Sample records for order correlation correlation

  1. Experimental characterization of a quantum many-body system via higher-order correlations.

    PubMed

    Schweigler, Thomas; Kasper, Valentin; Erne, Sebastian; Mazets, Igor; Rauer, Bernhard; Cataldini, Federica; Langen, Tim; Gasenzer, Thomas; Berges, Jürgen; Schmiedmayer, Jörg

    2017-05-17

    Quantum systems can be characterized by their correlations. Higher-order (larger than second order) correlations, and the ways in which they can be decomposed into correlations of lower order, provide important information about the system, its structure, its interactions and its complexity. The measurement of such correlation functions is therefore an essential tool for reading, verifying and characterizing quantum simulations. Although higher-order correlation functions are frequently used in theoretical calculations, so far mainly correlations up to second order have been studied experimentally. Here we study a pair of tunnel-coupled one-dimensional atomic superfluids and characterize the corresponding quantum many-body problem by measuring correlation functions. We extract phase correlation functions up to tenth order from interference patterns and analyse whether, and under what conditions, these functions factorize into correlations of lower order. This analysis characterizes the essential features of our system, the relevant quasiparticles, their interactions and topologically distinct vacua. From our data we conclude that in thermal equilibrium our system can be seen as a quantum simulator of the sine-Gordon model, relevant for diverse disciplines ranging from particle physics to condensed matter. The measurement and evaluation of higher-order correlation functions can easily be generalized to other systems and to study correlations of any other observable such as density, spin and magnetization. It therefore represents a general method for analysing quantum many-body systems from experimental data.

  2. Four-Photon Imaging with Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Xue, Xinxin; Zhang, Xun; Yuan, Chenzhi; Sun, Jia; Song, Jianping; Zhang, Yanpeng

    2014-10-01

    In a near-field four-photon correlation measurement, ghost imaging with classical incoherent light is investigated. By applying the Klyshko advanced-wave picture, we consider the properties of four-photon spatial correlation and find that the fourth-order spatial correlation function can be decomposed into multiple lower-order correlation functions. On the basis of the spatial correlation properties, a proof-of-principle four-photon ghost imaging is proposed, and the effect of each part in a fourth-order correlation function on imaging is also analyzed. In addition, the similarities and differences among ghost imaging by fourth-, second-, and third-order correlations are also discussed. It is shown that the contrast and visibility of fourth-order correlated imaging are improved significantly, while the resolution is unchanged. Such studies can be very useful in better understanding multi photon interference and multi-channel correlation imaging.

  3. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yingchuan; College of Mathematics and Physics, University of South China, Hengyang 421001; Kuang Leman

    2011-05-15

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that themore » visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.« less

  4. Fourth-Order Spatial Correlation of Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Zhang, Xun; Xue, Xin-Xin; Sun, Jia; Song, Jian-Ping; Zhang, Yan-Peng

    2014-11-01

    We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging.

  5. Unidimensional factor models imply weaker partial correlations than zero-order correlations.

    PubMed

    van Bork, Riet; Grasman, Raoul P P P; Waldorp, Lourens J

    2018-06-01

    In this paper we present a new implication of the unidimensional factor model. We prove that the partial correlation between two observed variables that load on one factor given any subset of other observed variables that load on this factor lies between zero and the zero-order correlation between these two observed variables. We implement this result in an empirical bootstrap test that rejects the unidimensional factor model when partial correlations are identified that are either stronger than the zero-order correlation or have a different sign than the zero-order correlation. We demonstrate the use of the test in an empirical data example with data consisting of fourteen items that measure extraversion.

  6. Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well

    NASA Astrophysics Data System (ADS)

    Yépez, V. S.; Sagar, R. P.; Laguna, H. G.

    2017-12-01

    The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.

  7. Correlative weighted stacking for seismic data in the wavelet domain

    USGS Publications Warehouse

    Zhang, S.; Xu, Y.; Xia, J.; ,

    2004-01-01

    Horizontal stacking plays a crucial role for modern seismic data processing, for it not only compresses random noise and multiple reflections, but also provides a foundational data for subsequent migration and inversion. However, a number of examples showed that random noise in adjacent traces exhibits correlation and coherence. The average stacking and weighted stacking based on the conventional correlative function all result in false events, which are caused by noise. Wavelet transform and high order statistics are very useful methods for modern signal processing. The multiresolution analysis in wavelet theory can decompose signal on difference scales, and high order correlative function can inhibit correlative noise, for which the conventional correlative function is of no use. Based on the theory of wavelet transform and high order statistics, high order correlative weighted stacking (HOCWS) technique is presented in this paper. Its essence is to stack common midpoint gathers after the normal moveout correction by weight that is calculated through high order correlative statistics in the wavelet domain. Synthetic examples demonstrate its advantages in improving the signal to noise (S/N) ration and compressing the correlative random noise.

  8. Identification of Correlated GRACE Monthly Harmonic Coefficients Using Pattern Recognition and Neural Networks

    NASA Astrophysics Data System (ADS)

    Piretzidis, D.; Sra, G.; Sideris, M. G.

    2016-12-01

    This study explores new methods for identifying correlation errors in harmonic coefficients derived from monthly solutions of the Gravity Recovery and Climate Experiment (GRACE) satellite mission using pattern recognition and neural network algorithms. These correlation errors are evidenced in the differences between monthly solutions and can be suppressed using a de-correlation filter. In all studies so far, the implementation of the de-correlation filter starts from a specific minimum order (i.e., 11 for RL04 and 38 for RL05) until the maximum order of the monthly solution examined. This implementation method has two disadvantages, namely, the omission of filtering correlated coefficients of order less than the minimum order and the filtering of uncorrelated coefficients of order higher than the minimum order. In the first case, the filtered solution is not completely free of correlated errors, whereas the second case results in a monthly solution that suffers from loss of geophysical signal. In the present study, a new method of implementing the de-correlation filter is suggested, by identifying and filtering only the coefficients that show indications of high correlation. Several numerical and geometric properties of the harmonic coefficient series of all orders are examined. Extreme cases of both correlated and uncorrelated coefficients are selected, and their corresponding properties are used to train a two-layer feed-forward neural network. The objective of the neural network is to identify and quantify the correlation by providing the probability of an order of coefficients to be correlated. Results show good performance of the neural network, both in the validation stage of the training procedure and in the subsequent use of the trained network to classify independent coefficients. The neural network is also capable of identifying correlated coefficients even when a small number of training samples and neurons are used (e.g.,100 and 10, respectively).

  9. Theories and applications of second-order correlation of longitudinal velocity increments at three points in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Fang, L.; Shao, L.; Lu, L. P.

    2018-06-01

    In order to introduce new physics to traditional two-point correlations, we define the second-order correlation of longitudinal velocity increments at three points and obtain the analytical expressions in isotropic turbulence. By introducing the Kolmogorov 4/5 law, this three-point correlation explicitly contains velocity second- and third-order moments, which correspond to energy and energy transfer respectively. The combination of them then shows additional information of non-equilibrium turbulence by comparing to two-point correlations. Moreover, this three-point correlation shows the underlying inconsistency between numerical interpolation and three-point scaling law in numerical calculations, and inspires a preliminary model to correct this problem in isotropic turbulence.

  10. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise.

    PubMed

    Brezinski, M E

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  11. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators

    NASA Astrophysics Data System (ADS)

    Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian

    2017-08-01

    Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.

  12. Assessment of higher order correlation effects with the help of Moller-Plesset perturbation theory up to sixth order

    NASA Astrophysics Data System (ADS)

    He, Yuan; Cremer, Dieter

    For 30 molecules and two atoms, MP n correlation energies up to n = 6 are computed and used to analyse higher order correlation effects and the initial convergence behaviour of the MP n series. Particularly useful is the analysis of correlation contributions E(n)XY ...( n = 4,5,6; X , Y ,... = S, D, T, Q denoting single, double, triple, and quadruple excitations) in the form of correlation energy spectra. Two classes of system are distinguished, namely class A systems possessing well separated electron pairs and class B systems which are characterized by electron clustering in certain regions of atomic and molecular space. For class A systems, electron pair correlation effects as described by D, Q, DD, DQ, QQ, DDD, etc., contributions are most important, which are stepwise included at MP n with n = 2,... ,6. Class A systems are reasonably described by MP n theory, which is reflected by the fact that convergence of the MP n series is monotonic (but relatively slow) for class A systems. The description of class B systems is difficult since three- and four-electron correlation effects and couplings between two-, three-, and four-electron correlation effects missing for lower order perturbation theory are significant. MP n methods, which do not cover these effects, simulate higher order with lower order correlation effects thus exaggerating the latter, which has to be corrected with increasing n. Consequently, the MP n series oscillates for class B systems at low orders. A possible divergence of the MP n series is mostly a consequence of an unbalanced basis set. For example, diffuse functions added to an unsaturated sp basis lead to an exaggeration of higher order correlation effects, which can cause enhanced oscillations and divergence of the MP n series.

  13. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise

    PubMed Central

    Brezinski, ME

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II. PMID:29863177

  14. [Correlation coefficient-based classification method of hydrological dependence variability: With auto-regression model as example].

    PubMed

    Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi

    2018-04-01

    Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.

  15. A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts

    PubMed Central

    Onken, Arno; Dragoi, Valentin; Obermayer, Klaus

    2012-01-01

    Evaluating the importance of higher-order correlations of neural spike counts has been notoriously hard. A large number of samples are typically required in order to estimate higher-order correlations and resulting information theoretic quantities. In typical electrophysiology data sets with many experimental conditions, however, the number of samples in each condition is rather small. Here we describe a method that allows to quantify evidence for higher-order correlations in exactly these cases. We construct a family of reference distributions: maximum entropy distributions, which are constrained only by marginals and by linear correlations as quantified by the Pearson correlation coefficient. We devise a Monte Carlo goodness-of-fit test, which tests - for a given divergence measure of interest - whether the experimental data lead to the rejection of the null hypothesis that it was generated by one of the reference distributions. Applying our test to artificial data shows that the effects of higher-order correlations on these divergence measures can be detected even when the number of samples is small. Subsequently, we apply our method to spike count data which were recorded with multielectrode arrays from the primary visual cortex of anesthetized cat during an adaptation experiment. Using mutual information as a divergence measure we find that there are spike count bin sizes at which the maximum entropy hypothesis can be rejected for a substantial number of neuronal pairs. These results demonstrate that higher-order correlations can matter when estimating information theoretic quantities in V1. They also show that our test is able to detect their presence in typical in-vivo data sets, where the number of samples is too small to estimate higher-order correlations directly. PMID:22685392

  16. Convergence behavior of the random phase approximation renormalized correlation energy

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn

    2017-05-01

    Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.

  17. Convergence of third order correlation energy in atoms and molecules.

    PubMed

    Kahn, Kalju; Granovsky, Alex A; Noga, Jozef

    2007-01-30

    We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.

  18. ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients.

    PubMed

    Kim, Seongho

    2015-11-01

    Lack of a general matrix formula hampers implementation of the semi-partial correlation, also known as part correlation, to the higher-order coefficient. This is because the higher-order semi-partial correlation calculation using a recursive formula requires an enormous number of recursive calculations to obtain the correlation coefficients. To resolve this difficulty, we derive a general matrix formula of the semi-partial correlation for fast computation. The semi-partial correlations are then implemented on an R package ppcor along with the partial correlation. Owing to the general matrix formulas, users can readily calculate the coefficients of both partial and semi-partial correlations without computational burden. The package ppcor further provides users with the level of the statistical significance with its test statistic.

  19. High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking

    PubMed Central

    Lorenzana, J.; Seibold, G.; Peng, Y. Y.; Amorese, A.; Yakhou-Harris, F.; Kummer, K.; Brookes, N. B.; Konik, R. M.; Thampy, V.; Gu, G. D.; Ghiringhelli, G.; Braicovich, L.

    2017-01-01

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates. PMID:29114049

  20. Correlation of higher order aberrations in the anterior corneal surface and degree of keratoconus measured with a Scheimpflug camera.

    PubMed

    Delgado, S; Velazco, J; Delgado Pelayo, R M; Ruiz-Quintero, N

    2016-07-01

    To determine the correlation of higher order aberrations in anterior corneal surface and degree of keratoconus measured with a Scheimpflug camera. A descriptive, cross-sectional study was conducted on 152 eyes (both eyes of each patient) of patients with keratoconus, from January 2009 to April 2014. An examination was performed on the corneal aberrometry in the anterior corneal surface, and topographic mapping (by Amsler and Muckenhirn classification) was used to determine the degree of keratoconus. The correlation between high-order aberrations in anterior corneal surface and the degree of keratoconus was determined. Coma aberration significantly correlated with keratoconus severity (r=.60, P<.01), as well as with the high order aberration (r=.61, P<.01). Trefoil and keratoconus were weakly correlated (r=.34, P<.01). Higher order aberrations in anterior corneal surface were positively correlated with the degree of keratoconus in a similar way to the entire optical system. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Quantum correlations with no causal order

    PubMed Central

    Oreshkov, Ognyan; Costa, Fabio; Brukner, Časlav

    2012-01-01

    The idea that events obey a definite causal order is deeply rooted in our understanding of the world and at the basis of the very notion of time. But where does causal order come from, and is it a necessary property of nature? Here, we address these questions from the standpoint of quantum mechanics in a new framework for multipartite correlations that does not assume a pre-defined global causal structure but only the validity of quantum mechanics locally. All known situations that respect causal order, including space-like and time-like separated experiments, are captured by this framework in a unified way. Surprisingly, we find correlations that cannot be understood in terms of definite causal order. These correlations violate a 'causal inequality' that is satisfied by all space-like and time-like correlations. We further show that in a classical limit causal order always arises, which suggests that space-time may emerge from a more fundamental structure in a quantum-to-classical transition. PMID:23033068

  2. Pulse transmission receiver with higher-order time derivative pulse correlator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-16

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  3. Analysis of correlation between corneal topographical data and visual performance

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanqing; Yu, Lei; Ren, Qiushi

    2007-02-01

    Purpose: To study correlation among corneal asphericity, higher-order aberrations and visual performance for eyes of virgin myopia and postoperative laser in situ keratomileusis (LASIK). Methods: There were 320 candidates 590 eyes for LASIK treatment included in this study. The mean preoperative spherical equivalence was -4.35+/-1.51D (-1.25 to -9.75), with astigmatism less than 2.5 D. Corneal topography maps and contrast sensitivity were measured and analyzed for every eye before and one year after LASIK for the analysis of corneal asphericity and wavefront aberrations. Results: Preoperatively, only 4th and 6th order aberration had significant correlation with corneal asphericity and apical radius of curvature (p<0.001). Postoperatively, all 3th to 6th order aberrations had statistically significant correlation with corneal asphericity (p<0.01), but only 4th and 6th order aberration had significant correlation with apical radius of curvature (p<0.05). The asymmetrical aberration like coma had significant correlation with vertical offset of pupil center (p<0.01). Preoperatively, corneal aberrations had no significant correlation with visual acuity and area under the log contrast sensitivity (AULCSF) (P>0.05). Postoperatively, corneal aberrations still didn't have significant correlation with visual acuity (P>0.05), but had significantly negative correlation with AULCSF (P<0.01). Corneal asphericity had no significant correlation with AULCSF before and after the treatment (P>0.05). Conclusions: Corneal aberrations had different correlation with corneal profile and visual performance for eyes of virgin myopia and postoperative LASIK, which may be due to changed corneal profile and limitation of metrics of corneal aberrations.

  4. Bacterial genomes lacking long-range correlations may not be modeled by low-order Markov chains: the role of mixing statistics and frame shift of neighboring genes.

    PubMed

    Cocho, Germinal; Miramontes, Pedro; Mansilla, Ricardo; Li, Wentian

    2014-12-01

    We examine the relationship between exponential correlation functions and Markov models in a bacterial genome in detail. Despite the well known fact that Markov models generate sequences with correlation function that decays exponentially, simply constructed Markov models based on nearest-neighbor dimer (first-order), trimer (second-order), up to hexamer (fifth-order), and treating the DNA sequence as being homogeneous all fail to predict the value of exponential decay rate. Even reading-frame-specific Markov models (both first- and fifth-order) could not explain the fact that the exponential decay is very slow. Starting with the in-phase coding-DNA-sequence (CDS), we investigated correlation within a fixed-codon-position subsequence, and in artificially constructed sequences by packing CDSs with out-of-phase spacers, as well as altering CDS length distribution by imposing an upper limit. From these targeted analyses, we conclude that the correlation in the bacterial genomic sequence is mainly due to a mixing of heterogeneous statistics at different codon positions, and the decay of correlation is due to the possible out-of-phase between neighboring CDSs. There are also small contributions to the correlation from bases at the same codon position, as well as by non-coding sequences. These show that the seemingly simple exponential correlation functions in bacterial genome hide a complexity in correlation structure which is not suitable for a modeling by Markov chain in a homogeneous sequence. Other results include: use of the (absolute value) second largest eigenvalue to represent the 16 correlation functions and the prediction of a 10-11 base periodicity from the hexamer frequencies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Event plane dependence of the flow modulated background in dihadron and jet-hadron correlations in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Nattrass, Christine; Todoroki, Takahito

    2018-05-01

    Dihadron and jet-hadron correlationsare commonly used in relativistic heavy ion collisions to study the soft component of jets in a quark gluon plasma. There is a large correlated background which is described by the Fourier decomposition of the azimuthal anisotropy where vn is the n th order coefficient. The path length dependence of partonic energy loss can be studied by varying the angle of the high momentum trigger particle or jet relative to a reconstructed event plane. This modifies the shape of the background correlated with that event plane. The original derivation of the shape of this background only considered correlations relative to the second-order event plane, which is correlated to the initial participant plane. We derive the shape of this background for an event plane at an arbitrary order. There is a phase shift in the case of jets restricted to asymmetric regions relative to the event plane. For realistic correlations between event planes, the correlation between the second- and fourth-order event planes leads to a much smaller effect than the finite event plane resolution at each order. Finally, we assess the status of the rapidity even v1 term due to flow, which has been measured to be comparable to v2 and v3 terms.

  6. The correlation function for density perturbations in an expanding universe. III The three-point and predictions of the four-point and higher order correlation functions

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1978-01-01

    Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.

  7. Correlations between the resonant frequency shifts and the thermodynamic quantities for the α-β transition in quartz

    NASA Astrophysics Data System (ADS)

    Lider, M. C.; Yurtseven, H.

    2018-05-01

    The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.

  8. Polyakov loop correlator in perturbation theory

    DOE PAGES

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter; ...

    2017-07-25

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  9. Polyakov loop correlator in perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  10. A second-order closure analysis of turbulent diffusion flames. [combustion physics

    NASA Technical Reports Server (NTRS)

    Varma, A. K.; Fishburne, E. S.; Beddini, R. A.

    1977-01-01

    A complete second-order closure computer program for the investigation of compressible, turbulent, reacting shear layers was developed. The equations for the means and the second order correlations were derived from the time-averaged Navier-Stokes equations and contain third order and higher order correlations, which have to be modeled in terms of the lower-order correlations to close the system of equations. In addition to fluid mechanical turbulence models and parameters used in previous studies of a variety of incompressible and compressible shear flows, a number of additional scalar correlations were modeled for chemically reacting flows, and a typical eddy model developed for the joint probability density function for all the scalars. The program which is capable of handling multi-species, multistep chemical reactions, was used to calculate nonreacting and reacting flows in a hydrogen-air diffusion flame.

  11. Quantifying the range of cross-correlated fluctuations using a q- L dependent AHXA coefficient

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Wang, Lin; Chen, Yuming

    2018-03-01

    Recently, based on analogous height cross-correlation analysis (AHXA), a cross-correlation coefficient ρ×(L) has been proposed to quantify the levels of cross-correlation on different temporal scales for bivariate series. A limitation of this coefficient is that it cannot capture the full information of cross-correlations on amplitude of fluctuations. In fact, it only detects the cross-correlation at a specific order fluctuation, which might neglect some important information inherited from other order fluctuations. To overcome this disadvantage, in this work, based on the scaling of the qth order covariance and time delay L, we define a two-parameter dependent cross-correlation coefficient ρq(L) to detect and quantify the range and level of cross-correlations. This new version of ρq(L) coefficient leads to the formation of a ρq(L) surface, which not only is able to quantify the level of cross-correlations, but also allows us to identify the range of fluctuation amplitudes that are correlated in two given signals. Applications to the classical ARFIMA models and the binomial multifractal series illustrate the feasibility of this new coefficient ρq(L) . In addition, a statistical test is proposed to quantify the existence of cross-correlations between two given series. Applying our method to the real life empirical data from the 1999-2000 California electricity market, we find that the California power crisis in 2000 destroys the cross-correlation between the price and the load series but does not affect the correlation of the load series during and before the crisis.

  12. High-temperature charge density wave correlations in La 1.875Ba 0.125CuO 4 without spin–charge locking

    DOE PAGES

    Miao, H.; Lorenzana, J.; Seibold, G.; ...

    2017-11-07

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less

  13. High-temperature charge density wave correlations in La 1.875Ba 0.125CuO 4 without spin–charge locking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, H.; Lorenzana, J.; Seibold, G.

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less

  14. Correlation between centrality metrics and their application to the opinion model

    NASA Astrophysics Data System (ADS)

    Li, Cong; Li, Qian; Van Mieghem, Piet; Stanley, H. Eugene; Wang, Huijuan

    2015-03-01

    In recent decades, a number of centrality metrics describing network properties of nodes have been proposed to rank the importance of nodes. In order to understand the correlations between centrality metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity metric, we first study the correlation between centrality metrics in terms of their Pearson correlation coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality metrics, we introduce a new centrality measure, the degree mass. The mth-order degree mass of a node is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find that the betweenness, the closeness, and the components of the principal eigenvector of the adjacency matrix are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in both network models and real-world networks. We then theoretically prove that the Pearson correlation coefficient between the principal eigenvector and the 2nd-order degree mass is larger than that between the principal eigenvector and a lower order degree mass. Finally, we investigate the effect of the inflexible contrarians selected based on different centrality metrics in helping one opinion to compete with another in the inflexible contrarian opinion (ICO) model. Interestingly, we find that selecting the inflexible contrarians based on the leverage, the betweenness, or the degree is more effective in opinion-competition than using other centrality metrics in all types of networks. This observation is supported by our previous observations, i.e., that there is a strong linear correlation between the degree and the betweenness, as well as a high centrality similarity between the leverage and the degree.

  15. Weaving and neural complexity in symmetric quantum states

    NASA Astrophysics Data System (ADS)

    Susa, Cristian E.; Girolami, Davide

    2018-04-01

    We study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.

  16. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn 2O 4

    DOE PAGES

    Disseler, S. M.; Chen, Y.; Yeo, S.; ...

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn 2O 4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions aroundmore » Mn 3+ ions on the spinel lattice.« less

  17. Short-range second order screened exchange correction to RPA correlation energies

    NASA Astrophysics Data System (ADS)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-01

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  18. Short-range second order screened exchange correction to RPA correlation energies.

    PubMed

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-28

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  19. Weaving and neural complexity in symmetric quantum states

    DOE PAGES

    Susa, Cristian E.; Girolami, Davide

    2017-12-27

    Here, we study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.

  20. Weaving and neural complexity in symmetric quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susa, Cristian E.; Girolami, Davide

    Here, we study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.

  1. Electron spin polarization by isospin ordering in correlated two-layer quantum Hall systems.

    PubMed

    Tiemann, L; Wegscheider, W; Hauser, M

    2015-05-01

    Enhancement of the electron spin polarization in a correlated two-layer, two-dimensional electron system at a total Landau level filling factor of 1 is reported. Using resistively detected nuclear magnetic resonance, we demonstrate that the electron spin polarization of two closely spaced two-dimensional electron systems becomes maximized when interlayer Coulomb correlations establish spontaneous isospin ferromagnetic order. This correlation-driven polarization dominates over the spin polarizations of competing single-layer fractional quantum Hall states under electron density imbalances.

  2. Solving the Quantum Many-Body Problem via Correlations Measured with a Momentum Microscope

    NASA Astrophysics Data System (ADS)

    Hodgman, S. S.; Khakimov, R. I.; Lewis-Swan, R. J.; Truscott, A. G.; Kheruntsyan, K. V.

    2017-06-01

    In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation or annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate this paradigm by measuring multiparticle momentum correlations up to third order between ultracold helium atoms in an s -wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system—the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multiparticle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localization.

  3. Role of Weak Measurements on States Ordering and Monogamy of Quantum Correlation

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Liang; Fan, Heng; Tian, Dong-Ping

    2015-01-01

    The information-theoretic definition of quantum correlation, e.g., quantum discord, is measurement dependent. By considering the more general quantum measurements, weak measurements, which include the projective measurement as a limiting case, we show that while weak measurements can enable one to capture more quantumness of correlation in a state, it can also induce other counterintuitive quantum effects. Specifically, we show that the general measurements with different strengths can impose different orderings for quantum correlations of some states. It can also modify the monogamous character for certain classes of states as well which may diminish the usefulness of quantum correlation as a resource in some protocols. In this sense, we say that the weak measurements play a dual role in defining quantum correlation.

  4. Higher order correlations of IRAS galaxies

    NASA Technical Reports Server (NTRS)

    Meiksin, Avery; Szapudi, Istvan; Szalay, Alexander

    1992-01-01

    The higher order irreducible angular correlation functions are derived up to the eight-point function, for a sample of 4654 IRAS galaxies, flux-limited at 1.2 Jy in the 60 microns band. The correlations are generally found to be somewhat weaker than those for the optically selected galaxies, consistent with the visual impression of looser clusters in the IRAS sample. It is found that the N-point correlation functions can be expressed as the symmetric sum of products of N - 1 two-point functions, although the correlations above the four-point function are consistent with zero. The coefficients are consistent with the hierarchical clustering scenario as modeled by Hamilton and by Schaeffer.

  5. Nonlocal correlations in the orbital selective Mott phase of a one-dimensional multiorbital Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Kaushal, N.; Wang, Y.

    Here, we study nonlocal correlations in a three-orbital Hubbard model defined on an extended one-dimensional chain using determinant quantum Monte Carlo and density matrix renormalization group methods. We focus on a parameter regime with robust Hund's coupling, which produces an orbital selective Mott phase (OSMP) at intermediate values of the Hubbard U, as well as an orbitally ordered ferromagnetic insulating state at stronger coupling. An examination of the orbital- and spin-correlation functions indicates that the orbital ordering occurs before the onset of magnetic correlations in this parameter regime as a function of temperature. In the OSMP, we find that themore » self-energy for the itinerant electrons is momentum dependent, indicating a degree of nonlocal correlations while the localized electrons have largely momentum independent self-energies. These nonlocal correlations also produce relative shifts of the holelike and electronlike bands within our model. The overall momentum dependence of these quantities is strongly suppressed in the orbitally ordered insulating phase.« less

  6. Nonlocal correlations in the orbital selective Mott phase of a one-dimensional multiorbital Hubbard model

    DOE PAGES

    Li, S.; Kaushal, N.; Wang, Y.; ...

    2016-12-12

    Here, we study nonlocal correlations in a three-orbital Hubbard model defined on an extended one-dimensional chain using determinant quantum Monte Carlo and density matrix renormalization group methods. We focus on a parameter regime with robust Hund's coupling, which produces an orbital selective Mott phase (OSMP) at intermediate values of the Hubbard U, as well as an orbitally ordered ferromagnetic insulating state at stronger coupling. An examination of the orbital- and spin-correlation functions indicates that the orbital ordering occurs before the onset of magnetic correlations in this parameter regime as a function of temperature. In the OSMP, we find that themore » self-energy for the itinerant electrons is momentum dependent, indicating a degree of nonlocal correlations while the localized electrons have largely momentum independent self-energies. These nonlocal correlations also produce relative shifts of the holelike and electronlike bands within our model. The overall momentum dependence of these quantities is strongly suppressed in the orbitally ordered insulating phase.« less

  7. Study of photon correlation techniques for processing of laser velocimeter signals

    NASA Technical Reports Server (NTRS)

    Mayo, W. T., Jr.

    1977-01-01

    The objective was to provide the theory and a system design for a new type of photon counting processor for low level dual scatter laser velocimeter (LV) signals which would be capable of both the first order measurements of mean flow and turbulence intensity and also the second order time statistics: cross correlation auto correlation, and related spectra. A general Poisson process model for low level LV signals and noise which is valid from the photon-resolved regime all the way to the limiting case of nonstationary Gaussian noise was used. Computer simulation algorithms and higher order statistical moment analysis of Poisson processes were derived and applied to the analysis of photon correlation techniques. A system design using a unique dual correlate and subtract frequency discriminator technique is postulated and analyzed. Expectation analysis indicates that the objective measurements are feasible.

  8. Velocity correlations in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, R.; Ouellette, N. T.

    2015-12-01

    In contrast to animal groups such as bird flocks or migratory herds that display net, directed motion, insect swarms do not possess global order. Without such order, it is difficult to define and characterize the transition to collective behavior in swarms; nevertheless, visual observation of swarms strongly suggests that swarming insects do behave collectively. It has recently been suggested that correlation rather than order is the hallmark of emergent collective behavior. Here, we report measurements of spatial velocity correlation functions in laboratory mating swarms of the non-biting midge Chironomus riparius. Although we find some correlation at short distances, our swarms are in general only weakly correlated, in contrast to what has been observed in field studies. Our results hint at the potentially important role of environmental conditions on collective behavior, and suggest that general indicators of the collective nature of swarming are still needed.

  9. Long-Range Rapidity Correlations in Heavy-Light Ion Collisions

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri; Wertepny, Douglas

    2013-04-01

    We study two-particle long-range rapidity correlations arising in the early stages of heavy ion collisions in the saturation/Color Glass Condensate framework, assuming for simplicity that one colliding nucleus is much larger than the other. We calculate the two-gluon production cross section while including all-order saturation effects in the heavy nucleus with the lowest-order rescattering in the lighter nucleus. We find four types of correlations in the two-gluon production cross section: (i) geometric correlations, (ii) HBT correlations, (iii) back-to-back correlations, and (iv) near-side azimuthal correlations which are long-range in rapidity. The geometric correlations (i) are due to the fact that nucleons are correlated by simply being confined within the same nucleus and may lead to long-range rapidity correlations for the produced particles without strong azimuthal angle dependence. Somewhat surprisingly, long-range rapidity correlations (iii) and (iv) have exactly the same amplitudes along with azimuthal and rapidity shapes: one centered around δφ=π with the other one centered around δφ=0 (here δφ is the azimuthal angle between the two produced gluons). This prediction is in agreement with the recent ALICE p+Pb data.

  10. Static charge-density-wave order in the superconducting state of La 2 - x Ba x CuO 4

    DOE PAGES

    Thampy, V.; Chen, X. M.; Cao, Y.; ...

    2017-06-15

    Charge-density-wave (CDW) correlations feature prominently in the phase diagram of the cuprates, motivating competing theories of whether fluctuating CDW correlations aid superconductivity or whether static CDW order coexists with superconductivity in inhomogeneous or spatially modulated states. Here we report Cu L-edge resonant x-ray photon correlation spectroscopy measurements of CDW correlations in superconducting La 2–xBa xCuO 4, x = 0.11. Static CDW order is shown to exist in the superconducting state at low temperatures and to persist up to at least 85% of the CDW transition temperature. As a result, we discuss the implications of our observations for how nominally competingmore » order parameters can coexist in the cuprates.« less

  11. Effects of Helicity on Lagrangian and Eulerian Time Correlations in Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1998-01-01

    Taylor series expansions of turbulent time correlation functions are applied to show that helicity influences Eulerian time correlations more strongly than Lagrangian time correlations: to second order in time, the helicity effect on Lagrangian time correlations vanishes, but the helicity effect on Eulerian time correlations is nonzero. Fourier analysis shows that the helicity effect on Eulerian time correlations is confined to the largest inertial range scales. Some implications for sound radiation by swirling flows are discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thampy, V.; Chen, X. M.; Cao, Y.

    Charge-density-wave (CDW) correlations feature prominently in the phase diagram of the cuprates, motivating competing theories of whether fluctuating CDW correlations aid superconductivity or whether static CDW order coexists with superconductivity in inhomogeneous or spatially modulated states. Here we report Cu L-edge resonant x-ray photon correlation spectroscopy measurements of CDW correlations in superconducting La 2–xBa xCuO 4, x = 0.11. Static CDW order is shown to exist in the superconducting state at low temperatures and to persist up to at least 85% of the CDW transition temperature. As a result, we discuss the implications of our observations for how nominally competingmore » order parameters can coexist in the cuprates.« less

  13. Effect of interacting second- and third-order stimulus-dependent correlations on population-coding asymmetries.

    PubMed

    Montangie, Lisandro; Montani, Fernando

    2016-10-01

    Spike correlations among neurons are widely encountered in the brain. Although models accounting for pairwise interactions have proved able to capture some of the most important features of population activity at the level of the retina, the evidence shows that pairwise neuronal correlation analysis does not resolve cooperative population dynamics by itself. By means of a series expansion for short time scales of the mutual information conveyed by a population of neurons, the information transmission can be broken down into firing rate and correlational components. In a proposed extension of this framework, we investigate the information components considering both second- and higher-order correlations. We show that the existence of a mixed stimulus-dependent correlation term defines a new scenario for the interplay between pairwise and higher-than-pairwise interactions in noise and signal correlations that would lead either to redundancy or synergy in the information-theoretic sense.

  14. FPGA design of correlation-based pattern recognition

    NASA Astrophysics Data System (ADS)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.

  15. Magnetic Fluctuations, Precursor Phenomena, and Phase Transition in MnSi under a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Pappas, C.; Bannenberg, L. J.; Lelièvre-Berna, E.; Qian, F.; Dewhurst, C. D.; Dalgliesh, R. M.; Schlagel, D. L.; Lograsso, T. A.; Falus, P.

    2017-07-01

    The reference chiral helimagnet MnSi is the first system where Skyrmion lattice correlations have been reported. At a zero magnetic field the transition at TC to the helimagnetic state is of first order. Above TC, in a region dominated by precursor phenomena, neutron scattering shows the buildup of strong chiral fluctuating correlations over the surface of a sphere with radius 2 π /ℓ, where ℓ is the pitch of the helix. It has been suggested that these fluctuating correlations drive the helical transition to first order following a scenario proposed by Brazovskii for liquid crystals. We present a comprehensive neutron scattering study under magnetic fields, which provides evidence that this is not the case. The sharp first order transition persists for magnetic fields up to 0.4 T whereas the fluctuating correlations weaken and start to concentrate along the field direction already above 0.2 T. Our results thus disconnect the first order nature of the transition from the precursor fluctuating correlations. They also show no indication for a tricritical point, where the first order transition crosses over to second order with increasing magnetic field. In this light, the nature of the first order helical transition and the precursor phenomena above TC, both of general relevance to chiral magnetism, remain an open question.

  16. Development of a second order closure model for computation of turbulent diffusion flames

    NASA Technical Reports Server (NTRS)

    Varma, A. K.; Donaldson, C. D.

    1974-01-01

    A typical eddy box model for the second-order closure of turbulent, multispecies, reacting flows developed. The model structure was quite general and was valid for an arbitrary number of species. For the case of a reaction involving three species, the nine model parameters were determined from equations for nine independent first- and second-order correlations. The model enabled calculation of any higher-order correlation involving mass fractions, temperatures, and reaction rates in terms of first- and second-order correlations. Model predictions for the reaction rate were in very good agreement with exact solutions of the reaction rate equations for a number of assumed flow distributions.

  17. Co-evolutionary constraints of globular proteins correlate with their folding rates.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2015-08-04

    Folding rates (lnkf) of globular proteins correlate with their biophysical properties, but relationship between lnkf and patterns of sequence evolution remains elusive. We introduce 'relative co-evolution order' (rCEO) as length-normalized average primary chain separation of co-evolving pairs (CEPs), which negatively correlates with lnkf. In addition to pairs in native 3D contact, indirectly connected and structurally remote CEPs probably also play critical roles in protein folding. Correlation between rCEO and lnkf is stronger in multi-state proteins than two-state proteins, contrasting the case of contact order (co), where stronger correlation is found in two-state proteins. Finally, rCEO, co and lnkf are fitted into a 3D linear correlation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Analyzing the Cross-Correlation Between Onshore and Offshore RMB Exchange Rates Based on Multifractal Detrended Cross-Correlation Analysis (MF-DCCA)

    NASA Astrophysics Data System (ADS)

    Xie, Chi; Zhou, Yingying; Wang, Gangjin; Yan, Xinguo

    We use the multifractal detrended cross-correlation analysis (MF-DCCA) method to explore the multifractal behavior of the cross-correlation between exchange rates of onshore RMB (CNY) and offshore RMB (CNH) against US dollar (USD). The empirical data are daily prices of CNY/USD and CNH/USD from May 1, 2012 to February 29, 2016. The results demonstrate that: (i) the cross-correlation between CNY/USD and CNH/USD is persistent and its fluctuation is smaller when the order of fluctuation function is negative than that when the order is positive; (ii) the multifractal behavior of the cross-correlation between CNY/USD and CNH/USD is significant during the sample period; (iii) the dynamic Hurst exponents obtained by the rolling windows analysis show that the cross-correlation is stable when the global economic situation is good and volatile in bad situation; and (iv) the non-normal distribution of original data has a greater effect on the multifractality of the cross-correlation between CNY/USD and CNH/USD than the temporary correlation.

  19. A Priori Analyses of Three Subgrid-Scale Models for One-Parameter Families of Filters

    NASA Technical Reports Server (NTRS)

    Pruett, C. David; Adams, Nikolaus A.

    1998-01-01

    The decay of isotropic turbulence a compressible flow is examined by direct numerical simulation (DNS). A priori analyses of the DNS data are then performed to evaluate three subgrid-scale (SGS) models for large-eddy simulation (LES): a generalized Smagorinsky model (M1), a stress-similarity model (M2), and a gradient model (M3). The models exploit one-parameter second- or fourth-order filters of Pade type, which permit the cutoff wavenumber k(sub c) to be tuned independently of the grid increment (delta)x. The modeled (M) and exact (E) SGS-stresses are compared component-wise by correlation coefficients of the form C(E,M) computed over the entire three-dimensional fields. In general, M1 correlates poorly against exact stresses (C < 0.2), M3 correlates moderately well (C approx. 0.6), and M2 correlates remarkably well (0.8 < C < 1.0). Specifically, correlations C(E, M2) are high provided the grid and test filters are of the same order. Moreover, the highest correlations (C approx.= 1.0) result whenever the grid and test filters are identical (in both order and cutoff). Finally, present results reveal the exact SGS stresses obtained by grid filters of differing orders to be only moderately well correlated. Thus, in LES the model should not be specified independently of the filter.

  20. Exotic quantum order in low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Girvin, S. M.

    1998-08-01

    Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.

  1. A time correlation function theory describing static field enhanced third order optical effects at interfaces.

    PubMed

    Neipert, Christine; Space, Brian

    2006-12-14

    Sum vibrational frequency spectroscopy, a second order optical process, is interface specific in the dipole approximation. At charged interfaces, there exists a static field, and as a direct consequence, the experimentally detected signal is a combination of enhanced second and static field induced third order contributions. There is significant evidence in the literature of the importance/relative magnitude of this third order contribution, but no previous molecularly detailed approach existed to separately calculate the second and third order contributions. Thus, for the first time, a molecularly detailed time correlation function theory is derived here that allows for the second and third order contributions to sum frequency vibrational spectra to be individually determined. Further, a practical, molecular dynamics based, implementation procedure for the derived correlation functions that describe the third order phenomenon is also presented. This approach includes a novel generalization of point atomic polarizability models to calculate the hyperpolarizability of a molecular system. The full system hyperpolarizability appears in the time correlation functions responsible for third order contributions in the presence of a static field.

  2. Correlations of heavy quarks produced at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Younus, Mohammed; Jamil, Umme; Srivastava, Dinesh K.

    2012-02-01

    We study the correlations of heavy quarks produced in relativistic heavy-ion collisions and find them to be quite sensitive to the effects of the medium and the production mechanisms. In order to put this on a quantitative footing, as a first step, we analyze the azimuthal, transverse momentum, and rapidity correlations of heavy quark-antiquark (Q\\overline{Q}) pairs in pp collisions at {O}(α3s). This sets the stage for the identification and study of medium modification of similar correlations in the relativistic collision of heavy nuclei at the Large Hadron Collider. Next we study the additional production of charm quarks in heavy ion collisions due to multiple scatterings, namely jet-jet collisions, jet-thermal collisions, and thermal interactions. We find that these give rise to azimuthal correlations which are quite different from those arising from the prompt initial production at leading order and at next to leading order. Communicated by Professor Steffen Bass.

  3. Strong correlation in incremental full configuration interaction

    NASA Astrophysics Data System (ADS)

    Zimmerman, Paul M.

    2017-06-01

    Incremental Full Configuration Interaction (iFCI) reaches high accuracy electronic energies via a many-body expansion of the correlation energy. In this work, the Perfect Pairing (PP) ansatz replaces the Hartree-Fock reference of the original iFCI method. This substitution captures a large amount of correlation at zero-order, which allows iFCI to recover the remaining correlation energy with low-order increments. The resulting approach, PP-iFCI, is size consistent, size extensive, and systematically improvable with increasing order of incremental expansion. Tests on multiple single bond, multiple double bond, and triple bond dissociations of main group polyatomics using double and triple zeta basis sets demonstrate the power of the method for handling strong correlation. The smooth dissociation profiles that result from PP-iFCI show that FCI-quality ground state computations are now within reach for systems with up to about 10 heavy atoms.

  4. Scrambling and thermalization in a diffusive quantum many-body system

    DOE PAGES

    Bohrdt, A.; Mendl, C. B.; Endres, M.; ...

    2017-06-02

    Out-of-time ordered (OTO) correlation functions describe scrambling of information in correlated quantum matter. They are of particular interest in incoherent quantum systems lacking well defined quasi-particles. Thus far, it is largely elusive how OTO correlators spread in incoherent systems with diffusive transport governed by a few globally conserved quantities. Here, we study the dynamical response of such a system using high-performance matrix-product-operator techniques. Specifically, we consider the non-integrable, one-dimensional Bose–Hubbard model in the incoherent high-temperature regime. Our system exhibits diffusive dynamics in time-ordered correlators of globally conserved quantities, whereas OTO correlators display a ballistic, light-cone spreading of quantum information. Themore » slowest process in the global thermalization of the system is thus diffusive, yet information spreading is not inhibited by such slow dynamics. We furthermore develop an experimentally feasible protocol to overcome some challenges faced by existing proposals and to probe time-ordered and OTO correlation functions. As a result, our study opens new avenues for both the theoretical and experimental exploration of thermalization and information scrambling dynamics.« less

  5. Limitations of the clump-correlation theories of shear-induced turbulence suppression

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Mahajan, S. M.

    2017-05-01

    The clump theory, primarily constructed by Dupree [Phys. Fluids 15, 334 (1972)] based on the moment approach and then generalized to the correlation theory [Y. Z. Zhang and S. M. Mahajan, Phys. Fluids B 5, 2000 (1993)], has long served as a basis for constructing theories of turbulence suppression by shear flow. In order to reveal the "intrinsic approximation" invoked in the clump-correlation theory, we examine a model based on two dimensional magnetized drift waves. After a rigorous derivation of the exact response function—a key to average the Green function of the system—we show that the Dupree, Zhang-Mahajan approach is recovered as the lowest order approximation in a small dimensionless parameter ϒ which is a triple product of the correlation time, wave number, and fluctuating drift velocity. The clump-correlation theory, thus, constitutes the Gaussian and lowest order non-Markovian process for a homogeneous stationary turbulence. We also provide, especially for the tokamak community, a readily usable formula to evaluate the effectiveness of shear-flow suppression; this formula pertains regardless of the specific model of correlation time.

  6. Scrambling and thermalization in a diffusive quantum many-body system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohrdt, A.; Mendl, C. B.; Endres, M.

    Out-of-time ordered (OTO) correlation functions describe scrambling of information in correlated quantum matter. They are of particular interest in incoherent quantum systems lacking well defined quasi-particles. Thus far, it is largely elusive how OTO correlators spread in incoherent systems with diffusive transport governed by a few globally conserved quantities. Here, we study the dynamical response of such a system using high-performance matrix-product-operator techniques. Specifically, we consider the non-integrable, one-dimensional Bose–Hubbard model in the incoherent high-temperature regime. Our system exhibits diffusive dynamics in time-ordered correlators of globally conserved quantities, whereas OTO correlators display a ballistic, light-cone spreading of quantum information. Themore » slowest process in the global thermalization of the system is thus diffusive, yet information spreading is not inhibited by such slow dynamics. We furthermore develop an experimentally feasible protocol to overcome some challenges faced by existing proposals and to probe time-ordered and OTO correlation functions. As a result, our study opens new avenues for both the theoretical and experimental exploration of thermalization and information scrambling dynamics.« less

  7. Analog Correlator Based on One Bit Digital Correlator

    NASA Technical Reports Server (NTRS)

    Prokop, Norman (Inventor); Krasowski, Michael (Inventor)

    2017-01-01

    A two input time domain correlator may perform analog correlation. In order to achieve high throughput rates with reduced or minimal computational overhead, the input data streams may be hard limited through adaptive thresholding to yield two binary bit streams. Correlation may be achieved through the use of a Hamming distance calculation, where the distance between the two bit streams approximates the time delay that separates them. The resulting Hamming distance approximates the correlation time delay with high accuracy.

  8. Relativistic calculation of correlational energy for a helium-like atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palchikov, V.G.

    This paper presents an analytical method for calculating the firstorder correlational energy from the electron interaction, taking account of lag effects. Explicit analytical expressions are obtained for radial matrix elements. The nonrelativistic limit is investigated. The given method may be used to calculate correlation effects in higher orders of perturbation theory (second and higher orders with respect to 1/z) using the Strum expansion for the Coulomb Green's functions.

  9. Computational Fluid Dynamics Based Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  10. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  11. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-03

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  12. Correlation Plenoptic Imaging

    NASA Astrophysics Data System (ADS)

    D'Angelo, Milena; Pepe, Francesco V.; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  13. Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD [The Energy-Energy Correlation at Next-to-Leading Order in QCD, Analytically

    DOE PAGES

    Dixon, Lance J.; Luo, Ming-xing; Shtabovenko, Vladyslav; ...

    2018-03-09

    Here, the energy-energy correlation (EEC) between two detectors in e +e – annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.

  14. Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD [The Energy-Energy Correlation at Next-to-Leading Order in QCD, Analytically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Lance J.; Luo, Ming-xing; Shtabovenko, Vladyslav

    Here, the energy-energy correlation (EEC) between two detectors in e +e – annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.

  15. Non-flow correlations and elliptic flow fluctuations in Au+Au collisions at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2010-03-01

    This article presents results on event-by-event elliptic flow fluctuations in Au+Au collisions at sNN= 200 GeV, where the contribution from non-flow correlations has been subtracted. An analysis method is introduced to measure non-flow correlations, relying on the assumption that non-flow correlations are most prominent at short ranges (|Δη|<2). Assuming that non-flow correlations are of the order that is observed in p+p collisions for long-range correlations (|Δη|>2), relative elliptic flow fluctuations of approximately 30-40% are observed. These results are consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. It is found that the long-range non-flow correlations in Au+Au collisions would have to be more than an order of magnitude stronger compared to the p+p data to lead to the observed azimuthal anisotropy fluctuations with no intrinsic elliptic flow fluctuations.

  16. On the computation of molecular surface correlations for protein docking using fourier techniques.

    PubMed

    Sakk, Eric

    2007-08-01

    The computation of surface correlations using a variety of molecular models has been applied to the unbound protein docking problem. Because of the computational complexity involved in examining all possible molecular orientations, the fast Fourier transform (FFT) (a fast numerical implementation of the discrete Fourier transform (DFT)) is generally applied to minimize the number of calculations. This approach is rooted in the convolution theorem which allows one to inverse transform the product of two DFTs in order to perform the correlation calculation. However, such a DFT calculation results in a cyclic or "circular" correlation which, in general, does not lead to the same result as the linear correlation desired for the docking problem. In this work, we provide computational bounds for constructing molecular models used in the molecular surface correlation problem. The derived bounds are then shown to be consistent with various intuitive guidelines previously reported in the protein docking literature. Finally, these bounds are applied to different molecular models in order to investigate their effect on the correlation calculation.

  17. Joint multifractal analysis based on the partition function approach: analytical analysis, numerical simulation and empirical application

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Jiang, Zhi-Qiang; Gu, Gao-Feng; Xiong, Xiong; Zhou, Wei-Xing

    2015-10-01

    Many complex systems generate multifractal time series which are long-range cross-correlated. Numerous methods have been proposed to characterize the multifractal nature of these long-range cross correlations. However, several important issues about these methods are not well understood and most methods consider only one moment order. We study the joint multifractal analysis based on partition function with two moment orders, which was initially invented to investigate fluid fields, and derive analytically several important properties. We apply the method numerically to binomial measures with multifractal cross correlations and bivariate fractional Brownian motions without multifractal cross correlations. For binomial multifractal measures, the explicit expressions of mass function, singularity strength and multifractal spectrum of the cross correlations are derived, which agree excellently with the numerical results. We also apply the method to stock market indexes and unveil intriguing multifractality in the cross correlations of index volatilities.

  18. Two-time correlation function of an open quantum system in contact with a Gaussian reservoir

    NASA Astrophysics Data System (ADS)

    Ban, Masashi; Kitajima, Sachiko; Shibata, Fumiaki

    2018-05-01

    An exact formula of a two-time correlation function is derived for an open quantum system which interacts with a Gaussian thermal reservoir. It is provided in terms of functional derivative with respect to fictitious fields. A perturbative expansion and its diagrammatic representation are developed, where the small expansion parameter is related to a correlation time of the Gaussian thermal reservoir. The two-time correlation function of the lowest order is equivalent to that calculated by means of the quantum regression theorem. The result clearly shows that the violation of the quantum regression theorem is caused by a finiteness of the reservoir correlation time. By making use of an exactly solvable model consisting of a two-level system and a set of harmonic oscillators, it is shown that the two-time correlation function up to the first order is a good approximation to the exact one.

  19. Correlation functions in first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Garrido, V.; Crespo, D.

    1997-09-01

    Most of the physical properties of systems underlying first-order phase transitions can be obtained from the spatial correlation functions. In this paper, we obtain expressions that allow us to calculate all the correlation functions from the droplet size distribution. Nucleation and growth kinetics is considered, and exact solutions are obtained for the case of isotropic growth by using self-similarity properties. The calculation is performed by using the particle size distribution obtained by a recently developed model (populational Kolmogorov-Johnson-Mehl-Avrami model). Since this model is less restrictive than that used in previously existing theories, the result is that the correlation functions can be obtained for any dependence of the kinetic parameters. The validity of the method is tested by comparison with the exact correlation functions, which had been obtained in the available cases by the time-cone method. Finally, the correlation functions corresponding to the microstructure developed in partitioning transformations are obtained.

