NASA Astrophysics Data System (ADS)
Piretzidis, D.; Sra, G.; Sideris, M. G.
2016-12-01
This study explores new methods for identifying correlation errors in harmonic coefficients derived from monthly solutions of the Gravity Recovery and Climate Experiment (GRACE) satellite mission using pattern recognition and neural network algorithms. These correlation errors are evidenced in the differences between monthly solutions and can be suppressed using a de-correlation filter. In all studies so far, the implementation of the de-correlation filter starts from a specific minimum order (i.e., 11 for RL04 and 38 for RL05) until the maximum order of the monthly solution examined. This implementation method has two disadvantages, namely, the omission of filtering correlated coefficients of order less than the minimum order and the filtering of uncorrelated coefficients of order higher than the minimum order. In the first case, the filtered solution is not completely free of correlated errors, whereas the second case results in a monthly solution that suffers from loss of geophysical signal. In the present study, a new method of implementing the de-correlation filter is suggested, by identifying and filtering only the coefficients that show indications of high correlation. Several numerical and geometric properties of the harmonic coefficient series of all orders are examined. Extreme cases of both correlated and uncorrelated coefficients are selected, and their corresponding properties are used to train a two-layer feed-forward neural network. The objective of the neural network is to identify and quantify the correlation by providing the probability of an order of coefficients to be correlated. Results show good performance of the neural network, both in the validation stage of the training procedure and in the subsequent use of the trained network to classify independent coefficients. The neural network is also capable of identifying correlated coefficients even when a small number of training samples and neurons are used (e.g.,100 and 10, respectively).
Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.
Jovanović, Stojan; Rotter, Stefan
2016-06-01
The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.
Complex-network description of thermal quantum states in the Ising spin chain
NASA Astrophysics Data System (ADS)
Sundar, Bhuvanesh; Valdez, Marc Andrew; Carr, Lincoln D.; Hazzard, Kaden R. A.
2018-05-01
We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence, and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state using matrix product state methods, and then analyze the resulting networks using a variety of network measures. We demonstrate that the network measures show some traits of complex networks already in this spin chain, arguably the simplest quantum many-body system. The network measures give insight into the phase diagram not easily captured by more typical quantities, such as the order parameter or correlation length. For example, the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is different from the ordered and disordered phases.
Correlation between centrality metrics and their application to the opinion model
NASA Astrophysics Data System (ADS)
Li, Cong; Li, Qian; Van Mieghem, Piet; Stanley, H. Eugene; Wang, Huijuan
2015-03-01
In recent decades, a number of centrality metrics describing network properties of nodes have been proposed to rank the importance of nodes. In order to understand the correlations between centrality metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity metric, we first study the correlation between centrality metrics in terms of their Pearson correlation coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality metrics, we introduce a new centrality measure, the degree mass. The mth-order degree mass of a node is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find that the betweenness, the closeness, and the components of the principal eigenvector of the adjacency matrix are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in both network models and real-world networks. We then theoretically prove that the Pearson correlation coefficient between the principal eigenvector and the 2nd-order degree mass is larger than that between the principal eigenvector and a lower order degree mass. Finally, we investigate the effect of the inflexible contrarians selected based on different centrality metrics in helping one opinion to compete with another in the inflexible contrarian opinion (ICO) model. Interestingly, we find that selecting the inflexible contrarians based on the leverage, the betweenness, or the degree is more effective in opinion-competition than using other centrality metrics in all types of networks. This observation is supported by our previous observations, i.e., that there is a strong linear correlation between the degree and the betweenness, as well as a high centrality similarity between the leverage and the degree.
Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model
NASA Astrophysics Data System (ADS)
Kundu, Prosenjit; Khanra, Pitambar; Hens, Chittaranjan; Pal, Pinaki
2017-11-01
We investigate transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto (SK) model on complex networks both analytically and numerically. We analytically derive self-consistent equations for group angular velocity and order parameter for the model in the thermodynamic limit. Using the self-consistent equations we investigate transition to synchronization in SK model on uncorrelated scale-free (SF) and Erdős-Rényi (ER) networks in detail. Depending on the degree distribution exponent (γ ) of SF networks and phase-frustration parameter, the population undergoes from first-order transition [explosive synchronization (ES)] to second-order transition and vice versa. In ER networks transition is always second order irrespective of the values of the phase-lag parameter. We observe that the critical coupling strength for the onset of synchronization is decreased by phase-frustration parameter in case of SF network where as in ER network, the phase-frustration delays the onset of synchronization. Extensive numerical simulations using SF and ER networks are performed to validate the analytical results. An analytical expression of critical coupling strength for the onset of synchronization is also derived from the self-consistent equations considering the vanishing order parameter limit.
NASA Astrophysics Data System (ADS)
Liu, Maoyuan; Jacob, Aurélie; Schmetterer, Clemens; Masset, Patrick J.; Hennet, Louis; Fischer, Henry E.; Kozaily, Jad; Jahn, Sandro; Gray-Weale, Angus
2016-04-01
Calcium aluminosilicate \\text{CaO}-\\text{A}{{\\text{l}}2}{{\\text{O}}3}-\\text{Si}{{\\text{O}}2} (CAS) melts with compositions {{≤ft(\\text{CaO}-\\text{Si}{{\\text{O}}2}\\right)}x}{{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}1-x} for x < 0.5 and {{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}x}{{≤ft(\\text{Si}{{\\text{O}}2}\\right)}1-x} for x≥slant 0.5 are studied using neutron diffraction with aerodynamic levitation and density functional theory molecular dynamics modelling. Simulated structure factors are found to be in good agreement with experimental structure factors. Local atomic structures from simulations reveal the role of calcium cations as a network modifier, and aluminium cations as a non-tetrahedral network former. Distributions of tetrahedral order show that an increasing concentration of the network former Al increases entropy, while an increasing concentration of the network modifier Ca decreases entropy. This trend is opposite to the conventional understanding that increasing amounts of network former should increase order in the network liquid, and so decrease entropy. The two-body correlation entropy S 2 is found to not correlate with the excess entropy values obtained from thermochemical databases, while entropies including higher-order correlations such as tetrahedral order, O-M-O or M-O-M bond angles and Q N environments show a clear linear correlation between computed entropy and database excess entropy. The possible relationship between atomic structures and excess entropy is discussed.
van Albada, Sacha Jennifer; Helias, Moritz; Diesmann, Markus
2015-01-01
Network models are routinely downscaled compared to nature in terms of numbers of nodes or edges because of a lack of computational resources, often without explicit mention of the limitations this entails. While reliable methods have long existed to adjust parameters such that the first-order statistics of network dynamics are conserved, here we show that limitations already arise if also second-order statistics are to be maintained. The temporal structure of pairwise averaged correlations in the activity of recurrent networks is determined by the effective population-level connectivity. We first show that in general the converse is also true and explicitly mention degenerate cases when this one-to-one relationship does not hold. The one-to-one correspondence between effective connectivity and the temporal structure of pairwise averaged correlations implies that network scalings should preserve the effective connectivity if pairwise averaged correlations are to be held constant. Changes in effective connectivity can even push a network from a linearly stable to an unstable, oscillatory regime and vice versa. On this basis, we derive conditions for the preservation of both mean population-averaged activities and pairwise averaged correlations under a change in numbers of neurons or synapses in the asynchronous regime typical of cortical networks. We find that mean activities and correlation structure can be maintained by an appropriate scaling of the synaptic weights, but only over a range of numbers of synapses that is limited by the variance of external inputs to the network. Our results therefore show that the reducibility of asynchronous networks is fundamentally limited. PMID:26325661
NASA Astrophysics Data System (ADS)
OświÈ©cimka, Paweł; Livi, Lorenzo; DroŻdŻ, Stanisław
2016-10-01
We investigate the scaling of the cross-correlations calculated for two-variable time series containing vertex properties in the context of complex networks. Time series of such observables are obtained by means of stationary, unbiased random walks. We consider three vertex properties that provide, respectively, short-, medium-, and long-range information regarding the topological role of vertices in a given network. In order to reveal the relation between these quantities, we applied the multifractal cross-correlation analysis technique, which provides information about the nonlinear effects in coupling of time series. We show that the considered network models are characterized by unique multifractal properties of the cross-correlation. In particular, it is possible to distinguish between Erdös-Rényi, Barabási-Albert, and Watts-Strogatz networks on the basis of fractal cross-correlation. Moreover, the analysis of protein contact networks reveals characteristics shared with both scale-free and small-world models.
Cavallari, Stefano; Panzeri, Stefano; Mazzoni, Alberto
2014-01-01
Models of networks of Leaky Integrate-and-Fire (LIF) neurons are a widely used tool for theoretical investigations of brain function. These models have been used both with current- and conductance-based synapses. However, the differences in the dynamics expressed by these two approaches have been so far mainly studied at the single neuron level. To investigate how these synaptic models affect network activity, we compared the single neuron and neural population dynamics of conductance-based networks (COBNs) and current-based networks (CUBNs) of LIF neurons. These networks were endowed with sparse excitatory and inhibitory recurrent connections, and were tested in conditions including both low- and high-conductance states. We developed a novel procedure to obtain comparable networks by properly tuning the synaptic parameters not shared by the models. The so defined comparable networks displayed an excellent and robust match of first order statistics (average single neuron firing rates and average frequency spectrum of network activity). However, these comparable networks showed profound differences in the second order statistics of neural population interactions and in the modulation of these properties by external inputs. The correlation between inhibitory and excitatory synaptic currents and the cross-neuron correlation between synaptic inputs, membrane potentials and spike trains were stronger and more stimulus-modulated in the COBN. Because of these properties, the spike train correlation carried more information about the strength of the input in the COBN, although the firing rates were equally informative in both network models. Moreover, the network activity of COBN showed stronger synchronization in the gamma band, and spectral information about the input higher and spread over a broader range of frequencies. These results suggest that the second order statistics of network dynamics depend strongly on the choice of synaptic model. PMID:24634645
Cavallari, Stefano; Panzeri, Stefano; Mazzoni, Alberto
2014-01-01
Models of networks of Leaky Integrate-and-Fire (LIF) neurons are a widely used tool for theoretical investigations of brain function. These models have been used both with current- and conductance-based synapses. However, the differences in the dynamics expressed by these two approaches have been so far mainly studied at the single neuron level. To investigate how these synaptic models affect network activity, we compared the single neuron and neural population dynamics of conductance-based networks (COBNs) and current-based networks (CUBNs) of LIF neurons. These networks were endowed with sparse excitatory and inhibitory recurrent connections, and were tested in conditions including both low- and high-conductance states. We developed a novel procedure to obtain comparable networks by properly tuning the synaptic parameters not shared by the models. The so defined comparable networks displayed an excellent and robust match of first order statistics (average single neuron firing rates and average frequency spectrum of network activity). However, these comparable networks showed profound differences in the second order statistics of neural population interactions and in the modulation of these properties by external inputs. The correlation between inhibitory and excitatory synaptic currents and the cross-neuron correlation between synaptic inputs, membrane potentials and spike trains were stronger and more stimulus-modulated in the COBN. Because of these properties, the spike train correlation carried more information about the strength of the input in the COBN, although the firing rates were equally informative in both network models. Moreover, the network activity of COBN showed stronger synchronization in the gamma band, and spectral information about the input higher and spread over a broader range of frequencies. These results suggest that the second order statistics of network dynamics depend strongly on the choice of synaptic model.
Inferring gene regression networks with model trees
2010-01-01
Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database) is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear regressions to separate areas of the search space favoring to infer localized similarities over a more global similarity. Furthermore, experimental results show the good performance of REGNET. PMID:20950452
Diffusion in Colocation Contact Networks: The Impact of Nodal Spatiotemporal Dynamics.
Thomas, Bryce; Jurdak, Raja; Zhao, Kun; Atkinson, Ian
2016-01-01
Temporal contact networks are studied to understand dynamic spreading phenomena such as communicable diseases or information dissemination. To establish how spatiotemporal dynamics of nodes impact spreading potential in colocation contact networks, we propose "inducement-shuffling" null models which break one or more correlations between times, locations and nodes. By reconfiguring the time and/or location of each node's presence in the network, these models induce alternative sets of colocation events giving rise to contact networks with varying spreading potential. This enables second-order causal reasoning about how correlations in nodes' spatiotemporal preferences not only lead to a given contact network but ultimately influence the network's spreading potential. We find the correlation between nodes and times to be the greatest impediment to spreading, while the correlation between times and locations slightly catalyzes spreading. Under each of the presented null models we measure both the number of contacts and infection prevalence as a function of time, with the surprising finding that the two have no direct causality.
Decorrelation of Neural-Network Activity by Inhibitory Feedback
Einevoll, Gaute T.; Diesmann, Markus
2012-01-01
Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a consequence of a particular structure of correlations among the three possible pairings (EE, EI, II). PMID:23133368
Revealing the microstructure of the giant component in random graph ensembles
NASA Astrophysics Data System (ADS)
Tishby, Ido; Biham, Ofer; Katzav, Eytan; Kühn, Reimer
2018-04-01
The microstructure of the giant component of the Erdős-Rényi network and other configuration model networks is analyzed using generating function methods. While configuration model networks are uncorrelated, the giant component exhibits a degree distribution which is different from the overall degree distribution of the network and includes degree-degree correlations of all orders. We present exact analytical results for the degree distributions as well as higher-order degree-degree correlations on the giant components of configuration model networks. We show that the degree-degree correlations are essential for the integrity of the giant component, in the sense that the degree distribution alone cannot guarantee that it will consist of a single connected component. To demonstrate the importance and broad applicability of these results, we apply them to the study of the distribution of shortest path lengths on the giant component, percolation on the giant component, and spectra of sparse matrices defined on the giant component. We show that by using the degree distribution on the giant component one obtains high quality results for these properties, which can be further improved by taking the degree-degree correlations into account. This suggests that many existing methods, currently used for the analysis of the whole network, can be adapted in a straightforward fashion to yield results conditioned on the giant component.
Sadeghipour, Maryam; Khoshnevisan, Mohammad Hossein; Jafari, Afshin; Shariatpanahi, Seyed Peyman
2017-01-01
By using a standard questionnaire, the level of dental brushing frequency was assessed among 201 adolescent female middle school students in Tehran. The initial assessment was repeated after 5 months, in order to observe the dynamics in dental health behavior level. Logistic Regression model was used to evaluate the correlation among individuals' dental health behavior in their social network. A significant correlation on dental brushing habits was detected among groups of friends. This correlation was further spread over the network within the 5 months period. Moreover, it was identified that the average brushing level was improved within the 5 months period. Given that there was a significant correlation between social network's nodes' in-degree value, and brushing level, it was suggested that the observed improvement was partially due to more popularity of individuals with better tooth brushing habit. Agent Based Modeling (ABM) was used to demonstrate the dynamics of dental brushing frequency within a sample of friendship network. Two models with static and dynamic assumptions for the network structure were proposed. The model with dynamic network structure successfully described the dynamics of dental health behavior. Based on this model, on average, every 43 weeks a student changes her brushing habit due to learning from her friends. Finally, three training scenarios were tested by these models in order to evaluate their effectiveness. When training more popular students, considerable improvement in total students' brushing frequency was demonstrated by simulation results.
Attack tolerance of correlated time-varying social networks with well-defined communities
NASA Astrophysics Data System (ADS)
Sur, Souvik; Ganguly, Niloy; Mukherjee, Animesh
2015-02-01
In this paper, we investigate the efficiency and the robustness of information transmission for real-world social networks, modeled as time-varying instances, under targeted attack in shorter time spans. We observe that these quantities are markedly higher than that of the randomized versions of the considered networks. An important factor that drives this efficiency or robustness is the presence of short-time correlations across the network instances which we quantify by a novel metric the-edge emergence factor, denoted as ξ. We find that standard targeted attacks are not effective in collapsing this network structure. Remarkably, if the hourly community structures of the temporal network instances are attacked with the largest size community attacked first, the second largest next and so on, the network soon collapses. This behavior, we show is an outcome of the fact that the edge emergence factor bears a strong positive correlation with the size ordered community structures.
Applying complex networks to evaluate precipitation patterns over South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique; Kurths, Jürgen; Rammig, Anja
2016-04-01
The climate of South America exhibits pronounced differences between the wet- and the dry-season, which are accompanied by specific synoptic events like changes in the location of the South American Low Level Jet (SALLJ) and the establishment of the South American Convergence Zone (SACZ). The onset of these events can be related to the presence of typical large-scale precipitation patterns over South America, as previous studies have shown[1,2]. The application of complex network methods to precipitation data recently received increased scientific attention for the special case of extreme events, as it is possible with such methods to analyze the spatiotemporal correlation structure as well as possible teleconnections of these events[3,4]. In these approaches the correlation between precipitation datasets is calculated by means of Event Synchronization which restricts their applicability to extreme precipitation events. In this work, we propose a method which is able to consider not only extreme precipitation but complete time series. A direct application of standard similarity measures in order to correlate precipitation time series is impossible due to their intricate statistical properties as the large amount of zeros. Therefore, we introduced and evaluated a suitable modification of Pearson's correlation coefficient to construct spatial correlation networks of precipitation. By analyzing the characteristics of spatial correlation networks constructed on the basis of this new measure, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections of correlated areas, and detect central regions for precipitation correlation. By analyzing the change of the network over the year[5], we are also able to determine local and global changes in precipitation correlation patterns. Additionally, global network characteristics as the network connectivity yield indications for beginning and end of wet- and dry season. In order to identify large-scale synoptic events like the SACZ and SALLJ onset, detecting the changes of correlation over time between certain regions is of significant relevance. [1] Nieto-Ferreira et al. Quarterly Journal of the Royal Meteorological Society (2011) [2] Vera et al. Bulletin of the American Meteorological Society (2006) [3] Quiroga et al. Physical review E (2002) [4] Boers et al. nature communications (2014) [5] Radebach et al. Physical review E (2013)
ERIC Educational Resources Information Center
Duan, Lian
2012-01-01
Finding the most interesting correlations among items is essential for problems in many commercial, medical, and scientific domains. For example, what kinds of items should be recommended with regard to what has been purchased by a customer? How to arrange the store shelf in order to increase sales? How to partition the whole social network into…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.C.; Doolen, G.; Chen, H.H.
A high-order correlation tensor formalism for neural networks is described. The model can simulate auto associative, heteroassociative, as well as multiassociative memory. For the autoassociative model, simulation results show a drastic increase in the memory capacity and speed over that of the standard Hopfield-like correlation matrix methods. The possibility of using multiassociative memory for a learning universal inference network is also discussed. 9 refs., 5 figs.
Weaving and neural complexity in symmetric quantum states
NASA Astrophysics Data System (ADS)
Susa, Cristian E.; Girolami, Davide
2018-04-01
We study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.
2011-01-01
Background Gene co-expression, in the form of a correlation coefficient, has been valuable in the analysis, classification and prediction of protein-protein interactions. However, it is susceptible to bias from a few samples having a large effect on the correlation coefficient. Gene co-expression stability is a means of quantifying this bias, with high stability indicating robust, unbiased co-expression correlation coefficients. We assess the utility of gene co-expression stability as an additional measure to support the co-expression correlation in the analysis of protein-protein interaction networks. Results We studied the patterns of co-expression correlation and stability in interacting proteins with respect to their interaction promiscuity, levels of intrinsic disorder, and essentiality or disease-relatedness. Co-expression stability, along with co-expression correlation, acts as a better classifier of hub proteins in interaction networks, than co-expression correlation alone, enabling the identification of a class of hubs that are functionally distinct from the widely accepted transient (date) and obligate (party) hubs. Proteins with high levels of intrinsic disorder have low co-expression correlation and high stability with their interaction partners suggesting their involvement in transient interactions, except for a small group that have high co-expression correlation and are typically subunits of stable complexes. Similar behavior was seen for disease-related and essential genes. Interacting proteins that are both disordered have higher co-expression stability than ordered protein pairs. Using co-expression correlation and stability, we found that transient interactions are more likely to occur between an ordered and a disordered protein while obligate interactions primarily occur between proteins that are either both ordered, or disordered. Conclusions We observe that co-expression stability shows distinct patterns in structurally and functionally different groups of proteins and interactions. We conclude that it is a useful and important measure to be used in concert with gene co-expression correlation for further insights into the characteristics of proteins in the context of their interaction network. PMID:22369639
Self-adaptive tensor network states with multi-site correlators
NASA Astrophysics Data System (ADS)
Kovyrshin, Arseny; Reiher, Markus
2017-12-01
We introduce the concept of self-adaptive tensor network states (SATNSs) based on multi-site correlators. The SATNS ansatz gradually extends its variational space incorporating the most important next-order correlators into the ansatz for the wave function. The selection of these correlators is guided by entanglement-entropy measures from quantum information theory. By sequentially introducing variational parameters and adjusting them to the system under study, the SATNS ansatz achieves keeping their number significantly smaller than the total number of full-configuration interaction parameters. The SATNS ansatz is studied for manganocene in its lowest-energy sextet and doublet states; the latter of which is known to be difficult to describe. It is shown that the SATNS parametrization solves the convergence issues found for previous correlator-based tensor network states.
Weaving and neural complexity in symmetric quantum states
Susa, Cristian E.; Girolami, Davide
2017-12-27
Here, we study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.
Weaving and neural complexity in symmetric quantum states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susa, Cristian E.; Girolami, Davide
Here, we study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.
Structured teleconnections reveal the South American monsoon onset: A network approach
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Ekhtiari, Nikoo; Barbosa, Henrique; Boers, Niklas; Donner, Reik; Kurths, Jürgen; Rammig, Anja; Winkelmann, Ricarda
2017-04-01
The regional onset dates of the global monsoon systems are, to first order, determined by the seasonal shift of the intertropical convergence zone. However, precise onset dates vary substantially from year to year due to the complexity of the involved mechanisms. In this study, we investigate processes determining the onset of the South American monsoon system (SAMS). In recent years, a trend towards later onset dates of the SAMS has been observed. A later onset of the monsoon can have severe impacts on agriculture and infrastructure such as farming, water transport routes, and the stability of the Amazon rainforest in the long term. Possible reasons for this shift involve a multitude of climatic phenomena and variables relevant for the SAMS. To account for the highly interactive nature of the SAMS, we here investigate it with the help of complex networks. By studying the temporal changes of the correlation structure in spatial rainfall networks, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections in terms of strongly correlated areas, detect key regions for precipitation correlations, and finally reveal the monsoon onset by an abrupt shift from an unordered to an ordered correlation structure of the network. To further evaluate the shift in the monsoon onset, we couple our rainfall network to a network of climate networks using sea surface temperature as a second variable. We are thereby able to emphasize oceanic regions that are particularly important for the SAMS and anticipate the influence of future changes of sea-surface temperature on the SAMS.
Cluster and propensity based approximation of a network
2013-01-01
Background The models in this article generalize current models for both correlation networks and multigraph networks. Correlation networks are widely applied in genomics research. In contrast to general networks, it is straightforward to test the statistical significance of an edge in a correlation network. It is also easy to decompose the underlying correlation matrix and generate informative network statistics such as the module eigenvector. However, correlation networks only capture the connections between numeric variables. An open question is whether one can find suitable decompositions of the similarity measures employed in constructing general networks. Multigraph networks are attractive because they support likelihood based inference. Unfortunately, it is unclear how to adjust current statistical methods to detect the clusters inherent in many data sets. Results Here we present an intuitive and parsimonious parametrization of a general similarity measure such as a network adjacency matrix. The cluster and propensity based approximation (CPBA) of a network not only generalizes correlation network methods but also multigraph methods. In particular, it gives rise to a novel and more realistic multigraph model that accounts for clustering and provides likelihood based tests for assessing the significance of an edge after controlling for clustering. We present a novel Majorization-Minimization (MM) algorithm for estimating the parameters of the CPBA. To illustrate the practical utility of the CPBA of a network, we apply it to gene expression data and to a bi-partite network model for diseases and disease genes from the Online Mendelian Inheritance in Man (OMIM). Conclusions The CPBA of a network is theoretically appealing since a) it generalizes correlation and multigraph network methods, b) it improves likelihood based significance tests for edge counts, c) it directly models higher-order relationships between clusters, and d) it suggests novel clustering algorithms. The CPBA of a network is implemented in Fortran 95 and bundled in the freely available R package PropClust. PMID:23497424
Default Mode and Executive Networks Areas: Association with the Serial Order in Divergent Thinking
Heinonen, Jarmo; Numminen, Jussi; Hlushchuk, Yevhen; Antell, Henrik; Taatila, Vesa; Suomala, Jyrki
2016-01-01
Scientific findings have suggested a two-fold structure of the cognitive process. By using the heuristic thinking mode, people automatically process information that tends to be invariant across days, whereas by using the explicit thinking mode people explicitly process information that tends to be variant compared to typical previously learned information patterns. Previous studies on creativity found an association between creativity and the brain regions in the prefrontal cortex, the anterior cingulate cortex, the default mode network and the executive network. However, which neural networks contribute to the explicit mode of thinking during idea generation remains an open question. We employed an fMRI paradigm to examine which brain regions were activated when participants (n = 16) mentally generated alternative uses for everyday objects. Most previous creativity studies required participants to verbalize responses during idea generation, whereas in this study participants produced mental alternatives without verbalizing. This study found activation in the left anterior insula when contrasting idea generation and object identification. This finding suggests that the insula (part of the brain’s salience network) plays a role in facilitating both the central executive and default mode networks to activate idea generation. We also investigated closely the effect of the serial order of idea being generated on brain responses: The amplitude of fMRI responses correlated positively with the serial order of idea being generated in the anterior cingulate cortex, which is part of the central executive network. Positive correlation with the serial order was also observed in the regions typically assigned to the default mode network: the precuneus/cuneus, inferior parietal lobule and posterior cingulate cortex. These networks support the explicit mode of thinking and help the individual to convert conventional mental models to new ones. The serial order correlated negatively with the BOLD responses in the posterior presupplementary motor area, left premotor cortex, right cerebellum and left inferior frontal gyrus. This finding might imply that idea generation without a verbal processing demand reflecting lack of need for new object identification in idea generation events. The results of the study are consistent with recent creativity studies, which emphasize that the creativity process involves working memory capacity to spontaneously shift between different kinds of thinking modes according to the context. PMID:27627760
Chemiomics: network reconstruction and kinetics of port wine aging.
Monforte, Ana Rita; Jacobson, Dan; Silva Ferreira, A C
2015-03-11
Network reconstruction (NR) has proven to be useful in the detection and visualization of relationships among the compounds present in a Port wine aging data set. This view of the data provides a considerable amount of information with which to understand the kinetic contexts of the molecules represented by peaks in each chromatogram. The aim of this study was to use NR together with the determination of kinetic parameters to extract more information about the mechanisms involved in Port wine aging. The volatile compounds present in samples of Port wines spanning 128 years in age were measured with the use of GC-MS. After chromatogram alignment, a peak matrix was created, and all peak vectors were compared to one another to determine their Pearson correlations over time. A correlation network was created and filtered on the basis of the resulting correlation values. Some nodes in the network were further studied in experiments on Port wines stored under different conditions of oxygen and temperature in order to determine their kinetic parameters. The resulting network can be divided into three main branches. The first branch is related to compounds that do not directly correlate to age, the second branch contains compounds affected by temperature, and the third branch contains compounds associated with oxygen. Compounds clustered in the same branch of the network have similar expression patterns over time as well as the same kinetic order, thus are likely to be dependent on the same technological parameters. Network construction and visualization provides more information with which to understand the probable kinetic contexts of the molecules represented by peaks in each chromatogram. The approach described here is a powerful tool for the study of mechanisms and kinetics in complex systems and should aid in the understanding and monitoring of wine quality.
Systemic risk and spatiotemporal dynamics of the consumer market of China
NASA Astrophysics Data System (ADS)
Wang, Minggang; Tian, Lixin; Xu, Hua; Li, Weiyu; Du, Ruijin; Dong, Gaogao; Wang, Jie; Gu, Jiani
2017-05-01
The consumer price index (CPI) contains rich information of the consumer market, in order to characterize the essential characteristics of the consumer market of China, a novel method by using complex network theory is proposed to visualizing the evolution and transformation characteristics of correlated modes among the regional consumer markets. CPI data of 31 provinces and cities of China are selected as sample data. Underlying dynamics of time-evolving correlation networks are revealed. A formula to measure the systemic risk in the consumer market is designed. And the correlation modes transmission network of the regional consumer markets is obtained. Numerical simulations show that the consumer market network has co-movement, group-occurring and small-word property. Different regions played different roles in the consumer market of China. The risk in the consumer market presented a decreasing trend from April 2013 but remain at the high level. Different from the stochastic system, the consumer market of China both has the short-range correlation and the long-range correlation. The strength of correlation modes transmission network basically satisfies a power-law distribution. The correlation modes are transferred into each other conveniently, although the consumer market system is highly complicated. The transformation of the correlation patterns of the regional consumer markets mainly revolves around three core correlation modes and each transformation needs to undergo 4 non-core modes.
Trends of the World Input and Output Network of Global Trade
del Río-Chanona, Rita María; Grujić, Jelena; Jeldtoft Jensen, Henrik
2017-01-01
The international trade naturally maps onto a complex networks. Theoretical analysis of this network gives valuable insights about the global economic system. Although different economic data sets have been investigated from the network perspective, little attention has been paid to its dynamical behaviour. Here we take the World Input Output Data set, which has values of the annual transactions between 40 different countries of 35 different sectors for the period of 15 years, and infer the time interdependence between countries and sectors. As a measure of interdependence we use correlations between various time series of the network characteristics. First we form 15 primary networks for each year of the data we have, where nodes are countries and links are annual exports from one country to the other. Then we calculate the strengths (weighted degree) and PageRank of each country in each of the 15 networks for 15 different years. This leads to sets of time series and by calculating the correlations between these we form a secondary network where the links are the positive correlations between different countries or sectors. Furthermore, we also form a secondary network where the links are negative correlations in order to study the competition between countries and sectors. By analysing this secondary network we obtain a clearer picture of the mutual influences between countries. As one might expect, we find that political and geographical circumstances play an important role. However, the derived correlation network reveals surprising aspects which are hidden in the primary network. Sometimes countries which belong to the same community in the original network are found to be competitors in the secondary networks. E.g. Spain and Portugal are always in the same trade flow community, nevertheless secondary network analysis reveal that they exhibit contrary time evolution. PMID:28125656
Trends of the World Input and Output Network of Global Trade.
Del Río-Chanona, Rita María; Grujić, Jelena; Jeldtoft Jensen, Henrik
2017-01-01
The international trade naturally maps onto a complex networks. Theoretical analysis of this network gives valuable insights about the global economic system. Although different economic data sets have been investigated from the network perspective, little attention has been paid to its dynamical behaviour. Here we take the World Input Output Data set, which has values of the annual transactions between 40 different countries of 35 different sectors for the period of 15 years, and infer the time interdependence between countries and sectors. As a measure of interdependence we use correlations between various time series of the network characteristics. First we form 15 primary networks for each year of the data we have, where nodes are countries and links are annual exports from one country to the other. Then we calculate the strengths (weighted degree) and PageRank of each country in each of the 15 networks for 15 different years. This leads to sets of time series and by calculating the correlations between these we form a secondary network where the links are the positive correlations between different countries or sectors. Furthermore, we also form a secondary network where the links are negative correlations in order to study the competition between countries and sectors. By analysing this secondary network we obtain a clearer picture of the mutual influences between countries. As one might expect, we find that political and geographical circumstances play an important role. However, the derived correlation network reveals surprising aspects which are hidden in the primary network. Sometimes countries which belong to the same community in the original network are found to be competitors in the secondary networks. E.g. Spain and Portugal are always in the same trade flow community, nevertheless secondary network analysis reveal that they exhibit contrary time evolution.
The q-dependent detrended cross-correlation analysis of stock market
NASA Astrophysics Data System (ADS)
Zhao, Longfeng; Li, Wei; Fenu, Andrea; Podobnik, Boris; Wang, Yougui; Stanley, H. Eugene
2018-02-01
Properties of the q-dependent cross-correlation matrices of the stock market have been analyzed by using random matrix theory and complex networks. The correlation structures of the fluctuations at different magnitudes have unique properties. The cross-correlations among small fluctuations are much stronger than those among large fluctuations. The large and small fluctuations are dominated by different groups of stocks. We use complex network representation to study these q-dependent matrices and discover some new identities. By utilizing those q-dependent correlation-based networks, we are able to construct some portfolios of those more independent stocks which consistently perform better. The optimal multifractal order for portfolio optimization is around q = 2 under the mean-variance portfolio framework, and q\\in[2, 6] under the expected shortfall criterion. These results have deepened our understanding regarding the collective behavior of the complex financial system.
Mapping eQTL Networks with Mixed Graphical Markov Models
Tur, Inma; Roverato, Alberto; Castelo, Robert
2014-01-01
Expression quantitative trait loci (eQTL) mapping constitutes a challenging problem due to, among other reasons, the high-dimensional multivariate nature of gene-expression traits. Next to the expression heterogeneity produced by confounding factors and other sources of unwanted variation, indirect effects spread throughout genes as a result of genetic, molecular, and environmental perturbations. From a multivariate perspective one would like to adjust for the effect of all of these factors to end up with a network of direct associations connecting the path from genotype to phenotype. In this article we approach this challenge with mixed graphical Markov models, higher-order conditional independences, and q-order correlation graphs. These models show that additive genetic effects propagate through the network as function of gene–gene correlations. Our estimation of the eQTL network underlying a well-studied yeast data set leads to a sparse structure with more direct genetic and regulatory associations that enable a straightforward comparison of the genetic control of gene expression across chromosomes. Interestingly, it also reveals that eQTLs explain most of the expression variability of network hub genes. PMID:25271303
Bonhomme, V; Boveroux, P; Brichant, J F; Laureys, S; Boly, M
2012-01-01
This paper reviews the current knowledge about the mechanisms of anesthesia-induced alteration of consciousness. It is now evident that hypnotic anesthetic agents have specific brain targets whose function is hierarchically altered in a dose-dependent manner. Higher order networks, thought to be involved in mental content generation, as well as sub-cortical networks involved in thalamic activity regulation seems to be affected first by increasing concentrations of hypnotic agents that enhance inhibitory neurotransmission. Lower order sensory networks are preserved, including thalamo-cortical connectivity into those networks, even at concentrations that suppress responsiveness, but cross-modal sensory interactions are inhibited. Thalamo-cortical connectivity into the consciousness networks decreases with increasing concentrations of those agents, and is transformed into an anti-correlated activity between the thalamus and the cortex for the deepest levels of sedation, when the subject is non responsive. Future will tell us whether these brain function alterations are also observed with hypnotic agents that mainly inhibit excitatory neurotransmission. The link between the observations made using fMRI and the identified biochemical targets of hypnotic anesthetic agents still remains to be identified.
Neural Classifiers for Learning Higher-Order Correlations
NASA Astrophysics Data System (ADS)
Güler, Marifi
1999-01-01
Studies by various authors suggest that higher-order networks can be more powerful and are biologically more plausible with respect to the more traditional multilayer networks. These architectures make explicit use of nonlinear interactions between input variables in the form of higher-order units or product units. If it is known a priori that the problem to be implemented possesses a given set of invariances like in the translation, rotation, and scale invariant pattern recognition problems, those invariances can be encoded, thus eliminating all higher-order terms which are incompatible with the invariances. In general, however, it is a serious set-back that the complexity of learning increases exponentially with the size of inputs. This paper reviews higher-order networks and introduces an implicit representation in which learning complexity is mainly decided by the number of higher-order terms to be learned and increases only linearly with the input size.
NASA Astrophysics Data System (ADS)
Maluck, Julian; Donner, Reik V.
2017-02-01
International trade has grown considerably during the process of globalization. Complex supply chains for the production of goods have resulted in an increasingly connected International Trade Network (ITN). Traditionally, direct trade relations between industries have been regarded as mediators of supply and demand spillovers. With increasing network connectivity the question arises if higher-order relations become more important in explaining a national sector's susceptibility to supply and demand changes of its trading partner. In this study we address this question by investigating empirically to what extent the topological properties of the ITN provide information about positive correlations in the production of two industry sectors. We observe that although direct trade relations between industries serve as important indicators for correlations in the industries' value added growth, opportunities of substitution for required production inputs as well as second-order trade relations cannot be neglected. Our results contribute to a better understanding of the relation between trade and economic productivity and can serve as a basis for the improvement of crisis spreading models that evaluate contagion threats in the case of a node's failure in the ITN.
Assessing Higher-Order Thinking Using a Networked Portfolio System with Peer Assessment
ERIC Educational Resources Information Center
Liu, Eric Zhi-Feng; Zhuo, Yi-Chin; Yuan, Shyan-Ming
2004-01-01
In the past, the quantitative evidences of portfolio assessment have been explored under online instruction. Liu, Lin, and Yuan provide a long-term measure of peer-self, peer-instructor and self-instructor correlation coefficients under networked innovative assessment procedures. Analytical results indicated that undergraduate students could…
"Time-dependent flow-networks"
NASA Astrophysics Data System (ADS)
Tupikina, Liubov; Molkentin, Nora; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marwan, Norbert; Kurths, Jürgen
2015-04-01
Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply information or heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e. high computational complexity and fixed variety of the flows in the underlying system, we introduce a new, method of flow-networks for changing in time velocity fields including external forcing in the system, noise and temperature-decay. Method of the flow-network construction can be divided into several steps: first we obtain the linear recursive equation for the temperature time-series. Then we compute the correlation matrix for time-series averaging the tensor product over all realizations of the noise, which we interpret as a weighted adjacency matrix of the flow-network and analyze using network measures. We apply the method to different types of moving flows with geographical relevance such as meandering flow. Analyzing the flow-networks using network measures we find that our approach can highlight zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. Flow-networks can be powerful tool to understand the connection between system's dynamics and network's topology analyzed using network measures in order to shed light on different climatic phenomena.
A multivariate extension of mutual information for growing neural networks.
Ball, Kenneth R; Grant, Christopher; Mundy, William R; Shafer, Timothy J
2017-11-01
Recordings of neural network activity in vitro are increasingly being used to assess the development of neural network activity and the effects of drugs, chemicals and disease states on neural network function. The high-content nature of the data derived from such recordings can be used to infer effects of compounds or disease states on a variety of important neural functions, including network synchrony. Historically, synchrony of networks in vitro has been assessed either by determination of correlation coefficients (e.g. Pearson's correlation), by statistics estimated from cross-correlation histograms between pairs of active electrodes, and/or by pairwise mutual information and related measures. The present study examines the application of Normalized Multiinformation (NMI) as a scalar measure of shared information content in a multivariate network that is robust with respect to changes in network size. Theoretical simulations are designed to investigate NMI as a measure of complexity and synchrony in a developing network relative to several alternative approaches. The NMI approach is applied to these simulations and also to data collected during exposure of in vitro neural networks to neuroactive compounds during the first 12 days in vitro, and compared to other common measures, including correlation coefficients and mean firing rates of neurons. NMI is shown to be more sensitive to developmental effects than first order synchronous and nonsynchronous measures of network complexity. Finally, NMI is a scalar measure of global (rather than pairwise) mutual information in a multivariate network, and hence relies on less assumptions for cross-network comparisons than historical approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shumilin, A. V.; Kabanov, V. V.; Dediu, V. I.
2018-03-01
We derive kinetic equations for polaron hopping in organic materials that explicitly take into account the double occupation possibility and pair intersite correlations. The equations include simplified phenomenological spin dynamics and provide a self-consistent framework for the description of the bipolaron mechanism of the organic magnetoresistance. At low applied voltages, the equations can be reduced to those for an effective resistor network that generalizes the Miller-Abrahams network and includes the effect of spin relaxation on the system resistivity. Our theory discloses the close relationship between the organic magnetoresistance and the intersite correlations. Moreover, in the absence of correlations, as in an ordered system with zero Hubbard energy, the magnetoresistance vanishes.
Quantitative description and modeling of real networks
NASA Astrophysics Data System (ADS)
Capocci, Andrea; Caldarelli, Guido; de Los Rios, Paolo
2003-10-01
We present data analysis and modeling of two particular cases of study in the field of growing networks. We analyze World Wide Web data set and authorship collaboration networks in order to check the presence of correlation in the data. The results are reproduced with good agreement through a suitable modification of the standard Albert-Barabási model of network growth. In particular, intrinsic relevance of sites plays a role in determining the future degree of the vertex.
Analytical estimation of the correlation dimension of integer lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacasa, Lucas, E-mail: l.lacasa@qmul.ac.uk; Gómez-Gardeñes, Jesús, E-mail: gardenes@gmail.com; Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, Zaragoza
2014-12-01
Recently [L. Lacasa and J. Gómez-Gardeñes, Phys. Rev. Lett. 110, 168703 (2013)], a fractal dimension has been proposed to characterize the geometric structure of networks. This measure is an extension to graphs of the so called correlation dimension, originally proposed by Grassberger and Procaccia to describe the geometry of strange attractors in dissipative chaotic systems. The calculation of the correlation dimension of a graph is based on the local information retrieved from a random walker navigating the network. In this contribution, we study such quantity for some limiting synthetic spatial networks and obtain analytical results on agreement with the previouslymore » reported numerics. In particular, we show that up to first order, the correlation dimension β of integer lattices ℤ{sup d} coincides with the Haussdorf dimension of their coarsely equivalent Euclidean spaces, β = d.« less
The data-driven null models for information dissemination tree in social networks
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Wang, Zhenyu
2017-10-01
For the purpose of detecting relatedness and co-occurrence between users, as well as the distribution features of nodes in spreading path of a social network, this paper explores topological characteristics of information dissemination trees (IDT) that can be employed indirectly to probe the information dissemination laws within social networks. Hence, three different null models of IDT are presented in this article, including the statistical-constrained 0-order IDT null model, the random-rewire-broken-edge 0-order IDT null model and the random-rewire-broken-edge 2-order IDT null model. These null models firstly generate the corresponding randomized copy of an actual IDT; then the extended significance profile, which is developed by adding the cascade ratio of information dissemination path, is exploited not only to evaluate degree correlation of two nodes associated with an edge, but also to assess the cascade ratio of different length of information dissemination paths. The experimental correspondences of the empirical analysis for several SinaWeibo IDTs and Twitter IDTs indicate that the IDT null models presented in this paper perform well in terms of degree correlation of nodes and dissemination path cascade ratio, which can be better to reveal the features of information dissemination and to fit the situation of real social networks.
Joint statistics of strongly correlated neurons via dimensionality reduction
NASA Astrophysics Data System (ADS)
Deniz, Taşkın; Rotter, Stefan
2017-06-01
The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.
Common neural correlates of intertemporal choices and intelligence in adolescents.
Ripke, Stephan; Hübner, Thomas; Mennigen, Eva; Müller, Kathrin U; Li, Shu-Chen; Smolka, Michael N
2015-02-01
Converging behavioral evidence indicates that temporal discounting, measured by intertemporal choice tasks, is inversely related to intelligence. At the neural level, the parieto-frontal network is pivotal for complex, higher-order cognitive processes. Relatedly, underrecruitment of the pFC during a working memory task has been found to be associated with steeper temporal discounting. Furthermore, this network has also been shown to be related to the consistency of intertemporal choices. Here we report an fMRI study that directly investigated the association of neural correlates of intertemporal choice behavior with intelligence in an adolescent sample (n = 206; age 13.7-15.5 years). After identifying brain regions where the BOLD response during intertemporal choice was correlated with individual differences in intelligence, we further tested whether BOLD responses in these areas would mediate the associations between intelligence, the discounting rate, and choice consistency. We found positive correlations between BOLD response in a value-independent decision network (i.e., dorsolateral pFC, precuneus, and occipital areas) and intelligence. Furthermore, BOLD response in a value-dependent decision network (i.e., perigenual ACC, inferior frontal gyrus, ventromedial pFC, ventral striatum) was positively correlated with intelligence. The mediation analysis revealed that BOLD responses in the value-independent network mediated the association between intelligence and choice consistency, whereas BOLD responses in the value-dependent network mediated the association between intelligence and the discounting rate. In summary, our findings provide evidence for common neural correlates of intertemporal choice and intelligence, possibly linked by valuation as well as executive functions.
Chemiomics: Network Reconstruction and Kinetics of Port Wine Aging
Monforte, Ana Rita; Jacobson, Dan; Silva Ferreira, A. C.
2015-02-11
Network reconstruction (NR) has proven to be useful in the detection and visualization of relationships among the compounds present in a Port wine aging data set. This view of the data provides a considerable amount of information with which to understand the kinetic contexts of the molecules represented by peaks in each chromatogram. The aim of this paper was to use NR together with the determination of kinetic parameters to extract more information about the mechanisms involved in Port wine aging. The volatile compounds present in samples of Port wines spanning 128 years in age were measured with the usemore » of GC-MS. After chromatogram alignment, a peak matrix was created, and all peak vectors were compared to one another to determine their Pearson correlations over time. A correlation network was created and filtered on the basis of the resulting correlation values. Some nodes in the network were further studied in experiments on Port wines stored under different conditions of oxygen and temperature in order to determine their kinetic parameters. The resulting network can be divided into three main branches. The first branch is related to compounds that do not directly correlate to age, the second branch contains compounds affected by temperature, and the third branch contains compounds associated with oxygen. Compounds clustered in the same branch of the network have similar expression patterns over time as well as the same kinetic order, thus are likely to be dependent on the same technological parameters. Network construction and visualization provides more information with which to understand the probable kinetic contexts of the molecules represented by peaks in each chromatogram. Finally, the approach described here is a powerful tool for the study of mechanisms and kinetics in complex systems and should aid in the understanding and monitoring of wine quality.« less
Discriminating topology in galaxy distributions using network analysis
NASA Astrophysics Data System (ADS)
Hong, Sungryong; Coutinho, Bruno C.; Dey, Arjun; Barabási, Albert-L.; Vogelsberger, Mark; Hernquist, Lars; Gebhardt, Karl
2016-07-01
The large-scale distribution of galaxies is generally analysed using the two-point correlation function. However, this statistic does not capture the topology of the distribution, and it is necessary to resort to higher order correlations to break degeneracies. We demonstrate that an alternate approach using network analysis can discriminate between topologically different distributions that have similar two-point correlations. We investigate two galaxy point distributions, one produced by a cosmological simulation and the other by a Lévy walk. For the cosmological simulation, we adopt the redshift z = 0.58 slice from Illustris and select galaxies with stellar masses greater than 108 M⊙. The two-point correlation function of these simulated galaxies follows a single power law, ξ(r) ˜ r-1.5. Then, we generate Lévy walks matching the correlation function and abundance with the simulated galaxies. We find that, while the two simulated galaxy point distributions have the same abundance and two-point correlation function, their spatial distributions are very different; most prominently, filamentary structures, absent in Lévy fractals. To quantify these missing topologies, we adopt network analysis tools and measure diameter, giant component, and transitivity from networks built by a conventional friends-of-friends recipe with various linking lengths. Unlike the abundance and two-point correlation function, these network quantities reveal a clear separation between the two simulated distributions; therefore, the galaxy distribution simulated by Illustris is not a Lévy fractal quantitatively. We find that the described network quantities offer an efficient tool for discriminating topologies and for comparing observed and theoretical distributions.
