a planar face, which is determined by a simple optimization procedure. The resulted discrete form of the normal flux involves only cell-centered and cell-vertex unknowns, and is free from face-centered unknowns. In the case of hexahedral meshes with skewed nonplanar cell-faces, a quite simple expression is obtained for the discrete normal flux. Compared with the second order accurate O-scheme [31], the P-scheme is more robust and the discretization cost is reduced remarkably. Numerical results are presented to show the performance of the P-scheme on various kinds of distorted meshes. In particular, the P-scheme is shown to be second order accurate.

  4. A Highly Accurate Technique for the Treatment of Flow Equations at the Polar Axis in Cylindrical Coordinates using Series Expansions. Appendix A

    NASA Technical Reports Server (NTRS)

    Constantinescu, George S.; Lele, S. K.

    2001-01-01

    Numerical methods for solving the flow equations in cylindrical or spherical coordinates should be able to capture the behavior of the exact solution near the regions where the particular form of the governing equations is singular. In this work we focus on the treatment of these numerical singularities for finite-differences methods by reinterpreting the regularity conditions developed in the context of pseudo-spectral methods. A generally applicable numerical method for treating the singularities present at the polar axis, when nonaxisymmetric flows are solved in cylindrical, coordinates using highly accurate finite differences schemes (e.g., Pade schemes) on non-staggered grids, is presented. Governing equations for the flow at the polar axis are derived using series expansions near r=0. The only information needed to calculate the coefficients in these equations are the values of the flow variables and their radial derivatives at the previous iteration (or time) level. These derivatives, which are multi-valued at the polar axis, are calculated without dropping the accuracy of the numerical method using a mapping of the flow domain from (0,R)*(0,2pi) to (-R,R)*(0,pi), where R is the radius of the computational domain. This allows the radial derivatives to be evaluated using high-order differencing schemes (e.g., compact schemes) at points located on the polar axis. The proposed technique is illustrated by results from simulations of laminar-forced jets and turbulent compressible jets using large eddy simulation (LES) methods. In term of the general robustness of the numerical method and smoothness of the solution close to the polar axis, the present results compare very favorably to similar calculations in which the equations are solved in Cartesian coordinates at the polar axis, or in which the singularity is removed by employing a staggered mesh in the radial direction without a mesh point at r=0, following the method proposed recently by Mohseni and Colonius (1). Extension of the method described here for incompressible flows or for any other set of equations that are solved on a non-staggered mesh in cylindrical or spherical coordinates with finite-differences schemes of various level of accuracy is immediate.

  5. Accuracy Analysis for Finite-Volume Discretization Schemes on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2010-01-01

    A new computational analysis tool, downscaling test, is introduced and applied for studying the convergence rates of truncation and discretization errors of nite-volume discretization schemes on general irregular (e.g., unstructured) grids. The study shows that the design-order convergence of discretization errors can be achieved even when truncation errors exhibit a lower-order convergence or, in some cases, do not converge at all. The downscaling test is a general, efficient, accurate, and practical tool, enabling straightforward extension of verification and validation to general unstructured grid formulations. It also allows separate analysis of the interior, boundaries, and singularities that could be useful even in structured-grid settings. There are several new findings arising from the use of the downscaling test analysis. It is shown that the discretization accuracy of a common node-centered nite-volume scheme, known to be second-order accurate for inviscid equations on triangular grids, degenerates to first order for mixed grids. Alternative node-centered schemes are presented and demonstrated to provide second and third order accuracies on general mixed grids. The local accuracy deterioration at intersections of tangency and in flow/outflow boundaries is demonstrated using the DS tests tailored to examining the local behavior of the boundary conditions. The discretization-error order reduction within inviscid stagnation regions is demonstrated. The accuracy deterioration is local, affecting mainly the velocity components, but applies to any order scheme.

  6. Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed

    NASA Astrophysics Data System (ADS)

    Canestrelli, Alberto; Dumbser, Michael; Siviglia, Annunziato; Toro, Eleuterio F.

    2010-03-01

    In this paper, we study the numerical approximation of the two-dimensional morphodynamic model governed by the shallow water equations and bed-load transport following a coupled solution strategy. The resulting system of governing equations contains non-conservative products and it is solved simultaneously within each time step. The numerical solution is obtained using a new high-order accurate centered scheme of the finite volume type on unstructured meshes, which is an extension of the one-dimensional PRICE-C scheme recently proposed in Canestrelli et al. (2009) [5]. The resulting first-order accurate centered method is then extended to high order of accuracy in space via a high order WENO reconstruction technique and in time via a local continuous space-time Galerkin predictor method. The scheme is applied to the shallow water equations and the well-balanced properties of the method are investigated. Finally, we apply the new scheme to different test cases with both fixed and movable bed. An attractive future of the proposed method is that it is particularly suitable for engineering applications since it allows practitioners to adopt the most suitable sediment transport formula which better fits the field data.

  7. Design of Compact Wilkinson Power Divider with Harmonic Suppression using T-Shaped Resonators

    NASA Astrophysics Data System (ADS)

    Siahkamari, Hesam; Yasoubi, Zahra; Jahanbakhshi, Maryam; Mousavi, Seyed Mohammad Hadi; Siahkamari, Payam; Nouri, Mohammad Ehsan; Azami, Sajad; Azadi, Rasoul

    2018-04-01

    A novel scheme of a shrunken Wilkinson power divider with harmonic suppression, using two identical resonators in the conventional Wilkinson power divider is designed. Moreover, the LC equivalent circuit and its relevant formulas are provided. To substantiate the functionality and soundness of design, a microstrip implementation of this design operating at 1 GHz with the second to eighth harmonic suppression, is developed. The proposed circuit is relatively smaller than the conventional circuit, (roughly 55% of the conventional circuit). Simulation and measurement results for the proposed scheme, which are highly consistent with one another, indicate a good insertion loss about 3.1 dB, input return loss of 20 dB and isolation of 20 dB, while sustaining high-power handling capability over the Wilkinson power divider.

  8. Nonlinear Analysis of Airfoil High-Intensity Gust Response Using a High-Order Prefactored Compact Code

    NASA Technical Reports Server (NTRS)

    Crivellini, A.; Golubev, V.; Mankbadi, R.; Scott, J. R.; Hixon, R.; Povinelli, L.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    The nonlinear response of symmetric and loaded airfoils to an impinging vortical gust is investigated in the parametric space of gust dimension, intensity, and frequency. The study, which was designed to investigate the validity limits for a linear analysis, is implemented by applying a nonlinear high-order prefactored compact code and comparing results with linear solutions from the GUST3D frequency-domain solver. Both the unsteady aerodynamic and acoustic gust responses are examined.

  9. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  10. High order parallel numerical schemes for solving incompressible flows

    NASA Technical Reports Server (NTRS)

    Lin, Avi; Milner, Edward J.; Liou, May-Fun; Belch, Richard A.

    1992-01-01

    The use of parallel computers for numerically solving flow fields has gained much importance in recent years. This paper introduces a new high order numerical scheme for computational fluid dynamics (CFD) specifically designed for parallel computational environments. A distributed MIMD system gives the flexibility of treating different elements of the governing equations with totally different numerical schemes in different regions of the flow field. The parallel decomposition of the governing operator to be solved is the primary parallel split. The primary parallel split was studied using a hypercube like architecture having clusters of shared memory processors at each node. The approach is demonstrated using examples of simple steady state incompressible flows. Future studies should investigate the secondary split because, depending on the numerical scheme that each of the processors applies and the nature of the flow in the specific subdomain, it may be possible for a processor to seek better, or higher order, schemes for its particular subcase.