  20. Higher-Order Squeezing in a Boson Coupled Two-Mode System

    NASA Technical Reports Server (NTRS)

    Chizhov, A. V.; Haus, J. W.; Yeong, K. C.

    1996-01-01

    We consider a model for nondegenerate cavity fields interacting through an intervening Boson field. The quantum correlations introduced in this manner are manifest through their higher-order correlation functions where a type of squeezed state is identified.

  1. Detection of virus in shrimp using digital color correlation

    NASA Astrophysics Data System (ADS)

    Alvarez-Borrego, Josue; Chavez-Sanchez, Cristina; Bueno-Ibarra, Mario A.

    1999-07-01

    Detection of virus in shrimp tissue using digital color correlation is presented. Phase filters in three channels (red, green and blue) were used in order to detect HPV virus like target. These first results obtained showed that is possible to detect virus in shrimp tissue. More research must be made with color correlation in order to consider natural morphology of the virus, color, scale and rotation and noise in the samples.

  2. Identifying presence of correlated errors in GRACE monthly harmonic coefficients using machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Piretzidis, Dimitrios; Sra, Gurveer; Karantaidis, George; Sideris, Michael G.

    2017-04-01

    A new method for identifying correlated errors in Gravity Recovery and Climate Experiment (GRACE) monthly harmonic coefficients has been developed and tested. Correlated errors are present in the differences between monthly GRACE solutions, and can be suppressed using a de-correlation filter. In principle, the de-correlation filter should be implemented only on coefficient series with correlated errors to avoid losing useful geophysical information. In previous studies, two main methods of implementing the de-correlation filter have been utilized. In the first one, the de-correlation filter is implemented starting from a specific minimum order until the maximum order of the monthly solution examined. In the second one, the de-correlation filter is implemented only on specific coefficient series, the selection of which is based on statistical testing. The method proposed in the present study exploits the capabilities of supervised machine learning algorithms such as neural networks and support vector machines (SVMs). The pattern of correlated errors can be described by several numerical and geometric features of the harmonic coefficient series. The features of extreme cases of both correlated and uncorrelated coefficients are extracted and used for the training of the machine learning algorithms. The trained machine learning algorithms are later used to identify correlated errors and provide the probability of a coefficient series to be correlated. Regarding SVMs algorithms, an extensive study is performed with various kernel functions in order to find the optimal training model for prediction. The selection of the optimal training model is based on the classification accuracy of the trained SVM algorithm on the same samples used for training. Results show excellent performance of all algorithms with a classification accuracy of 97% - 100% on a pre-selected set of training samples, both in the validation stage of the training procedure and in the subsequent use of the trained algorithms to classify independent coefficients. This accuracy is also confirmed by the external validation of the trained algorithms using the hydrology model GLDAS NOAH. The proposed method meet the requirement of identifying and de-correlating only coefficients with correlated errors. Also, there is no need of applying statistical testing or other techniques that require prior de-correlation of the harmonic coefficients.

  3. Correlated stopping, proton clusters and higher order proton cumulants

    DOE PAGES

    Bzdak, Adam; Koch, Volker; Skokov, Vladimir

    2017-05-05

    Here, we investigate possible effects of correlations between stopped nucleons on higher order proton cumulants at low energy heavy-ion collisions. We find that fluctuations of the number of wounded nucleons N part lead to rather nontrivial dependence of the correlations on the centrality; however, this effect is too small to explain the large and positive four-proton correlations found in the preliminary data collected by the STAR collaboration at √s = 7.7 GeV. We further demonstrate that, by taking into account additional proton clustering, we are able to qualitatively reproduce the preliminary experimental data. We speculate that this clustering may originatemore » either from collective/multi-collision stopping which is expected to be effective at lower energies or from a possible first-order phase transition, or from (attractive) final state interactions. To test these ideas we propose to measure a mixed multi-particle correlation between stopped protons and a produced particle (e.g. pion, antiproton).« less

  4. Characterizing multivariate decoding models based on correlated EEG spectral features

    PubMed Central

    McFarland, Dennis J.

    2013-01-01

    Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267

  5. Periodic diffraction correlation imaging without a beam-splitter.

    PubMed

    Li, Hu; Chen, Zhipeng; Xiong, Jin; Zeng, Guihua

    2012-01-30

    In this paper, we proposed and demonstrated a new correlation imaging mechanism based on the periodic diffraction effect. In this effect, a periodic intensity pattern is generated at the output surface of a periodic point source array. This novel correlation imaging mechanism can realize super-resolution imaging, Nth-order ghost imaging without a beam-splitter and correlation microscopy.

  6. Density correlators in a self-similar cascade

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz˙; Ewski, J.

    1999-09-01

    Multivariate density moments (correlators) of arbitrary order are obtained for the multiplicative self-similar cascade. This result is based on the calculation by Greiner, Eggers and Lipa where the correlators of the logarithms of the particle densities have been obtained. The density correlators, more suitable for comparison with multiparticle data, appear to have a simple factorizable form.

  7. Zigzag antiferromagnetic ground state with anisotropic correlation lengths in the quasi-two-dimensional honeycomb lattice compound N a2C o2Te O6

    NASA Astrophysics Data System (ADS)

    Bera, A. K.; Yusuf, S. M.; Kumar, Amit; Ritter, C.

    2017-03-01

    The crystal structure, magnetic ground state, and the temperature-dependent microscopic spin-spin correlations of the frustrated honeycomb lattice antiferromagnet N a2C o2Te O6 have been investigated by powder neutron diffraction. A long-range antiferromagnetic (AFM) ordering has been found below TN˜24.8 K . The magnetic ground state, determined to be zigzag antiferromagnetic and characterized by a propagation vector k =(1 /2 0 0 ) , occurs due to the competing exchange interactions up to third-nearest neighbors within the honeycomb lattice. The exceptional existence of a limited magnetic correlation length along the c axis (perpendicular to the honeycomb layers in the a b planes) has been found even at 1.8 K, well below the TN˜24.8 K . The observed limited correlation along the c axis is explained by the disorder distribution of the Na ions within the intermediate layers between honeycomb planes. The reduced ordered moments mCo (1 )=2.77 (3 ) μB/C o2 + and mCo (2 )=2.45 (2 ) μB/C o2 + at 1.8 K reflect the persistence of spin fluctuations in the ordered state. Above TN˜24.8 K , the presence of short-range magnetic correlations, manifested by broad diffuse magnetic peaks in the diffraction patterns, has been found. Reverse Monte Carlo analysis of the experimental diffuse magnetic scattering data reveals that the spin correlations are mainly confined within the two-dimensional honeycomb layers (a b plane) with a correlation length of ˜12 Å at 25 K. The nature of the spin arrangements is found to be similar in both the short-range and long-range ordered magnetic states. This implies that the short-range correlation grows with decreasing temperature and leads to the zigzag AFM ordering at T ≤TN . The present study provides a comprehensive picture of the magnetic correlations over the temperature range above and below the TN and their relation to the crystal structure. The role of intermediate soft Na layers on the magnetic coupling between honeycomb planes is discussed.

  8. Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy

    NASA Astrophysics Data System (ADS)

    Tulipánt, Zoltán; Kardos, Adam; Somogyi, Gábor

    2017-11-01

    We present the computation of energy-energy correlation in e^+e^- collisions in the back-to-back region at next-to-next-to-leading logarithmic accuracy matched with the next-to-next-to-leading order perturbative prediction. We study the effect of the fixed higher-order corrections in a comparison of our results to LEP and SLC data. The next-to-next-to-leading order correction has a sizable impact on the extracted value of α S(M_Z), hence its inclusion is mandatory for a precise measurement of the strong coupling using energy-energy correlation.

  9. Absence of long-range order in the frustrated magnet SrDy2O4 due to trapped defects from a dimensionality crossover

    NASA Astrophysics Data System (ADS)

    Gauthier, N.; Fennell, A.; Prévost, B.; Uldry, A.-C.; Delley, B.; Sibille, R.; Désilets-Benoit, A.; Dabkowska, H. A.; Nilsen, G. J.; Regnault, L.-P.; White, J. S.; Niedermayer, C.; Pomjakushin, V.; Bianchi, A. D.; Kenzelmann, M.

    2017-04-01

    Magnetic frustration and low dimensionality can prevent long-range magnetic order and lead to exotic correlated ground states. SrDy2O4 consists of magnetic Dy3 + ions forming magnetically frustrated zigzag chains along the c axis and shows no long-range order to temperatures as low as T =60 mK. We carried out neutron scattering and ac magnetic susceptibility measurements using powder and single crystals of SrDy2O4 . Diffuse neutron scattering indicates strong one-dimensional (1D) magnetic correlations along the chain direction that can be qualitatively accounted for by the axial next-nearest-neighbor Ising model with nearest-neighbor and next-nearest-neighbor exchange J1=0.3 meV and J2=0.2 meV, respectively. Three-dimensional (3D) correlations become important below T*≈0.7 K. At T =60 mK, the short-range correlations are characterized by a putative propagation vector k1 /2=(0 ,1/2 ,1/2 ) . We argue that the absence of long-range order arises from the presence of slowly decaying 1D domain walls that are trapped due to 3D correlations. This stabilizes a low-temperature phase without long-range magnetic order, but with well-ordered chain segments separated by slowly moving domain walls.

  10. Effective equilibrium picture in the x y model with exponentially correlated noise

    NASA Astrophysics Data System (ADS)

    Paoluzzi, Matteo; Marconi, Umberto Marini Bettolo; Maggi, Claudio

    2018-02-01

    We study the effect of exponentially correlated noise on the x y model in the limit of small correlation time, discussing the order-disorder transition in the mean field and the topological transition in two dimensions. We map the steady states of the nonequilibrium dynamics into an effective equilibrium theory. In the mean field, the critical temperature increases with the noise correlation time τ , indicating that memory effects promote ordering. This finding is confirmed by numerical simulations. The topological transition temperature in two dimensions remains untouched. However, finite-size effects induce a crossover in the vortices proliferation that is confirmed by numerical simulations.

  11. Redundant correlation effect on personalized recommendation

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Han, Teng-Yue; Zhong, Li-Xin; Zhang, Zi-Ke; Chen, Guang

    2014-02-01

    The high-order redundant correlation effect is investigated for a hybrid algorithm of heat conduction and mass diffusion (HHM), through both heat conduction biased (HCB) and mass diffusion biased (MDB) correlation redundancy elimination processes. The HCB and MDB algorithms do not introduce any additional tunable parameters, but keep the simple character of the original HHM. Based on two empirical datasets, the Netflix and MovieLens, the HCB and MDB are found to show better recommendation accuracy for both the overall objects and the cold objects than the HHM algorithm. Our work suggests that properly eliminating the high-order redundant correlations can provide a simple and effective approach to accurate recommendation.

  12. Effective equilibrium picture in the xy model with exponentially correlated noise.

    PubMed

    Paoluzzi, Matteo; Marconi, Umberto Marini Bettolo; Maggi, Claudio

    2018-02-01

    We study the effect of exponentially correlated noise on the xy model in the limit of small correlation time, discussing the order-disorder transition in the mean field and the topological transition in two dimensions. We map the steady states of the nonequilibrium dynamics into an effective equilibrium theory. In the mean field, the critical temperature increases with the noise correlation time τ, indicating that memory effects promote ordering. This finding is confirmed by numerical simulations. The topological transition temperature in two dimensions remains untouched. However, finite-size effects induce a crossover in the vortices proliferation that is confirmed by numerical simulations.

  13. Characteristics of angular cross correlations studied by light scattering from two-dimensional microsphere films

    NASA Astrophysics Data System (ADS)

    Schroer, M. A.; Gutt, C.; Grübel, G.

    2014-07-01

    Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.

  14. Plenoptic imaging with second-order correlations of light

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Scarcelli, Giuliano; Garuccio, Augusto; D'Angelo, Milena

    2016-01-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable tridimensional imaging in a single shot. We demonstrate that it is possible to implement plenoptic imaging through second-order correlations of chaotic light, thus enabling to overcome the typical limitations of classical plenoptic devices.

  15. Extension and Application of High-Speed Digital Imaging Analysis Via Spatiotemporal Correlation and Eigenmode Analysis of Vocal Fold Vibration Before and After Polyp Excision.

    PubMed

    Wang, Jun-Sheng; Olszewski, Emily; Devine, Erin E; Hoffman, Matthew R; Zhang, Yu; Shao, Jun; Jiang, Jack J

    2016-08-01

    To evaluate the spatiotemporal correlation of vocal fold vibration using eigenmode analysis before and after polyp removal and explore the potential clinical relevance of spatiotemporal analysis of correlation length and entropy as quantitative voice parameters. We hypothesized that increased order in the vibrating signal after surgical intervention would decrease the eigenmode-based entropy and increase correlation length. Prospective case series. Forty subjects (23 males, 17 females) with unilateral (n = 24) or bilateral (n = 16) polyps underwent polyp removal. High-speed videoendoscopy was performed preoperatively and 2 weeks postoperatively. Spatiotemporal analysis was performed to determine entropy, quantification of signal disorder, correlation length, size, and spatially ordered structure of vocal fold vibration in comparison to full spatial consistency. The signal analyzed consists of the vibratory pattern in space and time derived from the high-speed video glottal area contour. Entropy decreased (Z = -3.871, P < .001) and correlation length increased (t = -8.913, P < .001) following polyp excision. The intraclass correlation coefficients (ICC) for correlation length and entropy were 0.84 and 0.93. Correlation length and entropy are sensitive to mass lesions. These parameters could potentially be used to augment subjective visualization after polyp excision when evaluating procedural efficacy. © The Author(s) 2016.

  16. The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers

    PubMed Central

    Nigmatullina, Yuliya; Hellyer, Peter J.; Nachev, Parashkev; Sharp, David J.; Seemungal, Barry M.

    2015-01-01

    Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and perceptual responses to whole-body yaw-plane step rotations were: (1) Briefer and (2) uncorrelated (controls' reflex and perception were correlated). Voxel-based morphometry showed a selective gray matter (GM) reduction in dancers' vestibular cerebellum correlating with ballet experience. Dancers' vestibular cerebellar GM density reduction was related to shorter perceptual responses (i.e. positively correlated) but longer VOR duration (negatively correlated). Contrastingly, controls' vestibular cerebellar GM density negatively correlated with perception and VOR. Diffusion-tensor imaging showed that cerebral cortex white matter (WM) microstructure correlated with vestibular perception but only in controls. In summary, dancers display vestibular perceptuo-reflex dissociation with the neuronatomical correlate localized to the vestibular cerebellum. Controls' robust vestibular perception correlated with a cortical WM network conspicuously absent in dancers. Since primary vestibular afferents synapse in the vestibular cerebellum, we speculate that a cerebellar gating of perceptual signals to cortical regions mediates the training-related attenuation of vestibular perception and perceptuo-reflex uncoupling. PMID:24072889

  17. Assessing correlations between the spatial distribution of the dose to the rectal wall and late rectal toxicity after prostate radiotherapy: an analysis of data from the MRC RT01 trial (ISRCTN 47772397)

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Sydes, Matthew R.; Dearnaley, David P.; Partridge, Mike

    2009-11-01

    Many studies have been performed to assess correlations between measures derived from dose-volume histograms and late rectal toxicities for radiotherapy of prostate cancer. The purpose of this study was to quantify correlations between measures describing the shape and location of the dose distribution and different outcomes. The dose to the rectal wall was projected on a two-dimensional map. In order to characterize the dose distribution, its centre of mass, longitudinal and lateral extent, and eccentricity were calculated at different dose levels. Furthermore, the dose-surface histogram (DSH) was determined. Correlations between these measures and seven clinically relevant rectal-toxicity endpoints were quantified by maximally selected standardized Wilcoxon rank statistics. The analysis was performed using data from the RT01 prostate radiotherapy trial. For some endpoints, the shape of the dose distribution is more strongly correlated with the outcome than simple DSHs. Rectal bleeding was most strongly correlated with the lateral extent of the dose distribution. For loose stools, the strongest correlations were found for longitudinal extent; proctitis was most strongly correlated with DSH. For the other endpoints no statistically significant correlations could be found. The strengths of the correlations between the shape of the dose distribution and outcome differed considerably between the different endpoints. Due to these significant correlations, it is desirable to use shape-based tools in order to assess the quality of a dose distribution.

  18. Correlated bursts and the role of memory range

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Perotti, Juan I.; Kaski, Kimmo; Kertész, János

    2015-08-01

    Inhomogeneous temporal processes in natural and social phenomena have been described by bursts that are rapidly occurring events within short time periods alternating with long periods of low activity. In addition to the analysis of heavy-tailed interevent time distributions, higher-order correlations between interevent times, called correlated bursts, have been studied only recently. As the underlying mechanism behind such correlated bursts is far from being fully understood, we devise a simple model for correlated bursts using a self-exciting point process with a variable range of memory. Whether a new event occurs is stochastically determined by a memory function that is the sum of decaying memories of past events. In order to incorporate the noise and/or limited memory capacity of systems, we apply two memory loss mechanisms: a fixed number or a variable number of memories. By analysis and numerical simulations, we find that too much memory effect may lead to a Poissonian process, implying that there exists an intermediate range of memory effect to generate correlated bursts comparable to empirical findings. Our conclusions provide a deeper understanding of how long-range memory affects correlated bursts.

  19. Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring.

    PubMed

    Zecchin, Chiara; Facchinetti, Andrea; Sparacino, Giovanni; Dalla Man, Chiara; Manohar, Chinmay; Levine, James A; Basu, Ananda; Kudva, Yogish C; Cobelli, Claudio

    2013-10-01

    In type 1 diabetes mellitus (T1DM), physical activity (PA) lowers the risk of cardiovascular complications but hinders the achievement of optimal glycemic control, transiently boosting insulin action and increasing hypoglycemia risk. Quantitative investigation of relationships between PA-related signals and glucose dynamics, tracked using, for example, continuous glucose monitoring (CGM) sensors, have been barely explored. In the clinic, 20 control and 19 T1DM subjects were studied for 4 consecutive days. They underwent low-intensity PA sessions daily. PA was tracked by the PA monitoring system (PAMS), a system comprising accelerometers and inclinometers. Variations on glucose dynamics were tracked estimating first- and second-order time derivatives of glucose concentration from CGM via Bayesian smoothing. Short-time effects of PA on glucose dynamics were quantified through the partial correlation function in the interval (0, 60 min) after starting PA. Correlation of PA with glucose time derivatives is evident. In T1DM, the negative correlation with the first-order glucose time derivative is maximal (absolute value) after 15 min of PA, whereas the positive correlation is maximal after 40-45 min. The negative correlation between the second-order time derivative and PA is maximal after 5 min, whereas the positive correlation is maximal after 35-40 min. Control subjects provided similar results but with positive and negative correlation peaks anticipated of 5 min. Quantitative information on correlation between mild PA and short-term glucose dynamics was obtained. This represents a preliminary important step toward incorporation of PA information in more realistic physiological models of the glucose-insulin system usable in T1DM simulators, in development of closed-loop artificial pancreas control algorithms, and in CGM-based prediction algorithms for generation of hypoglycemic alerts.

  20. Theory of population coupling and applications to describe high order correlations in large populations of interacting neurons

    NASA Astrophysics Data System (ADS)

    Huang, Haiping

    2017-03-01

    To understand the collective spiking activity in neuronal populations, it is essential to reveal basic circuit variables responsible for these emergent functional states. Here, I develop a mean field theory for the population coupling recently proposed in the studies of the visual cortex of mouse and monkey, relating the individual neuron activity to the population activity, and extend the original form to the second order, relating neuron-pair’s activity to the population activity, to explain the high order correlations observed in the neural data. I test the computational framework on the salamander retinal data and the cortical spiking data of behaving rats. For the retinal data, the original form of population coupling and its advanced form can explain a significant fraction of two-cell correlations and three-cell correlations, respectively. For the cortical data, the performance becomes much better, and the second order population coupling reveals non-local effects in local cortical circuits.

  1. Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates

    DOE PAGES

    Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.; ...

    2017-08-01

    Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less

  2. Method for suppressing noise in measurements

    NASA Technical Reports Server (NTRS)

    Carson, Paul J. (Inventor); Madsen, Louis A. (Inventor); Leskowitz, Garett M. (Inventor); Weitekamp, Daniel P. (Inventor)

    2000-01-01

    Techniques of combining separate but correlated measurements to form a second-order or higher order correlation function to suppress the effects of noise in the initial condition of a system capable of retaining memory of an initial state of the system with a characteristic relaxation time. At least two separate measurements are obtained from the system. The temporal separation between the two separate measurements is preferably comparable to or less than the characteristic relaxation time and is adjusted to allow for a correlation between two measurements.

  3. Kinetic theory of coupled oscillators.

    PubMed

    Hildebrand, Eric J; Buice, Michael A; Chow, Carson C

    2007-02-02

    We present an approach for the description of fluctuations that are due to finite system size induced correlations in the Kuramoto model of coupled oscillators. We construct a hierarchy for the moments of the density of oscillators that is analogous to the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy in the kinetic theory of plasmas and gases. To calculate the lowest order system size effect, we truncate this hierarchy at second order and solve the resulting closed equations for the two-oscillator correlation function around the incoherent state. We use this correlation function to compute the fluctuations of the order parameter, including the effect of transients, and compare this computation with numerical simulations.

  4. Intergenerational Correlations in Educational Attainment: Birth Order and Family Size Effects Using Canadian Data

    ERIC Educational Resources Information Center

    Sen, Anindya; Clemente, Anthony

    2010-01-01

    We exploit the 1986, 1994, and 2001 waves of the Canadian general social surveys in order to estimate intergenerational correlations in education. The use of these specific data is important because of available information on the final educational attainment of survey respondents and both parents, as well as family size and birth order. OLS…

  5. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    NASA Astrophysics Data System (ADS)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  6. Assessing the utility of gene co-expression stability in combination with correlation in the analysis of protein-protein interaction networks

    PubMed Central

    2011-01-01

    Background Gene co-expression, in the form of a correlation coefficient, has been valuable in the analysis, classification and prediction of protein-protein interactions. However, it is susceptible to bias from a few samples having a large effect on the correlation coefficient. Gene co-expression stability is a means of quantifying this bias, with high stability indicating robust, unbiased co-expression correlation coefficients. We assess the utility of gene co-expression stability as an additional measure to support the co-expression correlation in the analysis of protein-protein interaction networks. Results We studied the patterns of co-expression correlation and stability in interacting proteins with respect to their interaction promiscuity, levels of intrinsic disorder, and essentiality or disease-relatedness. Co-expression stability, along with co-expression correlation, acts as a better classifier of hub proteins in interaction networks, than co-expression correlation alone, enabling the identification of a class of hubs that are functionally distinct from the widely accepted transient (date) and obligate (party) hubs. Proteins with high levels of intrinsic disorder have low co-expression correlation and high stability with their interaction partners suggesting their involvement in transient interactions, except for a small group that have high co-expression correlation and are typically subunits of stable complexes. Similar behavior was seen for disease-related and essential genes. Interacting proteins that are both disordered have higher co-expression stability than ordered protein pairs. Using co-expression correlation and stability, we found that transient interactions are more likely to occur between an ordered and a disordered protein while obligate interactions primarily occur between proteins that are either both ordered, or disordered. Conclusions We observe that co-expression stability shows distinct patterns in structurally and functionally different groups of proteins and interactions. We conclude that it is a useful and important measure to be used in concert with gene co-expression correlation for further insights into the characteristics of proteins in the context of their interaction network. PMID:22369639

  7. Evidence for collective phenomena in pp collisions

    NASA Astrophysics Data System (ADS)

    Chen, Zhenyu; CMS Collaboration

    2017-11-01

    Measurements of two- and multi-particle angular correlations in pp collisions at √{ s} = 5, 7, and 13 TeV are presented. The data, corresponding to integrated luminosities of 1.0 pb-1 (5 TeV), 6.2 pb-1 (7 TeV), and 0.7 pb-1 (13 TeV), were collected using the CMS detector at the LHC. The second-order (v2) and third-order (v3) azimuthal anisotropy harmonics of unidentified charged particles, as well as v2 of Ks0 and Λ / Λ ‾ particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v2 values of charged hadrons (mostly pions), Ks0, and Λ / Λ ‾ at pT ≲ 2 GeV /c. The v2 signals are also extracted from four- and six-particle correlations for 13 TeV pp collisions, with comparable magnitude to those from two-particle correlations. These observations strongly support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.

  8. Characterizing multivariate decoding models based on correlated EEG spectral features.

    PubMed

    McFarland, Dennis J

    2013-07-01

    Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Combining symmetry collective states with coupled-cluster theory: Lessons from the Agassi model Hamiltonian

    NASA Astrophysics Data System (ADS)

    Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.

    2017-06-01

    The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.

  10. Auxiliary basis sets for density-fitting second-order Møller-Plesset perturbation theory: weighted core-valence correlation consistent basis sets for the 4d elements Y-Pd.

    PubMed

    Hill, J Grant

    2013-09-30

    Auxiliary basis sets (ABS) specifically matched to the cc-pwCVnZ-PP and aug-cc-pwCVnZ-PP orbital basis sets (OBS) have been developed and optimized for the 4d elements Y-Pd at the second-order Møller-Plesset perturbation theory level. Calculation of the core-valence electron correlation energies for small to medium sized transition metal complexes demonstrates that the error due to the use of these new sets in density fitting is three to four orders of magnitude smaller than that due to the OBS incompleteness, and hence is considered negligible. Utilizing the ABSs in the resolution-of-the-identity component of explicitly correlated calculations is also investigated, where it is shown that i-type functions are important to produce well-controlled errors in both integrals and correlation energy. Benchmarking at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations level indicates impressive convergence with respect to basis set size for the spectroscopic constants of 4d monofluorides; explicitly correlated double-ζ calculations produce results close to conventional quadruple-ζ, and triple-ζ is within chemical accuracy of the complete basis set limit. Copyright © 2013 Wiley Periodicals, Inc.

  11. Systematic studies of correlations between different order flow harmonics in Pb-Pb collisions at √{sNN}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Adam, J.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, A.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. R.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dukhishyam, M.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Hernandez, E. G.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kreis, L.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Luhder, J. R.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matuoka, P. F. T.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Nag, D.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Schaefer, B.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silaeva, S.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Torres, S. R.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration

    2018-02-01

    The correlations between event-by-event fluctuations of anisotropic flow harmonic amplitudes have been measured in Pb-Pb collisions at √{sNN}=2.76 TeV with the ALICE detector at the Large Hadron Collider. The results are reported in terms of multiparticle correlation observables dubbed symmetric cumulants. These observables are robust against biases originating from nonflow effects. The centrality dependence of correlations between the higher order harmonics (the quadrangular v4 and pentagonal v5 flow) and the lower order harmonics (the elliptic v2 and triangular v3 flow) is presented. The transverse momentum dependences of correlations between v3 and v2 and between v4 and v2 are also reported. The results are compared to calculations from viscous hydrodynamics and a multiphase transport (AMPT) model calculations. The comparisons to viscous hydrodynamic models demonstrate that the different order harmonic correlations respond differently to the initial conditions and the temperature dependence of the ratio of shear viscosity to entropy density (η /s ) . A small average value of η /s is favored independent of the specific choice of initial conditions in the models. The calculations with the AMPT initial conditions yield results closest to the measurements. Correlations among the magnitudes of v2, v3, and v4 show moderate pT dependence in midcentral collisions. This might be an indication of possible viscous corrections to the equilibrium distribution at hadronic freeze-out, which might help to understand the possible contribution of bulk viscosity in the hadronic phase of the system. Together with existing measurements of individual flow harmonics, the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.

  12. Systematic studies of correlations between different order flow harmonics in Pb-Pb collisions at s NN = 2.76 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, S.; Adam, J.; Adamová, D.

    The correlations between event-by-event fluctuations of anisotropic flow harmonic amplitudes have been measured in Pb-Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=2.76 TeV with the ALICE detector at the Large Hadron Collider. The results are reported in terms of multiparticle correlation observables dubbed symmetric cumulants. These observables are robust against biases originating from nonflow effects. The centrality dependence of correlations between the higher order harmonics (the quadrangular v 4 and pentagonal v 5 flow) and the lower order harmonics (the elliptic v 2 and triangular v 3 flow) is presented. The transverse momentum dependences of correlations between v 3 and v 2 and between v 4 and v 2 are also reported. The results are compared to calculations from viscous hydrodynamics and a multiphase transport (AMPT) model calculations. The comparisons to viscous hydrodynamic models demonstrate that the different order harmonic correlations respond differently to the initial conditions and the temperature dependence of the ratio of shear viscosity to entropy density (η/s). A small average value of η/s is favored independent of the specific choice of initial conditions in the models. The calculations with the AMPT initial conditions yield results closest to the measurements. Correlations among the magnitudes of v 2, v 3, and v 4 show moderate p T dependence in midcentral collisions. This might be an indication of possible viscous corrections to the equilibrium distribution at hadronic freeze-out, which might help to understand the possible contribution of bulk viscosity in the hadronic phase of the system. Lastly, together with existing measurements of individual flow harmonics, the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.« less

  13. Systematic studies of correlations between different order flow harmonics in Pb-Pb collisions at s NN = 2.76 TeV

    DOE PAGES

    Acharya, S.; Adam, J.; Adamová, D.; ...

    2018-02-12

    The correlations between event-by-event fluctuations of anisotropic flow harmonic amplitudes have been measured in Pb-Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=2.76 TeV with the ALICE detector at the Large Hadron Collider. The results are reported in terms of multiparticle correlation observables dubbed symmetric cumulants. These observables are robust against biases originating from nonflow effects. The centrality dependence of correlations between the higher order harmonics (the quadrangular v 4 and pentagonal v 5 flow) and the lower order harmonics (the elliptic v 2 and triangular v 3 flow) is presented. The transverse momentum dependences of correlations between v 3 and v 2 and between v 4 and v 2 are also reported. The results are compared to calculations from viscous hydrodynamics and a multiphase transport (AMPT) model calculations. The comparisons to viscous hydrodynamic models demonstrate that the different order harmonic correlations respond differently to the initial conditions and the temperature dependence of the ratio of shear viscosity to entropy density (η/s). A small average value of η/s is favored independent of the specific choice of initial conditions in the models. The calculations with the AMPT initial conditions yield results closest to the measurements. Correlations among the magnitudes of v 2, v 3, and v 4 show moderate p T dependence in midcentral collisions. This might be an indication of possible viscous corrections to the equilibrium distribution at hadronic freeze-out, which might help to understand the possible contribution of bulk viscosity in the hadronic phase of the system. Lastly, together with existing measurements of individual flow harmonics, the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.« less

  14. Higher-Order Factors of Personality: Do They Exist?

    PubMed Central

    Ashton, Michael C.; Lee, Kibeom; Goldberg, Lewis R.; de Vries, Reinout E.

    2010-01-01

    Scales that measure the Big Five personality factors are often substantially intercorrelated. These correlations are sometimes interpreted as implying the existence of two higher-order factors of personality. We show that correlations between measures of broad personality factors do not necessarily imply the existence of higher-order factors, and might instead be due to variables that represent same-signed blends of orthogonal factors. Therefore, the hypotheses of higher-order factors and blended variables can only be tested with data on lower-level personality variables that define the personality factors. We compared the higher-order factor model and the blended variable model in three participant samples using the Big Five Aspect Scales, and found better fit for the latter model. In other analyses using the HEXACO Personality Inventory, we identified mutually uncorrelated markers of six personality factors. We conclude that correlations between personality factor scales can be explained without postulating any higher-order dimensions of personality. PMID:19458345

  15. Hierarchal Genetic Stratigraphy: A Framework for Paleoceanography

    NASA Astrophysics Data System (ADS)

    Busch, R. M.; West, R. R.

    1987-04-01

    A detailed, genetic stratigraphic framework for paleoceanographic studies can be derived by describing, correlating, interpreting, and predicting stratigraphic sequences relative to a hierarchy of their constituent time-stratigraphic transgressive-regressive units ("T-R units"). T-R unit hierarchies are defined and correlated using lithostratigraphic and paleoecologic data, but correlations can be enhanced or "checked" (tested to confirm or deny) with objective biostratigraphic, magnetostratigraphic, or chemostratigraphic data. Such chronostratigraphies can then be bracketed by radiometric ages, so that average periodicities for T-R units can be calculated and a hierarchal geochronology derived. T-R units are inferred to be the net depositional result of eustatic cycles of sea level change and can be differentiated from autocyclic deepening-shallowing units because the latter are noncorrelative intrabasinally. Boundaries between T-R units are conformable or unconformable "genetic surfaces" of two types: transgressive surfaces and "climate change surfaces". The latter are useful for correlating minor transgressive phases through nonmarine intervals, thereby deriving information linking paleoclimatic and paleoceanographic processes. Permo-Carboniferous sequences can be analyzed relative to a hierarchy of six scales of genetic T-R units having periodicities of 225-300 m.y. (first order), 20-90 m.y. (second order), 7-13 m.y. (third-order), 0.6-3.6 m.y. (fourth order), 300-500 × 10³ years (fifth order), and 50-130 × 10³ years or less (sixth-order). Paleogeographic maps for the time of maximum transgression ("transgressive apex") of successive fifth-order T-R units (5-25 m thick) in the Glenshaw Formation (Upper Pennsylvanian, Northern Appalachian Basin) delineate delta lobes, embayments, islands, and linear seaways. Relative extent of marine inundation on the fifth-order maps was used to delineate fourth-order T-R units, and the fourth-order T-R units constitute the transgressive half of a third-order T-R unit. This third-, fourth-, and fifth-order hierarchy is correlated more than 1200 km (750 miles) to the Western Interior "Basin," and is confirmed with limited objective biostratigraphy.

  16. Generation of Synthetic Spike Trains with Defined Pairwise Correlations

    PubMed Central

    Niebur, Ernst

    2008-01-01

    Recent technological advances as well as progress in theoretical understanding of neural systems have created a need for synthetic spike trains with controlled mean rate and pairwise cross-correlation. This report introduces and analyzes a novel algorithm for the generation of discretized spike trains with arbitrary mean rates and controlled cross correlation. Pairs of spike trains with any pairwise correlation can be generated, and higher-order correlations are compatible with common synaptic input. Relations between allowable mean rates and correlations within a population are discussed. The algorithm is highly efficient, its complexity increasing linearly with the number of spike trains generated and therefore inversely with the number of cross-correlated pairs. PMID:17521277

  17. Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions.

    PubMed

    Veis, Libor; Antalík, Andrej; Brabec, Jiří; Neese, Frank; Legeza, Örs; Pittner, Jiří

    2016-10-03

    In the past decade, the quantum chemical version of the density matrix renormalization group (DMRG) method has established itself as the method of choice for calculations of strongly correlated molecular systems. Despite its favorable scaling, it is in practice not suitable for computations of dynamic correlation. We present a novel method for accurate "post-DMRG" treatment of dynamic correlation based on the tailored coupled cluster (CC) theory in which the DMRG method is responsible for the proper description of nondynamic correlation, whereas dynamic correlation is incorporated through the framework of the CC theory. We illustrate the potential of this method on prominent multireference systems, in particular, N 2 and Cr 2 molecules and also oxo-Mn(Salen), for which we have performed the first post-DMRG computations in order to shed light on the energy ordering of the lowest spin states.

  18. Principal regression analysis and the index leverage effect

    NASA Astrophysics Data System (ADS)

    Reigneron, Pierre-Alain; Allez, Romain; Bouchaud, Jean-Philippe

    2011-09-01

    We revisit the index leverage effect, that can be decomposed into a volatility effect and a correlation effect. We investigate the latter using a matrix regression analysis, that we call ‘Principal Regression Analysis' (PRA) and for which we provide some analytical (using Random Matrix Theory) and numerical benchmarks. We find that downward index trends increase the average correlation between stocks (as measured by the most negative eigenvalue of the conditional correlation matrix), and makes the market mode more uniform. Upward trends, on the other hand, also increase the average correlation between stocks but rotates the corresponding market mode away from uniformity. There are two time scales associated to these effects, a short one on the order of a month (20 trading days), and a longer time scale on the order of a year. We also find indications of a leverage effect for sectorial correlations as well, which reveals itself in the second and third mode of the PRA.

  19. Hedging Your Bets by Learning Reward Correlations in the Human Brain

    PubMed Central

    Wunderlich, Klaus; Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.

    2011-01-01

    Summary Human subjects are proficient at tracking the mean and variance of rewards and updating these via prediction errors. Here, we addressed whether humans can also learn about higher-order relationships between distinct environmental outcomes, a defining ecological feature of contexts where multiple sources of rewards are available. By manipulating the degree to which distinct outcomes are correlated, we show that subjects implemented an explicit model-based strategy to learn the associated outcome correlations and were adept in using that information to dynamically adjust their choices in a task that required a minimization of outcome variance. Importantly, the experimentally generated outcome correlations were explicitly represented neuronally in right midinsula with a learning prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show that the human brain represents higher-order correlation structures between rewards, a core adaptive ability whose immediate benefit is optimized sampling. PMID:21943609

  20. Importance of dispersion and electron correlation in ab initio protein folding.

    PubMed

    He, Xiao; Fusti-Molnar, Laszlo; Cui, Guanglei; Merz, Kenneth M

    2009-04-16

    Dispersion is well-known to be important in biological systems, but the effect of electron correlation in such systems remains unclear. In order to assess the relationship between the structure of a protein and its electron correlation energy, we employed both full system Hartree-Fock (HF) and second-order Møller-Plesset perturbation (MP2) calculations in conjunction with the Polarizable Continuum Model (PCM) on the native structures of two proteins and their corresponding computer-generated decoy sets. Because of the expense of the MP2 calculation, we have utilized the fragment molecular orbital method (FMO) in this study. We show that the sum of the Hartree-Fock (HF) energy and force field (LJ6)-derived dispersion energy (HF + LJ6) is well correlated with the energies obtained using second-order Møller-Plesset perturbation (MP2) theory. In one of the two examples studied, the correlation energy as well as the empirical dispersive energy term was able to discriminate between native and decoy structures. On the other hand, for the second protein we studied, neither the correlation energy nor dispersion energy showed discrimination capabilities; however, the ab initio MP2 energy and the HF+LJ6 both ranked the native structure correctly. Furthermore, when we randomly scrambled the Lennard-Jones parameters, the correlation between the MP2 energy and the sum of the HF energy and dispersive energy (HF+LJ6) significantly drops, which indicates that the choice of Lennard-Jones parameters is important.

  1. Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images

    PubMed Central

    Gutmann, Michael U.; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús

    2014-01-01

    Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation. PMID:24533049

  2. Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images.

    PubMed

    Gutmann, Michael U; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús

    2014-01-01

    Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.

  3. Covalent bond orders and atomic valences from correlated wavefunctions

    NASA Astrophysics Data System (ADS)

    Ángyán, János G.; Rosta, Edina; Surján, Péter R.

    1999-01-01

    A comparison is made between two alternative definitions for covalent bond orders: one derived from the exchange part of the two-particle density matrix and the other expressed as the correlation of fluctuations (covariance) of the number of electrons between the atomic centers. Although these definitions lead to identical formulae for mono-determinantal SCF wavefunctions, they predict different bond orders for correlated wavefunctions. It is shown that, in this case, the fluctuation-based definition leads to slightly lower values of the bond order than does the exchange-based definition, provided one uses an appropriate space-partitioning technique like that of Bader's topological theory of atoms in a molecule; however, use of Mulliken partitioning in this context leads to unphysical behaviour. The example of H 2 is discussed in detail.

  4. First-order reactant in homogeneous turbulence before the final period of decay. [contaminant fluctuations in chemical reaction

    NASA Technical Reports Server (NTRS)

    Kumar, P.; Patel, S. R.

    1974-01-01

    A method is described for studying theoretically the concentration fluctuations of a dilute contaminate undergoing a first-order chemical reaction. The method is based on Deissler's (1958) theory for homogeneous turbulence for times before the final period, and it follows the approach used by Loeffler and Deissler (1961) to study temperature fluctuations in homogeneous turbulence. Four-point correlation equations are obtained; it is assumed that terms containing fifth-order correlation are very small in comparison with those containing fourth-order correlations, and can therefore be neglected. A spectrum equation is obtained in a form which can be solved numerically, yielding the decay law for the concentration fluctuations in homogeneous turbulence for the period much before the final period of decay.

  5. Culture, emotion regulation, and adjustment.

    PubMed

    Matsumoto, David; Yoo, Seung Hee; Nakagawa, Sanae

    2008-06-01

    This article reports differences across 23 countries on 2 processes of emotion regulation--reappraisal and suppression. Cultural dimensions were correlated with country means on both and the relationship between them. Cultures that emphasized the maintenance of social order--that is, those that were long-term oriented and valued embeddedness and hierarchy--tended to have higher scores on suppression, and reappraisal and suppression tended to be positively correlated. In contrast, cultures that minimized the maintenance of social order and valued individual Affective Autonomy and Egalitarianism tended to have lower scores on Suppression, and Reappraisal and Suppression tended to be negatively correlated. Moreover, country-level emotion regulation was significantly correlated with country-level indices of both positive and negative adjustment. (PsycINFO Database Record (c) 2008 APA, all rights reserved).

  6. Three-particle correlation functions of quasi-two-dimensional one-component and binary colloid suspensions.

    PubMed

    Ho, Hau My; Lin, Binhua; Rice, Stuart A

    2006-11-14

    We report the results of experimental determinations of the triplet correlation functions of quasi-two-dimensional one-component and binary colloid suspensions in which the colloid-colloid interaction is short ranged. The suspensions studied range in density from modestly dilute to solid. The triplet correlation function of the one-component colloid system reveals extensive ordering deep in the liquid phase. At the same density the ordering of the larger diameter component in a binary colloid system is greatly diminished by a very small amount of the smaller diameter component. The possible utilization of information contained in the triplet correlation function in the theory of melting of a quasi-two-dimensional system is briefly discussed.

  7. Study on power grid characteristics in summer based on Linear regression analysis

    NASA Astrophysics Data System (ADS)

    Tang, Jin-hui; Liu, You-fei; Liu, Juan; Liu, Qiang; Liu, Zhuan; Xu, Xi

    2018-05-01

    The correlation analysis of power load and temperature is the precondition and foundation for accurate load prediction, and a great deal of research has been made. This paper constructed the linear correlation model between temperature and power load, then the correlation of fault maintenance work orders with the power load is researched. Data details of Jiangxi province in 2017 summer such as temperature, power load, fault maintenance work orders were adopted in this paper to develop data analysis and mining. Linear regression models established in this paper will promote electricity load growth forecast, fault repair work order review, distribution network operation weakness analysis and other work to further deepen the refinement.

  8. High-order nonuniformly correlated beams

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Wang, Fei; Cai, Yangjian

    2018-02-01

    We have introduced a class of partially coherent beams with spatially varying correlations named high-order nonuniformly correlated (HNUC) beams, as an extension of conventional nonuniformly correlated (NUC) beams. Such beams bring a new parameter (mode order) which is used to tailor the spatial coherence properties. The behavior of the spectral density of the HNUC beams on propagation has been investigated through numerical examples with the help of discrete model decomposition and fast Fourier transform (FFT) algorithm. Our results reveal that by selecting the mode order appropriately, the more sharpened intensity maxima can be achieved at a certain propagation distance compared to that of the NUC beams, and the lateral shift of the intensity maxima on propagation is closed related to the mode order. Furthermore, analytical expressions for the r.m.s width and the propagation factor of the HNUC beams on free-space propagation are derived by means of Wigner distribution function. The influence of initial beam parameters on the evolution of the r.m.s width and the propagation factor, and the relation between the r.m.s width and the occurring of the sharpened intensity maxima on propagation have been studied and discussed in detail.

  9. Intraclass Correlation Coefficients in Hierarchical Designs: Evaluation Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2011-01-01

    Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…

  10. Correlation among far-infrared reflection modes, crystal structures and dielectric properties of Ba(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}–CaTiO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Feng, E-mail: sf751106@sina.com.cn; Sun, Haiqing; Liu, Hongquan

    Highlights: • Crystal symmetry decreases with CT concentration from cubic to hexagonal structure. • Lattice constants as well as the ordered degree change with CT concentration. • Ordered structures turn from 1:1 to 1:2 ordering with change of crystal structures. • There is a correlation between FIR phonon modes and dielectric properties. • There is a correlation between FIR phonon modes and crystal structures. - Abstract: Ba(Zn{sub 1/3}Nb{sub 2/3})O{sub 3} (BZN)–CaTiO{sub 3} (CT) microwave dielectric ceramics were synthesized at 1395 °C for 4 h using conventional solid-state sintering technique with different CT contents. The ceramics were characterized by X-ray diffractionmore » (XRD) and far-infrared reflection (FIR) spectroscopy to evaluate correlations among crystal structures, dielectric properties, and infrared modes. XRD results showed that crystal symmetry decreased with increased CT concentration from cubic to hexagonal structure, and lattice constants and ordered degree changed accordingly. Ordered phases transformed from 1:1 to 1:2 ordered structure with crystal-structure change. FIR results demonstrated that two new IR active modes appeared at 300 cm{sup −1}, and another new mode appeared at 600 cm{sup −1} for the x ≥ 0.60 sample, which agreed with the change in crystal structures as confirmed by XRD results. Correlations between FIR modes and dielectric properties were established.« less

  11. Time needed to board an airplane: a power law and the structure behind it.

    PubMed

    Frette, Vidar; Hemmer, Per C

    2012-01-01

    A simple model for the boarding of an airplane is studied. Passengers have reserved seats but enter the airplane in arbitrary order. Queues are formed along the aisle, as some passengers have to wait to reach the seats for which they have reservation. We label a passenger by the number of his or her reserved seat. In most cases the boarding process is much slower than for the optimal situation, where passenger and seat orders are identical. We study this dynamical system by calculating the average boarding time when all permutations of N passengers are given equal weight. To first order, the boarding time for a given permutation (ordering) of the passengers is given by the number s of sequences of monotonically increasing values in the permutation. We show that the distribution of s is symmetric on [1,N], which leads to an average boarding time (N+1)/2. We have found an exact expression for s and have shown that the full distribution of s approaches a normal distribution as N increases. However, there are significant corrections to the first-order results, due to certain correlations between passenger ordering and the substrate (seat ordering). This occurs for some cases in which the sequence of the seats is partially mirrored in the passenger ordering. These cases with correlations have a boarding time that is lower than predicted by the first-order results. The large number of cases with reduced boarding times have been classified. We also give some indicative results on the geometry of the correlations, with sorting into geometry groups. With increasing N, both the number of correlation types and the number of cases belonging to each type increase rapidly. Using enumeration we find that as a result of these correlations the average boarding time behaves like N(α), with α≃0.69, as compared with α=1.0 for the first-order approximation. © 2012 American Physical Society

  12. Decomposition of conditional probability for high-order symbolic Markov chains.

    PubMed

    Melnik, S S; Usatenko, O V

    2017-07-01

    The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.

  13. Decomposition of conditional probability for high-order symbolic Markov chains

    NASA Astrophysics Data System (ADS)

    Melnik, S. S.; Usatenko, O. V.

    2017-07-01

    The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.

  14. Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick

    The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a fewmore » orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. In conclusion, the method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.« less

  15. Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms

    DOE PAGES

    Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick

    2016-05-01

    The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a fewmore » orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. In conclusion, the method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.« less

  16. Automated Essay Scoring versus Human Scoring: A Correlational Study

    ERIC Educational Resources Information Center

    Wang, Jinhao; Brown, Michelle Stallone

    2008-01-01

    The purpose of the current study was to analyze the relationship between automated essay scoring (AES) and human scoring in order to determine the validity and usefulness of AES for large-scale placement tests. Specifically, a correlational research design was used to examine the correlations between AES performance and human raters' performance.…

  17. The Correlation between School Managers' Communication Skills and School Culture

    ERIC Educational Resources Information Center

    Sabanci, Ali; Sahin, Ahmet; Sönmez, Melek Alev; Yilmaz, Ozan

    2016-01-01

    The purpose of this study was to explore the correlation between school administrators' communication skills and school culture. This research was conducted as a survey using a descriptive method in order to ascertain the views of school managers and teachers about the correlation between school managers' communication skills and school culture in…

  18. On hierarchical solutions to the BBGKY hierarchy

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1988-01-01

    It is thought that the gravitational clustering of galaxies in the universe may approach a scale-invariant, hierarchical form in the small separation, large-clustering regime. Past attempts to solve the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy in this regime have assumed a certain separable hierarchical form for the higher order correlation functions of galaxies in phase space. It is shown here that such separable solutions to the BBGKY equations must satisfy the condition that the clustered component of the solution has cluster-cluster correlations equal to galaxy-galaxy correlations to all orders. The solutions also admit the presence of an arbitrary unclustered component, which plays no dyamical role in the large-clustering regime. These results are a particular property of the specific separable model assumed for the correlation functions in phase space, not an intrinsic property of spatially hierarchical solutions to the BBGKY hierarchy. The observed distribution of galaxies does not satisfy the required conditions. The disagreement between theory and observation may be traced, at least in part, to initial conditions which, if Gaussian, already have cluster correlations greater than galaxy correlations.

  19. Structuring Stokes correlation functions using vector-vortex beam

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Anwar, Ali; Singh, R. P.

    2018-01-01

    Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.

  20. Halo correlations in nonlinear cosmic density fields

    NASA Astrophysics Data System (ADS)

    Bernardeau, F.; Schaeffer, R.

    1999-09-01

    The question we address in this paper is the determination of the correlation properties of the dark matter halos appearing in cosmic density fields once they underwent a strongly nonlinear evolution induced by gravitational dynamics. A series of previous works have given indications that kind of non-Gaussian features are induced by nonlinear evolution in term of the high-order correlation functions. Assuming such patterns for the matter field, i.e. that the high-order correlation functions behave as products of two-body correlation functions, we derive the correlation properties of the halos, that are assumed to represent the correlation properties of galaxies or clusters. The hierarchical pattern originally induced by gravity is shown to be conserved for the halos. The strength of their correlations at any order varies, however, but is found to depend only on their internal properties, namely on the parameter x~ m/r(3-gamma ) where m is the mass of the halo, r its size and gamma is the power law index of the two-body correlation function. This internal parameter is seen to be close to the depth of the internal potential well of virialized objects. We were able to derive the explicit form of the generating function of the moments of the halo counts probability distribution function. In particular we show explicitly that, generically, S_P(x)-> P(P-2) in the rare halo limit. Various illustrations of our general results are presented. As a function of the properties of the underlying matter field, we construct the count probabilities for halos and in particular discuss the halo void probability. We evaluate the dependence of the halo mass function on the environment: within clusters, hierarchical clustering implies the higher masses are favored. These properties solely arise from what is a natural bias (ie, naturally induced by gravity) between the observed objects and the unseen matter field, and how it manifests itself depending on which selection effects are imposed.