NASA Astrophysics Data System (ADS)
Li, Ming-Xia; Jiang, Zhi-Qiang; Xie, Wen-Jie; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing
2015-02-01
Traders develop and adopt different trading strategies attempting to maximize their profits in financial markets. These trading strategies not only result in specific topological structures in trading networks, which connect the traders with the pairwise buy-sell relationships, but also have potential impacts on market dynamics. Here, we present a detailed analysis on how the market behaviors are correlated with the structures of traders in trading networks based on audit trail data for the Baosteel stock and its warrant at the transaction level from 22 August 2005 to 23 August 2006. In our investigation, we divide each trade day into 48 rolling time windows with a length of 5 min, construct a trading network within each window, and obtain a time series of over 11,600 trading networks. We find that there are strongly simultaneous correlations between the topological metrics (including network centralization, assortative index, and average path length) of trading networks that characterize the patterns of order execution and the financial variables (including return, volatility, intertrade duration, and trading volume) for the stock and its warrant. Our analysis may shed new lights on how the microscopic interactions between elements within complex system affect the system's performance.
Fermionic topological quantum states as tensor networks
NASA Astrophysics Data System (ADS)
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
Study on power grid characteristics in summer based on Linear regression analysis
NASA Astrophysics Data System (ADS)
Tang, Jin-hui; Liu, You-fei; Liu, Juan; Liu, Qiang; Liu, Zhuan; Xu, Xi
2018-05-01
The correlation analysis of power load and temperature is the precondition and foundation for accurate load prediction, and a great deal of research has been made. This paper constructed the linear correlation model between temperature and power load, then the correlation of fault maintenance work orders with the power load is researched. Data details of Jiangxi province in 2017 summer such as temperature, power load, fault maintenance work orders were adopted in this paper to develop data analysis and mining. Linear regression models established in this paper will promote electricity load growth forecast, fault repair work order review, distribution network operation weakness analysis and other work to further deepen the refinement.
Network modelling methods for FMRI.
Smith, Stephen M; Miller, Karla L; Salimi-Khorshidi, Gholamreza; Webster, Matthew; Beckmann, Christian F; Nichols, Thomas E; Ramsey, Joseph D; Woolrich, Mark W
2011-01-15
There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.
The role of communication and imitation in limit order markets
NASA Astrophysics Data System (ADS)
Tedeschi, G.; Iori, G.; Gallegati, M.
2009-10-01
In this paper we develop an order driver market model with heterogeneous traders that imitate each other on different network structures. We assess how imitations among otherway noise traders, can give rise to well known stylized facts such as fat tails and volatility clustering. We examine the impact of communication and imitation on the statistical properties of prices and order flows when changing the networks' structure, and show that the imitation of a given, fixed agent, called “guru", can generate clustering of volatility in the model. We also find a positive correlation between volatility and bid-ask spread, and between fat-tailed fluctuations in asset prices and gap sizes in the order book. in here
Heterogeneous fractionation profiles of meta-analytic coactivation networks.
Laird, Angela R; Riedel, Michael C; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L; Eickhoff, Simon B; Smith, Stephen M; Fox, Peter T; Sutherland, Matthew T
2017-04-01
Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how "parent" functional brain systems decompose into constituent "child" sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. Copyright © 2017 Elsevier Inc. All rights reserved.
Heterogeneous fractionation profiles of meta-analytic coactivation networks
Laird, Angela R.; Riedel, Michael C.; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L.; Eickhoff, Simon B.; Smith, Stephen M.; Fox, Peter T.; Sutherland, Matthew T.
2017-01-01
Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d = 20 to 300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how “parent” functional brain systems decompose into constituent “child” sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. PMID:28222386
Propagation of spiking regularity and double coherence resonance in feedforward networks.
Men, Cong; Wang, Jiang; Qin, Ying-Mei; Deng, Bin; Tsang, Kai-Ming; Chan, Wai-Lok
2012-03-01
We investigate the propagation of spiking regularity in noisy feedforward networks (FFNs) based on FitzHugh-Nagumo neuron model systematically. It is found that noise could modulate the transmission of firing rate and spiking regularity. Noise-induced synchronization and synfire-enhanced coherence resonance are also observed when signals propagate in noisy multilayer networks. It is interesting that double coherence resonance (DCR) with the combination of synaptic input correlation and noise intensity is finally attained after the processing layer by layer in FFNs. Furthermore, inhibitory connections also play essential roles in shaping DCR phenomena. Several properties of the neuronal network such as noise intensity, correlation of synaptic inputs, and inhibitory connections can serve as control parameters in modulating both rate coding and the order of temporal coding.
Influence of reciprocal edges on degree distribution and degree correlations
NASA Astrophysics Data System (ADS)
Zlatić, Vinko; Štefančić, Hrvoje
2009-07-01
Reciprocal edges represent the lowest-order cycle possible to find in directed graphs without self-loops. Representing also a measure of feedback between vertices, it is interesting to understand how reciprocal edges influence other properties of complex networks. In this paper, we focus on the influence of reciprocal edges on vertex degree distribution and degree correlations. We show that there is a fundamental difference between properties observed on the static network compared to the properties of networks, which are obtained by simple evolution mechanism driven by reciprocity. We also present a way to statistically infer the portion of reciprocal edges, which can be explained as a consequence of feedback process on the static network. In the rest of the paper, the influence of reciprocal edges on a model of growing network is also presented. It is shown that our model of growing network nicely interpolates between Barabási-Albert (BA) model for undirected and the BA model for directed networks.
ERIC Educational Resources Information Center
Zhou, Xiaokang; Chen, Jian; Wu, Bo; Jin, Qun
2014-01-01
With the high development of social networks, collaborations in a socialized web-based learning environment has become increasing important, which means people can learn through interactions and collaborations in communities across social networks. In this study, in order to support the enhanced collaborative learning, two important factors, user…
Dynamic reorganization of human resting-state networks during visuospatial attention.
Spadone, Sara; Della Penna, Stefania; Sestieri, Carlo; Betti, Viviana; Tosoni, Annalisa; Perrucci, Mauro Gianni; Romani, Gian Luca; Corbetta, Maurizio
2015-06-30
Fundamental problems in neuroscience today are understanding how patterns of ongoing spontaneous activity are modified by task performance and whether/how these intrinsic patterns influence task-evoked activation and behavior. We examined these questions by comparing instantaneous functional connectivity (IFC) and directed functional connectivity (DFC) changes in two networks that are strongly correlated and segregated at rest: the visual (VIS) network and the dorsal attention network (DAN). We measured how IFC and DFC during a visuospatial attention task, which requires dynamic selective rerouting of visual information across hemispheres, changed with respect to rest. During the attention task, the two networks remained relatively segregated, and their general pattern of within-network correlation was maintained. However, attention induced a decrease of correlation in the VIS network and an increase of the DAN→VIS IFC and DFC, especially in a top-down direction. In contrast, within the DAN, IFC was not modified by attention, whereas DFC was enhanced. Importantly, IFC modulations were behaviorally relevant. We conclude that a stable backbone of within-network functional connectivity topography remains in place when transitioning between resting wakefulness and attention selection. However, relative decrease of correlation of ongoing "idling" activity in visual cortex and synchronization between frontoparietal and visual cortex were behaviorally relevant, indicating that modulations of resting activity patterns are important for task performance. Higher order resting connectivity in the DAN was relatively unaffected during attention, potentially indicating a role for simultaneous ongoing activity as a "prior" for attention selection.
Game-theoretic strategies for asymmetric networked systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Ma, Chris Y. T.; Hausken, Kjell
Abstract—We consider an infrastructure consisting of a network of systems each composed of discrete components that can be reinforced at a certain cost to guard against attacks. The network provides the vital connectivity between systems, and hence plays a critical, asymmetric role in the infrastructure operations. We characterize the system-level correlations using the aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual system or network. The survival probabilities of systems and network satisfy first-order differential conditions that capture the component-level correlations. We formulate the problem of ensuring the infrastructure survival as a gamemore » between anattacker and a provider, using the sum-form and product-form utility functions, each composed of a survival probability term and a cost term. We derive Nash Equilibrium conditions which provide expressions for individual system survival probabilities, and also the expected capacity specified by the total number of operational components. These expressions differ only in a single term for the sum-form and product-form utilities, despite their significant differences.We apply these results to simplified models of distributed cloud computing infrastructures.« less
Defense strategies for asymmetric networked systems under composite utilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Ma, Chris Y. T.; Hausken, Kjell
We consider an infrastructure of networked systems with discrete components that can be reinforced at certain costs to guard against attacks. The communications network plays a critical, asymmetric role of providing the vital connectivity between the systems. We characterize the correlations within this infrastructure at two levels using (a) aggregate failure correlation function that specifies the infrastructure failure probability giventhe failure of an individual system or network, and (b) first order differential conditions on system survival probabilities that characterize component-level correlations. We formulate an infrastructure survival game between an attacker and a provider, who attacks and reinforces individual components, respectively.more » They use the composite utility functions composed of a survival probability term and a cost term, and the previously studiedsum-form and product-form utility functions are their special cases. At Nash Equilibrium, we derive expressions for individual system survival probabilities and the expected total number of operational components. We apply and discuss these estimates for a simplified model of distributed cloud computing infrastructure« less
NASA Astrophysics Data System (ADS)
Bettinardi, R. G.; Deco, G.; Karlaftis, V. M.; Van Hartevelt, T. J.; Fernandes, H. M.; Kourtzi, Z.; Kringelbach, M. L.; Zamora-López, G.
2017-04-01
Intrinsic brain activity is characterized by highly organized co-activations between different regions, forming clustered spatial patterns referred to as resting-state networks. The observed co-activation patterns are sustained by the intricate fabric of millions of interconnected neurons constituting the brain's wiring diagram. However, as for other real networks, the relationship between the connectional structure and the emergent collective dynamics still evades complete understanding. Here, we show that it is possible to estimate the expected pair-wise correlations that a network tends to generate thanks to the underlying path structure. We start from the assumption that in order for two nodes to exhibit correlated activity, they must be exposed to similar input patterns from the entire network. We then acknowledge that information rarely spreads only along a unique route but rather travels along all possible paths. In real networks, the strength of local perturbations tends to decay as they propagate away from the sources, leading to a progressive attenuation of the original information content and, thus, of their influence. Accordingly, we define a novel graph measure, topological similarity, which quantifies the propensity of two nodes to dynamically correlate as a function of the resemblance of the overall influences they are expected to receive due to the underlying structure of the network. Applied to the human brain, we find that the similarity of whole-network inputs, estimated from the topology of the anatomical connectome, plays an important role in sculpting the backbone pattern of time-average correlations observed at rest.
Yger, Pierre; El Boustani, Sami; Destexhe, Alain; Frégnac, Yves
2011-10-01
The relationship between the dynamics of neural networks and their patterns of connectivity is far from clear, despite its importance for understanding functional properties. Here, we have studied sparsely-connected networks of conductance-based integrate-and-fire (IF) neurons with balanced excitatory and inhibitory connections and with finite axonal propagation speed. We focused on the genesis of states with highly irregular spiking activity and synchronous firing patterns at low rates, called slow Synchronous Irregular (SI) states. In such balanced networks, we examined the "macroscopic" properties of the spiking activity, such as ensemble correlations and mean firing rates, for different intracortical connectivity profiles ranging from randomly connected networks to networks with Gaussian-distributed local connectivity. We systematically computed the distance-dependent correlations at the extracellular (spiking) and intracellular (membrane potential) levels between randomly assigned pairs of neurons. The main finding is that such properties, when they are averaged at a macroscopic scale, are invariant with respect to the different connectivity patterns, provided the excitatory-inhibitory balance is the same. In particular, the same correlation structure holds for different connectivity profiles. In addition, we examined the response of such networks to external input, and found that the correlation landscape can be modulated by the mean level of synchrony imposed by the external drive. This modulation was found again to be independent of the external connectivity profile. We conclude that first and second-order "mean-field" statistics of such networks do not depend on the details of the connectivity at a microscopic scale. This study is an encouraging step toward a mean-field description of topological neuronal networks.
Dørum, Erlend S; Alnæs, Dag; Kaufmann, Tobias; Richard, Geneviève; Lund, Martina J; Tønnesen, Siren; Sneve, Markus H; Mathiesen, Nina C; Rustan, Øyvind G; Gjertsen, Øivind; Vatn, Sigurd; Fure, Brynjar; Andreassen, Ole A; Nordvik, Jan Egil; Westlye, Lars T
2016-11-01
Multiple object tracking (MOT) is a powerful paradigm for measuring sustained attention. Although previous fMRI studies have delineated the brain activation patterns associated with tracking and documented reduced tracking performance in aging, age-related effects on brain activation during MOT have not been characterized. In particular, it is unclear if the task-related activation of different brain networks is correlated, and also if this coordination between activations within brain networks shows differential effects of age. We obtained fMRI data during MOT at two load conditions from a group of younger ( n = 25, mean age = 24.4 ± 5.1 years) and older ( n = 21, mean age = 64.7 ± 7.4 years) healthy adults. Using a combination of voxel-wise and independent component analysis, we investigated age-related differences in the brain network activation. In order to explore to which degree activation of the various brain networks reflect unique and common mechanisms, we assessed the correlations between the brain networks' activations. Behavioral performance revealed an age-related reduction in MOT accuracy. Voxel and brain network level analyses converged on decreased load-dependent activations of the dorsal attention network (DAN) and decreased load-dependent deactivations of the default mode networks (DMN) in the old group. Lastly, we found stronger correlations in the task-related activations within DAN and within DMN components for younger adults, and stronger correlations between DAN and DMN components for older adults. Using MOT as means for measuring attentional performance, we have demonstrated an age-related attentional decline. Network-level analysis revealed age-related alterations in network recruitment consisting of diminished activations of DAN and diminished deactivations of DMN in older relative to younger adults. We found stronger correlations within DMN and within DAN components for younger adults and stronger correlations between DAN and DMN components for older adults, indicating age-related alterations in the coordinated network-level activation during attentional processing.
Decomposition of conditional probability for high-order symbolic Markov chains.
Melnik, S S; Usatenko, O V
2017-07-01
The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.
Decomposition of conditional probability for high-order symbolic Markov chains
NASA Astrophysics Data System (ADS)
Melnik, S. S.; Usatenko, O. V.
2017-07-01
The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.
Yenilmez, Firdes; Düzgün, Sebnem; Aksoy, Aysegül
2015-01-01
In this study, kernel density estimation (KDE) was coupled with ordinary two-dimensional kriging (OK) to reduce the number of sampling locations in measurement and kriging of dissolved oxygen (DO) concentrations in Porsuk Dam Reservoir (PDR). Conservation of the spatial correlation structure in the DO distribution was a target. KDE was used as a tool to aid in identification of the sampling locations that would be removed from the sampling network in order to decrease the total number of samples. Accordingly, several networks were generated in which sampling locations were reduced from 65 to 10 in increments of 4 or 5 points at a time based on kernel density maps. DO variograms were constructed, and DO values in PDR were kriged. Performance of the networks in DO estimations were evaluated through various error metrics, standard error maps (SEM), and whether the spatial correlation structure was conserved or not. Results indicated that smaller number of sampling points resulted in loss of information in regard to spatial correlation structure in DO. The minimum representative sampling points for PDR was 35. Efficacy of the sampling location selection method was tested against the networks generated by experts. It was shown that the evaluation approach proposed in this study provided a better sampling network design in which the spatial correlation structure of DO was sustained for kriging.
Correlates of gender and achievement in introductory algebra based physics
NASA Astrophysics Data System (ADS)
Smith, Rachel Clara
The field of physics is heavily male dominated in America. Thus, half of the population of our country is underrepresented and underserved. The identification of factors that contribute to gender disparity in physics is necessary for educators to address the individual needs of students, and, in particular, the separate and specific needs of female students. In an effort to determine if any correlations could be established or strengthened between sex, gender identity, social network, algebra skill, scientific reasoning ability, and/or student attitude, a study was performed on a group of 82 students in an introductory algebra based physics course. The subjects each filled out a survey at the beginning of the semester of their first semester of algebra based physics. They filled out another survey at the end of that same semester. These surveys included physics content pretests and posttests, as well as questions about the students' habits, attitudes, and social networks. Correlates of posttest score were identified, in order of significance, as pretest score, emphasis on conceptual learning, preference for male friends, number of siblings (negatively correlated), motivation in physics, algebra score, and parents' combined education level. Number of siblings was also found to negatively correlate with, in order of significance, gender identity, preference for male friends, emphasis on conceptual learning, and motivation in physics. Preference for male friends was found to correlate with, in order of significance, emphasis on conceptual learning, gender identity, and algebra score. Also, gender identity was found to correlate with emphasis on conceptual learning, the strongest predictor of posttest score other than pretest score.
Short range structure of 0.35Sb2O3-0.65(Li2O-P2O5) glass: A neutron diffraction study
NASA Astrophysics Data System (ADS)
Shinde, A. B.; Krishna, P. S. R.
2018-04-01
Neutron diffraction studies on Li2O-P2O5 and 0.35Sb2O3-0.65(Li2O-P2O5) glass are performed up to a Qmax of 15 Å-1 on the High-Q diffractometer, Dhruva. MCGR method is used to find pair correlation functions (g(r)) functions from experimentally obtained S(Q). We found that the Li-O and first Sb-O correlations to be around 2.04 Å & 2.15 Å. The O-O correlation from Phosphate & Antimony networks are found to be around 2.7 Å. The short range order of Sb is similar to its crystalline polymorph of valentinite instead of senarmonite. The short range order and network connectivity in this glass implies a structure composed of chains of corner sharing SbO3 pyramidal units connected to PO4 tetrahedra while Li acts as a modifier.
Defense strategies for cloud computing multi-site server infrastructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Ma, Chris Y. T.; He, Fei
We consider cloud computing server infrastructures for big data applications, which consist of multiple server sites connected over a wide-area network. The sites house a number of servers, network elements and local-area connections, and the wide-area network plays a critical, asymmetric role of providing vital connectivity between them. We model this infrastructure as a system of systems, wherein the sites and wide-area network are represented by their cyber and physical components. These components can be disabled by cyber and physical attacks, and also can be protected against them using component reinforcements. The effects of attacks propagate within the systems, andmore » also beyond them via the wide-area network.We characterize these effects using correlations at two levels using: (a) aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual site or network, and (b) first-order differential conditions on system survival probabilities that characterize the component-level correlations within individual systems. We formulate a game between an attacker and a provider using utility functions composed of survival probability and cost terms. At Nash Equilibrium, we derive expressions for the expected capacity of the infrastructure given by the number of operational servers connected to the network for sum-form, product-form and composite utility functions.« less
Complex network approach to fractional time series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manshour, Pouya
In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacencymore » matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.« less
Medium range order and structural relaxation in As–Se network glasses through FSDP analysis
Golovchak, R.; Lucas, P.; Oelgoetz, J.; ...
2015-01-13
We performed synchrotron X-ray diffraction and neutron scattering studies on As-Se glasses in two states: as-prepared (rejuvenated) and aged for similar to 27 years. The first sharp diffraction peak (FSDP) obtained from the structure factor data as a function of composition and temperature indicates that the cooperative processes that are responsible for structural relaxation do not affect FSDP. The results are correlated with the composition dependence of the complex heat capacity of the glasses and concentration of different structural fragments in the glass network. Furthermore, the comparison of structural information shows that density fluctuations, which were thought previously to havemore » a significant contribution to FSDP, have much smaller effect than the cation-cation correlations, presence of ordered structural fragments or cage molecules.« less
2015-01-01
We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement. PMID:25844072
Pezoulas, Vasileios C.; Zervakis, Michalis; Michelogiannis, Sifis; Klados, Manousos A.
2017-01-01
During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ). Functional magnetic resonance imaging (fMRI) data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP) database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject) using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST) was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our results reveal that both male and female networks have small-world properties with differences in females (especially in higher IQ females) indicative of higher neural efficiency in cerebellum. There is a trend toward the same direction in men, but without significant differences. Finally, three lobules showed maximum correlation with the median response time in low-IQ individuals, implying that there is an increased effort dedicated locally by this population in cognitive tasks. PMID:28491028
Pezoulas, Vasileios C; Zervakis, Michalis; Michelogiannis, Sifis; Klados, Manousos A
2017-01-01
During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ). Functional magnetic resonance imaging (fMRI) data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP) database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject) using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST) was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our results reveal that both male and female networks have small-world properties with differences in females (especially in higher IQ females) indicative of higher neural efficiency in cerebellum. There is a trend toward the same direction in men, but without significant differences. Finally, three lobules showed maximum correlation with the median response time in low-IQ individuals, implying that there is an increased effort dedicated locally by this population in cognitive tasks.
The Development of a Research Environment for Neural Networks: Instantiating Neocognitions
1990-12-21
interactive activation to adaptive reso- nance. Cognitive Science, 11:23-63. Reprinted in (Grossberg, 1988). Grossberg, S., editor (1988). Neural...higher order correlation network. Physica 22D, pages 276-306. Rosenblatt, F. (1962). Principles of Neurodynamics : Perceptrons and the Theory of Brain...and the PDP Research Group (1986b). Parallel Dis- tributed Processing: Ezplorations in the Microstructures of Cognition , volume 1: Foun- dations
Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro
NASA Astrophysics Data System (ADS)
Shin, J. H.; Gardel, M. L.; Mahadevan, L.; Matsudaira, P.; Weitz, D. A.
2004-06-01
The organization of individual actin filaments into higher-order structures is controlled by actin-binding proteins (ABPs). Although the biological significance of the ABPs is well documented, little is known about how bundling and cross-linking quantitatively affect the microstructure and mechanical properties of actin networks. Here we quantify the effect of the ABP scruin on actin networks by using imaging techniques, cosedimentation assays, multiparticle tracking, and bulk rheology. We show how the structure of the actin network is modified as the scruin concentration is varied, and we correlate these structural changes to variations in the resultant network elasticity.
CMB ISW-lensing bispectrum from cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: sendouda@cc.hirosaki-u.ac.jp, E-mail: keitaro@sci.kumamoto-u.ac.jp
2014-02-01
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation ofmore » the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10{sup -7}, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.« less
CMB ISW-lensing bispectrum from cosmic strings
NASA Astrophysics Data System (ADS)
Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro
2014-02-01
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10-7, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
Temporal evolution of the spatial covariability of rainfall in South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja
2017-10-01
The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.
Complex network analysis of brain functional connectivity under a multi-step cognitive task
NASA Astrophysics Data System (ADS)
Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun
2017-01-01
Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.
Entanglement in a quantum neural network based on quantum dots
NASA Astrophysics Data System (ADS)
Altaisky, M. V.; Zolnikova, N. N.; Kaputkina, N. E.; Krylov, V. A.; Lozovik, Yu E.; Dattani, N. S.
2017-05-01
We studied the quantum correlations between the nodes in a quantum neural network built of an array of quantum dots with dipole-dipole interaction. By means of the quasiadiabatic path integral simulation of the density matrix evolution in a presence of the common phonon bath we have shown the coherence in such system can survive up to the liquid nitrogen temperature of 77 K and above. The quantum correlations between quantum dots are studied by means of calculation of the entanglement of formation in a pair of quantum dots with the typical dot size of a few nanometers and interdot distance of the same order. We have shown that the proposed quantum neural network can keep the mixture of entangled states of QD pairs up to the above mentioned high temperatures.
What can we learn from the network approach in finance?
NASA Astrophysics Data System (ADS)
Janos, Kertesz
2005-03-01
Correlations between variations of stock prices reveal information about relationships between companies. Different methods of analysis have been applied to such data in order to uncover the taxonomy of the market. We use Mantegna's miminum spanning tree (MST) method for daily data in a dynamic way: By introducing a moving window we study the temporal changes in the structure of the network defined by this ``asset tree.'' The MST is scale free with a significantly changing exponent of the degree distribution for crash periods, which demonstrates the restructuring of the network due to the enhancement of correlations. This approach is compared to that based on what we call ``asset graphs:'' We start from an empty graph with no edges where the vertices correspond to stocks and then, one by one, we insert edges between the vertices according to the rank of their correlation strength. We study the properties of the creatred (weighted) networks, such as topologically different growth types, number and size of clusters and clustering coefficient. Furthermore, we define new tools like subgraph intensity and coherence to describe the role of the weights. We also investigate the time shifted cross correlation functions for high frequency data and find a characteristic time delay in many cases representing that some stocks lead the price changes while others follow them. These data can be used to construct a directed network of influence.
Interdependent networks - Topological percolation research and application in finance
NASA Astrophysics Data System (ADS)
Zhou, Di
This dissertation covers the two major parts of my Ph.D. research: i) developing a theoretical framework of complex networks and applying simulation and numerical methods to study the robustness of the network system, and ii) applying statistical physics concepts and methods to quantitatively analyze complex systems and applying the theoretical framework to study real-world systems. In part I, we focus on developing theories of interdependent networks as well as building computer simulation models, which includes three parts: 1) We report on the effects of topology on failure propagation for a model system consisting of two interdependent networks. We find that the internal node correlations in each of the networks significantly changes the critical density of failures, which can trigger the total disruption of the two-network system. Specifically, we find that the assortativity within a single network decreases the robustness of the entire system. 2) We study the percolation behavior of two interdependent scale-free (SF) networks under random failure of 1-p fraction of nodes. We find that as the coupling strength q between the two networks reduces from 1 (fully coupled) to 0 (no coupling), there exist two critical coupling strengths q1 and q2 , which separate the behaviors of the giant component as a function of p into three different regions, and for q2 < q < q 1 , we observe a hybrid order phase transition phenomenon. 3) We study the robustness of n interdependent networks with partially support-dependent relationship both analytically and numerically. We study a starlike network of n Erdos-Renyi (ER), SF networks and a looplike network of n ER networks, and we find for starlike networks, their phase transition regions change with n, but for looplike networks the phase regions change with average degree k . In part II, we apply concepts and methods developed in statistical physics to study economic systems. We analyze stock market indices and foreign exchange daily returns for 60 countries over the period of 1999-2012. We build a multi-layer network model based on different correlation measures, and introduce a dynamic network model to simulate and analyze the initializing and spreading of financial crisis. Using different computational approaches and econometric tests, we find atypical behavior of the cross correlations and community formations in the financial networks that we study during the financial crisis of 2008. For example, the overall correlation of stock market increases during crisis while the correlation between stock market and foreign exchange market decreases. The dramatic increase in correlations between a specific nation and other nations may indicate that this nation could trigger a global financial crisis. Specifically, core countries that have higher correlations with other countries and larger Gross Domestic Product (GDP) values spread financial crisis quite effectively, yet some countries with small GDPs like Greece and Cyprus are also effective in propagating systemic risk and spreading global financial crisis.
The Dynamical Balance of the Brain at Rest
Deco, Gustavo; Corbetta, Maurizio
2014-01-01
We review evidence that spontaneous, i.e. not stimulus- or task-driven, activity in the brain is not noise, but orderly organized at the level of large scale systems in a series of functional networks that maintain at all times a high level of coherence. These networks of spontaneous activity correlation or resting state networks (RSN) are closely related to the underlying anatomical connectivity, but their topography is also gated by the history of prior task activation. Network coherence does not depend on covert cognitive activity, but its strength and integrity relates to behavioral performance. Some RSN are functionally organized as dynamically competing systems both at rest and during tasks. Computational studies show that one of such dynamics, the anti-correlation between networks, depends on noise driven transitions between different multi-stable cluster synchronization states. These multi-stable states emerge because of transmission delays between regions that are modeled as coupled oscillators systems. Large-scale systems dynamics are useful for keeping different functional sub-networks in a state of heightened competition, which can be stabilized and fired by even small modulations of either sensory or internal signals. PMID:21196530
Lin, Naibo; Liu, Xiang Yang
2015-11-07
This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted according to the synergistically correlated hierarchical structures of the domain and crystal networks, which can be quantified by the hierarchical structural correlation and the four structural parameters. Based on the concept of crystal networks, the new understanding acquired will transfer the research and engineering of mesoscopic materials, particularly, soft functional materials, to a new phase.
Comment on high resolution simulations of cosmic strings. 1: Network evoloution
NASA Technical Reports Server (NTRS)
Turok, Neil; Albrecht, Andreas
1990-01-01
Comments are made on recent claims (Albrecht and Turok, 1989) regarding simulations of cosmic string evolution. Specially, it was claimed that results were dominated by a numerical artifact which rounds out kinks on a scale of the order of the correlation length on the network. This claim was based on an approximate analysis of an interpolation equation which is solved herein. The typical rounding scale is actually less than one fifth of the correlation length, and comparable with other numerical cutoffs. Results confirm previous estimates of numerical uncertainties, and show that the approximations poorly represent the real solutions to the interpolation equation.
Origin of hyperbolicity in brain-to-brain coordination networks
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan
2018-02-01
Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 < 1 and can be attributed to the topology of the subgraph formed around the cross-brains linking channels. We identify these subgraphs in each studied two-brain network and decompose their structure into simple geometric descriptors (triangles, tetrahedra and cliques of higher orders) that contribute to hyperbolicity. Considering topologies that exceed two separate brain networks as a measure of coordination synergy between the brains, we identify different neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.
Quantifying randomness in real networks
NASA Astrophysics Data System (ADS)
Orsini, Chiara; Dankulov, Marija M.; Colomer-de-Simón, Pol; Jamakovic, Almerima; Mahadevan, Priya; Vahdat, Amin; Bassler, Kevin E.; Toroczkai, Zoltán; Boguñá, Marián; Caldarelli, Guido; Fortunato, Santo; Krioukov, Dmitri
2015-10-01
Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks--the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain--and find that many important local and global structural properties of these networks are closely reproduced by dk-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate dk-random graphs.
Geometric Assortative Growth Model for Small-World Networks
2014-01-01
It has been shown that both humanly constructed and natural networks are often characterized by small-world phenomenon and assortative mixing. In this paper, we propose a geometrically growing model for small-world networks. The model displays both tunable small-world phenomenon and tunable assortativity. We obtain analytical solutions of relevant topological properties such as order, size, degree distribution, degree correlation, clustering, transitivity, and diameter. It is also worth noting that the model can be viewed as a generalization for an iterative construction of Farey graphs. PMID:24578661
Cortical thickness, cortico-amygdalar networks, and externalizing behaviors in healthy children.
Ameis, Stephanie H; Ducharme, Simon; Albaugh, Matthew D; Hudziak, James J; Botteron, Kelly N; Lepage, Claude; Zhao, Lu; Khundrakpam, Budhachandra; Collins, D Louis; Lerch, Jason P; Wheeler, Anne; Schachar, Russell; Evans, Alan C; Karama, Sherif
2014-01-01
Fronto-amygdalar networks are implicated in childhood psychiatric disorders characterized by high rates of externalizing (aggressive, noncompliant, oppositional) behavior. Although externalizing behaviors are distributed continuously across clinical and nonclinical samples, little is known about how brain variations may confer risk for problematic behavior. Here, we studied cortical thickness, amygdala volume, and cortico-amygdalar network correlates of externalizing behavior in a large sample of healthy children. Two hundred ninety-seven healthy children (6-18 years; mean = 12 ± 3 years), with 517 magnetic resonance imaging scans, from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development, were studied. Relationships between externalizing behaviors (measured with the Child Behavior Checklist) and cortical thickness, amygdala volume, and cortico-amygdalar structural networks were examined using first-order linear mixed-effects models, after controlling for age, sex, scanner, and total brain volume. Results significant at p ≤ .05, following multiple comparison correction, are reported. Left orbitofrontal, right retrosplenial cingulate, and medial temporal cortex thickness were negatively correlated with externalizing behaviors. Although amygdala volume alone was not correlated with externalizing behaviors, an orbitofrontal cortex-amygdala network predicted rates of externalizing behavior. Children with lower levels of externalizing behaviors exhibited positive correlations between orbitofrontal cortex and amygdala structure, while these regions were not correlated in children with higher levels of externalizing behavior. Our findings identify key cortical nodes in frontal, cingulate, and temporal cortex associated with externalizing behaviors in children; and indicate that orbitofrontal-amygdala network properties may influence externalizing behaviors, along a continuum and across healthy and clinical samples. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Yang, M. H.; Li, J. H.; Liu, B. X.
2016-01-01
Based on the newly constructed n-body potential of Ni-Ti-Mo system, Molecular Dynamics and Monte Carlo simulations predict an energetically favored glass formation region and an optimal composition sub-region with the highest glass-forming ability. In order to compare the producing techniques between liquid melt quenching (LMQ) and solid-state amorphization (SSA), inherent hierarchical structure and its effect on mechanical property were clarified via atomistic simulations. It is revealed that both producing techniques exhibit no pronounced differences in the local atomic structure and mechanical behavior, while the LMQ method makes a relatively more ordered structure and a higher intrinsic strength. Meanwhile, it is found that the dominant short-order clusters of Ni-Ti-Mo metallic glasses obtained by LMQ and SSA are similar. By analyzing the structural evolution upon uniaxial tensile deformation, it is concluded that the gradual collapse of the spatial structure network is intimately correlated to the mechanical response of metallic glasses and acts as a structural signature of the initiation and propagation of shear bands. PMID:27418115
Spectra of random networks in the weak clustering regime
NASA Astrophysics Data System (ADS)
Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen; Rodrigues, Francisco A.
2018-03-01
The asymptotic behavior of dynamical processes in networks can be expressed as a function of spectral properties of the corresponding adjacency and Laplacian matrices. Although many theoretical results are known for the spectra of traditional configuration models, networks generated through these models fail to describe many topological features of real-world networks, in particular non-null values of the clustering coefficient. Here we study effects of cycles of order three (triangles) in network spectra. By using recent advances in random matrix theory, we determine the spectral distribution of the network adjacency matrix as a function of the average number of triangles attached to each node for networks without modular structure and degree-degree correlations. Implications to network dynamics are discussed. Our findings can shed light in the study of how particular kinds of subgraphs influence network dynamics.
Zhao, Zhiyong; Wu, Jie; Fan, Mingxia; Yin, Dazhi; Tang, Chaozheng; Gong, Jiayu; Xu, Guojun; Gao, Xinjie; Yu, Qiurong; Yang, Hao; Sun, Limin; Jia, Jie
2018-04-24
Motor functions are supported through functional integration across the extended motor system network. Individuals following stroke often show deficits on motor performance requiring coordination of multiple brain networks; however, the assessment of connectivity patterns after stroke was still unclear. This study aimed to investigate the changes in intra- and inter-network functional connectivity (FC) of multiple networks following stroke and further correlate FC with motor performance. Thirty-three left subcortical chronic stroke patients and 34 healthy controls underwent resting-state functional magnetic resonance imaging. Eleven resting-state networks were identified via independent component analysis (ICA). Compared with healthy controls, the stroke group showed abnormal FC within the motor network (MN), visual network (VN), dorsal attention network (DAN), and executive control network (ECN). Additionally, the FC values of the ipsilesional inferior parietal lobule (IPL) within the ECN were negatively correlated with the Fugl-Meyer Assessment (FMA) scores (hand + wrist). With respect to inter-network interactions, the ipsilesional frontoparietal network (FPN) decreased FC with the MN and DAN; the contralesional FPN decreased FC with the ECN, but it increased FC with the default mode network (DMN); and the posterior DMN decreased FC with the VN. In sum, this study demonstrated the coexistence of intra- and inter-network alterations associated with motor-visual attention and high-order cognitive control function in chronic stroke, which might provide insights into brain network plasticity following stroke. © 2018 Wiley Periodicals, Inc.
Earthquake correlations and networks: A comparative study
NASA Astrophysics Data System (ADS)
Krishna Mohan, T. R.; Revathi, P. G.
2011-04-01
We quantify the correlation between earthquakes and use the same to extract causally connected earthquake pairs. Our correlation metric is a variation on the one introduced by Baiesi and Paczuski [M. Baiesi and M. Paczuski, Phys. Rev. E EULEEJ1539-375510.1103/PhysRevE.69.06610669, 066106 (2004)]. A network of earthquakes is then constructed from the time-ordered catalog and with links between the more correlated ones. A list of recurrences to each of the earthquakes is identified employing correlation thresholds to demarcate the most meaningful ones in each cluster. Data pertaining to three different seismic regions (viz., California, Japan, and the Himalayas) are comparatively analyzed using such a network model. The distribution of recurrence lengths and recurrence times are two of the key features analyzed to draw conclusions about the universal aspects of such a network model. We find that the unimodal feature of recurrence length distribution, which helps to associate typical rupture lengths with different magnitude earthquakes, is robust across the different seismic regions. The out-degree of the networks shows a hub structure rooted on the large magnitude earthquakes. In-degree distribution is seen to be dependent on the density of events in the neighborhood. Power laws, with two regimes having different exponents, are obtained with recurrence time distribution. The first regime confirms the Omori law for aftershocks while the second regime, with a faster falloff for the larger recurrence times, establishes that pure spatial recurrences also follow a power-law distribution. The crossover to the second power-law regime can be taken to be signaling the end of the aftershock regime in an objective fashion.
Statistical performance evaluation of ECG transmission using wireless networks.
Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad
2013-07-01
This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation.
Defense Strategies for Asymmetric Networked Systems with Discrete Components.
Rao, Nageswara S V; Ma, Chris Y T; Hausken, Kjell; He, Fei; Yau, David K Y; Zhuang, Jun
2018-05-03
We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.
Defense Strategies for Asymmetric Networked Systems with Discrete Components
Rao, Nageswara S. V.; Ma, Chris Y. T.; Hausken, Kjell; He, Fei; Yau, David K. Y.
2018-01-01
We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models. PMID:29751588
Sport, how people choose it: A network analysis approach.
Ferreri, Luca; Ivaldi, Marco; Daolio, Fabio; Giacobini, Mario; Rainoldi, Alberto; Tomassini, Marco
2015-01-01
In order to investigate the behaviour of athletes in choosing sports, we analyse data from part of the We-Sport database, a vertical social network that links athletes through sports. In particular, we explore connections between people sharing common sports and the role of age and gender by applying "network science" approaches and methods. The results show a disassortative tendency of athletes in choosing sports, a negative correlation between age and number of chosen sports and a positive correlation between age of connected athletes. Some interesting patterns of connection between age classes are depicted. In addition, we propose a method to classify sports, based on the analyses of the behaviour of people practising them. Thanks to this brand new classifications, we highlight the links of class of sports and their unexpected features. We emphasise some gender dependency affinity in choosing sport classes.
Abdelnour, Farras; Voss, Henning U.; Raj, Ashish
2014-01-01
The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152
Carbonell, F; Bellec, P; Shmuel, A
2014-02-01
The effect of regressing out the global average signal (GAS) in resting state fMRI data has become a concern for interpreting functional connectivity analyses. It is not clear whether the reported anti-correlations between the Default Mode and the Dorsal Attention Networks are intrinsic to the brain, or are artificially created by regressing out the GAS. Here we introduce a concept, Impact of the Global Average on Functional Connectivity (IGAFC), for quantifying the sensitivity of seed-based correlation analyses to the regression of the GAS. This voxel-wise IGAFC index is defined as the product of two correlation coefficients: the correlation between the GAS and the fMRI time course of a voxel, times the correlation between the GAS and the seed time course. This definition enables the calculation of a threshold at which the impact of regressing-out the GAS would be large enough to introduce spurious negative correlations. It also yields a post-hoc impact correction procedure via thresholding, which eliminates spurious correlations introduced by regressing out the GAS. In addition, we introduce an Artificial Negative Correlation Index (ANCI), defined as the absolute difference between the IGAFC index and the impact threshold. The ANCI allows a graded confidence scale for ranking voxels according to their likelihood of showing artificial correlations. By applying this method, we observed regions in the Default Mode and Dorsal Attention Networks that were anti-correlated. These findings confirm that the previously reported negative correlations between the Dorsal Attention and Default Mode Networks are intrinsic to the brain and not the result of statistical manipulations. Our proposed quantification of the impact that a confound may have on functional connectivity can be generalized to global effect estimators other than the GAS. It can be readily applied to other confounds, such as systemic physiological or head movement interferences, in order to quantify their impact on functional connectivity in the resting state. © 2013.
Elastic collapse in disordered isostatic networks
NASA Astrophysics Data System (ADS)
Moukarzel, C. F.
2012-02-01
Isostatic networks are minimally rigid and therefore have, generically, nonzero elastic moduli. Regular isostatic networks have finite moduli in the limit of large sizes. However, numerical simulations show that all elastic moduli of geometrically disordered isostatic networks go to zero with system size. This holds true for positional as well as for topological disorder. In most cases, elastic moduli decrease as inverse power laws of system size. On directed isostatic networks, however, of which the square and cubic lattices are particular cases, the decrease of the moduli is exponential with size. For these, the observed elastic weakening can be quantitatively described in terms of the multiplicative growth of stresses with system size, giving rise to bulk and shear moduli of order e-bL. The case of sphere packings, which only accept compressive contact forces, is considered separately. It is argued that these have a finite bulk modulus because of specific correlations in contact disorder, introduced by the constraint of compressivity. We discuss why their shear modulus, nevertheless, is again zero for large sizes. A quantitative model is proposed that describes the numerically measured shear modulus, both as a function of the loading angle and system size. In all cases, if a density p>0 of overconstraints is present, as when a packing is deformed by compression or when a glass is outside its isostatic composition window, all asymptotic moduli become finite. For square networks with periodic boundary conditions, these are of order \\sqrt{p} . For directed networks, elastic moduli are of order e-c/p, indicating the existence of an "isostatic length scale" of order 1/p.
Construction and analysis of gene-gene dynamics influence networks based on a Boolean model.
Mazaya, Maulida; Trinh, Hung-Cuong; Kwon, Yung-Keun
2017-12-21
Identification of novel gene-gene relations is a crucial issue to understand system-level biological phenomena. To this end, many methods based on a correlation analysis of gene expressions or structural analysis of molecular interaction networks have been proposed. They have a limitation in identifying more complicated gene-gene dynamical relations, though. To overcome this limitation, we proposed a measure to quantify a gene-gene dynamical influence (GDI) using a Boolean network model and constructed a GDI network to indicate existence of a dynamical influence for every ordered pair of genes. It represents how much a state trajectory of a target gene is changed by a knockout mutation subject to a source gene in a gene-gene molecular interaction (GMI) network. Through a topological comparison between GDI and GMI networks, we observed that the former network is denser than the latter network, which implies that there exist many gene pairs of dynamically influencing but molecularly non-interacting relations. In addition, a larger number of hub genes were generated in the GDI network. On the other hand, there was a correlation between these networks such that the degree value of a node was positively correlated to each other. We further investigated the relationships of the GDI value with structural properties and found that there are negative and positive correlations with the length of a shortest path and the number of paths, respectively. In addition, a GDI network could predict a set of genes whose steady-state expression is affected in E. coli gene-knockout experiments. More interestingly, we found that the drug-targets with side-effects have a larger number of outgoing links than the other genes in the GDI network, which implies that they are more likely to influence the dynamics of other genes. Finally, we found biological evidences showing that the gene pairs which are not molecularly interacting but dynamically influential can be considered for novel gene-gene relationships. Taken together, construction and analysis of the GDI network can be a useful approach to identify novel gene-gene relationships in terms of the dynamical influence.
Effects of high-order correlations on personalized recommendations for bipartite networks
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Zhou, Tao; Che, Hong-An; Wang, Bing-Hong; Zhang, Yi-Cheng
2010-02-01
In this paper, we introduce a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the MCF, instead of the cosine similarity index, the user-user correlations are obtained by a diffusion process. Furthermore, by considering the second-order correlations, we design an effective algorithm that depresses the influence of mainstream preferences. Simulation results show that the algorithmic accuracy, measured by the average ranking score, is further improved by 20.45% and 33.25% in the optimal cases of MovieLens and Netflix data. More importantly, the optimal value λ depends approximately monotonously on the sparsity of the training set. Given a real system, we could estimate the optimal parameter according to the data sparsity, which makes this algorithm easy to be applied. In addition, two significant criteria of algorithmic performance, diversity and popularity, are also taken into account. Numerical results show that as the sparsity increases, the algorithm considering the second-order correlation can outperform the MCF simultaneously in all three criteria.