  11. Second- and third-order upwind difference schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Yang, J. Y.

    1984-01-01

    Second- and third-order two time-level five-point explicit upwind-difference schemes are described for the numerical solution of hyperbolic systems of conservation laws and applied to the Euler equations of inviscid gas dynamics. Nonliner smoothing techniques are used to make the schemes total variation diminishing. In the method both hyperbolicity and conservation properties of the hyperbolic conservation laws are combined in a very natural way by introducing a normalized Jacobian matrix of the hyperbolic system. Entropy satisfying shock transition operators which are consistent with the upwind differencing are locally introduced when transonic shock transition is detected. Schemes thus constructed are suitable for shockcapturing calculations. The stability and the global order of accuracy of the proposed schemes are examined. Numerical experiments for the inviscid Burgers equation and the compressible Euler equations in one and two space dimensions involving various situations of aerodynamic interest are included and compared.

  12. Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter

    2018-01-01

    This paper presents a high order hybrid discontinuous Galerkin/finite volume scheme for solving the equations of the magnetohydrodynamics (MHD) and of the relativistic hydrodynamics (SRHD) on quadrilateral meshes. In this approach, for the spatial discretization, an arbitrary high order discontinuous Galerkin spectral element (DG) method is combined with a finite volume (FV) scheme in order to simulate complex flow problems involving strong shocks. Regarding the time discretization, a fourth order strong stability preserving Runge-Kutta method is used. In the proposed hybrid scheme, a shock indicator is computed at the beginning of each Runge-Kutta stage in order to flag those elements containing shock waves or discontinuities. Subsequently, the DG solution in these troubled elements and in the current time step is projected onto a subdomain composed of finite volume subcells. Right after, the DG operator is applied to those unflagged elements, which, in principle, are oscillation-free, meanwhile the troubled elements are evolved with a robust second/third order FV operator. With this approach we are able to numerically simulate very challenging problems in the context of MHD and SRHD in one, and two space dimensions and with very high order polynomials. We make convergence tests and show a comprehensive one- and two dimensional testbench for both equation systems, focusing in problems with strong shocks. The presented hybrid approach shows that numerical schemes of very high order of accuracy are able to simulate these complex flow problems in an efficient and robust manner.

  13. Computation of turbulent pipe and duct flow using third order upwind scheme

    NASA Technical Reports Server (NTRS)

    Kawamura, T.

    1986-01-01

    The fully developed turbulence in a circular pipe and in a square duct is simulated directly without using turbulence models in the Navier-Stokes equations. The utilized method employs a third-order upwind scheme for the approximation to the nonlinear term and the second-order Adams-Bashforth method for the time derivative in the Navier-Stokes equation. The computational results appear to capture the large-scale turbulent structures at least qualitatively. The significance of the artificial viscosity inherent in the present scheme is discussed.

  14. Analysis of Dual-Order Backward Pumping Schemes in Distributed Raman Amplification System

    NASA Astrophysics Data System (ADS)

    Singh, Kulwinder; Patterh, Manjeet Singh; Bhamrah, Manjit Singh

    2018-04-01

    Backward pumping in fiber Raman amplifiers has been investigated in this paper in terms of on-off Raman gain, noise figure and optical signal-to-noise ratio. The results exhibit that with four first-order pumps and one second-order pump scheme can be employed to achieve 8.2 dB noise figure in 64 channel fiber optic communication system. It has also been reported that 2.65 dB gain ripple, 0.87 dB noise figure tilt and 2.02 dB OSNR tilt can be attained with the second-order pumping in fiber Raman amplifiers. The main advantage of the scheme is that only 50 mW second-order pump shows appreciable improvement in the system performance. It shows that further increase in first-order and second-order pump powers increase system noise implications.

  15. Accurate Monotonicity - Preserving Schemes With Runge-Kutta Time Stepping

    NASA Technical Reports Server (NTRS)

    Suresh, A.; Huynh, H. T.

    1997-01-01

    A new class of high-order monotonicity-preserving schemes for the numerical solution of conservation laws is presented. The interface value in these schemes is obtained by limiting a higher-order polynominal reconstruction. The limiting is designed to preserve accuracy near extrema and to work well with Runge-Kutta time stepping. Computational efficiency is enhanced by a simple test that determines whether the limiting procedure is needed. For linear advection in one dimension, these schemes are shown as well as the Euler equations also confirm their high accuracy, good shock resolution, and computational efficiency.

  16. A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows

    NASA Astrophysics Data System (ADS)

    Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin

    2017-11-01

    A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.

  17. High-quality electron beam generation and bright betatron radiation from a cascaded laser wakefield accelerator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2017-05-01

    One of the major goals of developing laser wakefiled accelerators (LWFAs) is to produce compact high-energy electron beam (e-beam) sources, which are expected to be applied in developing compact x-ray free-electron lasers and monoenergetic gamma-ray sources. Although LWFAs have been demonstrated to generate multi-GeV e-beams, to date they are still failed to produce high quality e beams with several essential properties (narrow energy spread, small transverse emittance and high beam charge) achieved simultaneously. Here we report on the demonstration of a high-quality cascaded LWFA experimentally via manipulating electron injection, seeding in different periods of the wakefield, as well as controlling energy chirp for the compression of energy spread. The cascaded LWFA was powered by a 1-Hz 200-TW femtosecond laser facility at SIOM. High-brightness e beams with peak energies in the range of 200-600 MeV, 0.4-1.2% rms energy spread, 10-80 pC charge, and 0.2 mrad rms divergence are experimentally obtained. Unprecedentedly high 6-dimensional (6-D) brightness B6D,n in units of A/m2/0.1% was estimated at the level of 1015-16, which is very close to the typical brightness of e beams from state-of-the-art linac drivers and several-fold higher than those of previously reported LWFAs. Furthermore, we propose a scheme to minimize the energy spread of an e beam in a cascaded LWFA to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution via velocity bunching. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge. Based on the high-quality e beams generated in the LWFA, we have experimentally realized a new scheme to enhance the betatron radiation via manipulating the e-beam transverse oscillation in the wakefield. Very brilliant quasi-monochromatic betatron x-rays in tens of keV with significant enhancement both in photon yield and peak energy have been generated. Besides, by employing a self-synchronized all-optical Compton scattering scheme, in which the electron beam collided with the intense driving laser pulse via the reflection of a plasma mirror, we produced tunable quasi-monochromatic MeV γ-rays ( 33% full-width at half-maximum) with a peak brilliance of 3.1×1022 photons s-1 mm-2 mrad-2 0.1% BW at 1 MeV, which is one order of magnitude higher than ever reported value in MeV regime to the best of our knowledge. 1. J. S. Liu, et al., Phys. Rev. Lett. 107, 035001 (2011). 2. X. Wang, et al., Nat. Commun. 4, 1988 (2013). 3. W. P. Leemans, et al., Phys. Rev. Lett. 113, 245002 (2014) 4. W. T. Wang et al., Phys. Rev. Lett. 117, 124801 (2016). 5. Z. J. Zhang et al., Phys. Plasmas 23, 053106 (2016). 6. C. H. Yu et al., Sci. Rep. 6, 29518 (2016).

  18. Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics

    NASA Astrophysics Data System (ADS)

    d'Aquino, M.; Capuano, F.; Coppola, G.; Serpico, C.; Mayergoyz, I. D.

    2018-05-01

    Numerical time integration schemes for Landau-Lifshitz magnetization dynamics are considered. Such dynamics preserves the magnetization amplitude and, in the absence of dissipation, also implies the conservation of the free energy. This property is generally lost when time discretization is performed for the numerical solution. In this work, explicit numerical schemes based on Runge-Kutta methods are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q > p. An effective strategy for adaptive time-stepping control is discussed for schemes of this class. Numerical tests against analytical solutions for the simulation of fast precessional dynamics are performed in order to point out the effectiveness of the proposed methods.