  1. Entanglement Measures in Ion-Trap Quantum Simulators without Full Tomography

    DTIC Science & Technology

    2014-07-21

    t). This will allow us to efficiently compute correlations between ψ and ψ∗ in terms of standard expectation values in the enlarged space as follows...measure correlations of the form appearing in Eq. (2), with Θ a linear combination of tensorial products of Pauli matrices and identity operators...matrices will produce the desired correlation . Note that this protocol always results in a correlation of an odd number of Pauli matrices. In order to

  2. Correlates of gender and achievement in introductory algebra based physics

    NASA Astrophysics Data System (ADS)

    Smith, Rachel Clara

    The field of physics is heavily male dominated in America. Thus, half of the population of our country is underrepresented and underserved. The identification of factors that contribute to gender disparity in physics is necessary for educators to address the individual needs of students, and, in particular, the separate and specific needs of female students. In an effort to determine if any correlations could be established or strengthened between sex, gender identity, social network, algebra skill, scientific reasoning ability, and/or student attitude, a study was performed on a group of 82 students in an introductory algebra based physics course. The subjects each filled out a survey at the beginning of the semester of their first semester of algebra based physics. They filled out another survey at the end of that same semester. These surveys included physics content pretests and posttests, as well as questions about the students' habits, attitudes, and social networks. Correlates of posttest score were identified, in order of significance, as pretest score, emphasis on conceptual learning, preference for male friends, number of siblings (negatively correlated), motivation in physics, algebra score, and parents' combined education level. Number of siblings was also found to negatively correlate with, in order of significance, gender identity, preference for male friends, emphasis on conceptual learning, and motivation in physics. Preference for male friends was found to correlate with, in order of significance, emphasis on conceptual learning, gender identity, and algebra score. Also, gender identity was found to correlate with emphasis on conceptual learning, the strongest predictor of posttest score other than pretest score.

  3. More superimposition for contrast-modulated than luminance-modulated stimuli during binocular rivalry.

    PubMed

    Skerswetat, Jan; Formankiewicz, Monika A; Waugh, Sarah J

    2018-01-01

    Luminance-modulated noise (LM) and contrast-modulated noise (CM) gratings were presented with interocularly correlated, uncorrelated and anti-correlated binary noise to investigate their contributions to mixed percepts, specifically piecemeal and superimposition, during binocular rivalry. Stimuli were sine-wave gratings of 2 c/deg presented within 2 deg circular apertures. The LM stimulus contrast was 0.1 and the CM stimulus modulation depth was 1.0, equating to approximately 5 and 7 times detection threshold, respectively. Twelve 45 s trials, per noise configuration, were carried out. Fifteen participants with normal vision indicated via button presses whether an exclusive, piecemeal or superimposed percept was seen. For all noise conditions LM stimuli generated more exclusive visibility, and lower proportions of superimposition. CM stimuli led to greater proportions and longer periods of superimposition. For both stimulus types, correlated interocular noise generated more superimposition than did anti- or uncorrelated interocular noise. No significant effect of stimulus type (LM vs CM) or noise configuration (correlated, uncorrelated, anti-correlated) on piecemeal perception was found. Exclusive visibility was greater in proportion, and perceptual changes more numerous, during binocular rivalry for CM stimuli when interocular noise was not correlated. This suggests that mutual inhibition, initiated by non-correlated noise CM gratings, occurs between neurons processing luminance noise (first-order component), as well as those processing gratings (second-order component). Therefore, first- and second-order components can contribute to overall binocular rivalry responses. We suggest the addition of a new well to the current energy landscape model for binocular rivalry that takes superimposition into account. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of high-order correlations on personalized recommendations for bipartite networks

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Zhou, Tao; Che, Hong-An; Wang, Bing-Hong; Zhang, Yi-Cheng

    2010-02-01

    In this paper, we introduce a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the MCF, instead of the cosine similarity index, the user-user correlations are obtained by a diffusion process. Furthermore, by considering the second-order correlations, we design an effective algorithm that depresses the influence of mainstream preferences. Simulation results show that the algorithmic accuracy, measured by the average ranking score, is further improved by 20.45% and 33.25% in the optimal cases of MovieLens and Netflix data. More importantly, the optimal value λ depends approximately monotonously on the sparsity of the training set. Given a real system, we could estimate the optimal parameter according to the data sparsity, which makes this algorithm easy to be applied. In addition, two significant criteria of algorithmic performance, diversity and popularity, are also taken into account. Numerical results show that as the sparsity increases, the algorithm considering the second-order correlation can outperform the MCF simultaneously in all three criteria.

  5. Incoherent coincidence imaging of space objects

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Gu, Guohua

    2016-10-01

    Incoherent Coincidence Imaging (ICI), which is based on the second or higher order correlation of fluctuating light field, has provided great potentialities with respect to standard conventional imaging. However, the deployment of reference arm limits its practical applications in the detection of space objects. In this article, an optical aperture synthesis with electronically connected single-pixel photo-detectors was proposed to remove the reference arm. The correlation in our proposed method is the second order correlation between the intensity fluctuations observed by any two detectors. With appropriate locations of single-pixel detectors, this second order correlation is simplified to absolute-square Fourier transform of source and the unknown object. We demonstrate the image recovery with the Gerchberg-Saxton-like algorithms and investigate the reconstruction quality of our approach. Numerical experiments has been made to show that both binary and gray-scale objects can be recovered. This proposed method provides an effective approach to promote detection of space objects and perhaps even the exo-planets.

  6. Intensity-intensity correlations as a probe of interferences under conditions of noninterference in the intensity

    NASA Astrophysics Data System (ADS)

    Agarwal, G. S.; von Zanthier, J.; Skornia, C.; Walther, H.

    2002-05-01

    The different behavior of first-order interferences and second-order correlations are investigated for the case of two coherently excited atoms. For intensity measurements this problem is in many respects equivalent to Young's double-slit experiment and was investigated in an experiment by Eichmann et al. [Phys. Rev. Lett. 70, 2359 (1993)] and later analyzed in detail by Itano et al. [Phys. Rev. A 57, 4176 (1998)]. Our results show that in cases where the intensity interferences disappear the intensity-intensity correlations can display an interference pattern with a visibility of up to 100%. The contrast depends on the polarization selected for the detection and is independent of the strength of the driving field. The nonclassical nature of the calculated intensity-intensity correlations is also discussed.

  7. An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Cooper, J. E.; Wright, J. R.

    1987-01-01

    A modification to the Eigensystem Realization Algorithm (ERA) for modal parameter identification is presented in this paper. The ERA minimum order realization approach using singular value decomposition is combined with the philosophy of the Correlation Fit method in state space form such that response data correlations rather than actual response values are used for modal parameter identification. This new method, the ERA using data correlations (ERA/DC), reduces bias errors due to noise corruption significantly without the need for model overspecification. This method is tested using simulated five-degree-of-freedom system responses corrupted by measurement noise. It is found for this case that, when model overspecification is permitted and a minimum order solution obtained via singular value truncation, the results from the two methods are of similar quality.

  8. Computer Simulation for Calculating the Second-Order Correlation Function of Classical and Quantum Light

    ERIC Educational Resources Information Center

    Facao, M.; Lopes, A.; Silva, A. L.; Silva, P.

    2011-01-01

    We propose an undergraduate numerical project for simulating the results of the second-order correlation function as obtained by an intensity interference experiment for two kinds of light, namely bunched light with Gaussian or Lorentzian power density spectrum and antibunched light obtained from single-photon sources. While the algorithm for…

  9. Random function theory revisited - Exact solutions versus the first order smoothing conjecture

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Parker, E. N.

    1975-01-01

    We remark again that the mathematical conjecture known as first order smoothing or the quasi-linear approximation does not give the correct dependence on correlation length (time) in many cases, although it gives the correct limit as the correlation length (time) goes to zero. In this sense, then, the method is unreliable.

  10. Bender Gestalt Test Performance and the Word Recognition Skills of Disadvantaged Children

    ERIC Educational Resources Information Center

    Baker, E. H.; Thurber, Steven

    1976-01-01

    The Bender Gestalt Test and the WRAT reading section were administered to 147 disadvantaged children. The zero-order correlation of -.62 was found to be moderated by the variable of age. For younger subjects, highly significant first- and second-order partial correlations were obtained with age and/or WISC information scores held constant. (Author)

  11. B B ¯ angular correlations at the LHC in the parton Reggeization approach merged with higher-order matrix elements

    NASA Astrophysics Data System (ADS)

    Karpishkov, A. V.; Nefedov, M. A.; Saleev, V. A.

    2017-11-01

    We calculate the angular distribution spectra between beauty (B ) and antibeauty (B ¯) mesons in proton-proton collisions in the leading order approximation of the parton Reggeization approach consistently merged with the next-to-leading order corrections from the emission of an additional hard gluon. To describe b-quark hadronization we use the universal scale-dependent parton-to-meson fragmentation functions extracted from the world e+e- annihilation data. We have obtained good agreement between our predictions and data from the CMS Collaboration at the energy √{S }=7 TeV for B B ¯ angular correlations within uncertainties and without free parameters. Predictions for analogous correlation observables at √{S }=13 TeV are provided.

  12. Multiphoton correlations in parametric down-conversion and their measurement in the pulsed regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, O A; Iskhakov, T Sh; Penin, A N

    2006-10-31

    We consider normalised intensity correlation functions (CFs) of different orders for light emitted via parametric down-conversion (PDC) and their dependence on the number of photons per mode. The main problem in measuring such correlation functions is their extremely small width, which considerably reduces their contrast. It is shown that if the radiation under study is modulated by a periodic sequence of pulses that are short compared to the CF width, no decrease in the contrast occurs. A procedure is proposed for measuring normalised CFs of various orders in the pulsed regime. For nanosecond-pulsed PDC radiation, normalised second-order CF is measuredmore » experimentally as a function of the mean photon number. (nonlinear optical phenomena)« less

  13. Structural and psychosocial correlates of birth order anomalies in schizophrenia and homicide.

    PubMed

    Schug, Robert A; Yang, Yaling; Raine, Adrian; Han, Chenbo; Liu, Jianghong

    2010-12-01

    Birth order--a unique index of both neurodevelopmental and/or psychosocial factors in the pathogenesis of psychiatric disorder--remains largely unexplored in violent schizophrenia. We examined whether murderers with schizophrenia would demonstrate birth order anomalies, distinguishing them from both nonviolent schizophrenia patients and murderers without schizophrenia. Self-report birth order, psychosocial history data (i.e., maternal birth age, family size, parental criminality, parental SES), and structural magnetic resonance imaging data were collected from normal controls, nonviolent schizophrenia patients, murderers with schizophrenia, murderers without schizophrenia, and murderers with psychiatric conditions other than schizophrenia at a brain hospital in Nanjing, China. Results indicated that murderers with schizophrenia were characterized by significantly increased (i.e., later) birth order compared with both nonviolent schizophrenia patients and murderers without schizophrenia. Additionally, birth order was negatively correlated with gray matter volume in key frontal subregions for schizophrenic murderers, and was negatively correlated with parental SES. Findings may suggest biological, psychosocial, or interactional trajectories which may lead to a homicidally violent outcome in schizophrenia.

  14. Comparative study of hadron- and γ-triggered azimuthal correlations in relativistic heavy-ion collisions

    DOE PAGES

    Ma, Guo -Lang; Wang, Xin -Nian

    2012-01-01

    In the framework of a multi-phase transport model, initial fluctuations in the transverse parton density lead to all orders of harmonic flows. Hadron-triggered azimuthal correlations include all contributions from harmonic flows, hot spots, and jet-medium excitations, which are isolated by using different initial conditions. We found that different physical components dominate different pseudorapidity ranges of dihadron correlations. Because γ-triggered azimuthal correlations can only be caused by jet-medium interactions, a comparative study of hadron- and γ -triggered azimuthal correlations can reveal more dynamics about jet-medium interactions.

  15. Orbital-occupancy versus charge ordering and the strength of electron correlations in electron-doped CaMnO3.

    PubMed

    Luo, Weidong; Franceschetti, Alberto; Varela, Maria; Tao, Jing; Pennycook, Stephen J; Pantelides, Sokrates T

    2007-07-20

    The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be governed by strong electron correlations. Here we report benchmark density-functional calculations in the spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped CaMnO(3). We find excellent agreement with all available data, while inclusion of strong correlations in the GGA+U scheme impairs this agreement. We demonstrate that formal oxidation states reflect only orbital occupancies, not charge transfer, and resolve outstanding controversies about charge ordering.

  16. Orbital-Occupancy versus Charge Ordering and the Strength of Electron Correlations in Electron-Doped CaMnO3

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Franceschetti, Alberto; Varela, Maria; Tao, Jing; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2007-07-01

    The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be governed by strong electron correlations. Here we report benchmark density-functional calculations in the spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped CaMnO3. We find excellent agreement with all available data, while inclusion of strong correlations in the GGA+U scheme impairs this agreement. We demonstrate that formal oxidation states reflect only orbital occupancies, not charge transfer, and resolve outstanding controversies about charge ordering.

  17. A generative spike train model with time-structured higher order correlations.

    PubMed

    Trousdale, James; Hu, Yu; Shea-Brown, Eric; Josić, Krešimir

    2013-01-01

    Emerging technologies are revealing the spiking activity in ever larger neural ensembles. Frequently, this spiking is far from independent, with correlations in the spike times of different cells. Understanding how such correlations impact the dynamics and function of neural ensembles remains an important open problem. Here we describe a new, generative model for correlated spike trains that can exhibit many of the features observed in data. Extending prior work in mathematical finance, this generalized thinning and shift (GTaS) model creates marginally Poisson spike trains with diverse temporal correlation structures. We give several examples which highlight the model's flexibility and utility. For instance, we use it to examine how a neural network responds to highly structured patterns of inputs. We then show that the GTaS model is analytically tractable, and derive cumulant densities of all orders in terms of model parameters. The GTaS framework can therefore be an important tool in the experimental and theoretical exploration of neural dynamics.

  18. Can Twitter Be a Source of Information on Allergy? Correlation of Pollen Counts with Tweets Reporting Symptoms of Allergic Rhinoconjunctivitis and Names of Antihistamine Drugs.

    PubMed

    Gesualdo, Francesco; Stilo, Giovanni; D'Ambrosio, Angelo; Carloni, Emanuela; Pandolfi, Elisabetta; Velardi, Paola; Fiocchi, Alessandro; Tozzi, Alberto E

    2015-01-01

    Pollen forecasts are in use everywhere to inform therapeutic decisions for patients with allergic rhinoconjunctivitis (ARC). We exploited data derived from Twitter in order to identify tweets reporting a combination of symptoms consistent with a case definition of ARC and those reporting the name of an antihistamine drug. In order to increase the sensitivity of the system, we applied an algorithm aimed at automatically identifying jargon expressions related to medical terms. We compared weekly Twitter trends with National Allergy Bureau weekly pollen counts derived from US stations, and found a high correlation of the sum of the total pollen counts from each stations with tweets reporting ARC symptoms (Pearson's correlation coefficient: 0.95) and with tweets reporting antihistamine drug names (Pearson's correlation coefficient: 0.93). Longitude and latitude of the pollen stations affected the strength of the correlation. Twitter and other social networks may play a role in allergic disease surveillance and in signaling drug consumptions trends.

  19. Long-Range Correlations Between Transmitted and Reected Fluxes of Electromagnetic Waves

    NASA Astrophysics Data System (ADS)

    Gorodnichev, E. E.; Kuzovlev, A. I.; Rogozkin, D. B.

    2017-12-01

    We study the long-range spatial correlations between intensity fluctuations in speckles formed by multiply scattered light. The correlation function between intensity fluctuations at the opposite boundaries of the slab are analyzed under the conditions of circular polarization memory. It shown that, until the scattered light is depolarized completely, the polarization and scalar contributions to the correlation function are of the same order of magnitude. As the slab thickness increases, their ratio falls off in inverse proportion to the thickness.

  20. Joint statistics of strongly correlated neurons via dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Deniz, Taşkın; Rotter, Stefan

    2017-06-01

    The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.

  1. Invited Paper - Density functional theory: coverage of dynamic and non-dynamic electron correlation effects

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter

    The electron correlation effects covered by density functional theory (DFT) can be assessed qualitatively by comparing DFT densities ρ(r) with suitable reference densities obtained with wavefunction theory (WFT) methods that cover typical electron correlation effects. The analysis of difference densities ρ(DFT)-ρ(WFT) reveals that LDA and GGA exchange (X) functionals mimic non-dynamic correlation effects in an unspecified way. It is shown that these long range correlation effects are caused by the self-interaction error (SIE) of standard X functionals. Self-interaction corrected (SIC) DFT exchange gives, similar to exact exchange, for the bonding region a delocalized exchange hole, and does not cover any correlation effects. Hence, the exchange SIE is responsible for the fact that DFT densities often resemble MP4 or MP2 densities. The correlation functional changes X-only DFT densities in a manner observed when higher order coupling effects between lower order N-electron correlation effects are included. Hybrid functionals lead to changes in the density similar to those caused by SICDFT, which simply reflects the fact that hybrid functionals have been developed to cover part of the SIE and its long range correlation effects in a balanced manner. In the case of spin-unrestricted DFT (UDFT), non-dynamic electron correlation effects enter the calculation both via the X functional and via the wavefunction, which may cause a double-counting of correlation effects. The use of UDFT in the form of permuted orbital and broken-symmetry DFT (PO-UDFT, BS-UDFT) can lead to reasonable descriptions of multireference systems provided certain conditions are fulfilled. More reliable, however, is a combination of DFT and WFT methods, which makes the routine description of multireference systems possible. The development of such methods implies a separation of dynamic and non-dynamic correlation effects. Strategies for accomplishing this goal are discussed in general and tested in practice for CAS (complete active space)-DFT.

  2. Multireference second order perturbation theory with a simplified treatment of dynamical correlation.

    PubMed

    Xu, Enhua; Zhao, Dongbo; Li, Shuhua

    2015-10-13

    A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.

  3. Balancing effort and information transmission during language acquisition: Evidence from word order and case marking

    PubMed Central

    Fedzechkina, Maryia; Newport, Elissa L.; Jaeger, T. Florian

    2015-01-01

    Across languages of the world, some grammatical patterns have been argued to be more common than expected by chance. These are sometimes referred to as (statistical) language universals. One such universal is the correlation between constituent order freedom and the presence of a case system in a language. Here we explore whether this correlation can be explained by a bias to balance production effort and informativity of cues to grammatical function. Two groups of learners were presented with miniature artificial languages containing optional case marking and either flexible or fixed constituent order. Learners of the flexible order language used case marking significantly more often. This result parallels the typological correlation between constituent order flexibility and the presence of case marking in a language and provides a possible explanation for the historical development of Old English to Modern English, from flexible constituent order with case marking to relatively fixed order without case marking. Additionally, learners of the flexible order language conditioned case marking on constituent order, using more case marking with the cross-linguistically less frequent order, again mirroring typological data. These results suggest that some cross-linguistic generalizations originate in functionally motivated biases operating during language learning. PMID:26901374

  4. Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) for spaceborne measurements of CO

    NASA Astrophysics Data System (ADS)

    Johnson, Brian R.; Kampe, Thomas U.; Cook, William B.; Miecznik, Grzegorz; Novelli, Paul C.; Snell, Hilary E.; Turner-Valle, Jennifer A.

    2003-11-01

    An instrument concept for an Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) has been developed for measuring tropospheric carbon monoxide (CO) from space. The concept is based upon a correlation technique similar in nature to multi-order Fabry-Perot (FP) interferometer or gas filter radiometer techniques, which simultaneously measure atmospheric emission from several infrared vibration-rotation lines of CO. Correlation techniques provide a multiplex advantage for increased throughput, high spectral resolution and selectivity necessary for profiling tropospheric CO. Use of unconventional multilayer interference filter designs leads to improvement in CO spectral line correlation compared with the traditional FP multi-order technique, approaching the theoretical performance of gas filter correlation radiometry. In this implementation, however, the gas cell is replaced with a simple, robust solid interference filter. In addition to measuring CO, the correlation filter technique can be applied to measurements of other important gases such as carbon dioxide, nitrous oxide and methane. Imaging the scene onto a 2-D detector array enables a limited range of spectral sampling owing to the field-angle dependence of the filter transmission function. An innovative anamorphic optical system provides a relatively large instrument field-of-view for imaging along the orthogonal direction across the detector array. An important advantage of the IMOFPS concept is that it is a small, low mass and high spectral resolution spectrometer having no moving parts. A small, correlation spectrometer like IMOFPS would be well suited for global observations of CO2, CO, and CH4 from low Earth or regional observations from Geostationary orbit. A prototype instrument is in development for flight demonstration on an airborne platform with potential applications to atmospheric chemistry, wild fire and biomass burning, and chemical dispersion monitoring.

  5. Factors Related to Drug Abuse in the Submarine Service. IV. Correlates of Permissiveness of Attitudes Toward Drug Abuse

    DTIC Science & Technology

    1974-07-23

    man’s home situation, the family composition and birth order similarly were unrelated; but, (5) there was some tendency for less permissive...criterion. The sociological literature contains numerous examples of correlation be- tween birth order and the presence or absence of a range of...recalled that an earlier NSMRL Report, presented 15 TABLE X. Relationship of Birth Order , Number and Sex of Siblings, and Size of Hometown to

  6. Defect ordering in YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6: Synthesis and characterization by neutron and electron diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Y. P.; Greedan, J. E.; O'Reilly, A. H.; Reimers, J. N.; Stager, C. V.; Post, M. L.

    1990-02-01

    Polycrystalline samples of YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6 were prepared by oxygen titration of YBa 2 Cu 3O 6.0 at 450°C followed by slow cooling to room temperature. Both samples showed evidence for the a' = 2a supercell in individual grains by electron diffraction as reported previously. In addition the superlattice was observed in neutron powder diffraction indicating that the bulk material is also well ordered. In this study the YBa 2Cu 3O 6.6 phase showed longer correlation lengths for ordering along both a* and b* than YBa 2Cu 3O 6.5. For the former compound the powder-averaged, sample-averaged a* correlation distance is 26A˚from neutron diffraction. Analysis of electron diffraction profiles on selected single crystals give correlation lengths along a*, b*, and c* of 100, 200, and 50A˚, respectively. Dark field imaging discloses the presence of striped, ordered domains elongated along b* with a distribution of sizes. Both neutron diffraction and dark field imaging indicate that the volume fraction of the ordered domains is about 50%. A correlation is noted between the Meissner Effect and the extent of defect ordering in the bulk samples of the two phases.

  7. Extension of local-type inequality for the higher order correlation functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suyama, Teruaki; Yokoyama, Shuichiro, E-mail: suyama@resceu.s.u-tokyo.ac.jp, E-mail: shu@a.phys.nagoya-u.ac.jp

    2011-07-01

    For the local-type primordial perturbation, it is known that there is an inequality between the bispectrum and the trispectrum. By using the diagrammatic method, we develop a general formalism to systematically construct the similar inequalities up to any order correlation function. As an application, we explicitly derive all the inequalities up to six and eight-point functions.

  8. The Ising model coupled to 2d orders

    NASA Astrophysics Data System (ADS)

    Glaser, Lisa

    2018-04-01

    In this article we make first steps in coupling matter to causal set theory in the path integral. We explore the case of the Ising model coupled to the 2d discrete Einstein Hilbert action, restricted to the 2d orders. We probe the phase diagram in terms of the Wick rotation parameter β and the Ising coupling j and find that the matter and the causal sets together give rise to an interesting phase structure. The couplings give rise to five different phases. The causal sets take on random or crystalline characteristics as described in Surya (2012 Class. Quantum Grav. 29 132001) and the Ising model can be correlated or uncorrelated on the random orders and correlated, uncorrelated or anti-correlated on the crystalline orders. We find that at least one new phase transition arises, in which the Ising spins push the causal set into the crystalline phase.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.

    Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less

  10. Interatomic interaction effects on second-order momentum correlations and Hong-Ou-Mandel interference of double-well-trapped ultracold fermionic atoms

    NASA Astrophysics Data System (ADS)

    Brandt, Benedikt B.; Yannouleas, Constantine; Landman, Uzi

    2018-05-01

    Identification and understanding of the evolution of interference patterns in two-particle momentum correlations as a function of the strength of interatomic interactions are important in explorations of the nature of quantum states of trapped particles. Together with the analysis of two-particle spatial correlations, they offer the prospect of uncovering fundamental symmetries and structure of correlated many-body states, as well as opening vistas into potential control and utilization of correlated quantum states as quantum-information resources. With the use of the second-order density matrix constructed via exact diagonalization of the microscopic Hamiltonian, and an analytic Hubbard-type model, we explore here the systematic evolution of characteristic interference patterns in the two-body momentum and spatial correlation maps of two entangled ultracold fermionic atoms in a double well, for the entire attractive- and repulsive-interaction range. We uncover quantum-statistics-governed bunching and antibunching, as well as interaction-dependent interference patterns, in the ground and excited states, and interpret our results in light of the Hong-Ou-Mandel interference physics, widely exploited in photon indistinguishability testing and quantum-information science.

  11. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4.

    PubMed

    Dean, M P M; Cao, Y; Liu, X; Wall, S; Zhu, D; Mankowsky, R; Thampy, V; Chen, X M; Vale, J G; Casa, D; Kim, Jungho; Said, A H; Juhas, P; Alonso-Mori, R; Glownia, J M; Robert, A; Robinson, J; Sikorski, M; Song, S; Kozina, M; Lemke, H; Patthey, L; Owada, S; Katayama, T; Yabashi, M; Tanaka, Yoshikazu; Togashi, T; Liu, J; Rayan Serrao, C; Kim, B J; Huber, L; Chang, C-L; McMorrow, D F; Först, M; Hill, J P

    2016-06-01

    Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.

  12. Towards a Rational Model for the Triple Velocity Correlations of Turbulence

    NASA Technical Reports Server (NTRS)

    Younis, B. A.; Gatski, T. B.; Speziale, C. G.

    1999-01-01

    This paper presents a rational approach to modelling the triple velocity correlations that appear in the transport equations for the Reynolds stresses. All existing models of these correlations have largely been formulated on phenomenological grounds and are defective in one important aspect: they all neglect to allow for the dependence of these correlations on the local gradients of mean velocity. The mathematical necessity for this dependence will be demonstrated in the paper. The present contribution lies in the novel use of Group Representation Theory to determine the most general tensorial form of these correlations in terms of all the second- and third-order tensor quantities that appear in the exact equations that govern their evolution. The requisite representation did not exist in the literature and therefore had to be developed specifically for this purpose by Professor G. F. Smith. The outcome of this work is a mathematical framework for the construction of algebraic, explicit, and rational models for the triple velocity correlations that are theoretically consistent and include all the correct dependencies. Previous models are reviewed, and all are shown to be an incomplete subset of this new representation, even to lowest order.

  13. No-Hypersignaling Principle

    NASA Astrophysics Data System (ADS)

    Dall'Arno, Michele; Brandsen, Sarah; Tosini, Alessandro; Buscemi, Francesco; Vedral, Vlatko

    2017-07-01

    A paramount topic in quantum foundations, rooted in the study of the Einstein-Podolsky-Rosen (EPR) paradox and Bell inequalities, is that of characterizing quantum theory in terms of the spacelike correlations it allows. Here, we show that to focus only on spacelike correlations is not enough: we explicitly construct a toy model theory that, while not contradicting classical and quantum theories at the level of spacelike correlations, still displays an anomalous behavior in its timelike correlations. We call this anomaly, quantified in terms of a specific communication game, the "hypersignaling" phenomena. We hence conclude that the "principle of quantumness," if it exists, cannot be found in spacelike correlations alone: nontrivial constraints need to be imposed also on timelike correlations, in order to exclude hypersignaling theories.

  14. No-Hypersignaling Principle.

    PubMed

    Dall'Arno, Michele; Brandsen, Sarah; Tosini, Alessandro; Buscemi, Francesco; Vedral, Vlatko

    2017-07-14

    A paramount topic in quantum foundations, rooted in the study of the Einstein-Podolsky-Rosen (EPR) paradox and Bell inequalities, is that of characterizing quantum theory in terms of the spacelike correlations it allows. Here, we show that to focus only on spacelike correlations is not enough: we explicitly construct a toy model theory that, while not contradicting classical and quantum theories at the level of spacelike correlations, still displays an anomalous behavior in its timelike correlations. We call this anomaly, quantified in terms of a specific communication game, the "hypersignaling" phenomena. We hence conclude that the "principle of quantumness," if it exists, cannot be found in spacelike correlations alone: nontrivial constraints need to be imposed also on timelike correlations, in order to exclude hypersignaling theories.

  15. Estimation of the simple correlation coefficient.

    PubMed

    Shieh, Gwowen

    2010-11-01

    This article investigates some unfamiliar properties of the Pearson product-moment correlation coefficient for the estimation of simple correlation coefficient. Although Pearson's r is biased, except for limited situations, and the minimum variance unbiased estimator has been proposed in the literature, researchers routinely employ the sample correlation coefficient in their practical applications, because of its simplicity and popularity. In order to support such practice, this study examines the mean squared errors of r and several prominent formulas. The results reveal specific situations in which the sample correlation coefficient performs better than the unbiased and nearly unbiased estimators, facilitating recommendation of r as an effect size index for the strength of linear association between two variables. In addition, related issues of estimating the squared simple correlation coefficient are also considered.

  16. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin

    2013-12-18

    A 10-parameter, range-separated hybrid (RSH), generalized gradient approximation (GGA) density functional with nonlocal correlation (VV10) is presented in this paper. Instead of truncating the B97-type power series inhomogeneity correction factors (ICF) for the exchange, same-spin correlation, and opposite-spin correlation functionals uniformly, all 16 383 combinations of the linear parameters up to fourth order (m = 4) are considered. These functionals are individually fit to a training set and the resulting parameters are validated on a primary test set in order to identify the 3 optimal ICF expansions. Through this procedure, it is discovered that the functional that performs best onmore » the training and primary test sets has 7 linear parameters, with 3 additional nonlinear parameters from range-separation and nonlocal correlation. The resulting density functional, ωB97X-V, is further assessed on a secondary test set, the parallel-displaced coronene dimer, as well as several geometry datasets. Finally and furthermore, the basis set dependence and integration grid sensitivity of ωB97X-V are analyzed and documented in order to facilitate the use of the functional.« less

  17. The effect of neighboring districts on body height of Polish conscripts.

    PubMed

    Gomula, Aleksandra; Koziel, Slawomir; Groth, Detlef; Bielicki, Tadeusz

    2017-04-01

    The aim of the study was to investigate the correlation of heights of conscripts living in neighboring districts in Poland. The study used 10% of a nationally representative sample of 26,178 males 18.5-19.5 years old examined during the National survey of Polish conscripts conducted in 2001. The sample represented all regions and social strata of the country and included 354 different districts within 16 voivodships (provinces). Analyses were performed with the R statistical software. A small but significant correlation (0.24, p < 0.0001) was observed for height between 1 st order neighboring districts. Correlations decreased with increased distances between neighboring districts, but remained significant for 7 th node neighbors (0.18, p < 0.0001). Regarding voivodships (provinces), average height showed a geographical trend from the northwest (relatively tall) to the southeast (relatively short), and the correlation was stronger for first order neighboring provinces (0.796, p < 0.001). This study revealed clusters of tall people and short people, providing a support for hypothesis of the community effect in height. Small correlations between 1 st order neighbors than in another country (Switzerland) may be associated with differences in geography, since in Poland there are no natural barriers (e.g., mountains) and road infrastructure is well-developed.

  18. Ordering statistics of four random walkers on a line

    NASA Astrophysics Data System (ADS)

    Helenbrook, Brian; ben-Avraham, Daniel

    2018-05-01

    We study the ordering statistics of four random walkers on the line, obtaining a much improved estimate for the long-time decay exponent of the probability that a particle leads to time t , Plead(t ) ˜t-0.91287850 , and that a particle lags to time t (never assumes the lead), Plag(t ) ˜t-0.30763604 . Exponents of several other ordering statistics for N =4 walkers are obtained to eight-digit accuracy as well. The subtle correlations between n walkers that lag jointly, out of a field of N , are discussed: for N =3 there are no correlations and Plead(t ) ˜Plag(t) 2 . In contrast, our results rule out the possibility that Plead(t ) ˜Plag(t) 3 for N =4 , although the correlations in this borderline case are tiny.

  19. Parallel auto-correlative statistics with VTK.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pebay, Philippe Pierre; Bennett, Janine Camille

    2013-08-01

    This report summarizes existing statistical engines in VTK and presents both the serial and parallel auto-correlative statistics engines. It is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k-means, and order statistics engines. The ease of use of the new parallel auto-correlative statistics engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the autocorrelative statistics engine.

  20. Relativistic coupled cluster theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian: Relativistic pair correlation energies of the Xe atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliav, E.; Kaldor, U.; Ishikawa, Y.

    1994-12-31

    Relativistic pair correlation energies of Xe were computed by employing a recently developed relativistic coupled cluster theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian. The matrix Dirac-Fock-Breit SCF and relativistic coupled cluster calculations were performed by means of expansion in basis sets of well-tempered Gaussian spinors. A detailed study of the pair correlation energies in Xe is performed, in order to investigate the effects of the low-frequency Breit interaction on the correlation energies of Xe. Nonadditivity of correlation and relativistic (particularly Breit) effects is discussed.

  1. Characterizing nonclassical correlations via local quantum Fisher information

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Li, Longsuo; Kumar, Asutosh; Wu, Junde

    2018-03-01

    We define two ways of quantifying the quantum correlations based on quantum Fisher information (QFI) in order to study the quantum correlations as a resource in quantum metrology. By investigating the hierarchy of measurement-induced Fisher information introduced in Lu et al. [X. M. Lu, S. Luo, and C. H. Oh, Phys. Rev. A 86, 022342 (2012), 10.1103/PhysRevA.86.022342], we show that the presence of quantum correlation can be confirmed by the difference of the Fisher information induced by the measurements of two hierarchies. In particular, the quantitative quantum correlations based on QFI coincide with the geometric discord for pure quantum states.

  2. Impurity Induced Phase Competition and Supersolidity

    NASA Astrophysics Data System (ADS)

    Karmakar, Madhuparna; Ganesh, R.

    2017-12-01

    Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.

  3. Separating method factors and higher order traits of the Big Five: a meta-analytic multitrait-multimethod approach.

    PubMed

    Chang, Luye; Connelly, Brian S; Geeza, Alexis A

    2012-02-01

    Though most personality researchers now recognize that ratings of the Big Five are not orthogonal, the field has been divided about whether these trait intercorrelations are substantive (i.e., driven by higher order factors) or artifactual (i.e., driven by correlated measurement error). We used a meta-analytic multitrait-multirater study to estimate trait correlations after common method variance was controlled. Our results indicated that common method variance substantially inflates trait correlations, and, once controlled, correlations among the Big Five became relatively modest. We then evaluated whether two different theories of higher order factors could account for the pattern of Big Five trait correlations. Our results did not support Rushton and colleagues' (Rushton & Irwing, 2008; Rushton et al., 2009) proposed general factor of personality, but Digman's (1997) α and β metatraits (relabeled by DeYoung, Peterson, and Higgins (2002) as Stability and Plasticity, respectively) produced viable fit. However, our models showed considerable overlap between Stability and Emotional Stability and between Plasticity and Extraversion, raising the question of whether these metatraits are redundant with their dominant Big Five traits. This pattern of findings was robust when we included only studies whose observers were intimately acquainted with targets. Our results underscore the importance of using a multirater approach to studying personality and the need to separate the causes and outcomes of higher order metatraits from those of the Big Five. We discussed the implications of these findings for the array of research fields in which personality is studied.

  4. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    PubMed

    Jovanović, Stojan; Rotter, Stefan

    2016-06-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  5. Evolution of worldwide stock markets, correlation structure, and correlation-based graphs

    NASA Astrophysics Data System (ADS)

    Song, Dong-Ming; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.

    2011-08-01

    We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period January 1996 to July 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term time scale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the nondiagonal elements of the correlation matrix, correlation-based graphs, and the spectral properties of the largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow dynamics of the correlation of market indices. We introduce a measure of mutual information based on link co-occurrence in networks in order to detect the fast dynamics of successive changes of correlation-based graphs in a quantitative way.

  6. Detrended cross-correlation analysis on RMB exchange rate and Hang Seng China Enterprises Index

    NASA Astrophysics Data System (ADS)

    Ruan, Qingsong; Yang, Bingchan; Ma, Guofeng

    2017-02-01

    In this paper, we investigate the cross-correlations between the Hang Seng China Enterprises Index and RMB exchange markets on the basis of a cross-correlation statistic test and multifractal detrended cross-correlation analysis (MF-DCCA). MF-DCCA has, at best, serious limitations for most of the signals describing complex natural processes and often indicates multifractal cross-correlations when there are none. In order to prevent these false multifractal cross-correlations, we apply MFCCA to verify the cross-correlations. Qualitatively, we find that the return series of the Hang Seng China Enterprises Index and RMB exchange markets were, overall, significantly cross-correlated based on the statistical analysis. Quantitatively, we find that the cross-correlations between the stock index and RMB exchange markets were strongly multifractal, and the multifractal degree of the onshore RMB exchange markets was somewhat larger than the offshore RMB exchange markets. Moreover, we use the absolute return series to investigate and confirm the fact of multifractality. The results from the rolling windows show that the short-term cross-correlations between volatility series remain high.

  7. Next-to-leading order weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: three-gluon correlator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Lingyun; Prokudin, Alexei; Kang, Zhong-Bo

    2015-09-01

    We study the three-gluon correlation function contribution to the Sivers asymmetry in semi-inclusive deep inelastic scattering. We first establish the matching between the usual twist-3 collinear factorization approach and transverse momentum dependent factorization formalism for the moderate transverse momentum region. We then derive the so-called coefficient functions used in the usual TMD evolution formalism. Finally, we perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman function: the off-diagonal contribution from the three-gluon correlation functions.

  8. Comparison of short-range-order in liquid- and rotator-phase states of a simple molecular liquid: A reverse Monte Carlo and molecular dynamics analysis of neutron diffraction data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardo, Luis Carlos; Tamarit, Josep Lluis; Veglio, Nestor

    2007-10-01

    The short-range order (SRO) correlations in liquid- and rotator-phase states of carbon tetrachloride are revisited here. The correlation of some angular magnitudes is used to evaluate the positional and orientational correlations in the liquid as well as in the rotator phase. The results show significant similitudes in the relative position of the molecules surrounding a central one but striking differences in their relative orientations, which could explain the changes in SRO between the two phases and the puzzling behavior of the local density in the liquid and rotator phases.

  9. Absence of even-integer ζ-function values in Euclidean physical quantities in QCD

    NASA Astrophysics Data System (ADS)

    Jamin, Matthias; Miravitllas, Ramon

    2018-04-01

    At order αs4 in perturbative quantum chromodynamics, even-integer ζ-function values are present in Euclidean physical correlation functions like the scalar quark correlation function or the scalar gluonium correlator. We demonstrate that these contributions cancel when the perturbative expansion is expressed in terms of the so-called C-scheme coupling αˆs which has recently been introduced in Ref. [1]. It is furthermore conjectured that a ζ4 term should arise in the Adler function at order αs5 in the MS ‾-scheme, and that this term is expected to disappear in the C-scheme as well.

  10. Polymer Coatings Degradation Properties

    DTIC Science & Technology

    1985-02-01

    undertaken 124). The Box-Jenkins approach first evaluates the partial auto -correlation function and determines the order of the moving average memory function...78 - Tables 15 and 16 show the resalit- f- a, the partial auto correlation plots. Second order moving .-. "ra ;;th -he appropriate lags were...coated films. Kaempf, Guenter; Papenroth, Wolfgang; Kunststoffe Date: 1982 Volume: 72 Number:7 Pages: 424-429 Parameters influencing the accelerated

  11. Correlation between dental maturity and cervical vertebral maturity.

    PubMed

    Chen, Jianwei; Hu, Haikun; Guo, Jing; Liu, Zeping; Liu, Renkai; Li, Fan; Zou, Shujuan

    2010-12-01

    The aim of this study was to investigate the association between dental and skeletal maturity. Digital panoramic radiographs and lateral skull cephalograms of 302 patients (134 boys and 168 girls, ranging from 8 to 16 years of age) were examined. Dental maturity was assessed by calcification stages of the mandibular canines, first and second premolars, and second molars, whereas skeletal maturity was estimated by the cervical vertebral maturation (CVM) stages. The Spearman rank-order correlation coefficient was used to measure the association between CVM stage and dental calcification stage of individual teeth. The mean chronologic age of girls was significantly lower than that of boys in each CVM stage. The Spearman rank-order correlation coefficients between dental maturity and cervical vertebral maturity ranged from 0.391 to 0.582 for girls and from 0.464 to 0.496 for boys (P < 0.05). In girls, the mandibular second molar had the highest and the canine the lowest correlation. In boys, the canine had the highest and the first premolar the lowest correlation. Tooth calcification stage was significantly correlated with cervical vertebral maturation stage. The development of the mandibular second molar in females and that of the mandibular canine in males had the strongest correlations with cervical vertebral maturity. Therefore, it is practical to consider the relationship between dental and skeletal maturity when planning orthodontic treatment. Copyright © 2010 Mosby, Inc. All rights reserved.

  12. MIrExpress: A Database for Gene Coexpression Correlation in Immune Cells Based on Mutual Information and Pearson Correlation

    PubMed Central

    Wang, Luman; Mo, Qiaochu; Wang, Jianxin

    2015-01-01

    Most current gene coexpression databases support the analysis for linear correlation of gene pairs, but not nonlinear correlation of them, which hinders precisely evaluating the gene-gene coexpression strengths. Here, we report a new database, MIrExpress, which takes advantage of the information theory, as well as the Pearson linear correlation method, to measure the linear correlation, nonlinear correlation, and their hybrid of cell-specific gene coexpressions in immune cells. For a given gene pair or probe set pair input by web users, both mutual information (MI) and Pearson correlation coefficient (r) are calculated, and several corresponding values are reported to reflect their coexpression correlation nature, including MI and r values, their respective rank orderings, their rank comparison, and their hybrid correlation value. Furthermore, for a given gene, the top 10 most relevant genes to it are displayed with the MI, r, or their hybrid perspective, respectively. Currently, the database totally includes 16 human cell groups, involving 20,283 human genes. The expression data and the calculated correlation results from the database are interactively accessible on the web page and can be implemented for other related applications and researches. PMID:26881263

  13. MIrExpress: A Database for Gene Coexpression Correlation in Immune Cells Based on Mutual Information and Pearson Correlation.

    PubMed

    Wang, Luman; Mo, Qiaochu; Wang, Jianxin

    2015-01-01

    Most current gene coexpression databases support the analysis for linear correlation of gene pairs, but not nonlinear correlation of them, which hinders precisely evaluating the gene-gene coexpression strengths. Here, we report a new database, MIrExpress, which takes advantage of the information theory, as well as the Pearson linear correlation method, to measure the linear correlation, nonlinear correlation, and their hybrid of cell-specific gene coexpressions in immune cells. For a given gene pair or probe set pair input by web users, both mutual information (MI) and Pearson correlation coefficient (r) are calculated, and several corresponding values are reported to reflect their coexpression correlation nature, including MI and r values, their respective rank orderings, their rank comparison, and their hybrid correlation value. Furthermore, for a given gene, the top 10 most relevant genes to it are displayed with the MI, r, or their hybrid perspective, respectively. Currently, the database totally includes 16 human cell groups, involving 20,283 human genes. The expression data and the calculated correlation results from the database are interactively accessible on the web page and can be implemented for other related applications and researches.

  14. Hadronic Correlations and Fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  15. Particle correlations in p- anti p interactions at radical s = 1800 and 630 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    Preliminary results on Bose-Einstein correlations and two particle pseudorapidity correlations in p{bar p} interactions at {radical}s = 1800 and 630 GeV are presented. Data were collected with a minimum- bias'' trigger with the Collider Detector at Fermilab. The size of the particle emitting source, measured via Bose-Einstein interference at {radical}s =1800 GeV, is of the order of 1 fm. The observed short-range pseudorapidity correlations, compared to lower energy data, do not show any significant energy dependence. 10 refs., 5 figs.

  16. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell π-conjugated systems

    NASA Astrophysics Data System (ADS)

    Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi

    2005-03-01

    The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree-Fock results. Moreover, the differences between the restricted open-shell Hartree-Fock and restricted open-shell second-order Møller-Plesset methods are small. In what concerns the second hyperpolarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset values remain of similar quality while using spin-projected schemes fails for the charged system but performs nicely for the neutral one. The restricted open-shell schemes, and especially the restricted open-shell second-order Møller-Plesset method, provide for both compounds γ values close to the results obtained at the unrestricted coupled cluster level including singles and doubles with a perturbative inclusion of the triples. Thus, to obtain well-converged α and γ values at low-order electron correlation levels, the removal of spin contamination is a necessary but not a sufficient condition. Density-functional theory calculations of α and γ have also been carried out using several exchange-correlation functionals. Those employing hybrid exchange-correlation functionals have been shown to reproduce fairly well the reference coupled cluster polarizability and second hyperpolarizability values. In addition, inclusion of Hartree-Fock exchange is of major importance for determining accurate polarizability whereas for the second hyperpolarizability the gradient corrections are large.

  17. Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket

    NASA Astrophysics Data System (ADS)

    Wang, Gang-Jin; Xie, Chi

    2013-03-01

    We investigate the cross-correlations between Renminbi (CNY) and four major currencies (USD, EUR, JPY, and KRW) in the Renminbi currency basket, i.e., the cross-correlations of CNY-USD, CNY-EUR, CNY-JPY, and CNY-KRW. Qualitatively, using a statistical test in analogy to the Ljung-Box test, we find that cross-correlations significantly exist in CNY-USD, CNY-EUR, CNY-JPY, and CNY-KRW. Quantitatively, employing the detrended cross-correlation analysis (DCCA) method, we find that the cross-correlations of CNY-USD, CNY-EUR, CNY-JPY, and CNY-KRW are weakly persistent. We use the DCCA cross-correlation coefficient ρ to quantify the level of cross-correlations and find the currency weight in the Renminbi currency basket is arranged in the order of USD>EUR>JPY >KRW. Using the method of rolling windows, which can capture the time-varying cross-correlation scaling exponents, we find that: (i) CNY and USD are positively cross-correlated over time, but the cross-correlations of CNY-USD are anti-persistent during the US sub-prime crisis and the European debt crisis. (ii) The cross-correlation scaling exponents of CNY-EUR have the cyclical fluctuation with a nearly two-year cycle. (iii) CNY-JPY has long-term negative cross-correlations, during the European debt crisis, but CNY and KRW are positively cross-correlated.

  18. AASHO correlation study : final report.

    DOT National Transportation Integrated Search

    1971-09-01

    The application of the design concepts developed at the AASHO road test to Louisiana in-service pavements are presented. In order to correlate the level of performance determined at the road test with that of Louisiana pavements, present serviceabili...

  19. Correlation of 0.67um scatter with local stress in Ge impacted with the modified Cambridge liquid jet device

    NASA Astrophysics Data System (ADS)

    Wilson, Michael; Price, D.; Strohecker, Steve

    1994-09-01

    Germanium witness samples were impacted with the NAWCADWAR modified Cambridge liquid jet device introducing varying levels of damage about the center of each sample. Surface damage statistics were collected, scatter measurements were made at 0.67 micrometers and the samples were failed in tension using a bi-axial flexure test setup. The level and character of the damage was correlated with the reflected scatter measurements as a function of local stress and flaw size distribution. Bi-axial flexure data was analyzed to predict fracture stress and the probability of failure of the germanium samples. The mechanical data were then correlated with the scatter data in order to correlate the BRDF with the material failure. The BRDF measurements were taken in several different orientations in order to study the differences in scatter character for the in-plane and out-of-plane conditions.

  20. Kinematics of velocity and vorticity correlations in turbulent flow

    NASA Technical Reports Server (NTRS)

    Bernard, P. S.

    1983-01-01

    The kinematic problem of calculating second-order velocity moments from given values of the vorticity covariance is examined. Integral representation formulas for second-order velocity moments in terms of the two-point vorticity correlation tensor are derived. The special relationships existing between velocity moments in isotropic turbulence are expressed in terms of the integral formulas yielding several kinematic constraints on the two-point vorticity correlation tensor in isotropic turbulence. Numerical evaluation of these constraints suggests that a Gaussian curve may be the only form of the longitudinal velocity correlation coefficient which is consistent with the requirement of isotropy. It is shown that if this is the case, then a family of exact solutions to the decay of isotropic turbulence may be obtained which contains Batchelor's final period solution as a special case. In addition, the computed results suggest a method of approximating the integral representation formulas in general turbulent shear flows.

  1. Alternative formulation of explicitly correlated third-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yu-ya; Ten-no, Seiichiro

    2013-09-01

    The second-order wave operator in the explicitly correlated wave function theory has been newly defined as an extension of the conventional s- and p-wave (SP) ansatz (also referred to as the FIXED amplitude ansatz) based on the linked-diagram theorem. The newly defined second-order wave operator has been applied to the calculation of the F12 correction to the third-order many-body perturbation (MP3) energy. In addition to this new wave operator, the F12 correction with the conventional first-order wave operator has been derived and calculated. Among three components of the MP3 correlation energy, the particle ladder contribution, which has shown the slowest convergence with respect to the basis set size, is fairly ameliorated by employing these F12 corrections. Both the newly defined and conventional formalisms of the F12 corrections exhibit a similar recovery of over 90% of the complete basis set limit of the particle ladder contribution of the MP3 correlation energy with a triple-zeta quality basis set for the neon atom, while the amount is about 75% without the F12 correction. The corrections to the ring term are small but the corrected energy has shown similar recovery as the particle ladder term. The hole ladder term has shown a rapid convergence even without the F12 corrections. Owing to these balanced recoveries, the deviation of the total MP3 correlation energy from the complete basis set limit has been calculated to be about 1 kcal/mol with the triple-zeta quality basis set, which is more than five times smaller than the error without the F12 correction.

  2. Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in p Pb and PbPb collisions at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elgammal, S.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Haitz, D.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Biasotto, M.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-04-01

    Charge-dependent azimuthal correlations of same- and opposite-sign pairs with respect to the second- and third-order event planes have been measured in p Pb collisions at √{s NN}=8.16 TeV and PbPb collisions at 5.02 TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three- and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum (pT) difference, and the pT average of same- and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlators with respect to the second- and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a v2-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the v2-independent fraction of the three-particle correlator are estimated to be 13% for p Pb and 7% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and p Pb , provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.

  3. Wall-based identification of coherent structures in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Sanmiguel Vila, C.; Flores, O.

    2018-04-01

    During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.