Kinjo, Erika Reime; Rodríguez, Pedro Xavier Royero; Dos Santos, Bianca Araújo; Higa, Guilherme Shigueto Vilar; Ferraz, Mariana Sacrini Ayres; Schmeltzer, Christian; Rüdiger, Sten; Kihara, Alexandre Hiroaki
2018-05-01
Epilepsy is a disorder of the brain characterized by the predisposition to generate recurrent unprovoked seizures, which involves reshaping of neuronal circuitries based on intense neuronal activity. In this review, we first detailed the regulation of plasticity-associated genes, such as ARC, GAP-43, PSD-95, synapsin, and synaptophysin. Indeed, reshaping of neuronal connectivity after the primary, acute epileptogenesis event increases the excitability of the temporal lobe. Herein, we also discussed the heterogeneity of neuronal populations regarding the number of synaptic connections, which in the theoretical field is commonly referred as degree. Employing integrate-and-fire neuronal model, we determined that in addition to increased synaptic strength, degree correlations might play essential and unsuspected roles in the control of network activity. Indeed, assortativity, which can be described as a condition where high-degree correlations are observed, increases the excitability of neural networks. In this review, we summarized recent topics in the field, and data were discussed according to newly developed or unusual tools, as provided by mathematical graph analysis and high-order statistics. With this, we were able to present new foundations for the pathological activity observed in temporal lobe epilepsy.
Spontaneous eyelid closures link vigilance fluctuation with fMRI dynamic connectivity states
Wang, Chenhao; Ong, Ju Lynn; Patanaik, Amiya; Chee, Michael W. L.
2016-01-01
Fluctuations in resting-state functional connectivity occur but their behavioral significance remains unclear, largely because correlating behavioral state with dynamic functional connectivity states (DCS) engages probes that disrupt the very behavioral state we seek to observe. Observing spontaneous eyelid closures following sleep deprivation permits nonintrusive arousal monitoring. During periods of low arousal dominated by eyelid closures, sliding-window correlation analysis uncovered a DCS associated with reduced within-network functional connectivity of default mode and dorsal/ventral attention networks, as well as reduced anticorrelation between these networks. Conversely, during periods when participants’ eyelids were wide open, a second DCS was associated with less decoupling between the visual network and higher-order cognitive networks that included dorsal/ventral attention and default mode networks. In subcortical structures, eyelid closures were associated with increased connectivity between the striatum and thalamus with the ventral attention network, and greater anticorrelation with the dorsal attention network. When applied to task-based fMRI data, these two DCS predicted interindividual differences in frequency of behavioral lapsing and intraindividual temporal fluctuations in response speed. These findings with participants who underwent a night of total sleep deprivation were replicated in an independent dataset involving partially sleep-deprived participants. Fluctuations in functional connectivity thus appear to be clearly associated with changes in arousal. PMID:27512040
Uncovering collective listening habits and music genres in bipartite networks.
Lambiotte, R; Ausloos, M
2005-12-01
In this paper, we analyze web-downloaded data on people sharing their music library, that we use as their individual musical signatures. The system is represented by a bipartite network, nodes being the music groups and the listeners. Music groups' audience size behaves like a power law, but the individual music library size is an exponential with deviations at small values. In order to extract structures from the network, we focus on correlation matrices, that we filter by removing the least correlated links. This percolation idea-based method reveals the emergence of social communities and music genres, that are visualized by a branching representation. Evidence of collective listening habits that do not fit the neat usual genres defined by the music industry indicates an alternative way of classifying listeners and music groups. The structure of the network is also studied by a more refined method, based upon a random walk exploration of its properties. Finally, a personal identification-community imitation model for growing bipartite networks is outlined, following Potts ingredients. Simulation results do reproduce quite well the empirical data.
Uncovering collective listening habits and music genres in bipartite networks
NASA Astrophysics Data System (ADS)
Lambiotte, R.; Ausloos, M.
2005-12-01
In this paper, we analyze web-downloaded data on people sharing their music library, that we use as their individual musical signatures. The system is represented by a bipartite network, nodes being the music groups and the listeners. Music groups’ audience size behaves like a power law, but the individual music library size is an exponential with deviations at small values. In order to extract structures from the network, we focus on correlation matrices, that we filter by removing the least correlated links. This percolation idea-based method reveals the emergence of social communities and music genres, that are visualized by a branching representation. Evidence of collective listening habits that do not fit the neat usual genres defined by the music industry indicates an alternative way of classifying listeners and music groups. The structure of the network is also studied by a more refined method, based upon a random walk exploration of its properties. Finally, a personal identification-community imitation model for growing bipartite networks is outlined, following Potts ingredients. Simulation results do reproduce quite well the empirical data.
Generalized activity equations for spiking neural network dynamics.
Buice, Michael A; Chow, Carson C
2013-01-01
Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales-the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances.
Kalman Filtering for Genetic Regulatory Networks with Missing Values
Liu, Qiuhua; Lai, Tianyue; Wang, Wu
2017-01-01
The filter problem with missing value for genetic regulation networks (GRNs) is addressed, in which the noises exist in both the state dynamics and measurement equations; furthermore, the correlation between process noise and measurement noise is also taken into consideration. In order to deal with the filter problem, a class of discrete-time GRNs with missing value, noise correlation, and time delays is established. Then a new observation model is proposed to decrease the adverse effect caused by the missing value and to decouple the correlation between process noise and measurement noise in theory. Finally, a Kalman filtering is used to estimate the states of GRNs. Meanwhile, a typical example is provided to verify the effectiveness of the proposed method, and it turns out to be the case that the concentrations of mRNA and protein could be estimated accurately. PMID:28814967
Wang, Yan-Yu; Wang, Yi; Zou, Ying-Min; Ni, Ke; Tian, Xue; Sun, Hong-Wei; Lui, Simon S Y; Cheung, Eric F C; Suckling, John; Chan, Raymond C K
2017-11-06
Although Theory of Mind (ToM) impairment has been observed in patients with a wide range of mental disorders, the similarity and uniqueness of these deficits across diagnostic groups has not been thoroughly investigated. We recruited 35 participants with schizophrenia (SCZ), 35 with bipolar disorder (BD), 35 with major depressive disorder (MDD), and 35 healthy controls in this study. All participants were matched in age, gender proportion and IQ estimates. The Yoni task, capturing both the cognitive and affective components of ToM at the first- and second-order level was administered. Repeated-measure ANOVA and MANOVA were conducted to compare the group differences in ToM performance. A network was then constructed with ToM performances, psychotic and depressive symptoms, and executive function as nodes exploring the clinical correlates of ToM. Overall, ToM impairments were observed in all patient groups compared with healthy controls, with patients with SCZ performing worse than those with BD. In second-order conditions, patients with SCZ and MDD showed deficits in both cognitive and affective conditions, while patients with BD performed significantly poorer in cognitive conditions. Network analysis showed that second-order affective ToM performance was associated with psychotic and depressive symptoms as well as executive dysfunction, while second-order affective ToM performance and negative symptoms showed relatively high centrality in the network. Patients with SCZ, MDD and BD exhibited different types and severity of impairments in ToM sub-components. Impairment in higher-order affective ToM appears to be closely related to clinical symptoms in both psychotic and affective disorders. Copyright © 2017. Published by Elsevier B.V.
Simulating and assessing boson sampling experiments with phase-space representations
NASA Astrophysics Data System (ADS)
Opanchuk, Bogdan; Rosales-Zárate, Laura; Reid, Margaret D.; Drummond, Peter D.
2018-04-01
The search for new, application-specific quantum computers designed to outperform any classical computer is driven by the ending of Moore's law and the quantum advantages potentially obtainable. Photonic networks are promising examples, with experimental demonstrations and potential for obtaining a quantum computer to solve problems believed classically impossible. This introduces a challenge: how does one design or understand such photonic networks? One must be able to calculate observables using general methods capable of treating arbitrary inputs, dissipation, and noise. We develop complex phase-space software for simulating these photonic networks, and apply this to boson sampling experiments. Our techniques give sampling errors orders of magnitude lower than experimental correlation measurements for the same number of samples. We show that these techniques remove systematic errors in previous algorithms for estimating correlations, with large improvements in errors in some cases. In addition, we obtain a scalable channel-combination strategy for assessment of boson sampling devices.
Network formation in a multi-asset artificial stock market
NASA Astrophysics Data System (ADS)
Wu, Songtao; He, Jianmin; Li, Shouwei; Wang, Chao
2018-04-01
A multi-asset artificial stock market is developed. In the market, stocks are assigned to a number of sectors and traded by heterogeneous investors. The mechanism of continuous double auction is employed to clear order book and form daily closed prices. Simulation results of prices at the sector level show an intra-sector similarity and inter-sector distinctiveness, and returns of individual stocks have stylized facts that are ubiquitous in the real-world stock market. We find that the market risk factor has critical impact on both network topology transition and connection formation, and that sector risk factors account for the formation of intra-sector links and sector-based local interaction. In addition, the number of community in threshold-based networks is correlated negatively and positively with the value of correlation coefficients and the ratio of intra-sector links, which are respectively determined by intensity of sector risk factors and the number of sectors.
NASA Astrophysics Data System (ADS)
Chen, Sony Su; Moro, Juliano; Araujo Resende, Laysa Cristina; Denardini, Clezio Marcos
2016-07-01
The Embrace Magnetometer Network (Embrace MagNet) is a network of three-axis fluxgate magnetometers using single bars with high level of magnetic saturation, covered with two copper coils, one for the excitation and the second for sensing the external field. It is planned to cover most of the Easter Southern American longitudinal sector in order to fulfill the gap for magnetic measurement available on-line. The availability of fast internet, reliable energy supply and easy access were the key point for deciding the location of the magnetometer stations of the network. Up to now, the main characteristic of this network is the severe sensibility matching process among all the magnetometers composing it. Now, in order to validate the magnetic data collected by the elements of the Embrace MagNet in comparison to absolute measurements, we performed a study about the correlation between the data collected by the fluxgate magnetometer provided by Embrace MagNet and an absolute magnetometer installed by Intermagnet in the same observatory. For this study, we have used data collected in Vassouras-RJ, in Brazil, covering the period from June to December 2015. The analysis consist of: (a) selecting the 5 quietest days and the 5 most disturbed days of each month based on the Kp index; (b) deducing the local midnight value from the data collected by both instruments; (c) correlating the data collected by the variometer with the absolute measurement day-by-day; (d) grouping the results as Winter (June, July, and August), Equinox (September and October) and Summer (November and December); (e) obtaining the linear correlations factor for each group. The averaged correlation factors and the daily variations of the magnetic data are presented and discussed in terms of the magnetic activity and the season variation.
Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2016-07-01
The human brain can be modelled as a complex networked structure with brain regions as individual nodes and their anatomical/functional links as edges. Functional brain networks are constructed by first extracting weighted connectivity matrices, and then binarizing them to minimize the noise level. Different methods have been used to estimate the dependency values between the nodes and to obtain a binary network from a weighted connectivity matrix. In this work we study topological properties of EEG-based functional networks in Alzheimer’s Disease (AD). To estimate the connectivity strength between two time series, we use Pearson correlation, coherence, phase order parameter and synchronization likelihood. In order to binarize the weighted connectivity matrices, we use Minimum Spanning Tree (MST), Minimum Connected Component (MCC), uniform threshold and density-preserving methods. We find that the detected AD-related abnormalities highly depend on the methods used for dependency estimation and binarization. Topological properties of networks constructed using coherence method and MCC binarization show more significant differences between AD and healthy subjects than the other methods. These results might explain contradictory results reported in the literature for network properties specific to AD symptoms. The analysis method should be seriously taken into account in the interpretation of network-based analysis of brain signals.
Water transport, free volume, and polymer dynamics in crosslinked polymer networks
NASA Astrophysics Data System (ADS)
Frieberg, Bradley; Soles, Christopher
Many technologies rely on amorphous polymer membranes that selectively transport small molecules or ions, which has led to a significant scientific interest in elucidating the mechanisms of transport. A recurring theme among several different materials systems is that free volume and polymer chain dynamics facilitate transport. In order to understand the interplay between free volume, transport and polymer dynamics we quantify these properties for a model epoxy network. The epoxy chemistry allows for systematically varying both the structural rigidity of the network as well as the cross-link density. We performed positron annihilation lifetime spectroscopy measurements to characterize the unoccupied volume and correlated the unoccupied volume to the equilibrium moisture uptake and effective diffusion coefficient. We have recently extended this work to include polymer dynamics measured by quasi-elastic neutron scattering on the NIST High Flux Backscatter Spectrometer. These measurements reveal a strong correlation between the MSD and the transport kinetics, which was even stronger than the correlation previously observed between free volume and water diffusion. These observations challenge previous theories that suggest free volume governs transport.
Complex networks repair strategies: Dynamic models
NASA Astrophysics Data System (ADS)
Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang
2017-09-01
Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree 〈 k 〉 and enhances network invulnerability.
Functional cortical network in alpha band correlates with social bargaining.
Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco
2014-01-01
Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals' alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts.
Functional Cortical Network in Alpha Band Correlates with Social Bargaining
Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco
2014-01-01
Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240
Solar potential scaling and the urban road network topology
NASA Astrophysics Data System (ADS)
Najem, Sara
2017-01-01
We explore the scaling of cities' solar potentials with their number of buildings and reveal a latent dependence between the solar potential and the length of the corresponding city's road network. This scaling is shown to be valid at the grid and block levels and is attributed to a common street length distribution. Additionally, we compute the buildings' solar potential correlation function and length in order to determine the set of critical exponents typifying the urban solar potential universality class.
Predicting missing links via correlation between nodes
NASA Astrophysics Data System (ADS)
Liao, Hao; Zeng, An; Zhang, Yi-Cheng
2015-10-01
As a fundamental problem in many different fields, link prediction aims to estimate the likelihood of an existing link between two nodes based on the observed information. Since this problem is related to many applications ranging from uncovering missing data to predicting the evolution of networks, link prediction has been intensively investigated recently and many methods have been proposed so far. The essential challenge of link prediction is to estimate the similarity between nodes. Most of the existing methods are based on the common neighbor index and its variants. In this paper, we propose to calculate the similarity between nodes by the Pearson correlation coefficient. This method is found to be very effective when applied to calculate similarity based on high order paths. We finally fuse the correlation-based method with the resource allocation method, and find that the combined method can substantially outperform the existing methods, especially in sparse networks.
Alexithymia: a further exploration of its nomological network.
Vingerhoets, A J; Van Heck, G L; Grim, R; Bermond, B
1995-01-01
The present studies were designed in order to obtain a better understanding of the nomological network of the alexithymia concept. In study I, the links between alexithymia, coping, and self-rated health were explored. As predicted, strong negative correlations were found between alexithymia and the expression of emotions, daydreams and fantasies, and planful and rational actions. Contrary to expectations, no clear associations were found with self-reported health status. In study II, the focus was on links with personality, temperament, and self-reported (susceptibility to) homesickness. Although some correlations reached statistical significance, all were rather modest. The most remarkable finding was the independence of alexithymia and neuroticism. In study III, the associations between alexithymia and aspects of love experiences were examined, again yielding low correlations. It is concluded that alexithymia is relatively independent of temperament and personality. In addition, it is suggested that the association between alexithymia and the experience of positive emotions deserves further exploration.
The relevance of network micro-structure for neural dynamics.
Pernice, Volker; Deger, Moritz; Cardanobile, Stefano; Rotter, Stefan
2013-01-01
The activity of cortical neurons is determined by the input they receive from presynaptic neurons. Many previous studies have investigated how specific aspects of the statistics of the input affect the spike trains of single neurons and neurons in recurrent networks. However, typically very simple random network models are considered in such studies. Here we use a recently developed algorithm to construct networks based on a quasi-fractal probability measure which are much more variable than commonly used network models, and which therefore promise to sample the space of recurrent networks in a more exhaustive fashion than previously possible. We use the generated graphs as the underlying network topology in simulations of networks of integrate-and-fire neurons in an asynchronous and irregular state. Based on an extensive dataset of networks and neuronal simulations we assess statistical relations between features of the network structure and the spiking activity. Our results highlight the strong influence that some details of the network structure have on the activity dynamics of both single neurons and populations, even if some global network parameters are kept fixed. We observe specific and consistent relations between activity characteristics like spike-train irregularity or correlations and network properties, for example the distributions of the numbers of in- and outgoing connections or clustering. Exploiting these relations, we demonstrate that it is possible to estimate structural characteristics of the network from activity data. We also assess higher order correlations of spiking activity in the various networks considered here, and find that their occurrence strongly depends on the network structure. These results provide directions for further theoretical studies on recurrent networks, as well as new ways to interpret spike train recordings from neural circuits.
Spread of information and infection on finite random networks
NASA Astrophysics Data System (ADS)
Isham, Valerie; Kaczmarska, Joanna; Nekovee, Maziar
2011-04-01
The modeling of epidemic-like processes on random networks has received considerable attention in recent years. While these processes are inherently stochastic, most previous work has been focused on deterministic models that ignore important fluctuations that may persist even in the infinite network size limit. In a previous paper, for a class of epidemic and rumor processes, we derived approximate models for the full probability distribution of the final size of the epidemic, as opposed to only mean values. In this paper we examine via direct simulations the adequacy of the approximate model to describe stochastic epidemics and rumors on several random network topologies: homogeneous networks, Erdös-Rényi (ER) random graphs, Barabasi-Albert scale-free networks, and random geometric graphs. We find that the approximate model is reasonably accurate in predicting the probability of spread. However, the position of the threshold and the conditional mean of the final size for processes near the threshold are not well described by the approximate model even in the case of homogeneous networks. We attribute this failure to the presence of other structural properties beyond degree-degree correlations, and in particular clustering, which are present in any finite network but are not incorporated in the approximate model. In order to test this “hypothesis” we perform additional simulations on a set of ER random graphs where degree-degree correlations and clustering are separately and independently introduced using recently proposed algorithms from the literature. Our results show that even strong degree-degree correlations have only weak effects on the position of the threshold and the conditional mean of the final size. On the other hand, the introduction of clustering greatly affects both the position of the threshold and the conditional mean. Similar analysis for the Barabasi-Albert scale-free network confirms the significance of clustering on the dynamics of rumor spread. For this network, though, with its highly skewed degree distribution, the addition of positive correlation had a much stronger effect on the final size distribution than was found for the simple random graph.
To lag or not to lag? How to compare indices of stock markets that operate on different times
NASA Astrophysics Data System (ADS)
Sandoval, Leonidas
2014-06-01
Financial markets worldwide do not have the same working hours. As a consequence, the study of correlation or causality between financial market indices becomes dependent on whether we should use all indices on the same day or lagged indices in computations of correlation matrices. The answer this article proposes is that we should consider both, by representing original and lagged indices in the same network. We then obtain a better understanding of how indices that operate on different hours relate to each other. We use a diverse range of 79 stock market indices from around the world and study their correlation structure, the eigenvalues and eigenvectors of their correlations under different time periods and volatility, as well as the differences between the working hours of the stock exchanges in order to analyze the possible time zone effects and suggest ways to remove them. We also analyze the enlarged correlation matrix obtained from original and lagged indices and examine a network structure derived from it, thus showing connections between lagged and original indices that could not be well represented before.
What Can Causal Networks Tell Us about Metabolic Pathways?
Blair, Rachael Hageman; Kliebenstein, Daniel J.; Churchill, Gary A.
2012-01-01
Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: “What can causal networks tell us about metabolic pathways?”. Using data from an Arabidopsis BaySha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies. PMID:22496633
Improving Service Management in Campus IT Operations
ERIC Educational Resources Information Center
Wan, Stewart H. C.; Chan, Yuk-Hee
2008-01-01
Purpose: This paper aims at presenting the benefits from implementing IT service management (ITSM) in an organization for managing campus-wide IT operations. In order to improve the fault correlation from business perspectives, we proposed a framework to automate network and system alerts with respect to its business service impact for proactive…
Mediating Effects of Social Support on Firefighters' Sense of Community and Perceptions of Care
ERIC Educational Resources Information Center
Cowman, Shaun E.; Ferrari, Joseph R.; Liao-Troth, Matthew
2004-01-01
This study examined the relationship between psychological sense of community, social-support networks, and care-giver stress and satisfaction among firefighters. No significant gender differences were obtained, but zero-order correlates demonstrated significant relationships among all four variables. In examining the mediating effects of…
A generative spike train model with time-structured higher order correlations.
Trousdale, James; Hu, Yu; Shea-Brown, Eric; Josić, Krešimir
2013-01-01
Emerging technologies are revealing the spiking activity in ever larger neural ensembles. Frequently, this spiking is far from independent, with correlations in the spike times of different cells. Understanding how such correlations impact the dynamics and function of neural ensembles remains an important open problem. Here we describe a new, generative model for correlated spike trains that can exhibit many of the features observed in data. Extending prior work in mathematical finance, this generalized thinning and shift (GTaS) model creates marginally Poisson spike trains with diverse temporal correlation structures. We give several examples which highlight the model's flexibility and utility. For instance, we use it to examine how a neural network responds to highly structured patterns of inputs. We then show that the GTaS model is analytically tractable, and derive cumulant densities of all orders in terms of model parameters. The GTaS framework can therefore be an important tool in the experimental and theoretical exploration of neural dynamics.
Gesualdo, Francesco; Stilo, Giovanni; D'Ambrosio, Angelo; Carloni, Emanuela; Pandolfi, Elisabetta; Velardi, Paola; Fiocchi, Alessandro; Tozzi, Alberto E
2015-01-01
Pollen forecasts are in use everywhere to inform therapeutic decisions for patients with allergic rhinoconjunctivitis (ARC). We exploited data derived from Twitter in order to identify tweets reporting a combination of symptoms consistent with a case definition of ARC and those reporting the name of an antihistamine drug. In order to increase the sensitivity of the system, we applied an algorithm aimed at automatically identifying jargon expressions related to medical terms. We compared weekly Twitter trends with National Allergy Bureau weekly pollen counts derived from US stations, and found a high correlation of the sum of the total pollen counts from each stations with tweets reporting ARC symptoms (Pearson's correlation coefficient: 0.95) and with tweets reporting antihistamine drug names (Pearson's correlation coefficient: 0.93). Longitude and latitude of the pollen stations affected the strength of the correlation. Twitter and other social networks may play a role in allergic disease surveillance and in signaling drug consumptions trends.
Social Network Influence and Personal Financial Status
NASA Astrophysics Data System (ADS)
Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Makse, Hernan
Networks of social ties emerging from individual economic needs display a highly structured architecture. In response to socio-economic demands, people reshape their circle of contacts for maximizing their social status, and ipso facto, the pattern of their interconnections is strongly correlates with their personal financial situation. In this work we transform this qualitative and verbal statement into an operative definition, which allows us to quantify the economic wellness of individuals trough a measure of their collective influence. We consider the network of mobile phone calls made by the Mexican population during three months, in order to study the correlation of person's economic situation with her network location. Notably, we find that rich people tend to be also the most influential nodes, i.e., they self-organize to optimally position themselves in the network. This finding may be also raised at the level of a principle, a fact that would explain the emergence of the phenomenon of collective influence itself as the result of the local optimization of socio-economic interactions. Our method represents a powerful and efficient indicator of socio-economic robustness, which may be applied to maximize the effect of large scale economic intervention and stimulus policies
Valdivieso Caraguay, Ángel Leonardo; García Villalba, Luis Javier
2017-01-01
This paper presents the Monitoring and Discovery Framework of the Self-Organized Network Management in Virtualized and Software Defined Networks SELFNET project. This design takes into account the scalability and flexibility requirements needed by 5G infrastructures. In this context, the present framework focuses on gathering and storing the information (low-level metrics) related to physical and virtual devices, cloud environments, flow metrics, SDN traffic and sensors. Similarly, it provides the monitoring data as a generic information source in order to allow the correlation and aggregation tasks. Our design enables the collection and storing of information provided by all the underlying SELFNET sublayers, including the dynamically onboarded and instantiated SDN/NFV Apps, also known as SELFNET sensors. PMID:28362346
In-network processing of joins in wireless sensor networks.
Kang, Hyunchul
2013-03-11
The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified.
In-Network Processing of Joins in Wireless Sensor Networks
Kang, Hyunchul
2013-01-01
The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified. PMID:23478603
Caraguay, Ángel Leonardo Valdivieso; Villalba, Luis Javier García
2017-03-31
This paper presents the Monitoring and Discovery Framework of the Self-Organized Network Management in Virtualized and Software Defined Networks SELFNET project. This design takes into account the scalability and flexibility requirements needed by 5G infrastructures. In this context, the present framework focuses on gathering and storing the information (low-level metrics) related to physical and virtual devices, cloud environments, flow metrics, SDN traffic and sensors. Similarly, it provides the monitoring data as a generic information source in order to allow the correlation and aggregation tasks. Our design enables the collection and storing of information provided by all the underlying SELFNET sublayers, including the dynamically onboarded and instantiated SDN/NFV Apps, also known as SELFNET sensors.
Multilayer network decoding versatility and trust
NASA Astrophysics Data System (ADS)
Sarkar, Camellia; Yadav, Alok; Jalan, Sarika
2016-01-01
In the recent years, the multilayer networks have increasingly been realized as a more realistic framework to understand emergent physical phenomena in complex real-world systems. We analyze massive time-varying social data drawn from the largest film industry of the world under a multilayer network framework. The framework enables us to evaluate the versatility of actors, which turns out to be an intrinsic property of lead actors. Versatility in dimers suggests that working with different types of nodes are more beneficial than with similar ones. However, the triangles yield a different relation between type of co-actor and the success of lead nodes indicating the importance of higher-order motifs in understanding the properties of the underlying system. Furthermore, despite the degree-degree correlations of entire networks being neutral, multilayering picks up different values of correlation indicating positive connotations like trust, in the recent years. The analysis of weak ties of the industry uncovers nodes from a lower-degree regime being important in linking Bollywood clusters. The framework and the tools used herein may be used for unraveling the complexity of other real-world systems.
A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation.
Huang, Dongmei; Xu, Chenyixuan; Zhao, Danfeng; Song, Wei; He, Qi
2017-09-21
Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.
Neural correlates of gender differences in reputation building.
Garbarini, Francesca; Boero, Riccardo; D'Agata, Federico; Bravo, Giangiacomo; Mosso, Cristina; Cauda, Franco; Duca, Sergio; Geminiani, Giuliano; Sacco, Katiuscia
2014-01-01
Gender differences in cooperative choices and their neural correlates were investigated in a situation where reputation represented a crucial issue. Males and females were involved in an economic exchange (trust game) where economic and reputational payoffs had to be balanced in order to increase personal welfare. At the behavioral level, females showed a stronger reaction to negative reputation judgments that led to higher cooperation than males, measured by back transfers in the game. The neuroanatomical counterpart of this gender difference was found within the reward network (engaged in producing expectations of positive results) and reputation-related brain networks, such as the self-control network (engaged in strategically resisting the temptation to defect) and the mentalizing network (engaged in thinking about how one is viewed by others), in which the dorsolateral prefrontal cortex (DLPFC) and the medial (M)PFC respectively play a crucial role. Furthermore, both DLPFC and MPFC activity correlated with the amount of back transfer, as well as with the personality dimensions assessed with the Big-Five Questionnaire (BFQ-2). Males, according to their greater DLPFC recruitment and their higher level of the BFQ-2 subscale of Dominance, were more focused on implementing a profit-maximizing strategy, pursuing this target irrespectively of others' judgments. On the contrary, females, according to their greater MPFC activity and their lower level of Dominance, were more focused on the reputation per se and not on the strategic component of reputation building. These findings shed light on the sexual dimorphism related to cooperative behavior and its neural correlates.
Revealing cancer subtypes with higher-order correlations applied to imaging and omics data.
Graim, Kiley; Liu, Tiffany Ting; Achrol, Achal S; Paull, Evan O; Newton, Yulia; Chang, Steven D; Harsh, Griffith R; Cordero, Sergio P; Rubin, Daniel L; Stuart, Joshua M
2017-03-31
Patient stratification to identify subtypes with different disease manifestations, severity, and expected survival time is a critical task in cancer diagnosis and treatment. While stratification approaches using various biomarkers (including high-throughput gene expression measurements) for patient-to-patient comparisons have been successful in elucidating previously unseen subtypes, there remains an untapped potential of incorporating various genotypic and phenotypic data to discover novel or improved groupings. Here, we present HOCUS, a unified analytical framework for patient stratification that uses a community detection technique to extract subtypes out of sparse patient measurements. HOCUS constructs a patient-to-patient network from similarities in the data and iteratively groups and reconstructs the network into higher order clusters. We investigate the merits of using higher-order correlations to cluster samples of cancer patients in terms of their associations with survival outcomes. In an initial test of the method, the approach identifies cancer subtypes in mutation data of glioblastoma, ovarian, breast, prostate, and bladder cancers. In several cases, HOCUS provides an improvement over using the molecular features directly to compare samples. Application of HOCUS to glioblastoma images reveals a size and location classification of tumors that improves over human expert-based stratification. Subtypes based on higher order features can reveal comparable or distinct groupings. The distinct solutions can provide biologically- and treatment-relevant solutions that are just as significant as solutions based on the original data.
Study on hydraulic characteristics of mine dust-proof water supply network
NASA Astrophysics Data System (ADS)
Deng, Quanlong; Jiang, Zhongan; Han, Shuo; Fu, Enqi
2018-01-01
In order to study the hydraulic characteristics of mine dust-proof water supply network and obtain the change rule of water consumption and water pressure, according to the similarity principle and the fluid continuity equation and energy equation, the similarity criterion of mine dust-proof water supply network is deduced, and a similar model of dust-proof water supply network is established based on the prototype of Kailuan Group, the characteristics of hydraulic parameters in water supply network are studied experimentally. The results show that water pressure at each point is a dynamic process, and there is a negative correlation between water pressure and water consumption. With the increase of water consumption, the pressure of water points show a decreasing trend. According to the structure of the pipe network and the location of the water point, the influence degree on the pressure of each point is different.
Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli
2017-12-01
Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan
2016-11-01
Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.
A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth
NASA Astrophysics Data System (ADS)
Lavoine, E.; Darcel, C.; Munier, R.; Davy, P.
2017-12-01
The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. The realism can be improved by injecting prior information in DFN from a better knowledge of the geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from nucleation to arrest, in order to evaluate the consequences of the DFN structure on the network connectivity and flow properties. The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations. Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and existing fracture patterns. The method uses the stress field generated by existing fractures and remote stress as an input for a Monte-Carlo sampling of nuclei centers at each time step. Networks so generated are found to have correlations over a large range of scales, with a correlation dimension that varies with time and with the function that relates the nucleation probability to stress. A sensibility analysis of input parameters has been performed in 3D to quantify the influence of fractures and remote stress field orientations.
Inversion of surface parameters using fast learning neural networks
NASA Technical Reports Server (NTRS)
Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.
1992-01-01
A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.
Martínez-Romero, Marcos; Vázquez-Naya, José M; Rabuñal, Juan R; Pita-Fernández, Salvador; Macenlle, Ramiro; Castro-Alvariño, Javier; López-Roses, Leopoldo; Ulla, José L; Martínez-Calvo, Antonio V; Vázquez, Santiago; Pereira, Javier; Porto-Pazos, Ana B; Dorado, Julián; Pazos, Alejandro; Munteanu, Cristian R
2010-05-01
Colorectal cancer is one of the most frequent types of cancer in the world and generates important social impact. The understanding of the specific metabolism of this disease and the transformations of the specific drugs will allow finding effective prevention, diagnosis and treatment of the colorectal cancer. All the terms that describe the drug metabolism contribute to the construction of ontology in order to help scientists to link the correlated information and to find the most useful data about this topic. The molecular components involved in this metabolism are included in complex network such as metabolic pathways in order to describe all the molecular interactions in the colorectal cancer. The graphical method of processing biological information such as graphs and complex networks leads to the numerical characterization of the colorectal cancer drug metabolic network by using invariant values named topological indices. Thus, this method can help scientists to study the most important elements in the metabolic pathways and the dynamics of the networks during mutations, denaturation or evolution for any type of disease. This review presents the last studies regarding ontology and complex networks of the colorectal cancer drug metabolism and a basic topology characterization of the drug metabolic process sub-ontology from the Gene Ontology.
NASA Astrophysics Data System (ADS)
Dods, Joe; Chapman, Sandra; Gjerloev, Jesper
2016-04-01
Quantitative understanding of the full spatial-temporal pattern of space weather is important in order to estimate the ground impact. Geomagnetic indices such as AE track the peak of a geomagnetic storm or substorm, but cannot capture the full spatial-temporal pattern. Observations by the ~100 ground based magnetometers in the northern hemisphere have the potential to capture the detailed evolution of a given space weather event. We present the first analysis of the full available set of ground based magnetometer observations of substorms using dynamical networks. SuperMAG offers a database containing ground station magnetometer data at a cadence of 1min from 100s stations situated across the globe. We use this data to form dynamic networks which capture spatial dynamics on timescales from the fast reconfiguration seen in the aurora, to that of the substorm cycle. Windowed linear cross-correlation between pairs of magnetometer time series along with a threshold is used to determine which stations are correlated and hence connected in the network. Variations in ground conductivity and differences in the response functions of magnetometers at individual stations are overcome by normalizing to long term averages of the cross-correlation. These results are tested against surrogate data in which phases have been randomised. The network is then a collection of connected points (ground stations); the structure of the network and its variation as a function of time quantify the detailed dynamical processes of the substorm. The network properties can be captured quantitatively in time dependent dimensionless network parameters and we will discuss their behaviour for examples of 'typical' substorms and storms. The network parameters provide a detailed benchmark to compare data with models of substorm dynamics, and can provide new insights on the similarities and differences between substorms and how they correlate with external driving and the internal state of the magnetosphere. We can also investigate the solar wind control of the magnetospheric-ionospheric convection system using dynamical networks. The dynamical networks are first interpolated onto a regular grid. Statistically averaged network responses are then formed for a variety of solar wind conditions, including investigating the network response to southward turnings. [1] Dods, J., S. C. Chapman, and J. W. Gjerloev (2015), Network analysis of geomagnetic substorms using the SuperMAG database of ground-based magnetometer stations, J. Geophys. Res. Space Physics, 120, 7774-7784, doi:10.1002/2015JA021456
Micro- and Macroevolutionary Trade-Offs in Plant-Feeding Insects.
Peterson, Daniel A; Hardy, Nate B; Normark, Benjamin B
2016-12-01
A long-standing hypothesis asserts that plant-feeding insects specialize on particular host plants because of negative interactions (trade-offs) between adaptations to alternative hosts, yet empirical evidence for such trade-offs is scarce. Most studies have looked for microevolutionary performance trade-offs within insect species, but host use could also be constrained by macroevolutionary trade-offs caused by epistasis and historical contingency. Here we used a phylogenetic approach to estimate the micro- and macroevolutionary correlations between use of alternative host-plant taxa within two major orders of plant-feeding insects: Lepidoptera (caterpillars) and Hemiptera (true bugs). Across 1,604 caterpillar species, we found both positive and negative pairwise correlations between use of 11 host-plant orders, with overall network patterns suggesting that different host-use constraints act over micro- and macroevolutionary timescales. In contrast, host-use patterns of 955 true bug species revealed uniformly positive correlations between use of the same 11 host plant orders over both timescales. The lack of consistent patterns across timescales and insect orders indicates that host-use trade-offs are historically contingent rather than universal constraints. Moreover, we observed few negative correlations overall despite the wide taxonomic and ecological diversity of the focal host-plant orders, suggesting that positive interactions between host-use adaptations, not trade-offs, dominate the long-term evolution of host use in plant-feeding insects.
Zalay, Osbert C; Serletis, Demitre; Carlen, Peter L; Bardakjian, Berj L
2010-06-01
Most forms of epilepsy are marked by seizure episodes that arise spontaneously. The low-magnesium/high-potassium (low-Mg(2+)/high-K(+)) experimental model of epilepsy is an acute model that produces spontaneous, recurring seizure-like events (SLEs). To elucidate the nature of spontaneous seizure transitions and their relationship to neuronal excitability, whole-cell recordings from the intact hippocampus were undertaken in vitro, and the response of hippocampal CA3 neurons to Gaussian white noise injection was obtained before and after treatment with various concentrations of low-Mg(2+)/high-K(+) solution. A second-order Volterra kernel model was estimated for each of the input-output response pairs. The spectral energy of the responses was also computed, providing a quantitative measure of neuronal excitability. Changes in duration and amplitude of the first-order kernel correlated positively with the spectral energy increase following treatment with low-Mg(2+)/high-K(+) solution, suggesting that variations in neuronal excitability are coded by the system kernels, in part by differences to the profile of the first-order kernel. In particular, kernel duration was more sensitive than amplitude to changes in spectral energy, and correlated more strongly with kernel area. An oscillator network model of the hippocampal CA3 was constructed to investigate the relationship of kernel duration to network excitability, and the model was able to generate spontaneous, recurrent SLEs by increasing the duration of a mode function analogous to the first-order kernel. Results from the model indicated that disruption to the dynamic balance of feedback was responsible for seizure-like transitions and the observed intermittency of SLEs. A physiological candidate for feedback imbalance consistent with the network model is the destabilizing interaction of extracellular potassium and paroxysmal neuronal activation. Altogether, these results (1) validate a mathematical model for epileptiform activity in the hippocampus by quantifying and subsequently correlating its behavior with an experimental, in vitro model of epilepsy; (2) elucidate a possible mechanism for epileptogenesis; and (3) pave the way for control studies in epilepsy utilizing the herein proposed experimental and mathematical setup.
NASA Astrophysics Data System (ADS)
Zalay, Osbert C.; Serletis, Demitre; Carlen, Peter L.; Bardakjian, Berj L.
2010-06-01
Most forms of epilepsy are marked by seizure episodes that arise spontaneously. The low-magnesium/high-potassium (low-Mg2+/high-K+) experimental model of epilepsy is an acute model that produces spontaneous, recurring seizure-like events (SLEs). To elucidate the nature of spontaneous seizure transitions and their relationship to neuronal excitability, whole-cell recordings from the intact hippocampus were undertaken in vitro, and the response of hippocampal CA3 neurons to Gaussian white noise injection was obtained before and after treatment with various concentrations of low-Mg2+/high-K+ solution. A second-order Volterra kernel model was estimated for each of the input-output response pairs. The spectral energy of the responses was also computed, providing a quantitative measure of neuronal excitability. Changes in duration and amplitude of the first-order kernel correlated positively with the spectral energy increase following treatment with low-Mg2+/high-K+ solution, suggesting that variations in neuronal excitability are coded by the system kernels, in part by differences to the profile of the first-order kernel. In particular, kernel duration was more sensitive than amplitude to changes in spectral energy, and correlated more strongly with kernel area. An oscillator network model of the hippocampal CA3 was constructed to investigate the relationship of kernel duration to network excitability, and the model was able to generate spontaneous, recurrent SLEs by increasing the duration of a mode function analogous to the first-order kernel. Results from the model indicated that disruption to the dynamic balance of feedback was responsible for seizure-like transitions and the observed intermittency of SLEs. A physiological candidate for feedback imbalance consistent with the network model is the destabilizing interaction of extracellular potassium and paroxysmal neuronal activation. Altogether, these results (1) validate a mathematical model for epileptiform activity in the hippocampus by quantifying and subsequently correlating its behavior with an experimental, in vitro model of epilepsy; (2) elucidate a possible mechanism for epileptogenesis; and (3) pave the way for control studies in epilepsy utilizing the herein proposed experimental and mathematical setup.
Brain functional connectivity changes in children that differ in impulsivity temperamental trait
Inuggi, Alberto; Sanz-Arigita, Ernesto; González-Salinas, Carmen; Valero-García, Ana V.; García-Santos, Jose M.; Fuentes, Luis J.
2014-01-01
Impulsivity is a core personality trait forming part of normal behavior and contributing to adaptive functioning. However, in typically developing children, altered patterns of impulsivity constitute a risk factor for the development of behavioral problems. Since both pathological and non-pathological states are commonly characterized by continuous transitions, we used a correlative approach to investigate the potential link between personality and brain dynamics. We related brain functional connectivity of typically developing children, measured with magnetic resonance imaging at rest, with their impulsivity scores obtained from a questionnaire completed by their parents. We first looked for areas within the default mode network (DMN) whose functional connectivity might be modulated by trait impulsivity. Then, we calculated the functional connectivity among these regions and the rest of the brain in order to assess if impulsivity trait altered their relationships. We found two DMN clusters located at the posterior cingulate cortex and the right angular gyrus which were negatively correlated with impulsivity scores. The whole-brain correlation analysis revealed the classic network of correlating and anti-correlating areas with respect to the DMN. The impulsivity trait modulated such pattern showing that the canonical anti-phasic relation between DMN and action-related network was reduced in high impulsive children. These results represent the first evidence that the impulsivity, measured as personality trait assessed through parents' report, exerts a modulatory influence over the functional connectivity of resting state brain networks in typically developing children. The present study goes further to connect developmental approaches, mainly based on data collected through the use of questionnaires, and behavioral neuroscience, interested in how differences in brain structure and functions reflect in differences in behavior. PMID:24834038
Brain functional connectivity changes in children that differ in impulsivity temperamental trait.
Inuggi, Alberto; Sanz-Arigita, Ernesto; González-Salinas, Carmen; Valero-García, Ana V; García-Santos, Jose M; Fuentes, Luis J
2014-01-01
Impulsivity is a core personality trait forming part of normal behavior and contributing to adaptive functioning. However, in typically developing children, altered patterns of impulsivity constitute a risk factor for the development of behavioral problems. Since both pathological and non-pathological states are commonly characterized by continuous transitions, we used a correlative approach to investigate the potential link between personality and brain dynamics. We related brain functional connectivity of typically developing children, measured with magnetic resonance imaging at rest, with their impulsivity scores obtained from a questionnaire completed by their parents. We first looked for areas within the default mode network (DMN) whose functional connectivity might be modulated by trait impulsivity. Then, we calculated the functional connectivity among these regions and the rest of the brain in order to assess if impulsivity trait altered their relationships. We found two DMN clusters located at the posterior cingulate cortex and the right angular gyrus which were negatively correlated with impulsivity scores. The whole-brain correlation analysis revealed the classic network of correlating and anti-correlating areas with respect to the DMN. The impulsivity trait modulated such pattern showing that the canonical anti-phasic relation between DMN and action-related network was reduced in high impulsive children. These results represent the first evidence that the impulsivity, measured as personality trait assessed through parents' report, exerts a modulatory influence over the functional connectivity of resting state brain networks in typically developing children. The present study goes further to connect developmental approaches, mainly based on data collected through the use of questionnaires, and behavioral neuroscience, interested in how differences in brain structure and functions reflect in differences in behavior.
ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator
NASA Astrophysics Data System (ADS)
Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.
2016-03-01
New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.
Feature detection in satellite images using neural network technology
NASA Technical Reports Server (NTRS)
Augusteijn, Marijke F.; Dimalanta, Arturo S.
1992-01-01
A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused.
Network dynamics and systems biology
NASA Astrophysics Data System (ADS)
Norrell, Johannes A.
The physics of complex systems has grown considerably as a field in recent decades, largely due to improved computational technology and increased availability of systems level data. One area in which physics is of growing relevance is molecular biology. A new field, systems biology, investigates features of biological systems as a whole, a strategy of particular importance for understanding emergent properties that result from a complex network of interactions. Due to the complicated nature of the systems under study, the physics of complex systems has a significant role to play in elucidating the collective behavior. In this dissertation, we explore three problems in the physics of complex systems, motivated in part by systems biology. The first of these concerns the applicability of Boolean models as an approximation of continuous systems. Studies of gene regulatory networks have employed both continuous and Boolean models to analyze the system dynamics, and the two have been found produce similar results in the cases analyzed. We ask whether or not Boolean models can generically reproduce the qualitative attractor dynamics of networks of continuously valued elements. Using a combination of analytical techniques and numerical simulations, we find that continuous networks exhibit two effects---an asymmetry between on and off states, and a decaying memory of events in each element's inputs---that are absent from synchronously updated Boolean models. We show that in simple loops these effects produce exactly the attractors that one would predict with an analysis of the stability of Boolean attractors, but in slightly more complicated topologies, they can destabilize solutions that are stable in the Boolean approximation, and can stabilize new attractors. Second, we investigate ensembles of large, random networks. Of particular interest is the transition between ordered and disordered dynamics, which is well characterized in Boolean systems. Networks at the transition point, called critical, exhibit many of the features of regulatory networks, and recent studies suggest that some specific regulatory networks are indeed near-critical. We ask whether certain statistical measures of the ensemble behavior of large continuous networks are reproduced by Boolean models. We find that, in spite of the lack of correspondence between attractors observed in smaller systems, the statistical characterization given by the continuous and Boolean models show close agreement, and the transition between order and disorder known in Boolean systems can occur in continuous systems as well. One effect that is not present in Boolean systems, the failure of information to propagate down chains of elements of arbitrary length, is present in a class of continuous networks. In these systems, a modified Boolean theory that takes into account the collective effect of propagation failure on chains throughout the network gives a good description of the observed behavior. We find that propagation failure pushes the system toward greater order, resulting in a partial or complete suppression of the disordered phase. Finally, we explore a dynamical process of direct biological relevance: asymmetric cell division in A. thaliana. The long term goal is to develop a model for the process that accurately accounts for both wild type and mutant behavior. To contribute to this endeavor, we use confocal microscopy to image roots in a SHORT-ROOT inducible mutant. We compute correlation functions between the locations of asymmetrically divided cells, and we construct stochastic models based on a few simple assumptions that accurately predict the non-zero correlations. Our result shows that intracellular processes alone cannot be responsible for the observed divisions, and that an intercell signaling mechanism could account for the measured correlations.
Development of thalamocortical connectivity during infancy and its cognitive correlations.
Alcauter, Sarael; Lin, Weili; Smith, J Keith; Short, Sarah J; Goldman, Barbara D; Reznick, J Steven; Gilmore, John H; Gao, Wei
2014-07-02
Although commonly viewed as a sensory information relay center, the thalamus has been increasingly recognized as an essential node in various higher-order cognitive circuits, and the underlying thalamocortical interaction mechanism has attracted increasing scientific interest. However, the development of thalamocortical connections and how such development relates to cognitive processes during the earliest stages of life remain largely unknown. Leveraging a large human pediatric sample (N = 143) with longitudinal resting-state fMRI scans and cognitive data collected during the first 2 years of life, we aimed to characterize the age-dependent development of thalamocortical connectivity patterns by examining the functional relationship between the thalamus and nine cortical functional networks and determine the correlation between thalamocortical connectivity and cognitive performance at ages 1 and 2 years. Our results revealed that the thalamus-sensorimotor and thalamus-salience connectivity networks were already present in neonates, whereas the thalamus-medial visual and thalamus-default mode network connectivity emerged later, at 1 year of age. More importantly, brain-behavior analyses based on the Mullen Early Learning Composite Score and visual-spatial working memory performance measured at 1 and 2 years of age highlighted significant correlations with the thalamus-salience network connectivity. These results provide new insights into the understudied early functional brain development process and shed light on the behavioral importance of the emerging thalamocortical connectivity during infancy. Copyright © 2014 the authors 0270-6474/14/349067-09$15.00/0.