  19. On the convergence of difference approximations to scalar conservation laws

    NASA Technical Reports Server (NTRS)

    Osher, S.; Tadmor, E.

    1985-01-01

    A unified treatment of explicit in time, two level, second order resolution, total variation diminishing, approximations to scalar conservation laws are presented. The schemes are assumed only to have conservation form and incremental form. A modified flux and a viscosity coefficient are introduced and results in terms of the latter are obtained. The existence of a cell entropy inequality is discussed and such an equality for all entropies is shown to imply that the scheme is an E scheme on monotone (actually more general) data, hence at most only first order accurate in general. Convergence for total variation diminishing-second order resolution schemes approximating convex or concave conservation laws is shown by enforcing a single discrete entropy inequality.

  20. Time integration algorithms for the two-dimensional Euler equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Slack, David C.; Whitaker, D. L.; Walters, Robert W.

    1994-01-01

    Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.

  1. Well-balanced high-order solver for blood flow in networks of vessels with variable properties.

    PubMed

    Müller, Lucas O; Toro, Eleuterio F

    2013-12-01

    We present a well-balanced, high-order non-linear numerical scheme for solving a hyperbolic system that models one-dimensional flow in blood vessels with variable mechanical and geometrical properties along their length. Using a suitable set of test problems with exact solution, we rigorously assess the performance of the scheme. In particular, we assess the well-balanced property and the effective order of accuracy through an empirical convergence rate study. Schemes of up to fifth order of accuracy in both space and time are implemented and assessed. The numerical methodology is then extended to realistic networks of elastic vessels and is validated against published state-of-the-art numerical solutions and experimental measurements. It is envisaged that the present scheme will constitute the building block for a closed, global model for the human circulation system involving arteries, veins, capillaries and cerebrospinal fluid. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Adaptive angular-velocity Vold-Kalman filter order tracking - Theoretical basis, numerical implementation and parameter investigation

    NASA Astrophysics Data System (ADS)

    Pan, M.-Ch.; Chu, W.-Ch.; Le, Duc-Do

    2016-12-01

    The paper presents an alternative Vold-Kalman filter order tracking (VKF_OT) method, i.e. adaptive angular-velocity VKF_OT technique, to extract and characterize order components in an adaptive manner for the condition monitoring and fault diagnosis of rotary machinery. The order/spectral waveforms to be tracked can be recursively solved by using Kalman filter based on the one-step state prediction. The paper comprises theoretical derivation of computation scheme, numerical implementation, and parameter investigation. Comparisons of the adaptive VKF_OT scheme with two other ones are performed through processing synthetic signals of designated order components. Processing parameters such as the weighting factor and the correlation matrix of process noise, and data conditions like the sampling frequency, which influence tracking behavior, are explored. The merits such as adaptive processing nature and computation efficiency brought by the proposed scheme are addressed although the computation was performed in off-line conditions. The proposed scheme can simultaneously extract multiple spectral components, and effectively decouple close and crossing orders associated with multi-axial reference rotating speeds.

  3. Correlating particle hardness with powder compaction performance.

    PubMed

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  4. On soft clipping of Zernike moments for deblurring and enhancement of optical point spread functions

    NASA Astrophysics Data System (ADS)

    Becherer, Nico; Jödicke, Hanna; Schlosser, Gregor; Hesser, Jürgen; Zeilfelder, Frank; Männer, Reinhard

    2006-02-01

    Blur and noise originating from the physical imaging processes degrade the microscope data. Accurate deblurring techniques require, however, an accurate estimation of the underlying point-spread function (PSF). A good representation of PSFs can be achieved by Zernike Polynomials since they offer a compact representation where low-order coefficients represent typical aberrations of optical wavefronts while noise is represented in higher order coefficients. A quantitative description of the noise distribution (Gaussian) over the Zernike moments of various orders is given which is the basis for the new soft clipping approach for denoising of PSFs. Instead of discarding moments beyond a certain order, those Zernike moments that are more sensitive to noise are dampened according to the measured distribution and the present noise model. Further, a new scheme to combine experimental and theoretical PSFs in Zernike space is presented. According to our experimental reconstructions, using the new improved PSF the correlation between reconstructed and original volume is raised by 15% on average cases and up to 85% in the case of thin fibre structures, compared to reconstructions where a non improved PSF was used. Finally, we demonstrate the advantages of our approach on 3D images of confocal microscopes by generating visually improved volumes. Additionally, we are presenting a method to render the reconstructed results using a new volume rendering method that is almost artifact-free. The new approach is based on a Shear-Warp technique, wavelet data encoding techniques and a recent approach to approximate the gray value distribution by a Super spline model.

  5. Low-Dissipation Advection Schemes Designed for Large Eddy Simulations of Hypersonic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.

    2012-01-01

    The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.

  6. The Effect of Compaction Force on the Transition to Hydrate of Anhydrous Aripiprazole.

    PubMed

    Togo, Taichiro; Taniguchi, Toshiya; Nakata, Yoshitaka

    2018-01-01

    Aripiprazole (APZ) is used to treat schizophrenia and is administered as a tablet containing the anhydrous form of APZ. In this study, the effect of compaction force on the crystal form transition was investigated. The crystalline state was observed by X-ray diffraction (XRD). APZ Anhydrous Form II was compacted into tablets. The XRD intensity of anhydrous APZ became lower with higher compressive force. The degree of crystallinity decreased with the compaction force. The powder and the compacted tablets of anhydrous APZ were stored for one week under 60°C and 75% relative humidity. The powder showed no crystal form transition after storage. For the tablets, however, XRD peaks of APZ hydrate were observed after storage. The tablets compacted with higher force showed the higher XRD diffraction intensity of hydrate form. We concluded that the crystallinity reduction of APZ Anhydrous Form II by compaction caused and accelerated the transition to hydrate under high temperature and humidity conditions. In order to manufacture crystallographically stable tablets containing anhydrous APZ, it is important to prevent this crystallinity reduction during compaction.

  7. Development of a Drilling Fluid Drive Downhole Tractor in Oil Field

    NASA Astrophysics Data System (ADS)

    Fang, Delei; Shang, Jianzhong; Liu, Yiying; Wu, Wei; Luo, Zirong

    2018-01-01

    This paper proposes a drilling fluid drive downhole tractor, which has the advantages of compact structure, large traction, fast speed and high reliability. The overall mechanical structure of the tractor is introduced, the concrete structures including supporting structure and cushion mechanism are designed. And its all-hydraulic drive continuous propulsion principle is analyzed. Finally the simulation analysis of the tractor operation is carried out to prove that the traction motion scheme is feasible.

  8. Stable integrated hyper-parametric oscillator based on coupled optical microcavities.

    PubMed

    Armaroli, Andrea; Feron, Patrice; Dumeige, Yannick

    2015-12-01

    We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.

  9. Compact, Portable Pulsed-Power

    DTIC Science & Technology

    2006-08-31

    adding this fast pulse to a slow, 30kV pulse which is below the threshold for significant corona emission. This scheme is presently being explored with...the smaller stressed electrode area. Further results from these systems were reported at the 2006 Power Modulator Conference in Washington, D.C...BLT and the medium-BLT is similar. The mini BLT electrodes are made of 3 mm thick molybdenum disks with a 3 mm central hole, capped on a hollow OFHC 1

  10. Method and apparatus for measuring lung density by Compton backscattering

    DOEpatents

    Loo, B.W.; Goulding, F.S.

    1988-03-11

    The density of the lung of a patient suffering from pulmonary edema is monitored by irradiating the lung by a single collimated beam of monochromatic photons and measuring the energies of photons compton back-scattered from the lung by a single high-resolution, high-purity germanium detector. A compact system geometry and a unique data extraction scheme are utilized to minimize systematic errors due to the presence of the chestwall and multiple scattering. 11 figs., 1 tab.