  4. Correlation analysis of respiratory signals by using parallel coordinate plots.

    PubMed

    Saatci, Esra

    2018-01-01

    The understanding of the bonds and the relationships between the respiratory signals, i.e. the airflow, the mouth pressure, the relative temperature and the relative humidity during breathing may provide the improvement on the measurement methods of respiratory mechanics and sensor designs or the exploration of the several possible applications in the analysis of respiratory disorders. Therefore, the main objective of this study was to propose a new combination of methods in order to determine the relationship between respiratory signals as a multidimensional data. In order to reveal the coupling between the processes two very different methods were used: the well-known statistical correlation analysis (i.e. Pearson's correlation and cross-correlation coefficient) and parallel coordinate plots (PCPs). Curve bundling with the number intersections for the correlation analysis, Least Mean Square Time Delay Estimator (LMS-TDE) for the point delay detection and visual metrics for the recognition of the visual structures were proposed and utilized in PCP. The number of intersections was increased when the correlation coefficient changed from high positive to high negative correlation between the respiratory signals, especially if whole breath was processed. LMS-TDE coefficients plotted in PCP indicated well-matched point delay results to the findings in the correlation analysis. Visual inspection of PCB by visual metrics showed range, dispersions, entropy comparisons and linear and sinusoidal-like relationships between the respiratory signals. It is demonstrated that the basic correlation analysis together with the parallel coordinate plots perceptually motivates the visual metrics in the display and thus can be considered as an aid to the user analysis by providing meaningful views of the data. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Colour-dressed hexagon tessellations for correlation functions and non-planar corrections

    NASA Astrophysics Data System (ADS)

    Eden, Burkhard; Jiang, Yunfeng; le Plat, Dennis; Sfondrini, Alessandro

    2018-02-01

    We continue the study of four-point correlation functions by the hexagon tessellation approach initiated in [38] and [39]. We consider planar tree-level correlation functions in N=4 supersymmetric Yang-Mills theory involving two non-protected operators. We find that, in order to reproduce the field theory result, it is necessary to include SU( N) colour factors in the hexagon formalism; moreover, we find that the hexagon approach as it stands is naturally tailored to the single-trace part of correlation functions, and does not account for multi-trace admixtures. We discuss how to compute correlators involving double-trace operators, as well as more general 1 /N effects; in particular we compute the whole next-to-leading order in the large- N expansion of tree-level BMN two-point functions by tessellating a torus with punctures. Finally, we turn to the issue of "wrapping", Lüscher-like corrections. We show that SU( N) colour-dressing reproduces an earlier empirical rule for incorporating single-magnon wrapping, and we provide a direct interpretation of such wrapping processes in terms of N=2 supersymmetric Feynman diagrams.

  6. Tensorial analysis of Eshelby stresses in 3D supercooled liquids

    NASA Astrophysics Data System (ADS)

    Lemaître, Anaël

    2015-10-01

    It was recently proposed that the local rearrangements governing relaxation in supercooled liquids impress on the liquid medium long-ranged (Eshelby) stress fluctuations that accumulate over time. From this viewpoint, events must be characterized by elastic dipoles, which are second order tensors, and Eshelby fields are expected to show up in stress and stress increment correlations, which are fourth order tensor fields. We construct here an analytical framework that permits analyzing such tensorial correlations in isotropic media in view of accessing Eshelby fields. Two spherical bases are introduced, which correspond to Cartesian and spherical coordinates for tensors. We show how they can be used to decompose stress correlations and thus test such properties as isotropy and power-law scalings. Eshelby fields and the predicted stress correlations in an infinite medium are shown to belong to an algebra that can conveniently be described using the spherical tensor bases. Using this formalism, we demonstrate that the inherent stress field of 3D supercooled liquids is power law correlated and carries the signature of Eshelby fields, thus supporting the idea that relaxation events give rise to Eshelby stresses that accumulate over time.

  7. Integrate-and-fire neurons driven by asymmetric dichotomous noise.

    PubMed

    Droste, Felix; Lindner, Benjamin

    2014-12-01

    We consider a general integrate-and-fire (IF) neuron driven by asymmetric dichotomous noise. In contrast to the Gaussian white noise usually used in the so-called diffusion approximation, this noise is colored, i.e., it exhibits temporal correlations. We give an analytical expression for the stationary voltage distribution of a neuron receiving such noise and derive recursive relations for the moments of the first passage time density, which allow us to calculate the firing rate and the coefficient of variation of interspike intervals. We study how correlations in the input affect the rate and regularity of firing under variation of the model's parameters for leaky and quadratic IF neurons. Further, we consider the limit of small correlation times and find lowest order corrections to the first passage time moments to be proportional to the square root of the correlation time. We show analytically that to this lowest order, correlations always lead to a decrease in firing rate for a leaky IF neuron. All theoretical expressions are compared to simulations of leaky and quadratic IF neurons.

  8. Micro- and Macroevolutionary Trade-Offs in Plant-Feeding Insects.

    PubMed

    Peterson, Daniel A; Hardy, Nate B; Normark, Benjamin B

    2016-12-01

    A long-standing hypothesis asserts that plant-feeding insects specialize on particular host plants because of negative interactions (trade-offs) between adaptations to alternative hosts, yet empirical evidence for such trade-offs is scarce. Most studies have looked for microevolutionary performance trade-offs within insect species, but host use could also be constrained by macroevolutionary trade-offs caused by epistasis and historical contingency. Here we used a phylogenetic approach to estimate the micro- and macroevolutionary correlations between use of alternative host-plant taxa within two major orders of plant-feeding insects: Lepidoptera (caterpillars) and Hemiptera (true bugs). Across 1,604 caterpillar species, we found both positive and negative pairwise correlations between use of 11 host-plant orders, with overall network patterns suggesting that different host-use constraints act over micro- and macroevolutionary timescales. In contrast, host-use patterns of 955 true bug species revealed uniformly positive correlations between use of the same 11 host plant orders over both timescales. The lack of consistent patterns across timescales and insect orders indicates that host-use trade-offs are historically contingent rather than universal constraints. Moreover, we observed few negative correlations overall despite the wide taxonomic and ecological diversity of the focal host-plant orders, suggesting that positive interactions between host-use adaptations, not trade-offs, dominate the long-term evolution of host use in plant-feeding insects.

  9. High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.

    2015-03-01

    In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.

  10. Computerized implementation of higher-order electron-correlation methods and their linear-scaling divide-and-conquer extensions.

    PubMed

    Nakano, Masahiko; Yoshikawa, Takeshi; Hirata, So; Seino, Junji; Nakai, Hiromi

    2017-11-05

    We have implemented a linear-scaling divide-and-conquer (DC)-based higher-order coupled-cluster (CC) and Møller-Plesset perturbation theories (MPPT) as well as their combinations automatically by means of the tensor contraction engine, which is a computerized symbolic algebra system. The DC-based energy expressions of the standard CC and MPPT methods and the CC methods augmented with a perturbation correction were proposed for up to high excitation orders [e.g., CCSDTQ, MP4, and CCSD(2) TQ ]. The numerical assessment for hydrogen halide chains, polyene chains, and first coordination sphere (C1) model of photoactive yellow protein has revealed that the DC-based correlation methods provide reliable correlation energies with significantly less computational cost than that of the conventional implementations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Balancing Effort and Information Transmission During Language Acquisition: Evidence From Word Order and Case Marking.

    PubMed

    Fedzechkina, Maryia; Newport, Elissa L; Jaeger, T Florian

    2017-03-01

    Across languages of the world, some grammatical patterns have been argued to be more common than expected by chance. These are sometimes referred to as (statistical) language universals. One such universal is the correlation between constituent order freedom and the presence of a case system in a language. Here, we explore whether this correlation can be explained by a bias to balance production effort and informativity of cues to grammatical function. Two groups of learners were presented with miniature artificial languages containing optional case marking and either flexible or fixed constituent order. Learners of the flexible order language used case marking significantly more often. This result parallels the typological correlation between constituent order flexibility and the presence of case marking in a language and provides a possible explanation for the historical development of Old English to Modern English, from flexible constituent order with case marking to relatively fixed order without case marking. In addition, learners of the flexible order language conditioned case marking on constituent order, using more case marking with the cross-linguistically less frequent order, again mirroring typological data. These results suggest that some cross-linguistic generalizations originate in functionally motivated biases operating during language learning. Copyright © 2016 Cognitive Science Society, Inc.

  12. Dynamical potentials for nonequilibrium quantum many-body phases

    NASA Astrophysics Data System (ADS)

    Roy, Sthitadhi; Lazarides, Achilleas; Heyl, Markus; Moessner, Roderich

    2018-05-01

    Out of equilibrium phases of matter exhibiting order in individual eigenstates, such as many-body localized spin glasses and discrete time crystals, can be characterized by inherently dynamical quantities such as spatiotemporal correlation functions. In this paper, we introduce dynamical potentials which act as generating functions for such correlations and capture eigenstate phases and order. These potentials show formal similarities to their equilibrium counterparts, namely thermodynamic potentials. We provide three representative examples: a disordered XXZ chain showing many-body localization, a disordered Ising chain exhibiting spin-glass order, and its periodically-driven cousin exhibiting time-crystalline order.

  13. Path integral for equities: Dynamic correlation and empirical analysis

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Cao, Yang; Lau, Ada; Tang, Pan

    2012-02-01

    This paper develops a model to describe the unequal time correlation between rate of returns of different stocks. A non-trivial fourth order derivative Lagrangian is defined to provide an unequal time propagator, which can be fitted to the market data. A calibration algorithm is designed to find the empirical parameters for this model and different de-noising methods are used to capture the signals concealed in the rate of return. The detailed results of this Gaussian model show that the different stocks can have strong correlation and the empirical unequal time correlator can be described by the model's propagator. This preliminary study provides a novel model for the correlator of different instruments at different times.

  14. [Correlation analysis of major agronomic characters and the polysaccharide contents in Dendrobium officinale].

    PubMed

    Zhang, Lei; Zheng, Xi-Long; Qiu, Dao-Shou; Cai, Shi-Ke; Luo, Huan-Ming; Deng, Rui-Yun; Liu, Xiao-Jin

    2013-10-01

    In order to provide theoretical and technological basis for the germplasm innovation and variety breeding in Dendrobium officinale, a study of the correlation between polysaccharide content and agronomic characters was conducted. Based on the polysaccharide content determination and the agronomic characters investigation of 30 copies (110 individual plants) of Dendrobium officinale germplasm resources, the correlation between polysaccharide content and agronomic characters was analyzed via path and correlation analysis. Correlation analysis results showed that there was a significant negative correlation between average spacing and polysaccharide content, the correlation coefficient was -0.695. And the blade thickness was positively correlated with the polysaccharide content, but the correlation was not significant. The path analysis results showed that the stem length was the maximum influence factor to the polysaccharide, and it was positive effect, the direct path coefficient was 1.568. According to thess results, the polysaccharide content can be easily and intuitively estimated by the agronomic characters investigating data in the germpalsm resources screening and variety breeding. Therefore, it is a visual and practical technology guidance in quality variety breeding of Dendrobium officinale.

  15. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2014-07-17

    Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.

  16. Effects of various factors on Doppler ultrasonographic measurements of radial and coccygeal arterial blood pressure in privately owned, conscious cats.

    PubMed

    Whittemore, Jacqueline C; Nystrom, Michael R; Mawby, Dianne I

    2017-04-01

    OBJECTIVE To assess the effects of age, body condition score (BCS), and muscle condition score (MCS) on radial and coccygeal systolic arterial blood pressure (SAP) in cats. DESIGN Prospective randomized trial. ANIMALS 66 privately owned cats enrolled between May and December 2010. PROCEDURES BCS and MCS of cats were assessed by 2 investigators; SAP was measured via Doppler ultrasonic flow detector, with cats positioned in right lateral or sternal recumbency for measurements at the radial or coccygeal artery, respectively, with order of site randomized. Associations among variables were assessed through correlation coefficients, partial correlation coefficients, and ANCOVA. RESULTS Interrater reliability for BCS and MCS assessment was high (correlation coefficients, 0.95 and 0.83, respectively). No significant effect was identified for order of SAP measurement sites. Coccygeal and radial SAP were positively correlated (ρ = 0.45). The median difference in coccygeal versus radial SAP was 19 mm Hg, but differences were not consistently positive or negative. Radial SAP was positively correlated with age (ρ = 0.48) and negatively correlated with MCS (ρ = -0.30). On the basis of the correlation analysis, the association between radial SAP and MCS reflected the confounding influence of age. Coccygeal SAP was not significantly correlated with age, BCS, or MCS. CONCLUSIONS AND CLINICAL RELEVANCE Use of the coccygeal artery is recommended to reduce the confounding effects of age and sarcopenia on Doppler ultrasonographic SAP measurements in cats. Additionally, monitoring for changes in MCS is recommended for cats undergoing serial SAP measurement.

  17. Instanton effects on CP-violating gluonic correlators

    NASA Astrophysics Data System (ADS)

    Mori, Shingo; Frison, Julien; Kitano, Ryuichiro; Matsufuru, Hideo; Yamada, Norikazu

    2018-03-01

    In order to better understand the role played by instantons behind nonperturbative dynamics, we investigate the instanton contributions to the gluonic two point correlation functions in the SU(2) YM theory. Pseudoscalar-scalar gluonic correlation functions are calculated on the lattice at various temperatures and compared with the instanton calculus. We discuss how the instanton effects emerge or disappear with temperature and try to provide the interpretation behind it.

  18. Einstein-Podolsky-Rosen correlations in a hybrid system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caban, Pawel; Rembielinski, Jakub; Witas, Piotr

    2011-03-15

    We calculate the relativistic correlation function for a hybrid system of a photon and a Dirac particle. Such a system can be produced in decay of another spin-(1/2) fermion. We show that the relativistic correlation function, which depends on particle momenta, may have local extrema for fermion velocity of the order 0.5c. This influences the degree of violation of the Clauser-Horne-Shimony-Holt inequality.

  19. Nonlinear Analytical Modeling of Interfacial Phenomenon and Nano-Size Microstructural Features to Better Correlate Nde Electronic Property Measurements to Material State

    NASA Astrophysics Data System (ADS)

    Roubidoux, J. A.; Jackson, J. E.; Lasseigne, A. N.; Mishra, B.; Olson, D. L.

    2010-02-01

    This paper correlates nonlinear material properties to nondestructive electronic measurements by using wave analysis techniques (e.g. Perturbation Methods) and incorporating higher-order phenomena. The correlations suggest that nondestructive electronic property measurements and practices can be used to assess thin films, surface layers, and other advanced materials that exhibit modified behaviors based on their space-charged interfacial behavior.

  20. The correlation function for density perturbations in an expanding universe. II - Nonlinear theory

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1977-01-01

    A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies

  1. Improvement of the Reynolds-stress model by a new pressure-strain correlation

    NASA Technical Reports Server (NTRS)

    Amano, Ryoichi S.; Chai, John C.

    1988-01-01

    A study is made to improve the predictions of Reynolds stresses in backward facing step flows, through modifications of the pressure-strain correlation. The mean-strain term of the pressure-strain correlation is formulated only in terms of nonisotropic turbulence in order to take the severe nonisotropic effect caused by a separating flow. This model is compared with other models and results are verified with experimental results.

  2. Correlation as a Determinant of Configurational Entropy in Supramolecular and Protein Systems

    PubMed Central

    2015-01-01

    For biomolecules in solution, changes in configurational entropy are thought to contribute substantially to the free energies of processes like binding and conformational change. In principle, the configurational entropy can be strongly affected by pairwise and higher-order correlations among conformational degrees of freedom. However, the literature offers mixed perspectives regarding the contributions that changes in correlations make to changes in configurational entropy for such processes. Here we take advantage of powerful techniques for simulation and entropy analysis to carry out rigorous in silico studies of correlation in binding and conformational changes. In particular, we apply information-theoretic expansions of the configurational entropy to well-sampled molecular dynamics simulations of a model host–guest system and the protein bovine pancreatic trypsin inhibitor. The results bear on the interpretation of NMR data, as they indicate that changes in correlation are important determinants of entropy changes for biologically relevant processes and that changes in correlation may either balance or reinforce changes in first-order entropy. The results also highlight the importance of main-chain torsions as contributors to changes in protein configurational entropy. As simulation techniques grow in power, the mathematical techniques used here will offer new opportunities to answer challenging questions about complex molecular systems. PMID:24702693

  3. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr 2IrO 4

    DOE PAGES

    Dean, M. P. M.; Cao, Y.; Liu, X.; ...

    2016-05-09

    Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity 1, 2, 3, 4. Recently, photo-excitation has been used to induce similarly exotic states transiently 5, 6, 7. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr 2IrO 4. We find that the non-equilibrium state, 2more » ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. In conclusion, the marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.« less

  4. Angular correlations in pair production at the LHC in the parton Reggeization approach

    NASA Astrophysics Data System (ADS)

    Karpishkov, Anton; Nefedov, Maxim; Saleev, Vladimir

    2017-10-01

    We calculate angular correlation spectra between beauty (B) and anti-beauty mesons in proton-proton collisions in the leading order approximation of the parton Reggeization approach consistently merged with the next-to-leading order corrections from the emission of additional hard gluon (NLO* approximation). To describe b-quark hadronization we use the universal scale-depended parton-to-meson fragmentation functions extracted from the combined e+e- annihilation data. The Kimber-Martin-Ryskin model for the unintegrated parton distribution functions in a proton is implied. We have obtained good agreement between our predictions and data from the CMS Collaboration at the energy TeV for angular correlations within uncertainties and without free parameters.

  5. Modeling correlated bursts by the bursty-get-burstier mechanism

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun

    2017-12-01

    Temporal correlations of time series or event sequences in natural and social phenomena have been characterized by power-law decaying autocorrelation functions with decaying exponent γ . Such temporal correlations can be understood in terms of power-law distributed interevent times with exponent α and/or correlations between interevent times. The latter, often called correlated bursts, has recently been studied by measuring power-law distributed bursty trains with exponent β . A scaling relation between α and γ has been established for the uncorrelated interevent times, while little is known about the effects of correlated interevent times on temporal correlations. In order to study these effects, we devise the bursty-get-burstier model for correlated bursts, by which one can tune the degree of correlations between interevent times, while keeping the same interevent time distribution. We numerically find that sufficiently strong correlations between interevent times could violate the scaling relation between α and γ for the uncorrelated case. A nontrivial dependence of γ on β is also found for some range of α . The implication of our results is discussed in terms of the hierarchical organization of bursty trains at various time scales.

  6. A study of correlations between crude oil spot and futures markets: A rolling sample test

    NASA Astrophysics Data System (ADS)

    Liu, Li; Wan, Jieqiu

    2011-10-01

    In this article, we investigate the asymmetries of exceedance correlations and cross-correlations between West Texas Intermediate (WTI) spot and futures markets. First, employing the test statistic proposed by Hong et al. [Asymmetries in stock returns: statistical tests and economic evaluation, Review of Financial Studies 20 (2007) 1547-1581], we find that the exceedance correlations were overall symmetric. However, the results from rolling windows show that some occasional events could induce the significant asymmetries of the exceedance correlations. Second, employing the test statistic proposed by Podobnik et al. [Quantifying cross-correlations using local and global detrending approaches, European Physics Journal B 71 (2009) 243-250], we find that the cross-correlations were significant even for large lagged orders. Using the detrended cross-correlation analysis proposed by Podobnik and Stanley [Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series, Physics Review Letters 100 (2008) 084102], we find that the cross-correlations were weakly persistent and were stronger between spot and futures contract with larger maturity. Our results from rolling sample test also show the apparent effects of the exogenous events. Additionally, we have some relevant discussions on the obtained evidence.

  7. Parametric correlation functions to model the structure of permanent environmental (co)variances in milk yield random regression models.

    PubMed

    Bignardi, A B; El Faro, L; Cardoso, V L; Machado, P F; Albuquerque, L G

    2009-09-01

    The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.

  8. Application of UV-visible absorption spectroscopy combined with two-dimensional correlation for insight into DOM fractions from native halophyte soils in a larger estuarine delta.

    PubMed

    Wei, Huaibin; Yu, Huibin; Pan, Hongwei; Gao, Hongjie

    2018-05-01

    UV-visible absorption spectroscopy combined with principal component analysis (PCA) and two-dimensional correlation (2D correlation) is used to trace components of dissolved organic matter (DOM) extracted from soils in a larger estuarine delta and to investigate spatial variations of DOM fractions. Soil samples of different depths were collected from native halophyte soils along a saline gradient, i.e., Suaeda salsa Comm. (SSC), Chenopodium album Comm. (CAC), Phragmites australis Comm. (PAC), and Artemisia selengensis Comm. (ASC). Molecular weights of DOM within the SSC soil profile were the lowest, followed by the CAC, PAC, and ASC soil profiles. Humification degree of DOM within the ASC soil profile was the highest, followed by the PAC, SSC, and CAC soil profiles. DOM within the soil profiles mainly contained phenolic, carboxylic, microbial products, and aromatic and alkyl groups through the PCA, which presented the significant differentiation among the four native halophyte soil profiles. The 2D UV correlation spectra of DOM within the SSC soil profile indicated that the variations of the phenolic groups were the largest, followed by the carboxylic groups, microbial products, and humified organic materials according to the band changing order of 285 → 365 → 425 → 520 nm. The 2D UV correlation spectra of DOM within the CAC soil profiles determined that the decreasing order of the variations was phenolic groups > carboxylic groups > microbial products according the band changing order of 285 → 365 → 425 nm. The 2D UV correlation spectra of DOM within the PAC soil profile proved that the variations of the phenolic groups were larger than those of the carboxylic groups according to the band changing order of 285 → 365 nm. The 2D UV correlation spectra of DOM within the ASC soil profile demonstrated that the variations of the phenolic groups were larger than those of the other DOM fractions according to the broad cross-peak at 285/365-700 nm.

  9. A spatially adaptive spectral re-ordering technique for lossless coding of hyper-spectral images

    NASA Technical Reports Server (NTRS)

    Memon, Nasir D.; Galatsanos, Nikolas

    1995-01-01

    In this paper, we propose a new approach, applicable to lossless compression of hyper-spectral images, that alleviates some limitations of linear prediction as applied to this problem. According to this approach, an adaptive re-ordering of the spectral components of each pixel is performed prior to prediction and encoding. This re-ordering adaptively exploits, on a pixel-by pixel basis, the presence of inter-band correlations for prediction. Furthermore, the proposed approach takes advantage of spatial correlations, and does not introduce any coding overhead to transmit the order of the spectral bands. This is accomplished by using the assumption that two spatially adjacent pixels are expected to have similar spectral relationships. We thus have a simple technique to exploit spectral and spatial correlations in hyper-spectral data sets, leading to compression performance improvements as compared to our previously reported techniques for lossless compression. We also look at some simple error modeling techniques for further exploiting any structure that remains in the prediction residuals prior to entropy coding.

  10. Application of the correlation constrained multivariate curve resolution alternating least-squares method for analyte quantitation in the presence of unexpected interferences using first-order instrumental data.

    PubMed

    Goicoechea, Héctor C; Olivieri, Alejandro C; Tauler, Romà

    2010-03-01

    Correlation constrained multivariate curve resolution-alternating least-squares is shown to be a feasible method for processing first-order instrumental data and achieve analyte quantitation in the presence of unexpected interferences. Both for simulated and experimental data sets, the proposed method could correctly retrieve the analyte and interference spectral profiles and perform accurate estimations of analyte concentrations in test samples. Since no information concerning the interferences was present in calibration samples, the proposed multivariate calibration approach including the correlation constraint facilitates the achievement of the so-called second-order advantage for the analyte of interest, which is known to be present for more complex higher-order richer instrumental data. The proposed method is tested using a simulated data set and two experimental data systems, one for the determination of ascorbic acid in powder juices using UV-visible absorption spectral data, and another for the determination of tetracycline in serum samples using fluorescence emission spectroscopy.

  11. Ab initio Studies of Magnetism in the Iron Chalcogenides FeTe and FeSe

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoaki; Misawa, Takahiro; Miyake, Takashi; Imada, Masatoshi

    2015-09-01

    The iron chalcogenides FeTe and FeSe belong to the family of iron-based superconductors. We study the magnetism in these compounds in the normal state using the ab initio downfolding scheme developed for strongly correlated electron systems. In deriving ab initio low-energy effective models, we employ the constrained GW method to eliminate the double counting of electron correlations originating from the exchange correlations already taken into account in the density functional theory. By solving the derived ab initio effective models, we reveal that the elimination of the double counting is important in reproducing the bicollinear antiferromagnetic order in FeTe, as is observed in experiments. We also show that the elimination of the double counting induces a unique degeneracy of several magnetic orders in FeSe, which may explain the absence of the magnetic ordering. We discuss the relationship between the degeneracy and the recently found puzzling phenomena in FeSe as well as the magnetic ordering found under pressure.

  12. Short-Range Nucleon-Nucleon Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Higinbotham

    2011-10-01

    Valence-shell nucleon knock-out experiments, such as 12C(e,e'p)11B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to directly observe these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, asmore » well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3 < xB < 0.7 deep inelastic scattering ratios.« less

  13. Cluster structure in the correlation coefficient matrix can be characterized by abnormal eigenvalues

    NASA Astrophysics Data System (ADS)

    Nie, Chun-Xiao

    2018-02-01

    In a large number of previous studies, the researchers found that some of the eigenvalues of the financial correlation matrix were greater than the predicted values of the random matrix theory (RMT). Here, we call these eigenvalues as abnormal eigenvalues. In order to reveal the hidden meaning of these abnormal eigenvalues, we study the toy model with cluster structure and find that these eigenvalues are related to the cluster structure of the correlation coefficient matrix. In this paper, model-based experiments show that in most cases, the number of abnormal eigenvalues of the correlation matrix is equal to the number of clusters. In addition, empirical studies show that the sum of the abnormal eigenvalues is related to the clarity of the cluster structure and is negatively correlated with the correlation dimension.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Shamik; Kothari, Rahul; Jain, Pankaj

    We propose a dipole modulation model for the Cosmic Microwave Background Radiation (CMBR) polarization field. We show that the model leads to correlations between l and l+1 multipoles, exactly as in the case of temperature. We obtain results for the case of TE, EE and BB correlations. An anisotropic or inhomogeneous model of primordial power spectrum which leads to such correlations in temperature field also predicts similar correlations in CMBR polarization. We analyze the CMBR temperature and polarization data in order to extract the signal of these correlation between l and l+1 multipoles. Our results for the case of temperaturemore » using the latest PLANCK data agree with those obtained by an earlier analysis. A detailed study of the correlation in the polarization data is not possible at present. Hence we restrict ourselves to a preliminary investigation in this case.« less

  15. Laboratory correlation of soil swell potential : final report.

    DOT National Transportation Integrated Search

    1979-03-01

    The objective of the study was to determine if a correlation exists between the Potential Volume Change Test and the Potential Vertical Rise Test as compared to the Third Cycle Expansion Pressure Test. In order to accomplish this objective, samples o...

  16. Frontiers of Two-Dimensional Correlation Spectroscopy. Part 1. New concepts and noteworthy developments

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2014-07-01

    A comprehensive survey review of new and noteworthy developments, which are advancing forward the frontiers in the field of 2D correlation spectroscopy during the last four years, is compiled. This review covers books, proceedings, and review articles published on 2D correlation spectroscopy, a number of significant conceptual developments in the field, data pretreatment methods and other pertinent topics, as well as patent and publication trends and citation activities. Developments discussed include projection 2D correlation analysis, concatenated 2D correlation, and correlation under multiple perturbation effects, as well as orthogonal sample design, predicting 2D correlation spectra, manipulating and comparing 2D spectra, correlation strategy based on segmented data blocks, such as moving-window analysis, features like determination of sequential order and enhanced spectral resolution, statistical 2D spectroscopy using covariance and other statistical metrics, hetero-correlation analysis, and sample-sample correlation technique. Data pretreatment operations prior to 2D correlation analysis are discussed, including the correction for physical effects, background and baseline subtraction, selection of reference spectrum, normalization and scaling of data, derivatives spectra and deconvolution technique, and smoothing and noise reduction. Other pertinent topics include chemometrics and statistical considerations, peak position shift phenomena, variable sampling increments, computation and software, display schemes, such as color coded format, slice and power spectra, tabulation, and other schemes.

  17. Phase and vortex correlations in superconducting Josephson-junction arrays at irrational magnetic frustration.

    PubMed

    Granato, Enzo

    2008-07-11

    Phase coherence and vortex order in a Josephson-junction array at irrational frustration are studied by extensive Monte Carlo simulations using the parallel-tempering method. A scaling analysis of the correlation length of phase variables in the full equilibrated system shows that the critical temperature vanishes with a power-law divergent correlation length and critical exponent nuph, in agreement with recent results from resistivity scaling analysis. A similar scaling analysis for vortex variables reveals a different critical exponent nuv, suggesting that there are two distinct correlation lengths associated with a decoupled zero-temperature phase transition.

  18. Rainbow correlation imaging with macroscopic twin beam

    NASA Astrophysics Data System (ADS)

    Allevi, Alessia; Bondani, Maria

    2017-06-01

    We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.

  19. Improving Localization Accuracy: Successive Measurements Error Modeling

    PubMed Central

    Abu Ali, Najah; Abu-Elkheir, Mervat

    2015-01-01

    Vehicle self-localization is an essential requirement for many of the safety applications envisioned for vehicular networks. The mathematical models used in current vehicular localization schemes focus on modeling the localization error itself, and overlook the potential correlation between successive localization measurement errors. In this paper, we first investigate the existence of correlation between successive positioning measurements, and then incorporate this correlation into the modeling positioning error. We use the Yule Walker equations to determine the degree of correlation between a vehicle’s future position and its past positions, and then propose a p-order Gauss–Markov model to predict the future position of a vehicle from its past p positions. We investigate the existence of correlation for two datasets representing the mobility traces of two vehicles over a period of time. We prove the existence of correlation between successive measurements in the two datasets, and show that the time correlation between measurements can have a value up to four minutes. Through simulations, we validate the robustness of our model and show that it is possible to use the first-order Gauss–Markov model, which has the least complexity, and still maintain an accurate estimation of a vehicle’s future location over time using only its current position. Our model can assist in providing better modeling of positioning errors and can be used as a prediction tool to improve the performance of classical localization algorithms such as the Kalman filter. PMID:26140345

  20. Polarimetry of random fields

    NASA Astrophysics Data System (ADS)

    Ellis, Jeremy

    On temporal, spatial and spectral scales which are small enough, all fields are fully polarized. In the optical regime, however, instantaneous fields can rarely be examined, and, instead, only average quantities are accessible. The study of polarimetry is concerned with both the description of electromagnetic fields and the characterization of media a field has interacted with. The polarimetric information is conventionally presented in terms of second order field correlations which are averaged over the ensemble of field realizations. Motivated by the deficiencies of classical polarimetry in dealing with specific practical situations, this dissertation expands the traditional polarimetric approaches to include higher order field correlations and the description of fields fluctuating in three dimensions. In relation to characterization of depolarizing media, a number of fourth-order correlations are introduced in this dissertation. Measurements of full polarization distributions, and the subsequent evaluation of Stokes vector element correlations and Complex Degree of Mutual Polarization demonstrate the use of these quantities for material discrimination and characterization. Recent advancements in detection capabilities allow access to fields near their sources and close to material boundaries, where a unique direction of propagation is not evident. Similarly, there exist classical situations such as overlapping beams, focusing, or diffusive scattering in which there is no unique transverse direction. In this dissertation, the correlation matrix formalism is expanded to describe three dimensional electromagnetic fields, providing a definition for the degree of polarization of such a field. It is also shown that, because of the dimensionality of the problem, a second parameter is necessary to fully describe the polarimetric properties of three dimensional fields. Measurements of second-order correlations of a three dimensional field are demonstrated, allowing the determination of both the degree of polarization and the state of polarization. These new theoretical concepts and innovative experimental approaches introduced in this dissertation are expected to impact scientific areas as diverse as near field optics, remote sensing, high energy laser physics, fluorescence microscopy, and imaging.

  1. Agile Combat Support Doctrine and Logistics Officer Training: Do We Need an Integrated Logistics School for the Expeditionary Air and Space Force?

    DTIC Science & Technology

    2003-02-01

    Rank-Order Correlation Coefficients statistical analysis via SPSS 8.0. Interview informants’ perceptions and perspec­ tives are combined with...logistics training in facilitating the em­ ployment of doctrinal tenets in a deployed environment. Statistical Correlations: Confirmed Relationships...integration of technology and cross-func­ tional training for the tactical practitioners. Statistical Correlations: Confirmed Relationships on the Need

  2. Nonlinear dynamic analysis of voices before and after surgical excision of vocal polyps

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; McGilligan, Clancy; Zhou, Liang; Vig, Mark; Jiang, Jack J.

    2004-05-01

    Phase space reconstruction, correlation dimension, and second-order entropy, methods from nonlinear dynamics, are used to analyze sustained vowels generated by patients before and after surgical excision of vocal polyps. Two conventional acoustic perturbation parameters, jitter and shimmer, are also employed to analyze voices before and after surgery. Presurgical and postsurgical analyses of jitter, shimmer, correlation dimension, and second-order entropy are statistically compared. Correlation dimension and second-order entropy show a statistically significant decrease after surgery, indicating reduced complexity and higher predictability of postsurgical voice dynamics. There is not a significant postsurgical difference in shimmer, although jitter shows a significant postsurgical decrease. The results suggest that jitter and shimmer should be applied to analyze disordered voices with caution; however, nonlinear dynamic methods may be useful for analyzing abnormal vocal function and quantitatively evaluating the effects of surgical excision of vocal polyps.

  3. Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence

    NASA Technical Reports Server (NTRS)

    Kerr, R. A.

    1983-01-01

    In a three dimensional simulation higher order derivative correlations, including skewness and flatness factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. The equations are forced to maintain steady state turbulence and collect statistics. It is found that the scalar derivative flatness increases much faster with Reynolds number than the velocity derivative flatness, and the velocity and mixed derivative skewness do not increase with Reynolds number. Separate exponents are found for the various fourth order velocity derivative correlations, with the vorticity flatness exponent the largest. Three dimensional graphics show strong alignment between the vorticity, rate of strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short minus 5/3 spectral regime is observed.

  4. Covariate-adjusted Spearman's rank correlation with probability-scale residuals.

    PubMed

    Liu, Qi; Li, Chun; Wanga, Valentine; Shepherd, Bryan E

    2018-06-01

    It is desirable to adjust Spearman's rank correlation for covariates, yet existing approaches have limitations. For example, the traditionally defined partial Spearman's correlation does not have a sensible population parameter, and the conditional Spearman's correlation defined with copulas cannot be easily generalized to discrete variables. We define population parameters for both partial and conditional Spearman's correlation through concordance-discordance probabilities. The definitions are natural extensions of Spearman's rank correlation in the presence of covariates and are general for any orderable random variables. We show that they can be neatly expressed using probability-scale residuals (PSRs). This connection allows us to derive simple estimators. Our partial estimator for Spearman's correlation between X and Y adjusted for Z is the correlation of PSRs from models of X on Z and of Y on Z, which is analogous to the partial Pearson's correlation derived as the correlation of observed-minus-expected residuals. Our conditional estimator is the conditional correlation of PSRs. We describe estimation and inference, and highlight the use of semiparametric cumulative probability models, which allow preservation of the rank-based nature of Spearman's correlation. We conduct simulations to evaluate the performance of our estimators and compare them with other popular measures of association, demonstrating their robustness and efficiency. We illustrate our method in two applications, a biomarker study and a large survey. © 2017, The International Biometric Society.

  5. Nonequilibrium fluctuations in metaphase spindles: polarized light microscopy, image registration, and correlation functions

    NASA Astrophysics Data System (ADS)

    Brugués, Jan; Needleman, Daniel J.

    2010-02-01

    Metaphase spindles are highly dynamic, nonequilibrium, steady-state structures. We study the internal fluctuations of spindles by computing spatio-temporal correlation functions of movies obtained from quantitative polarized light microscopy. These correlation functions are only physically meaningful if corrections are made for the net motion of the spindle. We describe our image registration algorithm in detail and we explore its robustness. Finally, we discuss the expression used for the estimation of the correlation function in terms of the nematic order of the microtubules which make up the spindle. Ultimately, studying the form of these correlation functions will provide a quantitative test of the validity of coarse-grained models of spindle structure inspired from liquid crystal physics.

  6. Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yi; Hoffman, Jason; Rowland, Clare E.

    Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less

  7. Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3

    DOE PAGES

    Zhu, Yi; Hoffman, Jason; Rowland, Clare E.; ...

    2018-05-04

    Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less

  8. Induced simplified neutrosophic correlated aggregation operators for multi-criteria group decision-making

    NASA Astrophysics Data System (ADS)

    Şahin, Rıdvan; Zhang, Hong-yu

    2018-03-01

    Induced Choquet integral is a powerful tool to deal with imprecise or uncertain nature. This study proposes a combination process of the induced Choquet integral and neutrosophic information. We first give the operational properties of simplified neutrosophic numbers (SNNs). Then, we develop some new information aggregation operators, including an induced simplified neutrosophic correlated averaging (I-SNCA) operator and an induced simplified neutrosophic correlated geometric (I-SNCG) operator. These operators not only consider the importance of elements or their ordered positions, but also take into account the interactions phenomena among decision criteria or their ordered positions under multiple decision-makers. Moreover, we present a detailed analysis of I-SNCA and I-SNCG operators, including the properties of idempotency, commutativity and monotonicity, and study the relationships among the proposed operators and existing simplified neutrosophic aggregation operators. In order to handle the multi-criteria group decision-making (MCGDM) situations where the weights of criteria and decision-makers usually correlative and the criterion values are considered as SNNs, an approach is established based on I-SNCA operator. Finally, a numerical example is presented to demonstrate the proposed approach and to verify its effectiveness and practicality.

  9. Direct reconstruction of the two-dimensional pair distribution function in partially ordered systems with angular correlations.

    PubMed

    Zaluzhnyy, I A; Kurta, R P; Menushenkov, A P; Ostrovskii, B I; Vartanyants, I A

    2016-09-01

    An x-ray scattering approach to determine the two-dimensional (2D) pair distribution function (PDF) in partially ordered 2D systems is proposed. We derive relations between the structure factor and PDF that enable quantitative studies of positional and bond-orientational (BO) order in real space. We apply this approach in the x-ray study of a liquid crystal (LC) film undergoing the smectic-A-hexatic-B phase transition, to analyze the interplay between the positional and BO order during the temperature evolution of the LC film. We analyze the positional correlation length in different directions in real space.

  10. Magnetic Correlations in URu2Si2 under Chemical and Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Williams, Travis; Aczel, Adam; Broholm, Collin; Buyers, William; Leao, Juscelino; Luke, Graeme; Rodriguez-Riviera, Jose; Stone, Matthew; Wilson, Murray; Yamani, Zahra

    URu2Si2 has been an intense area of study for the last 30 years due to a mysterious hidden order phase that appears below T0 = 17.5 K. The hidden order phase has been shown to be extremely sensitive to perturbations, being destroyed quickly by the application of a magnetic field, hydrostatic or uniaxial pressure, and chemical doping. While attempting to understand the properties of URu2Si2, neutron scattering has found spin correlations that are intimately related to this hidden order phase and which are also suppressed with these perturbations. Here, I will outline some recent neutron scattering work to study these correlations in two exceptional cases where the hidden order phase is enhanced: hydrostatic pressure and chemical pressure using Fe- and Os-doping. In both of these cases, T0 increases before an antiferromagnetic phase emerges. By performing a careful analysis of the neutron data, we show that these two phases are much more related than had been previously appreciated. This implies that the hidden order is likely compatible with an antiferromagnetic ground state, placing constraints on the nature of the missing order parameter.

  11. Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in $$p\\mathrm{Pb}$$ and PbPb collisions at the CERN Large Hadron Collider

    DOE PAGES

    Sirunyan, Albert M; et al.

    2018-04-24

    Charge-dependent azimuthal correlations of same- and opposite-sign pairs with respect to the second- and third-order event planes have been measured in pPb collisions at sNN=8.16TeV and PbPb collisions at 5.02 TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three- and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum (pT) difference, and the pT average of same- and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlatorsmore » with respect to the second- and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a v2-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the v2-independent fraction of the three-particle correlator are estimated to be 13% for pPb and 7% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.« less

  12. Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in $$p\\mathrm{Pb}$$ and PbPb collisions at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    Charge-dependent azimuthal correlations of same- and opposite-sign pairs with respect to the second- and third-order event planes have been measured in pPb collisions at sNN=8.16TeV and PbPb collisions at 5.02 TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three- and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum (pT) difference, and the pT average of same- and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlatorsmore » with respect to the second- and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a v2-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the v2-independent fraction of the three-particle correlator are estimated to be 13% for pPb and 7% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.« less

  13. Synchrotron x-ray scattering study of charge-density-wave order in HgBa2CuO4 +δ

    NASA Astrophysics Data System (ADS)

    Tabis, W.; Yu, B.; Bialo, I.; Bluschke, M.; Kolodziej, T.; Kozlowski, A.; Blackburn, E.; Sen, K.; Forgan, E. M.; Zimmermann, M. v.; Tang, Y.; Weschke, E.; Vignolle, B.; Hepting, M.; Gretarsson, H.; Sutarto, R.; He, F.; Le Tacon, M.; Barišić, N.; Yu, G.; Greven, M.

    2017-10-01

    We present a detailed synchrotron x-ray scattering study of the charge-density-wave (CDW) order in simple tetragonal HgBa2CuO4 +δ (Hg1201). Resonant soft x-ray scattering measurements reveal that short-range order appears at a temperature that is distinctly lower than the pseudogap temperature and in excellent agreement with a prior transient reflectivity result. Despite considerable structural differences between Hg1201 and YBa2Cu3O6 +δ , the CDW correlations exhibit similar doping dependencies, and we demonstrate a universal relationship between the CDW wave vector and the size of the reconstructed Fermi pocket observed in quantum oscillation experiments. The CDW correlations in Hg1201 vanish already below optimal doping, once the correlation length is comparable to the CDW modulation period, and they appear to be limited by the disorder potential from unit cells hosting two interstitial oxygen atoms. A complementary hard x-ray diffraction measurement, performed on an underdoped Hg1201 sample in magnetic fields along the crystallographic c axis of up to 16 T, provides information on the form factor of the CDW order. As expected from the single-CuO2-layer structure of Hg1201, the CDW correlations vanish at half-integer values of L and appear to be peaked at integer L . We conclude that the atomic displacements associated with the short-range CDW order are mainly planar, within the CuO2 layers.

  14. Spatial Decomposition of Translational Water–Water Correlation Entropy in Binding Pockets

    PubMed Central

    2015-01-01

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST’s entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water–water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water–water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water–water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620

  15. Expectations Among Academic Clinicians of Inpatient Imaging Turnaround Time: Does it Correlate with Satisfaction?

    PubMed

    Chan, Keith T; Carroll, Tamara; Linnau, Ken F; Lehnert, Bruce

    2015-11-01

    Imaging report turnaround time (RTAT) is an important measure of radiology performance and has become the leading priority in customer satisfaction surveys conducted among nonradiologists, who may not be familiar with the imaging workflow. Our aim was to assess physicians' expected RTAT for commonly ordered studies and determine if satisfaction correlates with met expectations. Retrospective review of inpatient imaging was conducted at a single academic institution, and RTAT for 18,414 studies was calculated. Examinations were grouped by study type, priority, and time of day. A cross-sectional survey instrument was completed by 48 internal medicine and surgery resident physicians with questions regarding RTAT and their level of satisfaction with various examinations. Actual RTAT ranged from 1.6 to 26.0 hours, with chest radiographs and computed tomographies generally faster than magnetic resonance images and ultrasounds. Urgent (STAT) examinations and those ordered during business hours have shorter RTAT. The time for image interpretation largely contributed to the RTAT because of the lack of night-time radiology coverage. Referring physician expectations were consistently shorter than actual RTAT, ranging from 30 minutes to 24 hours. Overall satisfaction scores were inversely correlated with RTAT, with a strong correlation to the time from study order to imaging (r(2) = 0.63) and a weak correlation to the image interpretation time (r(2) = 0.17). Satisfaction scores did not correlate with whether the actual RTAT met expectations (r(2) = 0.06). Referring physician satisfaction is likely multifactorial. Although RTAT has been reported as a priority, shortening turnaround time alone may not directly improve clinician satisfaction. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  16. Percolation analysis for cosmic web with discrete points

    NASA Astrophysics Data System (ADS)

    Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung

    2018-01-01

    Percolation analysis has long been used to quantify the connectivity of the cosmic web. Most of the previous work is based on density fields on grids. By smoothing into fields, we lose information about galaxy properties like shape or luminosity. The lack of mathematical modeling also limits our understanding for the percolation analysis. To overcome these difficulties, we have studied percolation analysis based on discrete points. Using a friends-of-friends (FoF) algorithm, we generate the S -b b relation, between the fractional mass of the largest connected group (S ) and the FoF linking length (b b ). We propose a new model, the probability cloud cluster expansion theory to relate the S -b b relation with correlation functions. We show that the S -b b relation reflects a combination of all orders of correlation functions. Using N-body simulation, we find that the S -b b relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with halo abundance matching (HAM), we have generated a mock galaxy catalog. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalog with the latest galaxy catalog from Sloan Digital Sky Survey (SDSS) Data Release (DR)12, we have found significant differences in their S -b b relations. This indicates that the mock galaxy catalog cannot accurately retain higher-order correlation functions than the two-point correlation function, which reveals the limit of the HAM method. As a new measurement, the S -b b relation is applicable to a wide range of data types, fast to compute, and robust against redshift distortion and incompleteness and contains information of all orders of correlation functions.

  17. Digital Correlation Microwave Polarimetry: Analysis and Demonstration

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Gasiewski, A. J.; Krebs, Carolyn A. (Technical Monitor)

    2000-01-01

    The design, analysis, and demonstration of a digital-correlation microwave polarimeter for use in earth remote sensing is presented. We begin with an analysis of three-level digital correlation and develop the correlator transfer function and radiometric sensitivity. A fifth-order polynomial regression is derived for inverting the digital correlation coefficient into the analog statistic. In addition, the effects of quantizer threshold asymmetry and hysteresis are discussed. A two-look unpolarized calibration scheme is developed for identifying correlation offsets. The developed theory and calibration method are verified using a 10.7 GHz and a 37.0 GHz polarimeter. The polarimeters are based upon 1-GS/s three-level digital correlators and measure the first three Stokes parameters. Through experiment, the radiometric sensitivity is shown to approach the theoretical as derived earlier in the paper and the two-look unpolarized calibration method is successfully compared with results using a polarimetric scheme. Finally, sample data from an aircraft experiment demonstrates that the polarimeter is highly-useful for ocean wind-vector measurement.

  18. Reducing Bias and Error in the Correlation Coefficient Due to Nonnormality.

    PubMed

    Bishara, Anthony J; Hittner, James B

    2015-10-01

    It is more common for educational and psychological data to be nonnormal than to be approximately normal. This tendency may lead to bias and error in point estimates of the Pearson correlation coefficient. In a series of Monte Carlo simulations, the Pearson correlation was examined under conditions of normal and nonnormal data, and it was compared with its major alternatives, including the Spearman rank-order correlation, the bootstrap estimate, the Box-Cox transformation family, and a general normalizing transformation (i.e., rankit), as well as to various bias adjustments. Nonnormality caused the correlation coefficient to be inflated by up to +.14, particularly when the nonnormality involved heavy-tailed distributions. Traditional bias adjustments worsened this problem, further inflating the estimate. The Spearman and rankit correlations eliminated this inflation and provided conservative estimates. Rankit also minimized random error for most sample sizes, except for the smallest samples ( n = 10), where bootstrapping was more effective. Overall, results justify the use of carefully chosen alternatives to the Pearson correlation when normality is violated.

  19. Reducing Bias and Error in the Correlation Coefficient Due to Nonnormality

    PubMed Central

    Hittner, James B.

    2014-01-01

    It is more common for educational and psychological data to be nonnormal than to be approximately normal. This tendency may lead to bias and error in point estimates of the Pearson correlation coefficient. In a series of Monte Carlo simulations, the Pearson correlation was examined under conditions of normal and nonnormal data, and it was compared with its major alternatives, including the Spearman rank-order correlation, the bootstrap estimate, the Box–Cox transformation family, and a general normalizing transformation (i.e., rankit), as well as to various bias adjustments. Nonnormality caused the correlation coefficient to be inflated by up to +.14, particularly when the nonnormality involved heavy-tailed distributions. Traditional bias adjustments worsened this problem, further inflating the estimate. The Spearman and rankit correlations eliminated this inflation and provided conservative estimates. Rankit also minimized random error for most sample sizes, except for the smallest samples (n = 10), where bootstrapping was more effective. Overall, results justify the use of carefully chosen alternatives to the Pearson correlation when normality is violated. PMID:29795841

  20. Phase correlation of foreign exchange time series

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chya

    2007-03-01

    Correlation of foreign exchange rates in currency markets is investigated based on the empirical data of USD/DEM and USD/JPY exchange rates for a period from February 1 1986 to December 31 1996. The return of exchange time series is first decomposed into a number of intrinsic mode functions (IMFs) by the empirical mode decomposition method. The instantaneous phases of the resultant IMFs calculated by the Hilbert transform are then used to characterize the behaviors of pricing transmissions, and the correlation is probed by measuring the phase differences between two IMFs in the same order. From the distribution of phase differences, our results show explicitly that the correlations are stronger in daily time scale than in longer time scales. The demonstration for the correlations in periods of 1986-1989 and 1990-1993 indicates two exchange rates in the former period were more correlated than in the latter period. The result is consistent with the observations from the cross-correlation calculation.

  1. Nanomagnetic Droplets and Implications to Orbital Ordering in La1-xSrxCoO3

    NASA Astrophysics Data System (ADS)

    Phelan, D.; Louca, Despina; Rosenkranz, S.; Lee, S.-H.; Qiu, Y.; Chupas, P. J.; Osborn, R.; Zheng, H.; Mitchell, J. F.; Copley, J. R. D.; Sarrao, J. L.; Moritomo, Y.

    2006-01-01

    Inelastic cold-neutron scattering on LaCoO3 provided evidence for a distinct low energy excitation at 0.6 meV coincident with the thermally induced magnetic transition. Coexisting strong ferromagnetic (FM) and weaker antiferromagnetic correlations that are dynamic follow the activation to the excited state, identified as the intermediate S=1 spin triplet. This is indicative of dynamical orbital ordering favoring the observed magnetic interactions. With hole doping as in La1-xSrxCoO3, the FM correlations between Co spins become static and isotropically distributed due to the formation of FM droplets. The correlation length and condensation temperature of these droplets increase rapidly with metallicity due to the double exchange mechanism.

  2. Validation of a Korean MMPI-2 Hwa-Byung scale using a Korean normative sample.

    PubMed

    Ketterer, Holly; Han, Kyunghee; Weed, Nathan C

    2010-07-01

    The psychometric properties of a recently developed measure of Hwa-Byung (HB), a Korean culture bound syndrome, using an updated version of the Korean Minnesota Multiphasic Personality Inventory-2, were examined in Korean normative sample. Confirmatory factor analyses indicated that both the first-order four-factor model and the single second-order factor model fit the data well, but the latter may be superior because of its parsimony. The HB scale correlated modestly with age, sex, SES, and problems with family and finance. However, it showed substantial correlations with spouse ratings items that were identified a priori as prospective HB correlates, indicating excellent concurrent validity. The limitations of the study and the need for future studies employing HB patients were discussed.

  3. Correlated Electrons in Reduced Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonesteel, Nicholas E

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitationsmore » of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.« less

  4. Phase-change memory function of correlated electrons in organic conductors

    NASA Astrophysics Data System (ADS)

    Oike, H.; Kagawa, F.; Ogawa, N.; Ueda, A.; Mori, H.; Kawasaki, M.; Tokura, Y.