Measuring and modeling correlations in multiplex networks.
Nicosia, Vincenzo; Latora, Vito
2015-09-01
The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.
Chong, Joanna Su Xian; Liu, Siwei; Loke, Yng Miin; Hilal, Saima; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Chen, Christopher Li-Hsian; Zhou, Juan
2017-11-01
Network-sensitive neuroimaging methods have been used to characterize large-scale brain network degeneration in Alzheimer's disease and its prodrome. However, few studies have investigated the combined effect of Alzheimer's disease and cerebrovascular disease on brain network degeneration. Our study sought to examine the intrinsic functional connectivity and structural covariance network changes in 235 prodromal and clinical Alzheimer's disease patients with and without cerebrovascular disease. We focused particularly on two higher-order cognitive networks-the default mode network and the executive control network. We found divergent functional connectivity and structural covariance patterns in Alzheimer's disease patients with and without cerebrovascular disease. Alzheimer's disease patients without cerebrovascular disease, but not Alzheimer's disease patients with cerebrovascular disease, showed reductions in posterior default mode network functional connectivity. By comparison, while both groups exhibited parietal reductions in executive control network functional connectivity, only Alzheimer's disease patients with cerebrovascular disease showed increases in frontal executive control network connectivity. Importantly, these distinct executive control network changes were recapitulated in prodromal Alzheimer's disease patients with and without cerebrovascular disease. Across Alzheimer's disease patients with and without cerebrovascular disease, higher default mode network functional connectivity z-scores correlated with greater hippocampal volumes while higher executive control network functional connectivity z-scores correlated with greater white matter changes. In parallel, only Alzheimer's disease patients without cerebrovascular disease showed increased default mode network structural covariance, while only Alzheimer's disease patients with cerebrovascular disease showed increased executive control network structural covariance compared to controls. Our findings demonstrate the differential neural network structural and functional changes in Alzheimer's disease with and without cerebrovascular disease, suggesting that the underlying pathology of Alzheimer's disease patients with cerebrovascular disease might differ from those without cerebrovascular disease and reflect a combination of more severe cerebrovascular disease and less severe Alzheimer's disease network degeneration phenotype. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Robustness of Oscillatory Behavior in Correlated Networks
Sasai, Takeyuki; Morino, Kai; Tanaka, Gouhei; Almendral, Juan A.; Aihara, Kazuyuki
2015-01-01
Understanding network robustness against failures of network units is useful for preventing large-scale breakdowns and damages in real-world networked systems. The tolerance of networked systems whose functions are maintained by collective dynamical behavior of the network units has recently been analyzed in the framework called dynamical robustness of complex networks. The effect of network structure on the dynamical robustness has been examined with various types of network topology, but the role of network assortativity, or degree–degree correlations, is still unclear. Here we study the dynamical robustness of correlated (assortative and disassortative) networks consisting of diffusively coupled oscillators. Numerical analyses for the correlated networks with Poisson and power-law degree distributions show that network assortativity enhances the dynamical robustness of the oscillator networks but the impact of network disassortativity depends on the detailed network connectivity. Furthermore, we theoretically analyze the dynamical robustness of correlated bimodal networks with two-peak degree distributions and show the positive impact of the network assortativity. PMID:25894574
Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; ...
2016-02-01
For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less
The Dichotomy in Degree Correlation of Biological Networks
Hao, Dapeng; Li, Chuanxing
2011-01-01
Most complex networks from different areas such as biology, sociology or technology, show a correlation on node degree where the possibility of a link between two nodes depends on their connectivity. It is widely believed that complex networks are either disassortative (links between hubs are systematically suppressed) or assortative (links between hubs are enhanced). In this paper, we analyze a variety of biological networks and find that they generally show a dichotomous degree correlation. We find that many properties of biological networks can be explained by this dichotomy in degree correlation, including the neighborhood connectivity, the sickle-shaped clustering coefficient distribution and the modularity structure. This dichotomy distinguishes biological networks from real disassortative networks or assortative networks such as the Internet and social networks. We suggest that the modular structure of networks accounts for the dichotomy in degree correlation and vice versa, shedding light on the source of modularity in biological networks. We further show that a robust and well connected network necessitates the dichotomy of degree correlation, suggestive of an evolutionary motivation for its existence. Finally, we suggest that a dichotomous degree correlation favors a centrally connected modular network, by which the integrity of network and specificity of modules might be reconciled. PMID:22164269
Engagement of large-scale networks is related to individual differences in inhibitory control
Congdon, Eliza; Mumford, Jeanette A.; Cohen, Jessica R.; Galvan, Adriana; Aron, Adam R.; Xue, Gui; Miller, Eric; Poldrack, Russell A.
2010-01-01
Understanding which brain regions regulate the execution, and suppression, of goal-directed behavior has implications for a number of areas of research. In particular, understanding which brain regions engaged during tasks requiring the execution and inhibition of a motor response provides insight into the mechanisms underlying individual differences in response inhibition ability. However, neuroimaging studies examing the relation between activation and stopping have been inconsistent regarding the direction of the relationship, and also regarding the anatomical location of regions that correlate with behavior. These limitations likely arise from the relatively low power of vox-elwise correlations with small sample sizes. Here, we pooled data over five separate fMRI studies of the Stop-signal task in order to obtain a sufficiently large sample size to robustly detect brain/behavior correlations. In addition, rather than performing mass univariate correlation analysis across all voxels, we increased statistical power by reducing the dimensionality of the data set using independent components analysis and then examined correlations between behavior and the resulting component scores. We found that components reflecting activity in regions thought to be involved in stopping were associated with better stopping ability, while activity in a default-mode network was associated with poorer stopping ability across individuals. These results clearly show a relationship between individual differences in stopping ability in specific activated networks, including regions known to be critical for the behavior. The results also highlight the usefulness of using dimensionality reduction to increase the power to detect brain/behavior correlations in individual differences research. PMID:20600962
NASA Astrophysics Data System (ADS)
O'Neill, George C.; Barratt, Eleanor L.; Hunt, Benjamin A. E.; Tewarie, Prejaas K.; Brookes, Matthew J.
2015-11-01
The human brain can be divided into multiple areas, each responsible for different aspects of behaviour. Healthy brain function relies upon efficient connectivity between these areas and, in recent years, neuroimaging has been revolutionised by an ability to estimate this connectivity. In this paper we discuss measurement of network connectivity using magnetoencephalography (MEG), a technique capable of imaging electrophysiological brain activity with good (~5 mm) spatial resolution and excellent (~1 ms) temporal resolution. The rich information content of MEG facilitates many disparate measures of connectivity between spatially separate regions and in this paper we discuss a single metric known as power envelope correlation. We review in detail the methodology required to measure power envelope correlation including (i) projection of MEG data into source space, (ii) removing confounds introduced by the MEG inverse problem and (iii) estimation of connectivity itself. In this way, we aim to provide researchers with a description of the key steps required to assess envelope based functional networks, which are thought to represent an intrinsic mode of coupling in the human brain. We highlight the principal findings of the techniques discussed, and furthermore, we show evidence that this method can probe how the brain forms and dissolves multiple transient networks on a rapid timescale in order to support current processing demand. Overall, power envelope correlation offers a unique and verifiable means to gain novel insights into network coordination and is proving to be of significant value in elucidating the neural dynamics of the human connectome in health and disease.
Neural Correlates of Gender Differences in Reputation Building
Garbarini, Francesca; Boero, Riccardo; D'Agata, Federico; Bravo, Giangiacomo; Mosso, Cristina; Cauda, Franco; Duca, Sergio; Geminiani, Giuliano; Sacco, Katiuscia
2014-01-01
Gender differences in cooperative choices and their neural correlates were investigated in a situation where reputation represented a crucial issue. Males and females were involved in an economic exchange (trust game) where economic and reputational payoffs had to be balanced in order to increase personal welfare. At the behavioral level, females showed a stronger reaction to negative reputation judgments that led to higher cooperation than males, measured by back transfers in the game. The neuroanatomical counterpart of this gender difference was found within the reward network (engaged in producing expectations of positive results) and reputation-related brain networks, such as the self-control network (engaged in strategically resisting the temptation to defect) and the mentalizing network (engaged in thinking about how one is viewed by others), in which the dorsolateral prefrontal cortex (DLPFC) and the medial (M)PFC respectively play a crucial role. Furthermore, both DLPFC and MPFC activity correlated with the amount of back transfer, as well as with the personality dimensions assessed with the Big-Five Questionnaire (BFQ-2). Males, according to their greater DLPFC recruitment and their higher level of the BFQ-2 subscale of Dominance, were more focused on implementing a profit-maximizing strategy, pursuing this target irrespectively of others' judgments. On the contrary, females, according to their greater MPFC activity and their lower level of Dominance, were more focused on the reputation per se and not on the strategic component of reputation building. These findings shed light on the sexual dimorphism related to cooperative behavior and its neural correlates. PMID:25180581
Analysis of a large-scale weighted network of one-to-one human communication
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Saramäki, Jari; Hyvönen, Jörkki; Szabó, Gábor; Argollo de Menezes, M.; Kaski, Kimmo; Barabási, Albert-László; Kertész, János
2007-06-01
We construct a connected network of 3.9 million nodes from mobile phone call records, which can be regarded as a proxy for the underlying human communication network at the societal level. We assign two weights on each edge to reflect the strength of social interaction, which are the aggregate call duration and the cumulative number of calls placed between the individuals over a period of 18 weeks. We present a detailed analysis of this weighted network by examining its degree, strength, and weight distributions, as well as its topological assortativity and weighted assortativity, clustering and weighted clustering, together with correlations between these quantities. We give an account of motif intensity and coherence distributions and compare them to a randomized reference system. We also use the concept of link overlap to measure the number of common neighbours any two adjacent nodes have, which serves as a useful local measure for identifying the interconnectedness of communities. We report a positive correlation between the overlap and weight of a link, thus providing strong quantitative evidence for the weak ties hypothesis, a central concept in social network analysis. The percolation properties of the network are found to depend on the type and order of removed links, and they can help understand how the local structure of the network manifests itself at the global level. We hope that our results will contribute to modelling weighted large-scale social networks, and believe that the systematic approach followed here can be adopted to study other weighted networks.
Influence of cerebrovascular disease on brain networks in prodromal and clinical Alzheimer’s disease
Chong, Joanna Su Xian; Liu, Siwei; Loke, Yng Miin; Hilal, Saima; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Chen, Christopher Li-Hsian
2017-01-01
Abstract Network-sensitive neuroimaging methods have been used to characterize large-scale brain network degeneration in Alzheimer’s disease and its prodrome. However, few studies have investigated the combined effect of Alzheimer’s disease and cerebrovascular disease on brain network degeneration. Our study sought to examine the intrinsic functional connectivity and structural covariance network changes in 235 prodromal and clinical Alzheimer’s disease patients with and without cerebrovascular disease. We focused particularly on two higher-order cognitive networks—the default mode network and the executive control network. We found divergent functional connectivity and structural covariance patterns in Alzheimer’s disease patients with and without cerebrovascular disease. Alzheimer’s disease patients without cerebrovascular disease, but not Alzheimer’s disease patients with cerebrovascular disease, showed reductions in posterior default mode network functional connectivity. By comparison, while both groups exhibited parietal reductions in executive control network functional connectivity, only Alzheimer’s disease patients with cerebrovascular disease showed increases in frontal executive control network connectivity. Importantly, these distinct executive control network changes were recapitulated in prodromal Alzheimer’s disease patients with and without cerebrovascular disease. Across Alzheimer’s disease patients with and without cerebrovascular disease, higher default mode network functional connectivity z-scores correlated with greater hippocampal volumes while higher executive control network functional connectivity z-scores correlated with greater white matter changes. In parallel, only Alzheimer’s disease patients without cerebrovascular disease showed increased default mode network structural covariance, while only Alzheimer’s disease patients with cerebrovascular disease showed increased executive control network structural covariance compared to controls. Our findings demonstrate the differential neural network structural and functional changes in Alzheimer’s disease with and without cerebrovascular disease, suggesting that the underlying pathology of Alzheimer’s disease patients with cerebrovascular disease might differ from those without cerebrovascular disease and reflect a combination of more severe cerebrovascular disease and less severe Alzheimer’s disease network degeneration phenotype. PMID:29053778
Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim
2016-01-01
The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods.
Revisiting node-based SIR models in complex networks with degree correlations
NASA Astrophysics Data System (ADS)
Wang, Yi; Cao, Jinde; Alofi, Abdulaziz; AL-Mazrooei, Abdullah; Elaiw, Ahmed
2015-11-01
In this paper, we consider two growing networks which will lead to the degree-degree correlations between two nearest neighbors in the network. When the network grows to some certain size, we introduce an SIR-like disease such as pandemic influenza H1N1/09 to the population. Due to its rapid spread, the population size changes slowly, and thus the disease spreads on correlated networks with approximately fixed size. To predict the disease evolution on correlated networks, we first review two node-based SIR models incorporating degree correlations and an edge-based SIR model without considering degree correlation, and then compare the predictions of these models with stochastic SIR simulations, respectively. We find that the edge-based model, even without considering degree correlations, agrees much better than the node-based models incorporating degree correlations with stochastic SIR simulations in many respects. Moreover, simulation results show that for networks with positive correlation, the edge-based model provides a better upper bound of the cumulative incidence than the node-based SIR models, whereas for networks with negative correlation, it provides a lower bound of the cumulative incidence.
Spike Code Flow in Cultured Neuronal Networks.
Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei
2016-01-01
We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.
Gao, Wei; Lin, Weili
2012-01-01
Recent reports demonstrate the anti-correlated behaviors between the default (DF) and the dorsal attention (DA) networks. We aimed to investigate the roles of the frontal parietal control (FPC) network in regulating the two anti-correlated networks through three experimental conditions, including resting, continuous self-paced/attended sequential finger tapping (FT), and natural movie watching (MW), respectively. The two goal-directed tasks were chosen to engage either one of the two competing networks-FT for DA whereas MW for default. We hypothesized that FPC will selectively augment/suppress either network depending on how the task targets the specific network; FPC will positively correlate with the target network, but negatively correlate with the network anti-correlated with the target network. We further hypothesized that significant causal links from FPC to both DA and DF are present during all three experimental conditions, supporting the initiative regulating role of FPC over the two opposing systems. Consistent with our hypotheses, FPC exhibited a significantly higher positive correlation with DA (P = 0.0095) whereas significantly more negative correlation with default (P = 0.0025) during FT when compared to resting. Completely opposite to that observed during FT, the FPC was significantly anti-correlated with DA (P = 2.1e-6) whereas positively correlated with default (P = 0.0035) during MW. Furthermore, extensive causal links from FPC to both DA and DF were observed across all three experimental states. Together, our results strongly support the notion that the FPC regulates the anti-correlated default and DA networks. Copyright © 2011 Wiley Periodicals, Inc.
Emotions promote social interaction by synchronizing brain activity across individuals
Nummenmaa, Lauri; Glerean, Enrico; Viinikainen, Mikko; Jääskeläinen, Iiro P.; Hari, Riitta; Sams, Mikko
2012-01-01
Sharing others’ emotional states may facilitate understanding their intentions and actions. Here we show that networks of brain areas “tick together” in participants who are viewing similar emotional events in a movie. Participants’ brain activity was measured with functional MRI while they watched movies depicting unpleasant, neutral, and pleasant emotions. After scanning, participants watched the movies again and continuously rated their experience of pleasantness–unpleasantness (i.e., valence) and of arousal–calmness. Pearson’s correlation coefficient was used to derive multisubject voxelwise similarity measures [intersubject correlations (ISCs)] of functional MRI data. Valence and arousal time series were used to predict the moment-to-moment ISCs computed using a 17-s moving average. During movie viewing, participants' brain activity was synchronized in lower- and higher-order sensory areas and in corticolimbic emotion circuits. Negative valence was associated with increased ISC in the emotion-processing network (thalamus, ventral striatum, insula) and in the default-mode network (precuneus, temporoparietal junction, medial prefrontal cortex, posterior superior temporal sulcus). High arousal was associated with increased ISC in the somatosensory cortices and visual and dorsal attention networks comprising the visual cortex, bilateral intraparietal sulci, and frontal eye fields. Seed-voxel–based correlation analysis confirmed that these sets of regions constitute dissociable, functional networks. We propose that negative valence synchronizes individuals’ brain areas supporting emotional sensations and understanding of another’s actions, whereas high arousal directs individuals’ attention to similar features of the environment. By enhancing the synchrony of brain activity across individuals, emotions may promote social interaction and facilitate interpersonal understanding. PMID:22623534
Strong correlations in gravity and biophysics
NASA Astrophysics Data System (ADS)
Krotov, Dmitry
The unifying theme of this dissertation is the use of correlations. In the first part (chapter 2), we investigate correlations in quantum field theories in de Sitter space. In the second part (chapters 3,4,5), we use correlations to investigate a theoretical proposal that real (observed in nature) transcriptional networks of biological organisms are operating at a critical point in their phase diagram. In chapter 2 we study the infrared dependence of correlators in various external backgrounds. Using the Schwinger-Keldysh formalism we calculate loop corrections to the correlators in the case of the Poincare patch and the complete de Sitter space. In the case of the Poincare patch, the loop correction modifies the behavior of the correlator at large distances. In the case of the complete de Sitter space, the loop correction has a strong dependence on the infrared cutoff in the past. It grows linearly with time, suggesting that at some point the correlations become strong and break the symmetry of the classical background. In chapter 3 we derive the signatures of critical behavior in a model organism, the embryo of Drosophila melanogaster. They are: strong correlations in the fluctuations of different genes, a slowing of dynamics, long range correlations in space, and departures from a Gaussian distribution of these fluctuations. We argue that these signatures are observed experimentally. In chapter 4 we construct an effective theory for the zero mode in this system. This theory is different from the standard Landau-Ginsburg description. It contains gauge fields (the result of the broken translational symmetry inside the cell), which produce observable contributions to the two-point function of the order parameter. We show that the behavior of the two-point function for the network of N genes is described by the action of a relativistic particle moving on the surface of the N - 1 dimensional sphere. We derive a theoretical bound on the decay of the correlations and compare it with experimental data. How difficult is it to tune a network to criticality? In chapter 5 we construct the space of all possible networks within a simple thermodynamic model of biological enhancers. We demonstrate that there is a reasonable number of models within this framework that accurately capture the mean expression profiles of the gap genes that are observed experimentally.
NASA Technical Reports Server (NTRS)
Cummins, Kenneth L.; Carey, Lawrence D.; Schultz, Christopher J.; Bateman, Monte G.; Cecil, Daniel J.; Rudlosky, Scott D.; Petersen, Walter Arthur; Blakeslee, Richard J.; Goodman, Steven J.
2011-01-01
In order to produce useful proxy data for the GOES-R Geostationary Lightning Mapper (GLM) in regions not covered by VLF lightning mapping systems, we intend to employ data produced by ground-based (regional or global) VLF/LF lightning detection networks. Before using these data in GLM Risk Reduction tasks, it is necessary to have a quantitative understanding of the performance of these networks, in terms of CG flash/stroke DE, cloud flash/pulse DE, location accuracy, and CLD/CG classification error. This information is being obtained through inter-comparison with LMAs and well-quantified VLF/LF lightning networks. One of our approaches is to compare "bulk" counting statistics on the spatial scale of convective cells, in order to both quantify relative performance and observe variations in cell-based temporal trends provided by each network. In addition, we are using microsecond-level stroke/pulse time correlation to facilitate detailed inter-comparisons at a more-fundamental level. The current development status of our ground-based inter-comparison and evaluation tools will be presented, and performance metrics will be discussed through a comparison of Vaisala s Global Lightning Dataset (GLD360) with the NLDN at locations within and outside the U.S.
NASA Astrophysics Data System (ADS)
Cummins, K. L.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; Cecil, D. J.; Rudlosky, S. D.; Petersen, W. A.; Blakeslee, R. J.; Goodman, S. J.
2011-12-01
In order to produce useful proxy data for the GOES-R Geostationary Lightning Mapper (GLM) in regions not covered by VLF lightning mapping systems, we intend to employ data produced by ground-based (regional or global) VLF/LF lightning detection networks. Before using these data in GLM Risk Reduction tasks, it is necessary to have a quantitative understanding of the performance of these networks, in terms of CG flash/stroke DE, cloud flash/pulse DE, location accuracy, and CLD/CG classification error. This information is being obtained through inter-comparison with LMAs and well-quantified VLF/LF lightning networks. One of our approaches is to compare "bulk" counting statistics on the spatial scale of convective cells, in order to both quantify relative performance and observe variations in cell-based temporal trends provided by each network. In addition, we are using microsecond-level stroke/pulse time correlation to facilitate detailed inter-comparisons at a more-fundamental level. The current development status of our ground-based inter-comparison and evaluation tools will be presented, and performance metrics will be discussed through a comparison of Vaisala's Global Lightning Dataset (GLD360) with the NLDN at locations within and outside the U.S.
Correlation between elastic and plastic deformations of partially cured epoxy networks
NASA Astrophysics Data System (ADS)
Müller, Michael; Böhm, Robert; Geller, Sirko; Kupfer, Robert; Jäger, Hubert; Gude, Maik
2018-05-01
The thermo-mechanical behavior of polymer matrix materials is strongly dependent on the curing reaction as well as temperature and time. To date, investigations of epoxy resins and their composites mainly focused on the elastic domain because plastic deformation of cross-linked polymer networks was considered as irrelevant or not feasible. This paper presents a novel approach which combines both elastic and plastic domain. Based on an analytical framework describing the storage modulus, analogous parameter combinations are defined in order to reduce complexity when variations in temperature, strain rate and degree of cure are encountered.
Frontal Parietal Control Network Regulates the Anti-Correlated Default and Dorsal Attention Networks
Gao, Wei; Lin, Weili
2011-01-01
Recent reports demonstrate the anti-correlated behaviors between the default and the dorsal attention (DA) networks. We aimed to investigate the roles of the frontal parietal control (FPC) network in regulating the two anti-correlated networks through three experimental conditions, including resting, continuous self-paced/attended sequential finger tapping (FT), and natural movie watching (MW), respectively. The two goal-directed tasks were chosen to engage either one of the two competing networks—FT for DA whereas MW for default. We hypothesized that FPC will selectively augment/suppress either network depending on how the task targets the specific network; FPC will positively correlate with the target network, but negatively correlate with the network anti-correlated with the target network. We further hypothesized that significant causal links from FPC to both DA and DF are present during all three experimental conditions, supporting the initiative regulating role of FPC over the two opposing systems. Consistent with our hypotheses, FPC exhibited a significantly higher positive correlation with DA (P = 0.0095) whereas significantly more negative correlation with default (P = 0.0025) during FT when compared to resting. Completely opposite to that observed during FT, the FPC was significantly anti-correlated with DA (P = 2.1e-6) whereas positively correlated with default (P = 0.0035) during MW. Furthermore, extensive causal links from FPC to both DA and DF were observed across all three experimental states. Together, our results strongly support the notion that the FPC regulates the anti-correlated default and DA networks. PMID:21391263
Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong
2012-01-01
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies.
Habeck, C; Gazes, Y; Razlighi, Q; Steffener, J; Brickman, A; Barulli, D; Salthouse, T; Stern, Y
2016-01-15
Analyses of large test batteries administered to individuals ranging from young to old have consistently yielded a set of latent variables representing reference abilities (RAs) that capture the majority of the variance in age-related cognitive change: Episodic Memory, Fluid Reasoning, Perceptual Processing Speed, and Vocabulary. In a previous paper (Stern et al., 2014), we introduced the Reference Ability Neural Network Study, which administers 12 cognitive neuroimaging tasks (3 for each RA) to healthy adults age 20-80 in order to derive unique neural networks underlying these 4 RAs and investigate how these networks may be affected by aging. We used a multivariate approach, linear indicator regression, to derive a unique covariance pattern or Reference Ability Neural Network (RANN) for each of the 4 RAs. The RANNs were derived from the neural task data of 64 younger adults of age 30 and below. We then prospectively applied the RANNs to fMRI data from the remaining sample of 227 adults of age 31 and above in order to classify each subject-task map into one of the 4 possible reference domains. Overall classification accuracy across subjects in the sample age 31 and above was 0.80±0.18. Classification accuracy by RA domain was also good, but variable; memory: 0.72±0.32; reasoning: 0.75±0.35; speed: 0.79±0.31; vocabulary: 0.94±0.16. Classification accuracy was not associated with cross-sectional age, suggesting that these networks, and their specificity to the respective reference domain, might remain intact throughout the age range. Higher mean brain volume was correlated with increased overall classification accuracy; better overall performance on the tasks in the scanner was also associated with classification accuracy. For the RANN network scores, we observed for each RANN that a higher score was associated with a higher corresponding classification accuracy for that reference ability. Despite the absence of behavioral performance information in the derivation of these networks, we also observed some brain-behavioral correlations, notably for the fluid-reasoning network whose network score correlated with performance on the memory and fluid-reasoning tasks. While age did not influence the expression of this RANN, the slope of the association between network score and fluid-reasoning performance was negatively associated with higher ages. These results provide support for the hypothesis that a set of specific, age-invariant neural networks underlies these four RAs, and that these networks maintain their cognitive specificity and level of intensity across age. Activation common to all 12 tasks was identified as another activation pattern resulting from a mean-contrast Partial-Least-Squares technique. This common pattern did show associations with age and some subject demographics for some of the reference domains, lending support to the overall conclusion that aspects of neural processing that are specific to any cognitive reference ability stay constant across age, while aspects that are common to all reference abilities differ across age. Copyright © 2015 Elsevier Inc. All rights reserved.
Towards Cloud Processing of GGOS Big Data
NASA Astrophysics Data System (ADS)
Weston, Stuart; Kim, Bumjun; Litchfield, Alan; Gulyaev, Sergei; Hall, Dylan; Chorao, Carlos; Ruthven, Andrew; Davies, Glyn; Lagos, Bruno; Christie, Don
2017-04-01
We report on our initial steps towards development of a cloud-like correlation infrastructure for geodetic Very Long Baseline Interferometry (VLBI), which in its raw format is of the order of 10-100 TB (big data). Data is generated by multiple VLBI radio telescopes, and is then used by for geodetic, geophysical, and astrometric research and operational activities through the International VLBI Service (IVS), as well as for corrections of GPS satellite orbits. Currently IVS data is correlated in several international Correlators (Correlation Centres), which receive data from individual radio telescope stations either in hard drives via regular mail service or via fibre using e-transfer mode. The latter is strongly limited by connectivity of existing correlation centres, which creates bottle necks and slows down the turnover of the data. This becomes critical in many applications - for example, it currently takes 1-2 weeks to generate the dUT1 parameter for corrections of GNSS orbits while less than 1-2 days delay is desirable. We started with a blade server at the AUT campus to emulate a cloud server using Virtual Machines (VMWare). The New Zealand Data Head node is connected to the high speed (100 Gbps) network ring circuit courtesy of the Research and Education Advanced Network New Zealand (REANNZ), with the additional nodes at remote physical sites connected via 10 Gbps fibre. We use real Australian Long Baseline Array (LBA) observational data from 6 radio telescopes in Australia, South Africa and New Zealand (15 baselines) of 1.5 hours in duration making 8 TB to emulate data transfer from remote locations and to provide a meaningful benchmark dataset for correlation. Data was successfully transferred using bespoke UDT network transfer tools and correlated with the speed-up factor of 0.8 using DiFX software correlator. In partnership with the New Zealand office of Catalyst IT Ltd we have moved this environment into Catalyst Cloud and report on the first correlation of a VLBI Dataset in a true cloud environment.
Structure and Dynamics Analysis on Plexin-B1 Rho GTPase Binding Domain as a Monomer and Dimer
2015-01-01
Plexin-B1 is a single-pass transmembrane receptor. Its Rho GTPase binding domain (RBD) can associate with small Rho GTPases and can also self-bind to form a dimer. In total, more than 400 ns of NAMD molecular dynamics simulations were performed on RBD monomer and dimer. Different analysis methods, such as root mean squared fluctuation (RMSF), order parameters (S2), dihedral angle correlation, transfer entropy, principal component analysis, and dynamical network analysis, were carried out to characterize the motions seen in the trajectories. RMSF results show that after binding, the L4 loop becomes more rigid, but the L2 loop and a number of residues in other regions become slightly more flexible. Calculating order parameters (S2) for CH, NH, and CO bonds on both backbone and side chain shows that the L4 loop becomes essentially rigid after binding, but part of the L1 loop becomes slightly more flexible. Backbone dihedral angle cross-correlation results show that loop regions such as the L1 loop including residues Q25 and G26, the L2 loop including residue R61, and the L4 loop including residues L89–R91, are highly correlated compared to other regions in the monomer form. Analysis of the correlated motions at these residues, such as Q25 and R61, indicate two signal pathways. Transfer entropy calculations on the RBD monomer and dimer forms suggest that the binding process should be driven by the L4 loop and C-terminal. However, after binding, the L4 loop functions as the motion responder. The signal pathways in RBD were predicted based on a dynamical network analysis method using the pathways predicted from the dihedral angle cross-correlation calculations as input. It is found that the shortest pathways predicted from both inputs can overlap, but signal pathway 2 (from F90 to R61) is more dominant and overlaps all of the routes of pathway 1 (from F90 to P111). This project confirms the allosteric mechanism in signal transmission inside the RBD network, which was in part proposed in the previous experimental study. PMID:24901636
The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers
Nigmatullina, Yuliya; Hellyer, Peter J.; Nachev, Parashkev; Sharp, David J.; Seemungal, Barry M.
2015-01-01
Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and perceptual responses to whole-body yaw-plane step rotations were: (1) Briefer and (2) uncorrelated (controls' reflex and perception were correlated). Voxel-based morphometry showed a selective gray matter (GM) reduction in dancers' vestibular cerebellum correlating with ballet experience. Dancers' vestibular cerebellar GM density reduction was related to shorter perceptual responses (i.e. positively correlated) but longer VOR duration (negatively correlated). Contrastingly, controls' vestibular cerebellar GM density negatively correlated with perception and VOR. Diffusion-tensor imaging showed that cerebral cortex white matter (WM) microstructure correlated with vestibular perception but only in controls. In summary, dancers display vestibular perceptuo-reflex dissociation with the neuronatomical correlate localized to the vestibular cerebellum. Controls' robust vestibular perception correlated with a cortical WM network conspicuously absent in dancers. Since primary vestibular afferents synapse in the vestibular cerebellum, we speculate that a cerebellar gating of perceptual signals to cortical regions mediates the training-related attenuation of vestibular perception and perceptuo-reflex uncoupling. PMID:24072889
Morelli, Federico
2017-01-01
Road and railway networks are pervasive elements of all environments, which have expanded intensively over the last century in all European countries. These transportation infrastructures have major impacts on the surrounding landscape, representing a threat to biodiversity. Roadsides and railways may function as corridors for dispersal of alien species in fragmented landscapes. However, only few studies have explored the spread of invasive species in relationship to transport network at large spatial scales. We performed a spatial mismatch analysis, based on a spatially explicit correlation test, to investigate whether alien plant species hotspots in Germany and Austria correspond to areas of high density of roads and railways. We tested this independently of the effects of dominant environments in each spatial unit, in order to focus just on the correlation between occurrence of alien species and density of linear transportation infrastructures. We found a significant spatial association between alien plant species hotspots distribution and roads and railways density in both countries. As expected, anthropogenic landscapes, such as urban areas, harbored more alien plant species, followed by water bodies. However, our findings suggested that the distribution of neobiota is strongest correlated to road/railways density than to land use composition. This study provides new evidence, from a transnational scale, that alien plants can use roadsides and rail networks as colonization corridors. Furthermore, our approach contributes to the understanding on alien plant species distribution at large spatial scale by the combination with spatial modeling procedures. PMID:28829818
Automated target recognition and tracking using an optical pattern recognition neural network
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
1991-01-01
The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.
Functional PET Evaluation of the Photosensitive Baboon
Szabó, C. Ákos; Salinas, Felipe S; Narayana, Shalini
2011-01-01
The baboon provides a unique, natural model of epilepsy in nonhuman primates. Additionally, photosensitivity of the epileptic baboon provides an important window into the mechanism of human idiopathic generalized epilepsies. In order to better understand the networks underlying this model, our group utilized functional positron emission tomography (PET) to compare cerebral blood flow (CBF) changes occurring during intermittent light stimulation (ILS) and rest between baboons photosensitive, epileptic (PS) and asymptomatic, control (CTL) animals. Our studies utilized subtraction and covariance analyses to evaluate CBF changes occurring during ILS across activation and resting states, but also evaluated CBF correlations with ketamine doses and interictal epileptic discharge (IED) rate during the resting state. Furthermore, our group also assessed the CBF responses related to variation of ILS in PS and CTL animals. CBF changes in the subtraction and covariance analyses reveal the physiological response and visual connectivity in CTL animals and pathophysiological networks underlying responses associated with the activation of ictal and interictal epileptic discharges in PS animals. The correlation with ketamine dose is essential to understanding differences in CBF responses between both groups, and correlations with IED rate provides an insight into an epileptic network independent of visual activation. Finally, the ILS frequency dependent changes can help develop a framework to study not only spatial connectivity but also the temporal sequence of regional activations and deactivations related to ILS. The maps generated by the CBF analyses will be used to target specific nodes in the epileptic network for electrophysiological evaluation using intracranial electrodes. PMID:22276085
Business cycles' correlation and systemic risk of the Japanese supplier-customer network.
Krichene, Hazem; Chakraborty, Abhijit; Inoue, Hiroyasu; Fujiwara, Yoshi
2017-01-01
This work aims to study and explain the business cycle correlations of the Japanese production network. We consider the supplier-customer network, which is a directed network representing the trading links between Japanese firms (links from suppliers to customers). The community structure of this network is determined by applying the Infomap algorithm. Each community is defined by its GDP and its associated business cycle. Business cycle correlations between communities are estimated based on copula theory. Then, based on firms' attributes and network topology, these correlations are explained through linear econometric models. The results show strong evidence of business cycle correlations in the Japanese production network. A significant systemic risk is found for high negative or positive shocks. These correlations are explained mainly by the sector and by geographic similarities. Moreover, our results highlight the higher vulnerability of small communities and small firms, which is explained by the disassortative mixing of the production network.
Business cycles’ correlation and systemic risk of the Japanese supplier-customer network
Chakraborty, Abhijit; Inoue, Hiroyasu; Fujiwara, Yoshi
2017-01-01
This work aims to study and explain the business cycle correlations of the Japanese production network. We consider the supplier-customer network, which is a directed network representing the trading links between Japanese firms (links from suppliers to customers). The community structure of this network is determined by applying the Infomap algorithm. Each community is defined by its GDP and its associated business cycle. Business cycle correlations between communities are estimated based on copula theory. Then, based on firms’ attributes and network topology, these correlations are explained through linear econometric models. The results show strong evidence of business cycle correlations in the Japanese production network. A significant systemic risk is found for high negative or positive shocks. These correlations are explained mainly by the sector and by geographic similarities. Moreover, our results highlight the higher vulnerability of small communities and small firms, which is explained by the disassortative mixing of the production network. PMID:29059233
Sikkink, Kristin L; Reynolds, Rose M; Cresko, William A; Phillips, Patrick C
2015-05-01
Selection in novel environments can lead to a coordinated evolutionary response across a suite of characters. Environmental conditions can also potentially induce changes in the genetic architecture of complex traits, which in turn could alter the pattern of the multivariate response to selection. We describe a factorial selection experiment using the nematode Caenorhabditis remanei in which two different stress-related phenotypes (heat and oxidative stress resistance) were selected under three different environmental conditions. The pattern of covariation in the evolutionary response between phenotypes or across environments differed depending on the environment in which selection occurred, including asymmetrical responses to selection in some cases. These results indicate that variation in pleiotropy across the stress response network is highly sensitive to the external environment. Our findings highlight the complexity of the interaction between genes and environment that influences the ability of organisms to acclimate to novel environments. They also make clear the need to identify the underlying genetic basis of genetic correlations in order understand how patterns of pleiotropy are distributed across complex genetic networks. © 2015 The Author(s).
Sikkink, Kristin L.; Reynolds, Rose M.; Cresko, William A.; Phillips, Patrick C.
2017-01-01
Selection in novel environments can lead to a coordinated evolutionary response across a suite of characters. Environmental conditions can also potentially induce changes in the genetic architecture of complex traits, which in turn could alter the pattern of the multivariate response to selection. We describe a factorial selection experiment using the nematode Caenorhabditis remanei in which two different stress-related phenotypes (heat and oxidative stress resistance) were selected under three different environmental conditions. The pattern of covariation in the evolutionary response between phenotypes or across environments differed depending on the environment in which selection occurred, including asymmetrical responses to selection in some cases. These results indicate that variation in pleiotropy across the stress response network is highly sensitive to the external environment. Our findings highlight the complexity of the interaction between genes and environment that influences the ability of organisms to acclimate to novel environments. They also make clear the need to identify the underlying genetic basis of genetic correlations in order understand how patterns of pleiotropy are distributed across complex genetic networks. PMID:25809411
Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin
2011-02-14
The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations. Copyright © 2010 Elsevier Inc. All rights reserved.
Loneliness, Social Networks, and Health: A Cross-Sectional Study in Three Countries.
Rico-Uribe, Laura Alejandra; Caballero, Francisco Félix; Olaya, Beatriz; Tobiasz-Adamczyk, Beata; Koskinen, Seppo; Leonardi, Matilde; Haro, Josep Maria; Chatterji, Somnath; Ayuso-Mateos, José Luis; Miret, Marta
2016-01-01
It is widely recognized that social networks and loneliness have effects on health. The present study assesses the differential association that the components of the social network and the subjective perception of loneliness have with health, and analyzes whether this association is different across different countries. A total of 10 800 adults were interviewed in Finland, Poland and Spain. Loneliness was assessed by means of the 3-item UCLA Loneliness Scale. Individuals' social networks were measured by asking about the number of members in the network, how often they had contacts with these members, and whether they had a close relationship. The differential association of loneliness and the components of the social network with health was assessed by means of hierarchical linear regression models, controlling for relevant covariates. In all three countries, loneliness was the variable most strongly correlated with health after controlling for depression, age, and other covariates. Loneliness contributed more strongly to health than any component of the social network. The relationship between loneliness and health was stronger in Finland (|β| = 0.25) than in Poland (|β| = 0.16) and Spain (|β| = 0.18). Frequency of contact was the only component of the social network that was moderately correlated with health. Loneliness has a stronger association with health than the components of the social network. This association is similar in three different European countries with different socio-economic and health characteristics and welfare systems. The importance of evaluating and screening feelings of loneliness in individuals with health problems should be taken into account. Further studies are needed in order to be able to confirm the associations found in the present study and infer causality.
Network support, technology use, depression, and ART adherence among HIV-positive MSM of color.
Holloway, I W; Tan, D; Dunlap, S L; Palmer, L; Beougher, S; Cederbaum, J A
2017-09-01
Depression is associated with poor antiretroviral therapy (ART) adherence among people living with HIV/AIDS. This relationship may be moderated by an individual's social network characteristics. Our study sought to examine social network correlates of treatment adherence among HIV-positive men recruited from social service agencies throughout Los Angeles County (N = 150) to inform technology-driven social support interventions for this population. We administered egocentric social network and computer-assisted survey interviews focused on demographic characteristics, health history, depressive symptoms, and ART adherence, where adherence was assessed by the number of reasons participants missed taking their medication, if ever. Significant univariate correlates of adherence were included in a multivariable regression analysis, where the moderating effect of having a network member who reminds participants to take their HIV medication on the relationship between depression and adherence was tested. Over 60% of participants reported clinically significant depressive symptoms; this was significantly associated with lower adherence among those without someone in their social network to remind them about taking their HIV medication, even after adjusting for covariates in an ordinary least squares regression (adjusted mean difference b = -1.61, SE = 0.42, p = 0.0003). Having a network member who reminds participants to take their ART medication significantly ameliorated the negative association between depression and treatment adherence, especially for those reporting greater depressive symptoms (p = 0.0394). Additionally, participants demonstrated high rates of technology use to communicate with social network members. In order to achieve the aims of the National HIV/AIDS Strategy, innovative interventions addressing mental health to improve ART adherence are needed. Network strategies that leverage technology may be helpful for improving ART adherence among HIV-positive men with comorbid depressive symptoms.
Loneliness, Social Networks, and Health: A Cross-Sectional Study in Three Countries
Rico-Uribe, Laura Alejandra; Caballero, Francisco Félix; Olaya, Beatriz; Tobiasz-Adamczyk, Beata; Koskinen, Seppo; Leonardi, Matilde; Haro, Josep Maria; Chatterji, Somnath
2016-01-01
Objective It is widely recognized that social networks and loneliness have effects on health. The present study assesses the differential association that the components of the social network and the subjective perception of loneliness have with health, and analyzes whether this association is different across different countries. Methods A total of 10 800 adults were interviewed in Finland, Poland and Spain. Loneliness was assessed by means of the 3-item UCLA Loneliness Scale. Individuals’ social networks were measured by asking about the number of members in the network, how often they had contacts with these members, and whether they had a close relationship. The differential association of loneliness and the components of the social network with health was assessed by means of hierarchical linear regression models, controlling for relevant covariates. Results In all three countries, loneliness was the variable most strongly correlated with health after controlling for depression, age, and other covariates. Loneliness contributed more strongly to health than any component of the social network. The relationship between loneliness and health was stronger in Finland (|β| = 0.25) than in Poland (|β| = 0.16) and Spain (|β| = 0.18). Frequency of contact was the only component of the social network that was moderately correlated with health. Conclusions Loneliness has a stronger association with health than the components of the social network. This association is similar in three different European countries with different socio-economic and health characteristics and welfare systems. The importance of evaluating and screening feelings of loneliness in individuals with health problems should be taken into account. Further studies are needed in order to be able to confirm the associations found in the present study and infer causality. PMID:26761205
Saqr, Mohammed; Fors, Uno; Tedre, Matti
2018-02-06
Collaborative learning facilitates reflection, diversifies understanding and stimulates skills of critical and higher-order thinking. Although the benefits of collaborative learning have long been recognized, it is still rarely studied by social network analysis (SNA) in medical education, and the relationship of parameters that can be obtained via SNA with students' performance remains largely unknown. The aim of this work was to assess the potential of SNA for studying online collaborative clinical case discussions in a medical course and to find out which activities correlate with better performance and help predict final grade or explain variance in performance. Interaction data were extracted from the learning management system (LMS) forum module of the Surgery course in Qassim University, College of Medicine. The data were analyzed using social network analysis. The analysis included visual as well as a statistical analysis. Correlation with students' performance was calculated, and automatic linear regression was used to predict students' performance. By using social network analysis, we were able to analyze a large number of interactions in online collaborative discussions and gain an overall insight of the course social structure, track the knowledge flow and the interaction patterns, as well as identify the active participants and the prominent discussion moderators. When augmented with calculated network parameters, SNA offered an accurate view of the course network, each user's position, and level of connectedness. Results from correlation coefficients, linear regression, and logistic regression indicated that a student's position and role in information relay in online case discussions, combined with the strength of that student's network (social capital), can be used as predictors of performance in relevant settings. By using social network analysis, researchers can analyze the social structure of an online course and reveal important information about students' and teachers' interactions that can be valuable in guiding teachers, improve students' engagement, and contribute to learning analytics insights.
Chang, Xiao; Liu, Shuai; Yu, Yong-Tao; Li, Yi-Xue; Li, Yuan-Yuan
2010-08-12
The Saccharopolyspora erythraea genome sequence was released in 2007. In order to look at the gene regulations at whole transcriptome level, an expression microarray was specifically designed on the S. erythraea strain NRRL 2338 genome sequence. Based on these data, we set out to investigate the potential transcriptional regulatory networks and their organization. In view of the hierarchical structure of bacterial transcriptional regulation, we constructed a hierarchical coexpression network at whole transcriptome level. A total of 27 modules were identified from 1255 differentially expressed transcript units (TUs) across time course, which were further classified in to four groups. Functional enrichment analysis indicated the biological significance of our hierarchical network. It was indicated that primary metabolism is activated in the first rapid growth phase (phase A), and secondary metabolism is induced when the growth is slowed down (phase B). Among the 27 modules, two are highly correlated to erythromycin production. One contains all genes in the erythromycin-biosynthetic (ery) gene cluster and the other seems to be associated with erythromycin production by sharing common intermediate metabolites. Non-concomitant correlation between production and expression regulation was observed. Especially, by calculating the partial correlation coefficients and building the network based on Gaussian graphical model, intrinsic associations between modules were found, and the association between those two erythromycin production-correlated modules was included as expected. This work created a hierarchical model clustering transcriptome data into coordinated modules, and modules into groups across the time course, giving insight into the concerted transcriptional regulations especially the regulation corresponding to erythromycin production of S. erythraea. This strategy may be extendable to studies on other prokaryotic microorganisms.
WGCNA: an R package for weighted correlation network analysis.
Langfelder, Peter; Horvath, Steve
2008-12-29
Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.
Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.
Chen, Jinmiao; Chaudhari, Narendra
2007-01-01
Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.
The spatial-temporal characteristics of type I collagen-based extracellular matrix.