  11. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  12. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  13. The construction of high-accuracy schemes for acoustic equations

    NASA Technical Reports Server (NTRS)

    Tang, Lei; Baeder, James D.

    1995-01-01

    An accuracy analysis of various high order schemes is performed from an interpolation point of view. The analysis indicates that classical high order finite difference schemes, which use polynomial interpolation, hold high accuracy only at nodes and are therefore not suitable for time-dependent problems. Thus, some schemes improve their numerical accuracy within grid cells by the near-minimax approximation method, but their practical significance is degraded by maintaining the same stencil as classical schemes. One-step methods in space discretization, which use piecewise polynomial interpolation and involve data at only two points, can generate a uniform accuracy over the whole grid cell and avoid spurious roots. As a result, they are more accurate and efficient than multistep methods. In particular, the Cubic-Interpolated Psuedoparticle (CIP) scheme is recommended for computational acoustics.

  14. Numerical investigation of sixth order Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Kolkovska, N.; Vucheva, V.

    2017-10-01

    We propose a family of conservative finite difference schemes for the Boussinesq equation with sixth order dispersion terms. The schemes are of second order of approximation. The method is conditionally stable with a mild restriction τ = O(h) on the step sizes. Numerical tests are performed for quadratic and cubic nonlinearities. The numerical experiments show second order of convergence of the discrete solution to the exact one.

  15. An Efficient Remote Authentication Scheme for Wireless Body Area Network.

    PubMed

    Omala, Anyembe Andrew; Kibiwott, Kittur P; Li, Fagen

    2017-02-01

    Wireless body area network (WBAN) provide a mechanism of transmitting a persons physiological data to application providers e.g. hospital. Given the limited range of connectivity associated with WBAN, an intermediate portable device e.g. smartphone, placed within WBAN's connectivity, forwards the data to a remote server. This data, if not protected from an unauthorized access and modification may be lead to poor diagnosis. In order to ensure security and privacy between WBAN and a server at the application provider, several authentication schemes have been proposed. Recently, Wang and Zhang proposed an authentication scheme for WBAN using bilinear pairing. However, in their scheme, an application provider could easily impersonate a client. In order to overcome this weakness, we propose an efficient remote authentication scheme for WBAN. In terms of performance, our scheme can not only provide a malicious insider security, but also reduce running time of WBAN (client) by 51 % as compared to Wang and Zhang scheme.

  16. Testing the Binary Black Hole Nature of a Compact Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  17. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    PubMed

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  18. A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupferman, R.

    The author presents a numerical study of the axisymmetric Couette-Taylor problem using a finite difference scheme. The scheme is based on a staggered version of a second-order central-differencing method combined with a discrete Hodge projection. The use of central-differencing operators obviates the need to trace the characteristic flow associated with the hyperbolic terms. The result is a simple and efficient scheme which is readily adaptable to other geometries and to more complicated flows. The scheme exhibits competitive performance in terms of accuracy, resolution, and robustness. The numerical results agree accurately with linear stability theory and with previous numerical studies.

  19. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  20. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2017-08-07

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  1. Simple and compact expressions for neutrino oscillation probabilities in matter

    DOE PAGES

    Minakata, Hisakazu; Parke, Stephen J.

    2016-01-29

    We reformulate perturbation theory for neutrino oscillations in matter with an expansion parameter related to the ratio of the solar to the atmospheric Δm 2 scales. Unlike previous works, use a renormalized basis in which certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using this perturbation theory we derive extremely compact expressions for the neutrino oscillations probabilities in matter. We find, for example, that the ν e disappearance probability at this order is of a simple two flavor form with an appropriately identified mixing angle and Δm 2. Furthermore, despite exceptional simplicity in their forms they accommodatemore » all order effects θ 13 and the matter potential.« less

  2. Implicit preconditioned WENO scheme for steady viscous flow computation

    NASA Astrophysics Data System (ADS)

    Huang, Juan-Chen; Lin, Herng; Yang, Jaw-Yen

    2009-02-01

    A class of lower-upper symmetric Gauss-Seidel implicit weighted essentially nonoscillatory (WENO) schemes is developed for solving the preconditioned Navier-Stokes equations of primitive variables with Spalart-Allmaras one-equation turbulence model. The numerical flux of the present preconditioned WENO schemes consists of a first-order part and high-order part. For first-order part, we adopt the preconditioned Roe scheme and for the high-order part, we employ preconditioned WENO methods. For comparison purpose, a preconditioned TVD scheme is also given and tested. A time-derivative preconditioning algorithm is devised and a discriminant is devised for adjusting the preconditioning parameters at low Mach numbers and turning off the preconditioning at intermediate or high Mach numbers. The computations are performed for the two-dimensional lid driven cavity flow, low subsonic viscous flow over S809 airfoil, three-dimensional low speed viscous flow over 6:1 prolate spheroid, transonic flow over ONERA-M6 wing and hypersonic flow over HB-2 model. The solutions of the present algorithms are in good agreement with the experimental data. The application of the preconditioned WENO schemes to viscous flows at all speeds not only enhances the accuracy and robustness of resolving shock and discontinuities for supersonic flows, but also improves the accuracy of low Mach number flow with complicated smooth solution structures.

  3. Trajectory errors of different numerical integration schemes diagnosed with the MPTRAC advection module driven by ECMWF operational analyses

    NASA Astrophysics Data System (ADS)

    Rößler, Thomas; Stein, Olaf; Heng, Yi; Baumeister, Paul; Hoffmann, Lars

    2018-02-01

    The accuracy of trajectory calculations performed by Lagrangian particle dispersion models (LPDMs) depends on various factors. The optimization of numerical integration schemes used to solve the trajectory equation helps to maximize the computational efficiency of large-scale LPDM simulations. We analyzed global truncation errors of six explicit integration schemes of the Runge-Kutta family, which we implemented in the Massive-Parallel Trajectory Calculations (MPTRAC) advection module. The simulations were driven by wind fields from operational analysis and forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) at T1279L137 spatial resolution and 3 h temporal sampling. We defined separate test cases for 15 distinct regions of the atmosphere, covering the polar regions, the midlatitudes, and the tropics in the free troposphere, in the upper troposphere and lower stratosphere (UT/LS) region, and in the middle stratosphere. In total, more than 5000 different transport simulations were performed, covering the months of January, April, July, and October for the years 2014 and 2015. We quantified the accuracy of the trajectories by calculating transport deviations with respect to reference simulations using a fourth-order Runge-Kutta integration scheme with a sufficiently fine time step. Transport deviations were assessed with respect to error limits based on turbulent diffusion. Independent of the numerical scheme, the global truncation errors vary significantly between the different regions. Horizontal transport deviations in the stratosphere are typically an order of magnitude smaller compared with the free troposphere. We found that the truncation errors of the six numerical schemes fall into three distinct groups, which mostly depend on the numerical order of the scheme. Schemes of the same order differ little in accuracy, but some methods need less computational time, which gives them an advantage in efficiency. The selection of the integration scheme and the appropriate time step should possibly take into account the typical altitude ranges as well as the total length of the simulations to achieve the most efficient simulations. However, trying to summarize, we recommend the third-order Runge-Kutta method with a time step of 170 s or the midpoint scheme with a time step of 100 s for efficient simulations of up to 10 days of simulation time for the specific ECMWF high-resolution data set considered in this study. Purely stratospheric simulations can use significantly larger time steps of 800 and 1100 s for the midpoint scheme and the third-order Runge-Kutta method, respectively.