    2015-01-01

    Phase-change memory (PCM), a promising candidate for next-generation nonvolatile memories, exploits quenched glassy and thermodynamically stable crystalline states as reversibly switchable state variables. We demonstrate PCM functions emerging from a charge-configuration degree of freedom in strongly correlated electron systems. Nonvolatile reversible switching between a high-resistivity charge-crystalline (or charge-ordered) state and a low-resistivity quenched state, charge glass, is achieved experimentally via heat pulses supplied by optical or electrical means in organic conductors θ -(BEDT-TTF)2X . Switching that is one order of magnitude faster is observed in another isostructural material that requires faster cooling to kinetically avoid charge crystallization, indicating that the material's critical cooling rate can be useful guidelines for pursuing a faster correlated-electron PCM function.

  5. Fe-induced enhancement of antiferromagnetic spin correlations in Mn2-xFexBO4

    NASA Astrophysics Data System (ADS)

    Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Moshkina, E. M.; Gavrilkin, S. Yu.; Bayukov, O. A.; Gorev, M. V.; Pogoreltsev, E. I.; Zeer, G. M.; Zharkov, S. M.; Ovchinnikov, S. G.

    2018-04-01

    Fe substitution effect on the magnetic behavior of Mn2-xFexBO4 (x = 0.3, 0.5, 0.7) warwickites has been investigated combining Mössbauer spectroscopy, dc magnetization, ac magnetic susceptibility, and heat capacity measurements. The Fe3+ ions distribution over two crystallographic nonequivalent sites is studied. The Fe introduction breaks a long-range antiferromagnetic order and leads to onset of spin-glass ground state. The antiferromagnetic short-range-order spin correlations persist up to temperatures well above TSG reflecting in increasing deviations from the Curie-Weiss law, the reduced effective magnetic moment and "missing" entropy. The results are interpreted in the terms of the progressive increase of the frustration effect and the formation of spin-correlated regions.

  6. Harmonic Chain with Velocity Flips: Thermalization and Kinetic Theory

    NASA Astrophysics Data System (ADS)

    Lukkarinen, Jani; Marcozzi, Matteo; Nota, Alessia

    2016-12-01

    We consider the detailed structure of correlations in harmonic chains with pinning and a bulk velocity flip noise during the heat relaxation phase which occurs on diffusive time scales, for t=O(L^2) where L is the chain length. It has been shown earlier that for non-degenerate harmonic interactions these systems thermalize, and the dominant part of the correlations is given by local thermal equilibrium determined by a temperature profile which satisfies a linear heat equation. Here we are concerned with two new aspects about the thermalization process: the first order corrections in 1 / L to the local equilibrium correlations and the applicability of kinetic theory to study the relaxation process. Employing previously derived explicit uniform estimates for the temperature profile, we first derive an explicit form for the first order corrections to the particle position-momentum correlations. By suitably revising the definition of the Wigner transform and the kinetic scaling limit we derive a phonon Boltzmann equation whose predictions agree with the explicit computation. Comparing the two results, the corrections can be understood as arising from two different sources: a current-related term and a correction to the position-position correlations related to spatial changes in the phonon eigenbasis.

  7. A Non-Local, Energy-Optimized Kernel: Recovering Second-Order Exchange and Beyond in Extended Systems

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson; Laricchia, Savio; Ruzsinszky, Adrienn

    The Random Phase Approximation (RPA) is quickly becoming a standard method beyond semi-local Density Functional Theory that naturally incorporates weak interactions and eliminates self-interaction error. RPA is not perfect, however, and suffers from self-correlation error as well as an incorrect description of short-ranged correlation typically leading to underbinding. To improve upon RPA we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free for one and two electron systems in the high-density limit. By tuning the one free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. To reduce the computational cost of the standard kernel-corrected RPA, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and non-metallic systems. Furthermore we stress that for norm-conserving implementations the accuracy of RPA and beyond RPA structural properties compared to experiment is inherently limited by the choice of pseudopotential. Current affiliation: King's College London.

  8. Quality Evaluation of Raw Moutan Cortex Using the AHP and Gray Correlation-TOPSIS Method

    PubMed Central

    Zhou, Sujuan; Liu, Bo; Meng, Jiang

    2017-01-01

    Background: Raw Moutan cortex (RMC) is an important Chinese herbal medicine. Comprehensive and objective quality evaluation of Chinese herbal medicine has been one of the most important issues in the modern herbs development. Objective: To evaluate and compare the quality of RMC using the weighted gray correlation- Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method. Materials and Methods: The percentage composition of gallic acid, catechin, oxypaeoniflorin, paeoniflorin, quercetin, benzoylpaeoniflorin, paeonol in different batches of RMC was determined, and then adopting MATLAB programming to construct the gray correlation-TOPSIS assessment model for quality evaluation of RMC. Results: The quality evaluation results of model evaluation and objective evaluation were consistent, reliable, and stable. Conclusion: The model of gray correlation-TOPSIS can be well applied to the quality evaluation of traditional Chinese medicine with multiple components and has broad prospect in application. SUMMARY The experiment tries to construct a model to evaluate the quality of RMC using the weighted gray correlation- Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method. Results show the model is reliable and provide a feasible way in evaluating quality of traditional Chinese medicine with multiple components. PMID:28839384

  9. Percolation analysis for cosmic web with discrete points

    NASA Astrophysics Data System (ADS)

    Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung

    2016-03-01

    Percolation analysis has long been used to quantify the connectivity of the cosmic web. Unlike most of the previous works using density field on grids, we have studied percolation analysis based on discrete points. Using a Friends-of-Friends (FoF) algorithm, we generate the S-bb relation, between the fractional mass of the largest connected group (S) and the FoF linking length (bb). We propose a new model, the Probability Cloud Cluster Expansion Theory (PCCET) to relate the S-bb relation with correlation functions. We show that the S-bb relation reflects a combination of all orders of correlation functions. We have studied the S-bb relation with simulation and find that the S-bb relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with Halo Abundance Matching (HAM), we have generated a mock galaxy catalogue. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalogue with the latest galaxy catalogue from SDSS DR12, we have found significant differences in their S-bb relations. This indicates that the mock catalogue cannot accurately recover higher order correlation functions than the two-point correlation function, which reveals the limit of HAM method.

  10. Anomalous barrier escape: The roles of noise distribution and correlation.

    PubMed

    Hu, Meng; Zhang, Jia-Ming; Bao, Jing-Dong

    2017-05-28

    We study numerically and analytically the barrier escape dynamics of a particle driven by an underlying correlated Lévy noise for a smooth metastable potential. A "quasi-monochrome-color" Lévy noise, i.e., the first-order derivative variable of a linear second-order differential equation subjected to a symmetric α-stable white Lévy noise, also called the harmonic velocity Lévy noise, is proposed. Note that the time-integral of the noise Green function of this kind is equal to zero. This leads to the existence of underlying negative time correlation and implies that a step in one direction is likely followed by a step in the other direction. By using the noise of this kind as a driving source, we discuss the competition between long flights and underlying negative correlations in the metastable dynamics. The quite rich behaviors in the parameter space including an optimum α for the stationary escape rate have been found. Remarkably, slow diffusion does not decrease the stationary rate while a negative correlation increases net escape. An approximate expression for the Lévy-Kramers rate is obtained to support the numerically observed dependencies.

  11. Anomalous barrier escape: The roles of noise distribution and correlation

    NASA Astrophysics Data System (ADS)

    Hu, Meng; Zhang, Jia-Ming; Bao, Jing-Dong

    2017-05-01

    We study numerically and analytically the barrier escape dynamics of a particle driven by an underlying correlated Lévy noise for a smooth metastable potential. A "quasi-monochrome-color" Lévy noise, i.e., the first-order derivative variable of a linear second-order differential equation subjected to a symmetric α-stable white Lévy noise, also called the harmonic velocity Lévy noise, is proposed. Note that the time-integral of the noise Green function of this kind is equal to zero. This leads to the existence of underlying negative time correlation and implies that a step in one direction is likely followed by a step in the other direction. By using the noise of this kind as a driving source, we discuss the competition between long flights and underlying negative correlations in the metastable dynamics. The quite rich behaviors in the parameter space including an optimum α for the stationary escape rate have been found. Remarkably, slow diffusion does not decrease the stationary rate while a negative correlation increases net escape. An approximate expression for the Lévy-Kramers rate is obtained to support the numerically observed dependencies.

  12. On the interpretation of domain averaged Fermi hole analyses of correlated wavefunctions.

    PubMed

    Francisco, E; Martín Pendás, A; Costales, Aurora

    2014-03-14

    Few methods allow for a physically sound analysis of chemical bonds in cases where electron correlation may be a relevant factor. The domain averaged Fermi hole (DAFH) analysis, a tool firstly proposed by Robert Ponec in the 1990's to provide interpretations of the chemical bonding existing between two fragments Ω and Ω' that divide the real space exhaustively, is one of them. This method allows for a partition of the delocalization index or bond order between Ω and Ω' into one electron contributions, but the chemical interpretation of its parameters has been firmly established only for single determinant wavefunctions. In this paper we report a general interpretation based on the concept of excluded density that is also valid for correlated descriptions. Both analytical models and actual computations on a set of simple molecules (H2, N2, LiH, and CO) are discussed, and a classification of the possible DAFH situations is presented. Our results show that this kind of analysis may reveal several correlated assisted bonding patterns that might be difficult to detect using other methods. In agreement with previous knowledge, we find that the effective bond order in covalent links decreases due to localization of electrons driven by Coulomb correlation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, L.F.

    Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T < T/sub c/ and T > T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. Inmore » Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations.« less

  14. Phase coherence induced by correlated disorder.

    PubMed

    Hong, Hyunsuk; O'Keeffe, Kevin P; Strogatz, Steven H

    2016-02-01

    We consider a mean-field model of coupled phase oscillators with quenched disorder in the coupling strengths and natural frequencies. When these two kinds of disorder are uncorrelated (and when the positive and negative couplings are equal in number and strength), it is known that phase coherence cannot occur and synchronization is absent. Here we explore the effects of correlating the disorder. Specifically, we assume that any given oscillator either attracts or repels all the others, and that the sign of the interaction is deterministically correlated with the given oscillator's natural frequency. For symmetrically correlated disorder with zero mean, we find that the system spontaneously synchronizes, once the width of the frequency distribution falls below a critical value. For asymmetrically correlated disorder, the model displays coherent traveling waves: the complex order parameter becomes nonzero and rotates with constant frequency different from the system's mean natural frequency. Thus, in both cases, correlated disorder can trigger phase coherence.

  15. A cumulant functional for static and dynamic correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollett, Joshua W., E-mail: j.hollett@uwinnipeg.ca; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2; Hosseini, Hessam

    A functional for the cumulant energy is introduced. The functional is composed of a pair-correction and static and dynamic correlation energy components. The pair-correction and static correlation energies are functionals of the natural orbitals and the occupancy transferred between near-degenerate orbital pairs, rather than the orbital occupancies themselves. The dynamic correlation energy is a functional of the statically correlated on-top two-electron density. The on-top density functional used in this study is the well-known Colle-Salvetti functional. Using the cc-pVTZ basis set, the functional effectively models the bond dissociation of H{sub 2}, LiH, and N{sub 2} with equilibrium bond lengths and dissociationmore » energies comparable to those provided by multireference second-order perturbation theory. The performance of the cumulant functional is less impressive for HF and F{sub 2}, mainly due to an underestimation of the dynamic correlation energy by the Colle-Salvetti functional.« less

  16. No-signaling, perfect bipartite dichotomic correlations and local randomness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seevinck, M. P.

    2011-03-28

    The no-signaling constraint on bi-partite correlations is reviewed. It is shown that in order to obtain non-trivial Bell-type inequalities that discern no-signaling correlations from more general ones, one must go beyond considering expectation values of products of observables only. A new set of nontrivial no-signaling inequalities is derived which have a remarkably close resemblance to the CHSH inequality, yet are fundamentally different. A set of inequalities by Roy and Singh and Avis et al., which is claimed to be useful for discerning no-signaling correlations, is shown to be trivially satisfied by any correlation whatsoever. Finally, using the set of newlymore » derived no-signaling inequalities a result with potential cryptographic consequences is proven: if different parties use identical devices, then, once they have perfect correlations at spacelike separation between dichotomic observables, they know that because of no-signaling the local marginals cannot but be completely random.« less

  17. Entropy of finite random binary sequences with weak long-range correlations.

    PubMed

    Melnik, S S; Usatenko, O V

    2014-11-01

    We study the N-step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.

  18. Entropy of finite random binary sequences with weak long-range correlations

    NASA Astrophysics Data System (ADS)

    Melnik, S. S.; Usatenko, O. V.

    2014-11-01

    We study the N -step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.

  19. Kinetic field theory: exact free evolution of Gaussian phase-space correlations

    NASA Astrophysics Data System (ADS)

    Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias

    2018-04-01

    In recent work we developed a description of cosmic large-scale structure formation in terms of non-equilibrium ensembles of classical particles, with time evolution obtained in the framework of a statistical field theory. In these works, the initial correlations between particles sampled from random Gaussian density and velocity fields have so far been treated perturbatively or restricted to pure momentum correlations. Here we treat the correlations between all phase-space coordinates exactly by adopting a diagrammatic language for the different forms of correlations, directly inspired by the Mayer cluster expansion. We will demonstrate that explicit expressions for phase-space density cumulants of arbitrary n-point order, which fully capture the non-linear coupling of free streaming kinematics due to initial correlations, can be obtained from a simple set of Feynman rules. These cumulants will be the foundation for future investigations of perturbation theory in particle interactions.

  20. Magnetocrystalline anisotropy in cobalt based magnets: a choice of correlation parameters and the relativistic effects

    DOE PAGES

    Nguyen, Manh Cuong; Yao, Yongxin; Wang, Cai-Zhuang; ...

    2018-05-16

    The dependence of the magnetocrystalline anisotropy energy (MAE) in MCo 5 (M = Y, La, Ce, Gd) and CoPt on the Coulomb correlations and strength of spin orbit (SO) interaction within the GGA + U scheme is investigated. A range of parameters suitable for the satisfactory description of key magnetic properties is determined. We show that for a large variation of SO interaction the MAE in these materials can be well described by the traditional second order perturbation theory. We also show that in these materials the MAE can be both proportional and negatively proportional to the orbital moment anisotropymore » (OMA) of Co atoms. Dependence of relativistic effects on Coulomb correlations, applicability of the second order perturbation theory for the description of MAE, and effective screening of the SO interaction in these systems are discussed using a generalized virial theorem. Finally, such determined sets of parameters of Coulomb correlations can be used in much needed large scale atomistic simulations.« less

  1. Magnetocrystalline anisotropy in cobalt based magnets: a choice of correlation parameters and the relativistic effects

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Cuong; Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming; Antropov, Vladimir P.

    2018-05-01

    The dependence of the magnetocrystalline anisotropy energy (MAE) in MCo5 (M  =  Y, La, Ce, Gd) and CoPt on the Coulomb correlations and strength of spin orbit (SO) interaction within the GGA  +  U scheme is investigated. A range of parameters suitable for the satisfactory description of key magnetic properties is determined. We show that for a large variation of SO interaction the MAE in these materials can be well described by the traditional second order perturbation theory. We also show that in these materials the MAE can be both proportional and negatively proportional to the orbital moment anisotropy (OMA) of Co atoms. Dependence of relativistic effects on Coulomb correlations, applicability of the second order perturbation theory for the description of MAE, and effective screening of the SO interaction in these systems are discussed using a generalized virial theorem. Such determined sets of parameters of Coulomb correlations can be used in much needed large scale atomistic simulations.

  2. Magnetocrystalline anisotropy in cobalt based magnets: a choice of correlation parameters and the relativistic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Manh Cuong; Yao, Yongxin; Wang, Cai-Zhuang

    The dependence of the magnetocrystalline anisotropy energy (MAE) in MCo 5 (M = Y, La, Ce, Gd) and CoPt on the Coulomb correlations and strength of spin orbit (SO) interaction within the GGA + U scheme is investigated. A range of parameters suitable for the satisfactory description of key magnetic properties is determined. We show that for a large variation of SO interaction the MAE in these materials can be well described by the traditional second order perturbation theory. We also show that in these materials the MAE can be both proportional and negatively proportional to the orbital moment anisotropymore » (OMA) of Co atoms. Dependence of relativistic effects on Coulomb correlations, applicability of the second order perturbation theory for the description of MAE, and effective screening of the SO interaction in these systems are discussed using a generalized virial theorem. Finally, such determined sets of parameters of Coulomb correlations can be used in much needed large scale atomistic simulations.« less

  3. Global correlation of topographic heights and gravity anomalies

    NASA Technical Reports Server (NTRS)

    Roufosse, M. C.

    1977-01-01

    The short wavelength features were obtained by subtracting a calculated 24th-degree-and-order field from observed data written in 1 deg x 1 deg squares. The correlation between the two residual fields was examined by a program of linear regression. When run on a worldwide scale over oceans and continents separately, the program did not exhibit any correlation; this can be explained by the fact that the worldwide autocorrelation function for residual gravity anomalies falls off much faster as a function of distance than does that for residual topographic heights. The situation was different when the program was used in restricted areas, of the order of 5 deg x 5 deg square. For 30% of the world,fair-to-good correlations were observed, mostly over continents. The slopes of the regression lines are proportional to apparent densities, which offer a large spectrum of values that are being interpreted in terms of features in the upper mantle consistent with available heat-flow, gravity, and seismic data.

  4. Thermal form factor approach to the ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime

    NASA Astrophysics Data System (ADS)

    Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji

    2016-09-01

    We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.

  5. Analysis of noise-induced temporal correlations in neuronal spike sequences

    NASA Astrophysics Data System (ADS)

    Reinoso, José A.; Torrent, M. C.; Masoller, Cristina

    2016-11-01

    We investigate temporal correlations in sequences of noise-induced neuronal spikes, using a symbolic method of time-series analysis. We focus on the sequence of time-intervals between consecutive spikes (inter-spike-intervals, ISIs). The analysis method, known as ordinal analysis, transforms the ISI sequence into a sequence of ordinal patterns (OPs), which are defined in terms of the relative ordering of consecutive ISIs. The ISI sequences are obtained from extensive simulations of two neuron models (FitzHugh-Nagumo, FHN, and integrate-and-fire, IF), with correlated noise. We find that, as the noise strength increases, temporal order gradually emerges, revealed by the existence of more frequent ordinal patterns in the ISI sequence. While in the FHN model the most frequent OP depends on the noise strength, in the IF model it is independent of the noise strength. In both models, the correlation time of the noise affects the OP probabilities but does not modify the most probable pattern.

  6. Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Li Long; Ma Ruiqiong

    2005-07-15

    Based on color-locking noisy field correlation, a time-delayed method is proposed to suppress the thermal effect, and the ultrafast longitudinal relaxation time can be measured even in an absorbing medium. One interesting feature in field-correlation effects is that Rayleigh-enhanced four-wave mixing (RFWM) with color-locking noisy light exhibits spectral symmetry and temporal asymmetry with no coherence spike at {tau}=0. Due to the interference between the Rayleigh-resonant signal and the nonresonant background, RFWM exhibits hybrid radiation-matter detuning with terahertz damping oscillations. The subtle Markovian high-order correlation effects have been investigated in the homodyne- or heterodyne-detected Rayleigh-enhanced attosecond sum-frequency polarization beats (RASPBs). Analyticmore » closed forms of fourth-order Markovian stochastic correlations are characterized for homodyne (quadratic) and heterodyne (linear) detection, respectively. Based on the polarization interference between two four-wave mixing processes, the phase-sensitive detection of RASPBs has also been used to obtain the real and imaginary parts of the Rayleigh resonance.« less

  7. Riemann correlator in de Sitter including loop corrections from conformal fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröb, Markus B.; Verdaguer, Enric; Roura, Albert, E-mail: mfroeb@ffn.ub.edu, E-mail: albert.roura@uni-ulm.de, E-mail: enric.verdaguer@ub.edu

    2014-07-01

    The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H{sup 4}/m{sub p}{sup 4}. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicitmore » result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.« less

  8. Insight into resolution enhancement in generalized two-dimensional correlation spectroscopy.

    PubMed

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K; Asher, Sanford A

    2013-03-01

    Generalized two-dimensional correlation spectroscopy (2D-COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D-COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) is not completely understood. In the work here, we studied the 2D-COS of simulated spectra in order to develop new insights into the dependence of 2D-COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We found that the features in the 2D-COS maps that are derived from overlapping bands were determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identified the conditions required to resolve overlapping bands. In particular, 2D-COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands.

  9. Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy

    PubMed Central

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.

    2014-01-01

    Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We find that the features in the 2D COS maps that derive from overlapping bands are determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identify the conditions required to resolve overlapping bands. In particular, 2D COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands. PMID:23452492

  10. Iterative nonlinear joint transform correlation for the detection of objects in cluttered scenes

    NASA Astrophysics Data System (ADS)

    Haist, Tobias; Tiziani, Hans J.

    1999-03-01

    An iterative correlation technique with digital image processing in the feedback loop for the detection of small objects in cluttered scenes is proposed. A scanning aperture is combined with the method in order to improve the immunity against noise and clutter. Multiple reference objects or different views of one object are processed in parallel. We demonstrate the method by detecting a noisy and distorted face in a crowd with a nonlinear joint transform correlator.

  11. Features of Cross-Correlation Analysis in a Data-Driven Approach for Structural Damage Assessment

    PubMed Central

    Camacho Navarro, Jhonatan; Ruiz, Magda; Villamizar, Rodolfo; Mujica, Luis

    2018-01-01

    This work discusses the advantage of using cross-correlation analysis in a data-driven approach based on principal component analysis (PCA) and piezodiagnostics to obtain successful diagnosis of events in structural health monitoring (SHM). In this sense, the identification of noisy data and outliers, as well as the management of data cleansing stages can be facilitated through the implementation of a preprocessing stage based on cross-correlation functions. Additionally, this work evidences an improvement in damage detection when the cross-correlation is included as part of the whole damage assessment approach. The proposed methodology is validated by processing data measurements from piezoelectric devices (PZT), which are used in a piezodiagnostics approach based on PCA and baseline modeling. Thus, the influence of cross-correlation analysis used in the preprocessing stage is evaluated for damage detection by means of statistical plots and self-organizing maps. Three laboratory specimens were used as test structures in order to demonstrate the validity of the methodology: (i) a carbon steel pipe section with leak and mass damage types, (ii) an aircraft wing specimen, and (iii) a blade of a commercial aircraft turbine, where damages are specified as mass-added. As the main concluding remark, the suitability of cross-correlation features combined with a PCA-based piezodiagnostic approach in order to achieve a more robust damage assessment algorithm is verified for SHM tasks. PMID:29762505

  12. Features of Cross-Correlation Analysis in a Data-Driven Approach for Structural Damage Assessment.

    PubMed

    Camacho Navarro, Jhonatan; Ruiz, Magda; Villamizar, Rodolfo; Mujica, Luis; Quiroga, Jabid

    2018-05-15

    This work discusses the advantage of using cross-correlation analysis in a data-driven approach based on principal component analysis (PCA) and piezodiagnostics to obtain successful diagnosis of events in structural health monitoring (SHM). In this sense, the identification of noisy data and outliers, as well as the management of data cleansing stages can be facilitated through the implementation of a preprocessing stage based on cross-correlation functions. Additionally, this work evidences an improvement in damage detection when the cross-correlation is included as part of the whole damage assessment approach. The proposed methodology is validated by processing data measurements from piezoelectric devices (PZT), which are used in a piezodiagnostics approach based on PCA and baseline modeling. Thus, the influence of cross-correlation analysis used in the preprocessing stage is evaluated for damage detection by means of statistical plots and self-organizing maps. Three laboratory specimens were used as test structures in order to demonstrate the validity of the methodology: (i) a carbon steel pipe section with leak and mass damage types, (ii) an aircraft wing specimen, and (iii) a blade of a commercial aircraft turbine, where damages are specified as mass-added. As the main concluding remark, the suitability of cross-correlation features combined with a PCA-based piezodiagnostic approach in order to achieve a more robust damage assessment algorithm is verified for SHM tasks.

  13. Ideal charge-density-wave order in the high-field state of superconducting YBCO

    DOE PAGES

    Jang, H.; Lee, W. -S.; Nojiri, H.; ...

    2016-12-05

    The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa 2Cu 3O 2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field ( H c2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlationmore » length as well as significant correlations between neighboring CuO 2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to H c2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. Furthermore, this is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate.« less

  14. Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2007-01-01

    Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.

  15. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qing; Shi, Chaowei; Yu, Lu

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in amore » defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.« less

  16. N-representability of the Jastrow wave function pair density of the lowest-order.

    PubMed

    Higuchi, Katsuhiko; Higuchi, Masahiko

    2017-08-08

    Conditions for the N-representability of the pair density (PD) are needed for the development of the PD functional theory. We derive sufficient conditions for the N-representability of the PD that is calculated from the Jastrow wave function within the lowest order. These conditions are used as the constraints on the correlation function of the Jastrow wave function. A concrete procedure to search the suitable correlation function is also presented.

  17. Single-trial extraction of cognitive evoked potentials by combination of third-order correlation and wavelet denoising.

    PubMed

    Zhang, Z; Tian, X

    2005-01-01

    The application of a recently proposed denoising implementation for obtaining cognitive evoked potentials (CEPs) at the single-trial level is shown. The aim of this investigation is to develop the technique of extracting CEPs by combining both the third-order correlation and the wavelet denoising methods. First, the noisy CEPs was passed through a finite impulse response filter whose impulse response is matched with the shape of the noise-free signal. It was shown that it is possible to estimate the filter impulse response on basis of a select third-order correlation slice (TOCS) of the input noisy CEPs. Second, the output from the third-order correlation filter is decomposed with bi-orthogonal splines at 5 levels. The CEPs is reconstructed by wavelet final approximation a5. We study its performance in simulated data as well as in cognitive evoked potentials of normal rat and Alzheimer's disease (AD) model rat. For the simulated data, the method gives a significantly better reconstruction of the single-trial cognitive evoked potentials responses in comparison with the simulated data. Moreover, with this approach we obtain a significantly better estimation of the amplitudes and latencies of the simulated CEPs. For the real data, the method clearly improves the visualization of single-trial CEPs. This allows the calculation of better averages as well as the study of systematic or unsystematic variations between trials.

  18. Socioeconomic disadvantage and schizophrenia in migrants under mental health detention orders.

    PubMed

    Bulla, Jan; Hoffmann, Klaus; Querengässer, Jan; Ross, Thomas

    2017-09-01

    Migrants with mental hospital orders according to section 63 of the German criminal code are overrepresented in relation to their numbers in the general population. Subgroups originating from certain world regions are diagnosed with schizophrenia at a much higher rate than others. In the present literature, there is a strong evidence for a substantial correlation between migration, social disadvantage and the prevalence of schizophrenia. This study investigates the relationship between countries of origin, the risk of becoming a forensic patient and the proportion of schizophrenia spectrum disorders. Data from a comprehensive evaluation tool of forensic inpatients in the German federal state of Baden-Württemberg (FoDoBa) were compared with population statistics and correlated with the Human Development Index (HDI) and Multidimensional Poverty Index (MPI). For residents with migration background, the risk ratio to receive a mental hospital order is 1.3 in comparison to non-migrants. There was a highly significant correlation between the HDI of the country of origin and the risk ratio for detention in a forensic psychiatric hospital. The proportion of schizophrenia diagnoses also correlated significantly with the HDI. In contrast, the MPI country rankings were not associated with schizophrenia diagnoses. Two lines of explanations are discussed: first, higher prevalence of schizophrenia in migrants originating from low-income countries, and second, a specific bias in court rulings with regard to involuntary forensic treatment orders for these migrant groups.

  19. Diverse trends of electron correlation effects for properties with different radial and angular factors in an atomic system: a case study in Ca+

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Li, Cheng-Bin; Sahoo, B. K.

    2018-03-01

    Dependencies of electron correlation effects with the rank and radial behavior of spectroscopic properties are analyzed in the singly charged calcium ion (Ca+). To demonstrate these trends, we have determined field shift constants, magnetic dipole and electric quadrupole hyperfine structure constants, Landé g J factors, and electric quadrupole moments that are described by electronic operators with different radial and angular factors. Radial dependencies are investigated by comparing correlation trends among the properties that have similar angular factors and vice versa. To highlight these observations, we present results from the mean-field approach to all-orders along with intermediate contributions. Contributions from higher relativistic corrections are also given. These findings suggest that sometime lower-order approximations can give results agreeing with the experimental results, but inclusion of some of higher-order correlation effects can cause large disagreement with the experimental values. Therefore, validity of a method for accurate evaluation of atomic properties can be tested by performing calculations of several properties simultaneously that have diverse dependencies on the angular and radial factors and comparing with the available experimental results. Nevertheless, it is imperative to include full triple and quadrupole excitations in the all-order many-body methods for high-precision calculations that are yet to be developed adopting spherical coordinate system for atomic studies.

  20. Heat conduction in diatomic chains with correlated disorder

    NASA Astrophysics Data System (ADS)

    Savin, Alexander V.; Zolotarevskiy, Vadim; Gendelman, Oleg V.

    2017-01-01

    The paper considers heat transport in diatomic one-dimensional lattices, containing equal amounts of particles with different masses. Ordering of the particles in the chain is governed by single correlation parameter - the probability for two neighboring particles to have the same mass. As this parameter grows from zero to unity, the structure of the chain varies from regular staggering chain to completely random configuration, and then - to very long clusters of particles with equal masses. Therefore, this correlation parameter allows a control of typical cluster size in the chain. In order to explore different regimes of the heat transport, two interatomic potentials are considered. The first one is an infinite potential wall, corresponding to instantaneous elastic collisions between the neighboring particles. In homogeneous chains such interaction leads to an anomalous heat transport. The other one is classical Lennard-Jones interatomic potential, which leads to a normal heat transport. The simulations demonstrate that the correlated disorder of the particle arrangement does not change the convergence properties of the heat conduction coefficient, but essentially modifies its value. For the collision potential, one observes essential growth of the coefficient for fixed chain length as the limit of large homogeneous clusters is approached. The thermal transport in these models remains superdiffusive. In the Lennard-Jones chain the effect of correlation appears to be not monotonous in the limit of low temperatures. This behavior stems from the competition between formation of long clusters mentioned above, and Anderson localization close to the staggering ordered state.

  1. Application of the order-of-magnitude analysis to a fourth-order RANS closure for simulating a 2D boundary layer

    NASA Astrophysics Data System (ADS)

    Poroseva, Svetlana V.

    2013-11-01

    Simulations of turbulent boundary-layer flows are usually conducted using a set of the simplified Reynolds-Averaged Navier-Stokes (RANS) equations obtained by order-of-magnitude analysis (OMA) of the original RANS equations. The resultant equations for the mean-velocity components are closed using the Boussinesq approximation for the Reynolds stresses. In this study OMA is applied to the fourth-order RANS (FORANS) set of equations. The FORANS equations are chosen as they can be closed on the level of the 5th-order correlations without using unknown model coefficients, i.e. no turbulent diffusion modeling is required. New models for the 2nd-, 3rd- and 4th-order velocity-pressure gradient correlations are derived for the current FORANS equations. This set of FORANS equations and models are analyzed for the case of two-dimensional mean flow. The equations include familiar transport terms for the mean-velocity components along with algebraic expressions for velocity correlations of different orders specific to the FORANS approach. Flat plate DNS data (Spalart, 1988) are used to verify these expressions and the areas of the OMA applicability within the boundary layer. The material is based upon work supported by NASA under award NNX12AJ61A.

  2. A new phase-correlation-based iris matching for degraded images.

    PubMed

    Krichen, Emine; Garcia-Salicetti, Sonia; Dorizzi, Bernadette

    2009-08-01

    In this paper, we present a new phase-correlation-based iris matching approach in order to deal with degradations in iris images due to unconstrained acquisition procedures. Our matching system is a fusion of global and local Gabor phase-correlation schemes. The main originality of our local approach is that we do not only consider the correlation peak amplitudes but also their locations in different regions of the images. Results on several degraded databases, namely, the CASIA-BIOSECURE and Iris Challenge Evaluation 2005 databases, show the improvement of our method compared to two available reference systems, Masek and Open Source for Iris (OSRIS), in verification mode.

  3. Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD

    NASA Astrophysics Data System (ADS)

    Dixon, Lance J.; Luo, Ming-xing; Shtabovenko, Vladyslav; Yang, Tong-Zhi; Zhu, Hua Xing

    2018-03-01

    The energy-energy correlation (EEC) between two detectors in e+e- annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.

  4. Algorithmic implementation of particle-particle ladder diagram approximation to study strongly-correlated metals and semiconductors

    NASA Astrophysics Data System (ADS)

    Prayogi, A.; Majidi, M. A.

    2017-07-01

    In condensed-matter physics, strongly-correlated systems refer to materials that exhibit variety of fascinating properties and ordered phases, depending on temperature, doping, and other factors. Such unique properties most notably arise due to strong electron-electron interactions, and in some cases due to interactions involving other quasiparticles as well. Electronic correlation effects are non-trivial that one may need a sufficiently accurate approximation technique with quite heavy computation, such as Quantum Monte-Carlo, in order to capture particular material properties arising from such effects. Meanwhile, less accurate techniques may come with lower numerical cost, but the ability to capture particular properties may highly depend on the choice of approximation. Among the many-body techniques derivable from Feynman diagrams, we aim to formulate algorithmic implementation of the Ladder Diagram approximation to capture the effects of electron-electron interactions. We wish to investigate how these correlation effects influence the temperature-dependent properties of strongly-correlated metals and semiconductors. As we are interested to study the temperature-dependent properties of the system, the Ladder diagram method needs to be applied in Matsubara frequency domain to obtain the self-consistent self-energy. However, at the end we would also need to compute the dynamical properties like density of states (DOS) and optical conductivity that are defined in the real frequency domain. For this purpose, we need to perform the analytic continuation procedure. At the end of this study, we will test the technique by observing the occurrence of metal-insulator transition in strongly-correlated metals, and renormalization of the band gap in strongly-correlated semiconductors.

  5. Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.

    PubMed

    Zhang, Dawei; Liu, Chungen

    2016-04-12

    The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems.

  6. New experimental constrains on chiral magnetic effect using charge-dependent azimuthal correlation in pPb and PbPb collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Tu, Zhoudunming

    2018-01-01

    Studies of charge-dependent azimuthal correlations for the same- and oppositesign particle pairs are presented in PbPb collisions at 5 TeV and pPb collisions at 5 and 8.16 TeV, with the CMS experiment at the LHC. The azimuthal correlations are evaluated with respect to the second- and also higher-order event planes, as a function of particle pseudorapidity and transverse momentum, and event multiplicity. By employing an event-shape engineering technique, the dependence of correlations on azimuthal anisotropy flow is investigated. Results presented provide new insights to the origin of observed charge-dependent azimuthal correlations, and have important implications to the search for the chiral magnetic effect in heavy ion collisions.

  7. Self-adaptive tensor network states with multi-site correlators

    NASA Astrophysics Data System (ADS)

    Kovyrshin, Arseny; Reiher, Markus

    2017-12-01

    We introduce the concept of self-adaptive tensor network states (SATNSs) based on multi-site correlators. The SATNS ansatz gradually extends its variational space incorporating the most important next-order correlators into the ansatz for the wave function. The selection of these correlators is guided by entanglement-entropy measures from quantum information theory. By sequentially introducing variational parameters and adjusting them to the system under study, the SATNS ansatz achieves keeping their number significantly smaller than the total number of full-configuration interaction parameters. The SATNS ansatz is studied for manganocene in its lowest-energy sextet and doublet states; the latter of which is known to be difficult to describe. It is shown that the SATNS parametrization solves the convergence issues found for previous correlator-based tensor network states.

  8. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  9. Isothermal crystallization of poly(3-hydroxybutyrate) studied by terahertz two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Morisawa, Yusuke; Sato, Harumi; Noda, Isao; Ozaki, Yukihiro; Otani, Chiko

    2012-01-01

    The isothermal crystallization of poly(3-hydroxybutylate) (PHB) was studied by monitoring the temporal evolution of terahertz absorption spectra in conjunction with spectral analysis using two-dimensional correlation spectroscopy. Correlation between the absorption peaks and the sequential order of the changes in spectral intensity extracted from synchronous and asynchronous plots indicated that crystallization of PHB at 90 °C is a two step process, in which C-H...O=C hydrogen bonds are initially formed before well-defined crystal structures are established.

  10. Structure-property correlations of ion-containing polymers for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sproll, Véronique; Nagy, Gergely; Gasser, Urs; Balog, Sandor; Gustavsson, Sanna; Schmidt, Thomas J.; Gubler, Lorenz

    2016-01-01

    In order to investigate the structure-property correlations of grafted proton conducting membranes, the model system consisting of an ETFE base film grafted with polystyrene and subsequent sulfonation (ETFE-g-PSSA) along with crosslinked derivatives ETFE-g-P(SSA-co-DiPB) were synthesized. The characteristics of the final membranes were characterized by PFG-NMR diffusometry, in-plane conductivity and by investigations of the dimensional changes of the grafted membranes. The collected data were correlated with the inherent anisotropy of the ETFE base film.

  11. Time-Frequency Based Instantaneous Frequency Estimation of Sparse Signals from an Incomplete Set of Samples

    DTIC Science & Technology

    2014-06-17

    100 0 2 4 Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function 0 50 100 0 2 4 L- Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function ...bilinear or higher order autocorrelation functions will increase the number of missing samples, the analysis shows that accurate instantaneous...frequency estimation can be achieved even if we deal with only few samples, as long as the auto-correlation function is properly chosen to coincide with

  12. Derivation of the density functional theory from the cluster expansion.

    PubMed

    Hsu, J Y

    2003-09-26

    The density functional theory is derived from a cluster expansion by truncating the higher-order correlations in one and only one term in the kinetic energy. The formulation allows self-consistent calculation of the exchange correlation effect without imposing additional assumptions to generalize the local density approximation. The pair correlation is described as a two-body collision of bound-state electrons, and modifies the electron- electron interaction energy as well as the kinetic energy. The theory admits excited states, and has no self-interaction energy.

  13. Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates

    DOE PAGES

    Miao, H.; Ishikawa, D.; Heid, R.; ...

    2018-01-18

    While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wave vectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here, we investigate the temperature dependence of the low-energy phonons in the canonical CDW-ordered cuprate La 1.875Ba 0.125CuO 4. We discover that the phonon softening wave vector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wave vector of 0.238 reciprocal lattice units (r.l.u.) below the ordering transition temperature to 0.3 r.l.u. at 300 K. This high-temperature behavior also shows that “214”-type cupratesmore » can host CDW correlations at a similar wave vector to previously reported CDW correlations in non-214-type cuprates such as YBa 2Cu 3O 6+δ. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low-temperature ordering wave vectors.« less

  14. Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, H.; Ishikawa, D.; Heid, R.

    While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wave vectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here, we investigate the temperature dependence of the low-energy phonons in the canonical CDW-ordered cuprate La 1.875Ba 0.125CuO 4. We discover that the phonon softening wave vector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wave vector of 0.238 reciprocal lattice units (r.l.u.) below the ordering transition temperature to 0.3 r.l.u. at 300 K. This high-temperature behavior also shows that “214”-type cupratesmore » can host CDW correlations at a similar wave vector to previously reported CDW correlations in non-214-type cuprates such as YBa 2Cu 3O 6+δ. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low-temperature ordering wave vectors.« less

  15. Hexatic smectic phase with algebraically decaying bond-orientational order

    NASA Astrophysics Data System (ADS)

    Agosta, Lorenzo; Metere, Alfredo; Dzugutov, Mikhail

    2018-05-01

    The hexatic phase predicted by the theories of two-dimensional melting is characterized by the power-law decay of the orientational correlations, whereas the in-layer bond orientational order in all the hexatic smectic phases observed so far was found to be long range. We report a hexatic smectic phase where the in-layer bond orientational correlations decay algebraically, in quantitative agreement with the hexatic ordering predicted by the theory for two dimensions. The phase was formed in a molecular dynamics simulation of a one-component system of particles interacting via a spherically symmetric potential. The present results thus demonstrate that the theoretically predicted two-dimensional hexatic order can exist in a three-dimensional system.

  16. Study of resonances produced in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Quattrocchi, L.; Acosta, L.; Auditore, L.; Cardella, G.; Chbihi, A.; De Filippo, E.; Favela, F.; Gnoffo, B.; Lanzalone, G.; Martel, I.; Martorana, N. S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.

    2018-05-01

    At Laboratori Nazionali del Sud of Catania an experiment has been carried out in order to investigate the correlations between particles produced in 12C+24Mg reaction at 35 AMeV incident energy. Two α correlation has been explored because provide information about temperature of 8Be nuclei produced in the reaction, while three α correaltion has been studied in order to evaluate the competition between sequential and direct decay mode of resonances produced in 12C quasi-projectiles.

  17. Applying complex networks to evaluate precipitation patterns over South America

    NASA Astrophysics Data System (ADS)

    Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique; Kurths, Jürgen; Rammig, Anja

    2016-04-01

    The climate of South America exhibits pronounced differences between the wet- and the dry-season, which are accompanied by specific synoptic events like changes in the location of the South American Low Level Jet (SALLJ) and the establishment of the South American Convergence Zone (SACZ). The onset of these events can be related to the presence of typical large-scale precipitation patterns over South America, as previous studies have shown[1,2]. The application of complex network methods to precipitation data recently received increased scientific attention for the special case of extreme events, as it is possible with such methods to analyze the spatiotemporal correlation structure as well as possible teleconnections of these events[3,4]. In these approaches the correlation between precipitation datasets is calculated by means of Event Synchronization which restricts their applicability to extreme precipitation events. In this work, we propose a method which is able to consider not only extreme precipitation but complete time series. A direct application of standard similarity measures in order to correlate precipitation time series is impossible due to their intricate statistical properties as the large amount of zeros. Therefore, we introduced and evaluated a suitable modification of Pearson's correlation coefficient to construct spatial correlation networks of precipitation. By analyzing the characteristics of spatial correlation networks constructed on the basis of this new measure, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections of correlated areas, and detect central regions for precipitation correlation. By analyzing the change of the network over the year[5], we are also able to determine local and global changes in precipitation correlation patterns. Additionally, global network characteristics as the network connectivity yield indications for beginning and end of wet- and dry season. In order to identify large-scale synoptic events like the SACZ and SALLJ onset, detecting the changes of correlation over time between certain regions is of significant relevance. [1] Nieto-Ferreira et al. Quarterly Journal of the Royal Meteorological Society (2011) [2] Vera et al. Bulletin of the American Meteorological Society (2006) [3] Quiroga et al. Physical review E (2002) [4] Boers et al. nature communications (2014) [5] Radebach et al. Physical review E (2013)

  18. Using Web-based Interspecies Correlation Estimation (Web-ICE) models as a tool for acute toxicity prediction

    EPA Science Inventory

    In order to assess risk of contaminants to taxa with limited or no toxicity data available, Interspecies Correlation Estimation (ICE) models have been developed by the U.S. Environmental Protection Agency to extrapolate contaminant sensitivity predictions based on data from commo...

  19. Young People's Sexual Risk Behaviors in Nigeria

    ERIC Educational Resources Information Center

    Abdulraheem, I. S.; Fawole, O. I.

    2009-01-01

    The prevalence and correlates of HIV-related risk behaviors among adolescents and youths in Nigeria are poorly documented. This study aims at determining the prevalence and correlates of HIV-related risk behaviors among adolescents and youths in order to plan appropriate intervention measures. This is a descriptive cross-sectional survey using…

  20. Robustness of Hierarchical Modeling of Skill Association in Cognitive Diagnosis Models

    ERIC Educational Resources Information Center

    Templin, Jonathan L.; Henson, Robert A.; Templin, Sara E.; Roussos, Louis

    2008-01-01

    Several types of parameterizations of attribute correlations in cognitive diagnosis models use the reduced reparameterized unified model. The general approach presumes an unconstrained correlation matrix with K(K - 1)/2 parameters, whereas the higher order approach postulates K parameters, imposing a unidimensional structure on the correlation…

  1. Hydrodynamic correlation functions of hard-sphere fluids at short times

    NASA Astrophysics Data System (ADS)

    Leegwater, Jan A.; van Beijeren, Henk

    1989-11-01

    The short-time behavior of the coherent intermediate scattering function for a fluid of hard-sphere particles is calculated exactly through order t 4, and the other hydrodynamic correlation functions are calculated exactly through order t 2. It is shown that for all of the correlation functions considered the Enskog theory gives a fair approximation. Also, the initial time behavior of various Green-Kubo integrands is studied. For the shear-viscosity integrand it is found that at density nσ3=0.837 the prediction of the Enskog theory is 32% too low. The initial value of the bulk viscosity integrand is nonzero, in contrast to the Enskog result. The initial value of the thermal conductivity integrand at high densities is predicted well by Enskog theory.

  2. Two-point correlators revisited: fast and slow scales in multifield models of inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghersi, José T. Gálvez; Frolov, Andrei V., E-mail: joseg@sfu.ca, E-mail: frolov@sfu.ca

    2017-05-01

    We study the structure of two-point correlators of the inflationary field fluctuations in order to improve the accuracy and efficiency of the existing methods to calculate primordial spectra. We present a description motivated by the separation of the fast and slow evolving components of the spectrum which is based on Cholesky decomposition of the field correlator matrix. Our purpose is to rewrite all the relevant equations of motion in terms of slowly varying quantities. This is important in order to consider the contribution from high-frequency modes to the spectrum without affecting computational performance. The slow-roll approximation is not required tomore » reproduce the main distinctive features in the power spectrum for each specific model of inflation.« less

  3. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  4. Complex-valued time-series correlation increases sensitivity in FMRI analysis.

    PubMed

    Kociuba, Mary C; Rowe, Daniel B

    2016-07-01

    To develop a linear matrix representation of correlation between complex-valued (CV) time-series in the temporal Fourier frequency domain, and demonstrate its increased sensitivity over correlation between magnitude-only (MO) time-series in functional MRI (fMRI) analysis. The standard in fMRI is to discard the phase before the statistical analysis of the data, despite evidence of task related change in the phase time-series. With a real-valued isomorphism representation of Fourier reconstruction, correlation is computed in the temporal frequency domain with CV time-series data, rather than with the standard of MO data. A MATLAB simulation compares the Fisher-z transform of MO and CV correlations for varying degrees of task related magnitude and phase amplitude change in the time-series. The increased sensitivity of the complex-valued Fourier representation of correlation is also demonstrated with experimental human data. Since the correlation description in the temporal frequency domain is represented as a summation of second order temporal frequencies, the correlation is easily divided into experimentally relevant frequency bands for each voxel's temporal frequency spectrum. The MO and CV correlations for the experimental human data are analyzed for four voxels of interest (VOIs) to show the framework with high and low contrast-to-noise ratios in the motor cortex and the supplementary motor cortex. The simulation demonstrates the increased strength of CV correlations over MO correlations for low magnitude contrast-to-noise time-series. In the experimental human data, the MO correlation maps are noisier than the CV maps, and it is more difficult to distinguish the motor cortex in the MO correlation maps after spatial processing. Including both magnitude and phase in the spatial correlation computations more accurately defines the correlated left and right motor cortices. Sensitivity in correlation analysis is important to preserve the signal of interest in fMRI data sets with high noise variance, and avoid excessive processing induced correlation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. [Correlation between psychological state and emotional intelligence in residents of gynecology, and obstetrics].

    PubMed

    Carranza-Lira, Sebastián

    2016-01-01

    Emotional intelligence is our capacity to acknowledge our own emotions, and the emotions of other people; it also has to do with the way emotions must be understood, and used productively. Given that an altered state of mind can have an impact on emotional intelligence, our objective was to correlate the psychological state with emotional intelligence in residents of gynecology, and obstetrics. We assessed 76 gynecology and obstetrics residents by using What's my M3 and TMMS-24 instruments, in order to know the influence of psychological state on emotional intelligence. In male students of second grade, there was a positive correlation between obsessive-compulsive disorder (OCD) and emotional attention (EA), and a negative correlation with emotional clarity (EC). In third grade males, anxiety, bipolar disorder, and posttraumatic stress disorder (PTSD) correlated positively with EA. In male students of fourth grade there was a positive correlation between OCD and EA. In second grade female students, depression correlated negatively with emotional repair (ER). In third grade female students anxiety, bipolar disorder, and PTSD correlated positively with EA. In fourth grade female students there was a negative correlation between depression and EA, and between anxiety, OCD, and PTSD with EC. Psychological status has a favorable impact on EA and a negative effect on EC and ER.

  6. Effects of Eddy Viscosity on Time Correlations in Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Subgrid-scale (SGS) models for large. eddy simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large eddy simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the eddy viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective eddy viscosity associated with time correlations is formulated, to which the eddy viscosity associated with energy transfer is a leading order approximation.

  7. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    DOE PAGES

    Erwin, Peter; Gadotti, Dimitri Alexei

    2012-01-01

    Smore » tudies have suggested that there is a strong correlation between the masses of nuclear star clusters (NCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (MBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while MBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio M NC / M ⋆ ,  tot for NCs in spirals (at least those with Hubble types c and later) is typically an order of magnitude smaller than the mass ratio M BH / M ⋆ ,  bul of MBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both MBHs and NCs. We also discuss evidence for a break in the NC-host galaxy correlation, galaxies with Hubble types earlier than bc appear to host systematically more massive NCs than do types c and later.« less

  8. Influence of Initial Correlations on Evolution of a Subsystem in a Heat Bath and Polaron Mobility

    NASA Astrophysics Data System (ADS)

    Los, Victor F.

    2017-08-01

    A regular approach to accounting for initial correlations, which allows to go beyond the unrealistic random phase (initial product state) approximation in deriving the evolution equations, is suggested. An exact homogeneous (time-convolution and time-convolutionless) equations for a relevant part of the two-time equilibrium correlation function for the dynamic variables of a subsystem interacting with a boson field (heat bath) are obtained. No conventional approximation like RPA or Bogoliubov's principle of weakening of initial correlations is used. The obtained equations take into account the initial correlations in the kernel governing their evolution. The solution to these equations is found in the second order of the kernel expansion in the electron-phonon interaction, which demonstrates that generally the initial correlations influence the correlation function's evolution in time. It is explicitly shown that this influence vanishes on a large timescale (actually at t→ ∞) and the evolution process enters an irreversible kinetic regime. The developed approach is applied to the Fröhlich polaron and the low-temperature polaron mobility (which was under a long-time debate) is found with a correction due to initial correlations.