Jones, Christopher Allen Rucksack; Liang, Long; Lin, Daniel; Jiao, Yang; Sun, Bo
2014-11-28
Type I collagen abounds in mammalian extracellular matrix (ECM) and is crucial to many biophysical processes. While previous studies have mostly focused on bulk averaged properties, here we provide a comprehensive and quantitative spatial-temporal characterization of the microstructure of type I collagen-based ECM as the gelation temperature varies. The structural characteristics including the density and nematic correlation functions are obtained by analyzing confocal images of collagen gels prepared at a wide range of gelation temperatures (from 16 °C to 36 °C). As temperature increases, the gel microstructure varies from a "bundled" network with strong orientational correlation between the fibers to an isotropic homogeneous network with no significant orientational correlation, as manifested by the decaying of length scales in the correlation functions. We develop a kinetic Monte-Carlo collagen growth model to better understand how ECM microstructure depends on various environmental or kinetic factors. We show that the nucleation rate, growth rate, and an effective hydrodynamic alignment of collagen fibers fully determines the spatiotemporal fluctuations of the density and orientational order of collagen gel microstructure. Also the temperature dependence of the growth rate and nucleation rate follow the prediction of classical nucleation theory.
The correlation of metrics in complex networks with applications in functional brain networks
NASA Astrophysics Data System (ADS)
Li, C.; Wang, H.; de Haan, W.; Stam, C. J.; Van Mieghem, P.
2011-11-01
An increasing number of network metrics have been applied in network analysis. If metric relations were known better, we could more effectively characterize networks by a small set of metrics to discover the association between network properties/metrics and network functioning. In this paper, we investigate the linear correlation coefficients between widely studied network metrics in three network models (Bárabasi-Albert graphs, Erdös-Rényi random graphs and Watts-Strogatz small-world graphs) as well as in functional brain networks of healthy subjects. The metric correlations, which we have observed and theoretically explained, motivate us to propose a small representative set of metrics by including only one metric from each subset of mutually strongly dependent metrics. The following contributions are considered important. (a) A network with a given degree distribution can indeed be characterized by a small representative set of metrics. (b) Unweighted networks, which are obtained from weighted functional brain networks with a fixed threshold, and Erdös-Rényi random graphs follow a similar degree distribution. Moreover, their metric correlations and the resultant representative metrics are similar as well. This verifies the influence of degree distribution on metric correlations. (c) Most metric correlations can be explained analytically. (d) Interestingly, the most studied metrics so far, the average shortest path length and the clustering coefficient, are strongly correlated and, thus, redundant. Whereas spectral metrics, though only studied recently in the context of complex networks, seem to be essential in network characterizations. This representative set of metrics tends to both sufficiently and effectively characterize networks with a given degree distribution. In the study of a specific network, however, we have to at least consider the representative set so that important network properties will not be neglected.
Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Kanske, Philipp; Singer, Tania
2016-10-01
Humans have the ability to reflect upon their perception, thoughts, and actions, known as metacognition (MC). The brain basis of MC is incompletely understood, and it is debated whether MC on different processes is subserved by common or divergent networks. We combined behavioral phenotyping with multi-modal neuroimaging to investigate whether structural substrates of individual differences in MC on higher-order cognition (MC-C) are dissociable from those underlying MC on perceptual accuracy (MC-P). Motivated by conceptual work suggesting a link between MC and cognitive perspective taking, we furthermore tested for overlaps between MC substrates and mentalizing networks. In a large sample of healthy adults, individual differences in MC-C and MC-P did not correlate. MRI-based cortical thickness mapping revealed a structural basis of this independence, by showing that individual differences in MC-P related to right prefrontal cortical thickness, while MC-C scores correlated with measures in lateral prefrontal, temporo-parietal, and posterior midline regions. Surface-based superficial white matter diffusivity analysis revealed substrates resembling those seen for cortical thickness, confirming the divergence of both MC faculties using an independent imaging marker. Despite their specificity, substrates of MC-C and MC-P fell clearly within networks known to participate in mentalizing, confirmed by task-based fMRI in the same subjects, previous meta-analytical findings, and ad-hoc Neurosynth-based meta-analyses. Our integrative multi-method approach indicates domain-specific substrates of MC; despite their divergence, these nevertheless likely rely on component processes mediated by circuits also involved in mentalizing. Hum Brain Mapp 37:3388-3399, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks
Hosseini, S. M. Hadi; Kesler, Shelli R.
2013-01-01
In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672
Equity trees and graphs via information theory
NASA Astrophysics Data System (ADS)
Harré, M.; Bossomaier, T.
2010-01-01
We investigate the similarities and differences between two measures of the relationship between equities traded in financial markets. Our measures are the correlation coefficients and the mutual information. In the context of financial markets correlation coefficients are well established whereas mutual information has not previously been as well studied despite its theoretically appealing properties. We show that asset trees which are derived from either the correlation coefficients or the mutual information have a mixture of both similarities and differences at the individual equity level and at the macroscopic level. We then extend our consideration from trees to graphs using the "genus 0" condition recently introduced in order to study the networks of equities.
Functional modules by relating protein interaction networks and gene expression.
Tornow, Sabine; Mewes, H W
2003-11-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.
Functional modules by relating protein interaction networks and gene expression
Tornow, Sabine; Mewes, H. W.
2003-01-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships. PMID:14576317
Sub-daily Statistical Downscaling of Meteorological Variables Using Neural Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Jitendra; Brooks, Bjørn-Gustaf J.; Thornton, Peter E
2012-01-01
A new open source neural network temporal downscaling model is described and tested using CRU-NCEP reanal ysis and CCSM3 climate model output. We downscaled multiple meteorological variables in tandem from monthly to sub-daily time steps while also retaining consistent correlations between variables. We found that our feed forward, error backpropagation approach produced synthetic 6 hourly meteorology with biases no greater than 0.6% across all variables and variance that was accurate within 1% for all variables except atmospheric pressure, wind speed, and precipitation. Correlations between downscaled output and the expected (original) monthly means exceeded 0.99 for all variables, which indicates thatmore » this approach would work well for generating atmospheric forcing data consistent with mass and energy conserved GCM output. Our neural network approach performed well for variables that had correlations to other variables of about 0.3 and better and its skill was increased by downscaling multiple correlated variables together. Poor replication of precipitation intensity however required further post-processing in order to obtain the expected probability distribution. The concurrence of precipitation events with expected changes in sub ordinate variables (e.g., less incident shortwave radiation during precipitation events) were nearly as consistent in the downscaled data as in the training data with probabilities that differed by no more than 6%. Our downscaling approach requires training data at the target time step and relies on a weak assumption that climate variability in the extrapolated data is similar to variability in the training data.« less
Rusconi, Anna Carlotta; Valeriani, Giuseppe; Carlone, Cristiano; Raimondo, Pasquale; Quartini, Adele; Coccanari de' Fornari, Maria Antonietta; Biondi, Massimo
2012-01-01
Internet Addiction Disorder (IAD) is an emerging psychiatric disorder, assimilable to impulse control problems and related to maladaptive use of new networks and social and virtual technologies. Our study aims to analyze the presence of IAD among adolescents and to study the correlation with social interaction anxiousness. We investigated also the possibility that the Social Network (SN) represent a source of risk for the development of IAD. The test group was composed of 250 subjects, aged between 14 and 18 years. They were administered: Young's IAT; IAS (Interaction Anxiousness Scale), AAS (Audience Anxiousness Scale) and SISST (Social Interaction Self-Statement Test) to analyze the dimension of social interaction anxiousness. We found a rate of 2% of the IAD. The SN are the most common use of the Net in our sample, but not the most clicked sites by subjects with IAD. It should be noted, finally, a correlation between social interaction anxiety and IAD, but not a significant difference in scores of social anxiousness scales based on the SN use/non-use. The use of SN intended as single variable doesn't correlate with increased risk for IAD, or for increased social interaction anxiousness. However, if associated with prolonged use of the net for 5-6 hours or more, or concomitant use of chat rooms and/or net gambling, we find a more significant risk of psychopathology. The data presented require further investigations, in order to guide new pathogenetic models and appropriate intervention strategies.
Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong
2012-01-01
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01–0.027 Hz) versus slow-4 (0.027–0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the “best” network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027–0.073 Hz band exhibited greater reliability than those in the 0.01–0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies. PMID:22412922
Network motif frequency vectors reveal evolving metabolic network organisation.
Pearcy, Nicole; Crofts, Jonathan J; Chuzhanova, Nadia
2015-01-01
At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this underlying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biological features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic networks.
Taxidis, Jiannis; Mizuseki, Kenji; Mason, Robert; Owen, Markus R
2013-01-01
Hippocampal sharp wave-ripple complexes (SWRs) involve the synchronous discharge of thousands of cells throughout the CA3-CA1-subiculum-entorhinal cortex axis. Their strong transient output affects cortical targets, rendering SWRs a possible means for memory transfer from the hippocampus to the neocortex for long-term storage. Neurophysiological observations of hippocampal activity modulation by the cortical slow oscillation (SO) during deep sleep and anesthesia, and correlations between ripples and UP states, support the role of SWRs in memory consolidation through a cortico-hippocampal feedback loop. We couple a cortical network exhibiting SO with a hippocampal CA3-CA1 computational network model exhibiting SWRs, in order to model such cortico-hippocampal correlations and uncover important parameters and coupling mechanisms controlling them. The cortical oscillatory output entrains the CA3 network via connections representing the mossy fiber input, and the CA1 network via the temporoammonic pathway (TA). The spiking activity in CA3 and CA1 is shown to depend on the excitation-to-inhibition ratio, induced by combining the two hippocampal inputs, with mossy fiber input controlling the UP-state correlation of CA3 population bursts and corresponding SWRs, whereas the temporoammonic input affects the overall CA1 spiking activity. Ripple characteristics and pyramidal spiking participation to SWRs are shaped by the strength of the Schaffer collateral drive. A set of in vivo recordings from the rat hippocampus confirms a model-predicted segregation of pyramidal cells into subgroups according to the SO state where they preferentially fire and their response to SWRs. These groups can potentially play distinct functional roles in the replay of spike sequences.
Good Features to Correlate for Visual Tracking
NASA Astrophysics Data System (ADS)
Gundogdu, Erhan; Alatan, A. Aydin
2018-05-01
During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.
NASA Astrophysics Data System (ADS)
Mizusaki, Beatriz E. P.; Agnes, Everton J.; Erichsen, Rubem; Brunnet, Leonardo G.
2017-08-01
The plastic character of brain synapses is considered to be one of the foundations for the formation of memories. There are numerous kinds of such phenomenon currently described in the literature, but their role in the development of information pathways in neural networks with recurrent architectures is still not completely clear. In this paper we study the role of an activity-based process, called pre-synaptic dependent homeostatic scaling, in the organization of networks that yield precise-timed spiking patterns. It encodes spatio-temporal information in the synaptic weights as it associates a learned input with a specific response. We introduce a correlation measure to evaluate the precision of the spiking patterns and explore the effects of different inhibitory interactions and learning parameters. We find that large learning periods are important in order to improve the network learning capacity and discuss this ability in the presence of distinct inhibitory currents.
Influence of homology and node age on the growth of protein-protein interaction networks
NASA Astrophysics Data System (ADS)
Bottinelli, Arianna; Bassetti, Bruno; Lagomarsino, Marco Cosentino; Gherardi, Marco
2012-10-01
Proteins participating in a protein-protein interaction network can be grouped into homology classes following their common ancestry. Proteins added to the network correspond to genes added to the classes, so the dynamics of the two objects are intrinsically linked. Here we first introduce a statistical model describing the joint growth of the network and the partitioning of nodes into classes, which is studied through a combined mean-field and simulation approach. We then employ this unified framework to address the specific issue of the age dependence of protein interactions through the definition of three different node wiring or divergence schemes. A comparison with empirical data indicates that an age-dependent divergence move is necessary in order to reproduce the basic topological observables together with the age correlation between interacting nodes visible in empirical data. We also discuss the possibility of nontrivial joint partition and topology observables.
NASA Astrophysics Data System (ADS)
Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min
2015-12-01
In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.
WGCNA: an R package for weighted correlation network analysis
Langfelder, Peter; Horvath, Steve
2008-01-01
Background Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. Results The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. Conclusion The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at . PMID:19114008
He, Min; van Wijk, Eduard; van Wietmarschen, Herman; Wang, Mei; Sun, Mengmeng; Koval, Slavik; van Wijk, Roeland; Hankemeier, Thomas; van der Greef, Jan
2017-03-01
The increasing prevalence of rheumatoid arthritis has driven the development of new approaches and technologies for investigating the pathophysiology of this devastating, chronic disease. From the perspective of systems biology, combining comprehensive personal data such as metabolomics profiling with ultra-weak photon emission (UPE) data may provide key information regarding the complex pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE with metabolomics-based technologies in order to investigate collagen-induced arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we investigated the biological underpinnings of the complex dataset. Using correlation networks, we found that elevated inflammatory and ROS-mediated plasma metabolites are strongly correlated with a systematic reduction in amine metabolites, which is linked to muscle wasting in rheumatoid arthritis. We also found that increased UPE intensity is strongly linked to metabolic processes (with correlation co-efficiency |r| value >0.7), which may be associated with lipid oxidation that related to inflammatory and/or ROS-mediated processes. Together, these results indicate that UPE is correlated with metabolomics and may serve as a valuable tool for diagnosing chronic disease by integrating inflammatory signals at the systems level. Our correlation network analysis provides important and valuable information regarding the disease process from a system-wide perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Jing-Tao; Wu, Hui-Zhen; Yan, Chao-Gan; Chen, Wen-Xin; Zhang, Hong-Ying; He, Yong; Yang, Hai-Shan
2011-10-17
Intrinsic brain activity in a resting state incorporates components of the task negative network called default mode network (DMN) and task-positive networks called attentional networks. In the present study, the reciprocal neuronal networks in the elder group were compared with the young group to investigate the differences of the intrinsic brain activity using a method of temporal correlation analysis based on seed regions of posterior cingulate cortex (PCC) and ventromedial prefrontal cortex (vmPFC). We found significant decreased positive correlations and negative correlations with the seeds of PCC and vmPFC in the old group. The decreased coactivations in the DMN network components and their negative networks in the old group may reflect age-related alterations in various brain functions such as attention, motor control and inhibition modulation in cognitive processing. These alterations in the resting state anti-correlative networks could provide neuronal substrates for the aging brain. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Generalization of Clustering Coefficients to Signed Correlation Networks
Costantini, Giulio; Perugini, Marco
2014-01-01
The recent interest in network analysis applications in personality psychology and psychopathology has put forward new methodological challenges. Personality and psychopathology networks are typically based on correlation matrices and therefore include both positive and negative edge signs. However, some applications of network analysis disregard negative edges, such as computing clustering coefficients. In this contribution, we illustrate the importance of the distinction between positive and negative edges in networks based on correlation matrices. The clustering coefficient is generalized to signed correlation networks: three new indices are introduced that take edge signs into account, each derived from an existing and widely used formula. The performances of the new indices are illustrated and compared with the performances of the unsigned indices, both on a signed simulated network and on a signed network based on actual personality psychology data. The results show that the new indices are more resistant to sample variations in correlation networks and therefore have higher convergence compared with the unsigned indices both in simulated networks and with real data. PMID:24586367
NASA Astrophysics Data System (ADS)
Puc, Małgorzata
2012-03-01
Birch pollen is one of the main causes of allergy during spring and early summer in northern and central Europe. The aim of this study was to create a forecast model that can accurately predict daily average concentrations of Betula sp. pollen grains in the atmosphere of Szczecin, Poland. In order to achieve this, a novel data analysis technique—artificial neural networks (ANN)—was used. Sampling was carried out using a volumetric spore trap of the Hirst design in Szczecin during 2003-2009. Spearman's rank correlation analysis revealed that humidity had a strong negative correlation with Betula pollen concentrations. Significant positive correlations were observed for maximum temperature, average temperature, minimum temperature and precipitation. The ANN resulted in multilayer perceptrons 366 8: 2928-7-1:1, time series prediction was of quite high accuracy (SD Ratio between 0.3 and 0.5, R > 0.85). Direct comparison of the observed and calculated values confirmed good performance of the model and its ability to recreate most of the variation.
Neural correlates of reappraisal considering working memory capacity and cognitive flexibility.
Zaehringer, Jenny; Falquez, Rosalux; Schubert, Anna-Lena; Nees, Frauke; Barnow, Sven
2018-01-09
Cognitive reappraisal of emotion is strongly related to long-term mental health. Therefore, the exploration of underlying cognitive and neural mechanisms has become an essential focus of research. Considering that reappraisal and executive functions rely on a similar brain network, the question arises whether behavioral differences in executive functions modulate neural activity during reappraisal. Using functional neuroimaging, the present study aimed to analyze the role of working memory capacity (WMC) and cognitive flexibility in brain activity during down-regulation of negative emotions by reappraisal in N = 20 healthy participants. Results suggests that WMC and cognitive flexibility were negatively correlated with prefrontal activity during reappraisal condition. Here, results also revealed a negative correlation between cognitive flexibility and amygdala activation. These findings provide first hints that (1) individuals with lower WMC and lower cognitive flexibility might need more higher-order cognitive neural resources in order to down-regulate negative emotions and (2) cognitive flexibility relates to emotional reactivity during reappraisal.
NASA Astrophysics Data System (ADS)
Charakopoulos, A. K.; Katsouli, G. A.; Karakasidis, T. E.
2018-04-01
Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.
General formulation of long-range degree correlations in complex networks
NASA Astrophysics Data System (ADS)
Fujiki, Yuka; Takaguchi, Taro; Yakubo, Kousuke
2018-06-01
We provide a general framework for analyzing degree correlations between nodes separated by more than one step (i.e., beyond nearest neighbors) in complex networks. One joint and four conditional probability distributions are introduced to fully describe long-range degree correlations with respect to degrees k and k' of two nodes and shortest path length l between them. We present general relations among these probability distributions and clarify the relevance to nearest-neighbor degree correlations. Unlike nearest-neighbor correlations, some of these probability distributions are meaningful only in finite-size networks. Furthermore, as a baseline to determine the existence of intrinsic long-range degree correlations in a network other than inevitable correlations caused by the finite-size effect, the functional forms of these probability distributions for random networks are analytically evaluated within a mean-field approximation. The utility of our argument is demonstrated by applying it to real-world networks.
Effect of correlations on controllability transition in network control
Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo
2016-01-01
The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks. PMID:27063294
Network Analyses for Space-Time High Frequency Wind Data
NASA Astrophysics Data System (ADS)
Laib, Mohamed; Kanevski, Mikhail
2017-04-01
Recently, network science has shown an important contribution to the analysis, modelling and visualization of complex time series. Numerous existing methods have been proposed for constructing networks. This work studies spatio-temporal wind data by using networks based on the Granger causality test. Furthermore, a visual comparison is carried out with several frequencies of data and different size of moving window. The main attention is paid to the temporal evolution of connectivity intensity. The Hurst exponent is applied on the provided time series in order to explore if there is a long connectivity memory. The results explore the space time structure of wind data and can be applied to other environmental data. The used dataset presents a challenging case study. It consists of high frequency (10 minutes) wind data from 120 measuring stations in Switzerland, for a time period of 2012-2013. The distribution of stations covers different geomorphological zones and elevation levels. The results are compared with the Person correlation network as well.
Brain Connectivity in Pathological and Pharmacological Coma
Noirhomme, Quentin; Soddu, Andrea; Lehembre, Rémy; Vanhaudenhuyse, Audrey; Boveroux, Pierre; Boly, Mélanie; Laureys, Steven
2010-01-01
Recent studies in patients with disorders of consciousness (DOC) tend to support the view that awareness is not related to activity in a single brain region but to thalamo-cortical connectivity in the frontoparietal network. Functional neuroimaging studies have shown preserved albeit disconnected low-level cortical activation in response to external stimulation in patients in a “vegetative state” or unresponsive wakefulness syndrome. While activation of these “primary” sensory cortices does not necessarily reflect conscious awareness, activation in higher-order associative cortices in minimally conscious state patients seems to herald some residual perceptual awareness. PET studies have identified a metabolic dysfunction in a widespread frontoparietal “global neuronal workspace” in DOC patients including the midline default mode network (“intrinsic” system) and the lateral frontoparietal cortices or “extrinsic system.” Recent studies have investigated the relation of awareness to the functional connectivity within intrinsic and extrinsic networks, and with the thalami in both pathological and pharmacological coma. In brain damaged patients, connectivity in all default network areas was found to be non-linearly correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative, coma, and brain dead patients. Anesthesia-induced loss of consciousness was also shown to correlate with a global decrease in cortico-cortical and thalamo-cortical connectivity in both intrinsic and extrinsic networks, but not in auditory, or visual networks. In anesthesia, unconsciousness was also associated with a loss of cross-modal interactions between networks. These results suggest that conscious awareness critically depends on the functional integrity of thalamo-cortical and cortico-cortical frontoparietal connectivity within and between “intrinsic” and “extrinsic” brain networks. PMID:21191476
Pruning a minimum spanning tree
NASA Astrophysics Data System (ADS)
Sandoval, Leonidas
2012-04-01
This work employs various techniques in order to filter random noise from the information provided by minimum spanning trees obtained from the correlation matrices of international stock market indices prior to and during times of crisis. The first technique establishes a threshold above which connections are considered affected by noise, based on the study of random networks with the same probability density distribution of the original data. The second technique is to judge the strength of a connection by its survival rate, which is the amount of time a connection between two stock market indices endures. The idea is that true connections will survive for longer periods of time, and that random connections will not. That information is then combined with the information obtained from the first technique in order to create a smaller network, in which most of the connections are either strong or enduring in time.
Potts-model formulation of the random resistor network
NASA Astrophysics Data System (ADS)
Harris, A. B.; Lubensky, T. C.
1987-05-01
The randomly diluted resistor network is formulated in terms of an n-replicated s-state Potts model with a spin-spin coupling constant J in the limit when first n, then s, and finally 1/J go to zero. This limit is discussed and to leading order in 1/J the generalized susceptibility is shown to reproduce the results of the accompanying paper where the resistor network is treated using the xy model. This Potts Hamiltonian is converted into a field theory by the usual Hubbard-Stratonovich transformation and thereby a renormalization-group treatment is developed to obtain the corrections to the critical exponents to first order in ɛ=6-d, where d is the spatial dimensionality. The recursion relations are shown to be the same as for the xy model. Their detailed analysis (given in the accompanying paper) gives the resistance crossover exponent as φ1=1+ɛ/42, and determines the critical exponent, t for the conductivity of the randomly diluted resistor network at concentrations, p, just above the percolation threshold: t=(d-2)ν+φ1, where ν is the critical exponent for the correlation length at the percolation threshold. These results correct previously accepted results giving φ=1 to all orders in ɛ. The new result for φ1 removes the paradox associated with the numerical result that t>1 for d=2, and also shows that the Alexander-Orbach conjecture, while numerically quite accurate, is not exact, since it disagrees with the ɛ expansion.
Using Neural Networks to Describe Tracer Correlations
NASA Technical Reports Server (NTRS)
Lary, D. J.; Mueller, M. D.; Mussa, H. Y.
2003-01-01
Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation co- efficient of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4, (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.
Universal features of dendrites through centripetal branch ordering
Effenberger, Felix; Muellerleile, Julia
2017-01-01
Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally developed to describe river networks—the Horton-Strahler order (SO)–to examine hierarchical relationships of branching statistics in reconstructed and model dendritic trees. We report on a number of universal topological relationships with SO that are true for all binary trees and distinguish those from SO-sorted metric measures that appear to be cell type-specific. The latter are therefore potential new candidates for categorising dendritic tree structures. Interestingly, we find a faithful correlation of branch diameters with centripetal branch orders, indicating a possible functional importance of SO for dendritic morphology and growth. Also, simulated local voltage responses to synaptic inputs are strongly correlated with SO. In summary, our study identifies important SO-dependent measures in dendritic morphology that are relevant for neural function while at the same time it describes other relationships that are universal for all dendrites. PMID:28671947
NASA Astrophysics Data System (ADS)
Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing
2016-10-01
In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.
Clustering Coefficients for Correlation Networks.
Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu
2018-01-01
Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly correlated with and therefore may be confounded by the node's connectivity. The proposed methods are expected to help us to understand clustering and lack thereof in correlational brain networks, such as those derived from functional time series and across-participant correlation in neuroanatomical properties.
Clustering Coefficients for Correlation Networks
Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu
2018-01-01
Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly correlated with and therefore may be confounded by the node's connectivity. The proposed methods are expected to help us to understand clustering and lack thereof in correlational brain networks, such as those derived from functional time series and across-participant correlation in neuroanatomical properties. PMID:29599714
Kenett, Dror Y; Tumminello, Michele; Madi, Asaf; Gur-Gershgoren, Gitit; Mantegna, Rosario N; Ben-Jacob, Eshel
2010-12-20
What are the dominant stocks which drive the correlations present among stocks traded in a stock market? Can a correlation analysis provide an answer to this question? In the past, correlation based networks have been proposed as a tool to uncover the underlying backbone of the market. Correlation based networks represent the stocks and their relationships, which are then investigated using different network theory methodologies. Here we introduce a new concept to tackle the above question--the partial correlation network. Partial correlation is a measure of how the correlation between two variables, e.g., stock returns, is affected by a third variable. By using it we define a proxy of stock influence, which is then used to construct partial correlation networks. The empirical part of this study is performed on a specific financial system, namely the set of 300 highly capitalized stocks traded at the New York Stock Exchange, in the time period 2001-2003. By constructing the partial correlation network, unlike the case of standard correlation based networks, we find that stocks belonging to the financial sector and, in particular, to the investment services sub-sector, are the most influential stocks affecting the correlation profile of the system. Using a moving window analysis, we find that the strong influence of the financial stocks is conserved across time for the investigated trading period. Our findings shed a new light on the underlying mechanisms and driving forces controlling the correlation profile observed in a financial market.
Solvated dissipative electro-elastic network model of hydrated proteins
NASA Astrophysics Data System (ADS)
Martin, Daniel
2013-03-01
Elastic network models coarse grain proteins into a network of residue beads connected by springs. We add dissipative dynamics to this mechanical system by applying overdamped Langevin equations of motion to normal-mode vibrations of the network. In addition, the network is made heterogeneous and softened at the protein surface by accounting for hydration of the ionized residues. Solvation changes the network Hessian in two ways. Diagonal solvation terms soften the spring constants and off-diagonal dipole-dipole terms correlate displacements of the ionized residues. The model is used to formulate the response functions of the electrostatic potential and electric field appearing in theories of redox reactions and spectroscopy. We also formulate the dielectric response of the protein and find that solvation of the surface ionized residues leads to a slow relaxation peak in the dielectric loss spectrum, about two orders of magnitude slower than the main peak of protein relaxation. Finally, the solvated network is used to formulate the allosteric response of the protein to ion binding. The global thermodynamics of ion binding is not strongly affected by the network solvation, but it dramatically enhances conformational changes in response to placing a charge at the a the active site.
Solvated dissipative electro-elastic network model of hydrated proteins
NASA Astrophysics Data System (ADS)
Martin, Daniel R.; Matyushov, Dmitry V.
2012-10-01
Elastic network models coarse grain proteins into a network of residue beads connected by springs. We add dissipative dynamics to this mechanical system by applying overdamped Langevin equations of motion to normal-mode vibrations of the network. In addition, the network is made heterogeneous and softened at the protein surface by accounting for hydration of the ionized residues. Solvation changes the network Hessian in two ways. Diagonal solvation terms soften the spring constants and off-diagonal dipole-dipole terms correlate displacements of the ionized residues. The model is used to formulate the response functions of the electrostatic potential and electric field appearing in theories of redox reactions and spectroscopy. We also formulate the dielectric response of the protein and find that solvation of the surface ionized residues leads to a slow relaxation peak in the dielectric loss spectrum, about two orders of magnitude slower than the main peak of protein relaxation. Finally, the solvated network is used to formulate the allosteric response of the protein to ion binding. The global thermodynamics of ion binding is not strongly affected by the network solvation, but it dramatically enhances conformational changes in response to placing a charge at the active site of the protein.
Resting State Synchrony in Short-Term versus Long-Term Abstinent Alcoholics
Camchong, Jazmin; Stenger, Victor Andrew; Fein, George
2012-01-01
BACKGROUND We previously reported that when compared to controls, long-term abstinent alcoholics (LTAA) have increased resting state synchrony (RSS) of the inhibitory control network and reduced synchrony of the appetitive drive network, and hypothesized that these levels of synchrony are adaptive, and support the behavioral changes required to maintain abstinence. In the current study, we investigate whether these RSS patterns can be identified in short-term abstinent alcoholics. METHODS Resting state functional magnetic resonance imaging data were collected from 27 short-term abstinent alcoholics (STAA), 23 LTAA and 23 non-substance abusing controls (NSAC). We examined baseline RSS using seed-based measures. RESULTS We found ordered RSS effects from NSAC to STAA and then to LTAA within both the appetitive drive and executive control networks: increasing RSS of the executive control network, and decreasing RSS of the reward processing network. Finally, we found significant correlations between strength of RSS in these networks and (a) cognitive flexibility and (b) current antisocial behavior. DISCUSSION Findings are consistent with an adaptive progression of RSS from short- to long-term abstinence so that, compared to normal controls, the synchrony (a) within the reward network progressively decreases and (b) within the executive control network progressively increases. PMID:23421812
Dynamical Networks Characterization of Space Weather Events
NASA Astrophysics Data System (ADS)
Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.
2017-12-01
Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show our first results that use network properties such as cliques and clustering coefficients to map these highly dynamic changes in ionospheric current patterns.[l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).
Piccoli, Tommaso; Valente, Giancarlo; Linden, David E J; Re, Marta; Esposito, Fabrizio; Sack, Alexander T; Di Salle, Francesco
2015-01-01
The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time. To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks. We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between "task-positive" and "task-negative" brain networks. Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network.
Piccoli, Tommaso; Valente, Giancarlo; Linden, David E. J.; Re, Marta; Esposito, Fabrizio; Sack, Alexander T.; Salle, Francesco Di
2015-01-01
Introduction The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time. Methods To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks. Results We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between “task-positive” and “task-negative” brain networks. Conclusions Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network. PMID:25848951
Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao
2018-01-02
In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.
Herman, Dorota; Slabbinck, Bram; Pè, Mario Enrico
2016-01-01
Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. PMID:26754667
Baute, Joke; Herman, Dorota; Coppens, Frederik; De Block, Jolien; Slabbinck, Bram; Dell'Acqua, Matteo; Pè, Mario Enrico; Maere, Steven; Nelissen, Hilde; Inzé, Dirk
2016-03-01
Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. © 2016 American Society of Plant Biologists. All Rights Reserved.
Spatio-temporal filtering for determination of common mode error in regional GNSS networks
NASA Astrophysics Data System (ADS)
Bogusz, Janusz; Gruszczynski, Maciej; Figurski, Mariusz; Klos, Anna
2015-04-01
The spatial correlation between different stations for individual components in the regional GNSS networks seems to be significant. The mismodelling in satellite orbits, the Earth orientation parameters (EOP), largescale atmospheric effects or satellite antenna phase centre corrections can all cause the regionally correlated errors. This kind of GPS time series errors are referred to as common mode errors (CMEs). They are usually estimated with the regional spatial filtering, such as the "stacking". In this paper, we show the stacking approach for the set of ASG-EUPOS permanent stations, assuming that spatial distribution of the CME is uniform over the whole region of Poland (more than 600 km extent). The ASG-EUPOS is a multifunctional precise positioning system based on the reference network designed for Poland. We used a 5- year span time series (2008-2012) of daily solutions in the ITRF2008 from Bernese 5.0 processed by the Military University of Technology EPN Local Analysis Centre (MUT LAC). At the beginning of our analyses concerning spatial dependencies, the correlation coefficients between each pair of the stations in the GNSS network were calculated. This analysis shows that spatio-temporal behaviour of the GPS-derived time series is not purely random, but there is the evident uniform spatial response. In order to quantify the influence of filtering using CME, the norms L1 and L2 were determined. The values of these norms were calculated for the North, East and Up components twice: before performing the filtration and after stacking. The observed reduction of the L1 and L2 norms was up to 30% depending on the dimension of the network. However, the question how to define an optimal size of CME-analysed subnetwork remains unanswered in this research, due to the fact that our network is not extended enough.
NASA Technical Reports Server (NTRS)
Lary, David J.; Mussa, Yussuf
2004-01-01
In this study a new extended Kalman filter (EKF) learning algorithm for feed-forward neural networks (FFN) is used. With the EKF approach, the training of the FFN can be seen as state estimation for a non-linear stationary process. The EKF method gives excellent convergence performances provided that there is enough computer core memory and that the machine precision is high. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). The neural network was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9997. The neural network Fortran code used is available for download.
Xiao, Yaqiong; Friederici, Angela D; Margulies, Daniel S; Brauer, Jens
2016-03-01
The development of language comprehension abilities in childhood is closely related to the maturation of the brain, especially the ability to process syntactically complex sentences. Recent studies proposed that the fronto-temporal connection within left perisylvian regions, supporting the processing of syntactically complex sentences, is still immature at preschool age. In the current study, resting state functional magnetic resonance imaging data were acquired from typically developing 5-year-old children and adults to shed further light on the brain functional development. Children additionally performed a behavioral syntactic comprehension test outside the scanner. The amplitude of low-frequency fluctuations was analyzed in order to identify the functional correlation networks of language-relevant brain regions. Results showed an intrahemispheric correlation between left inferior frontal gyrus (IFG) and left posterior superior temporal sulcus (pSTS) in adults, whereas an interhemispheric correlation between left IFG and its right-hemispheric homolog was predominant in children. Correlation analysis between resting-state functional connectivity and sentence processing performance in 5-year-olds revealed that local connectivity within the left IFG is associated with competence of processing syntactically simple canonical sentences, while long-range connectivity between IFG and pSTS in left hemisphere is associated with competence of processing syntactically relatively more complex non-canonical sentences. The present developmental data suggest that a selective left fronto-temporal connectivity network for processing complex syntax is already in functional connection at the age of 5 years when measured in a non-task situation. The correlational findings provide new insight into the relationship between intrinsic functional connectivity and syntactic language abilities in preschool children. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Functional network connectivity analysis based on partial correlation in Alzheimer's disease
NASA Astrophysics Data System (ADS)
Zhang, Nan; Guan, Xiaoting; Zhang, Yumei; Li, Jingjing; Chen, Hongyan; Chen, Kewei; Fleisher, Adam; Yao, Li; Wu, Xia
2009-02-01
Functional network connectivity (FNC) measures the temporal dependency among the time courses of functional networks. However, the marginal correlation between two networks used in the classic FNC analysis approach doesn't separate the FNC from the direct/indirect effects of other networks. In this study, we proposed an alternative approach based on partial correlation to evaluate the FNC, since partial correlation based FNC can reveal the direct interaction between a pair of networks, removing dependencies or influences from others. Previous studies have demonstrated less task-specific activation and less rest-state activity in Alzheimer's disease (AD). We applied present approach to contrast FNC differences of resting state network (RSN) between AD and normal controls (NC). The fMRI data under resting condition were collected from 15 AD and 16 NC. FNC was calculated for each pair of six RSNs identified using Group ICA, thus resulting in 15 (2 out of 6) pairs for each subject. Partial correlation based FNC analysis indicated 6 pairs significant differences between groups, while marginal correlation only revealed 2 pairs (involved in the partial correlation results). Additionally, patients showed lower correlation than controls among most of the FNC differences. Our results provide new evidences for the disconnection hypothesis in AD.
Buzaev, Igor Vyacheslavovich; Plechev, Vladimir Vyacheslavovich; Nikolaeva, Irina Evgenievna; Galimova, Rezida Maratovna
2016-09-01
The continuous uninterrupted feedback system is the essential part of any well-organized system. We propose aLYNX concept that is a possibility to use an artificial intelligence algorithm or a neural network model in decision-making system so as to avoid possible mistakes and to remind the doctors to review tactics once more in selected cases. aLYNX system includes: registry with significant factors, decisions and results; machine learning process based on this registry data; the use of the machine learning results as the adviser. We show a possibility to build a computer adviser with a neural network model for making a choice between coronary aortic bypass surgery (CABG) and percutaneous coronary intervention (PCI) in order to achieve a higher 5-year survival rate in patients with angina based on the experience of 5107 patients. The neural network was trained by 4679 patients who achieved 5-year survival. Among them, 2390 patients underwent PCI and 2289 CABG. After training, the correlation coefficient ( r ) of the network was 0.74 for training, 0.67 for validation, 0.71 for test and 0.73 for total. Simulation of the neural network function has been performed after training in the two groups of patients with known 5-year outcome. The disagreement rate was significantly higher in the dead patient group than that in the survivor group between neural network model and heart team [16.8% (787/4679) vs. 20.3% (87/428), P = 0.065)]. The study shows the possibility to build a computer adviser with a neural network model for making a choice between CABG and PCI in order to achieve a higher 5-year survival rate in patients with angina.
Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition
NASA Astrophysics Data System (ADS)
Gupta, Uma Shankar; Mohapatra, Ranjita K.; Srivastava, Ajit M.; Tiwari, Vivek K.
2010-10-01
We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using the Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken’s hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.
Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Uma Shankar; Tiwari, Vivek K.; Mohapatra, Ranjita K.
2010-10-01
We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using themore » Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken's hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.« less
Reconstructing networks from dynamics with correlated noise
NASA Astrophysics Data System (ADS)
Tam, H. C.; Ching, Emily S. C.; Lai, Pik-Yin
2018-07-01
Reconstructing the structure of complex networks from measurements of the nodes is a challenge in many branches of science. External influences are always present and act as a noise to the networks of interest. In this paper, we present a method for reconstructing networks from measured dynamics of the nodes subjected to correlated noise that cannot be approximated by a white noise. This method can reconstruct the links of both bidirectional and directed networks, the correlation time and strength of the noise, and also the relative coupling strength of the links when the coupling functions have certain properties. Our method is built upon theoretical relations between network structure and measurable quantities from the dynamics that we have derived for systems that have fixed point dynamics in the noise-free limit. Using these theoretical results, we can further explain the shortcomings of two common practices of inferring links for bidirectional networks using the Pearson correlation coefficient and the partial correlation coefficient.
Singh, Baljit; Sharma, Vikrant
2014-01-30
The present article deals with design of tragacanth gum-based pH responsive hydrogel drug delivery systems. The characterization of hydrogels has been carried out by SEMs, EDAX, FTIR, (13)C NMR, XRD, TGA/DTA/DTG and swelling studies. The correlation between reaction conditions and structural parameters of polymer networks such as polymer volume fraction in the swollen state (ϕ), Flory-Huggins interaction parameter (χ), molecular weight of the polymer chain between two neighboring cross links (M¯c), crosslink density (ρ) and mesh size (ξ) has been determined. The different kinetic models such as zero order, first order, Higuchi square root law, Korsmeyer-Peppas model and Hixson-Crowell cube root model were applied and it has been observed that release profile of amoxicillin best followed the first order model for the release of drug from the polymer matrix. The swelling of the hydrogels and release of drug from the drug loaded hydrogels occurred through non-Fickian diffusion mechanism in pH 7.4 solution. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gangadari, Bhoopal Rao; Rafi Ahamed, Shaik
2016-09-01
In biomedical, data security is the most expensive resource for wireless body area network applications. Cryptographic algorithms are used in order to protect the information against unauthorised access. Advanced encryption standard (AES) cryptographic algorithm plays a vital role in telemedicine applications. The authors propose a novel approach for design of substitution bytes (S-Box) using second-order reversible one-dimensional cellular automata (RCA 2 ) as a replacement to the classical look-up-table (LUT) based S-Box used in AES algorithm. The performance of proposed RCA 2 based S-Box and conventional LUT based S-Box is evaluated in terms of security using the cryptographic properties such as the nonlinearity, correlation immunity bias, strict avalanche criteria and entropy. Moreover, it is also shown that RCA 2 based S-Boxes are dynamic in nature, invertible and provide high level of security. Further, it is also found that the RCA 2 based S-Box have comparatively better performance than that of conventional LUT based S-Box.
Rafi Ahamed, Shaik
2016-01-01
In biomedical, data security is the most expensive resource for wireless body area network applications. Cryptographic algorithms are used in order to protect the information against unauthorised access. Advanced encryption standard (AES) cryptographic algorithm plays a vital role in telemedicine applications. The authors propose a novel approach for design of substitution bytes (S-Box) using second-order reversible one-dimensional cellular automata (RCA2) as a replacement to the classical look-up-table (LUT) based S-Box used in AES algorithm. The performance of proposed RCA2 based S-Box and conventional LUT based S-Box is evaluated in terms of security using the cryptographic properties such as the nonlinearity, correlation immunity bias, strict avalanche criteria and entropy. Moreover, it is also shown that RCA2 based S-Boxes are dynamic in nature, invertible and provide high level of security. Further, it is also found that the RCA2 based S-Box have comparatively better performance than that of conventional LUT based S-Box. PMID:27733924
Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica
NASA Astrophysics Data System (ADS)
Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.
2009-04-01
Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even before it is built. Moreover, a posterior analysis enables identifying, and hence dismissing, measurement errors (antenna height, atmospheric effects, etc.). Here we present a preliminary effort to apply this technique to volcano deformation. A geodetic network has been developed on the western flank of the Arenal volcano in Costa Rica. It is surveyed with GNSS, angular and EDM (Electronic Distance Measurements) measurements. Three measurement campaigns were carried out between February and June 2008. The results show consistent and accurate output of deformation and uncertainty for each of the 12 benchmarks surveyed. The three campaigns also prove the repeatability and consistency of the statistical indicators and the displacement vectors. Although, this methodology has only recently been applied to volcanoes, we suggest that due to its cost-effective high-quality results it has the potential to be incorporated into the design and analysis of volcano geodetic networks worldwide.
Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weighill, Deborah; Jones, Piet; Shah, Manesh
Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.« less
Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery
Weighill, Deborah; Jones, Piet; Shah, Manesh; ...
2018-05-11
Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.« less
Shakya, Holly B; Hughes, D Alex; Stafford, Derek; Christakis, Nicholas A; Fowler, James H; Silverman, Jay G
2016-03-08
Intimate partner violence (IPV) is a complex global problem, not only because it is a human rights issue, but also because it is associated with chronic mental and physical illnesses as well as acute health outcomes related to injuries for women and their children. Attitudes, beliefs, and norms regarding IPV are significantly associated with the likelihood of both IPV experience and perpetration. We investigated whether IPV acceptance is correlated across socially connected individuals, whether these correlations differ across types of relationships, and whether social position is associated with the likelihood of accepting IPV. We used sociocentric network data from 831 individuals in rural Honduras to assess the association of IPV acceptance between socially connected individuals across 15 different types of relationships, both within and between households. We also investigated the association between network position and IPV acceptance. We found that having a social contact that accepts IPV is strongly associated with IPV acceptance among individuals. For women the clustering of IPV acceptance was not significant in between-household relationships, but was concentrated within households. For men, however, while IPV acceptance was strongly clustered within households, men's acceptance of IPV was also correlated with people with whom they regularly converse, their mothers and their siblings, regardless of household. We also found that IPV was more likely to be accepted by less socially-central individuals, and that the correlation between a social contact's IPV acceptance was stronger on the periphery, suggesting that, as a norm, it is held on the periphery of the community. Our results show that differential targeting of individuals and relationships in order to reduce the acceptability and, subsequently, the prevalence of IPV may be most effective. Because IPV norms seem to be strongly held within households, the household is probably the most logical unit to target in order to implement change. This approach would include the possible benefit of a generational effect. Finally, in social contexts in which perpetration of IPV is not socially acceptable, the most effective strategy may be to implement change not at the center but at the periphery of the community.
Evolution of worldwide stock markets, correlation structure, and correlation-based graphs
NASA Astrophysics Data System (ADS)
Song, Dong-Ming; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.
2011-08-01
We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period January 1996 to July 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term time scale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the nondiagonal elements of the correlation matrix, correlation-based graphs, and the spectral properties of the largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow dynamics of the correlation of market indices. We introduce a measure of mutual information based on link co-occurrence in networks in order to detect the fast dynamics of successive changes of correlation-based graphs in a quantitative way.
Lewicki, James P.; Fox, Christina A.; Worsley, Marcus A.
2015-05-15
With the new impetus towards the development of hierarchical graphene and CNT macro-assemblies for application in fields such as advanced energy storage, catalysis and electronics; there is much renewed interest in organic carbon-based sol–gel processes as a synthetically convenient and versatile means of forming three dimensional, covalently bonded organic/inorganic networks. Such matrices can act as highly effective precursors, scaffolds or molecular ‘glues’ for the assembly of a wide variety of functional carbon macro-assemblies. However, despite the utility and broad use of organic sol–gel processes – such as the ubiquitous resorcinol-formaldehyde (RF) reaction, there are details of the reaction chemistries ofmore » these important sol–gel processes that remain poorly understood at present. It is therefore both timely and necessary to examine these reactions in more detail using modern analytical techniques in order to gain a more rigorous understanding of the mechanisms by which these organic networks form. The goal of such studies is to obtain improved and rational control over the organic network structure, in order to better direct and tailor the architecture of the final inorganic carbon matrix. In this study we have investigated in detail, the mechanism of the organic sol–gel network forming reaction of resorcinol and formaldehyde from a structural and kinetic standpoint, by using a combination of real-time high field solution state nuclear magnetic resonance (NMR), low field NMR relaxometry and differential scanning calorimetry (DSC). These investigations have allowed us to track the network formation processes in real-time, gain both detailed structural information on the mechanisms of the RF sol–gel process and a quantitative assessment of the kinetics of the global network formation process. Here, it has been shown that the mechanism, by which the RF organic network forms, proceeds via an initial exothermic step correlated to the formation of a free aromatic aldehyde. The network growth reaction then proceeds in a statistical manner following a first order Arrhenius type kinetic relationship – characteristic of a typical thermoset network poly-condensation process. Finally, despite the relative complexity and ill-defined nature of the formaldehyde staring material, the final network structure is to a large extent, governed by the substitution pattern of the resorcinol molecule.« less
Wang, Lubin; Zou, Feng; Shao, Yongcong; Ye, Enmao; Jin, Xiao; Tan, Shuwen; Hu, Dewen; Yang, Zheng
2014-12-01
The default mode network (DMN) plays an important role in the physiopathology of schizophrenia. Previous studies have suggested that the cerebellum participates in higher-order cognitive networks such as the DMN. However, the specific contribution of the cerebellum to the DMN abnormalities in schizophrenia has yet to be established. In this study, we investigated cerebellar functional connectivity differences between 60 patients with schizophrenia and 60 healthy controls from a public resting-state fMRI database. Seed-based correlation analysis was performed by using seeds from the left Crus I, right Crus I and Lobule IX, which have previously been identified as being involved in the DMN. Our results revealed that, compared with the healthy controls, the patients showed significantly reduced cerebellar functional connectivity with the thalamus and several frontal regions including the middle frontal gyrus, anterior cingulate cortex, and supplementary motor area. Moreover, the positive correlations between the strength of frontocerebellar and thalamocerebellar functional connectivity observed in the healthy subjects were diminished in the patients. Our findings implicate disruptive changes of the fronto-thalamo-cerebellar circuit in schizophrenia, which may provide further evidence for the "cognitive dysmetria" concept of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.