  4. A high-order vertex-based central ENO finite-volume scheme for three-dimensional compressible flows

    DOE PAGES

    Charest, Marc R.J.; Canfield, Thomas R.; Morgan, Nathaniel R.; ...

    2015-03-11

    High-order discretization methods offer the potential to reduce the computational cost associated with modeling compressible flows. However, it is difficult to obtain accurate high-order discretizations of conservation laws that do not produce spurious oscillations near discontinuities, especially on multi-dimensional unstructured meshes. A novel, high-order, central essentially non-oscillatory (CENO) finite-volume method that does not have these difficulties is proposed for tetrahedral meshes. The proposed unstructured method is vertex-based, which differs from existing cell-based CENO formulations, and uses a hybrid reconstruction procedure that switches between two different solution representations. It applies a high-order k-exact reconstruction in smooth regions and a limited linearmore » reconstruction when discontinuities are encountered. Both reconstructions use a single, central stencil for all variables, making the application of CENO to arbitrary unstructured meshes relatively straightforward. The new approach was applied to the conservation equations governing compressible flows and assessed in terms of accuracy and computational cost. For all problems considered, which included various function reconstructions and idealized flows, CENO demonstrated excellent reliability and robustness. Up to fifth-order accuracy was achieved in smooth regions and essentially non-oscillatory solutions were obtained near discontinuities. The high-order schemes were also more computationally efficient for high-accuracy solutions, i.e., they took less wall time than the lower-order schemes to achieve a desired level of error. In one particular case, it took a factor of 24 less wall-time to obtain a given level of error with the fourth-order CENO scheme than to obtain the same error with the second-order scheme.« less

  5. Nonlinear secret image sharing scheme.

    PubMed

    Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively.

  6. Nonlinear Secret Image Sharing Scheme

    PubMed Central

    Shin, Sang-Ho; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2⁡m⌉ bit-per-pixel (bpp), respectively. PMID:25140334

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debojyoti; Constantinescu, Emil M.

    The numerical simulation of meso-, convective-, and microscale atmospheric flows requires the solution of the Euler or the Navier-Stokes equations. Nonhydrostatic weather prediction algorithms often solve the equations in terms of derived quantities such as Exner pressure and potential temperature (and are thus not conservative) and/or as perturbations to the hydrostatically balanced equilibrium state. This paper presents a well-balanced, conservative finite difference formulation for the Euler equations with a gravitational source term, where the governing equations are solved as conservation laws for mass, momentum, and energy. Preservation of the hydrostatic balance to machine precision by the discretized equations is essentialmore » because atmospheric phenomena are often small perturbations to this balance. The proposed algorithm uses the weighted essentially nonoscillatory and compact-reconstruction weighted essentially nonoscillatory schemes for spatial discretization that yields high-order accurate solutions for smooth flows and is essentially nonoscillatory across strong gradients; however, the well-balanced formulation may be used with other conservative finite difference methods. The performance of the algorithm is demonstrated on test problems as well as benchmark atmospheric flow problems, and the results are verified with those in the literature.« less

  8. Fast analysis of radionuclide decay chain migration

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.

    2014-12-01

    A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  9. Universal dual amplitudes and asymptotic expansions for gg→ H and H→ γ γ in four dimensions

    NASA Astrophysics Data System (ADS)

    Driencourt-Mangin, Félix; Rodrigo, Germán; Sborlini, Germán F. R.

    2018-03-01

    Though the one-loop amplitudes of the Higgs boson to massless gauge bosons are finite because there is no direct interaction at tree level in the Standard Model, a well-defined regularization scheme is still required for their correct evaluation. We reanalyze these amplitudes in the framework of the four-dimensional unsubtraction and the loop-tree duality (FDU/LTD), and show how a local renormalization solves potential regularization ambiguities. The Higgs boson interactions are also used to illustrate new additional advantages of this formalism. We show that LTD naturally leads to very compact integrand expressions in four space-time dimensions of the one-loop amplitude with virtual electroweak gauge bosons. They exhibit the same functional form as the amplitudes with top quarks and charged scalars, thus opening further possibilities for simplifications in higher-order computations. Another outstanding application is the straightforward implementation of asymptotic expansions by using dual amplitudes. One of the main benefits of the LTD representation is that it is supported in a Euclidean space. This characteristic feature naturally leads to simpler asymptotic expansions.

  10. A model of icebergs and sea ice in a joint continuum framework

    NASA Astrophysics Data System (ADS)

    Vaňková, Irena; Holland, David M.

    2017-04-01

    The ice mélange, a mixture of sea ice and icebergs, often present in front of tidewater glaciers in Greenland or ice shelves in Antarctica, can have a profound effect on the dynamics of the ice-ocean system. The current inability to numerically model the ice mélange motivates a new modeling approach proposed here. A continuum sea-ice model is taken as a starting point and icebergs are represented as thick and compact pieces of sea ice held together by large tensile and shear strength selectively introduced into the sea ice rheology. In order to modify the rheology correctly, a semi-Lagrangian time stepping scheme is introduced and at each time step a Lagrangian grid is constructed such that iceberg shape is preserved exactly. With the proposed treatment, sea ice and icebergs are considered a single fluid with spatially varying rheological properties, mutual interactions are thus automatically included without the need of further parametrization. An important advantage of the presented framework for an ice mélange model is its potential to be easily included in existing climate models.

  11. A Model of Icebergs and Sea Ice in a Joint Continuum Framework

    NASA Astrophysics Data System (ADS)

    VaÅková, Irena; Holland, David M.

    2017-11-01

    The ice mélange, a mixture of sea ice and icebergs, often present in front of outlet glaciers in Greenland or ice shelves in Antarctica, can have a profound effect on the dynamics of the ice-ocean system. The current inability to numerically model the ice mélange motivates a new modeling approach proposed here. A continuum sea-ice model is taken as a starting point and icebergs are represented as thick and compact pieces of sea ice held together by large tensile and shear strength, selectively introduced into the sea-ice rheology. In order to modify the rheology correctly, an iceberg tracking procedure is implemented within a semi-Lagrangian time-stepping scheme, designed to exactly preserve iceberg shape through time. With the proposed treatment, sea ice and icebergs are considered a single fluid with spatially varying rheological properties. Mutual interactions are thus automatically included without the need for further parametrization. An important advantage of the presented framework for an ice mélange model is its potential to be easily included within sea-ice components of existing climate models.

  12. Sign language indexation within the MPEG-7 framework

    NASA Astrophysics Data System (ADS)

    Zaharia, Titus; Preda, Marius; Preteux, Francoise J.

    1999-06-01

    In this paper, we address the issue of sign language indexation/recognition. The existing tools, like on-like Web dictionaries or other educational-oriented applications, are making exclusive use of textural annotations. However, keyword indexing schemes have strong limitations due to the ambiguity of the natural language and to the huge effort needed to manually annotate a large amount of data. In order to overcome these drawbacks, we tackle sign language indexation issue within the MPEG-7 framework and propose an approach based on linguistic properties and characteristics of sing language. The method developed introduces the concept of over time stable hand configuration instanciated on natural or synthetic prototypes. The prototypes are indexed by means of a shape descriptor which is defined as a translation, rotation and scale invariant Hough transform. A very compact representation is available by considering the Fourier transform of the Hough coefficients. Such an approach has been applied to two data sets consisting of 'Letters' and 'Words' respectively. The accuracy and robustness of the result are discussed and a compete sign language description schema is proposed.