  9. New Models for Velocity/Pressure-Gradient Correlations in Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Poroseva, Svetlana; Murman, Scott

    2014-11-01

    To improve the performance of Reynolds-Averaged Navier-Stokes (RANS) turbulence models, one has to improve the accuracy of models for three physical processes: turbulent diffusion, interaction of turbulent pressure and velocity fluctuation fields, and dissipative processes. The accuracy of modeling the turbulent diffusion depends on the order of a statistical closure chosen as a basis for a RANS model. When the Gram-Charlier series expansions for the velocity correlations are used to close the set of RANS equations, no assumption on Gaussian turbulence is invoked and no unknown model coefficients are introduced into the modeled equations. In such a way, this closure procedure reduces the modeling uncertainty of fourth-order RANS (FORANS) closures. Experimental and direct numerical simulation data confirmed the validity of using the Gram-Charlier series expansions in various flows including boundary layers. We will address modeling the velocity/pressure-gradient correlations. New linear models will be introduced for the second- and higher-order correlations applicable to two-dimensional incompressible wall-bounded flows. Results of models' validation with DNS data in a channel flow and in a zero-pressure gradient boundary layer over a flat plate will be demonstrated. A part of the material is based upon work supported by NASA under award NNX12AJ61A.

  10. Exploring the boundary between aromatic and olefinic character: Bad news for second-order perturbation theory and density functional schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulzbach, H.M.; Schaefer, H.F. III; Klopper, W.

    1996-04-10

    The question whether [10]annulene prefers olefinic structures with alternate single and double bonds or aromatic structures like all other small to medium sized uncharged (4n + 2){pi} electron homologs (e.g. benzene, [14]annulene) has been controversial for more than 20 years. Our new results suggest that only the high-order correlated methods will be able to correctly predict the [10]annulene potential energy surface. The UNO-CAS results and the strong oscillation of the MP series show that nondynamical electron correlation is important. Consequently, reliable results can only be expected at the highest correlated levels like CCSD(T) method, which predicts the olefinic twist structuremore » to be lower in energy by 3-7 kcal/mol. This prediction that the twist structure is lower in energy is supported by (a) the MP2-R12 method, which shows that large basis sets favor the olefinic structure relative to the aromatic, and (b) the fact that both structures are about equally affected by nondynamical electron correlation. We conclude that [10]annulene is a system which cannot be described adequately by either second-order Moller-Plesset perturbation theory or density functional methods. 13 refs., 3 tabs.« less

  11. Comparative study of the LOCV and the FHNC approaches for the nucleonic matter problem

    NASA Astrophysics Data System (ADS)

    Tafrihi, Azar; Modarres, Majid

    2016-03-01

    The nucleonic matter problem is investigated by comparing the lowest order constrained variational (LOCV) method with the Fermi hypernetted chain (FHNC) theory, emphasizing the role of the LOCV correlation functions. In this way, the central correlation functions are used in the LOCV formalism, for the Bethe homework problem. It is shown that the LOCV computations reasonably agree with those of FHNC. Moreover, the FHNC calculations are performed with the LOCV correlation functions. It is found that, assuming the LOCV or the parametrized correlation functions, the FHNC computations do not change significantly. So, one may conclude that the mentioned consistencies refer to the choice of the LOCV correlation functions. Because, the contribution of the many-body cluster terms can be ignored, if the LOCV correlation functions satisfy the normalization constraint. Then, using the AV 18 interaction, the operator-dependent (OD) correlation functions are employed in the LOCV calculations. Note that the LOCV OD correlation functions are obtained by averaging over the states. It turns out that the overall behaviour of the LOCV OD correlation functions are similar to those of FHNC. Although, due to the many-body effects which are considered in the FHNC calculations, the LOCV results fairly differ from those of FHNC. Finally, it is worth mentioning that, unlike the recent FHNC calculations, the spin-orbit-dependent correlation functions are included in the LOCV approach.

  12. Cerebellar Purkinje Cells Generate Highly Correlated Spontaneous Slow-Rate Fluctuations.

    PubMed

    Cao, Ying; Liu, Yu; Jaeger, Dieter; Heck, Detlef H

    2017-01-01

    Cerebellar Purkinje cells (PC) fire action potentials at high, sustained rates. Changes in spike rate that last a few tens of milliseconds encode sensory and behavioral events. Here we investigated spontaneous fluctuations of PC simple spike rate at a slow time scale of the order of 1 s. Simultaneous recordings from pairs of PCs that were aligned either along the sagittal or transversal axis of the cerebellar cortex revealed that simple spike rate fluctuations at the 1 s time scale were highly correlated. Each pair of PCs had either a predominantly positive or negative slow-rate correlation, with negative correlations observed only in PC pairs aligned along the transversal axis. Slow-rate correlations were independent of faster rate changes that were correlated with fluid licking behavior. Simultaneous recordings from PCs and cerebellar nuclear (CN) neurons showed that slow-rate fluctuations in PC and CN activity were also highly correlated, but their correlations continually alternated between periods of positive and negative correlation. The functional significance of this new aspect of cerebellar spike activity remains to be determined. Correlated slow-rate fluctuations seem too slow to be involved in the real-time control of ongoing behavior. However, slow-rate fluctuations of PCs converging on the same CN neuron are likely to modulate the excitability of the CN neuron, thus introduce a possible slow modulation of cerebellar output activity.

  13. Multipion Bose-Einstein correlations in p p ,p -Pb, and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kostarakis, P.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molñar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shahzad, M. I.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; de Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yang, H.; Yang, P.; Yano, S.; Yasin, Z.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-05-01

    Three- and four-pion Bose-Einstein correlations are presented in p p ,p -Pb, and Pb-Pb collisions at the LHC. We compare our measured four-pion correlations to the expectation derived from two- and three-pion measurements. Such a comparison provides a method to search for coherent pion emission. We also present mixed-charge correlations in order to demonstrate the effectiveness of several analysis procedures such as Coulomb corrections. Same-charge four-pion correlations in p p and p -Pb appear consistent with the expectations from three-pion measurements. However, the presence of non-negligible background correlations in both systems prevent a conclusive statement. In Pb-Pb collisions, we observe a significant suppression of three- and four-pion Bose-Einstein correlations compared to expectations from two-pion measurements. There appears to be no centrality dependence of the suppression within the 0%-50% centrality interval. The origin of the suppression is not clear. However, by postulating either coherent pion emission or large multibody Coulomb effects, the suppression may be explained.

  14. Multipion Bose-Einstein correlations in p p , p -Pb, and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.; Adamová, D.; Aggarwal, M. M.

    Three- and four-pion Bose-Einstein correlations are presented in pp,p-Pb, and Pb-Pb collisions at the LHC. We compare our measured four-pion correlations to the expectation derived from two- and three-pion measurements. Such a comparison provides a method to search for coherent pion emission. We also present mixed-charge correlations in order to demonstrate the effectiveness of several analysis procedures such as Coulomb corrections. Same-charge four-pion correlations in pp and p-Pb appear consistent with the expectations from three-pion measurements. However, the presence of non-negligible background correlations in both systems prevent a conclusive statement. In Pb-Pb collisions, we observe a significant suppression of three-more » and four-pion Bose-Einstein correlations compared to expectations from two-pion measurements. There appears to be no centrality dependence of the suppression within the 0%-50% centrality interval. The origin of the suppression is not clear. However, by postulating either coherent pion emission or large multibody Coulomb effects, the suppression may be explained.« less

  15. Multipion Bose-Einstein correlations in p p , p -Pb, and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-05-18

    Three- and four-pion Bose-Einstein correlations are presented in pp,p-Pb, and Pb-Pb collisions at the LHC. We compare our measured four-pion correlations to the expectation derived from two- and three-pion measurements. Such a comparison provides a method to search for coherent pion emission. We also present mixed-charge correlations in order to demonstrate the effectiveness of several analysis procedures such as Coulomb corrections. Same-charge four-pion correlations in pp and p-Pb appear consistent with the expectations from three-pion measurements. However, the presence of non-negligible background correlations in both systems prevent a conclusive statement. In Pb-Pb collisions, we observe a significant suppression of three-more » and four-pion Bose-Einstein correlations compared to expectations from two-pion measurements. There appears to be no centrality dependence of the suppression within the 0%-50% centrality interval. The origin of the suppression is not clear. However, by postulating either coherent pion emission or large multibody Coulomb effects, the suppression may be explained.« less

  16. Leverage effect and its causality in the Korea composite stock price index

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Yong

    2012-02-01

    In this paper, we investigate the leverage effect and its causality in the time series of the Korea Composite Stock Price Index from November of 1997 to September of 2010. The leverage effect, which can be quantitatively expressed as a negative correlation between past return and future volatility, is measured by using the cross-correlation coefficient of different time lags between the two time series of the return and the volatility. We find that past return and future volatility are negatively correlated and that the cross correlation is moderate and decays over 60 trading days. We also carry out a partial correlation analysis in order to confirm that the negative correlation between past return and future volatility is neither an artifact nor influenced by the traded volume. To determine the causality of the leverage effect within the decay time, we additionally estimate the cross correlation between past volatility and future return. With the estimate, we perform a statistical hypothesis test to demonstrate that the causal relation is in favor of the return influencing the volatility rather than the other way around.

  17. Graphic correlation across a facies change marking the location of a middle to late Cenomanian ocean front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, C.G.

    1993-03-01

    An abrupt lithofacies change between calcareous shale and non-calcareous shale occurs in strata deposited in the mid-Cretaceous Greenhorn Seaway in the extreme southeastern corner of Montana, U.S.A. This strata, north of the Black Hills has previously been miss-correlated due to the extreme difficulty in locating unique continuous marker beds. Supplemental Graphic Correlation techniques of Lucy Edwards, which expand on those of Shaw, were employed in the difficult task of correlating across the Little Missouri River Valley. Precise correlation was necessary in order to interpret the cause of the lithofacies change. Edwards's use of non-unique event marker beds and the side-by-sidemore » graph method proved to be invaluable tools. Precise correlation across the facies change was accomplished using a combination of bentonite beds, calcarenite beds, ammonite species, foraminiferal and calcareous nannofossil assemblages. Supplemental Graphic Correlation techniques allowed the definition of twenty-five time slices and permitted the identification of an ocean front during each of these time slices.« less

  18. Double-time correlation functions of two quantum operations in open systems

    NASA Astrophysics Data System (ADS)

    Ban, Masashi

    2017-10-01

    A double-time correlation function of arbitrary two quantum operations is studied for a nonstationary open quantum system which is in contact with a thermal reservoir. It includes a usual correlation function, a linear response function, and a weak value of an observable. Time evolution of the correlation function can be derived by means of the time-convolution and time-convolutionless projection operator techniques. For this purpose, a quasidensity operator accompanied by a fictitious field is introduced, which makes it possible to derive explicit formulas for calculating a double-time correlation function in the second-order approximation with respect to a system-reservoir interaction. The derived formula explicitly shows that the quantum regression theorem for calculating the double-time correlation function cannot be used if a thermal reservoir has a finite correlation time. Furthermore, the formula is applied for a pure dephasing process and a linear dissipative process. The quantum regression theorem and the the Leggett-Garg inequality are investigated for an open two-level system. The results are compared with those obtained by exact calculation to examine whether the formula is a good approximation.

  19. Phase transition in 2-d system of quadrupoles on square lattice with anisotropic field

    NASA Astrophysics Data System (ADS)

    Sallabi, A. K.; Alkhttab, M.

    2014-12-01

    Monte Carlo method is used to study a simple model of two-dimensional interacting quadrupoles on ionic square lattice with anisotropic strength provided by the ionic lattice. Order parameter, susceptibility and correlation function data, show that this system form an ordered structure with p(2×1) symmetry at low temperature. The p(2×1) structure undergoes an order-disorder phase transition into disordered (1×1) phase at 8.3K. The two-point correlation function show exponential dependence on distance both above and below the transition temperature. At Tc the two-point correlation function shows a power law dependence on distance, e.g. C(r) ~ 1η. The value of the exponent η at Tc shows small deviation from the Ising value and indicates that this system falls into the same universality class as the XY model with cubic anisotropy. This model can be applied to prototypical quadrupoles physisorbed systems as N2 on NaCl(100).

  20. Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells

    NASA Astrophysics Data System (ADS)

    Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke

    2011-06-01

    Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.

  1. Magnitude and sign of long-range correlated time series: Decomposition and surrogate signal generation.

    PubMed

    Gómez-Extremera, Manuel; Carpena, Pedro; Ivanov, Plamen Ch; Bernaola-Galván, Pedro A

    2016-04-01

    We systematically study the scaling properties of the magnitude and sign of the fluctuations in correlated time series, which is a simple and useful approach to distinguish between systems with different dynamical properties but the same linear correlations. First, we decompose artificial long-range power-law linearly correlated time series into magnitude and sign series derived from the consecutive increments in the original series, and we study their correlation properties. We find analytical expressions for the correlation exponent of the sign series as a function of the exponent of the original series. Such expressions are necessary for modeling surrogate time series with desired scaling properties. Next, we study linear and nonlinear correlation properties of series composed as products of independent magnitude and sign series. These surrogate series can be considered as a zero-order approximation to the analysis of the coupling of magnitude and sign in real data, a problem still open in many fields. We find analytical results for the scaling behavior of the composed series as a function of the correlation exponents of the magnitude and sign series used in the composition, and we determine the ranges of magnitude and sign correlation exponents leading to either single scaling or to crossover behaviors. Finally, we obtain how the linear and nonlinear properties of the composed series depend on the correlation exponents of their magnitude and sign series. Based on this information we propose a method to generate surrogate series with controlled correlation exponent and multifractal spectrum.

  2. Observation of Spin Correlation in tt¯ Events from pp Collisions at √s=7 TeV Using the ATLAS Detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2012-05-24

    A measurement of spin correlation in tt¯ production is reported using data collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 2.1 fb⁻¹. Candidate events are selected in the dilepton topology with large missing transverse energy and at least two jets. The difference in azimuthal angle between the two charged leptons in the laboratory frame is used to extract the correlation between the top and antitop quark spins. In the helicity basis the measured degree of correlation corresponds to A helicity=0.40 +0.09 -0.08, in agreement with the next-to-leading-order standard model prediction. The hypothesis of zeromore » spin correlation is excluded at 5.1 standard deviations.« less

  3. Time-lag of the earthquake energy release between three seismic regions

    NASA Astrophysics Data System (ADS)

    Tsapanos, Theodoros M.; Liritzis, Ioannis

    1992-06-01

    Three complete data sets of strong earthquakes ( M≥5.5), which occurred in the seismic regions of Chile, Mexico and Kamchatka during the time period 1899 1985, have been used to test the existence of a time-lag in the seismic energy release between these regions. These data sets were cross-correlated in order to determine whether any pair of the sets are correlated. For this purpose statistical tests, such as the T-test, the Fisher's transformation and probability distribution have been applied to determine the significance of the obtained correlation coefficients. The results show that the time-lag between Chile and Kamchatka is -2, which means that Kamchatka precedes Chile by 2 years, with a correlation coefficient significant at 99.80% level, a weak correlation between Kamchatka-Mexico and noncorrelation for Mexico-Chile.

  4. [Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

    PubMed

    Zhou, Jinzhi; Tang, Xiaofang

    2015-08-01

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

  5. On the origin of long-range correlations in texts.

    PubMed

    Altmann, Eduardo G; Cristadoro, Giampaolo; Esposti, Mirko Degli

    2012-07-17

    The complexity of human interactions with social and natural phenomena is mirrored in the way we describe our experiences through natural language. In order to retain and convey such a high dimensional information, the statistical properties of our linguistic output has to be highly correlated in time. An example are the robust observations, still largely not understood, of correlations on arbitrary long scales in literary texts. In this paper we explain how long-range correlations flow from highly structured linguistic levels down to the building blocks of a text (words, letters, etc..). By combining calculations and data analysis we show that correlations take form of a bursty sequence of events once we approach the semantically relevant topics of the text. The mechanisms we identify are fairly general and can be equally applied to other hierarchical settings.

  6. Three-Point Correlations in the COBE DMR 2 Year Anisotropy Maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Banday, A. J.; Bennett, C. L.; Gorski, K. M.; Kogut, A.

    1995-01-01

    We compute the three-point temperature correlation function of the COBE Differential Microwave Radiometer (DMR) 2 year sky maps to search for evidence of non-Gaussian temperature fluctuations. We detect three-point correlations in our sky with a substantially higher signal-to-noise ratio than from the first-year data. However, the magnitude of the signal is consistent with the level of cosmic variance expected from Gaussian fluctuations, even when the low-order multipole moments, up to l = 9, are filtered from the data. These results do not strongly constrain most existing models of structure formation, but the absence of intrinsic three-point correlations on large angular scales is an important consistency test for such models.

  7. Covariance versus correlation in capacitated vehicle routing problem-investment fund allocation problem

    NASA Astrophysics Data System (ADS)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah@Rozita

    2017-04-01

    Capacitated Vehicle Routing Problem-Investment Fund Allocation Problem (CVRP-IFAP) provides investors with a sequence of assets to allocate their funds into. To minimize total risks of investment in CVRP-IFAP covariance values measure the risks between two assets. Another measure of risks are correlation values between returns. The correlation values can be used to diversify the risk of investment loss in order to optimize expected return against a certain level of risk. This study compares the total risk obtained from CVRP-IFAP when using covariance values and correlation values. Results show that CVRP-IFAP with covariance values provides lesser total risks and a significantly better measure of risk.

  8. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  9. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time-pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  10. Magnetoresistance in organic semiconductors: Including pair correlations in the kinetic equations for hopping transport

    NASA Astrophysics Data System (ADS)

    Shumilin, A. V.; Kabanov, V. V.; Dediu, V. I.

    2018-03-01

    We derive kinetic equations for polaron hopping in organic materials that explicitly take into account the double occupation possibility and pair intersite correlations. The equations include simplified phenomenological spin dynamics and provide a self-consistent framework for the description of the bipolaron mechanism of the organic magnetoresistance. At low applied voltages, the equations can be reduced to those for an effective resistor network that generalizes the Miller-Abrahams network and includes the effect of spin relaxation on the system resistivity. Our theory discloses the close relationship between the organic magnetoresistance and the intersite correlations. Moreover, in the absence of correlations, as in an ordered system with zero Hubbard energy, the magnetoresistance vanishes.

  11. Expression of Bcl-2, Melan A and HMB-45 in Dysplastic Nevi.

    PubMed

    Patrascu, Oana Maria; Costache, Mariana; Dumitru, Adrian Vasile; Mehotin, Corina Nicoleta; Sajin, Maria; Lazaroiu, Anca Mihaela

    2016-03-01

    From the first recognition of dysplastic nevi as a pathology per se, many debates have been raised and many histological and immunohistological studies have been conducted in order to establish the true significance of these lesions. Therefore, the aim of this study was to establish if there is a correlation between HMB-45, Melan A and Bcl-2 expression and the grade of dysplasia, as well as between the marker's staining patterns. Ten dysplastic nevi from six female patients were selected and their histological features (size, dysplasia), as well as the immunohistological staining patterns, were studied (HMB-45, Melan A, Bcl-2). The Pearson correlation coefficient and regression was calculated with Windows Excel Data Analysis. We demonstrated that there was a notable correlation between the dysplasia and the size of the lesions (r(8)= 0.62 with p-value= 0.052), and also between Melan A and Bcl-2 (a r(6)= 0.73, p<0.05), but we did not obtain a statistically significant correlation between other features (p>0.05). We can affirm, at least in our cases, there is a correlation between the grade of dysplasia and the size of the lesion, and also, that there is a correlation between Melan A and Bcl-2 staining, explained by MITF gene. These results were only partial concordant with those in other studies, therefore a larger number of cases is recommended to be further analyzed in order to clearly draw a conclusion.

  12. Higher Order Aberration and Astigmatism in Children with Hyperopic Amblyopia

    PubMed Central

    Choi, Seung Kwon

    2016-01-01

    Purpose To investigate the changes in corneal higher-order aberration (HOA) during amblyopia treatment and the correlation between HOA and astigmatism in hyperopic amblyopia children. Methods In this retrospective study, a total of 72 eyes from 72 patients ranging in age from 38 to 161 months were included. Patients were divided into two groups based on the degree of astigmatism. Corneal HOA was measured using a KR-1W aberrometer at the initial visit and at 3-, 6-, and 12-month follow-ups. Correlation analysis was performed to assess the association between HOA and astigmatism. Results A total of 72 patients were enrolled in this study, 37 of which were classified as belonging to the higher astigmatism group, while 35 were assigned to the lower astigmatism group. There was a statistically significant difference in success rate between the higher and lower astigmatism groups. In both groups, all corneal HOAs were significantly reduced during amblyopia treatment. When comparing the two groups, a significant difference in coma HOA at the 12-month follow-up was detected (p = 0.043). In the Pearson correlation test, coma HOA at the 12-month follow-up demonstrated a statistically significant correlation with astigmatism and a stronger correlation with astigmatism in the higher astigmatism group than in the lower astigmatism group (coefficient values, 0.383 and 0.284 as well as p = 0.021 and p = 0.038, respectively). Conclusions HOA, particularly coma HOA, correlated with astigmatism and could exert effects in cases involving hyperopic amblyopia. PMID:26865804

  13. Higher Order Aberration and Astigmatism in Children with Hyperopic Amblyopia.

    PubMed

    Choi, Seung Kwon; Chang, Ji Woong

    2016-02-01

    To investigate the changes in corneal higher-order aberration (HOA) during amblyopia treatment and the correlation between HOA and astigmatism in hyperopic amblyopia children. In this retrospective study, a total of 72 eyes from 72 patients ranging in age from 38 to 161 months were included. Patients were divided into two groups based on the degree of astigmatism. Corneal HOA was measured using a KR-1W aberrometer at the initial visit and at 3-, 6-, and 12-month follow-ups. Correlation analysis was performed to assess the association between HOA and astigmatism. A total of 72 patients were enrolled in this study, 37 of which were classified as belonging to the higher astigmatism group, while 35 were assigned to the lower astigmatism group. There was a statistically significant difference in success rate between the higher and lower astigmatism groups. In both groups, all corneal HOAs were significantly reduced during amblyopia treatment. When comparing the two groups, a significant difference in coma HOA at the 12-month follow-up was detected (p = 0.043). In the Pearson correlation test, coma HOA at the 12-month follow-up demonstrated a statistically significant correlation with astigmatism and a stronger correlation with astigmatism in the higher astigmatism group than in the lower astigmatism group (coefficient values, 0.383 and 0.284 as well as p = 0.021 and p = 0.038, respectively). HOA, particularly coma HOA, correlated with astigmatism and could exert effects in cases involving hyperopic amblyopia.

  14. Relationship between symptom dimensions and white matter alterations in obsessive-compulsive disorder.

    PubMed

    Yagi, Michiyo; Hirano, Yoshiyuki; Nakazato, Michiko; Nemoto, Kiyotaka; Ishikawa, Kazuhiro; Sutoh, Chihiro; Miyata, Haruko; Matsumoto, Junko; Matsumoto, Koji; Masuda, Yoshitada; Obata, Takayuki; Iyo, Masaomi; Shimizu, Eiji; Nakagawa, Akiko

    2017-06-01

    To investigate the relationship between the severities of symptom dimensions in obsessive-compulsive disorder (OCD) and white matter alterations. We applied tract-based spatial statistics for diffusion tensor imaging (DTI) acquired by 3T magnetic resonance imaging. First, we compared fractional anisotropy (FA) between 20 OCD patients and 30 healthy controls (HC). Then, applying whole brain analysis, we searched the brain regions showing correlations between the severities of symptom dimensions assessed by Obsessive-Compulsive Inventory-Revised and FA in all participants. Finally, we calculated the correlations between the six symptom dimensions and multiple DTI measures [FA, axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD)] in a region-of-interest (ROI) analysis and explored the differences between OCD patients and HC. There were no between-group differences in FA or brain region correlations between the severities of symptom dimensions and FA in any of the participants. ROI analysis revealed negative correlations between checking severity and left inferior frontal gyrus white matter and left middle temporal gyrus white matter and a positive correlation between ordering severity and right precuneus in FA in OCD compared with HC. We also found negative correlations between ordering severity and right precuneus in RD, between obsessing severities and right supramarginal gyrus in AD and MD, and between hoarding severity and right insular gyrus in AD. Our study supported the hypothesis that the severities of respective symptom dimensions are associated with different patterns of white matter alterations.

  15. The Interpersonal Adaptiveness of Dispositional Guilt and Shame: A Meta-Analytic Investigation.

    PubMed

    Tignor, Stefanie M; Colvin, C Randall

    2017-06-01

    Despite decades of empirical research, conclusions regarding the adaptiveness of dispositional guilt and shame are mixed. We use meta-analysis to summarize the empirical literature and clarify these ambiguities. Specifically, we evaluate how guilt and shame are uniquely related to pro-social orientation and, in doing so, highlight the substantial yet under-acknowledged impact of researchers' methodological choices. A series of meta-analyses was conducted investigating the relationship between dispositional guilt (or shame) and pro-social orientation. Two main methodological moderators of interest were tested: test format (scenario vs. checklist) and statistical analysis (semi-partial vs. zero-order correlations). Among studies employing zero-order correlations, dispositional guilt was positively correlated with pro-social orientation (k = 63, Mr = .13, p < .001), whereas dispositional shame was negatively correlated, (k = 47, Mr = -.05, p = .07). Test format was a significant moderator for guilt studies only, with scenario measures producing significantly stronger effects. Semi-partial correlations resulted in significantly stronger effects among guilt and shame studies. Although dispositional guilt and shame are differentially related to pro-social orientation, such relationships depend largely on the methodological choices of the researcher, particularly in the case of guilt. Implications for the study of these traits are discussed. © 2016 Wiley Periodicals, Inc.

  16. An efficient sensitivity analysis method for modified geometry of Macpherson suspension based on Pearson correlation coefficient

    NASA Astrophysics Data System (ADS)

    Shojaeefard, Mohammad Hasan; Khalkhali, Abolfazl; Yarmohammadisatri, Sadegh

    2017-06-01

    The main purpose of this paper is to propose a new method for designing Macpherson suspension, based on the Sobol indices in terms of Pearson correlation which determines the importance of each member on the behaviour of vehicle suspension. The formulation of dynamic analysis of Macpherson suspension system is developed using the suspension members as the modified links in order to achieve the desired kinematic behaviour. The mechanical system is replaced with an equivalent constrained links and then kinematic laws are utilised to obtain a new modified geometry of Macpherson suspension. The equivalent mechanism of Macpherson suspension increased the speed of analysis and reduced its complexity. The ADAMS/CAR software is utilised to simulate a full vehicle, Renault Logan car, in order to analyse the accuracy of modified geometry model. An experimental 4-poster test rig is considered for validating both ADAMS/CAR simulation and analytical geometry model. Pearson correlation coefficient is applied to analyse the sensitivity of each suspension member according to vehicle objective functions such as sprung mass acceleration, etc. Besides this matter, the estimation of Pearson correlation coefficient between variables is analysed in this method. It is understood that the Pearson correlation coefficient is an efficient method for analysing the vehicle suspension which leads to a better design of Macpherson suspension system.

  17. Charge and spin correlations in the monopole liquid

    NASA Astrophysics Data System (ADS)

    Slobinsky, D.; Baglietto, G.; Borzi, R. A.

    2018-05-01

    A monopole liquid is a spin system with a high density of magnetic charges but no magnetic-charge order. We study such a liquid over an Ising pyrochlore lattice, where a single topological charge or monopole sits in each tetrahedron. Restricting the study to the case with no magnetic field applied we show that, in spite of the liquidlike correlations between charges imposed by construction constraints, the spins are uncorrelated like in a perfect paramagnet. We calculate a massive residual entropy for this phase (ln(2 )/2 , a result which is exact in the thermodynamic limit), implying a free Ising-like variable per tetrahedron. After defining a simple model Hamiltonian for this system (the balanced monopole liquid) we study its thermodynamics. Surprisingly, this monopole liquid remains a perfect paramagnet at all temperatures. Thermal disorder can then be simply and quantitatively interpreted as single charge dilution, by the excitation of neutral sites and double monopoles. The addition of the usual nearest neighbors interactions favoring neutral `2in-2out' excitations as a perturbation maintains the same ground state but induces short-range (topological) order by thermal disorder. While it decreases charge-charge correlations, pair spin correlations—resembling those in spin ice—appear on increasing temperature. This helps us to see in another light the dipolarlike correlations present in spin ices at unexpectedly high temperatures. On the other side, favoring double excitations strengthens the charges short range order and its associated spin correlations. Finally, we discuss how the monopole liquid can be related to other systems and materials where different phases of monopole matter have been observed.

  18. Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor.

    PubMed

    Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E; Proust, Cyril; Carrington, Antony

    2016-03-01

    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.

  19. Short-range order in the quantum XXZ honeycomb lattice material BaCo2(PO4)2

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Brown, J. M.; Coldren, E.; Hester, G.; Gelfand, M. P.; Podlesnyak, A.; Huang, Q.; Ross, K. A.

    2018-04-01

    We present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the Seff =1 /2 compound γ -BaCo2(PO4)2 (γ -BCPO). Specific heat shows a broad peak comprised of two weak kink features at TN 1˜6 K and TN 2˜3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below TN 1 and TN 2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξc=60 ±2 Å (TN 1) and in quasi-2D helical domains with ξh=350 ±11 Å (TN 2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ -BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J1-J2-J3 model with ferromagnetic nearest-neighbor exchange J1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (˜10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. These data show that γ -BCPO is a rare highly frustrated, quasi-2D Seff =1 /2 honeycomb lattice material which resists long range magnetic order and spin freezing.

  20. Inverse correlation between quasiparticle mass and Tc in a cuprate high-Tc superconductor

    PubMed Central

    Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E.; Proust, Cyril; Carrington, Antony

    2016-01-01

    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature Tc is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-Tc superconductivity. We have tested the robustness of this correlation between m* and Tc by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as Tc increases under pressure. This inverse correlation between m* and Tc suggests that quantum fluctuations of the charge order enhance m* but do not enhance Tc. PMID:27034989

  1. Femtosecond x rays link melting of charge-density wave correlations and light-enhanced coherent transport in YB a 2 C u 3 O 6.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Först, M.; Frano, A.; Kaiser, S.

    2014-11-17

    In this study, we use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa₂Cu₃O₆.₆. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.

  2. Multiparticle Collectivity from Initial State Correlations in High Energy Proton-Nucleus Collisions

    DOE PAGES

    Dusling, Kevin; Mace, Mark; Venugopalan, Raju

    2018-01-25

    Qualitative features of multiparticle correlations in light-heavy ion (p +A) collisions at RHIC and LHC are reproduced in a simple initial state model of partons in the projectile coherently scattering off localized domains of color charge in the heavy nuclear target. These include i) the ordering of the magnitudes of the azimuthal angle nth Fourier harmonics of two-particle correlations v n{2}, ii) the energy and transverse momentum dependence of the four-particle Fourier harmonic v 2{4}, and iii) the energy dependence of four-particle symmetric cumulants measuring correlations between different Fourier harmonics. Similar patterns are seen in an Abelian version of themore » model, where we observe v 2{2} > v 2{4} ≈ v 2{6} ≈ v 2{8} of two, four, six, and eight particle correlations. While such patterns are often interpreted as signatures of collectivity arising from hydrodynamic flow, our results provide an alternative description of the multiparticle correlations seen in p + A collisions.« less

  3. Multiparticle Collectivity from Initial State Correlations in High Energy Proton-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Dusling, Kevin; Mace, Mark; Venugopalan, Raju

    2018-01-01

    Qualitative features of multiparticle correlations in light-heavy ion (p +A ) collisions at RHIC and LHC are reproduced in a simple initial state model of partons in the projectile coherently scattering off localized domains of color charge in the heavy nuclear target. These include (i) the ordering of the magnitudes of the azimuthal angle n th Fourier harmonics of two-particle correlations vn{2 }, (ii) the energy and transverse momentum dependence of the four-particle Fourier harmonic v2{4 }, and (iii) the energy dependence of four-particle symmetric cumulants measuring correlations between different Fourier harmonics. Similar patterns are seen in an Abelian version of the model, where we observe v2{2 }>v2{4 }≈v2{6 }≈v2{8 } of two, four, six, and eight particle correlations. While such patterns are often interpreted as signatures of collectivity arising from hydrodynamic flow, our results provide an alternative description of the multiparticle correlations seen in p +A collisions.

  4. Pair-correlations in swimmer suspensions

    NASA Astrophysics Data System (ADS)

    Nambiar, Sankalp; Subramanian, Ganesh

    2017-11-01

    Suspensions of rear-actuated swimming microorganisms, such as E.coli, exhibit several interesting phenomena including spontaneous pattern formation above a critical concentration, novel rheological properties, shear-induced concentration banding etc. Explanations based on mean-field theory are only qualitative, since interactions between swimmers are important for typical experimental concentrations. We analytically characterize the hydrodynamic pair-interactions in a quiescent suspension of slender straight swimmers. The pair-correlation, calculated at leading order by integrating the swimmer velocity disturbances along straight trajectories, decays as 1/r2 for r >> L (L being the swimmer size). This allows us to characterize both polar and nematic correlations in an interacting swimmer suspension. In the absence of correlations, the velocity covariance asymptotes from a constant for r << L to a far-field decay of O(1/r2) for r >> L, the latter being characteristic of a suspension of non-interacting point force-dipoles. On including correlations, the slow decay of the pair-orientation correlation leads to an additional contribution to the velocity covariance that diverges logarithmically with system size.

  5. Identifying strongly correlated elements of a moderately correlated wavefunction in URu2Si2 with resonant inelastic X-ray scattering

    NASA Astrophysics Data System (ADS)

    Wray, L. Andrew; He, Haowei; Miao, Lin; Denlinger, Jonathan; Chuang, Yi-De; Yang, Wanli; Butch, Nicholas; Maple, Brian; Gray, Alexander; Dürr, Herman

    The RIXS technique is best known for significant breakthroughs in the investigation of strongly correlated materials such as cuprates. However, the rapid advancement of RIXS spectrographs has made it increasingly attractive to apply the technique to a broad range of quantum materials outside of this comfort zone. This talk will review lessons learned from our recent measurements on material systems that feature a balance of correlated and itinerant physics, focusing on the hidden order compound URu2Si2, and touching on VO2 and Prussian blue analogue battery electrodes. RIXS spectra are found to reveal essential features defining low energy degrees of freedom in these moderately correlated wavefunctions. In the case of URu2Si2, we show that a principal energy gap defining strong correlations is fragile, and can be melted via modest chemical doping. Work at NYU was supported by the MRSEC Program of the National Science Foundation under Award Number DMR-1420073.

  6. Report on objective ride quality evaluation

    NASA Technical Reports Server (NTRS)

    Wambold, J. C.; Park, W. H.

    1974-01-01

    The correlation of absorbed power as an objective ride measure to the subjective evaluation for the bus data was investigated. For some individual bus rides the correlations were poor, but when a sufficient number of rides was used to give reasonable sample base, an excellent correlation was obtained. The following logarithmical function was derived: S = 1.7245 1n (39.6849 AP), where S = one subjective rating of the ride; and AP = the absorbed power in watts. A six-degree-of-freedom method developed for aircraft data was completed. Preliminary correlation of absorbed power with ISO standards further enhances the bus ride and absorbed power correlation numbers since the AP's obtained are of the same order of magnitude for both correlations. While it would then appear that one could just use ISO standards, there is no way to add the effect of three degrees of freedom. The absorbed power provides a method of adding the effects due to the three major directions plus the pitch and roll.

  7. An Ultra-Wideband Cross-Correlation Radiometer for Mesoscopic Experiments

    NASA Astrophysics Data System (ADS)

    Toonen, Ryan; Haselby, Cyrus; Qin, Hua; Eriksson, Mark; Blick, Robert

    2007-03-01

    We have designed, built and tested a cross-correlation radiometer for detecting statistical order in the quantum fluctuations of mesoscopic experiments at sub-Kelvin temperatures. Our system utilizes a fully analog front-end--operating over the X- and Ku-bands (8 to 18 GHz)--for computing the cross-correlation function. Digital signal processing techniques are used to provide robustness against instrumentation drifts and offsets. The economized version of our instrument can measure, with sufficient correlation efficiency, noise signals having power levels as low as 10 fW. We show that, if desired, we can improve this performance by including cryogenic preamplifiers which boost the signal-to-noise ratio near the signal source. By adding a few extra components, we can measure both the real and imaginary parts of the cross-correlation function--improving the overall signal-to-noise ratio by a factor of sqrt[2]. We demonstrate the utility of our cross-correlator with noise power measurements from a quantum point contact.

  8. Multiparticle Collectivity from Initial State Correlations in High Energy Proton-Nucleus Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dusling, Kevin; Mace, Mark; Venugopalan, Raju

    Qualitative features of multiparticle correlations in light-heavy ion (p +A) collisions at RHIC and LHC are reproduced in a simple initial state model of partons in the projectile coherently scattering off localized domains of color charge in the heavy nuclear target. These include i) the ordering of the magnitudes of the azimuthal angle nth Fourier harmonics of two-particle correlations v n{2}, ii) the energy and transverse momentum dependence of the four-particle Fourier harmonic v 2{4}, and iii) the energy dependence of four-particle symmetric cumulants measuring correlations between different Fourier harmonics. Similar patterns are seen in an Abelian version of themore » model, where we observe v 2{2} > v 2{4} ≈ v 2{6} ≈ v 2{8} of two, four, six, and eight particle correlations. While such patterns are often interpreted as signatures of collectivity arising from hydrodynamic flow, our results provide an alternative description of the multiparticle correlations seen in p + A collisions.« less

  9. Performance Analysis of Amplify-and-Forward Systems with Single Relay Selection in Correlated Environments.

    PubMed

    Van Nguyen, Binh; Kim, Kiseon

    2016-09-11

    In this paper, we consider amplify-and-forward (AnF) cooperative systems under correlated fading environments. We first present a brief overview of existing works on the effect of channel correlations on the system performance. We then focus on our main contribution which is analyzing the outage probability of a multi-AnF-relay system with the best relay selection (BRS) scheme under a condition that two channels of each relay, source-relay and relay-destination channels, are correlated. Using lower and upper bounds on the end-to-end received signal-to-noise ratio (SNR) at the destination, we derive corresponding upper and lower bounds on the system outage probability. We prove that the system can achieve a diversity order (DO) equal to the number of relays. In addition, and importantly, we show that the considered correlation form has a constructive effect on the system performance. In other words, the larger the correlation coefficient, the better system performance. Our analytic results are corroborated by extensive Monte-Carlo simulations.

  10. A preliminary study of a running speed based heart rate prediction during an incremental treadmill exercise.

    PubMed

    Dae-Geun Jang; Byung-Hoon Ko; Sub Sunoo; Sang-Seok Nam; Hun-Young Park; Sang-Kon Bae

    2016-08-01

    This preliminary study investigates feasibility of a running speed based heart rate (HR) prediction. It is basically motivated from the assumption that there is a significant relationship between HR and the running speed. In order to verify the assumption, HR and running speed data from 217 subjects of varying aerobic capabilities were simultaneously collected during an incremental treadmill exercise. A running speed was defined as a treadmill speed and its corresponding heart rate was calculated by averaging the last one minute HR values of each session. The feasibility was investigated by assessing a correlation between the heart rate and the running speed using inter-subject (between-subject) and intra-subject (within-subject) datasets with regression orders of 1, 2, 3, and 4, respectively. Furthermore, HR differences between actual and predicted HRs were also employed to investigate the feasibility of the running speed in predicting heart rate. In the inter-subject analysis, a strong positive correlation and a reasonable HR difference (r = 0.866, 16.55±11.24 bpm @ 1st order; r = 0.871, 15.93±11.49 bpm @ 2nd order; r = 0.897, 13.98±10.80 bpm @ 3rd order; and r = 0.899, 13.93±10.64 bpm @ 4th order) were obtained, and a very high positive correlation and a very low HR difference (r = 0.978, 6.46±3.89 bpm @ 1st order; r = 0.987, 5.14±2.87 bpm @ 2nd order; r = 0.996, 2.61±2.03 bpm @ 3rd order; and r = 0.997, 2.04±1.73 bpm @ 4th order) were obtained in the intra-subject analysis. It can therefore be concluded that 1) heart rate is highly correlated with a running speed; 2) heart rate can be approximately estimated by a running speed with a proper statistical model (e.g., 3rd-order regression); and 3) an individual HR-speed calibration process may improve the prediction accuracy.

  11. Paternal-age and birth-order effect on the human secondary sex ratio.

    PubMed Central

    Ruder, A

    1985-01-01

    Because of conflicting results in previous analyses of possible maternal and paternal effects on the variation in sex ratio at birth, records of United States live births in 1975 were sorted by offspring sex, live birth order (based on maternal parity), parental races, and, unlike prior studies, ungrouped parental ages. Linear regression and logistic analysis showed significant effects of birth order and paternal age on sex ratio in the white race data (1.67 million births; 10,219 different combinations of independent variables). Contrary to previous reported results, the paternal-age effect cannot be ascribed wholly to the high correlation between paternal age and birth order as maternal age, even more highly correlated with birth order, does not account for a significant additional reduction in sex-ratio variation over that accounted for by birth order alone. PMID:3985011

  12. Correlating Structural Order with Structural Rearrangement in Dusty Plasma Liquids: Can Structural Rearrangement be Predicted by Static Structural Information?

    NASA Astrophysics Data System (ADS)

    Su, Yen-Shuo; Liu, Yu-Hsuan; I, Lin

    2012-11-01

    Whether the static microstructural order information is strongly correlated with the subsequent structural rearrangement (SR) and their predicting power for SR are investigated experimentally in the quenched dusty plasma liquid with microheterogeneities. The poor local structural order is found to be a good alarm to identify the soft spot and predict the short term SR. For the site with good structural order, the persistent time for sustaining the structural memory until SR has a large mean value but a broad distribution. The deviation of the local structural order from that averaged over nearest neighbors serves as a good second alarm to further sort out the short time SR sites. It has the similar sorting power to that using the temporal fluctuation of the local structural order over a small time interval.

  13. Is Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity?

    PubMed

    Düvel, Andre; Heitjans, Paul; Fedorov, Pavel; Scholz, Gudrun; Cibin, Giannantonio; Chadwick, Alan V; Pickup, David M; Ramos, Silvia; Sayle, Lewis W L; Sayle, Emma K L; Sayle, Thi X T; Sayle, Dean C

    2017-04-26

    Ionic conductivity is ubiquitous to many industrially important applications such as fuel cells, batteries, sensors, and catalysis. Tunable conductivity in these systems is therefore key to their commercial viability. Here, we show that geometric frustration can be exploited as a vehicle for conductivity tuning. In particular, we imposed geometric frustration upon a prototypical system, CaF 2 , by ball milling it with BaF 2 , to create nanostructured Ba 1-x Ca x F 2 solid solutions and increased its ionic conductivity by over 5 orders of magnitude. By mirroring each experiment with MD simulation, including "simulating synthesis", we reveal that geometric frustration confers, on a system at ambient temperature, structural and dynamical attributes that are typically associated with heating a material above its superionic transition temperature. These include structural disorder, excess volume, pseudovacancy arrays, and collective transport mechanisms; we show that the excess volume correlates with ionic conductivity for the Ba 1-x Ca x F 2 system. We also present evidence that geometric frustration-induced conductivity is a general phenomenon, which may help explain the high ionic conductivity in doped fluorite-structured oxides such as ceria and zirconia, with application for solid oxide fuel cells. A review on geometric frustration [ Nature 2015 , 521 , 303 ] remarks that classical crystallography is inadequate to describe systems with correlated disorder, but that correlated disorder has clear crystallographic signatures. Here, we identify two possible crystallographic signatures of geometric frustration: excess volume and correlated "snake-like" ionic transport; the latter infers correlated disorder. In particular, as one ion in the chain moves, all the other (correlated) ions in the chain move simultaneously. Critically, our simulations reveal snake-like chains, over 40 Å in length, which indicates long-range correlation in our disordered systems. Similarly, collective transport in glassy materials is well documented [for example, J. Chem. Phys. 2013 , 138 , 12A538 ]. Possible crystallographic nomenclatures, to be used to describe long-range order in disordered systems, may include, for example, the shape, length, and branching of the "snake" arrays. Such characterizations may ultimately provide insight and differences between long-range order in disordered, amorphous, or liquid states and processes such as ionic conductivity, melting, and crystallization.

  14. Orthopositronium decay form factors and two-photon correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adkins, Gregory S.; Droz, Daniel R.; Rastawicki, Dominik

    2010-04-15

    We give results for the orthopositronium decay form factors through one-loop order. We use the form factors to calculate momentum correlations of the final-state photons and , including one-loop corrections, for ensembles of initial orthopositronium atoms having arbitrary polarization.

  15. What Neural Substrates Trigger the Adept Scientific Pattern Discovery by Biologists?

    ERIC Educational Resources Information Center

    Lee, Jun-Ki; Kwon, Yong-Ju

    2011-01-01

    This study investigated the neural correlates of experts and novices during biological object pattern detection using an fMRI approach in order to reveal the neural correlates of a biologist's superior pattern discovery ability. Sixteen healthy male participants (8 biologists and 8 non-biologists) volunteered for the study. Participants were shown…

  16. Interrater Reliability Estimators Commonly Used in Scoring Language Assessments: A Monte Carlo Investigation of Estimator Accuracy

    ERIC Educational Resources Information Center

    Morgan, Grant B.; Zhu, Min; Johnson, Robert L.; Hodge, Kari J.

    2014-01-01

    Common estimators of interrater reliability include Pearson product-moment correlation coefficients, Spearman rank-order correlations, and the generalizability coefficient. The purpose of this study was to examine the accuracy of estimators of interrater reliability when varying the true reliability, number of scale categories, and number of…

  17. In the Soup: Integrating and Correlating Social Studies with Other Curriculum Areas: Part Two.

    ERIC Educational Resources Information Center

    Atwood, Virginia A.; And Others

    1989-01-01

    Demonstrates a thematic approach, using soup as the theme, to integrate and correlate elementary social studies with other subject areas. Outlines four soup activities, presenting goals, materials, strategies, and extensions of each. Stresses how integrated curricula effectively develops skills such as observing, inferring, serial ordering, and…

  18. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet

    NASA Astrophysics Data System (ADS)

    Gärttner, Martin; Bohnet, Justin G.; Safavi-Naini, Arghavan; Wall, Michael L.; Bollinger, John J.; Rey, Ana Maria

    2017-08-01

    Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems.

  19. Complex-network description of thermal quantum states in the Ising spin chain

    NASA Astrophysics Data System (ADS)

    Sundar, Bhuvanesh; Valdez, Marc Andrew; Carr, Lincoln D.; Hazzard, Kaden R. A.

    2018-05-01

    We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence, and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state using matrix product state methods, and then analyze the resulting networks using a variety of network measures. We demonstrate that the network measures show some traits of complex networks already in this spin chain, arguably the simplest quantum many-body system. The network measures give insight into the phase diagram not easily captured by more typical quantities, such as the order parameter or correlation length. For example, the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is different from the ordered and disordered phases.

  20. Magnetic states, correlation effects and metal-insulator transition in FCC lattice

    NASA Astrophysics Data System (ADS)

    Timirgazin, M. A.; Igoshev, P. A.; Arzhnikov, A. K.; Irkhin, V. Yu

    2016-12-01

    The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals {{t}\\prime}/t . In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most {{t}\\prime}/t . The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on {{t}\\prime}/t . The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.

  1. Quantitative analysis of species specificity of two anti-parvalbumin antibodies for detecting southern hemisphere fish species demonstrating strong phylogenetic association.

    PubMed

    Liang, Ji; Tan, Chui Choo; Taylor, Steve L; Baumert, Joseph L; Lopata, Andreas L; Lee, N Alice

    2017-12-15

    This study aimed to develop a novel approach to determine the correlation between the parvalbumin (PAV) contents and their corresponding immunoreactivity (detectability) in southern hemisphere fish species. The immuno-detected PAV contents of the test fish species were estimated by a quantitative SDS-PAGE. A quantitative Enzyme-Linked ImmunoSorbent Assay (ELISA) was formatted to assess relative immunoreactivity of PAV. Sixteen species (forty-three percent) displayed a positive correlation with the anti-cod PAV polyclonal antibody, but no correlation with the anti-carp PAV monoclonal antibody. There was a strong phylogenetic association of the PAV immunoreactivity. Species from the order of Perciformes showed strong binding with both antibodies; whereas species from Salmoniformes, Ophidiiformes, Scombriformes, Scorpaeniformes, and Tetraodontiformes showed weak or no binding. This approach showed for the first time a statistical correlation between the PAV content and the immunoreactivity and allowed to rank the relative species/order specificity of the two antibodies for the southern hemisphere fish PAV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Correlated natural transition orbital framework for low-scaling excitation energy calculations (CorNFLEx).

    PubMed

    Baudin, Pablo; Kristensen, Kasper

    2017-06-07

    We present a new framework for calculating coupled cluster (CC) excitation energies at a reduced computational cost. It relies on correlated natural transition orbitals (NTOs), denoted CIS(D')-NTOs, which are obtained by diagonalizing generalized hole and particle density matrices determined from configuration interaction singles (CIS) information and additional terms that represent correlation effects. A transition-specific reduced orbital space is determined based on the eigenvalues of the CIS(D')-NTOs, and a standard CC excitation energy calculation is then performed in that reduced orbital space. The new method is denoted CorNFLEx (Correlated Natural transition orbital Framework for Low-scaling Excitation energy calculations). We calculate second-order approximate CC singles and doubles (CC2) excitation energies for a test set of organic molecules and demonstrate that CorNFLEx yields excitation energies of CC2 quality at a significantly reduced computational cost, even for relatively small systems and delocalized electronic transitions. In order to illustrate the potential of the method for large molecules, we also apply CorNFLEx to calculate CC2 excitation energies for a series of solvated formamide clusters (up to 4836 basis functions).

  3. Not all that glitters is RMT in the forecasting of risk of portfolios in the Brazilian stock market

    NASA Astrophysics Data System (ADS)

    Sandoval, Leonidas; Bortoluzzo, Adriana Bruscato; Venezuela, Maria Kelly

    2014-09-01

    Using stocks of the Brazilian stock exchange (BM&F-Bovespa), we build portfolios of stocks based on Markowitz's theory and test the predicted and realized risks. This is done using the correlation matrices between stocks, and also using Random Matrix Theory in order to clean such correlation matrices from noise. We also calculate correlation matrices using a regression model in order to remove the effect of common market movements and their cleaned versions using Random Matrix Theory. This is done for years of both low and high volatility of the Brazilian stock market, from 2004 to 2012. The results show that the use of regression to subtract the market effect on returns greatly increases the accuracy of the prediction of risk, and that, although the cleaning of the correlation matrix often leads to portfolios that better predict risks, in periods of high volatility of the market this procedure may fail to do so. The results may be used in the assessment of the true risks when one builds a portfolio of stocks during periods of crisis.