Direct numerical simulation of cellular-scale blood flow in microvascular networks
NASA Astrophysics Data System (ADS)
Balogh, Peter; Bagchi, Prosenjit
2017-11-01
A direct numerical simulation method is developed to study cellular-scale blood flow in physiologically realistic microvascular networks that are constructed in silico following published in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. The model resolves large deformation of individual red blood cells (RBC) flowing in such complex networks. The vascular walls and deformable interfaces of the RBCs are modeled using the immersed-boundary methods. Time-averaged hemodynamic quantities obtained from the simulations agree quite well with published in vivo data. Our simulations reveal that in several vessels the flow rates and pressure drops could be negatively correlated. The flow resistance and hematocrit are also found to be negatively correlated in some vessels. These observations suggest a deviation from the classical Poiseuille's law in such vessels. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that RBC jamming results in several orders of magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. Funded by NSF CBET 1604308.
Importance of small-degree nodes in assortative networks with degree-weight correlations
NASA Astrophysics Data System (ADS)
Ma, Sijuan; Feng, Ling; Monterola, Christopher Pineda; Lai, Choy Heng
2017-10-01
It has been known that assortative network structure plays an important role in spreading dynamics for unweighted networks. Yet its influence on weighted networks is not clear, in particular when weight is strongly correlated with the degrees of the nodes as we empirically observed in Twitter. Here we use the self-consistent probability method and revised nonperturbative heterogenous mean-field theory method to investigate this influence on both susceptible-infective-recovered (SIR) and susceptible-infective-susceptible (SIS) spreading dynamics. Both our simulation and theoretical results show that while the critical threshold is not significantly influenced by the assortativity, the prevalence in the supercritical regime shows a crossover under different degree-weight correlations. In particular, unlike the case of random mixing networks, in assortative networks, the negative degree-weight correlation leads to higher prevalence in their spreading beyond the critical transmissivity than that of the positively correlated. In addition, the previously observed inhibition effect on spreading velocity by assortative structure is not apparent in negatively degree-weight correlated networks, while it is enhanced for that of the positively correlated. Detailed investigation into the degree distribution of the infected nodes reveals that small-degree nodes play essential roles in the supercritical phase of both SIR and SIS spreadings. Our results have direct implications in understanding viral information spreading over online social networks and epidemic spreading over contact networks.
Molecular inspired models for prediction and control of directional FSO/RF wireless networks
NASA Astrophysics Data System (ADS)
Llorca, Jaime; Milner, Stuart D.; Davis, Christopher C.
2010-08-01
Directional wireless networks using FSO and RF transmissions provide wireless backbone support for mobile communications in dynamic environments. The heterogeneous and dynamic nature of such networks challenges their robustness and requires self-organization mechanisms to assure end-to-end broadband connectivity. We developed a framework based on the definition of a potential energy function to characterize robustness in communication networks and the study of first and second order variations of the potential energy to provide prediction and control strategies for network performance optimization. In this paper, we present non-convex molecular potentials such as the Morse Potential, used to describe the potential energy of bonds within molecules, for the characterization of communication links in the presence of physical constraints such as the power available at the network nodes. The inclusion of the Morse Potential translates into adaptive control strategies where forces on network nodes drive the release, retention or reconfiguration of communication links for network performance optimization. Simulation results show the effectiveness of our self-organized control mechanism, where the physical topology reorganizes to maximize the number of source to destination communicating pairs. Molecular Normal Mode Analysis (NMA) techniques for assessing network performance degradation in dynamic networks are also presented. Preliminary results show correlation between peaks in the eigenvalues of the Hessian of the network potential and network degradation.
Di, Xin; Gohel, Suril; Thielcke, Andre; Wehrl, Hans F; Biswal, Bharat B
2017-11-01
Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.
Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A.
2012-01-01
Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production. PMID:22991575
Urban Thermodynamic Island in a Coastal City Analysed from an Optimized Surface Network
NASA Astrophysics Data System (ADS)
Pigeon, Grégoire; Lemonsu, Aude; Long, Nathalie; Barrié, Joël; Masson, Valéry; Durand, Pierre
2006-08-01
Within the framework of ESCOMPTE, a French experiment performed in June and July 2001 in the south-east of France to study the photo-oxidant pollution at the regional scale, the urban boundary layer (UBL) program focused on the study of the urban atmosphere over the coastal city of Marseille. A methodology developed to optimize a network of 20 stations measuring air temperature and moisture over the city is presented. It is based on the analysis of a numerical simulation, performed with the non-hydrostatic, mesoscale Meso-NH model, run with four nested-grids down to a horizontal resolution of 250 m over the city and including a specific parametrization for the urban surface energy balance. A three-day period was modelled and evaluated against data collected during the preparatory phase for the project in summer 2000. The simulated thermodynamic surface fields were analysed using an empirical orthogonal function (EOF) decomposition in order to determine the optimal network configuration designed to capture the dominant characteristics of the fields. It is the first attempt of application of this kind of methodology to the field of urban meteorology. The network, of 20 temperature and moisture sensors, was implemented during the UBL-ESCOMPTE experiment and continuously recorded data from 12 June to 14 July 2001. The measurements were analysed in order to assess the urban thermodynamic island spatio-temporal structure, also using EOF decomposition. During nighttime, the influence of urbanization on temperature is clear the field is characterized by concentric thermo-pleths around the old core of the city, which is the warmest area of the domain. The moisture field is more influenced by proximity to the sea and airflow patterns. During the day, the sea breeze often moves from west or south-west and consequently the spatial pattern for both parameters is characterized by a gradient perpendicular to the shoreline. Finally, in order to assess the methodology adopted, the spatial structures extracted from the simulation of the 2000 preparatory campaign and observations gathered in 2001 have been compared. They are highly correlated, which is a relevant validation of the methodology proposed. The relations between these spatial structures and geographical characteristics of the site have also been studied. High correlations between temperature spatial structure during nighttime and urban cover fraction or street aspect ratio are observed and simulated. For temperature during daytime or moisture during both daytime and nighttime these geographical factors are not correlated with thermodynamic fields spatial structures.
Approaching mathematical model of the immune network based DNA Strand Displacement system.
Mardian, Rizki; Sekiyama, Kosuke; Fukuda, Toshio
2013-12-01
One biggest obstacle in molecular programming is that there is still no direct method to compile any existed mathematical model into biochemical reaction in order to solve a computational problem. In this paper, the implementation of DNA Strand Displacement system based on nature-inspired computation is observed. By using the Immune Network Theory and Chemical Reaction Network, the compilation of DNA-based operation is defined and the formulation of its mathematical model is derived. Furthermore, the implementation on this system is compared with the conventional implementation by using silicon-based programming. From the obtained results, we can see a positive correlation between both. One possible application from this DNA-based model is for a decision making scheme of intelligent computer or molecular robot. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Critical behavior of the ideal-gas Bose-Einstein condensation in the Apollonian network.
de Oliveira, I N; dos Santos, T B; de Moura, F A B F; Lyra, M L; Serva, M
2013-08-01
We show that the ideal Boson gas displays a finite-temperature Bose-Einstein condensation transition in the complex Apollonian network exhibiting scale-free, small-world, and hierarchical properties. The single-particle tight-binding Hamiltonian with properly rescaled hopping amplitudes has a fractal-like energy spectrum. The energy spectrum is analytically demonstrated to be generated by a nonlinear mapping transformation. A finite-size scaling analysis over several orders of magnitudes of network sizes is shown to provide precise estimates for the exponents characterizing the condensed fraction, correlation size, and specific heat. The critical exponents, as well as the power-law behavior of the density of states at the bottom of the band, are similar to those of the ideal Boson gas in lattices with spectral dimension d(s)=2ln(3)/ln(9/5)~/=3.74.
SmallWorld Behavior of the Worldwide Active Volcanoes Network: Preliminary Results
NASA Astrophysics Data System (ADS)
Spata, A.; Bonforte, A.; Nunnari, G.; Puglisi, G.
2009-12-01
We propose a preliminary complex networks based approach in order to model and characterize volcanoes activity correlation observed on a planetary scale over the last two thousand years. Worldwide volcanic activity is in fact related to the general plate tectonics that locally drives the faults activity, that in turn controls the magma upraise beneath the volcanoes. To find correlations among different volcanoes could indicate a common underlying mechanism driving their activity and could help us interpreting the deeper common dynamics controlling their unrest. All the first evidences found testing the procedure, suggest the suitability of this analysis to investigate global volcanism related to plate tectonics. The first correlations found, in fact, indicate that an underlying common large-scale dynamics seems to drive volcanic activity at least around the Pacific plate, where it collides and subduces beneath American, Eurasian and Australian plates. From this still preliminary analysis, also more complex relationships among volcanoes lying on different tectonic margins have been found, suggesting some more complex interrelationships between different plates. The understanding of eventually detected correlations could be also used to further implement warning systems, relating the unrest probabilities of a specific volcano also to the ongoing activity to the correlated ones. Our preliminary results suggest that, as for other many physical and biological systems, an underlying organizing principle of planetary volcanoes activity might exist and it could be a small-world principle. In fact we found that, from a topological perspective, volcanoes correlations are characterized by the typical features of small-world network: a high clustering coefficient and a low characteristic path length. These features confirm that global volcanoes activity is characterized by both short and long-range correlations. We stress here the fact that numerical simulation carried out in this work seems to agree with geological evidences (eg. the Pacific plate, South America volcanoes activity and so on). However a detailed analysis of numerical correlation pointed out in this work and geological implication requires a lot of effort and is still running. Thus this work represents preliminary contribution to better understand and clarify, from a geophysical point of view, the nature of planetary correlations among active volcanoes. Further work is still needed.
Regenerating time series from ordinal networks.
McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael
2017-03-01
Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.
Regenerating time series from ordinal networks
NASA Astrophysics Data System (ADS)
McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael
2017-03-01
Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.
Topographical maps as complex networks
NASA Astrophysics Data System (ADS)
da Fontoura Costa, Luciano; Diambra, Luis
2005-02-01
The neuronal networks in the mammalian cortex are characterized by the coexistence of hierarchy, modularity, short and long range interactions, spatial correlations, and topographical connections. Particularly interesting, the latter type of organization implies special demands on developing systems in order to achieve precise maps preserving spatial adjacencies, even at the expense of isometry. Although the object of intensive biological research, the elucidation of the main anatomic-functional purposes of the ubiquitous topographical connections in the mammalian brain remains an elusive issue. The present work reports on how recent results from complex network formalism can be used to quantify and model the effect of topographical connections between neuronal cells over the connectivity of the network. While the topographical mapping between two cortical modules is achieved by connecting nearest cells from each module, four kinds of network models are adopted for implementing intramodular connections, including random, preferential-attachment, short-range, and long-range networks. It is shown that, though spatially uniform and simple, topographical connections between modules can lead to major changes in the network properties in some specific cases, depending on intramodular connections schemes, fostering more effective intercommunication between the involved neuronal cells and modules. The possible implications of such effects on cortical operation are discussed.
Optical-Correlator Neural Network Based On Neocognitron
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Stoner, William W.
1994-01-01
Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.
Higher-order clustering in networks
NASA Astrophysics Data System (ADS)
Yin, Hao; Benson, Austin R.; Leskovec, Jure
2018-05-01
A fundamental property of complex networks is the tendency for edges to cluster. The extent of the clustering is typically quantified by the clustering coefficient, which is the probability that a length-2 path is closed, i.e., induces a triangle in the network. However, higher-order cliques beyond triangles are crucial to understanding complex networks, and the clustering behavior with respect to such higher-order network structures is not well understood. Here we introduce higher-order clustering coefficients that measure the closure probability of higher-order network cliques and provide a more comprehensive view of how the edges of complex networks cluster. Our higher-order clustering coefficients are a natural generalization of the traditional clustering coefficient. We derive several properties about higher-order clustering coefficients and analyze them under common random graph models. Finally, we use higher-order clustering coefficients to gain new insights into the structure of real-world networks from several domains.
Murphy, Kevin; Birn, Rasmus M.; Handwerker, Daniel A.; Jones, Tyler B.; Bandettini, Peter A.
2009-01-01
Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step. PMID:18976716
Murphy, Kevin; Birn, Rasmus M; Handwerker, Daniel A; Jones, Tyler B; Bandettini, Peter A
2009-02-01
Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step.
Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction.
Eixarch, Elisenda; Muñoz-Moreno, Emma; Bargallo, Nuria; Batalle, Dafnis; Gratacos, Eduard
2016-06-01
Intrauterine growth restriction is associated with short- and long-term neurodevelopmental problems. Structural brain changes underlying these alterations have been described with the use of different magnetic resonance-based methods that include changes in whole structural brain networks. However, evaluation of specific brain circuits and its correlation with related functions has not been investigated in intrauterine growth restriction. In this study, we aimed to investigate differences in tractography-related metrics in cortico-striatal-thalamic and motor networks in intrauterine growth restricted children and whether these parameters were related with their specific function in order to explore its potential use as an imaging biomarker of altered neurodevelopment. We included a group of 24 intrauterine growth restriction subjects and 27 control subjects that were scanned at 1 year old; we acquired T1-weighted and 30 directions diffusion magnetic resonance images. Each subject brain was segmented in 93 regions with the use of anatomical automatic labeling atlas, and deterministic tractography was performed. Brain regions included in motor and cortico-striatal-thalamic networks were defined based in functional and anatomic criteria. Within the streamlines that resulted from the whole brain tractography, those belonging to each specific circuit were selected and tractography-related metrics that included number of streamlines, fractional anisotropy, and integrity were calculated for each network. We evaluated differences between both groups and further explored the correlation of these parameters with the results of socioemotional, cognitive, and motor scales from Bayley Scale at 2 years of age. Reduced fractional anisotropy (cortico-striatal-thalamic, 0.319 ± 0.018 vs 0.315 ± 0.015; P = .010; motor, 0.322 ± 0.019 vs 0.319 ± 0.020; P = .019) and integrity cortico-striatal-thalamic (0.407 ± 0.040 vs 0.399 ± 0.034; P = .018; motor, 0.417 ± 0.044 vs 0.409 ± 0.046; P = .016) in both networks were observed in the intrauterine growth restriction group, with no differences in number of streamlines. More importantly, strong specific correlation was found between tractography-related metrics and its relative function in both networks in intrauterine growth restricted children. Motor network metrics were correlated specifically with motor scale results (fractional anisotropy: rho = 0.857; integrity: rho = 0.740); cortico-striatal-thalamic network metrics were correlated with cognitive (fractional anisotropy: rho = 0.793; integrity, rho = 0.762) and socioemotional scale (fractional anisotropy: rho = 0.850; integrity: rho = 0.877). These results support the existence of altered brain connectivity in intrauterine growth restriction demonstrated by altered connectivity in motor and cortico-striatal-thalamic networks, with reduced fractional anisotropy and integrity. The specific correlation between tractography-related metrics and neurodevelopmental outcomes in intrauterine growth restriction shows the potential to use this approach to develop imaging biomarkers to predict specific neurodevelopmental outcome in infants who are at risk because of intrauterine growth restriction and other prenatal diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Guo, Hao; Zhang, Fan; Chen, Junjie; Xu, Yong; Xiang, Jie
2017-01-01
Exploring functional interactions among various brain regions is helpful for understanding the pathological underpinnings of neurological disorders. Brain networks provide an important representation of those functional interactions, and thus are widely applied in the diagnosis and classification of neurodegenerative diseases. Many mental disorders involve a sharp decline in cognitive ability as a major symptom, which can be caused by abnormal connectivity patterns among several brain regions. However, conventional functional connectivity networks are usually constructed based on pairwise correlations among different brain regions. This approach ignores higher-order relationships, and cannot effectively characterize the high-order interactions of many brain regions working together. Recent neuroscience research suggests that higher-order relationships between brain regions are important for brain network analysis. Hyper-networks have been proposed that can effectively represent the interactions among brain regions. However, this method extracts the local properties of brain regions as features, but ignores the global topology information, which affects the evaluation of network topology and reduces the performance of the classifier. This problem can be compensated by a subgraph feature-based method, but it is not sensitive to change in a single brain region. Considering that both of these feature extraction methods result in the loss of information, we propose a novel machine learning classification method that combines multiple features of a hyper-network based on functional magnetic resonance imaging in Alzheimer's disease. The method combines the brain region features and subgraph features, and then uses a multi-kernel SVM for classification. This retains not only the global topological information, but also the sensitivity to change in a single brain region. To certify the proposed method, 28 normal control subjects and 38 Alzheimer's disease patients were selected to participate in an experiment. The proposed method achieved satisfactory classification accuracy, with an average of 91.60%. The abnormal brain regions included the bilateral precuneus, right parahippocampal gyrus\\hippocampus, right posterior cingulate gyrus, and other regions that are known to be important in Alzheimer's disease. Machine learning classification combining multiple features of a hyper-network of functional magnetic resonance imaging data in Alzheimer's disease obtains better classification performance. PMID:29209156
Measurement system of correlation functions of microwave single photon source in real time
NASA Astrophysics Data System (ADS)
Korenkov, A.; Dmitriev, A.; Astafiev, O.
2018-02-01
Several quantum setups, such as quantum key distribution networks[1] and quantum simulators (e.g. boson sampling), by their design rely on single photon sources (SPSs). These quantum setups were demonstrated to operate in optical frequency domain. However, following the steady advances in circuit quantum electrodynamics, a proposal has been made recently[2] to demonstrate boson sampling with microwave photons. This in turn requires the development of reliable microwave SPS. It's one of the most important characteristics are the first-order and the second-order correlation functions g1 and g2. The measurement technique of g1 and g2 is significantly different from that in the optical domain [3],[4] because of the current unavailability of microwave single-photon detectors. In particular, due to high levels of noise present in the system a substantial amount of statistics in needed to be acquired. This work presents a platform for measurement of g1 and g2 that processes the incoming data in real time, maximizing the efficiency of data acquisition. The use of field-programmable gate array (FPGA) electronics, common in similar experiments[3] but complex in programming, is avoided; instead, the calculations are performed on a standard desktop computer. The platform is used to perform the measurements of the first-order and the second-order correlation functions of the microwave SPS.
NASA Astrophysics Data System (ADS)
Pfeil, Thomas; Jordan, Jakob; Tetzlaff, Tom; Grübl, Andreas; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz
2016-04-01
High-level brain function, such as memory, classification, or reasoning, can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy-efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear subthreshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with nonlinear, conductance-based synapses. Emulations of these networks on the analog neuromorphic-hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm that shared-input correlations are actively suppressed by inhibitory feedback also in highly heterogeneous networks exhibiting broad, heavy-tailed firing-rate distributions. In line with former studies, cell heterogeneities reduce shared-input correlations. Overall, however, correlations in the recurrent system can increase with the level of heterogeneity as a consequence of diminished effective negative feedback.
Vasquez, Juan C.; Houweling, Arthur R.; Tiesinga, Paul
2013-01-01
Neuronal networks in rodent barrel cortex are characterized by stable low baseline firing rates. However, they are sensitive to the action potentials of single neurons as suggested by recent single-cell stimulation experiments that reported quantifiable behavioral responses in response to short spike trains elicited in single neurons. Hence, these networks are stable against internally generated fluctuations in firing rate but at the same time remain sensitive to similarly-sized externally induced perturbations. We investigated stability and sensitivity in a simple recurrent network of stochastic binary neurons and determined numerically the effects of correlation between the number of afferent (“in-degree”) and efferent (“out-degree”) connections in neurons. The key advance reported in this work is that anti-correlation between in-/out-degree distributions increased the stability of the network in comparison to networks with no correlation or positive correlations, while being able to achieve the same level of sensitivity. The experimental characterization of degree distributions is difficult because all pre-synaptic and post-synaptic neurons have to be identified and counted. We explored whether the statistics of network motifs, which requires the characterization of connections between small subsets of neurons, could be used to detect evidence for degree anti-correlations. We find that the sample frequency of the 3-neuron “ring” motif (1→2→3→1), can be used to detect degree anti-correlation for sub-networks of size 30 using about 50 samples, which is of significance because the necessary measurements are achievable experimentally in the near future. Taken together, we hypothesize that barrel cortex networks exhibit degree anti-correlations and specific network motif statistics. PMID:24223550
Spin-one bilinear-biquadratic model on a star lattice
NASA Astrophysics Data System (ADS)
Lee, Hyun-Yong; Kawashima, Naoki
2018-05-01
We study the ground-state phase diagram of the S =1 bilinear-biquadratic model (BLBQ) on the star lattice with the state-of-art tensor network algorithms. The system has four phases: the ferromagnetic, antiferromagnetic, ferroquadrupolar, and spin-liquid phases. The phases and their phase boundaries are determined by examining various local observables, correlation functions, and transfer matrices exhaustively. The spin-liquid phase, which is the first quantum disordered phase found in the two-dimensional BLBQ model, is gapped and devoid of any conventional long-range order. It is also characterized by fixed-parity virtual bonds in the tensor network formalism, analogous to the Haldane phase, while the parity varies depending on the location of the bond.
Tensor Spectral Clustering for Partitioning Higher-order Network Structures.
Benson, Austin R; Gleich, David F; Leskovec, Jure
2015-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.
Tensor Spectral Clustering for Partitioning Higher-order Network Structures
Benson, Austin R.; Gleich, David F.; Leskovec, Jure
2016-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms. PMID:27812399
Tadić, Bosiljka; Andjelković, Miroslav; Boshkoska, Biljana Mileva; Levnajić, Zoran
2016-01-01
Human behaviour in various circumstances mirrors the corresponding brain connectivity patterns, which are suitably represented by functional brain networks. While the objective analysis of these networks by graph theory tools deepened our understanding of brain functions, the multi-brain structures and connections underlying human social behaviour remain largely unexplored. In this study, we analyse the aggregate graph that maps coordination of EEG signals previously recorded during spoken communications in two groups of six listeners and two speakers. Applying an innovative approach based on the algebraic topology of graphs, we analyse higher-order topological complexes consisting of mutually interwoven cliques of a high order to which the identified functional connections organise. Our results reveal that the topological quantifiers provide new suitable measures for differences in the brain activity patterns and inter-brain synchronisation between speakers and listeners. Moreover, the higher topological complexity correlates with the listener’s concentration to the story, confirmed by self-rating, and closeness to the speaker’s brain activity pattern, which is measured by network-to-network distance. The connectivity structures of the frontal and parietal lobe consistently constitute distinct clusters, which extend across the listener’s group. Formally, the topology quantifiers of the multi-brain communities exceed the sum of those of the participating individuals and also reflect the listener’s rated attributes of the speaker and the narrated subject. In the broader context, the presented study exposes the relevance of higher topological structures (besides standard graph measures) for characterising functional brain networks under different stimuli. PMID:27880802
Node Survival in Networks under Correlated Attacks
Hao, Yan; Armbruster, Dieter; Hütt, Marc-Thorsten
2015-01-01
We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles. PMID:25932635
P2MP MPLS-Based Hierarchical Service Management System
NASA Astrophysics Data System (ADS)
Kumaki, Kenji; Nakagawa, Ikuo; Nagami, Kenichi; Ogishi, Tomohiko; Ano, Shigehiro
This paper proposes a point-to-multipoint (P2MP) Multi-Protocol Label Switching (MPLS) based hierarchical service management system. Traditionally, general management systems deployed in some service providers control MPLS Label Switched Paths (LSPs) (e.g., RSVP-TE and LDP) and services (e.g., L2VPN, L3VPN and IP) separately. In order for dedicated management systems for MPLS LSPs and services to cooperate with each other automatically, a hierarchical service management system has been proposed with the main focus on point-to-point (P2P) TE LSPs in MPLS path management. In the case where P2MP TE LSPs and services are deployed in MPLS networks, the dedicated management systems for P2MP TE LSPs and services must work together automatically. Therefore, this paper proposes a new algorithm that uses a correlation between P2MP TE LSPs and multicast VPN services based on a P2MP MPLS-based hierarchical service management architecture. Also, the capacity and performance of the proposed algorithm are evaluated by simulations, which are actually based on certain real MPLS production networks, and are compared to that of the algorithm for P2P TE LSPs. Results show this system is very scalable within real MPLS production networks. This system, with the automatic correlation, appears to be deployable in real MPLS production networks.
Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios
NASA Astrophysics Data System (ADS)
Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui
2018-01-01
The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.
Nobili, Alberto; Tao, Yifeng; Pavlidis, Ioannis V; van den Bergh, Tom; Joosten, Henk-Jan; Tan, Tianwei; Bornscheuer, Uwe T
2015-03-23
In order to improve the efficiency of directed evolution experiments, in silico multiple-substrate clustering was combined with an analysis of the variability of natural enzymes within a protein superfamily. This was applied to a Pseudomonas fluorescens esterase (PFE I) targeting the enantioselective hydrolysis of 3-phenylbutyric acid esters. Data reported in the literature for nine substrates were used for the clustering meta-analysis of the docking conformations in wild-type PFE I, and this highlighted a tryptophan residue (W28) as an interesting target. Exploration of the most frequently, naturally occurring amino acids at this position suggested that the reduced flexibility observed in the case of the W28F variant leads to enhancement of the enantioselectivity. This mutant was subsequently combined with mutations identified in a library based on analysis of a correlated mutation network. By interrogation of <80 variants a mutant with 15-fold improved enantioselectivity was found. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bloch-like waves in random-walk potentials based on supersymmetry
NASA Astrophysics Data System (ADS)
Yu, Sunkyu; Piao, Xianji; Hong, Jiho; Park, Namkyoo
2015-09-01
Bloch's theorem was a major milestone that established the principle of bandgaps in crystals. Although it was once believed that bandgaps could form only under conditions of periodicity and long-range correlations for Bloch's theorem, this restriction was disproven by the discoveries of amorphous media and quasicrystals. While network and liquid models have been suggested for the interpretation of Bloch-like waves in disordered media, these approaches based on searching for random networks with bandgaps have failed in the deterministic creation of bandgaps. Here we reveal a deterministic pathway to bandgaps in random-walk potentials by applying the notion of supersymmetry to the wave equation. Inspired by isospectrality, we follow a methodology in contrast to previous methods: we transform order into disorder while preserving bandgaps. Our approach enables the formation of bandgaps in extremely disordered potentials analogous to Brownian motion, and also allows the tuning of correlations while maintaining identical bandgaps, thereby creating a family of potentials with `Bloch-like eigenstates'.
Tian, Long; Xu, Zhongxiao; Chen, Lirong; Ge, Wei; Yuan, Haoxiang; Wen, Yafei; Wang, Shengzhi; Li, Shujing; Wang, Hai
2017-09-29
The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ∼sixfold (∼fourfold) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49±0.03 combined with a memory lifetime of up to ∼51 μs.
NASA Astrophysics Data System (ADS)
Gill, L. W.; Naughton, O.; Johnston, P. M.; Basu, B.; Ghosh, B.
2013-08-01
This research has used continuous water level measurements five groundwater-fed lakes (or turloughs) in a linked lowland karst network of south Galway in Ireland over a 3 year period in order to elucidate the hydrogeological controls and conduit configurations forming the flooded karstic hydraulic system beneath the ground. The main spring outflow from this network discharges below mean sea level making it difficult to determine the hydraulic nature of the network using traditional rainfall-spring flow cross analysis, as has been done in many other studies on karst systems. However, the localised groundwater-surface water interactions (the turloughs) in this flooded lowland karst system can yield information about the nature of the hydraulic connections beneath the ground. Various different analytical techniques have been applied to the fluctuating turlough water level time series data in order to determine the nature of the linkage between them as well as hydraulic pipe configurations at key points in order to improve the conceptual model of the overall karst network. Initially, simple cross correlations between the different turlough water levels were carried out applying different time lags. Frequency analysis of the signals was then carried out using Fast Fourier transform analysis and then both discrete and continuous wavelet analyses have been applied to the data sets to characterise these inherently non-stationary time-series of fluctuating water levels. The analysis has indicated which turloughs are on the main line conduit system and which are somewhat off-line, the relative size of the main conduit in the network including evidence of localised constrictions, as well as clearly showing the tidal influence on the water levels in the three lower turloughs at shallow depths ∼8 km from the main spring outfall at the sea. It has also indicated that the timing of high rainfall events coincident with maximum spring tide levels may promote more consistent, long duration flooding of the turloughs throughout the winter.
NASA Astrophysics Data System (ADS)
Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng
2018-02-01
Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.
Characterization of complex networks by higher order neighborhood properties
NASA Astrophysics Data System (ADS)
Andrade, R. F. S.; Miranda, J. G. V.; Pinho, S. T. R.; Lobão, T. P.
2008-01-01
A concept of higher order neighborhood in complex networks, introduced previously [Phys. Rev. E 73, 046101 (2006)], is systematically explored to investigate larger scale structures in complex networks. The basic idea is to consider each higher order neighborhood as a network in itself, represented by a corresponding adjacency matrix, and to settle a plenty of new parameters in order to obtain a best characterization of the whole network. Usual network indices are then used to evaluate the properties of each neighborhood. The identification of high order neighborhoods is also regarded as intermediary step towards the evaluation of global network properties, like the diameter, average shortest path between node, and network fractal dimension. Results for a large number of typical networks are presented and discussed.
Ni, Jianhua; Qian, Tianlu; Xi, Changbai; Rui, Yikang; Wang, Jiechen
2016-08-18
The spatial distribution of urban service facilities is largely constrained by the road network. In this study, network point pattern analysis and correlation analysis were used to analyze the relationship between road network and healthcare facility distribution. The weighted network kernel density estimation method proposed in this study identifies significant differences between the outside and inside areas of the Ming city wall. The results of network K-function analysis show that private hospitals are more evenly distributed than public hospitals, and pharmacy stores tend to cluster around hospitals along the road network. After computing the correlation analysis between different categorized hospitals and street centrality, we find that the distribution of these hospitals correlates highly with the street centralities, and that the correlations are higher with private and small hospitals than with public and large hospitals. The comprehensive analysis results could help examine the reasonability of existing urban healthcare facility distribution and optimize the location of new healthcare facilities.
Compressive Sensing for Radar and Radar Sensor Networks
2013-12-02
Zero Correlation Zone Sequence Pair Sets for MIMO Radar Inspired by recent advances in MIMO radar, we apply orthogonal phase coded waveforms to MIMO ...radar system in order to gain better range resolution and target direction finding performance [2]. We provide and investigate a generalized MIMO radar...ZCZ) sequence-Pair Set (ZCZPS). We also study the MIMO radar ambiguity function of the system using phase coded waveforms, based on which we analyze
Percolation of secret correlations in a network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leverrier, Anthony; Garcia-Patron, Raul; Research Laboratory of Electronics, MIT, Cambridge, MA 02139
In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.
An Electroencephalography Network and Connectivity Analysis for Deception in Instructed Lying Tasks
Wang, Yue; Ng, Wu Chun; Ng, Khoon Siong; Yu, Ke; Wu, Tiecheng; Li, Xiaoping
2015-01-01
Deception is an impactful social event that has been the focus of an abundance of researches over recent decades. In this paper, an electroencephalography (EEG) study is presented regarding the cognitive processes of an instructed liar/truth-teller during the time window of stimulus (question) delivery period (SDP) prior to their deceptive/truthful responses towards questions related to authentic (WE: with prior experience) and fictional experience (NE: no prior experience). To investigate deception in non-experienced events, the subjects were given stimuli in a mock interview scenario that induced them to fabricate lies. To analyze the data, frequency domain network and connectivity analysis was performed in the source space in order to provide a more systematic level understanding of deception during SDP. This study reveals several groups of neuronal generators underlying both the instructed lying (IL) and the instructed truth-telling (IT) conditions for both tasks during the SDP. Despite the similarities existed in these group components, significant differences were found in the intra- and inter-group connectivity between the IL and IT conditions in either task. Additionally, the response time was found to be positively correlated with the clustering coefficient of the inferior frontal gyrus (44R) in the WE-IL condition and positively correlated with the clustering coefficient of the precuneus (7L) and the angular gyrus (39R) in the WE-IT condition. However, the response time was found to be marginally negatively correlated with the clustering coefficient of the secondary auditory cortex (42L) in the NE-IL condition and negatively correlated with the clustering coefficient of the somatosensory association cortex (5L, R) in the NE-IT condition. Therefore, these results provide complementary and intuitive evidence for the differences between the IL and IT conditions in SDP for two types of deception tasks, thus elucidating the electrophysiological mechanisms underlying SDP of deception from regional, inter-regional, network, and inter-network scale analyses. PMID:25679784
Didic, Mira; Felician, Olivier; Gour, Natalina; Bernard, Rafaelle; Pécheux, Christophe; Mundler, Olivier; Ceccaldi, Mathieu; Guedj, Eric
2015-09-01
The ε4 allele of the apolipoprotein E (APO-E4) gene, a genetic risk factor for Alzheimer's disease (AD), also modulates brain metabolism and function in healthy subjects. The aim of the present study was to explore cerebral metabolism using FDG PET in healthy APO-E4 carriers by comparing cognitively normal APO-E4 carriers to noncarriers and to assess if patterns of metabolism are correlated with performance on cognitive tasks. Moreover, metabolic connectivity patterns were established in order to assess if the organization of neural networks is influenced by genetic factors. Whole-brain PET statistical analysis was performed at voxel-level using SPM8 with a threshold of p < 0.005, corrected for volume, with age, gender and level of education as nuisance variables. Significant hypometabolism between APO-E4 carriers (n = 11) and noncarriers (n = 30) was first determined. Mean metabolic values with clinical/neuropsychological data were extracted at the individual level, and correlations were searched using Spearman's rank test in the whole group. To evaluate metabolic connectivity from metabolic cluster(s) previously identified in the intergroup comparison, voxel-wise interregional correlation analysis (IRCA) was performed between groups of subjects. APO-E4 carriers had reduced metabolism within the left anterior medial temporal lobe (MTL), where neuropathological changes first appear in AD, including the entorhinal and perirhinal cortices. A correlation between metabolism in this area and performance on the DMS48 (delayed matching to sample-48 items) was found, in line with converging evidence involving the perirhinal cortex in object-based memory. Finally, a voxel-wise IRCA revealed stronger metabolic connectivity of the MTL cluster with neocortical frontoparietal regions in carriers than in noncarriers, suggesting compensatory metabolic networks. Exploring cerebral metabolism using FDG PET can contribute to a better understanding of the influence of genetic factors on cerebral metabolism at both the local and network levels leading to phenotypical variations of the healthy brain and selective vulnerability.
NASA Astrophysics Data System (ADS)
Hyman, J.; Aldrich, G. A.; Viswanathan, H. S.; Makedonska, N.; Karra, S.
2016-12-01
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semi-correlation, and non-correlation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same.We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.
Correlations in star networks: from Bell inequalities to network inequalities
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Olivier Renou, Marc; Gisin, Nicolas; Brunner, Nicolas
2017-07-01
The problem of characterizing classical and quantum correlations in networks is considered. Contrary to the usual Bell scenario, where distant observers share a physical system emitted by one common source, a network features several independent sources, each distributing a physical system to a subset of observers. In the quantum setting, the observers can perform joint measurements on initially independent systems, which may lead to strong correlations across the whole network. In this work, we introduce a technique to systematically map a Bell inequality to a family of Bell-type inequalities bounding classical correlations on networks in a star-configuration. Also, we show that whenever a given Bell inequality can be violated by some entangled state ρ, then all the corresponding network inequalities can be violated by considering many copies of ρ distributed in the star network. The relevance of these ideas is illustrated by applying our method to a specific multi-setting Bell inequality. We derive the corresponding network inequalities, and study their quantum violations.
Anti AIDS drug design with the help of neural networks
NASA Astrophysics Data System (ADS)
Tetko, I. V.; Tanchuk, V. Yu.; Luik, A. I.
1995-04-01
Artificial neural networks were used to analyze and predict the human immunodefiency virus type 1 reverse transcriptase inhibitors. Training and control set included 44 molecules (most of them are well-known substances such as AZT, TIBO, dde, etc.) The biological activities of molecules were taken from literature and rated for two classes: active and inactive compounds according to their values. We used topological indices as molecular parameters. Four most informative parameters (out of 46) were chosen using cluster analysis and original input parameters' estimation procedure and were used to predict activities of both control and new (synthesized in our institute) molecules. We applied pruning network algorithm and network ensembles to obtain the final classifier and avoid chance correlation. The increasing of neural network generalization of the data from the control set was observed, when using the aforementioned methods. The prognosis of new molecules revealed one molecule as possibly active. It was confirmed by further biological tests. The compound was as active as AZT and in order less toxic. The active compound is currently being evaluated in pre clinical trials as possible drug for anti-AIDS therapy.
Immunization strategy for epidemic spreading on multilayer networks
NASA Astrophysics Data System (ADS)
Buono, C.; Braunstein, L. A.
2015-01-01
In many real-world complex systems, individuals have many kinds of interactions among them, suggesting that it is necessary to consider a layered-structure framework to model systems such as social interactions. This structure can be captured by multilayer networks and can have major effects on the spreading of process that occurs over them, such as epidemics. In this letter we study a targeted immunization strategy for epidemic spreading over a multilayer network. We apply the strategy in one of the layers and study its effect in all layers of the network disregarding degree-degree correlation among layers. We found that the targeted strategy is not as efficient as in isolated networks, due to the fact that in order to stop the spreading of the disease it is necessary to immunize more than 80% of the individuals. However, the size of the epidemic is drastically reduced in the layer where the immunization strategy is applied compared to the case with no mitigation strategy. Thus, the immunization strategy has a major effect on the layer were it is applied, but does not efficiently protect the individuals of other layers.
Cortisol, salivary alpha-amylase and children's perceptions of their social networks.
Ponzi, Davide; Muehlenbein, Michael P; Geary, David C; Flinn, Mark V
2016-01-01
In recent years there has been a growing interest in the use of social network analysis in biobehavioral research. Despite the well-established importance of social relationships in influencing human behavior and health, little is known about how children's perception of their immediate social relationships correlates with biological parameters of stress. In this study we explore the association between two measures of children's personal social networks, perceived network size and perceived network density, with two biomarkers of stress, cortisol and salivary alpha-amylase. Forty children (mean age = 8.30, min age = 5, and max age = 12) were interviewed to collect information about their friendships and three samples of saliva were collected. Our results show that children characterized by a lower pre-interview cortisol concentration and a lower salivary alpha-amylase reactivity to the interview reported the highest density of friendships. We discuss this result in light of the multisystem approach to the study of children's behavioral outcomes, emphasizing that future work of this kind is needed in order to understand the cognitive and biological mechanisms underlying children's and adolescents' social perceptual biases.
Recurrent Neural Network Applications for Astronomical Time Series
NASA Astrophysics Data System (ADS)
Protopapas, Pavlos
2017-06-01
The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.
Emergence of Multiplex Communities in Collaboration Networks.
Battiston, Federico; Iacovacci, Jacopo; Nicosia, Vincenzo; Bianconi, Ginestra; Latora, Vito
2016-01-01
Community structures in collaboration networks reflect the natural tendency of individuals to organize their work in groups in order to better achieve common goals. In most of the cases, individuals exploit their connections to introduce themselves to new areas of interests, giving rise to multifaceted collaborations which span different fields. In this paper, we analyse collaborations in science and among movie actors as multiplex networks, where the layers represent respectively research topics and movie genres, and we show that communities indeed coexist and overlap at the different layers of such systems. We then propose a model to grow multiplex networks based on two mechanisms of intra and inter-layer triadic closure which mimic the real processes by which collaborations evolve. We show that our model is able to explain the multiplex community structure observed empirically, and we infer the strength of the two underlying social mechanisms from real-world systems. Being also able to correctly reproduce the values of intra-layer and inter-layer assortativity correlations, the model contributes to a better understanding of the principles driving the evolution of social networks.
Alcalde Cuesta, Fernando; González Sequeiros, Pablo; Lozano Rojo, Álvaro
2016-02-10
For a network, the accomplishment of its functions despite perturbations is called robustness. Although this property has been extensively studied, in most cases, the network is modified by removing nodes. In our approach, it is no longer perturbed by site percolation, but evolves after site invasion. The process transforming resident/healthy nodes into invader/mutant/diseased nodes is described by the Moran model. We explore the sources of robustness (or its counterpart, the propensity to spread favourable innovations) of the US high-voltage power grid network, the Internet2 academic network, and the C. elegans connectome. We compare them to three modular and non-modular benchmark networks, and samples of one thousand random networks with the same degree distribution. It is found that, contrary to what happens with networks of small order, fixation probability and robustness are poorly correlated with most of standard statistics, but they depend strongly on the degree distribution. While community detection techniques are able to detect the existence of a central core in Internet2, they are not effective in detecting hierarchical structures whose topological complexity arises from the repetition of a few rules. Box counting dimension and Rent's rule are applied to show a subtle trade-off between topological and wiring complexity.
Alcalde Cuesta, Fernando; González Sequeiros, Pablo; Lozano Rojo, Álvaro
2016-01-01
For a network, the accomplishment of its functions despite perturbations is called robustness. Although this property has been extensively studied, in most cases, the network is modified by removing nodes. In our approach, it is no longer perturbed by site percolation, but evolves after site invasion. The process transforming resident/healthy nodes into invader/mutant/diseased nodes is described by the Moran model. We explore the sources of robustness (or its counterpart, the propensity to spread favourable innovations) of the US high-voltage power grid network, the Internet2 academic network, and the C. elegans connectome. We compare them to three modular and non-modular benchmark networks, and samples of one thousand random networks with the same degree distribution. It is found that, contrary to what happens with networks of small order, fixation probability and robustness are poorly correlated with most of standard statistics, but they depend strongly on the degree distribution. While community detection techniques are able to detect the existence of a central core in Internet2, they are not effective in detecting hierarchical structures whose topological complexity arises from the repetition of a few rules. Box counting dimension and Rent’s rule are applied to show a subtle trade-off between topological and wiring complexity. PMID:26861189
Social networks predict selective observation and information spread in ravens
Rubenstein, Daniel I.; Bugnyar, Thomas; Hoppitt, William; Mikus, Nace; Schwab, Christine
2016-01-01
Animals are predicted to selectively observe and learn from the conspecifics with whom they share social connections. Yet, hardly anything is known about the role of different connections in observation and learning. To address the relationships between social connections, observation and learning, we investigated transmission of information in two raven (Corvus corax) groups. First, we quantified social connections in each group by constructing networks on affiliative interactions, aggressive interactions and proximity. We then seeded novel information by training one group member on a novel task and allowing others to observe. In each group, an observation network based on who observed whose task-solving behaviour was strongly correlated with networks based on affiliative interactions and proximity. Ravens with high social centrality (strength, eigenvector, information centrality) in the affiliative interaction network were also central in the observation network, possibly as a result of solving the task sooner. Network-based diffusion analysis revealed that the order that ravens first solved the task was best predicted by connections in the affiliative interaction network in a group of subadult ravens, and by social rank and kinship (which influenced affiliative interactions) in a group of juvenile ravens. Our results demonstrate that not all social connections are equally effective at predicting the patterns of selective observation and information transmission. PMID:27493780
Li, Yuankun; Xu, Tingfa; Deng, Honggao; Shi, Guokai; Guo, Jie
2018-02-23
Although correlation filter (CF)-based visual tracking algorithms have achieved appealing results, there are still some problems to be solved. When the target object goes through long-term occlusions or scale variation, the correlation model used in existing CF-based algorithms will inevitably learn some non-target information or partial-target information. In order to avoid model contamination and enhance the adaptability of model updating, we introduce the keypoints matching strategy and adjust the model learning rate dynamically according to the matching score. Moreover, the proposed approach extracts convolutional features from a deep convolutional neural network (DCNN) to accurately estimate the position and scale of the target. Experimental results demonstrate that the proposed tracker has achieved satisfactory performance in a wide range of challenging tracking scenarios.
Effect of degree correlations above the first shell on the percolation transition
NASA Astrophysics Data System (ADS)
Valdez, L. D.; Buono, C.; Braunstein, L. A.; Macri, P. A.
2011-11-01
The use of degree-degree correlations to model realistic networks which are characterized by their Pearson's coefficient, has become widespread. However the effect on how different correlation algorithms produce different results on processes on top of them, has not yet been discussed. In this letter, using different correlation algorithms to generate assortative networks, we show that for very assortative networks the behavior of the main observables in percolation processes depends on the algorithm used to build the network. The different alghoritms used here introduce different inner structures that are missed in Pearson's coefficient. We explain the different behaviors through a generalization of Pearson's coefficient that allows to study the correlations at chemical distances l from a root node. We apply our findings to real networks.
Carbonell, Felix; Bellec, Pierre; Shmuel, Amir
2011-01-01
The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... Business Networks Services, Inc., Senior Analysts-Order Management, Voice Over Internet Protocol, Small And Medium Business, Tampa, Florida; Verizon Business Networks Services, Inc., Senior Coordinator-Order... Business Networks Services, Inc., Senior Analysts-Order Management, Voice Over Internet Protocol, Small and...