  13. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    NASA Astrophysics Data System (ADS)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  14. Implicit LES of Turbulent, Separated Flow: Wall-Mounted Hump Configuration

    NASA Technical Reports Server (NTRS)

    Sekhar, Susheel; Mansour, Nagi N.; Caubilla, David Higuera

    2015-01-01

    Direct simulations (ILES) of turbulent, separated flow over the wall-mounted hump configuration is conducted to investigate the physics of separated flows. A chord-based Reynolds number of Re(sub c) = 47,500 is set up, with a turbulent in flow of Re(sub theta) = 1,400 (theta/c = 3%). FDL3DI, a code that solves the compressible Navier-Stokes equations using high- order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Two different configurations of the upper-wall are analyzed, and results are compared with both a higher Re(sub c) (= 936,000, Re(sub theta) = 7,200, theta/c = 0.77%) experiment for major flow features, and RANS (k-omega SST) results. A lower Rec allows for DNS-like mesh resolution, and an adequately wide span. Both ILES and RANS show delayed reattachment compared to experiment, and significantly higher skin friction in the forebody of the hump, as expected. The upper-wall shape influences the C(sub p) distribution only. Results from this study are being used to setup higher Rec (lower theta/c) ILES.

  15. Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.

    2017-02-01

    Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.

  16. Numerical Study of Richtmyer-Meshkov Instability with Re-Shock

    NASA Astrophysics Data System (ADS)

    Wong, Man Long; Livescu, Daniel; Lele, Sanjiva

    2017-11-01

    The interaction of a Mach 1.45 shock wave with a perturbed planar interface between two gases with an Atwood number 0.68 is studied through 2D and 3D shock-capturing adaptive mesh refinement (AMR) simulations with physical diffusive and viscous terms. The simulations have initial conditions similar to those in the actual experiment conducted by Poggi et al. [1998]. The development of the flow and evolution of mixing due to the interactions with the first shock and the re-shock are studied together with the sensitivity of various global parameters to the properties of the initial perturbation. Grid resolutions needed for fully resolved and 2D and 3D simulations are also evaluated. Simulations are conducted with an in-house AMR solver HAMeRS built on the SAMRAI library. The code utilizes the high-order localized dissipation weighted compact nonlinear scheme [Wong and Lele, 2017] for shock-capturing and different sensors including the wavelet sensor [Wong and Lele, 2016] to identify regions for grid refinement. First and third authors acknowledge the project sponsor LANL.

  17. Preliminary results of post-irradiation examination of the AGR-1 TRISO fuel compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul Demkowicz; John Hunn; Robert Morris

    2012-10-01

    Five irradiated fuel compacts from the AGR-1 experiment have been examined in detail in order to assess in-pile fission product release behavior. Compacts were electrolytically deconsolidated and analyzed using the leach-burn-leach technique to measure fission product inventory in the compact matrix and identify any particles with a defective SiC layer. Loose particles were then gamma counted to measure the fission product inventory. One particle with a defective SiC layer was found in the five compacts examined. The fractional release of Ag 110m from the particles was significant. The total fraction of silver released from all the particles within a compactmore » ranged from 0-0.63 and individual particles within a single compact often exhibited a very wide range of silver release. The average fractional release of Eu-154 from all particles in a compact was 2.4×10-4—1.3×10-2, which is indicative of release through intact coatings. The fractional Cs-134 inventory in the compact matrix was <2×10-5 when all coatings remained intact, indicating good cesium retention. Approximately 1% of the palladium inventory was found in the compact matrix for two of the compacts, indicating significant release through intact coatings.« less

  18. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2014-01-01

    A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.

  19. MPDATA: Third-order accuracy for variable flows

    NASA Astrophysics Data System (ADS)

    Waruszewski, Maciej; Kühnlein, Christian; Pawlowska, Hanna; Smolarkiewicz, Piotr K.

    2018-04-01

    This paper extends the multidimensional positive definite advection transport algorithm (MPDATA) to third-order accuracy for temporally and spatially varying flows. This is accomplished by identifying the leading truncation error of the standard second-order MPDATA, performing the Cauchy-Kowalevski procedure to express it in a spatial form and compensating its discrete representation-much in the same way as the standard MPDATA corrects the first-order accurate upwind scheme. The procedure of deriving the spatial form of the truncation error was automated using a computer algebra system. This enables various options in MPDATA to be included straightforwardly in the third-order scheme, thereby minimising the implementation effort in existing code bases. Following the spirit of MPDATA, the error is compensated using the upwind scheme resulting in a sign-preserving algorithm, and the entire scheme can be formulated using only two upwind passes. Established MPDATA enhancements, such as formulation in generalised curvilinear coordinates, the nonoscillatory option or the infinite-gauge variant, carry over to the fully third-order accurate scheme. A manufactured 3D analytic solution is used to verify the theoretical development and its numerical implementation, whereas global tracer-transport benchmarks demonstrate benefits for chemistry-transport models fundamental to air quality monitoring, forecasting and control. A series of explicitly-inviscid implicit large-eddy simulations of a convective boundary layer and explicitly-viscid simulations of a double shear layer illustrate advantages of the fully third-order-accurate MPDATA for fluid dynamics applications.

  20. Approximate optimal guidance for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Feeley, T. S.; Speyer, J. L.

    1993-01-01

    A real-time guidance scheme for the problem of maximizing the payload into orbit subject to the equations of motion for a rocket over a spherical, non-rotating earth is presented. An approximate optimal launch guidance law is developed based upon an asymptotic expansion of the Hamilton - Jacobi - Bellman or dynamic programming equation. The expansion is performed in terms of a small parameter, which is used to separate the dynamics of the problem into primary and perturbation dynamics. For the zeroth-order problem the small parameter is set to zero and a closed-form solution to the zeroth-order expansion term of Hamilton - Jacobi - Bellman equation is obtained. Higher-order terms of the expansion include the effects of the neglected perturbation dynamics. These higher-order terms are determined from the solution of first-order linear partial differential equations requiring only the evaluation of quadratures. This technique is preferred as a real-time, on-line guidance scheme to alternative numerical iterative optimization schemes because of the unreliable convergence properties of these iterative guidance schemes and because the quadratures needed for the approximate optimal guidance law can be performed rapidly and by parallel processing. Even if the approximate solution is not nearly optimal, when using this technique the zeroth-order solution always provides a path which satisfies the terminal constraints. Results for two-degree-of-freedom simulations are presented for the simplified problem of flight in the equatorial plane and compared to the guidance scheme generated by the shooting method which is an iterative second-order technique.

  1. An implicit higher-order spatially accurate scheme for solving time dependent flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Tomaro, Robert F.

    1998-07-01

    The present research is aimed at developing a higher-order, spatially accurate scheme for both steady and unsteady flow simulations using unstructured meshes. The resulting scheme must work on a variety of general problems to ensure the creation of a flexible, reliable and accurate aerodynamic analysis tool. To calculate the flow around complex configurations, unstructured grids and the associated flow solvers have been developed. Efficient simulations require the minimum use of computer memory and computational times. Unstructured flow solvers typically require more computer memory than a structured flow solver due to the indirect addressing of the cells. The approach taken in the present research was to modify an existing three-dimensional unstructured flow solver to first decrease the computational time required for a solution and then to increase the spatial accuracy. The terms required to simulate flow involving non-stationary grids were also implemented. First, an implicit solution algorithm was implemented to replace the existing explicit procedure. Several test cases, including internal and external, inviscid and viscous, two-dimensional, three-dimensional and axi-symmetric problems, were simulated for comparison between the explicit and implicit solution procedures. The increased efficiency and robustness of modified code due to the implicit algorithm was demonstrated. Two unsteady test cases, a plunging airfoil and a wing undergoing bending and torsion, were simulated using the implicit algorithm modified to include the terms required for a moving and/or deforming grid. Secondly, a higher than second-order spatially accurate scheme was developed and implemented into the baseline code. Third- and fourth-order spatially accurate schemes were implemented and tested. The original dissipation was modified to include higher-order terms and modified near shock waves to limit pre- and post-shock oscillations. The unsteady cases were repeated using the higher-order spatially accurate code. The new solutions were compared with those obtained using the second-order spatially accurate scheme. Finally, the increased efficiency of using an implicit solution algorithm in a production Computational Fluid Dynamics flow solver was demonstrated for steady and unsteady flows. A third- and fourth-order spatially accurate scheme has been implemented creating a basis for a state-of-the-art aerodynamic analysis tool.