  4. Fundamental Movement Skills among Iranian Primary School Children.

    PubMed

    Aalizadeh, Bahman; Mohamadzadeh, Hassan; Hosseini, Fatemeh Sadat

    2014-12-01

    To determine the relationship between anthropometric indicators, physical activity (PA) and socioeconomic status (SES) with fundamental movement skills (FMS) among Iranian male students. In this descriptive study, based on SES scores, 241 students (7-10 years) were randomly selected and classified in high, medium and low groups. All children were measured by 8 morphology anthropometric measures. In order to examine a subset of manipulative skills and to measure physical activity and socioeconomic status, Test of Gross Motor Development (TGMD2) and, interviewer-administered questionnaires were used, respectively. The data were analyzed using Pearson correlation and multiple regression. There was a significant positive correlation between SES and body mass index (BMI), while a significant negative correlation existed between PA and BMI. Object control skills were significantly correlated with height, foot length, forearm length, hand length and physical activity. Students with low socioeconomic status were more qualified in movements than other students who were in medium and high socioeconomic status. Therefore, parents need to encourage students to be more active in order to prevent obesity and to facilitate development of object control skills in high socioeconomic status.

  5. Studies of Solar EUV Irradiance from SOHO

    NASA Technical Reports Server (NTRS)

    Floyd, Linton

    2002-01-01

    The Extreme Ultraviolet (EUV) irradiance central and first order channel time series (COC and FOC) from the Solar EUV Monitor aboard the Solar and Heliospheric observatory (SOHO) issued in early 2002 covering the time period 1/1/96-31/1201 were analyzed in terms of other solar measurements and indices. A significant solar proton effect in the first order irradiance was found and characterized. When this effect is removed, the two irradiance time series are almost perfectly correlated. Earlier studies have shown good correlation between the FOC and the Hall core-to-wing ratio and likewise, it was the strongest component of the COC. Analysis of the FOC showed dependence on the F10.7 radio flux. Analysis of the CDC signals showed additional dependences on F10.7 and the GOES x-ray fluxes. The SEM FOC was also well correlated with thein 30.4 nm channel of the SOHO EUV Imaging Telescope (EIT). The irradiance derived from all four EIT channels (30.4 nm, 17.1 nm, 28.4 nm, and 19.5 nm) showed better correlation with MgII than F10.7.

  6. Simulated sudden increase in geomagnetic activity and its effect on heart rate variability: Experimental verification of correlation studies.

    PubMed

    Caswell, Joseph M; Singh, Manraj; Persinger, Michael A

    2016-08-01

    Previous research investigating the potential influence of geomagnetic factors on human cardiovascular state has tended to converge upon similar inferences although the results remain relatively controversial. Furthermore, previous findings have remained essentially correlational without accompanying experimental verification. An exception to this was noted for human brain activity in a previous study employing experimental simulation of sudden geomagnetic impulses in order to assess correlational results that had demonstrated a relationship between geomagnetic perturbations and neuroelectrical parameters. The present study employed the same equipment in a similar procedure in order to validate previous findings of a geomagnetic-cardiovascular dynamic with electrocardiography and heart rate variability measures. Results indicated that potential magnetic field effects on frequency components of heart rate variability tended to overlap with previous correlational studies where low frequency power and the ratio between low and high frequency components of heart rate variability appeared affected. In the present study, a significant increase in these particular parameters was noted during geomagnetic simulation compared to baseline recordings. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  7. Quantum Monte Carlo analysis of a charge ordered insulating antiferromagnet: The Ti 4O 7 Magneli phase

    DOE PAGES

    Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T.; ...

    2016-06-07

    The Magneli phase Ti 4O 7 is an important transition metal oxide with a wide range of applications because of its interplay between charge, spin, and lattice degrees of freedom. At low temperatures, it has non-trivial magnetic states very close in energy, driven by electronic exchange and correlation interactions. We have examined three low- lying states, one ferromagnetic and two antiferromagnetic, and calculated their energies as well as Ti spin moment distributions using highly accurate Quantum Monte Carlo methods. We compare our results to those obtained from density functional theory- based methods that include approximate corrections for exchange and correlation.more » Our results confirm the nature of the states and their ordering in energy, as compared with density-functional theory methods. However, the energy differences and spin distributions differ. Here, a detailed analysis suggests that non-local exchange-correlation functionals, in addition to other approximations such as LDA+U to account for correlations, are needed to simultaneously obtain better estimates for spin moments, distributions, energy differences and energy gaps.« less

  8. Gravitational wave searches with pulsar timing arrays: Cancellation of clock and ephemeris noises

    NASA Astrophysics Data System (ADS)

    Tinto, Massimo

    2018-04-01

    We propose a data processing technique to cancel monopole and dipole noise sources (such as clock and ephemeris noises, respectively) in pulsar timing array searches for gravitational radiation. These noises are the dominant sources of correlated timing fluctuations in the lower-part (≈10-9-10-8 Hz ) of the gravitational wave band accessible by pulsar timing experiments. After deriving the expressions that reconstruct these noises from the timing data, we estimate the gravitational wave sensitivity of our proposed processing technique to single-source signals to be at least one order of magnitude higher than that achievable by directly processing the timing data from an equal-size array. Since arrays can generate pairs of clock and ephemeris-free timing combinations that are no longer affected by correlated noises, we implement with them the cross-correlation statistic to search for an isotropic stochastic gravitational wave background. We find the resulting optimal signal-to-noise ratio to be more than one order of magnitude larger than that obtainable by correlating pairs of timing data from arrays of equal size.

  9. Moment stability for a predator-prey model with parametric dichotomous noises

    NASA Astrophysics Data System (ADS)

    Jin, Yan-Fei

    2015-06-01

    In this paper, we investigate the solution moment stability for a Harrison-type predator-prey model with parametric dichotomous noises. Using the Shapiro-Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses. Project supported by the National Natural Science Foundation of China (Grant No. 11272051).

  10. Modified two-photon absorption and dispersion of ultrafast third-order polarization beats via twin noisy driving fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049; Gan Chenli

    2006-05-15

    We investigate the color-locked twin-noisy-field correlation effects in third-order nonlinear absorption and dispersion of ultrafast polarization beats. We demonstrate a phase-sensitive method for studying the two-photon nondegenerate four-wave mixing (NDFWM) due to atomic coherence in a multilevel system. The reference signal is another one-photon degenerate four-wave-mixing signal, which propagates along the same optical path as the NDFWM signal. This method is used for studying the phase dispersion of the third-order susceptibility and for the optical heterodyne detection of the NDFWM signal. The third-order nonlinear response can be controlled and modified through the color-locked correlation of twin noisy fields.

  11. Leith diffusion model for homogeneous anisotropic turbulence

    DOE PAGES

    Rubinstein, Robert; Clark, Timothy T.; Kurien, Susan

    2017-06-01

    Here, a proposal for a spectral closure model for homogeneous anisotropic turbulence. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Here, numericalmore » simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.« less

  12. Correlation Scales of the Turbulent Cascade at 1 au

    NASA Astrophysics Data System (ADS)

    Smith, Charles W.; Vasquez, Bernard J.; Coburn, Jesse T.; Forman, Miriam A.; Stawarz, Julia E.

    2018-05-01

    We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the next. In the same manner, different scales within the inertial range can behave independently at any given time or location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative cascade rates for short periods of time, as reported earlier for individual samples of data.

  13. RESEARCH FOR THE AEROSPACE SYSTEMS DIRECTORATE (R4RQ) Delivery Order 0006: Airbreathing Propulsion Fuels and Energy Exploratory Research and Development (APFEERD) Sub Task: Review of Materials Compatibility Tests of Synthesized Hydrocarbon Kerosenes and Blends

    DTIC Science & Technology

    2017-07-31

    processing. Also, the presence of cyclo-paraffins and tetralins plus indans do not affect the fundamental correlation with aromatic content at the...processing. • The presence of cyclo-paraffins and tetralins plus indans do not affect the fundamental correlation with aromatic content at the...random, and shows no correlation with aromatic content. However, all of the test results were well above the minimum technical requirements of 200 psi

  14. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    DTIC Science & Technology

    2017-10-31

    of isolated molecules and that of bulk systems. DFT calculated absorption spectra represent quantitative estimates that can be correlated with...spectra, can be correlated with the presence of these hydrocarbons (see reference [1]). Accordingly, the molecular structure and IR absorption spectra of...associated with different types of ambient molecules, e.g., H2O, in order to apply background subtraction or spectral-signature- correlation algorithms

  15. Optical joint transform correlation on the DMD. [deformable mirror device

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome; Juday, Richard D.

    1989-01-01

    Initial experimental investigation of the deformable mirror device (DMD) in a joint optical transform correlation is reported. The inverted cloverleaf version of the DMD, in which form the DMD is phase-mostly but of limited phase range, is used. Binarized joint Fourier transforms were calculated for similar and dissimilar objects and written onto the DMD. Inverse Fourier transform was done in a diffraction order for which the DMD shows phase-mostly modulation. Matched test objects produced sharp correlation, distinct objects did not. Further studies are warranted and they are outlined.

  16. Correlative light-electron fractography for fatigue striations characterization in metallic alloys.

    PubMed

    Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato

    2013-09-01

    The correlative light-electron fractography technique combines correlative microscopy concepts to the extended depth-from-focus reconstruction method, associating the reliable topographic information of 3-D maps from light microscopy ordered Z-stacks to the finest lateral resolution and large focus depth from scanning electron microscopy. Fatigue striations spacing analysis can be precisely measured, by correcting the mean surface tilting with the knowledge of local elevation data from elevation maps. This new technique aims to improve the accuracy of quantitative fractography in fatigue fracture investigations. Copyright © 2013 Wiley Periodicals, Inc.

  17. Phase dependence of the unnormalized second-order photon correlation function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciornea, V.; Bardetski, P.; Macovei, M. A., E-mail: macovei@phys.asm.md

    2016-10-15

    We investigate the resonant quantum dynamics of a multi-qubit ensemble in a microcavity. Both the quantum-dot subsystem and the microcavity mode are pumped coherently. We find that the microcavity photon statistics depends on the phase difference of the driving lasers, which is not the case for the photon intensity at resonant driving. This way, one can manipulate the two-photon correlations. In particular, higher degrees of photon correlations and, eventually, stronger intensities are obtained. Furthermore, the microcavity photon statistics exhibits steady-state oscillatory behaviors as well as asymmetries.

  18. Imaging Spatial Correlations of Rydberg Excitations in Cold Atom Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, A.; Sapiro, R. E.; Raithel, G.

    2011-09-02

    We use direct spatial imaging of cold {sup 85}Rb Rydberg atom clouds to measure the Rydberg-Rydberg correlation function. The results are in qualitative agreement with theoretical predictions [F. Robicheaux and J. V. Hernandez, Phys. Rev. A 72, 063403 (2005)]. We determine the blockade radius for states 44D{sub 5/2}, 60D{sub 5/2}, and 70D{sub 5/2} and investigate the dependence of the correlation behavior on excitation conditions and detection delay. Experimental data hint at the existence of long-range order.

  19. Inferring gene regression networks with model trees

    PubMed Central

    2010-01-01

    Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database) is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear regressions to separate areas of the search space favoring to infer localized similarities over a more global similarity. Furthermore, experimental results show the good performance of REGNET. PMID:20950452

  20. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration

    NASA Astrophysics Data System (ADS)

    Eshuis, Henk; Yarkony, Julian; Furche, Filipp

    2010-06-01

    The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N4 log N) operations and O(N3) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield μH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.

  1. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.

    PubMed

    Eshuis, Henk; Yarkony, Julian; Furche, Filipp

    2010-06-21

    The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N(4) log N) operations and O(N(3)) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield muH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.

  2. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  3. Rotational Alignment Altered by Source Position Correlations

    NASA Technical Reports Server (NTRS)

    Jacobs, Chris S.; Heflin, M. B.; Lanyi, G. E.; Sovers, O. J.; Steppe, J. A.

    2010-01-01

    In the construction of modern Celestial Reference Frames (CRFs) the overall rotational alignment is only weakly constrained by the data. Therefore, common practice has been to apply a 3-dimensional No-Net-Rotation (NNR) constraint in order to align an under-construction frame to the ICRF. We present evidence that correlations amongst source position parameters must be accounted for in order to properly align a CRF at the 5-10 (mu)as level of uncertainty found in current work. Failure to do so creates errors at the 10-40 (mu)as level.

  4. Frustration and correlations in stacked triangular-lattice Ising antiferromagnets

    NASA Astrophysics Data System (ADS)

    Burnell, F. J.; Chalker, J. T.

    2015-12-01

    We study multilayer triangular-lattice Ising antiferromagnets with interlayer interactions that are weak and frustrated in an abc stacking. By analyzing a coupled height model description of these systems, we show that they exhibit a classical spin liquid regime at low temperature, in which both intralayer and interlayer correlations are strong but there is no long-range order. Diffuse scattering in this regime is concentrated on a helix in reciprocal space, as observed for charge ordering in the materials LuFe2O4 and YbFe2O4 .

  5. Correlation Structure of Fractional Pearson Diffusions.

    PubMed

    Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla

    2013-09-01

    The stochastic solution to a diffusion equations with polynomial coefficients is called a Pearson diffusion. If the first time derivative is replaced by a Caputo fractional derivative of order less than one, the stochastic solution is called a fractional Pearson diffusion. This paper develops an explicit formula for the covariance function of a fractional Pearson diffusion in steady state, in terms of Mittag-Leffler functions. That formula shows that fractional Pearson diffusions are long range dependent, with a correlation that falls off like a power law, whose exponent equals the order of the fractional derivative.

  6. Effect of atomic order on the martensitic and magnetic transformations in Ni-Mn-Ga ferromagnetic shape memory alloys.

    PubMed

    Sánchez-Alarcos, V; Pérez-Landazábal, J I; Recarte, V; Rodríguez-Velamazán, J A; Chernenko, V A

    2010-04-28

    The influence of long-range L2(1) atomic order on the martensitic and magnetic transformations of Ni-Mn-Ga shape memory alloys has been investigated. In order to correlate the structural and magnetic transformation temperatures with the atomic order, calorimetric, magnetic and neutron diffraction measurements have been performed on polycrystalline and single-crystalline alloys subjected to different thermal treatments. It is found that both transformation temperatures increase with increasing atomic order, showing exactly the same linear dependence on the degree of L2(1) atomic order. A quantitative correlation between atomic order and transformation temperatures has been established, from which the effect of atomic order on the relative stability between the structural phases has been quantified. On the other hand, the kinetics of the post-quench ordering process taking place in these alloys has been studied. It is shown that the activation energy of the ordering process agrees quite well with the activation energy of the Mn self-diffusion process.

  7. Detecting coupled collective motions in protein by independent subspace analysis

    NASA Astrophysics Data System (ADS)

    Sakuraba, Shun; Joti, Yasumasa; Kitao, Akio

    2010-11-01

    Protein dynamics evolves in a high-dimensional space, comprising aharmonic, strongly correlated motional modes. Such correlation often plays an important role in analyzing protein function. In order to identify significantly correlated collective motions, here we employ independent subspace analysis based on the subspace joint approximate diagonalization of eigenmatrices algorithm for the analysis of molecular dynamics (MD) simulation trajectories. From the 100 ns MD simulation of T4 lysozyme, we extract several independent subspaces in each of which collective modes are significantly correlated, and identify the other modes as independent. This method successfully detects the modes along which long-tailed non-Gaussian probability distributions are obtained. Based on the time cross-correlation analysis, we identified a series of events among domain motions and more localized motions in the protein, indicating the connection between the functionally relevant phenomena which have been independently revealed by experiments.

  8. The q-dependent detrended cross-correlation analysis of stock market

    NASA Astrophysics Data System (ADS)

    Zhao, Longfeng; Li, Wei; Fenu, Andrea; Podobnik, Boris; Wang, Yougui; Stanley, H. Eugene

    2018-02-01

    Properties of the q-dependent cross-correlation matrices of the stock market have been analyzed by using random matrix theory and complex networks. The correlation structures of the fluctuations at different magnitudes have unique properties. The cross-correlations among small fluctuations are much stronger than those among large fluctuations. The large and small fluctuations are dominated by different groups of stocks. We use complex network representation to study these q-dependent matrices and discover some new identities. By utilizing those q-dependent correlation-based networks, we are able to construct some portfolios of those more independent stocks which consistently perform better. The optimal multifractal order for portfolio optimization is around q  =  2 under the mean-variance portfolio framework, and q\\in[2, 6] under the expected shortfall criterion. These results have deepened our understanding regarding the collective behavior of the complex financial system.

  9. Statistical theory of correlations in random packings of hard particles.

    PubMed

    Jin, Yuliang; Puckett, James G; Makse, Hernán A

    2014-05-01

    A random packing of hard particles represents a fundamental model for granular matter. Despite its importance, analytical modeling of random packings remains difficult due to the existence of strong correlations which preclude the development of a simple theory. Here, we take inspiration from liquid theories for the n-particle angular correlation function to develop a formalism of random packings of hard particles from the bottom up. A progressive expansion into a shell of particles converges in the large layer limit under a Kirkwood-like approximation of higher-order correlations. We apply the formalism to hard disks and predict the density of two-dimensional random close packing (RCP), ϕ(rcp) = 0.85 ± 0.01, and random loose packing (RLP), ϕ(rlp) = 0.67 ± 0.01. Our theory also predicts a phase diagram and angular correlation functions that are in good agreement with experimental and numerical data.

  10. Activity and selectivity of photocatalysts in photodegradation of phenols.

    PubMed

    Emeline, A V; Zhang, X; Murakami, T; Fujishima, A

    2012-04-15

    Photodegradation of phenol and 4-chlorophenol over six different TiO(2) samples was tested in order to establish whether an interconnection between the activity and selectivity of photocatalysts exists. The obtained experimental data were analyzed using correlation analysis. Some correlations between the activity in phenol(s) photodegradation and selectivity toward formation of primary intermediate products were established. The type of correlations depends on the type of studied photoreactions. The discussion of the observed correlations between the activity and selectivity of photocatalysts is given in terms of the difference of surface concentrations of electrons and holes and corresponding surface active sites which might be dependent on the types of dominating surface faces. On the basis of the obtained results of correlation analysis it was assumed that a higher activity of photocatalysts could be achieved provided that both reduction and oxidation reaction pathways occur with equally high efficiency. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Multifractal cross-correlation effects in two-variable time series of complex network vertex observables

    NASA Astrophysics Data System (ADS)

    OświÈ©cimka, Paweł; Livi, Lorenzo; DroŻdŻ, Stanisław

    2016-10-01

    We investigate the scaling of the cross-correlations calculated for two-variable time series containing vertex properties in the context of complex networks. Time series of such observables are obtained by means of stationary, unbiased random walks. We consider three vertex properties that provide, respectively, short-, medium-, and long-range information regarding the topological role of vertices in a given network. In order to reveal the relation between these quantities, we applied the multifractal cross-correlation analysis technique, which provides information about the nonlinear effects in coupling of time series. We show that the considered network models are characterized by unique multifractal properties of the cross-correlation. In particular, it is possible to distinguish between Erdös-Rényi, Barabási-Albert, and Watts-Strogatz networks on the basis of fractal cross-correlation. Moreover, the analysis of protein contact networks reveals characteristics shared with both scale-free and small-world models.

  12. Antiphase dual-color correlation in a reactant-product pair imparts ultrasensitivity in reaction-linked double-photoswitching fluorescence imaging.

    PubMed

    Wan, Wei; Zhu, Ming-Qiang; Tian, Zhiyuan; Li, Alexander D Q

    2015-04-08

    A pair of reversible photochemical reactions correlates their reactant and product specifically, and such a correlation uniquely distinguishes their correlated signal from others that are not linked by this reversible reaction. Here a nanoparticle-shielded fluorophore is photodriven to undergo structural dynamics, alternating between a green-fluorescence state and a red-fluorescence state. As time elapses, the fluorophore can be in either state but not both at the same time. Thus, the red fluorescence is maximized while the green fluorescence is minimized and vice versa. Such an antiphase dual-color (AD) corelationship between the red and green fluorescence maxima as well as between their minima can be exploited to greatly improve the signal-to-noise ratio, thus enhancing the ultimate detection limit. Potential benefits of this correlation include elimination of all interferences originating from single-color dyes and signal amplification of AD photoswitching molecules by orders of magnitude.

  13. Parameter motivated mutual correlation analysis: Application to the study of currency exchange rates based on intermittency parameter and Hurst exponent

    NASA Astrophysics Data System (ADS)

    Cristescu, Constantin P.; Stan, Cristina; Scarlat, Eugen I.; Minea, Teofil; Cristescu, Cristina M.

    2012-04-01

    We present a novel method for the parameter oriented analysis of mutual correlation between independent time series or between equivalent structures such as ordered data sets. The proposed method is based on the sliding window technique, defines a new type of correlation measure and can be applied to time series from all domains of science and technology, experimental or simulated. A specific parameter that can characterize the time series is computed for each window and a cross correlation analysis is carried out on the set of values obtained for the time series under investigation. We apply this method to the study of some currency daily exchange rates from the point of view of the Hurst exponent and the intermittency parameter. Interesting correlation relationships are revealed and a tentative crisis prediction is presented.

  14. Observation of Charge-Dependent Azimuthal Correlations in p-Pb Collisions and Its Implication for the Search for the Chiral Magnetic Effect.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Waltenberger, W; Wulz, C-E; Dvornikov, O; Makarenko, V; Zykunov, V; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; De Wolf, E A; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Garcia, G; Gul, M; Khvastunov, I; Poyraz, D; Salva, S; Schöfbeck, R; Sharma, A; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Bakhshiansohi, H; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Jez, P; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Micanovic, S; Sudic, L; Susa, T; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Tsiakkouri, D; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; Mohammed, Y; Salama, E; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Le Bihan, A-C; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schomakers, C; Schulz, J; Verlage, T; Weber, H; Zhukov, V; Albert, A; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hoffmann, M; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Baus, C; Berger, J; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Freund, B; Friese, R; Giffels, M; Gilbert, A; Goldenzweig, P; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kudella, S; Lobelle Pardo, P; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Bencze, G; Hajdu, C; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Bahinipati, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Kumari, P; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Kole, G; Mahakud, B; Mitra, S; Mohanty, G B; Parida, B; Sur, N; Sutar, B; Banerjee, S; Bhowmik, S; Dewanjee, R K; Ganguly, S; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Behnamian, H; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Fienga, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Del Re, D; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Lee, H; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Magaña Villalba, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Carpinteyro, S; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Calpas, B; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Bylinkin, A; Markin, O; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Kaminskiy, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Suárez Andrés, I; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Bonato, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Di Marco, E; Dobson, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gulhan, D; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kieseler, J; Kirschenmann, H; Knünz, V; Kornmayer, A; Kortelainen, M J; Kousouris, K; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Verweij, M; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Psallidas, A; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Berry, E; Cutts, D; Garabedian, A; Hakala, J; Heintz, U; Hogan, J M; Jesus, O; Kwok, K H M; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Breto, G; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Bravo, C; Cousins, R; Dasgupta, A; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Saltzberg, D; Schnaible, C; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Si, W; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; Derdzinski, M; Holzner, A; Klein, D; Krutelyov, V; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Lawhorn, J M; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Wu, Y; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Low, J F; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Diamond, B; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Santra, A; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Jung, K; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wang, H; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Bruner, C; Castle, J; Forthomme, L; Kenny, R P; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Abercrombie, D; Allen, B; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Chatterjee, R M; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Malta Rodrigues, A; Meier, F; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Kubik, A; Kumar, A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Hughes, R; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Lange, D; Luo, J; Marlow, D; Mc Donald, J; Medvedeva, T; Mei, K; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Svyatkovskiy, A; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Miller, D H; Neumeister, N; Schulte, J F; Shi, X; Sun, J; Wang, F; Xie, W; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Agapitos, A; Chou, J P; Contreras-Campana, E; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Juska, E; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; De Guio, F; Dragoiu, C; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Sturdy, J; Belknap, D A; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2017-03-24

    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4<|η|<5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, are of similar magnitude in p-Pb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

  15. A new technique to determine the correlation between the QT interval and heart-rate for control and SIDS babies

    NASA Technical Reports Server (NTRS)

    Sadeh, D.; Shannon, D. C.; Abboud, S.; Akselrod, S.; Cohen, R. J.

    1987-01-01

    The ability of the autonomic nervous system to alter the QT interval in response to heart rate changes is essential to cardiovascular control. An accurate way to determine the relation between QT intervals and their corresponding RR intervals is described. A computer algorithm measures the RR intervals using digital filtering and cross-correlating the QRS sections of consecutive waveforms. The QT intervals is calculated by choosing a section of, the ECG that includes the T wave and cross-correlating it with all the consecutive T waves. At least 4000 pairs of QT-RR intervals are computed for each subject and a best fit correlation function determines the relations between the QT and RR intervals. This technique enables to establish a precise correlation between RR and QT in order to distinguish between control and SIDS babies.

  16. Spreading of correlations in the Falicov-Kimball model

    NASA Astrophysics Data System (ADS)

    Herrmann, Andreas J.; Antipov, Andrey E.; Werner, Philipp

    2018-04-01

    We study dynamical properties of the one- and two-dimensional Falicov-Kimball model using lattice Monte Carlo simulations. In particular, we calculate the spreading of charge correlations in the equilibrium model and after an interaction quench. The results show a reduction of the light-cone velocity with interaction strength at low temperature, while the phase velocity increases. At higher temperature, the initial spreading is determined by the Fermi velocity of the noninteracting system and the maximum range of the correlations decreases with increasing interaction strength. Charge order correlations in the disorder potential enhance the range of the correlations. We also use the numerically exact lattice Monte Carlo results to benchmark the accuracy of equilibrium and nonequilibrium dynamical cluster approximation calculations. It is shown that the bias introduced by the mapping to a periodized cluster is substantial, and that from a numerical point of view, it is more efficient to simulate the lattice model directly.

  17. Dynamic characteristics of azimuthally correlated structures of axial instability of wire-array Z pinches

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Huang, Xian Bin; Ren, Xiao Dong; Chen, Guang Hua; Xu, Qiang; Wang, Kun Lun; Ouyang, Kai; Wei, Bing

    2017-04-01

    Particular attention was placed on observations of dynamic properties of the azimuthally correlated structures of axial instability of wire-array Z pinches, which were conducted at 10-MA (for short circuit load) pulsed power generator-the Primary Test Stand facility. Not well fabricated loads, which were expected to preset bubble or spike in plasma, were used to degrade the implosion symmetry in order to magnify the phenomenon of instability. The side-view sequence of evolution of correlation given by laser shadowgraphy clearly demonstrates the dynamic processes of azimuthal correlation of the bubble and spike. A possible mechanism presented here suggests that it is the substantial current redistribution especially in regions surrounding the bubble/spike resulting from change of inductance due to the presence of the bubble/spike that plays an essential part in establishment of azimuthal correlation of wire array and liner Z pinches.

  18. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsch, F.; Kojo, T.; Mukherjee, S.

    Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that atmore » zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical background for the search of the CEP using observables related to fluctuations and correlations. While new data are pouring in from the RHIC low energy scan program, many recent advances have also been made in the phenomenological and lattice gauge theory sides in order to have a better theoretical understanding of the wealth of new data. This workshop tried to create a synergy between the experimental, phenomenological and lattice QCD aspects of the fluctuation and correlation related studies of the RHIC low energy scan program. The workshop brought together all the leading experts from related fields under the same forum to share new ideas among themselves in order to streamline the continuing search of CEP in the RHIC low energy scan program.« less

  19. Unstable spin-ice order in the stuffed metallic pyrochlore Pr 2+xIr 2-xO 7-δ

    DOE PAGES

    MacLaughlin, D. E.; Bernal, O. O.; Shu, Lei; ...

    2015-08-24

    Specific heat, elastic neutron scattering, and muon spin rotation experiments have been carried out on a well-characterized sample of “stuffed” (Pr-rich) Pr 2+xIr 2-xO 7-δ. Elastic neutron scattering shows the onset of long-range spin-ice “2-in/2-out” magnetic order at 0.93 kelvin, with an ordered moment of 1.7(1) Bohr magnetons per Pr ion at low temperatures. Approximate lower bounds on the correlation length and correlation time in the ordered state are 170 angstroms and 0.7 nanosecond, respectively. Muon spin rotation experiments yield an upper bound 2.6(7) milliteslas on the local field B 4f loc at the muon site, which is nearly twomore » orders of magnitude smaller than the expected dipolar field for long-range spin-ice ordering of 1.7-Bohr magneton moments (120–270 milliteslas, depending on the muon site). This shortfall is due in part to splitting of the non-Kramers crystal-field ground-state doublets of near-neighbor Pr 3+ ions by the positive-muon-induced lattice distortion. For this to be the only effect, however, ~160 Pr moments out to a distance of ~14 angstroms must be suppressed. An alternative scenario—one consistent with the observed reduced nuclear hyperfine Schottky anomaly in the specific heat—invokes slow correlated Pr-moment fluctuations in the ordered state that average B 4f loc on the μSR time scale (~10 -7 second), but are static on the time scale of the elastic neutron scattering experiments (~10 -9 second). In this picture, the dynamic muon relaxation suggests a Pr 3+ 4f correlation time of a few nanoseconds, which should be observable in a neutron spin echo experiment.« less

  20. DGCA: A comprehensive R package for Differential Gene Correlation Analysis.

    PubMed

    McKenzie, Andrew T; Katsyv, Igor; Song, Won-Min; Wang, Minghui; Zhang, Bin

    2016-11-15

    Dissecting the regulatory relationships between genes is a critical step towards building accurate predictive models of biological systems. A powerful approach towards this end is to systematically study the differences in correlation between gene pairs in more than one distinct condition. In this study we develop an R package, DGCA (for Differential Gene Correlation Analysis), which offers a suite of tools for computing and analyzing differential correlations between gene pairs across multiple conditions. To minimize parametric assumptions, DGCA computes empirical p-values via permutation testing. To understand differential correlations at a systems level, DGCA performs higher-order analyses such as measuring the average difference in correlation and multiscale clustering analysis of differential correlation networks. Through a simulation study, we show that the straightforward z-score based method that DGCA employs significantly outperforms the existing alternative methods for calculating differential correlation. Application of DGCA to the TCGA RNA-seq data in breast cancer not only identifies key changes in the regulatory relationships between TP53 and PTEN and their target genes in the presence of inactivating mutations, but also reveals an immune-related differential correlation module that is specific to triple negative breast cancer (TNBC). DGCA is an R package for systematically assessing the difference in gene-gene regulatory relationships under different conditions. This user-friendly, effective, and comprehensive software tool will greatly facilitate the application of differential correlation analysis in many biological studies and thus will help identification of novel signaling pathways, biomarkers, and targets in complex biological systems and diseases.

  1. BONNSAI: correlated stellar observables in Bayesian methods

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Castro, N.; Fossati, L.; Langer, N.; de Koter, A.

    2017-02-01

    In an era of large spectroscopic surveys of stars and big data, sophisticated statistical methods become more and more important in order to infer fundamental stellar parameters such as mass and age. Bayesian techniques are powerful methods because they can match all available observables simultaneously to stellar models while taking prior knowledge properly into account. However, in most cases it is assumed that observables are uncorrelated which is generally not the case. Here, we include correlations in the Bayesian code Bonnsai by incorporating the covariance matrix in the likelihood function. We derive a parametrisation of the covariance matrix that, in addition to classical uncertainties, only requires the specification of a correlation parameter that describes how observables co-vary. Our correlation parameter depends purely on the method with which observables have been determined and can be analytically derived in some cases. This approach therefore has the advantage that correlations can be accounted for even if information for them are not available in specific cases but are known in general. Because the new likelihood model is a better approximation of the data, the reliability and robustness of the inferred parameters are improved. We find that neglecting correlations biases the most likely values of inferred stellar parameters and affects the precision with which these parameters can be determined. The importance of these biases depends on the strength of the correlations and the uncertainties. For example, we apply our technique to massive OB stars, but emphasise that it is valid for any type of stars. For effective temperatures and surface gravities determined from atmosphere modelling, we find that masses can be underestimated on average by 0.5σ and mass uncertainties overestimated by a factor of about 2 when neglecting correlations. At the same time, the age precisions are underestimated over a wide range of stellar parameters. We conclude that accounting for correlations is essential in order to derive reliable stellar parameters including robust uncertainties and will be vital when entering an era of precision stellar astrophysics thanks to the Gaia satellite.

  2. Systemic risk and spatiotemporal dynamics of the consumer market of China

    NASA Astrophysics Data System (ADS)

    Wang, Minggang; Tian, Lixin; Xu, Hua; Li, Weiyu; Du, Ruijin; Dong, Gaogao; Wang, Jie; Gu, Jiani

    2017-05-01

    The consumer price index (CPI) contains rich information of the consumer market, in order to characterize the essential characteristics of the consumer market of China, a novel method by using complex network theory is proposed to visualizing the evolution and transformation characteristics of correlated modes among the regional consumer markets. CPI data of 31 provinces and cities of China are selected as sample data. Underlying dynamics of time-evolving correlation networks are revealed. A formula to measure the systemic risk in the consumer market is designed. And the correlation modes transmission network of the regional consumer markets is obtained. Numerical simulations show that the consumer market network has co-movement, group-occurring and small-word property. Different regions played different roles in the consumer market of China. The risk in the consumer market presented a decreasing trend from April 2013 but remain at the high level. Different from the stochastic system, the consumer market of China both has the short-range correlation and the long-range correlation. The strength of correlation modes transmission network basically satisfies a power-law distribution. The correlation modes are transferred into each other conveniently, although the consumer market system is highly complicated. The transformation of the correlation patterns of the regional consumer markets mainly revolves around three core correlation modes and each transformation needs to undergo 4 non-core modes.

  3. Observation of a remarkable reduction of correlation effects in BaCr2As2 by ARPES.

    PubMed

    Nayak, Jayita; Filsinger, Kai; Fecher, Gerhard H; Chadov, Stanislav; Minár, Ján; Rienks, Emile D L; Büchner, Bernd; Parkin, Stuart P; Fink, Jörg; Felser, Claudia

    2017-11-21

    The superconducting phase in iron-based high-[Formula: see text] superconductors (FeSC), as in other unconventional superconductors such as the cuprates, neighbors a magnetically ordered one in the phase diagram. This proximity hints at the importance of electron correlation effects in these materials, and Hund's exchange interaction has been suggested to be the dominant correlation effect in FeSCs because of their multiband nature. By this reasoning, correlation should be strongest for materials closest to a half-filled [Formula: see text] electron shell (Mn compounds, hole-doped FeSCs) and decrease for systems with both higher (electron-doped FeSCs) and lower (Cr-pnictides) [Formula: see text] counts. Here we address the strength of correlation effects in nonsuperconducting antiferromagnetic BaCr 2 As 2 by means of angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. This combination provides us with two handles on the strength of correlation: First, a comparison of the experimental and calculated effective masses yields the correlation-induced mass renormalization. In addition, the lifetime broadening of the experimentally observed dispersions provides another measure of the correlation strength. Both approaches reveal a reduction of electron correlation in BaCr 2 As 2 with respect to systems with a [Formula: see text] count closer to five. Our results thereby support the theoretical predictions that Hund's exchange interaction is important in these materials.

  4. An experimental study on the noise correlation properties of CBCT projection data

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Ouyang, Luo; Ma, Jianhua; Huang, Jing; Chen, Wufan; Wang, Jing

    2014-03-01

    In this study, we systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam on-board CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 mAs to 1.6 mAs per projection at three fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. The analyses of the repeated measurements show that noise correlation coefficients are non-zero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second- order neighbors are 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation results in a lower noise level as compared to the PWLS criterion without considering the noise correlation at the matched resolution.

  5. Detecting PM2.5's Correlations between Neighboring Cities Using a Time-Lagged Cross-Correlation Coefficient.

    PubMed

    Wang, Fang; Wang, Lin; Chen, Yuming

    2017-08-31

    In order to investigate the time-dependent cross-correlations of fine particulate (PM2.5) series among neighboring cities in Northern China, in this paper, we propose a new cross-correlation coefficient, the time-lagged q-L dependent height crosscorrelation coefficient (denoted by p q (τ, L)), which incorporates the time-lag factor and the fluctuation amplitude information into the analogous height cross-correlation analysis coefficient. Numerical tests are performed to illustrate that the newly proposed coefficient ρ q (τ, L) can be used to detect cross-correlations between two series with time lags and to identify different range of fluctuations at which two series possess cross-correlations. Applying the new coefficient to analyze the time-dependent cross-correlations of PM2.5 series between Beijing and the three neighboring cities of Tianjin, Zhangjiakou, and Baoding, we find that time lags between the PM2.5 series with larger fluctuations are longer than those between PM2.5 series withsmaller fluctuations. Our analysis also shows that cross-correlations between the PM2.5 series of two neighboring cities are significant and the time lags between two PM2.5 series of neighboring cities are significantly non-zero. These findings providenew scientific support on the view that air pollution in neighboring cities can affect one another not simultaneously but with a time lag.

  6. Compliance With Injury Prevention Measures in Youth Pitchers: Survey of Coaches in Little League of Puerto Rico.

    PubMed

    Pamias-Velázquez, Kristian J; Figueroa-Negrón, Mariam M; Tirado-Crespo, Janiliz; Mulero-Portela, Ana L

    2016-05-01

    Because of the problem of elbow and shoulder injuries in baseball pitchers between 9 and 14 years of age, the USA Baseball Medical & Safety Advisory Committee and the Department of Recreation and Sports in Puerto Rico developed injury prevention guidelines for pitchers. The purpose of this study was to determine the compliance of pitching coaches of 9- to 14-year-old Little League teams in Puerto Rico with the Administrative Order 2006-01 and the USA Baseball guidelines. (1) The coaches will have a satisfactory level of compliance with the Administrative Order as well as with the USA Baseball guidelines and (2) both the level of education of the coach as well as the years of experience will correlate with the level of compliance. Descriptive cross-sectional study. Level 5. A self-administered questionnaire was developed based on the Administrative Order and on the USA Baseball guidelines. A descriptive univariate analysis was conducted to determine the mean coach compliance with both guidelines. Pearson correlation coefficients were used to describe the correlation between the level of education and the years of experience of the coaches with the level of compliance. Thirty-five coaches (response rate, 78%) participated in the study. On average, the coaches complied with 70% of the Administrative Order and with 73% of the USA Baseball guidelines. No significant correlations were found. The coaches who participated in the study did not reflect a satisfactory level of compliance with the USA Baseball guidelines or with the Administrative Order. These findings emphasize the need for reinforcing compliance with the injury prevention guidelines and the need to provide resources and training to coaches to effectively prevent elbow and shoulder injuries in pitchers. © 2016 The Author(s).

  7. Compliance With Injury Prevention Measures in Youth Pitchers

    PubMed Central

    Pamias-Velázquez, Kristian J.; Figueroa-Negrón, Mariam M.; Tirado-Crespo, Janiliz; Mulero-Portela, Ana L.

    2016-01-01

    Background: Because of the problem of elbow and shoulder injuries in baseball pitchers between 9 and 14 years of age, the USA Baseball Medical & Safety Advisory Committee and the Department of Recreation and Sports in Puerto Rico developed injury prevention guidelines for pitchers. The purpose of this study was to determine the compliance of pitching coaches of 9- to 14-year-old Little League teams in Puerto Rico with the Administrative Order 2006-01 and the USA Baseball guidelines. Hypotheses: (1) The coaches will have a satisfactory level of compliance with the Administrative Order as well as with the USA Baseball guidelines and (2) both the level of education of the coach as well as the years of experience will correlate with the level of compliance. Study Design: Descriptive cross-sectional study. Level of Evidence: Level 5. Methods: A self-administered questionnaire was developed based on the Administrative Order and on the USA Baseball guidelines. A descriptive univariate analysis was conducted to determine the mean coach compliance with both guidelines. Pearson correlation coefficients were used to describe the correlation between the level of education and the years of experience of the coaches with the level of compliance. Results: Thirty-five coaches (response rate, 78%) participated in the study. On average, the coaches complied with 70% of the Administrative Order and with 73% of the USA Baseball guidelines. No significant correlations were found. Conclusion: The coaches who participated in the study did not reflect a satisfactory level of compliance with the USA Baseball guidelines or with the Administrative Order. Clinical Relevance: These findings emphasize the need for reinforcing compliance with the injury prevention guidelines and the need to provide resources and training to coaches to effectively prevent elbow and shoulder injuries in pitchers. PMID:27118556

  8. Long-range dipolar order and dispersion forces in polar liquids

    NASA Astrophysics Data System (ADS)

    Besford, Quinn Alexander; Christofferson, Andrew Joseph; Liu, Maoyuan; Yarovsky, Irene

    2017-11-01

    Complex solvation phenomena, such as specific ion effects, occur in polar liquids. Interpretation of these effects in terms of structure and dispersion forces will lead to a greater understanding of solvation. Herein, using molecular dynamics, we probe the structure of polar liquids through specific dipolar pair correlation functions that contribute to the potential of mean force that is "felt" between thermally rotating dipole moments. It is shown that unique dipolar order exists at separations at least up to 20 Å for all liquids studied. When the structural order is compared with a dipolar dispersion force that arises from local co-operative enhancement of dipole moments, a strong agreement is found. Lifshitz theory of dispersion forces was compared with the structural order, where the theory is validated for all liquids that do not have significant local dipole correlations. For liquids that do have significant local dipole correlations, specifically liquid water, Lifshitz theory underestimates the dispersion force by a factor of 5-10, demonstrating that the force that leads to the increased structure in liquid water is missed by Lifshitz theory of van der Waals forces. We apply similar correlation functions to an ionic aqueous system, where long-range order between water's dipole moment and a single chloride ion is found to exist at 20 Å of separation, revealing a long-range perturbation of water's structure by an ion. Furthermore, we found that waters within the 1st, 2nd, and 3rd solvation shells of a chloride ion exhibit significantly enhanced dipolar interactions, particularly with waters at larger distances of separation. Our results provide a link between structures, dispersion forces, and specific ion effects, which may lead to a more robust understanding of solvation.

  9. Correlating Microstructure and Optoelectronic Performance of Carbon-Based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Rochford, Caitlin

    There is a great deal of interest in carbon nanostructures such as graphene and various forms of carbon nanotubes due to their exceptional physical, electronic, and optical properties. Many technological applications have been proposed for these nanostructures, but despite the promise many carbon nanostructure-based optoelectronic devices fail to compete with their conventional counterparts. This is often due in large part to a non-optimized material or device microstructure. Factors such as crystallinity, contact quality, defect structure, and device configuration can critically affect device performance due to the high sensitivity and extreme surface to volume ratio of carbon nanostructures. In order for the exceptional intrinsic properties of the nanostructures to be exploited, a clear understanding of the microstructure and its correlation with device-relevant optoelectronic properties is needed. This dissertation presents four projects which demonstrate this principle. First, a TiO 2-coated carbon nanofiber is studied in order to optimize its structure for use in a novel dye-sensitized solar cell. Second, the electrode configuration of an individual multiwall carbon nanotube infrared sensor is investigated in order to surpass the limitations of disordered nanotube film-based infrared sensors. Third, the properties of defect structures in large area transferred graphene films grown by chemical vapor deposition are correlated with carrier diffusion in order to understand the film's low mobility compared to exfoliated graphene. Fourth, the effect of deposition conditions on graphene-metal contact was studied with the goal of achieving sufficiently transparent contacts for investigation of the superconducting proximity effect. All four projects highlight the unique properties of carbon nanostructures as well as the need to correlate their optoelectronic properties with microstructural details in order to achieve the desired device performance.

  10. Second order closure modeling of turbulent buoyant wall plumes

    NASA Technical Reports Server (NTRS)

    Zhu, Gang; Lai, Ming-Chia; Shih, Tsan-Hsing

    1992-01-01

    Non-intrusive measurements of scalar and momentum transport in turbulent wall plumes, using a combined technique of laser Doppler anemometry and laser-induced fluorescence, has shown some interesting features not present in the free jet or plumes. First, buoyancy-generation of turbulence is shown to be important throughout the flow field. Combined with low-Reynolds-number turbulence and near-wall effect, this may raise the anisotropic turbulence structure beyond the prediction of eddy-viscosity models. Second, the transverse scalar fluxes do not correspond only to the mean scalar gradients, as would be expected from gradient-diffusion modeling. Third, higher-order velocity-scalar correlations which describe turbulent transport phenomena could not be predicted using simple turbulence models. A second-order closure simulation of turbulent adiabatic wall plumes, taking into account the recent progress in scalar transport, near-wall effect and buoyancy, is reported in the current study to compare with the non-intrusive measurements. In spite of the small velocity scale of the wall plumes, the results showed that low-Reynolds-number correction is not critically important to predict the adiabatic cases tested and cannot be applied beyond the maximum velocity location. The mean and turbulent velocity profiles are very closely predicted by the second-order closure models. but the scalar field is less satisfactory, with the scalar fluctuation level underpredicted. Strong intermittency of the low-Reynolds-number flow field is suspected of these discrepancies. The trends in second- and third-order velocity-scalar correlations, which describe turbulent transport phenomena, are also predicted in general, with the cross-streamwise correlations better than the streamwise one. Buoyancy terms modeling the pressure-correlation are shown to improve the prediction slightly. The effects of equilibrium time-scale ratio and boundary condition are also discussed.

  11. A new interpretation and validation of variance based importance measures for models with correlated inputs

    NASA Astrophysics Data System (ADS)

    Hao, Wenrui; Lu, Zhenzhou; Li, Luyi

    2013-05-01

    In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.

  12. Multitime correlation functions in nonclassical stochastic processes

    NASA Astrophysics Data System (ADS)

    Krumm, F.; Sperling, J.; Vogel, W.

    2016-06-01

    A general method is introduced for verifying multitime quantum correlations through the characteristic function of the time-dependent P functional that generalizes the Glauber-Sudarshan P function. Quantum correlation criteria are derived which identify quantum effects for an arbitrary number of points in time. The Magnus expansion is used to visualize the impact of the required time ordering, which becomes crucial in situations when the interaction problem is explicitly time dependent. We show that the latter affects the multi-time-characteristic function and, therefore, the temporal evolution of the nonclassicality. As an example, we apply our technique to an optical parametric process with a frequency mismatch. The resulting two-time-characteristic function yields full insight into the two-time quantum correlation properties of such a system.

  13. Correlated motion in the bulk of dense granular flows.

    PubMed

    Staron, Lydie

    2008-05-01

    Numerical simulations of two-dimensional stationary dense granular flows are performed. We check that the system obeys the h_{stop} phenomenology. Focusing on the spatial correlations of the instantaneous velocity fluctuations of the grains, we give evidence of the existence of correlated motion over several grain diameters in the bulk of the flow. Investigating the role of contact friction and restitution, we show that the associated typical length scale lambda is essentially independent of the grain properties. Moreover, we show that lambda is not controlled by the packing compacity. However, in agreement with previous experimental work, we observe that the correlation length decreases with the shear rate. Computing the flows inertia number I , we show a first-order dependence of lambda on I .

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cable, J.W.

    The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recentmore » neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs.« less

  15. Visualizing spatial correlation: structural and electronic orders in iron-based superconductors on atomic scale

    NASA Astrophysics Data System (ADS)

    Maksov, Artem; Ziatdinov, Maxim; Li, Li; Sefat, Athena; Maksymovych, Petro; Kalinin, Sergei

    Crystalline matter on the nanoscale level often exhibits strongly inhomogeneous structural and electronic orders, which have a profound effect on macroscopic properties. This may be caused by subtle interplay between chemical disorder, strain, magnetic, and structural order parameters. We present a novel approach based on combination of high resolution scanning tunneling microscopy/spectroscopy (STM/S) and deep data style analysis for automatic separation, extraction, and correlation of structural and electronic behavior which might lead us to uncovering the underlying sources of inhomogeneity in in iron-based family of superconductors (FeSe, BaFe2As2) . We identify STS spectral features using physically robust Bayesian linear unmixing, and show their direct relevance to the fundamental physical properties of the system, including electronic states associated with individual defects and impurities. We collect structural data from individual unit cells on the crystalline lattice, and calculate both global and local indicators of spatial correlation with electronic features, demonstrating, for the first time, a direct quantifiable connection between observed structural order parameters extracted from the STM data and electronic order parameters identified within the STS data. This research was sponsored by the Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, US DOE.

  16. Causal and causally separable processes

    NASA Astrophysics Data System (ADS)

    Oreshkov, Ognyan; Giarmatzi, Christina

    2016-09-01

    The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and outcomes for each party, these correlations form a polytope whose facets define causal inequalities. The case of quantum correlations in this paradigm is captured by the process matrix formalism. We investigate the link between causality and the closely related notion of causal separability of quantum processes, which we here define rigorously in analogy with the link between Bell locality and separability of quantum states. We show that causality and causal separability are not equivalent in general by giving an example of a physically admissible tripartite quantum process that is causal but not causally separable. We also show that there are causally separable quantum processes that become non-causal if extended by supplying the parties with entangled ancillas. This motivates the concepts of extensibly causal and extensibly causally separable (ECS) processes, for which the respective property remains invariant under extension. We characterize the class of ECS quantum processes in the tripartite case via simple conditions on the form of the process matrix. We show that the processes realizable by classically controlled quantum circuits are ECS and conjecture that the reverse also holds.

  17. Correlations and Fluctuations: Status and Perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Volker; Koch, Volker

    2008-04-15

    We will provide an overview of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. Observables, which have been discussed in the literature will be briefly reviewed and put in context with experiment and information from Lattice QCD. Special attention will be given to the QCD critical point and the first order co-existence region.

  18. Discrimination of portraits using a hybrid parallel joint transform correlator system

    NASA Astrophysics Data System (ADS)

    Inaba, Rieko; Hashimoto, Asako; Kodate, Kashiko

    1999-05-01

    A hybrid parallel joint transform correlation system is demonstrated through the introduction of a five-channel binary zone plate array and is applied to the discrimination of portraits for a presumed criminal investigation. In order to improve performance, we adopt pe-processing of images with white area of 20%. Furthermore, we discuss the robustness.

  19. Home Chaos: Sociodemographic, Parenting, Interactional, and Child Correlates

    ERIC Educational Resources Information Center

    Dumas, Jean E.; Nissley, Jenelle; Nordstrom, Alicia; Smith, Emilie Phillips; Prinz, Ronald J.; Levine, Douglas W.

    2005-01-01

    We conducted 2 studies to (a) establish the usefulness of the construct of home chaos, (b) investigate its correlates, and (c) determine the validity of the Confusion, Hubbub, and Order Scale (CHAOS) used to measure the construct in each study. Study 1 relied on a sample of European American preschoolers and their mothers and Study 2 on a sample…

  20. Correlating MALDI and MRI Biomarkers of Breast Cancer

    DTIC Science & Technology

    2010-07-01

    resonance imaging ( MRI ) with matrix-assisted laser desorption ionization (MALDI) analysis of healthy and tumorous ex vivo specimens in order to examine the...assess the correlation between physiological parameters reported by magnetic resonance (MR) imaging and tumor protein distribution determined from... imaging research (e.g., Cancer Imaging , Quantitative Magnetic Resonance Imaging , and Medical Image Registration classes) • completion of

  1. Neural Correlates of Traditional Chinese Medicine Induced Advantageous Risk-Taking Decision Making

    ERIC Educational Resources Information Center

    Lee, Tiffany M. Y.; Guo, Li-guo; Shi, Hong-zhi; Li, Yong-zhi; Luo, Yue-jia; Sung, Connie Y. Y.; Chan, Chetwyn C. H.; Lee, Tatia M. C.