Cascade Error Projection with Low Bit Weight Quantization for High Order Correlation Data
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Daud, Taher
1998-01-01
In this paper, we reinvestigate the solution for chaotic time series prediction problem using neural network approach. The nature of this problem is such that the data sequences are never repeated, but they are rather in chaotic region. However, these data sequences are correlated between past, present, and future data in high order. We use Cascade Error Projection (CEP) learning algorithm to capture the high order correlation between past and present data to predict a future data using limited weight quantization constraints. This will help to predict a future information that will provide us better estimation in time for intelligent control system. In our earlier work, it has been shown that CEP can sufficiently learn 5-8 bit parity problem with 4- or more bits, and color segmentation problem with 7- or more bits of weight quantization. In this paper, we demonstrate that chaotic time series can be learned and generalized well with as low as 4-bit weight quantization using round-off and truncation techniques. The results show that generalization feature will suffer less as more bit weight quantization is available and error surfaces with the round-off technique are more symmetric around zero than error surfaces with the truncation technique. This study suggests that CEP is an implementable learning technique for hardware consideration.
Temporal correlation coefficient for directed networks.
Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim
2016-01-01
Previous studies dealing with network theory focused mainly on the static aggregation of edges over specific time window lengths. Thus, most of the dynamic information gets lost. To assess the quality of such a static aggregation the temporal correlation coefficient can be calculated. It measures the overall possibility for an edge to persist between two consecutive snapshots. Up to now, this measure is only defined for undirected networks. Therefore, we introduce the adaption of the temporal correlation coefficient to directed networks. This new methodology enables the distinction between ingoing and outgoing edges. Besides a small example network presenting the single calculation steps, we also calculated the proposed measurements for a real pig trade network to emphasize the importance of considering the edge direction. The farm types at the beginning of the pork supply chain showed clearly higher values for the outgoing temporal correlation coefficient compared to the farm types at the end of the pork supply chain. These farm types showed higher values for the ingoing temporal correlation coefficient. The temporal correlation coefficient is a valuable tool to understand the structural dynamics of these systems, as it assesses the consistency of the edge configuration. The adaption of this measure for directed networks may help to preserve meaningful additional information about the investigated network that might get lost if the edge directions are ignored.
Role of protein fluctuation correlations in electron transfer in photosynthetic complexes.
Nesterov, Alexander I; Berman, Gennady P
2015-04-01
We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtained analytic expressions for the electron transfer rates and found the range of parameters for their applicability by comparing with the exact numerical simulations. We also compared the correlated and uncorrelated regimes and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.
Anti-correlated cortical networks of intrinsic connectivity in the rat brain.
Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang
2013-01-01
In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.
Anti-Correlated Cortical Networks of Intrinsic Connectivity in the Rat Brain
Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang
2013-01-01
Abstract In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline “DMN-like” network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans. PMID:23919836
Correlated network of networks enhances robustness against catastrophic failures.
Min, Byungjoon; Zheng, Muhua
2018-01-01
Networks in nature rarely function in isolation but instead interact with one another with a form of a network of networks (NoN). A network of networks with interdependency between distinct networks contains instability of abrupt collapse related to the global rule of activation. As a remedy of the collapse instability, here we investigate a model of correlated NoN. We find that the collapse instability can be removed when hubs provide the majority of interconnections and interconnections are convergent between hubs. Thus, our study identifies a stable structure of correlated NoN against catastrophic failures. Our result further suggests a plausible way to enhance network robustness by manipulating connection patterns, along with other methods such as controlling the state of node based on a local rule.
Correlated network of networks enhances robustness against catastrophic failures
Zheng, Muhua
2018-01-01
Networks in nature rarely function in isolation but instead interact with one another with a form of a network of networks (NoN). A network of networks with interdependency between distinct networks contains instability of abrupt collapse related to the global rule of activation. As a remedy of the collapse instability, here we investigate a model of correlated NoN. We find that the collapse instability can be removed when hubs provide the majority of interconnections and interconnections are convergent between hubs. Thus, our study identifies a stable structure of correlated NoN against catastrophic failures. Our result further suggests a plausible way to enhance network robustness by manipulating connection patterns, along with other methods such as controlling the state of node based on a local rule. PMID:29668730
Review On Applications Of Neural Network To Computer Vision
NASA Astrophysics Data System (ADS)
Li, Wei; Nasrabadi, Nasser M.
1989-03-01
Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.
The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.
Epskamp, Sacha; Waldorp, Lourens J; Mõttus, René; Borsboom, Denny
2018-04-16
We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.
NASA Astrophysics Data System (ADS)
Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei
2017-07-01
Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.
Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo
2011-01-01
Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/. PMID:21441235
Autonomous Modeling, Statistical Complexity and Semi-annealed Treatment of Boolean Networks
NASA Astrophysics Data System (ADS)
Gong, Xinwei
This dissertation presents three studies on Boolean networks. Boolean networks are a class of mathematical systems consisting of interacting elements with binary state variables. Each element is a node with a Boolean logic gate, and the presence of interactions between any two nodes is represented by directed links. Boolean networks that implement the logic structures of real systems are studied as coarse-grained models of the real systems. Large random Boolean networks are studied with mean field approximations and used to provide a baseline of possible behaviors of large real systems. This dissertation presents one study of the former type, concerning the stable oscillation of a yeast cell-cycle oscillator, and two studies of the latter type, respectively concerning the statistical complexity of large random Boolean networks and an extension of traditional mean field techniques that accounts for the presence of short loops. In the cell-cycle oscillator study, a novel autonomous update scheme is introduced to study the stability of oscillations in small networks. A motif that corrects pulse-growing perturbations and a motif that grows pulses are identified. A combination of the two motifs is capable of sustaining stable oscillations. Examining a Boolean model of the yeast cell-cycle oscillator using an autonomous update scheme yields evidence that it is endowed with such a combination. Random Boolean networks are classified as ordered, critical or disordered based on their response to small perturbations. In the second study, random Boolean networks are taken as prototypical cases for the evaluation of two measures of complexity based on a criterion for optimal statistical prediction. One measure, defined for homogeneous systems, does not distinguish between the static spatial inhomogeneity in the ordered phase and the dynamical inhomogeneity in the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing complexity values for networks in the ordered and critical phases and for highly disordered networks, peaking somewhere in the disordered phase. Individual nodes with high complexity have, on average, a larger influence on the system dynamics. Lastly, a semi-annealed approximation that preserves the correlation between states at neighboring nodes is introduced to study a social game-inspired network model in which all links are bidirectional and all nodes have a self-input. The technique developed here is shown to yield accurate predictions of distribution of players' states, and accounts for some nontrivial collective behavior of game theoretic interest.
Hippocampal brain-network coordination during volitional exploratory behavior enhances learning
Voss, Joel L.; Gonsalves, Brian D.; Federmeier, Kara D.; Tranel, Daniel; Cohen, Neal J.
2010-01-01
Exploratory behaviors during learning determine what is studied and when, helping to optimize subsequent memory performance. We manipulated how much control subjects had over the position of a moving window through which they studied objects and their locations, in order to elucidate the cognitive and neural determinants of exploratory behaviors. Our behavioral, neuropsychological, and neuroimaging data indicate volitional control benefits memory performance, and is linked to a brain network centered on the hippocampus. Increases in correlated activity between the hippocampus and other areas were associated with specific aspects of memory, suggesting that volitional control optimizes interactions among specialized neural systems via the hippocampus. Memory is therefore an active process intrinsically linked to behavior. Furthermore, brain structures typically seen as passive participants in memory encoding (e.g., the hippocampus) are actually part of an active network that controls behavior dynamically as it unfolds. PMID:21102449
Abstract Linguistic Structure Correlates with Temporal Activity during Naturalistic Comprehension
Brennan, Jonathan R.; Stabler, Edward P.; Van Wagenen, Sarah E.; Luh, Wen-Ming; Hale, John T.
2016-01-01
Neurolinguistic accounts of sentence comprehension identify a network of relevant brain regions, but do not detail the information flowing through them. We investigate syntactic information. Does brain activity implicate a computation over hierarchical grammars or does it simply reflect linear order, as in a Markov chain? To address this question, we quantify the cognitive states implied by alternative parsing models. We compare processing-complexity predictions from these states against fMRI timecourses from regions that have been implicated in sentence comprehension. We find that hierarchical grammars independently predict timecourses from left anterior and posterior temporal lobe. Markov models are predictive in these regions and across a broader network that includes the inferior frontal gyrus. These results suggest that while linear effects are wide-spread across the language network, certain areas in the left temporal lobe deal with abstract, hierarchical syntactic representations. PMID:27208858
Photonic multipartite entanglement conversion using nonlocal operations
NASA Astrophysics Data System (ADS)
Tashima, T.; Tame, M. S.; Özdemir, Ş. K.; Nori, F.; Koashi, M.; Weinfurter, H.
2016-11-01
We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the Greenberger-Horne-Zeilinger and symmetric Dicke states. We also show how the gate can be incorporated into extended graph state networks and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.
Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.
Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B
2014-03-19
Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain. Copyright © 2014 Elsevier Inc. All rights reserved.
Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior
Portugues, Ruben; Feierstein, Claudia E.; Engert, Florian; Orger, Michael B.
2014-01-01
Summary Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate, but ordered, pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments reveal, for the first time in a vertebrate, the comprehensive functional architecture of the neural circuits underlying a sensorimotor behavior. PMID:24656252
Artificial neural network modeling of the water quality index using land use areas as predictors.
Gazzaz, Nabeel M; Yusoff, Mohd Kamil; Ramli, Mohammad Firuz; Juahir, Hafizan; Aris, Ahmad Zaharin
2015-02-01
This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.
Emergence of structural patterns out of synchronization in networks with competitive interactions
NASA Astrophysics Data System (ADS)
Assenza, Salvatore; Gutiérrez, Ricardo; Gómez-Gardeñes, Jesús; Latora, Vito; Boccaletti, Stefano
2011-09-01
Synchronization is a collective phenomenon occurring in systems of interacting units, and is ubiquitous in nature, society and technology. Recent studies have enlightened the important role played by the interaction topology on the emergence of synchronized states. However, most of these studies neglect that real world systems change their interaction patterns in time. Here, we analyze synchronization features in networks in which structural and dynamical features co-evolve. The feedback of the node dynamics on the interaction pattern is ruled by the competition of two mechanisms: homophily (reinforcing those interactions with other correlated units in the graph) and homeostasis (preserving the value of the input strength received by each unit). The competition between these two adaptive principles leads to the emergence of key structural properties observed in real world networks, such as modular and scale-free structures, together with a striking enhancement of local synchronization in systems with no global order.
Mallik, Saurav; Das, Smita; Kundu, Sudip
2016-01-01
Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.
Theory of nonstationary Hawkes processes
NASA Astrophysics Data System (ADS)
Tannenbaum, Neta Ravid; Burak, Yoram
2017-12-01
We expand the theory of Hawkes processes to the nonstationary case, in which the mutually exciting point processes receive time-dependent inputs. We derive an analytical expression for the time-dependent correlations, which can be applied to networks with arbitrary connectivity, and inputs with arbitrary statistics. The expression shows how the network correlations are determined by the interplay between the network topology, the transfer functions relating units within the network, and the pattern and statistics of the external inputs. We illustrate the correlation structure using several examples in which neural network dynamics are modeled as a Hawkes process. In particular, we focus on the interplay between internally and externally generated oscillations and their signatures in the spike and rate correlation functions.
Improving Localization Accuracy: Successive Measurements Error Modeling
Abu Ali, Najah; Abu-Elkheir, Mervat
2015-01-01
Vehicle self-localization is an essential requirement for many of the safety applications envisioned for vehicular networks. The mathematical models used in current vehicular localization schemes focus on modeling the localization error itself, and overlook the potential correlation between successive localization measurement errors. In this paper, we first investigate the existence of correlation between successive positioning measurements, and then incorporate this correlation into the modeling positioning error. We use the Yule Walker equations to determine the degree of correlation between a vehicle’s future position and its past positions, and then propose a p-order Gauss–Markov model to predict the future position of a vehicle from its past p positions. We investigate the existence of correlation for two datasets representing the mobility traces of two vehicles over a period of time. We prove the existence of correlation between successive measurements in the two datasets, and show that the time correlation between measurements can have a value up to four minutes. Through simulations, we validate the robustness of our model and show that it is possible to use the first-order Gauss–Markov model, which has the least complexity, and still maintain an accurate estimation of a vehicle’s future location over time using only its current position. Our model can assist in providing better modeling of positioning errors and can be used as a prediction tool to improve the performance of classical localization algorithms such as the Kalman filter. PMID:26140345
Martens, Marijn B; Houweling, Arthur R; E Tiesinga, Paul H
2017-02-01
Neuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide stability against internal fluctuations in the firing rate, while simultaneously making the circuits sensitive to small external perturbations. Here we studied whether stability and sensitivity are affected by the connectivity structure in recurrently connected spiking networks. We found that anti-correlation between the number of afferent (in-degree) and efferent (out-degree) synaptic connections of neurons increases stability against pathological bursting, relative to networks where the degrees were either positively correlated or uncorrelated. In the stable network state, stimulation of a few cells could lead to a detectable change in the firing rate. To quantify the ability of networks to detect the stimulation, we used a receiver operating characteristic (ROC) analysis. For a given level of background noise, networks with anti-correlated degrees displayed the lowest false positive rates, and consequently had the highest stimulus detection performance. We propose that anti-correlation in the degree distribution may be a computational strategy employed by sensory cortices to increase the detectability of external stimuli. We show that networks with anti-correlated degrees can in principle be formed by applying learning rules comprised of a combination of spike-timing dependent plasticity, homeostatic plasticity and pruning to networks with uncorrelated degrees. To test our prediction we suggest a novel experimental method to estimate correlations in the degree distribution.
Unifying mechanical and thermodynamic descriptions across the thioredoxin protein family.
Mottonen, James M; Xu, Minli; Jacobs, Donald J; Livesay, Dennis R
2009-05-15
We compare various predicted mechanical and thermodynamic properties of nine oxidized thioredoxins (TRX) using a Distance Constraint Model (DCM). The DCM is based on a nonadditive free energy decomposition scheme, where entropic contributions are determined from rigidity and flexibility of structure based on distance constraints. We perform averages over an ensemble of constraint topologies to calculate several thermodynamic and mechanical response functions that together yield quantitative stability/flexibility relationships (QSFR). Applied to the TRX protein family, QSFR metrics display a rich variety of similarities and differences. In particular, backbone flexibility is well conserved across the family, whereas cooperativity correlation describing mechanical and thermodynamic couplings between the residue pairs exhibit distinctive features that readily standout. The diversity in predicted QSFR metrics that describe cooperativity correlation between pairs of residues is largely explained by a global flexibility order parameter describing the amount of intrinsic flexibility within the protein. A free energy landscape is calculated as a function of the flexibility order parameter, and key values are determined where the native-state, transition-state, and unfolded-state are located. Another key value identifies a mechanical transition where the global nature of the protein changes from flexible to rigid. The key values of the flexibility order parameter help characterize how mechanical and thermodynamic response is linked. Variation in QSFR metrics and key characteristics of global flexibility are related to the native state X-ray crystal structure primarily through the hydrogen bond network. Furthermore, comparison of three TRX redox pairs reveals differences in thermodynamic response (i.e., relative melting point) and mechanical properties (i.e., backbone flexibility and cooperativity correlation) that are consistent with experimental data on thermal stabilities and NMR dynamical profiles. The results taken together demonstrate that small-scale structural variations are amplified into discernible global differences by propagating mechanical couplings through the H-bond network.
NASA Astrophysics Data System (ADS)
Ma, Fei; Yao, Bing
2017-10-01
It is always an open, demanding and difficult task for generating available model to simulate dynamical functions and reveal inner principles from complex systems and networks. In this article, due to lots of real-life and artificial networks are built from series of simple and small groups (components), we discuss some interesting and helpful network-operation to generate more realistic network models. In view of community structure (modular topology), we present a class of sparse network models N(t , m) . At the moment, we capture the fact the N(t , 4) has not only scale-free feature, which means that the probability that a randomly selected vertex with degree k decays as a power-law, following P(k) ∼k-γ, where γ is the degree exponent, but also small-world property, which indicates that the typical distance between two uniform randomly chosen vertices grows proportionally to logarithm of the order of N(t , 4) , namely, relatively shorter diameter and lower average path length, simultaneously displays higher clustering coefficient. Next, as a new topological parameter correlating to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees over a network is studied in more detail, an exact analytical solution for the number of spanning trees of the N(t , 4) is obtained. Based on the network-operation, part hub-vertex linking with each other will be helpful for structuring various network models and investigating the rules related with real-life networks.
He, Yan-Lin; Xu, Yuan; Geng, Zhi-Qiang; Zhu, Qun-Xiong
2016-03-01
In this paper, a hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) is proposed. Firstly, an improved functional link neural network with small norm of expanded weights and high input-output correlation (SNEWHIOC-FLNN) was proposed for enhancing the generalization performance of FLNN. Unlike the traditional FLNN, the expanded variables of the original inputs are not directly used as the inputs in the proposed SNEWHIOC-FLNN model. The original inputs are attached to some small norm of expanded weights. As a result, the correlation coefficient between some of the expanded variables and the outputs is enhanced. The larger the correlation coefficient is, the more relevant the expanded variables tend to be. In the end, the expanded variables with larger correlation coefficient are selected as the inputs to improve the performance of the traditional FLNN. In order to test the proposed SNEWHIOC-FLNN model, three UCI (University of California, Irvine) regression datasets named Housing, Concrete Compressive Strength (CCS), and Yacht Hydro Dynamics (YHD) are selected. Then a hybrid model based on the improved FLNN integrating with partial least square (IFLNN-PLS) was built. In IFLNN-PLS model, the connection weights are calculated using the partial least square method but not the error back propagation algorithm. Lastly, IFLNN-PLS was developed as an intelligent measurement model for accurately predicting the key variables in the Purified Terephthalic Acid (PTA) process and the High Density Polyethylene (HDPE) process. Simulation results illustrated that the IFLNN-PLS could significant improve the prediction performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Nonequilibrium transitions in complex networks: A model of social interaction
NASA Astrophysics Data System (ADS)
Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; San Miguel, Maxi
2003-02-01
We analyze the nonequilibrium order-disorder transition of Axelrod’s model of social interaction in several complex networks. In a small-world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.
NASA Astrophysics Data System (ADS)
Sokolov, V. K.; Shubnikov, E. I.
1995-10-01
The three most important models of neural networks — a bidirectional associative memory, Hopfield networks, and adaptive resonance networks — are used as examples to show that a holographic correlator has its place in the neural computing paradigm.
Organizing principles for the cerebral cortex network of commissural and association connections
Swanson, Larry W.; Hahn, Joel D.; Sporns, Olaf
2017-01-01
Cognition is supported by a network of axonal connections between gray matter regions within and between right and left cerebral cortex. Global organizing principles of this circuitry were examined with network analysis tools applied to monosynaptic association (within one side) and commissural (between sides) connections between all 77 cortical gray matter regions in each hemisphere of the rat brain. The analysis used 32,350 connection reports expertly collated from published pathway tracing experiments, and 5,394 connections of a possible 23,562 were identified, for a connection density of 23%—of which 20% (1,084) were commissural. Network community detection yielded a stable bihemispheric six-module solution, with an identical set in each hemisphere of three modules topographically forming a lateral core and medial shell arrangement of cortical regions. Functional correlations suggest the lateral module deals preferentially with environmental sensory-motor interactions and the ventromedial module deals preferentially with visceral control, affect, and short-term memory, whereas the dorsomedial module resembles the default mode network. Analysis of commissural connections revealed a set of unexpected rules to help generate hypotheses. Most notably, there is an order of magnitude more heterotopic than homotopic projections; all cortical regions send more association than commissural connections, and for each region, the latter are always a subset of the former; the number of association connections from each cortical region strongly correlates with the number of its commissural connections; and the module (dorsomedial) lying closest to the corpus callosum has the most complete set of commissural connections—and apparently the most complex function. PMID:29078382
Organizing principles for the cerebral cortex network of commissural and association connections.
Swanson, Larry W; Hahn, Joel D; Sporns, Olaf
2017-11-07
Cognition is supported by a network of axonal connections between gray matter regions within and between right and left cerebral cortex. Global organizing principles of this circuitry were examined with network analysis tools applied to monosynaptic association (within one side) and commissural (between sides) connections between all 77 cortical gray matter regions in each hemisphere of the rat brain. The analysis used 32,350 connection reports expertly collated from published pathway tracing experiments, and 5,394 connections of a possible 23,562 were identified, for a connection density of 23%-of which 20% (1,084) were commissural. Network community detection yielded a stable bihemispheric six-module solution, with an identical set in each hemisphere of three modules topographically forming a lateral core and medial shell arrangement of cortical regions. Functional correlations suggest the lateral module deals preferentially with environmental sensory-motor interactions and the ventromedial module deals preferentially with visceral control, affect, and short-term memory, whereas the dorsomedial module resembles the default mode network. Analysis of commissural connections revealed a set of unexpected rules to help generate hypotheses. Most notably, there is an order of magnitude more heterotopic than homotopic projections; all cortical regions send more association than commissural connections, and for each region, the latter are always a subset of the former; the number of association connections from each cortical region strongly correlates with the number of its commissural connections; and the module (dorsomedial) lying closest to the corpus callosum has the most complete set of commissural connections-and apparently the most complex function. Copyright © 2017 the Author(s). Published by PNAS.
A comparison of the weights-of-evidence method and probabilistic neural networks
Singer, Donald A.; Kouda, Ryoichi
1999-01-01
The need to integrate large quantities of digital geoscience information to classify locations as mineral deposits or nondeposits has been met by the weights-of-evidence method in many situations. Widespread selection of this method may be more the result of its ease of use and interpretation rather than comparisons with alternative methods. A comparison of the weights-of-evidence method to probabilistic neural networks is performed here with data from Chisel Lake-Andeson Lake, Manitoba, Canada. Each method is designed to estimate the probability of belonging to learned classes where the estimated probabilities are used to classify the unknowns. Using these data, significantly lower classification error rates were observed for the neural network, not only when test and training data were the same (0.02 versus 23%), but also when validation data, not used in any training, were used to test the efficiency of classification (0.7 versus 17%). Despite these data containing too few deposits, these tests of this set of data demonstrate the neural network's ability at making unbiased probability estimates and lower error rates when measured by number of polygons or by the area of land misclassified. For both methods, independent validation tests are required to ensure that estimates are representative of real-world results. Results from the weights-of-evidence method demonstrate a strong bias where most errors are barren areas misclassified as deposits. The weights-of-evidence method is based on Bayes rule, which requires independent variables in order to make unbiased estimates. The chi-square test for independence indicates no significant correlations among the variables in the Chisel Lake–Andeson Lake data. However, the expected number of deposits test clearly demonstrates that these data violate the independence assumption. Other, independent simulations with three variables show that using variables with correlations of 1.0 can double the expected number of deposits as can correlations of −1.0. Studies done in the 1970s on methods that use Bayes rule show that moderate correlations among attributes seriously affect estimates and even small correlations lead to increases in misclassifications. Adverse effects have been observed with small to moderate correlations when only six to eight variables were used. Consistent evidence of upward biased probability estimates from multivariate methods founded on Bayes rule must be of considerable concern to institutions and governmental agencies where unbiased estimates are required. In addition to increasing the misclassification rate, biased probability estimates make classification into deposit and nondeposit classes an arbitrary subjective decision. The probabilistic neural network has no problem dealing with correlated variables—its performance depends strongly on having a thoroughly representative training set. Probabilistic neural networks or logistic regression should receive serious consideration where unbiased estimates are required. The weights-of-evidence method would serve to estimate thresholds between anomalies and background and for exploratory data analysis.
Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
Huang, Xuhui; Xu, Kaibin; Chu, Congying; Jiang, Tianzi; Yu, Shan
2017-10-25
Interactions among different brain regions are usually examined through functional connectivity (FC) analysis, which is exclusively based on measuring pairwise correlations in activities. However, interactions beyond the pairwise level, that is, higher-order interactions (HOIs), are vital in understanding the behavior of many complex systems. So far, whether HOIs exist among brain regions and how they can affect the brain's activities remains largely elusive. To address these issues, here, we analyzed blood oxygenation level-dependent (BOLD) signals recorded from six typical macroscopic functional networks of the brain in 100 human subjects (46 males and 54 females) during the resting state. Through examining the binarized BOLD signals, we found that HOIs within and across individual networks were both very weak regardless of the network size, topology, degree of spatial proximity, spatial scales, and whether the global signal was regressed. To investigate the potential mechanisms underlying the weak HOIs, we analyzed the dynamics of a network model and also found that HOIs were generally weak within a wide range of key parameters provided that the overall dynamic feature of the model was similar to the empirical data and it was operating close to a linear fluctuation regime. Our results suggest that weak HOI may be a general property of brain's macroscopic functional networks, which implies the dominance of pairwise interactions in shaping brain activities at such a scale and warrants the validity of widely used pairwise-based FC approaches. SIGNIFICANCE STATEMENT To explain how activities of different brain areas are coordinated through interactions is essential to revealing the mechanisms underlying various brain functions. Traditionally, such an interaction structure is commonly studied using pairwise-based functional network analyses. It is unclear whether the interactions beyond the pairwise level (higher-order interactions or HOIs) play any role in this process. Here, we show that HOIs are generally weak in macroscopic brain networks. We also suggest a possible dynamical mechanism that may underlie this phenomenon. These results provide plausible explanation for the effectiveness of widely used pairwise-based approaches in analyzing brain networks. More importantly, it reveals a previously unknown, simple organization of the brain's macroscopic functional systems. Copyright © 2017 the authors 0270-6474/17/3710481-17$15.00/0.
Microbial genotype-phenotype mapping by class association rule mining.
Tamura, Makio; D'haeseleer, Patrik
2008-07-01
Microbial phenotypes are typically due to the concerted action of multiple gene functions, yet the presence of each gene may have only a weak correlation with the observed phenotype. Hence, it may be more appropriate to examine co-occurrence between sets of genes and a phenotype (multiple-to-one) instead of pairwise relations between a single gene and the phenotype. Here, we propose an efficient class association rule mining algorithm, netCAR, in order to extract sets of COGs (clusters of orthologous groups of proteins) associated with a phenotype from COG phylogenetic profiles and a phenotype profile. netCAR takes into account the phylogenetic co-occurrence graph between COGs to restrict hypothesis space, and uses mutual information to evaluate the biconditional relation. We examined the mining capability of pairwise and multiple-to-one association by using netCAR to extract COGs relevant to six microbial phenotypes (aerobic, anaerobic, facultative, endospore, motility and Gram negative) from 11,969 unique COG profiles across 155 prokaryotic organisms. With the same level of false discovery rate, multiple-to-one association can extract about 10 times more relevant COGs than one-to-one association. We also reveal various topologies of association networks among COGs (modules) from extracted multiple-to-one correlation rules relevant with the six phenotypes; including a well-connected network for motility, a star-shaped network for aerobic and intermediate topologies for the other phenotypes. netCAR outperforms a standard CAR mining algorithm, CARapriori, while requiring several orders of magnitude less computational time for extracting 3-COG sets. Source code of the Java implementation is available as Supplementary Material at the Bioinformatics online website, or upon request to the author. Supplementary data are available at Bioinformatics online.
Unlearning of Mixed States in the Hopfield Model —Extensive Loading Case—
NASA Astrophysics Data System (ADS)
Hayashi, Kao; Hashimoto, Chinami; Kimoto, Tomoyuki; Uezu, Tatsuya
2018-05-01
We study the unlearning of mixed states in the Hopfield model for the extensive loading case. Firstly, we focus on case I, where several embedded patterns are correlated with each other, whereas the rest are uncorrelated. Secondly, we study case II, where patterns are divided into clusters in such a way that patterns in any cluster are correlated but those in two different clusters are not correlated. By using the replica method, we derive the saddle point equations for order parameters under the ansatz of replica symmetry. The same equations are also derived by self-consistent signal-to-noise analysis in case I. In both cases I and II, we find that when the correlation between patterns is large, the network loses its ability to retrieve the embedded patterns and, depending on the parameters, a confused memory, which is a mixed state and/or spin glass state, emerges. By unlearning the mixed state, the network acquires the ability to retrieve the embedded patterns again in some parameter regions. We find that to delete the mixed state and to retrieve the embedded patterns, the coefficient of unlearning should be chosen appropriately. We perform Markov chain Monte Carlo simulations and find that the simulation and theoretical results agree reasonably well, except for the spin glass solution in a parameter region due to the replica symmetry breaking. Furthermore, we find that the existence of many correlated clusters reduces the stabilities of both embedded patterns and mixed states.
Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I
2017-12-01
Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.
Change Point Detection in Correlation Networks
NASA Astrophysics Data System (ADS)
Barnett, Ian; Onnela, Jukka-Pekka
2016-01-01
Many systems of interacting elements can be conceptualized as networks, where network nodes represent the elements and network ties represent interactions between the elements. In systems where the underlying network evolves, it is useful to determine the points in time where the network structure changes significantly as these may correspond to functional change points. We propose a method for detecting change points in correlation networks that, unlike previous change point detection methods designed for time series data, requires minimal distributional assumptions. We investigate the difficulty of change point detection near the boundaries of the time series in correlation networks and study the power of our method and competing methods through simulation. We also show the generalizable nature of the method by applying it to stock price data as well as fMRI data.
Bolanča, Tomislav; Marinović, Slavica; Ukić, Sime; Jukić, Ante; Rukavina, Vinko
2012-06-01
This paper describes development of artificial neural network models which can be used to correlate and predict diesel fuel properties from several FTIR-ATR absorbances and Raman intensities as input variables. Multilayer feed forward and radial basis function neural networks have been used to rapid and simultaneous prediction of cetane number, cetane index, density, viscosity, distillation temperatures at 10% (T10), 50% (T50) and 90% (T90) recovery, contents of total aromatics and polycyclic aromatic hydrocarbons of commercial diesel fuels. In this study two-phase training procedures for multilayer feed forward networks were applied. While first phase training algorithm was constantly the back propagation one, two second phase training algorithms were varied and compared, namely: conjugate gradient and quasi Newton. In case of radial basis function network, radial layer was trained using K-means radial assignment algorithm and three different radial spread algorithms: explicit, isotropic and K-nearest neighbour. The number of hidden layer neurons and experimental data points used for the training set have been optimized for both neural networks in order to insure good predictive ability by reducing unnecessary experimental work. This work shows that developed artificial neural network models can determine main properties of diesel fuels simultaneously based on a single and fast IR or Raman measurement.
Effect of inhibitory feedback on correlated firing of spiking neural network.
Xie, Jinli; Wang, Zhijie
2013-08-01
Understanding the properties and mechanisms that generate different forms of correlation is critical for determining their role in cortical processing. Researches on retina, visual cortex, sensory cortex, and computational model have suggested that fast correlation with high temporal precision appears consistent with common input, and correlation on a slow time scale likely involves feedback. Based on feedback spiking neural network model, we investigate the role of inhibitory feedback in shaping correlations on a time scale of 100 ms. Notably, the relationship between the correlation coefficient and inhibitory feedback strength is non-monotonic. Further, computational simulations show how firing rate and oscillatory activity form the basis of the mechanisms underlying this relationship. When the mean firing rate holds unvaried, the correlation coefficient increases monotonically with inhibitory feedback, but the correlation coefficient keeps decreasing when the network has no oscillatory activity. Our findings reveal that two opposing effects of the inhibitory feedback on the firing activity of the network contribute to the non-monotonic relationship between the correlation coefficient and the strength of the inhibitory feedback. The inhibitory feedback affects the correlated firing activity by modulating the intensity and regularity of the spike trains. Finally, the non-monotonic relationship is replicated with varying transmission delay and different spatial network structure, demonstrating the universality of the results.
Accurate and diverse recommendations via eliminating redundant correlations
NASA Astrophysics Data System (ADS)
Zhou, Tao; Su, Ri-Qi; Liu, Run-Ran; Jiang, Luo-Luo; Wang, Bing-Hong; Zhang, Yi-Cheng
2009-12-01
In this paper, based on a weighted projection of a bipartite user-object network, we introduce a personalized recommendation algorithm, called network-based inference (NBI), which has higher accuracy than the classical algorithm, namely collaborative filtering. In NBI, the correlation resulting from a specific attribute may be repeatedly counted in the cumulative recommendations from different objects. By considering the higher order correlations, we design an improved algorithm that can, to some extent, eliminate the redundant correlations. We test our algorithm on two benchmark data sets, MovieLens and Netflix. Compared with NBI, the algorithmic accuracy, measured by the ranking score, can be further improved by 23 per cent for MovieLens and 22 per cent for Netflix. The present algorithm can even outperform the Latent Dirichlet Allocation algorithm, which requires much longer computational time. Furthermore, most previous studies considered the algorithmic accuracy only; in this paper, we argue that the diversity and popularity, as two significant criteria of algorithmic performance, should also be taken into account. With more or less the same accuracy, an algorithm giving higher diversity and lower popularity is more favorable. Numerical results show that the present algorithm can outperform the standard one simultaneously in all five adopted metrics: lower ranking score and higher precision for accuracy, larger Hamming distance and lower intra-similarity for diversity, as well as smaller average degree for popularity.
Plaza, M P; Alcázar, P; Galán, C
2016-12-01
Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.
NASA Astrophysics Data System (ADS)
Plaza, M. P.; Alcázar, P.; Galán, C.
2016-12-01
Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.
Local structure controls the nonaffine shear and bulk moduli of disordered solids
NASA Astrophysics Data System (ADS)
Schlegel, M.; Brujic, J.; Terentjev, E. M.; Zaccone, A.
2016-01-01
Paradigmatic model systems, which are used to study the mechanical response of matter, are random networks of point-atoms, random sphere packings, or simple crystal lattices; all of these models assume central-force interactions between particles/atoms. Each of these models differs in the spatial arrangement and the correlations among particles. In turn, this is reflected in the widely different behaviours of the shear (G) and compression (K) elastic moduli. The relation between the macroscopic elasticity as encoded in G, K and their ratio, and the microscopic lattice structure/order, is not understood. We provide a quantitative analytical connection between the local orientational order and the elasticity in model amorphous solids with different internal microstructure, focusing on the two opposite limits of packings (strong excluded-volume) and networks (no excluded-volume). The theory predicts that, in packings, the local orientational order due to excluded-volume causes less nonaffinity (less softness or larger stiffness) under compression than under shear. This leads to lower values of G/K, a well-documented phenomenon which was lacking a microscopic explanation. The theory also provides an excellent one-parameter description of the elasticity of compressed emulsions in comparison with experimental data over a broad range of packing fractions.
Hoan, Tran-Nhut-Khai; Hiep, Vu-Van; Koo, In-Soo
2016-03-31
This paper considers cognitive radio networks (CRNs) utilizing multiple time-slotted primary channels in which cognitive users (CUs) are powered by energy harvesters. The CUs are under the consideration that hardware constraints on radio devices only allow them to sense and transmit on one channel at a time. For a scenario where the arrival of harvested energy packets and the battery capacity are finite, we propose a scheme to optimize (i) the channel-sensing schedule (consisting of finding the optimal action (silent or active) and sensing order of channels) and (ii) the optimal transmission energy set corresponding to the channels in the sensing order for the operation of the CU in order to maximize the expected throughput of the CRN over multiple time slots. Frequency-switching delay, energy-switching cost, correlation in spectrum occupancy across time and frequency and errors in spectrum sensing are also considered in this work. The performance of the proposed scheme is evaluated via simulation. The simulation results show that the throughput of the proposed scheme is greatly improved, in comparison to related schemes in the literature. The collision ratio on the primary channels is also investigated.
Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models
NASA Technical Reports Server (NTRS)
Keeler, James D.
1987-01-01
The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.
NASA Technical Reports Server (NTRS)
Keeler, James D.
1988-01-01
The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.
2010-09-01
IMPROVING THE QUALITY OF SERVICE AND SECURITY OF MILITARY NETWORKS WITH A NETWORK TASKING ORDER...United States. AFIT/DCS/ENG/10-09 IMPROVING THE QUALITY OF SERVICE AND SECURITY OF MILITARY NETWORKS WITH A NETWORK TASKING ORDER PROCESS...USAF September 2010 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/DCS/ENG/10-09 IMPROVING THE QUALITY OF SERVICE AND
A seismic network to investigate the sedimentary hosted hydrothermal Lusi system
NASA Astrophysics Data System (ADS)
Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono
2016-04-01
The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.
Jiang, Wenyu; Li, Jianping; Chen, Xuemei; Ye, Wei; Zheng, Jinou
2017-01-01
Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.
Functional brain networks associated with eating behaviors in obesity.
Park, Bo-Yong; Seo, Jongbum; Park, Hyunjin
2016-03-31
Obesity causes critical health problems including diabetes and hypertension that affect billions of people worldwide. Obesity and eating behaviors are believed to be closely linked but their relationship through brain networks has not been fully explored. We identified functional brain networks associated with obesity and examined how the networks were related to eating behaviors. Resting state functional magnetic resonance imaging (MRI) scans were obtained for 82 participants. Data were from an equal number of people of healthy weight (HW) and non-healthy weight (non-HW). Connectivity matrices were computed with spatial maps derived using a group independent component analysis approach. Brain networks and associated connectivity parameters with significant group-wise differences were identified and correlated with scores on a three-factor eating questionnaire (TFEQ) describing restraint, disinhibition, and hunger eating behaviors. Frontoparietal and cerebellum networks showed group-wise differences between HW and non-HW groups. Frontoparietal network showed a high correlation with TFEQ disinhibition scores. Both frontoparietal and cerebellum networks showed a high correlation with body mass index (BMI) scores. Brain networks with significant group-wise differences between HW and non-HW groups were identified. Parts of the identified networks showed a high correlation with eating behavior scores.
Carbonell, Felix; Bellec, Pierre
2011-01-01
Abstract The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)–based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations. PMID:22444074
Cechnicki, Andrzej; Wojciechowska, Anna
2007-01-01
A research had been conducted upon the correlations between selected parameters of social networks of 64 patients ill with schizophrenia who were diagnosed according to DSM-III, and the aims of treatment such as: motivation to receive treatment, insight, compliance in taking medication, satisfaction with treatment, and treatment outcomes in the area of clinical and social functioning as well as family functioning seven years after the first admission. The indices of social networks were studied with Bizon's questionnaire. It serves storing of data on persons who have supportive functions as well as allows to work out characteristic properties of the support system such as: range of the network, size of the extra-familial network, level and localisation of the support, network and support system age. A compound system of social support and large social network, with a high level of support, correlate in a beneficial way with higher subjective satisfaction with treatment. Whereas a large extra-familial network with high level of support, correlates with better insight into illness. The larger the social network was (its range to be precise), including extra-familial network and the high level of incoming support, the fewer positive and negative symptoms the patients had and much more remissions appeared then. The larger network's range correlates with smaller number of relapses and global time of being hospitalised. People with a larger network, with high level of support located in family and outside the family, have been rarely hospitalised. The connection between network's parameters and number of daily hospitalisations had been rated. People with a larger network, including extra-familial network, with high level of social support function better in the society didn't become regressive in their professional lives and they have smaller burden in their family life. The high level of social support correlates with better family function. In families of people ill with schizophrenia having larger extra-familial network with a high level of support there is less deterioration and disintegration, criticism and rejection.
Guo, Hao; Qin, Mengna; Chen, Junjie; Xu, Yong; Xiang, Jie
2017-01-01
High-order functional connectivity networks are rich in time information that can reflect dynamic changes in functional connectivity between brain regions. Accordingly, such networks are widely used to classify brain diseases. However, traditional methods for processing high-order functional connectivity networks generally include the clustering method, which reduces data dimensionality. As a result, such networks cannot be effectively interpreted in the context of neurology. Additionally, due to the large scale of high-order functional connectivity networks, it can be computationally very expensive to use complex network or graph theory to calculate certain topological properties. Here, we propose a novel method of generating a high-order minimum spanning tree functional connectivity network. This method increases the neurological significance of the high-order functional connectivity network, reduces network computing consumption, and produces a network scale that is conducive to subsequent network analysis. To ensure the quality of the topological information in the network structure, we used frequent subgraph mining technology to capture the discriminative subnetworks as features and combined this with quantifiable local network features. Then we applied a multikernel learning technique to the corresponding selected features to obtain the final classification results. We evaluated our proposed method using a data set containing 38 patients with major depressive disorder and 28 healthy controls. The experimental results showed a classification accuracy of up to 97.54%.
Qin, Mengna; Chen, Junjie; Xu, Yong; Xiang, Jie
2017-01-01
High-order functional connectivity networks are rich in time information that can reflect dynamic changes in functional connectivity between brain regions. Accordingly, such networks are widely used to classify brain diseases. However, traditional methods for processing high-order functional connectivity networks generally include the clustering method, which reduces data dimensionality. As a result, such networks cannot be effectively interpreted in the context of neurology. Additionally, due to the large scale of high-order functional connectivity networks, it can be computationally very expensive to use complex network or graph theory to calculate certain topological properties. Here, we propose a novel method of generating a high-order minimum spanning tree functional connectivity network. This method increases the neurological significance of the high-order functional connectivity network, reduces network computing consumption, and produces a network scale that is conducive to subsequent network analysis. To ensure the quality of the topological information in the network structure, we used frequent subgraph mining technology to capture the discriminative subnetworks as features and combined this with quantifiable local network features. Then we applied a multikernel learning technique to the corresponding selected features to obtain the final classification results. We evaluated our proposed method using a data set containing 38 patients with major depressive disorder and 28 healthy controls. The experimental results showed a classification accuracy of up to 97.54%. PMID:29387141
NASA Astrophysics Data System (ADS)
Gao, Yan; Liu, Yuyou; Ma, Yifan; Cheng, Xiaobin; Yang, Jun
2018-11-01
One major challenge currently facing pipeline networks across the world is the improvement of leak detection technologies in urban environments. There is an imperative to locate accurately leaks in buried water pipes to avoid serious environmental, social and economic consequences. Much attention has been paid to time delay estimation (TDE) in determining the position of a leak by utilising cross-correlation, which has been proven to be effective with varying degrees of success over the past half century. Previous research in published literature has demonstrated the effectiveness of the pre-whitening process for accentuating the peak in the cross-correlation associated with the time delay. This paper is concerned with the implementation of the differentiation process for TDE, with particular focus on the problem of determining a leak in pipelines by means of pipe pressure measurements. Rather than the pre-whitening operation, the proposed cross-correlation via the differentiation process, termed here DIF, changes the characteristics of the pipe system so that the pipe effectively acts as a band-pass filter. This method has the potential to eliminate some ambiguity caused by the interference at low frequencies and to allow more high frequency information to pass. Given an appropriate differentiation order, a more pronounced and reliable peak is obtained in the cross-correlation result. The use of differentiation process may provide a viable cross-correlation method suited to water leak detection. Its performance in relation to leak detection is further compared to the basic cross-correlation and pre-whitening methods for TDE in detecting a leak from actual PVC water pipes. Experimental results are presented to show an additional property of the DIF compensating for the resonance effects that may exist in cross-spectral density measurements, and hence better performance for TDE.
Pathways for diffusion in the potential energy landscape of the network glass former SiO2
NASA Astrophysics Data System (ADS)
Niblett, S. P.; Biedermann, M.; Wales, D. J.; de Souza, V. K.
2017-10-01
We study the dynamical behaviour of a computer model for viscous silica, the archetypal strong glass former, and compare its diffusion mechanism with earlier studies of a fragile binary Lennard-Jones liquid. Three different methods of analysis are employed. First, the temperature and time scale dependence of the diffusion constant is analysed. Negative correlation of particle displacements influences transport properties in silica as well as in fragile liquids. We suggest that the difference between Arrhenius and super-Arrhenius diffusive behaviour results from competition between the correlation time scale and the caging time scale. Second, we analyse the dynamics using a geometrical definition of cage-breaking transitions that was proposed previously for fragile glass formers. We find that this definition accurately captures the bond rearrangement mechanisms that control transport in open network liquids, and reproduces the diffusion constants accurately at low temperatures. As the same method is applicable to both strong and fragile glass formers, we can compare correlation time scales in these two types of systems. We compare the time spent in chains of correlated cage breaks with the characteristic caging time and find that correlations in the fragile binary Lennard-Jones system persist for an order of magnitude longer than those in the strong silica system. We investigate the origin of the correlation behaviour by sampling the potential energy landscape for silica and comparing it with the binary Lennard-Jones model. We find no qualitative difference between the landscapes, but several metrics suggest that the landscape of the fragile liquid is rougher and more frustrated. Metabasins in silica are smaller than those in binary Lennard-Jones and contain fewer high-barrier processes. This difference probably leads to the observed separation of correlation and caging time scales.
de Arruda, Henrique Ferraz; Comin, Cesar Henrique; Miazaki, Mauro; Viana, Matheus Palhares; Costa, Luciano da Fontoura
2015-04-30
A key point in developmental biology is to understand how gene expression influences the morphological and dynamical patterns that are observed in living beings. In this work we propose a methodology capable of addressing this problem that is based on estimating the mutual information and Pearson correlation between the intensity of gene expression and measurements of several morphological properties of the cells. A similar approach is applied in order to identify effects of gene expression over the system dynamics. Neuronal networks were artificially grown over a lattice by considering a reference model used to generate artificial neurons. The input parameters of the artificial neurons were determined according to two distinct patterns of gene expression and the dynamical response was assessed by considering the integrate-and-fire model. As far as single gene dependence is concerned, we found that the interaction between the gene expression and the network topology, as well as between the former and the dynamics response, is strongly affected by the gene expression pattern. In addition, we observed a high correlation between the gene expression and some topological measurements of the neuronal network for particular patterns of gene expression. To our best understanding, there are no similar analyses to compare with. A proper understanding of gene expression influence requires jointly studying the morphology, topology, and dynamics of neurons. The proposed framework represents a first step towards predicting gene expression patterns from morphology and connectivity. Copyright © 2015. Published by Elsevier B.V.