  2. Analysis of High Order Difference Methods for Multiscale Complex Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.; Tang, Harry (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes with incremental studies was initiated. Here we further refine the analysis on, and improve the understanding of the adaptive numerical dissipation control strategy. Basically, the development of these schemes focuses on high order nondissipative schemes and takes advantage of the progress that has been made for the last 30 years in numerical methods for conservation laws, such as techniques for imposing boundary conditions, techniques for stability at shock waves, and techniques for stable and accurate long-time integration. We concentrate on high order centered spatial discretizations and a fourth-order Runge-Kutta temporal discretizations as the base scheme. Near the bound-aries, the base scheme has stable boundary difference operators. To further enhance stability, the split form of the inviscid flux derivatives is frequently used for smooth flow problems. To enhance nonlinear stability, linear high order numerical dissipations are employed away from discontinuities, and nonlinear filters are employed after each time step in order to suppress spurious oscillations near discontinuities to minimize the smearing of turbulent fluctuations. Although these schemes are built from many components, each of which is well-known, it is not entirely obvious how the different components be best connected. For example, the nonlinear filter could instead have been built into the spatial discretization, so that it would have been activated at each stage in the Runge-Kutta time stepping. We could think of a mechanism that activates the split form of the equations only at some parts of the domain. Another issue is how to define good sensors for determining in which parts of the computational domain a certain feature should be filtered by the appropriate numerical dissipation. For the present study we employ a wavelet technique introduced in as sensors. Here, the method is briefly described with selected numerical experiments.

  3. The alpha(3) Scheme - A Fourth-Order Neutrally Stable CESE Solver

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    2007-01-01

    The conservation element and solution element (CESE) development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a non-dissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To provide a solid foundation for a systematic CESE development of high order schemes, in this paper we describe a new 4th-order neutrally stable CESE solver of the advection equation Theta u/Theta + alpha Theta u/Theta x = 0. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and three points at the lower time level. Because it is associated with three independent mesh variables u(sup n) (sub j), (u(sub x))(sup n) (sub j) , and (uxz)(sup n) (sub j) (the numerical analogues of u, Theta u/Theta x, and Theta(exp 2)u/Theta x(exp 2), respectively) and four equations per mesh point, the new scheme is referred to as the alpha(3) scheme. As in the case of other similar CESE neutrally stable solvers, the alpha(3) scheme enforces conservation laws in space-time locally and globally, and it has the basic, forward marching, and backward marching forms. These forms are equivalent and satisfy a space-time inversion (STI) invariant property which is shared by the advection equation. Based on the concept of STI invariance, a set of algebraic relations is developed and used to prove that the alpha(3) scheme must be neutrally stable when it is stable. Moreover it is proved rigorously that all three amplification factors of the alpha(3) scheme are of unit magnitude for all phase angles if |v| <= 1/2 (v = alpha delta t/delta x). This theoretical result is consistent with the numerical stability condition |v| <= 1/2. Through numerical experiments, it is established that the alpha(3) scheme generally is (i) 4th-order accurate for the mesh variables u(sup n) (sub j) and (ux)(sup n) (sub j); and 2nd-order accurate for (uxx)(sup n) (sub j). However, in some exceptional cases, the scheme can achieve perfect accuracy aside from round-off errors.

  4. Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron

    2004-01-01

    We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of conservation laws to systems of balance laws one has to find an appropriate discretization of the source terms. We first show that for general triangulations there is no discretization of the source terms that corresponds to a well-balanced form of the KP scheme. We then derive a new variant of a central scheme that can be balanced on triangular meshes. We note in passing that it is straightforward to extend the KP scheme to general unstructured conformal meshes. This extension allows us to recover our previous well-balanced scheme on Cartesian grids. We conclude with several simulations, verifying the second-order accuracy of our scheme as well as its well-balanced properties.

  5. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    NASA Astrophysics Data System (ADS)

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  6. Development of upwind schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Chakravarthy, Sukumar R.

    1987-01-01

    Described are many algorithmic and computational aspects of upwind schemes and their second-order accurate formulations based on Total-Variation-Diminishing (TVD) approaches. An operational unification of the underlying first-order scheme is first presented encompassing Godunov's, Roe's, Osher's, and Split-Flux methods. For higher order versions, the preprocessing and postprocessing approaches to constructing TVD discretizations are considered. TVD formulations can be used to construct relaxation methods for unfactored implicit upwind schemes, which in turn can be exploited to construct space-marching procedures for even the unsteady Euler equations. A major part of the report describes time- and space-marching procedures for solving the Euler equations in 2-D, 3-D, Cartesian, and curvilinear coordinates. Along with many illustrative examples, several results of efficient computations on 3-D supersonic flows with subsonic pockets are presented.

  7. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  8. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE PAGES

    Hu, Rui

    2016-11-19

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  9. Viscous flow computations using a second-order upwind differencing scheme

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1988-01-01

    In the present computations of a wide range of fluid flow problems by means of the primitive variables-incorporating Navier-Stokes equations, a mixed second-order upwinding scheme approximates the convective terms of the transport equations and the scheme's accuracy is verified for convection-dominated high Re number flow problems. An adaptive dissipation scheme is used as a monotonic supersonic shock flow capture mechanism. Many benchmark fluid flow problems, including the compressible and incompressible, laminar and turbulent, over a wide range of M and Re numbers, are presently studied to verify the accuracy and robustness of this numerical method.

  10. High resolution schemes and the entropy condition

    NASA Technical Reports Server (NTRS)

    Osher, S.; Chakravarthy, S.

    1983-01-01

    A systematic procedure for constructing semidiscrete, second order accurate, variation diminishing, five point band width, approximations to scalar conservation laws, is presented. These schemes are constructed to also satisfy a single discrete entropy inequality. Thus, in the convex flux case, convergence is proven to be the unique physically correct solution. For hyperbolic systems of conservation laws, this construction is used formally to extend the first author's first order accurate scheme, and show (under some minor technical hypotheses) that limit solutions satisfy an entropy inequality. Results concerning discrete shocks, a maximum principle, and maximal order of accuracy are obtained. Numerical applications are also presented.

  11. ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.; Mokhtari, Simin

    1990-01-01

    For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling.