    2009-01-01

    This fMRI study examined the neural correlates of the observed improvement in advantageous risk-taking behavior, as measured by the number of adjusted pumps in the Balloon Analogue Risk Task (BART), following a 60-day course of a Traditional Chinese Medicine (TCM) recipe, specifically designed to regulate impulsiveness in order to modulate…

  2. Angular resolution and range of dipole-dipole correlations in water

    NASA Astrophysics Data System (ADS)

    Mathias, Gerald; Tavan, Paul

    2004-03-01

    We investigate the dipolar correlations in liquid water at angular resolution by molecular-dynamics simulations of a large periodic simulation system containing about 40 000 molecules. Because we are particularly interested in the long-range ordering, we use a simple three-point model for these molecules. The electrostatics is treated both by Ewald summation and by minimum image truncation combined with a reaction field approach. To gain insight into the angular dependence of the simulated dipolar ordering we introduce a suitable expansion of the molecular pair distribution function into a set of two-dimensional correlation functions. We show that these functions enable detailed insights into the shell structure of the dipolar ordering around a given water molecule. For these functions we derive analytical expressions in the particular case in which liquid water is conceived as a dielectric continuum. Comparisons of these continuum models with the correlation functions derived from the simulations yield the key result that liquid water behaves like a continuum dielectric beyond distances of about 15 Å from a given water molecule. We argue that this should be a generic property of water independent of our modeling. By comparison of the results of the two different electrostatics treatments with the continuum description we show that the boundary artifacts occurring in both methods are isotropically distributed and are locally small in the respective boundary regions.

  3. Manganese-induced magnetic symmetry breaking and its correlation with the metal-insulator transition in bilayered S r3(Ru1-xM nx) 2O7

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Ye, Feng; Tian, Wei; Cao, Huibo; Chi, Songxue; Hu, Biao; Diao, Zhenyu; Tennant, David A.; Jin, Rongying; Zhang, Jiandi; Plummer, Ward

    2017-06-01

    Bilayered S r3R u2O7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of a metal-insulator transition (MIT) at TMIT and AFM ordering at TM in S r3(Ru1-xM nx) 2O7 . Using elastic neutron scattering, we investigated the effect of Mn doping on the magnetic structure, in-plane magnetic correlation lengths and their correlation to the MIT in S r3(Ru1-xM nx) 2O7 (x =0.06 and 0.12). With the increase of Mn doping (x ) from 0.06 to 0.12 or the decrease of temperatures for x =0.12 , an evolution from an in-plane short-range to long-range antiferromagnetic (AFM) ground state occurs. For both compounds, the magnetic ordering has a double-stripe configuration, and the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise in electrical resistivity and specific heat. Since it does not induce a measurable lattice distortion, the double-stripe antiferromagnetic order with anisotropic spin texture breaks symmetry from a C4 v crystal lattice to a C2 v magnetic sublattice. These observations shed light on an age-old question regarding the Slater versus Mott-type MIT.

  4. Maximum entropy analysis of polarized fluorescence decay of (E)GFP in aqueous solution

    NASA Astrophysics Data System (ADS)

    Novikov, Eugene G.; Skakun, Victor V.; Borst, Jan Willem; Visser, Antonie J. W. G.

    2018-01-01

    The maximum entropy method (MEM) was used for the analysis of polarized fluorescence decays of enhanced green fluorescent protein (EGFP) in buffered water/glycerol mixtures, obtained with time-correlated single-photon counting (Visser et al 2016 Methods Appl. Fluoresc. 4 035002). To this end, we used a general-purpose software module of MEM that was earlier developed to analyze (complex) laser photolysis kinetics of ligand rebinding reactions in oxygen binding proteins. We demonstrate that the MEM software provides reliable results and is easy to use for the analysis of both total fluorescence decay and fluorescence anisotropy decay of aqueous solutions of EGFP. The rotational correlation times of EGFP in water/glycerol mixtures, obtained by MEM as maxima of the correlation-time distributions, are identical to the single correlation times determined by global analysis of parallel and perpendicular polarized decay components. The MEM software is also able to determine homo-FRET in another dimeric GFP, for which the transfer correlation time is an order of magnitude shorter than the rotational correlation time. One important advantage utilizing MEM analysis is that no initial guesses of parameters are required, since MEM is able to select the least correlated solution from the feasible set of solutions.

  5. Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations

    PubMed Central

    van Albada, Sacha Jennifer; Helias, Moritz; Diesmann, Markus

    2015-01-01

    Network models are routinely downscaled compared to nature in terms of numbers of nodes or edges because of a lack of computational resources, often without explicit mention of the limitations this entails. While reliable methods have long existed to adjust parameters such that the first-order statistics of network dynamics are conserved, here we show that limitations already arise if also second-order statistics are to be maintained. The temporal structure of pairwise averaged correlations in the activity of recurrent networks is determined by the effective population-level connectivity. We first show that in general the converse is also true and explicitly mention degenerate cases when this one-to-one relationship does not hold. The one-to-one correspondence between effective connectivity and the temporal structure of pairwise averaged correlations implies that network scalings should preserve the effective connectivity if pairwise averaged correlations are to be held constant. Changes in effective connectivity can even push a network from a linearly stable to an unstable, oscillatory regime and vice versa. On this basis, we derive conditions for the preservation of both mean population-averaged activities and pairwise averaged correlations under a change in numbers of neurons or synapses in the asynchronous regime typical of cortical networks. We find that mean activities and correlation structure can be maintained by an appropriate scaling of the synaptic weights, but only over a range of numbers of synapses that is limited by the variance of external inputs to the network. Our results therefore show that the reducibility of asynchronous networks is fundamentally limited. PMID:26325661

  6. Clinicopathologic Correlation of White, Non scrapable Oral Mucosal Surface Lesions: A Study of 100 Cases.

    PubMed

    Abidullah, Mohammed; Raghunath, Vandana; Karpe, Tanveer; Akifuddin, Syed; Imran, Shahid; Dhurjati, Venkata Naga Nalini; Aleem, Mohammed Ahtesham; Khatoon, Farheen

    2016-02-01

    White, non scrapable lesions are commonly seen in the oral cavity. Based on their history and clinical appearance, most of these lesions can be easily diagnosed, but sometimes diagnosis may go wrong. In order to arrive to a confirmative diagnosis, histopathological assessment is needed in many cases, if not all. 1) To find out the prevalence of clinically diagnosed oral white, non scrapable lesions. 2) To find out the prevalence of histopathologically diagnosed oral white, non scrapable lesions. 3) To correlate the clinical and histopathological diagnosis in the above lesions. A total of 100 cases of oral white, non scrapable lesions were included in the study. Based on their history and clinical presentation, clinical provisional diagnosis was made. Then biopsy was done and confirmatory histopathological diagnosis was given and both were correlated. In order to correlate clinical and histopathological diagnosis Discrepancy Index (DI) was calculated for all the cases. Based on clinical diagnosis, there were 59 cases (59%) of leukoplakia, 29 cases (29%) of lichen planus and six cases (6%) of lichenoid reaction; whereas, based on histopathological diagnosis, there were 66 cases (66%) of leukoplakia epithelial hyperplasia and hyperkeratosis (leukoplakia) and 30 cases (30%) of lichen planus. Seventy eight clinically diagnosed cases (78%) correlated with the histopathological diagnosis and 22 cases (22%) did not correlate. The total discrepancy index was 22%. A clinician needs to be aware of oral white, non scrapable lesions. Due to the overlapping of many clinical features in some of these lesions and also due to their malignant potential, a histopathological confirmative diagnosis is recommended.

  7. Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    2013-07-01

    Measurements of two- and four-particle angular correlations for charged particles emitted in pPb collisions are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 31 inverse nanobarns, were collected during the 2013 LHC pPb run at a nucleon-nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. The results are compared to 2.76 TeV semi-peripheral PbPb collision data, collected during the 2011 PbPb run, covering a similar range of particle multiplicities. The observed correlations are characterized by the near-side (abs(Delta(phi)~0) associated pair yields and the azimuthal anisotropy Fourier harmonics (v[n]).more » The second-order (v[2]) and third-order (v[3]) anisotropy harmonics are extracted using the two-particle azimuthal correlation technique. A four-particle correlation method is also applied to obtain the value of v[2] and further explore the multi-particle nature of the correlations. Both associated pair yields and anisotropy harmonics are studied as a function of particle multiplicity and transverse momentum. The associated pair yields, the four-particle v[2], and the v[3] become apparent at about the same multiplicity. A remarkable similarity in the v[3] signal as a function of multiplicity is observed between the pPb and PbPb systems. Predictions based on the color glass condensate and hydrodynamic models are compared to the experimental results.« less

  8. Determination of Relevant Neuron–Neuron Connections for Neural Prosthetics Using Time-Delayed Mutual Information: Tutorial and Preliminary Results

    PubMed Central

    Taghva, Alexander; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.

    2013-01-01

    BACKGROUND Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. METHODS Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. RESULTS Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. CONCLUSIONS Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural prosthetics. PMID:22120279

  9. Determination of relevant neuron-neuron connections for neural prosthetics using time-delayed mutual information: tutorial and preliminary results.

    PubMed

    Taghva, Alexander; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2012-12-01

    Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural prosthetics. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. A cross-sectional study of the temporal evolution of electricity consumption of six commercial buildings.

    PubMed

    Pickering, Ethan M; Hossain, Mohammad A; Mousseau, Jack P; Swanson, Rachel A; French, Roger H; Abramson, Alexis R

    2017-01-01

    Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations) of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies). The utility of a cross-sectional analysis of a sample set of building's electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged-Ordered Variable (exterior temperature) and corresponding averaged variables (electricity consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method developed herein adequately accounts for these issues and enables discovery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation for a new approach to building studies, that mitigates plug load interferences and identifies more accurate insights into weather-energy relationship for all building types. Over all six buildings analyzed the TSAOV method reported very significant average correlations per building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15-minute-interval electricity data further enables virtual energy audits of buildings to quickly and inexpensively inform energy savings measures.

  11. A cross-sectional study of the temporal evolution of electricity consumption of six commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickering, Ethan M.; Hossain, Mohammad A.; Mousseau, Jack P.

    Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations) of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies). Themore » utility of a cross-sectional analysis of a sample set of building's electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged- Ordered Variable (exterior temperature) and corresponding averaged variables (electricity consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method developed herein adequately accounts for these issues and enables discovery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation for a new approach to building studies, that mitigates plug load interferences and identifies more accurate insights into weather-energy relationship for all building types. Over all six buildings analyzed the TSAOV method reported very significant average correlations per building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15- minute-interval electricity data further enables virtual energy audits of buildings to quickly and inexpensively inform energy savings measures.« less

  12. A cross-sectional study of the temporal evolution of electricity consumption of six commercial buildings

    DOE PAGES

    Pickering, Ethan M.; Hossain, Mohammad A.; Mousseau, Jack P.; ...

    2017-10-31

    Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations) of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies). Themore » utility of a cross-sectional analysis of a sample set of building's electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged- Ordered Variable (exterior temperature) and corresponding averaged variables (electricity consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method developed herein adequately accounts for these issues and enables discovery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation for a new approach to building studies, that mitigates plug load interferences and identifies more accurate insights into weather-energy relationship for all building types. Over all six buildings analyzed the TSAOV method reported very significant average correlations per building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15- minute-interval electricity data further enables virtual energy audits of buildings to quickly and inexpensively inform energy savings measures.« less

  13. Extracting near-surface QL between 1-4 Hz from higher-order noise correlations in the Euroseistest area, Greece

    NASA Astrophysics Data System (ADS)

    Haendel, A.; Ohrnberger, M.; Krüger, F.

    2016-11-01

    Knowledge of the quality factor of near-surface materials is of fundamental interest in various applications. Attenuation can be very strong close to the surface and thus needs to be properly assessed. In recent years, several researchers have studied the retrieval of attenuation coefficients from the cross correlation of ambient seismic noise. Yet, the determination of exact amplitude information from noise-correlation functions is, in contrast to the extraction of traveltimes, not trivial. Most of the studies estimated attenuation coefficients on the regional scale and within the microseism band. In this paper, we investigate the possibility to derive attenuation coefficients from seismic noise at much shallower depths and higher frequencies (>1 Hz). The Euroseistest area in northern Greece offers ideal conditions to study quality factor retrieval from ambient noise for different rock types. Correlations are computed between the stations of a small scale array experiment (station spacings <2 km) that was carried out in the Euroseistest area in 2011. We employ the correlation of the coda of the correlation (C3) method instead of simple cross correlations to mitigate the effect of uneven noise source distributions on the correlation amplitude. Transient removal and temporal flattening are applied instead of 1-bit normalization in order to retain relative amplitudes. The C3 method leads to improved correlation results (higher signal-to-noise ratio and improved time symmetry) compared to simple cross correlations. The C3 functions are rotated from the ZNE to the ZRT system and we focus on Love wave arrivals on the transverse component and on Love wave quality factors QL. The analysis is performed for selected stations being either situated on soft soil or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenuation parameters are inferred by inspecting the relative amplitude decay of Love waves with increasing interstation distance. We observe that the attenuation coefficient γ and QL can be reliably extracted for stations situated on soft soil whereas the derivation of attenuation parameters is more problematic for stations that are located on weathered rock. The results are in acceptable conformance with theoretical Love wave attenuation curves that were computed using 1-D shear wave velocity and quality factor profiles from the Euroseistest area.

  14. A cross-sectional study of the temporal evolution of electricity consumption of six commercial buildings

    PubMed Central

    Hossain, Mohammad A.; Mousseau, Jack P.; Swanson, Rachel A.; French, Roger H.; Abramson, Alexis R.

    2017-01-01

    Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations) of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies). The utility of a cross-sectional analysis of a sample set of building’s electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged-Ordered Variable (exterior temperature) and corresponding averaged variables (electricity consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method developed herein adequately accounts for these issues and enables discovery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation for a new approach to building studies, that mitigates plug load interferences and identifies more accurate insights into weather-energy relationship for all building types. Over all six buildings analyzed the TSAOV method reported very significant average correlations per building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15-minute-interval electricity data further enables virtual energy audits of buildings to quickly and inexpensively inform energy savings measures. PMID:29088269

  15. A consistent hierarchy of generalized kinetic equation approximations to the master equation applied to surface catalysis.

    PubMed

    Herschlag, Gregory J; Mitran, Sorin; Lin, Guang

    2015-06-21

    We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.

  16. Robust X-ray angular correlations for the study of meso-structures

    DOE PAGES

    Lhermitte, Julien R.; Tian, Cheng; Stein, Aaron; ...

    2017-05-08

    As self-assembling nanomaterials become more sophisticated, it is becoming increasingly important to measure the structural order of finite-sized assemblies of nano-objects. These mesoscale clusters represent an acute challenge to conventional structural probes, owing to the range of implicated size scales (10 nm to several micrometres), the weak scattering signal and the dynamic nature of meso-clusters in native solution environments. The high X-ray flux and coherence of modern synchrotrons present an opportunity to extract structural information from these challenging systems, but conventional ensemble X-ray scattering averages out crucial information about local particle configurations. Conversely, a single meso-cluster scatters too weakly tomore » recover the full diffraction pattern. Using X-ray angular cross-correlation analysis, it is possible to combine multiple noisy measurements to obtain robust structural information. This paper explores the key theoretical limits and experimental challenges that constrain the application of these methods to probing structural order in real nanomaterials. A metric is presented to quantify the signal-to-noise ratio of angular correlations, and it is used to identify several experimental artifacts that arise. In particular, it is found that background scattering, data masking and inter-cluster interference profoundly affect the quality of correlation analyses. A robust workflow is demonstrated for mitigating these effects and extracting reliable angular correlations from realistic experimental data.« less

  17. Evidence for collectivity in pp collisions at the LHC

    DOE PAGES

    Khachatryan, Vardan

    2016-12-13

    Measurements of two- and multi-particle angular correlations in pp collisions at √s = 5,7, and 13TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0pb –1 (5 TeV), 6.2pb –1 (7TeV), and 0.7pb –1 (13 TeV), were collected using the CMS detector at the LHC. The second-order (v 2) and third-order (v 3) azimuthal anisotropy harmonics of unidentified charged particles, as well as v 2 of K S 0 and Λ/Λ¯ particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass orderingmore » is observed for the v 2 values of charged hadrons (mostly pions), K S 0, and Λ/Λ¯, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below p T ≈ 2GeV/c. For 13 TeV data, the v 2 signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. Finally, these observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan

    Measurements of two- and multi-particle angular correlations in pp collisions at √s = 5,7, and 13TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0pb –1 (5 TeV), 6.2pb –1 (7TeV), and 0.7pb –1 (13 TeV), were collected using the CMS detector at the LHC. The second-order (v 2) and third-order (v 3) azimuthal anisotropy harmonics of unidentified charged particles, as well as v 2 of K S 0 and Λ/Λ¯ particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass orderingmore » is observed for the v 2 values of charged hadrons (mostly pions), K S 0, and Λ/Λ¯, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below p T ≈ 2GeV/c. For 13 TeV data, the v 2 signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. Finally, these observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.« less

  19. Short-range order in the quantum XXZ honeycomb lattice material BaCo 2 ( PO 4 ) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Harikrishnan S.; Brown, J; Coldren, E.

    In this paper, we present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the S eff =1/2 compound γ-BaCo 2(PO 4) 2 (γ-BCPO). Specific heat shows a broad peak comprised of two weak kink features at T N1~6 K and T N2~3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below T N1 and T N2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξ c=60±2 Å (T N1) andmore » in quasi-2D helical domains with ξ h=350±11 Å (T N2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ-BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J 1-J 2-J 3 model with ferromagnetic nearest-neighbor exchange J 1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (~10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. Finally, these data show that γ-BCPO is a rare highly frustrated, quasi-2D S eff =1/2 honeycomb lattice material which resists long range magnetic order and spin freezing.« less

  20. From atomic structure to excess entropy: a neutron diffraction and density functional theory study of CaO-Al2O3-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Liu, Maoyuan; Jacob, Aurélie; Schmetterer, Clemens; Masset, Patrick J.; Hennet, Louis; Fischer, Henry E.; Kozaily, Jad; Jahn, Sandro; Gray-Weale, Angus

    2016-04-01

    Calcium aluminosilicate \\text{CaO}-\\text{A}{{\\text{l}}2}{{\\text{O}}3}-\\text{Si}{{\\text{O}}2} (CAS) melts with compositions {{≤ft(\\text{CaO}-\\text{Si}{{\\text{O}}2}\\right)}x}{{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}1-x} for x  <  0.5 and {{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}x}{{≤ft(\\text{Si}{{\\text{O}}2}\\right)}1-x} for x≥slant 0.5 are studied using neutron diffraction with aerodynamic levitation and density functional theory molecular dynamics modelling. Simulated structure factors are found to be in good agreement with experimental structure factors. Local atomic structures from simulations reveal the role of calcium cations as a network modifier, and aluminium cations as a non-tetrahedral network former. Distributions of tetrahedral order show that an increasing concentration of the network former Al increases entropy, while an increasing concentration of the network modifier Ca decreases entropy. This trend is opposite to the conventional understanding that increasing amounts of network former should increase order in the network liquid, and so decrease entropy. The two-body correlation entropy S 2 is found to not correlate with the excess entropy values obtained from thermochemical databases, while entropies including higher-order correlations such as tetrahedral order, O-M-O or M-O-M bond angles and Q N environments show a clear linear correlation between computed entropy and database excess entropy. The possible relationship between atomic structures and excess entropy is discussed.

  1. Short-range order in the quantum XXZ honeycomb lattice material BaCo 2 ( PO 4 ) 2

    DOE PAGES

    Nair, Harikrishnan S.; Brown, J; Coldren, E.; ...

    2018-04-12

    In this paper, we present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the S eff =1/2 compound γ-BaCo 2(PO 4) 2 (γ-BCPO). Specific heat shows a broad peak comprised of two weak kink features at T N1~6 K and T N2~3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below T N1 and T N2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξ c=60±2 Å (T N1) andmore » in quasi-2D helical domains with ξ h=350±11 Å (T N2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ-BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J 1-J 2-J 3 model with ferromagnetic nearest-neighbor exchange J 1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (~10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. Finally, these data show that γ-BCPO is a rare highly frustrated, quasi-2D S eff =1/2 honeycomb lattice material which resists long range magnetic order and spin freezing.« less

  2. Chaos and complexity by design

    DOE PAGES

    Roberts, Daniel A.; Yoshida, Beni

    2017-04-20

    We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame poten-tial,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We also show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. In addition, we prove that these 2k-point correlators for Pauli operators completely determine the k-foldmore » channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.« less

  3. Wave propagation in strongly coupled classical plasmas in an external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genga, R.O.

    When a small perturbation is applied to the plasma dispersion, a small shift of frequency due to correlation occurs. This is justified even for strong coupling, since the effect is proportional to k/sup 2/ (k is the wave vector) and it is sufficient to consider the k ..-->.. 0 limit. Then by solving the dispersion relations for delta omega, the shift of frequency due to correlation, at different angles of propagation, we obtain all information needed. The plasma modes in which we are primarily interested are the whistler and the extraordinary modes. In this work the STLS (Singwi, Tosi, Land,more » and Sjolander) approximation scheme is used. It is seen that the correlational effects enter only through terms of order k/sup 6/ for the whistler mode and terms of order k/sup 2/ for the nonresonant situation of the extraordinary mode.« less

  4. Correlated states in β-Li 2IrO 3 driven by applied magnetic fields

    DOE PAGES

    Ruiz, Alejandro; Frano, Alex; Breznay, Nicholas P.; ...

    2017-10-16

    Magnetic honeycomb iridates are thought to show strongly spin-anisotropic exchange interactions which, when highly frustrated, lead to an exotic state of matter known as the Kitaev quantum spin liquid. However, in all known examples these materials magnetically order at finite temperatures, the scale of which may imply weak frustration. Here we show that the application of a relatively small magnetic field drives the three-dimensional magnet β-Li 2IrO 3 from its incommensurate ground state into a quantum correlated paramagnet. Interestingly, this paramagnetic state admixes a zig-zag spin mode analogous to the zig-zag order seen in other Mott-Kitaev compounds. The rapid onsetmore » of the field-induced correlated state implies the exchange interactions are delicately balanced, leading to strong frustration and a near degeneracy of different ground states.« less

  5. Chaos in quantum channels

    DOE PAGES

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; ...

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less

  6. Correlation between Post-LASIK Starburst Symptom and Ocular Wavefront Aberrations

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Ji; Mu, Guo-Guang; Wang, Zhao-Qi; Wang-Yan

    2006-06-01

    Monochromatic aberrations in post laser in-situ keratomileusis (LASIK) eyes are measured. The data are categorized into reference group and starburst group according to the visual symptoms. Statistic analysis has been made to find the correlation between the ocular wavefront aberrations and the starburst symptom. The rms aberrations of the 3rd and 4th orders for the starburst group are significantly larger than those for the reference group. The starburst symptom shows a strong correlation with vertical coma, total coma, spherical aberrations. For 3-mm pupil size and 5.8-mm pupil size, the modulation transfer function (MTF) of the starburst group are lower than those of the reference group, but their visual acuities are close. MTF and PSF analyses are made for two groups, and the results are consistent with the statistical analysis, which means the difference between the two groups is mainly due to the third- and fourth-order Zernike aberrations.

  7. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  8. Structural correlation of the chalcogenide Ge40Se60 glass

    NASA Astrophysics Data System (ADS)

    Moharram, A. H.

    2017-01-01

    Binary Ge40Se60 glass was prepared using the melt-quench technique. The total structure factors, S( K), are obtained using the X-ray diffraction in the wave vector interval 0.28 ≤ K ≤ 6.5 Å-1. The appearance of the first sharp diffraction peak (FSDP) in the structure factor indicates the presence of the intermediate range order. Radial distribution functions, RDF( r), have been obtained using either the conventional (Fourier) transformation or the Monte Carlo simulation of the experimental X-ray data. The short range order parameters deduced from the Monte Carlo total correlation, T( r), functions are better than those obtained from the conventional (Fourier) T( r) data. Gaussian analyses of the total correlation function show that Ge2(Se1/2)6 molecular units are the basic structural units for the investigated Ge40Se60 glass.

  9. A Hierarchical Causal Taxonomy of Psychopathology across the Life Span

    PubMed Central

    Lahey, Benjamin B.; Krueger, Robert F.; Rathouz, Paul J.; Waldman, Irwin D.; Zald, David H.

    2016-01-01

    We propose a taxonomy of psychopathology based on patterns of shared causal influences identified in a review of multivariate behavior genetic studies that distinguish genetic and environmental influences that are either common to multiple dimensions of psychopathology or unique to each dimension. At the phenotypic level, first-order dimensions are defined by correlations among symptoms; correlations among first-order dimensions similarly define higher-order domains (e.g., internalizing or externalizing psychopathology). We hypothesize that the robust phenotypic correlations among first-order dimensions reflect a hierarchy of increasingly specific etiologic influences. Some nonspecific etiologic factors increase risk for all first-order dimensions of psychopathology to varying degrees through a general factor of psychopathology. Other nonspecific etiologic factors increase risk only for all first-order dimensions within a more specific higher-order domain. Furthermore, each first-order dimension has its own unique causal influences. Genetic and environmental influences common to family members tend to be nonspecific, whereas environmental influences unique to each individual are more dimension-specific. We posit that these causal influences on psychopathology are moderated by sex and developmental processes. This causal taxonomy also provides a novel framework for understanding the heterogeneity of each first-order dimension: Different persons exhibiting similar symptoms may be influenced by different combinations of etiologic influences from each of the three levels of the etiologic hierarchy. Furthermore, we relate the proposed causal taxonomy to transdimensional psychobiological processes, which also impact the heterogeneity of each psychopathology dimension. This causal taxonomy implies the need for changes in strategies for studying the etiology, psychobiology, prevention, and treatment of psychopathology. PMID:28004947

  10. General and specific consciousness: a first-order representationalist approach

    PubMed Central

    Mehta, Neil; Mashour, George A.

    2013-01-01

    It is widely acknowledged that a complete theory of consciousness should explain general consciousness (what makes a state conscious at all) and specific consciousness (what gives a conscious state its particular phenomenal quality). We defend first-order representationalism, which argues that consciousness consists of sensory representations directly available to the subject for action selection, belief formation, planning, etc. We provide a neuroscientific framework for this primarily philosophical theory, according to which neural correlates of general consciousness include prefrontal cortex, posterior parietal cortex, and non-specific thalamic nuclei, while neural correlates of specific consciousness include sensory cortex and specific thalamic nuclei. We suggest that recent data support first-order representationalism over biological theory, higher-order representationalism, recurrent processing theory, information integration theory, and global workspace theory. PMID:23882231

  11. Nonequilibrium phase transitions, fluctuations and correlations in an active contractile polar fluid.

    PubMed

    Gowrishankar, Kripa; Rao, Madan

    2016-02-21

    We study the patterning, fluctuations and correlations of an active polar fluid consisting of contractile polar filaments on a two-dimensional substrate, using a hydrodynamic description. The steady states generically consist of arrays of inward pointing asters and show a continuous transition from a moving lamellar phase, a moving aster street, to a stationary aster lattice with no net polar order. We next study the effect of spatio-temporal athermal noise, parametrized by an active temperature TA, on the stability of the ordered phases. In contrast to its equilibrium counterpart, we find that the active crystal shows true long range order at low TA. On increasing TA, the asters dynamically remodel, concomitantly we find novel phase transitions characterized by bond-orientational and polar order upon "heating".

  12. Simulating superradiance from higher-order-intensity-correlation measurements: Single atoms

    NASA Astrophysics Data System (ADS)

    Wiegner, R.; Oppel, S.; Bhatti, D.; von Zanthier, J.; Agarwal, G. S.

    2015-09-01

    Superradiance typically requires preparation of atoms in highly entangled multiparticle states, the so-called Dicke states. In this paper we discuss an alternative route where we prepare such states from initially uncorrelated atoms by a measurement process. By measuring higher-order intensity-intensity correlations we demonstrate that we can simulate the emission characteristics of Dicke superradiance by starting with atoms in the fully excited state. We describe the essence of the scheme by first investigating two excited atoms. Here we demonstrate how via Hanbury Brown and Twiss type of measurements we can produce Dicke superradiance and subradiance displayed commonly with two atoms in the single excited symmetric and antisymmetric Dicke states, respectively. We thereafter generalize the scheme to arbitrary numbers of atoms and detectors, and explain in detail the mechanism which leads to this result. The approach shows that the Hanbury Brown and Twiss type of intensity interference and the phenomenon of Dicke superradiance can be regarded as two sides of the same coin. We also present a compact result for the characteristic functional which generates all order intensity-intensity correlations.

  13. Neutron polarization analysis study of the frustrated magnetic ground state of β-Mn1-xAlx

    NASA Astrophysics Data System (ADS)

    Stewart, J. R.; Andersen, K. H.; Cywinski, R.

    2008-07-01

    We have performed a neutron polarization analysis study of the short-range nuclear and magnetic correlations present in the dilute alloy, β-Mn1-xAlx with 0.03≤x≤0.16 , in order to study the evolution of the magnetic ground state of this system as it achieves static spin-glass order at concentrations x>0.09 . To this end we have developed a reverse-Monte Carlo algorithm which has enabled us to extract Warren-Cowley nuclear short-range order parameters and magnetic spin correlations. Using conventional neutron powder diffraction, we show that the nonmagnetic Al substituents preferentially occupy the magnetic site II Wyckoff positions in the β-Mn structure—resulting in a reduction of the magnetic topological frustration of the Mn atoms. These Al impurities are found to display strong anticlustering behavior. The magnetic spin correlations are predominantly antiferromagnetic, persisting over a short range which is similar for all the samples studied—above and below the spin-liquid-spin-glass boundary—while the observed static (disordered) moment is shown to increase with increasing Al concentration.

  14. 3D digital image correlation methods for full-field vibration measurement

    NASA Astrophysics Data System (ADS)

    Helfrick, Mark N.; Niezrecki, Christopher; Avitabile, Peter; Schmidt, Timothy

    2011-04-01

    In the area of modal test/analysis/correlation, significant effort has been expended over the past twenty years in order to make reduced models and to expand test data for correlation and eventual updating of the finite element models. This has been restricted by vibration measurements which are traditionally limited to the location of relatively few applied sensors. Advances in computers and digital imaging technology have allowed 3D digital image correlation (DIC) methods to measure the shape and deformation of a vibrating structure. This technique allows for full-field measurement of structural response, thus providing a wealth of simultaneous test data. This paper presents some preliminary results for the test/analysis/correlation of data measured using the DIC approach along with traditional accelerometers and a scanning laser vibrometer for comparison to a finite element model. The results indicate that all three approaches correlated well with the finite element model and provide validation for the DIC approach for full-field vibration measurement. Some of the advantages and limitations of the technique are presented and discussed.

  15. Performance Analysis of Amplify-and-Forward Systems with Single Relay Selection in Correlated Environments

    PubMed Central

    Nguyen, Binh Van; Kim, Kiseon

    2016-01-01

    In this paper, we consider amplify-and-forward (AnF) cooperative systems under correlated fading environments. We first present a brief overview of existing works on the effect of channel correlations on the system performance. We then focus on our main contribution which is analyzing the outage probability of a multi-AnF-relay system with the best relay selection (BRS) scheme under a condition that two channels of each relay, source-relay and relay-destination channels, are correlated. Using lower and upper bounds on the end-to-end received signal-to-noise ratio (SNR) at the destination, we derive corresponding upper and lower bounds on the system outage probability. We prove that the system can achieve a diversity order (DO) equal to the number of relays. In addition, and importantly, we show that the considered correlation form has a constructive effect on the system performance. In other words, the larger the correlation coefficient, the better system performance. Our analytic results are corroborated by extensive Monte-Carlo simulations. PMID:27626426

  16. Long-Range Near-Side Angular Correlations in Proton-Proton Interactions in CMS.

    ScienceCinema

    None

    2017-12-09

    The CMS Collaboration Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center of mass energies of 0.9, 2.36 and 7TeV over a broad range of pseudorapidity (?) and azimuthal angle (f) are presented using data collected with the CMS detector at the LHC. Short-range correlations in ??, which are studied in minimum bias events, are characterized using a simple independent cluster parameterization in order to quantify their strength (cluster size) and their extent in ? (cluster decay width). Long-range azimuthal correlations are studied more differentially as a function of charged particle multiplicity and particle transverse momentum using a 980nb-1 data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particles in intermediate pT’s of 1-3GeV/c, 2.0< |??|<4.8 and ?f˜0. This is the ?rst observation of such a ridge-like feature in two-particle correlation functions in pp or p-pbar collisions. EVO Universe, password "seminar"; Phone Bridge ID: 2330444 Password: 5142

  17. Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques

    NASA Astrophysics Data System (ADS)

    Bermúdez, Vicente; Pastor, José V.; López, J. Javier; Campos, Daniel

    2014-06-01

    A study of soot measurement deviation using a diffusion charger sensor with three dilution ratios was conducted in order to obtain an optimum setting that can be used to obtain accurate measurements in terms of soot mass emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement settings in steady-state operating conditions; evaluation of the proposed setting under the New European Driving Cycle; and a study of correlations for different measurement techniques. These correlations provide a reliable tool for estimating soot emission from light extinction measurement or from accumulation particle mode concentration. There are several methods and correlations to estimate soot concentration in the literature but most of them were assessed for steady-state operating points. In this case, the correlations are obtained by more than 4000 points measured in transient conditions. The results of the new two correlations, with less than 4% deviation from the reference measurement, are presented in this paper.

  18. Multivariate analysis of correlation between electrophysiological and hemodynamic responses during cognitive processing

    PubMed Central

    Kujala, Jan; Sudre, Gustavo; Vartiainen, Johanna; Liljeström, Mia; Mitchell, Tom; Salmelin, Riitta

    2014-01-01

    Animal and human studies have frequently shown that in primary sensory and motor regions the BOLD signal correlates positively with high-frequency and negatively with low-frequency neuronal activity. However, recent evidence suggests that this relationship may also vary across cortical areas. Detailed knowledge of the possible spectral diversity between electrophysiological and hemodynamic responses across the human cortex would be essential for neural-level interpretation of fMRI data and for informative multimodal combination of electromagnetic and hemodynamic imaging data, especially in cognitive tasks. We applied multivariate partial least squares correlation analysis to MEG–fMRI data recorded in a reading paradigm to determine the correlation patterns between the data types, at once, across the cortex. Our results revealed heterogeneous patterns of high-frequency correlation between MEG and fMRI responses, with marked dissociation between lower and higher order cortical regions. The low-frequency range showed substantial variance, with negative and positive correlations manifesting at different frequencies across cortical regions. These findings demonstrate the complexity of the neurophysiological counterparts of hemodynamic fluctuations in cognitive processing. PMID:24518260

  19. Binocular Combination of Second-Order Stimuli

    PubMed Central

    Zhou, Jiawei; Liu, Rong; Zhou, Yifeng; Hess, Robert F.

    2014-01-01

    Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements. PMID:24404180

  20. Temporal correlation measurements of pulsed dual CO2 lidar returns. [for atmospheric pollution detection

    NASA Technical Reports Server (NTRS)

    Menyuk, N.; Killinger, D. K.

    1981-01-01

    A pulsed dual-laser direct-detection differential-absorption lidar DIAL system, operating near 10.6 microns, is used to measure the temporal correlation and statistical properties of backscattered returns from specular and diffuse topographic targets. Results show that atmospheric-turbulence fluctuations can effectively be frozen for pulse separation times on the order of 1-3 msec or less. The diffuse target returns, however, yielded a much lower correlation than that obtained with the specular targets; this being due to uncorrelated system noise effects and different statistics for the two types of target returns.

  1. Recovering a hidden polarization by ghost polarimetry.

    PubMed

    Janassek, Patrick; Blumenstein, Sébastien; Elsäßer, Wolfgang

    2018-02-15

    By exploiting polarization correlations of light from a broadband fiber-based amplified spontaneous emission source we succeed in reconstructing a hidden polarization in a ghost polarimetry experiment in close analogy to ghost imaging and ghost spectroscopy. Thereby, an original linear polarization state in the object arm of a Mach-Zehnder interferometer configuration which has been camouflaged by a subsequent depolarizer is recovered by correlating it with light from a reference beam. The variation of a linear polarizer placed inside the reference beam results in a Malus law type second-order intensity correlation with high contrast, thus measuring a ghost polarigram.

  2. Time-of-flight camera via a single-pixel correlation image sensor

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  3. Nanosecond X-ray Photon Correlation Spectroscopy on Magnetic Skyrmions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaberg, M. H.; Holladay, B.; Lee, J. C. T.

    We report an X-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant X-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond timescales in thin films of multilayered Fe/Gd that exhibit ordered stripe and skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the skyrmion phase and near the stripe-skyrmion boundary. As a result, this technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

  4. Nanosecond X-ray Photon Correlation Spectroscopy on Magnetic Skyrmions

    DOE PAGES

    Seaberg, M. H.; Holladay, B.; Lee, J. C. T.; ...

    2017-08-09

    We report an X-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant X-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond timescales in thin films of multilayered Fe/Gd that exhibit ordered stripe and skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the skyrmion phase and near the stripe-skyrmion boundary. As a result, this technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

  5. Correlation of financial markets in times of crisis

    NASA Astrophysics Data System (ADS)

    Sandoval, Leonidas; Franca, Italo De Paula

    2012-01-01

    Using the eigenvalues and eigenvectors of correlations matrices of some of the main financial market indices in the world, we show that high volatility of markets is directly linked with strong correlations between them. This means that markets tend to behave as one during great crashes. In order to do so, we investigate financial market crises that occurred in the years 1987 (Black Monday), 1998 (Russian crisis), 2001 (Burst of the dot-com bubble and September 11), and 2008 (Subprime Mortgage Crisis), which mark some of the largest downturns of financial markets in the last three decades.

  6. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  7. Individual differences in valuing mates' physical attractiveness.

    PubMed

    Mathes, Eugene W; Bielser, Abby; Cassell, Ticcarra; Summers, Sarah; Witowski, Aggie

    2006-10-01

    To investigate correlates of valuing physical attractiveness in a mate, it was hypothesized that valuing physical attractiveness in a mate would correlate with sex and valuing promiscuous sex, status, personal physical attractiveness, beauty, and order. Men and women college students completed measures of the extent to which they valued physical attractiveness in a mate and other variables. Valuing physical attractiveness in a mate was correlated with sex (men valued physical attractiveness in a mate more than did women) and valuing promiscuous sex and status, and, for women, valuing personal physical attractiveness. The results were explained in terms of evolutionary theory.

  8. The quadratic relationship between difficulty of intelligence test items and their correlations with working memory.

    PubMed

    Smolen, Tomasz; Chuderski, Adam

    2015-01-01

    Fluid intelligence (Gf) is a crucial cognitive ability that involves abstract reasoning in order to solve novel problems. Recent research demonstrated that Gf strongly depends on the individual effectiveness of working memory (WM). We investigated a popular claim that if the storage capacity underlay the WM-Gf correlation, then such a correlation should increase with an increasing number of items or rules (load) in a Gf-test. As often no such link is observed, on that basis the storage-capacity account is rejected, and alternative accounts of Gf (e.g., related to executive control or processing speed) are proposed. Using both analytical inference and numerical simulations, we demonstrated that the load-dependent change in correlation is primarily a function of the amount of floor/ceiling effect for particular items. Thus, the item-wise WM correlation of a Gf-test depends on its overall difficulty, and the difficulty distribution across its items. When the early test items yield huge ceiling, but the late items do not approach floor, that correlation will increase throughout the test. If the early items locate themselves between ceiling and floor, but the late items approach floor, the respective correlation will decrease. For a hallmark Gf-test, the Raven-test, whose items span from ceiling to floor, the quadratic relationship is expected, and it was shown empirically using a large sample and two types of WMC tasks. In consequence, no changes in correlation due to varying WM/Gf load, or lack of them, can yield an argument for or against any theory of WM/Gf. Moreover, as the mathematical properties of the correlation formula make it relatively immune to ceiling/floor effects for overall moderate correlations, only minor changes (if any) in the WM-Gf correlation should be expected for many psychological tests.

  9. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations.

    PubMed

    Stark, David E; Margulies, Daniel S; Shehzad, Zarrar E; Reiss, Philip; Kelly, A M Clare; Uddin, Lucina Q; Gee, Dylan G; Roy, Amy K; Banich, Marie T; Castellanos, F Xavier; Milham, Michael P

    2008-12-17

    Electrophysiological studies have long demonstrated a high degree of correlated activity between the left and right hemispheres, however little is known about regional variation in this interhemispheric coordination. Whereas cognitive models and neuroanatomical evidence suggest differences in coordination across primary sensory-motor cortices versus higher-order association areas, these have not been characterized. Here, we used resting-state functional magnetic resonance imaging data acquired from 62 healthy volunteers to examine interregional correlation in spontaneous low-frequency hemodynamic fluctuations. Using a probabilistic atlas, we correlated probability-weighted time series from 112 regions comprising the entire cerebrum. We then examined regional variation in correlated activity between homotopic regions, contrasting primary sensory-motor cortices, unimodal association areas, and heteromodal association areas. Consistent with previous studies, robustly correlated spontaneous activity was noted between all homotopic regions, which was significantly higher than that between nonhomotopic (heterotopic and intrahemispheric) regions. We further demonstrated substantial regional variation in homotopic interhemispheric correlations that was highly consistent across subjects. Specifically, there was a gradient of interhemispheric correlation, with highest correlations across primary sensory-motor cortices (0.758, SD=0.152), significantly lower correlations across unimodal association areas (0.597, SD=0.230) and still lower correlations across heteromodal association areas (0.517, SD=0.226). These results demonstrate functional differences in interhemispheric coordination related to the brain's hierarchical subdivisions. Synchrony across primary cortices may reflect networks engaged in bilateral sensory integration and motor coordination, whereas lower coordination across heteromodal association areas is consistent with functional lateralization of these regions. This novel method of examining interhemispheric coordination may yield insights regarding diverse disease processes as well as healthy development.

  10. Theoretical Studies of the Kinetics of First-Order Phase Transitions.

    NASA Astrophysics Data System (ADS)

    Zheng, Qiang

    This thesis involves theoretical studies of the kinetics of orderings in three classes of systems. The first class involves problems of phase separation in which the order parameter is conserved, such as occurs in the binary alloy Al-Zn. A theory is developed for the late stages of phase separation in the droplet regime for two -dimensional systems, namely, Ostwald ripening in two dimensions. The theory considers droplet correlations, which was neglected before, by a proper treatment of the screening effect of the correlations. This correlation effect is found that it does not alert the scaling features of phase separation, but significantly changes the shape of droplet-size distribution function. Further experiments and computer simulations are needed before this long-time subject may be closed. A second class of problem involves a study of the finite-size effects on domain growth described by the Allen-Cahn dynamics. Based on a theoretical approach of Ohta, Jasnow, and Kawasaki the explicit scaling functions for the scattering intensity for hypercubes and films are obtained. These results are for the cases in which the order-parameter is not conserved, such as in an order-disorder transition in alloys. These studies will be relevant to the experimental and computer simulation research projects currently being carried out in the United States and Europe. The last class of problems involves orderings in strong correlated systems, namely, the growth of Breath Figures. A special feature of this class of problems is that the coalescence effect. A theoretical model is proposed which can handle the two growth mechanisms, the individual droplet growth and coalescence simultaneously. Under certain approximations, the droplet-size distribution function is obtained analytically, and is in qualitative agreement with computer simulations. Our model also suggests that there may be an interesting relationship between the growth of Breath Figures and a geometric structure (ultrametricity) of general complex systems.

  11. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    PubMed Central

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a consequence of a particular structure of correlations among the three possible pairings (EE, EI, II). PMID:23133368

  12. On the diffuse fraction of daily and monthly global radiation for the island of Cyprus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacovides, C.P.; Hadjioannou, L.; Pashiardis, S.

    1996-06-01

    Six years of hourly global and diffuse irradiation measurements on a horizontal surface performed at Athalassa, Cyprus, are used to establish a relationship between the daily diffuse fraction and the daily clearness index. Two types of correlations - yearly and seasonal - have been developed. These correlations, of first and third order in the clearness index are compared to the various correlations established by Collares-Pereira and Rabl (1979), Newland (1989), Erbs et al. (1982), Rao et al. (1984), Page (1961), Liu and Jordan (1960) and Lalas et al. (1987). The comparison has been performed in terms of the widely usedmore » statistical indicators (MBE) and (RMSE) errors; and additional statistical indicator, the t-statistic, combining the earlier indicators, is introduced. The results indicate that the proposed yearly correlation matches the earlier correlations quite closely and all correlations examined yield results that are statistically significant. For large K{sub t} > 0.60 values, most of the earlier correlations exhibit a slight tendency to systematically overestimate the diffuse fraction. This marginal disagreement between the earlier correlations and the proposed model is probably significantly affected by the clear sky conditions that prevail over Cyprus for most of the time as well as atmospheric humidity content. It is clear that the standard correlations examined in this analysis appear to be location-independent models for diffuse irradiation predictions, at least for the Cyprus case. 13 refs., 5 figs., 4 tabs.« less

  13. Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces

    NASA Astrophysics Data System (ADS)

    Qian, Xi-Yuan; Liu, Ya-Min; Jiang, Zhi-Qiang; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene

    2015-06-01

    When common factors strongly influence two power-law cross-correlated time series recorded in complex natural or social systems, using detrended cross-correlation analysis (DCCA) without considering these common factors will bias the results. We use detrended partial cross-correlation analysis (DPXA) to uncover the intrinsic power-law cross correlations between two simultaneously recorded time series in the presence of nonstationarity after removing the effects of other time series acting as common forces. The DPXA method is a generalization of the detrended cross-correlation analysis that takes into account partial correlation analysis. We demonstrate the method by using bivariate fractional Brownian motions contaminated with a fractional Brownian motion. We find that the DPXA is able to recover the analytical cross Hurst indices, and thus the multiscale DPXA coefficients are a viable alternative to the conventional cross-correlation coefficient. We demonstrate the advantage of the DPXA coefficients over the DCCA coefficients by analyzing contaminated bivariate fractional Brownian motions. We calculate the DPXA coefficients and use them to extract the intrinsic cross correlation between crude oil and gold futures by taking into consideration the impact of the U.S. dollar index. We develop the multifractal DPXA (MF-DPXA) method in order to generalize the DPXA method and investigate multifractal time series. We analyze multifractal binomial measures masked with strong white noises and find that the MF-DPXA method quantifies the hidden multifractal nature while the multifractal DCCA method fails.

  14. Social support, stress, and practice of prenatal care in married immigrant women in Korea.

    PubMed

    Kim, Yeon A; Choi, So Young; Ryu, Eunjung

    2010-10-01

    This study aimed to identify the correlations among social support, stress, and practice of prenatal care and elucidate the predictors affecting the practice of prenatal care in married immigrant women in Korea. This study employed a descriptive correlational Social support and prenatal-care practice were positively correlated, and stress was negatively correlated with both prenatal-care practice and social support. The practice of prenatal care in married immigrant women was most influenced by social support. As such, there is a need for nursing intervention that fosters social support for pregnant immigrant women. Concerted efforts are also required to reduce their stressors. This study could form the basis for developing childbirth management programs for pregnant women who have immigrated to Korea in order to marry.

  15. Quantitative analysis of the correlations in the Boltzmann-Grad limit for hard spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulvirenti, M.

    2014-12-09

    In this contribution I consider the problem of the validity of the Boltzmann equation for a system of hard spheres in the Boltzmann-Grad limit. I briefly review the results available nowadays with a particular emphasis on the celebrated Lanford’s validity theorem. Finally I present some recent results, obtained in collaboration with S. Simonella, concerning a quantitative analysis of the propagation of chaos. More precisely we introduce a quantity (the correlation error) measuring how close a j-particle rescaled correlation function at time t (sufficiently small) is far from the full statistical independence. Roughly speaking, a correlation error of order k, measuresmore » (in the context of the BBKGY hierarchy) the event in which k tagged particles form a recolliding group.« less

  16. Charge-induced equilibrium dynamics and structure at the Ag(001)–electrolyte interface

    DOE PAGES

    Karl Jr., Robert M.; Barbour, Andi; Komanicky, Vladimir; ...

    2015-06-08

    We have measured the applied potential dependent rate of atomic step motion of the Ag (001) surface in weak NaF electrolyte using a new extension of the technique of X-ray Photon Correlation Spectroscopy (XPCS). Furthermore, concurrent specular x-ray scattering measurements reveal how the ordering of the water layers at the interface correlates with the dynamics.

  17. 78 FR 23601 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Granting Approval of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... liability under the option (i.e., the strike price). The Sub-Adviser will seek a correlation over time of 0... represent perfect correlation.\\12\\ \\12\\ While the Fund will not invest in traditional reverse convertible... the Fund. First, the commenter states that the name of the Fund is very descriptive and will not be...

  18. Effective and Efficient Correlation Analysis with Application to Market Basket Analysis and Network Community Detection

    ERIC Educational Resources Information Center

    Duan, Lian

    2012-01-01

    Finding the most interesting correlations among items is essential for problems in many commercial, medical, and scientific domains. For example, what kinds of items should be recommended with regard to what has been purchased by a customer? How to arrange the store shelf in order to increase sales? How to partition the whole social network into…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.C.; Doolen, G.; Chen, H.H.

    A high-order correlation tensor formalism for neural networks is described. The model can simulate auto associative, heteroassociative, as well as multiassociative memory. For the autoassociative model, simulation results show a drastic increase in the memory capacity and speed over that of the standard Hopfield-like correlation matrix methods. The possibility of using multiassociative memory for a learning universal inference network is also discussed. 9 refs., 5 figs.

  20. Cross-correlation limit of a SQUID-based noise thermometer of the pMFFT type

    NASA Astrophysics Data System (ADS)

    Kirste, A.; Engert, J.

    2018-03-01

    The primary magnetic field fluctuation thermometer (pMFFT) is a SQUID-based noise thermometer for temperatures below 1 K, which complies with metrological requirements. It combines two signal channels in order to apply the cross-correlation technique, but it requires statistically independent noise signals for proper operation. In order to check the limit of the cross-correlation readout, we have performed zero measurements in the millikelvin range in a setup that is identical to the pMFFT, except for the removed temperature sensor. We examined the influence of different parameters such as SQUID working point or flux-lock loop parameters on the minimum cross-correlation signal down to 24 mK and below 100 kHz. Depending on the configuration, typical minimum SQUID-referred cross-power spectral densities of 1.5 × 10‑15 Φ _0^2/Hz or even smaller values were observed. For the pMFFT, considering its thermal noise spectrum, these flux densities correspond to a device noise temperature of ≤2.5 µK, thereby ensuring a negligible uncertainty contribution at the lower end of the PLTS-2000 (0.9 mK).

Top