  12. Unconditionally stable, second-order accurate schemes for solid state phase transformations driven by mechano-chemical spinodal decomposition

    DOE PAGES

    Sagiyama, Koki; Rudraraju, Shiva; Garikipati, Krishna

    2016-09-13

    Here, we consider solid state phase transformations that are caused by free energy densities with domains of non-convexity in strain-composition space; we refer to the non-convex domains as mechano-chemical spinodals. The non-convexity with respect to composition and strain causes segregation into phases with different crystal structures. We work on an existing model that couples the classical Cahn-Hilliard model with Toupin’s theory of gradient elasticity at finite strains. Both systems are represented by fourth-order, nonlinear, partial differential equations. The goal of this work is to develop unconditionally stable, second-order accurate time-integration schemes, motivated by the need to carry out large scalemore » computations of dynamically evolving microstructures in three dimensions. We also introduce reduced formulations naturally derived from these proposed schemes for faster computations that are still second-order accurate. Although our method is developed and analyzed here for a specific class of mechano-chemical problems, one can readily apply the same method to develop unconditionally stable, second-order accurate schemes for any problems for which free energy density functions are multivariate polynomials of solution components and component gradients. Apart from an analysis and construction of methods, we present a suite of numerical results that demonstrate the schemes in action.« less

  13. Application of a symmetric total variation diminishing scheme to aerodynamics of rotors

    NASA Astrophysics Data System (ADS)

    Usta, Ebru

    2002-09-01

    The aerodynamics characteristics of rotors in hover have been studied on stretched non-orthogonal grids using spatially high order symmetric total variation diminishing (STVD) schemes. Several companion numerical viscosity terms have been tested. The effects of higher order metrics, higher order load integrations and turbulence effects on the rotor performance have been studied. Where possible, calculations for 1-D and 2-D benchmark problems have been done on uniform grids, and comparisons with exact solutions have been made to understand the dispersion and dissipation characteristics of these algorithms. A baseline finite volume methodology termed TURNS (Transonic Unsteady Rotor Navier-Stokes) is the starting point for this effort. The original TURNS solver solves the 3-D compressible Navier-Stokes equations in an integral form using a third order upwind scheme. It is first or second order accurate in time. In the modified solver, the inviscid flux at a cell face is decomposed into two parts. The first part of the flux is symmetric in space, while the second part consists of an upwind-biased numerical viscosity term. The symmetric part of the flux at the cell face is computed to fourth-, sixth- or eighth order accuracy in space. The numerical viscosity portion of the flux is computed using either a third order accurate MUSCL scheme or a fifth order WENO scheme. A number of results are presented for the two-bladed Caradonna-Tung rotor and for a four-bladed UH-60A rotor in hover. Comparisons with the original TURNS code, and experiments are given. Results are also presented on the effects of metrics calculations, load integration algorithms, and turbulence models on the solution accuracy. A total of 64 combinations were studied in this thesis work. For brevity, only a small subset of results highlighting the most important conclusions are presented. It should be noted that use of higher order formulations did not affect the temporal stability of the algorithm and did not require any reduction in the time step. The calculations show that the solution accuracy increases when the 3 rd order upwind scheme in the baseline algorithm is replaced with 4th and 6th order accurate symmetric flux calculations. A point of diminishing returns is reached as increasingly larger stencils are used on highly stretched grids. The numerical viscosity term, when computed with the third order MUSCL scheme, is very dissipative, and does not resolve the tip vortex well. The WENO5 scheme, on the other hand significantly improves the tip vortex capturing. The STVD6+WENO5 scheme, in particular gave the best combinations of solution accuracy and efficiency on stretched grids. Spatially fourth order accurate metric calculations were found to be beneficial, but should be used in conjunction with a limiter that drops the metric calculation to a second order accuracy in the vicinity of grid discontinuities. High order integration of loads was found to have a beneficial, but small effect on the computed loads. Replacing the Baldwin-Lomax turbulence model with a one equation Spalart-Allmaras model resulted in higher than expected profile power contributions. Nevertheless the one-equation model is recommended for its robustness, its ability to model separated flows at high thrust settings, and the natural manner in which turbulence in the rotor wake may be treated.

  14. Compact Undulator for the Cornell High Energy Synchrotron Source: Design and Beam Test Results

    NASA Astrophysics Data System (ADS)

    Temnykh, A.; Dale, D.; Fontes, E.; Li, Y.; Lyndaker, A.; Revesz, P.; Rice, D.; Woll, A.

    2013-03-01

    We developed, built and beam tested a novel, compact, in-vacuum undulator magnet based on an adjustable phase (AP) scheme. The undulator is 1 m long with a 5mm gap. It has a pure permanent magnet structure with 24.4mm period and 1.1 Tesla maximum peak field. The device consists of two planar magnet arrays mounted on rails inside of a rectangular box-like frame with 156 mm × 146 mm dimensions. The undulator magnet is enclosed in a 273 mm (10.75") diameter cylindrical vacuum vessel with a driver mechanism placed outside. In May 2012 the CHESS Compact Undulator (CCU) was installed in Cornell Electron Storage Ring and beam tested. During four weeks of dedicated run we evaluated undulator radiation properties as well as magnetic, mechanical and vacuum properties of the undulator magnet. We also studied the effect of the CCU on storage ring beam. The spectral characteristics and intensity of radiation were found to be in very good agreement with expected. The magnet demonstrated reproducibility of undulator parameter K at 1.4 × 10-4 level. It was also found that the undulator K. parameter change does not affect electron beam orbit and betatron tunes.

  15. Design approach for the development of a cryomodule for compact crab cavities for Hi-Lumi LHC

    NASA Astrophysics Data System (ADS)

    Pattalwar, Shrikant; Jones, Thomas; Templeton, Niklas; Goudket, Philippe; McIntosh, Peter; Wheelhouse, Alan; Burt, Graeme; Hall, Ben; Wright, Loren; Peterson, Tom

    2014-01-01

    A prototype Superconducting RF (SRF) cryomodule, comprising multiple compact crab cavities is foreseen to realise a local crab crossing scheme for the "Hi-Lumi LHC", a project launched by CERN to increase the luminosity performance of LHC. A cryomodule with two cavities will be initially installed and tested on the SPS drive accelerator at CERN to evaluate performance with high-intensity proton beams. A series of boundary conditions influence the design of the cryomodule prototype, arising from; the complexity of the cavity design, the requirement for multiple RF couplers, the close proximity to the second LHC beam pipe and the tight space constraints in the SPS and LHC tunnels. As a result, the design of the helium vessel and the cryomodule has become extremely challenging. This paper assesses some of the critical cryogenic and engineering design requirements and describes an optimised cryomodule solution for the evaluation tests on SPS.

  16. Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis.

    PubMed

    Rakić, Aleksandar D; Taimre, Thomas; Bertling, Karl; Lim, Yah Leng; Dean, Paul; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Valavanis, Alexander; Khanna, Suraj P; Lachab, Mohammad; Wilson, Stephen J; Linfield, Edmund H; Davies, A Giles

    2013-09-23

    The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser.

  17. Uncertainty principles for inverse source problems for electromagnetic and elastic waves

    NASA Astrophysics Data System (ADS)

    Griesmaier, Roland; Sylvester, John

    2018-06-01

    In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.

  18. 1.54 micron Emission from Erbium implanted GaN for Photonic Applications

    NASA Technical Reports Server (NTRS)

    Thaik, Myo; Hommerich, U.; Schwartz, R. N.; Wilson, R. G.; Zavada, J. M.

    1998-01-01

    The development of efficient and compact light sources operating at 1.54 micron is of enormous importance for the advancement of new optical communication systems. Erbium (1%) doped fiber amplifiers (EDFA's) or semiconductor lasers are currently being employed as near infrared light sources. Both devices, however, have inherent limitations due to their mode of operation. EDFA's employ an elaborate optical pumping scheme, whereas diode lasers have a strongly temperature dependent lasing wavelength. Novel light emitters based on erbium doped III-V semiconductors could overcome these limitations. Er doped semiconductors combine the convenience of electrical excitation with the excellent luminescence properties of Er(3+) ions. Electrically pumped, compact, and temperature stable optoelectronic devices are envisioned from this new class of luminescent materials. In this paper we discuss the potential of Er doped GaN for optoelectronic applications based on temperature dependent photoluminescence excitation studies.

  19. Exact finite difference schemes for the non-linear unidirectional wave equation

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.

  20. High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

    DTIC Science & Technology

    2015-06-22

    Galerkin methodology formulated in the framework of the residual-distribution method. For both second- and third- 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...construct these schemes based on the Low-Diffusion-A and the Streamwise-Upwind-Petrov-Galerkin methodology formulated in the framework of the residual...methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit

Top