Halliday, David M; Senik, Mohd Harizal; Stevenson, Carl W; Mason, Rob
2016-08-01
The ability to infer network structure from multivariate neuronal signals is central to computational neuroscience. Directed network analyses typically use parametric approaches based on auto-regressive (AR) models, where networks are constructed from estimates of AR model parameters. However, the validity of using low order AR models for neurophysiological signals has been questioned. A recent article introduced a non-parametric approach to estimate directionality in bivariate data, non-parametric approaches are free from concerns over model validity. We extend the non-parametric framework to include measures of directed conditional independence, using scalar measures that decompose the overall partial correlation coefficient summatively by direction, and a set of functions that decompose the partial coherence summatively by direction. A time domain partial correlation function allows both time and frequency views of the data to be constructed. The conditional independence estimates are conditioned on a single predictor. The framework is applied to simulated cortical neuron networks and mixtures of Gaussian time series data with known interactions. It is applied to experimental data consisting of local field potential recordings from bilateral hippocampus in anaesthetised rats. The framework offers a non-parametric approach to estimation of directed interactions in multivariate neuronal recordings, and increased flexibility in dealing with both spike train and time series data. The framework offers a novel alternative non-parametric approach to estimate directed interactions in multivariate neuronal recordings, and is applicable to spike train and time series data. Copyright © 2016 Elsevier B.V. All rights reserved.
A Bayesian method for detecting pairwise associations in compositional data
Ventz, Steffen; Huttenhower, Curtis
2017-01-01
Compositional data consist of vectors of proportions normalized to a constant sum from a basis of unobserved counts. The sum constraint makes inference on correlations between unconstrained features challenging due to the information loss from normalization. However, such correlations are of long-standing interest in fields including ecology. We propose a novel Bayesian framework (BAnOCC: Bayesian Analysis of Compositional Covariance) to estimate a sparse precision matrix through a LASSO prior. The resulting posterior, generated by MCMC sampling, allows uncertainty quantification of any function of the precision matrix, including the correlation matrix. We also use a first-order Taylor expansion to approximate the transformation from the unobserved counts to the composition in order to investigate what characteristics of the unobserved counts can make the correlations more or less difficult to infer. On simulated datasets, we show that BAnOCC infers the true network as well as previous methods while offering the advantage of posterior inference. Larger and more realistic simulated datasets further showed that BAnOCC performs well as measured by type I and type II error rates. Finally, we apply BAnOCC to a microbial ecology dataset from the Human Microbiome Project, which in addition to reproducing established ecological results revealed unique, competition-based roles for Proteobacteria in multiple distinct habitats. PMID:29140991
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, Kirk W.; Oue, Mariko; Kollias, Pavlos
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s -1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s -1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less
North, Kirk W.; Oue, Mariko; Kollias, Pavlos; ...
2017-08-04
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s -1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s -1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less
Breakdown of interdependent directed networks.
Liu, Xueming; Stanley, H Eugene; Gao, Jianxi
2016-02-02
Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis.
Network analysis of a financial market based on genuine correlation and threshold method
NASA Astrophysics Data System (ADS)
Namaki, A.; Shirazi, A. H.; Raei, R.; Jafari, G. R.
2011-10-01
A financial market is an example of an adaptive complex network consisting of many interacting units. This network reflects market’s behavior. In this paper, we use Random Matrix Theory (RMT) notion for specifying the largest eigenvector of correlation matrix as the market mode of stock network. For a better risk management, we clean the correlation matrix by removing the market mode from data and then construct this matrix based on the residuals. We show that this technique has an important effect on correlation coefficient distribution by applying it for Dow Jones Industrial Average (DJIA). To study the topological structure of a network we apply the removing market mode technique and the threshold method to Tehran Stock Exchange (TSE) as an example. We show that this network follows a power-law model in certain intervals. We also show the behavior of clustering coefficients and component numbers of this network for different thresholds. These outputs are useful for both theoretical and practical purposes such as asset allocation and risk management.
NASA Astrophysics Data System (ADS)
Piretzidis, Dimitrios; Sra, Gurveer; Karantaidis, George; Sideris, Michael G.
2017-04-01
A new method for identifying correlated errors in Gravity Recovery and Climate Experiment (GRACE) monthly harmonic coefficients has been developed and tested. Correlated errors are present in the differences between monthly GRACE solutions, and can be suppressed using a de-correlation filter. In principle, the de-correlation filter should be implemented only on coefficient series with correlated errors to avoid losing useful geophysical information. In previous studies, two main methods of implementing the de-correlation filter have been utilized. In the first one, the de-correlation filter is implemented starting from a specific minimum order until the maximum order of the monthly solution examined. In the second one, the de-correlation filter is implemented only on specific coefficient series, the selection of which is based on statistical testing. The method proposed in the present study exploits the capabilities of supervised machine learning algorithms such as neural networks and support vector machines (SVMs). The pattern of correlated errors can be described by several numerical and geometric features of the harmonic coefficient series. The features of extreme cases of both correlated and uncorrelated coefficients are extracted and used for the training of the machine learning algorithms. The trained machine learning algorithms are later used to identify correlated errors and provide the probability of a coefficient series to be correlated. Regarding SVMs algorithms, an extensive study is performed with various kernel functions in order to find the optimal training model for prediction. The selection of the optimal training model is based on the classification accuracy of the trained SVM algorithm on the same samples used for training. Results show excellent performance of all algorithms with a classification accuracy of 97% - 100% on a pre-selected set of training samples, both in the validation stage of the training procedure and in the subsequent use of the trained algorithms to classify independent coefficients. This accuracy is also confirmed by the external validation of the trained algorithms using the hydrology model GLDAS NOAH. The proposed method meet the requirement of identifying and de-correlating only coefficients with correlated errors. Also, there is no need of applying statistical testing or other techniques that require prior de-correlation of the harmonic coefficients.
Zhang, Yizhen; Chen, Gang; Wen, Haiguang; Lu, Kun-Han; Liu, Zhongming
2017-12-06
Musical imagery is the human experience of imagining music without actually hearing it. The neural basis of this mental ability is unclear, especially for musicians capable of engaging in accurate and vivid musical imagery. Here, we created a visualization of an 8-minute symphony as a silent movie and used it as real-time cue for musicians to continuously imagine the music for repeated and synchronized sessions during functional magnetic resonance imaging (fMRI). The activations and networks evoked by musical imagery were compared with those elicited by the subjects directly listening to the same music. Musical imagery and musical perception resulted in overlapping activations at the anterolateral belt and Wernicke's area, where the responses were correlated with the auditory features of the music. Whereas Wernicke's area interacted within the intrinsic auditory network during musical perception, it was involved in much more complex networks during musical imagery, showing positive correlations with the dorsal attention network and the motor-control network and negative correlations with the default-mode network. Our results highlight the important role of Wernicke's area in forming vivid musical imagery through bilateral and anti-correlated network interactions, challenging the conventional view of segregated and lateralized processing of music versus language.
Berman, Jesse D; Peters, Thomas M; Koehler, Kirsten A
2018-05-28
To design a method that uses preliminary hazard mapping data to optimize the number and location of sensors within a network for a long-term assessment of occupational concentrations, while preserving temporal variability, accuracy, and precision of predicted hazards. Particle number concentrations (PNCs) and respirable mass concentrations (RMCs) were measured with direct-reading instruments in a large heavy-vehicle manufacturing facility at 80-82 locations during 7 mapping events, stratified by day and season. Using kriged hazard mapping, a statistical approach identified optimal orders for removing locations to capture temporal variability and high prediction precision of PNC and RMC concentrations. We compared optimal-removal, random-removal, and least-optimal-removal orders to bound prediction performance. The temporal variability of PNC was found to be higher than RMC with low correlation between the two particulate metrics (ρ = 0.30). Optimal-removal orders resulted in more accurate PNC kriged estimates (root mean square error [RMSE] = 49.2) at sample locations compared with random-removal order (RMSE = 55.7). For estimates at locations having concentrations in the upper 10th percentile, the optimal-removal order preserved average estimated concentrations better than random- or least-optimal-removal orders (P < 0.01). However, estimated average concentrations using an optimal-removal were not statistically different than random-removal when averaged over the entire facility. No statistical difference was observed for optimal- and random-removal methods for RMCs that were less variable in time and space than PNCs. Optimized removal performed better than random-removal in preserving high temporal variability and accuracy of hazard map for PNC, but not for the more spatially homogeneous RMC. These results can be used to reduce the number of locations used in a network of static sensors for long-term monitoring of hazards in the workplace, without sacrificing prediction performance.
An Exploratory Study of Internet Addiction, Usage and Communication Pleasure.
ERIC Educational Resources Information Center
Chou, Chien; Chou, Jung; Tyan, Nay-Ching Nancy
This study examined the correlation between Internet addiction, usage, and communication pleasure. Research questions were: (1) What is computer network addiction? (2) How can one measure the degree of computer network addiction? (3) What is the correlation between the degree of users' network addiction and their network usage? (4) What is the…
Google Correlations: New approaches to collecting data for statistical network analysis
NASA Astrophysics Data System (ADS)
Mahdavi, Paasha
This thesis introduces a new method for data collection on political elite networks using non-obtrusive web-based techniques. One possible indicator of elite connectivity is the frequency with which individuals appear at the same political events. Using a Google search scraping algorithm (Lee 2010) to capture how often pairs of individuals appear in the same news articles reporting on these events, I construct network matrices for a given list of individuals that I identify as elites using a variety of criteria. To assess cross-validity and conceptual accuracy, I compare data from this method to previously collected data on the network connectedness of three separate populations. I then supply an application of the Google method to collect network data on the Nigerian oil elite in 2012. Conducting a network analysis, I show that appointments to the Nigerian National Petroleum Corporation board of directors are made on the basis of political connectivity and not necessarily on technical experience or merit. These findings lend support to hypotheses that leaders use patronage appointments to lucrative bureaucratic positions in order to satisfy political elites. Given that many political theories on elite behavior aim to understand individual- and group-level interactions, the potential applicability of network data using the proposed technique is very large, especially in situations where collecting network data intrusively is costly or prohibitive.
Guo, Hao; Liu, Lei; Chen, Junjie; Xu, Yong; Jie, Xiang
2017-01-01
Functional magnetic resonance imaging (fMRI) is one of the most useful methods to generate functional connectivity networks of the brain. However, conventional network generation methods ignore dynamic changes of functional connectivity between brain regions. Previous studies proposed constructing high-order functional connectivity networks that consider the time-varying characteristics of functional connectivity, and a clustering method was performed to decrease computational cost. However, random selection of the initial clustering centers and the number of clusters negatively affected classification accuracy, and the network lost neurological interpretability. Here we propose a novel method that introduces the minimum spanning tree method to high-order functional connectivity networks. As an unbiased method, the minimum spanning tree simplifies high-order network structure while preserving its core framework. The dynamic characteristics of time series are not lost with this approach, and the neurological interpretation of the network is guaranteed. Simultaneously, we propose a multi-parameter optimization framework that involves extracting discriminative features from the minimum spanning tree high-order functional connectivity networks. Compared with the conventional methods, our resting-state fMRI classification method based on minimum spanning tree high-order functional connectivity networks greatly improved the diagnostic accuracy for Alzheimer's disease. PMID:29249926
Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks.
Chen, Boshan; Chen, Jiejie
2015-08-01
We study the global asymptotic ω-periodicity for a fractional-order non-autonomous neural networks. Firstly, based on the Caputo fractional-order derivative it is shown that ω-periodic or autonomous fractional-order neural networks cannot generate exactly ω-periodic signals. Next, by using the contraction mapping principle we discuss the existence and uniqueness of S-asymptotically ω-periodic solution for a class of fractional-order non-autonomous neural networks. Then by using a fractional-order differential and integral inequality technique, we study global Mittag-Leffler stability and global asymptotical periodicity of the fractional-order non-autonomous neural networks, which shows that all paths of the networks, starting from arbitrary points and responding to persistent, nonconstant ω-periodic external inputs, asymptotically converge to the same nonconstant ω-periodic function that may be not a solution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hu, Yanzhu; Ai, Xinbo
2016-01-01
Complex network methodology is very useful for complex system explorer. However, the relationships among variables in complex system are usually not clear. Therefore, inferring association networks among variables from their observed data has been a popular research topic. We propose a synthetic method, named small-shuffle partial symbolic transfer entropy spectrum (SSPSTES), for inferring association network from multivariate time series. The method synthesizes surrogate data, partial symbolic transfer entropy (PSTE) and Granger causality. A proper threshold selection is crucial for common correlation identification methods and it is not easy for users. The proposed method can not only identify the strong correlation without selecting a threshold but also has the ability of correlation quantification, direction identification and temporal relation identification. The method can be divided into three layers, i.e. data layer, model layer and network layer. In the model layer, the method identifies all the possible pair-wise correlation. In the network layer, we introduce a filter algorithm to remove the indirect weak correlation and retain strong correlation. Finally, we build a weighted adjacency matrix, the value of each entry representing the correlation level between pair-wise variables, and then get the weighted directed association network. Two numerical simulated data from linear system and nonlinear system are illustrated to show the steps and performance of the proposed approach. The ability of the proposed method is approved by an application finally. PMID:27832153
NASA Astrophysics Data System (ADS)
Wu, Xianjun; Di, Qian; Li, Yao; Zhao, Xiaojie
2009-02-01
Recently, evidences from fMRI studies have shown that there was decreased activity among the default-mode network in Alzheimer's disease (AD), and DTI researches also demonstrated that demyelinations exist in white matter of AD patients. Therefore, combining these two MRI methods may help to reveal the relationship between white matter damages and alterations of the resting state functional connectivity network. In the present study, we tried to address this issue by means of correlation analysis between DTI and resting state fMRI images. The default-mode networks of AD and normal control groups were compared to find the areas with significantly declined activity firstly. Then, the white matter regions whose fractional anisotropy (FA) value correlated with this decline were located through multiple regressions between the FA values and the BOLD response of the default networks. Among these correlating white matter regions, those whose FA values also declined were found by a group comparison between AD patients and healthy elderly control subjects. Our results showed that the areas with decreased activity among default-mode network included left posterior cingulated cortex (PCC), left medial temporal gyrus et al. And the damaged white matter areas correlated with the default-mode network alterations were located around left sub-gyral temporal lobe. These changes may relate to the decreased connectivity between PCC and medial temporal lobe (MTL), and thus correlate with the deficiency of default-mode network activity.
Li, C; Tian, L
2014-06-01
A number of studies have associated the adult intelligence quotient with the structure and function of the bilateral parieto-frontal networks, whereas the relationship between intelligence quotient and parieto-frontal network function has been found to be relatively weak in early childhood. Because both human intelligence and brain function undergo protracted development into adulthood, the purpose of the present study was to provide a better understanding of the development of the parieto-frontal network-intelligence quotient relationship. We performed independent component analysis of resting-state fMRI data of 84 children and 50 adolescents separately and then correlated full-scale intelligence quotient with the spatial maps of the bilateral parieto-frontal networks of each group. In children, significant positive spatial-map versus intelligence quotient correlations were detected in the right angular gyrus and inferior frontal gyrus in the right parieto-frontal network, and no significant correlation was observed in the left parieto-frontal network. In adolescents, significant positive correlation was detected in the left inferior frontal gyrus in the left parieto-frontal network, and the correlations in the frontal pole in the 2 parieto-frontal networks were only marginally significant. The present findings not only support the critical role of the parieto-frontal networks for intelligence but indicate that the relationship between intelligence quotient and the parieto-frontal network in the right hemisphere has been well established in late childhood, and that the relationship in the left hemisphere was also established in adolescence. © 2014 by American Journal of Neuroradiology.
Feature-based alert correlation in security systems using self organizing maps
NASA Astrophysics Data System (ADS)
Kumar, Munesh; Siddique, Shoaib; Noor, Humera
2009-04-01
The security of the networks has been an important concern for any organization. This is especially important for the defense sector as to get unauthorized access to the sensitive information of an organization has been the prime desire for cyber criminals. Many network security techniques like Firewall, VPN Concentrator etc. are deployed at the perimeter of network to deal with attack(s) that occur(s) from exterior of network. But any vulnerability that causes to penetrate the network's perimeter of defense, can exploit the entire network. To deal with such vulnerabilities a system has been evolved with the purpose of generating an alert for any malicious activity triggered against the network and its resources, termed as Intrusion Detection System (IDS). The traditional IDS have still some deficiencies like generating large number of alerts, containing both true and false one etc. By automatically classifying (correlating) various alerts, the high-level analysis of the security status of network can be identified and the job of network security administrator becomes much easier. In this paper we propose to utilize Self Organizing Maps (SOM); an Artificial Neural Network for correlating large amount of logged intrusion alerts based on generic features such as Source/Destination IP Addresses, Port No, Signature ID etc. The different ways in which alerts can be correlated by Artificial Intelligence techniques are also discussed. . We've shown that the strategy described in the paper improves the efficiency of IDS by better correlating the alerts, leading to reduced false positives and increased competence of network administrator.
Effects of temporal correlations in social multiplex networks.
Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo
2017-08-17
Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.
Nonlinear Transfer of Signal and Noise Correlations in Cortical Networks
Lyamzin, Dmitry R.; Barnes, Samuel J.; Donato, Roberta; Garcia-Lazaro, Jose A.; Keck, Tara
2015-01-01
Signal and noise correlations, a prominent feature of cortical activity, reflect the structure and function of networks during sensory processing. However, in addition to reflecting network properties, correlations are also shaped by intrinsic neuronal mechanisms. Here we show that spike threshold transforms correlations by creating nonlinear interactions between signal and noise inputs; even when input noise correlation is constant, spiking noise correlation varies with both the strength and correlation of signal inputs. We characterize these effects systematically in vitro in mice and demonstrate their impact on sensory processing in vivo in gerbils. We also find that the effects of nonlinear correlation transfer on cortical responses are stronger in the synchronized state than in the desynchronized state, and show that they can be reproduced and understood in a model with a simple threshold nonlinearity. Since these effects arise from an intrinsic neuronal property, they are likely to be present across sensory systems and, thus, our results are a critical step toward a general understanding of how correlated spiking relates to the structure and function of cortical networks. PMID:26019325
Order or chaos in Boolean gene networks depends on the mean fraction of canalizing functions
NASA Astrophysics Data System (ADS)
Karlsson, Fredrik; Hörnquist, Michael
2007-10-01
We explore the connection between order/chaos in Boolean networks and the naturally occurring fraction of canalizing functions in such systems. This fraction turns out to give a very clear indication of whether the system possesses ordered or chaotic dynamics, as measured by Derrida plots, and also the degree of order when we compare different networks with the same number of vertices and edges. By studying also a wide distribution of indegrees in a network, we show that the mean probability of canalizing functions is a more reliable indicator of the type of dynamics for a finite network than the classical result on stability relating the bias to the mean indegree. Finally, we compare by direct simulations two biologically derived networks with networks of similar sizes but with power-law and Poisson distributions of indegrees, respectively. The biologically motivated networks are not more ordered than the latter, and in one case the biological network is even chaotic while the others are not.
Mrabet, Yassine; Semmar, Nabil
2010-05-01
Complexity of metabolic systems can be undertaken at different scales (metabolites, metabolic pathways, metabolic network map, biological population) and under different aspects (structural, functional, evolutive). To analyse such a complexity, metabolic systems need to be decomposed into different components according to different concepts. Four concepts are presented here consisting in considering metabolic systems as sets of metabolites, chemical reactions, metabolic pathways or successive processes. From a metabolomic dataset, such decompositions are performed using different mathematical methods including correlation, stiochiometric, ordination, classification, combinatorial and kinetic analyses. Correlation analysis detects and quantifies affinities/oppositions between metabolites. Stoichiometric analysis aims to identify the organisation of a metabolic network into different metabolic pathways on the hand, and to quantify/optimize the metabolic flux distribution through the different chemical reactions of the system. Ordination and classification analyses help to identify different metabolic trends and their associated metabolites in order to highlight chemical polymorphism representing different variability poles of the metabolic system. Then, metabolic processes/correlations responsible for such a polymorphism can be extracted in silico by combining metabolic profiles representative of different metabolic trends according to a weighting bootstrap approach. Finally evolution of metabolic processes in time can be analysed by different kinetic/dynamic modelling approaches.
The noisy voter model on complex networks.
Carro, Adrián; Toral, Raúl; San Miguel, Maxi
2016-04-20
We propose a new analytical method to study stochastic, binary-state models on complex networks. Moving beyond the usual mean-field theories, this alternative approach is based on the introduction of an annealed approximation for uncorrelated networks, allowing to deal with the network structure as parametric heterogeneity. As an illustration, we study the noisy voter model, a modification of the original voter model including random changes of state. The proposed method is able to unfold the dependence of the model not only on the mean degree (the mean-field prediction) but also on more complex averages over the degree distribution. In particular, we find that the degree heterogeneity--variance of the underlying degree distribution--has a strong influence on the location of the critical point of a noise-induced, finite-size transition occurring in the model, on the local ordering of the system, and on the functional form of its temporal correlations. Finally, we show how this latter point opens the possibility of inferring the degree heterogeneity of the underlying network by observing only the aggregate behavior of the system as a whole, an issue of interest for systems where only macroscopic, population level variables can be measured.
NASA Astrophysics Data System (ADS)
Bromis, K.; Kakkos, I.; Gkiatis, K.; Karanasiou, I. S.; Matsopoulos, G. K.
2017-11-01
Previous neurocognitive assessments in Small Cell Lung Cancer (SCLC) population, highlight the presence of neurocognitive impairments (mainly in attention processing and executive functioning) in this type of cancer. The majority of these studies, associate these deficits with the Prophylactic Cranial Irradiation (PCI) that patients undergo in order to avoid brain metastasis. However, there is not much evidence exploring cognitive impairments induced by chemotherapy in SCLC patients. For this reason, we aimed to investigate the underlying processes that may potentially affect cognition by examining brain functional connectivity in nineteen SCLC patients after chemotherapy treatment, while additionally including fourteen healthy participants as control group. Independent Component Analysis (ICA) is a functional connectivity measure aiming to unravel the temporal correlation between brain regions, which are called brain networks. We focused on two brain networks related to the aforementioned cognitive functions, the Default Mode Network (DMN) and the Task-Positive Network (TPN). Permutation tests were performed between the two groups to assess the differences and control for familywise errors in the statistical parametric maps. ICA analysis showed functional connectivity disruptions within both of the investigated networks. These results, propose a detrimental effect of chemotherapy on brain functioning in the SCLC population.
Robustness of networks formed from interdependent correlated networks under intentional attacks
NASA Astrophysics Data System (ADS)
Liu, Long; Meng, Ke; Dong, Zhaoyang
2018-02-01
We study the problem of intentional attacks targeting to interdependent networks generated with known degree distribution (in-degree oriented model) or distribution of interlinks (out-degree oriented model). In both models, each node's degree is correlated with the number of its links that connect to the other network. For both models, varying the correlation coefficient has a significant effect on the robustness of a system undergoing random attacks or attacks targeting nodes with low degree. For a system with an assortative relationship between in-degree and out-degree, reducing the broadness of networks' degree distributions can increase the resistance of systems against intentional attacks.
Zhang, Juping; Yang, Chan; Jin, Zhen; Li, Jia
2018-07-14
In this paper, the correlation coefficients between nodes in states are used as dynamic variables, and we construct SIR epidemic dynamic models with correlation coefficients by using the pair approximation method in static networks and dynamic networks, respectively. Considering the clustering coefficient of the network, we analytically investigate the existence and the local asymptotic stability of each equilibrium of these models and derive threshold values for the prevalence of diseases. Additionally, we obtain two equivalent epidemic thresholds in dynamic networks, which are compared with the results of the mean field equations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Complex Networks/Foundations of Information Systems
2013-03-06
the benefit of feedback or dynamic correlations in coding and protocol. Using Renyi correlation analysis and entropy to model this wider class of...dynamic heterogeneous conditions. Lizhong Zheng, MIT Renyi Channel Correlation Analysis (connected to geometric curvature) Network Channel
A node-wise analysis of the uterine muscle networks for pregnancy monitoring.
Nader, N; Hassan, M; Falou, W; Marque, C; Khalil, M
2016-08-01
The recent past years have seen a noticeable increase of interest in the correlation analysis of electrohysterographic (EHG) signals in the perspective of improving the pregnancy monitoring. Here we propose a new approach based on the functional connectivity between multichannel (4×4 matrix) EHG signals recorded from the women's abdomen. The proposed pipeline includes i) the computation of the statistical couplings between the multichannel EHG signals, ii) the characterization of the connectivity matrices, computed by using the imaginary part of the coherence, based on the graph-theory analysis and iii) the use of these measures for pregnancy monitoring. The method was evaluated on a dataset of EHGs, in order to track the correlation between EHGs collected by each electrode of the matrix (called `node-wise' analysis) and follow their evolution along weeks before labor. Results showed that the strength of each node significantly increases from pregnancy to labor. Electrodes located on the median vertical axis of the uterus seemed to be the more discriminant. We speculate that the network-based analysis can be a very promising tool to improve pregnancy monitoring.
NASA Astrophysics Data System (ADS)
Gardezi, A.; Umer, T.; Butt, F.; Young, R. C. D.; Chatwin, C. R.
2016-04-01
A spatial domain optimal trade-off Maximum Average Correlation Height (SPOT-MACH) filter has been previously developed and shown to have advantages over frequency domain implementations in that it can be made locally adaptive to spatial variations in the input image background clutter and normalised for local intensity changes. The main concern for using the SPOT-MACH is its computationally intensive nature. However in the past enhancements techniques were proposed for the SPOT-MACH to make its execution time comparable to its frequency domain counterpart. In this paper a novel approach is discussed which uses VANET parameters coupled with the SPOT-MACH in order to minimise the extensive processing of the large video dataset acquired from the Pakistan motorways surveillance system. The use of VANET parameters gives us an estimation criterion of the flow of traffic on the Pakistan motorway network and acts as a precursor to the training algorithm. The use of VANET in this scenario would contribute heavily towards the computational complexity minimization of the proposed monitoring system.
NASA Astrophysics Data System (ADS)
Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.
2017-05-01
Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.
Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.
Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano
2016-08-18
This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.
Hierarchical organization of functional connectivity in the mouse brain: a complex network approach
NASA Astrophysics Data System (ADS)
Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano
2016-08-01
This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.
Jail Mental Health Resourcing: A Conceptual and Empirical Study of Social Determinants.
Helms, Ronald; Gutierrez, Ricky S; Reeves-Gutierrez, Debra
2016-07-01
U.S. county jails hold large populations of mentally ill inmates but have rarely been researched quantitatively to assess their collective capacity for providing mental health treatment. This research uses ordinal logit and a partial parallel slopes model and a large sample of U.S. counties to assess conceptualized links between local institutional and structural indicators and jail mental health resourcing. Strong church networks and high rates of adult education completion are associated with enhanced jail mental health resourcing. Urbanized areas and areas with deep economic ties to manufacturing appear supportive of a strong jail mental health system. Conversely, conservative political environments and areas with strong medical and mental health networks based in the community are correlated with reduced jail mental health resourcing. Evidence from this research adds to a growing understanding of the need for enhanced community mental health service and diagnostic capabilities in our nation's jails, noting the characteristics and correlates of model program jurisdictions and jurisdictions where program enhancements are most likely in order. © The Author(s) 2015.
Spatial correlation analysis of urban traffic state under a perspective of community detection
NASA Astrophysics Data System (ADS)
Yang, Yanfang; Cao, Jiandong; Qin, Yong; Jia, Limin; Dong, Honghui; Zhang, Aomuhan
2018-05-01
Understanding the spatial correlation of urban traffic state is essential for identifying the evolution patterns of urban traffic state. However, the distribution of traffic state always has characteristics of large spatial span and heterogeneity. This paper adapts the concept of community detection to the correlation network of urban traffic state and proposes a new perspective to identify the spatial correlation patterns of traffic state. In the proposed urban traffic network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding correlation of traffic state. Further, the process of community detection in the urban traffic network (named GWPA-K-means) is applied to analyze the spatial dependency of traffic state. The proposed method extends the traditional K-means algorithm in two steps: (i) redefines the initial cluster centers by two properties of nodes (the GWPA value and the minimum shortest path length); (ii) utilizes the weight signal propagation process to transfer the topological information of the urban traffic network into a node similarity matrix. Finally, numerical experiments are conducted on a simple network and a real urban road network in Beijing. The results show that GWPA-K-means algorithm is valid in spatial correlation analysis of traffic state. The network science and community structure analysis perform well in describing the spatial heterogeneity of traffic state on a large spatial scale.
NASA Astrophysics Data System (ADS)
Bruun, Jesper; Brewe, Eric
2013-12-01
The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1) communication about how to solve physics problems in the course (called the PS category), (2) communications about the nature of physics concepts (called the CD category), and (3) social interactions that are not strictly related to the content of the physics classes (called the ICS category) in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI) scores. We find highly significant correlations (p<0.001) between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network), the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively) with future grades. In the CD network, the network measure target entropy shows the highest correlation (r=0.45) with future grades. In the network composed solely of noncontent related social interactions, these patterns of correlation are maintained in the sense that these network measures show the highest correlations and maintain their internal ranking. Using hierarchical linear regression, we find that a linear model that adds the network measures hide and target entropy, calculated on the ICS network, significantly improves a base model that uses only the FCI pretest scores from the beginning of the semester. Though one should not infer causality from these results, they do point to how social interactions in class are intertwined with academic interactions. We interpret this as an integral part of learning, and suggest that physics is a robust example.
When do correlations increase with firing rates in recurrent networks?
2017-01-01
A central question in neuroscience is to understand how noisy firing patterns are used to transmit information. Because neural spiking is noisy, spiking patterns are often quantified via pairwise correlations, or the probability that two cells will spike coincidentally, above and beyond their baseline firing rate. One observation frequently made in experiments, is that correlations can increase systematically with firing rate. Theoretical studies have determined that stimulus-dependent correlations that increase with firing rate can have beneficial effects on information coding; however, we still have an incomplete understanding of what circuit mechanisms do, or do not, produce this correlation-firing rate relationship. Here, we studied the relationship between pairwise correlations and firing rates in recurrently coupled excitatory-inhibitory spiking networks with conductance-based synapses. We found that with stronger excitatory coupling, a positive relationship emerged between pairwise correlations and firing rates. To explain these findings, we used linear response theory to predict the full correlation matrix and to decompose correlations in terms of graph motifs. We then used this decomposition to explain why covariation of correlations with firing rate—a relationship previously explained in feedforward networks driven by correlated input—emerges in some recurrent networks but not in others. Furthermore, when correlations covary with firing rate, this relationship is reflected in low-rank structure in the correlation matrix. PMID:28448499
Testing the mutual information expansion of entropy with multivariate Gaussian distributions.
Goethe, Martin; Fita, Ignacio; Rubi, J Miguel
2017-12-14
The mutual information expansion (MIE) represents an approximation of the configurational entropy in terms of low-dimensional integrals. It is frequently employed to compute entropies from simulation data of large systems, such as macromolecules, for which brute-force evaluation of the full configurational integral is intractable. Here, we test the validity of MIE for systems consisting of more than m = 100 degrees of freedom (dofs). The dofs are distributed according to multivariate Gaussian distributions which were generated from protein structures using a variant of the anisotropic network model. For the Gaussian distributions, we have semi-analytical access to the configurational entropy as well as to all contributions of MIE. This allows us to accurately assess the validity of MIE for different situations. We find that MIE diverges for systems containing long-range correlations which means that the error of consecutive MIE approximations grows with the truncation order n for all tractable n ≪ m. This fact implies severe limitations on the applicability of MIE, which are discussed in the article. For systems with correlations that decay exponentially with distance, MIE represents an asymptotic expansion of entropy, where the first successive MIE approximations approach the exact entropy, while MIE also diverges for larger orders. In this case, MIE serves as a useful entropy expansion when truncated up to a specific truncation order which depends on the correlation length of the system.
Lifespan anxiety is reflected in human amygdala cortical connectivity
He, Ye; Xu, Ting; Zhang, Wei
2016-01-01
Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26859312
Shock waves on complex networks
NASA Astrophysics Data System (ADS)
Mones, Enys; Araújo, Nuno A. M.; Vicsek, Tamás; Herrmann, Hans J.
2014-05-01
Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce the concept of node-basin size, a purely topological property which we show to be strongly correlated to the average load of a node.
Comparative analysis of methods for extracting vessel network on breast MRI images
NASA Astrophysics Data System (ADS)
Gaizer, Bence T.; Vassiou, Katerina G.; Lavdas, Eleftherios; Arvanitis, Dimitrios L.; Fezoulidis, Ioannis V.; Glotsos, Dimitris T.
2017-11-01
Digital processing of MRI images aims to provide an automatized diagnostic evaluation of regular health screenings. Cancerous lesions are proven to cause an alteration in the vessel structure of the diseased organ. Currently there are several methods used for extraction of the vessel network in order to quantify its properties. In this work MRI images (Signa HDx 3.0T, GE Healthcare, courtesy of University Hospital of Larissa) of 30 female breasts were subjected to three different vessel extraction algorithms to determine the location of their vascular network. The first method is an experiment to build a graph over known points of the vessel network; the second algorithm aims to determine the direction and diameter of vessels at these points; the third approach is a seed growing algorithm, spreading selection to neighbors of the known vessel pixels. The possibilities shown by the different methods were analyzed, and quantitative measurements were performed. The data provided by these measurements showed no clear correlation with the presence or malignancy of tumors, based on the radiological diagnosis of skilled physicians.
Linking structure and activity in nonlinear spiking networks
Josić, Krešimir; Shea-Brown, Eric
2017-01-01
Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks’ spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities—including those of different cell types—combine with connectivity to shape population activity and function. PMID:28644840
Finding Correlation between Protein Protein Interaction Modules Using Semantic Web Techniques
NASA Astrophysics Data System (ADS)
Kargar, Mehdi; Moaven, Shahrouz; Abolhassani, Hassan
Many complex networks such as social networks and computer show modular structures, where edges between nodes are much denser within modules than between modules. It is strongly believed that cellular networks are also modular, reflecting the relative independence and coherence of different functional units in a cell. In this paper we used a human curated dataset. In this paper we consider each module in the PPI network as ontology. Using techniques in ontology alignment, we compare each pair of modules in the network. We want to see that is there a correlation between the structure of each module or they have totally different structures. Our results show that there is no correlation between proteins in a protein protein interaction network.
Friend suggestion in social network based on user log
NASA Astrophysics Data System (ADS)
Kaviya, R.; Vanitha, M.; Sumaiya Thaseen, I.; Mangaiyarkarasi, R.
2017-11-01
Simple friend recommendation algorithms such as similarity, popularity and social aspects is the basic requirement to be explored to methodically form high-performance social friend recommendation. Suggestion of friends is followed. No tags of character were followed. In the proposed system, we use an algorithm for network correlation-based social friend recommendation (NC-based SFR).It includes user activities like where one lives and works. A new friend recommendation method, based on network correlation, by considering the effect of different social roles. To model the correlation between different networks, we develop a method that aligns these networks through important feature selection. We consider by preserving the network structure for a more better recommendations so that it significantly improves the accuracy for better friend-recommendation.
Di Perri, Carol; Amico, Enrico; Heine, Lizette; Annen, Jitka; Martial, Charlotte; Larroque, Stephen Karl; Soddu, Andrea; Marinazzo, Daniele; Laureys, Steven
2018-01-01
Given that recent research has shown that functional connectivity is not a static phenomenon, we aim to investigate the dynamic properties of the default mode network's (DMN) connectivity in patients with disorders of consciousness. Resting-state fMRI volumes of a convenience sample of 17 patients in unresponsive wakefulness syndrome (UWS) and controls were reduced to a spatiotemporal point process by selecting critical time points in the posterior cingulate cortex (PCC). Spatial clustering was performed on the extracted PCC time frames to obtain 8 different co-activation patterns (CAPs). We investigated spatial connectivity patterns positively and negatively correlated with PCC using both CAPs and standard stationary method. We calculated CAPs occurrences and the total number of frames. Compared to controls, patients showed (i) decreased within-network positive correlations and between-network negative correlations, (ii) emergence of "pathological" within-network negative correlations and between-network positive correlations (better defined with CAPs), and (iii) "pathological" increases in within-network positive correlations and between-network negative correlations (only detectable using CAPs). Patients showed decreased occurrence of DMN-like CAPs (1-2) compared to controls. No between-group differences were observed in the total number of frames CONCLUSION: CAPs reveal at a more fine-grained level the multifaceted spatial connectivity reconfiguration following the DMN disruption in UWS patients, which is more complex than previously thought and suggests alternative anatomical substrates for consciousness. BOLD fluctuations do not seem to differ between patients and controls, suggesting that BOLD response represents an intrinsic feature of the signal, and therefore that spatial configuration is more important for consciousness than BOLD activation itself. Hum Brain Mapp 39:89-103, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Comparing Pearson, Spearman and Hoeffding's D measure for gene expression association analysis.
Fujita, André; Sato, João Ricardo; Demasi, Marcos Angelo Almeida; Sogayar, Mari Cleide; Ferreira, Carlos Eduardo; Miyano, Satoru
2009-08-01
DNA microarrays have become a powerful tool to describe gene expression profiles associated with different cellular states, various phenotypes and responses to drugs and other extra- or intra-cellular perturbations. In order to cluster co-expressed genes and/or to construct regulatory networks, definition of distance or similarity between measured gene expression data is usually required, the most common choices being Pearson's and Spearman's correlations. Here, we evaluate these two methods and also compare them with a third one, namely Hoeffding's D measure, which is used to infer nonlinear and non-monotonic associations, i.e. independence in a general sense. By comparing three different variable association approaches, namely Pearson's correlation, Spearman's correlation and Hoeffding's D measure, we aimed at assessing the most appropriate one for each purpose. Using simulations, we demonstrate that the Hoeffding's D measure outperforms Pearson's and Spearman's approaches in identifying nonlinear associations. Our results demonstrate that Hoeffding's D measure is less sensitive to outliers and is a more powerful tool to identify nonlinear and non-monotonic associations. We have also applied Hoeffding's D measure in order to identify new putative genes associated with tp53. Therefore, we propose the Hoeffding's D measure to identify nonlinear associations between gene expression profiles.
A first approach to the distortion analysis of nonlinear analog circuits utilizing X-parameters
NASA Astrophysics Data System (ADS)
Weber, H.; Widemann, C.; Mathis, W.
2013-07-01
In this contribution a first approach to the distortion analysis of nonlinear 2-port-networks with X-parameters1 is presented. The X-parameters introduced by Verspecht and Root (2006) offer the possibility to describe nonlinear microwave 2-port-networks under large signal conditions. On the basis of X-parameter measurements with a nonlinear network analyzer (NVNA) behavioral models can be extracted for the networks. These models can be used to consider the nonlinear behavior during the design process of microwave circuits. The idea of the present work is to extract the behavioral models in order to describe the influence of interfering signals on the output behavior of the nonlinear circuits. Hereby, a simulator is used instead of a NVNA to extract the X-parameters. Assuming that the interfering signals are relatively small compared to the nominal input signal, the output signal can be described as a superposition of the effects of each input signal. In order to determine the functional correlation between the scattering variables, a polynomial dependency is assumed. The required datasets for the approximation of the describing functions are simulated by a directional coupler model in Cadence Design Framework. The polynomial coefficients are obtained by a least-square method. The resulting describing functions can be used to predict the system's behavior under certain conditions as well as the effects of the interfering signal on the output signal. 1 X-parameter is a registered trademark of Agilent Technologies, Inc.
Abelian Higgs cosmic strings: Small-scale structure and loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindmarsh, Mark; Stuckey, Stephanie; Bevis, Neil
2009-06-15
Classical lattice simulations of the Abelian Higgs model are used to investigate small-scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski and Rocha 29 for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loopmore » distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. 30. Better agreement to our data is found with a model based on loop fragmentation 32, coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy-loss mechanism, which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small-scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution, which reconciles the apparent differences between Nambu-Goto and field theory simulations.« less
Uddin, Lucina Q.; Clare Kelly, A. M.; Biswal, Bharat B.; Castellanos, F. Xavier; Milham, Michael P.
2013-01-01
The default mode network (DMN), based in ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC), exhibits higher metabolic activity at rest than during performance of externally-oriented cognitive tasks. Recent studies have suggested that competitive relationships between the DMN and various task-positive networks involved in task performance are intrinsically represented in the brain in the form of strong negative correlations (anticorrelations) between spontaneous fluctuations in these networks. Most neuroimaging studies characterize the DMN as a homogenous network, thus few have examined the differential contributions of DMN components to such competitive relationships. Here we examined functional differentiation within the default mode network, with an emphasis on understanding competitive relationships between this and other networks. We used a seed correlation approach on resting-state data to assess differences in functional connectivity between these two regions and their anticorrelated networks. While the positively correlated networks for the vmPFC and PCC seeds largely overlapped, the anticorrelated networks for each showed striking differences. Activity in vmPFC negatively predicted activity in parietal visual spatial and temporal attention networks, whereas activity in PCC negatively predicted activity in prefrontal-based motor control circuits. Granger causality analyses suggest that vmPFC and PCC exert greater influence on their anticorrelated networks than the other way around, suggesting that these two default mode nodes may directly modulate activity in task-positive networks. Thus, the two major nodes comprising the default mode network are differentiated with respect to the specific brain systems with which they interact, suggesting greater heterogeneity within this network than is commonly appreciated. PMID:18219617
Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming
2016-01-01
Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.
miR-638 regulates gene expression networks associated with emphysematous lung destruction
2013-01-01
Background Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by varying degrees of emphysematous lung destruction and small airway disease, each with distinct effects on clinical outcomes. There is little known about how microRNAs contribute specifically to the emphysema phenotype. We examined how genome-wide microRNA expression is altered with regional emphysema severity and how these microRNAs regulate disease-associated gene expression networks. Methods We profiled microRNAs in different regions of the lung with varying degrees of emphysema from 6 smokers with COPD and 2 controls (8 regions × 8 lungs = 64 samples). Regional emphysema severity was quantified by mean linear intercept. Whole genome microRNA and gene expression data were integrated in the same samples to build co-expression networks. Candidate microRNAs were perturbed in human lung fibroblasts in order to validate these networks. Results The expression levels of 63 microRNAs (P < 0.05) were altered with regional emphysema. A subset, including miR-638, miR-30c, and miR-181d, had expression levels that were associated with those of their predicted mRNA targets. Genes correlated with these microRNAs were enriched in pathways associated with emphysema pathophysiology (for example, oxidative stress and accelerated aging). Inhibition of miR-638 expression in lung fibroblasts led to modulation of these same emphysema-related pathways. Gene targets of miR-638 in these pathways were amongst those negatively correlated with miR-638 expression in emphysema. Conclusions Our findings demonstrate that microRNAs are altered with regional emphysema severity and modulate disease-associated gene expression networks. Furthermore, miR-638 may regulate gene expression pathways related to the oxidative stress response and aging in emphysematous lung tissue and lung fibroblasts. PMID:24380442
The Correlation Fractal Dimension of Complex Networks
NASA Astrophysics Data System (ADS)
Wang, Xingyuan; Liu, Zhenzhen; Wang, Mogei
2013-05-01
The fractality of complex networks is studied by estimating the correlation dimensions of the networks. Comparing with the previous algorithms of estimating the box dimension, our algorithm achieves a significant reduction in time complexity. For four benchmark cases tested, that is, the Escherichia coli (E. Coli) metabolic network, the Homo sapiens protein interaction network (H. Sapiens PIN), the Saccharomyces cerevisiae protein interaction network (S. Cerevisiae PIN) and the World Wide Web (WWW), experiments are provided to demonstrate the validity of our algorithm.
A symmetric multivariate leakage correction for MEG connectomes
Colclough, G.L.; Brookes, M.J.; Smith, S.M.; Woolrich, M.W.
2015-01-01
Ambiguities in the source reconstruction of magnetoencephalographic (MEG) measurements can cause spurious correlations between estimated source time-courses. In this paper, we propose a symmetric orthogonalisation method to correct for these artificial correlations between a set of multiple regions of interest (ROIs). This process enables the straightforward application of network modelling methods, including partial correlation or multivariate autoregressive modelling, to infer connectomes, or functional networks, from the corrected ROIs. Here, we apply the correction to simulated MEG recordings of simple networks and to a resting-state dataset collected from eight subjects, before computing the partial correlations between power envelopes of the corrected ROItime-courses. We show accurate reconstruction of our simulated networks, and in the analysis of real MEGresting-state connectivity, we find dense bilateral connections within the motor and visual networks, together with longer-range direct fronto-parietal connections. PMID:25862259
Hierarchy in directed random networks.
Mones, Enys
2013-02-01
In recent years, the theory and application of complex networks have been quickly developing in a markable way due to the increasing amount of data from real systems and the fruitful application of powerful methods used in statistical physics. Many important characteristics of social or biological systems can be described by the study of their underlying structure of interactions. Hierarchy is one of these features that can be formulated in the language of networks. In this paper we present some (qualitative) analytic results on the hierarchical properties of random network models with zero correlations and also investigate, mainly numerically, the effects of different types of correlations. The behavior of the hierarchy is different in the absence and the presence of giant components. We show that the hierarchical structure can be drastically different if there are one-point correlations in the network. We also show numerical results suggesting that the hierarchy does not change monotonically with the correlations and there is an optimal level of nonzero correlations maximizing the level of hierarchy.
Optimum inhomogeneity of local lattice distortions in La2CuO4+y
Poccia, Nicola; Ricci, Alessandro; Campi, Gaetano; Fratini, Michela; Puri, Alessandro; Gioacchino, Daniele Di; Marcelli, Augusto; Reynolds, Michael; Burghammer, Manfred; Saini, Naurang Lal; Aeppli, Gabriel; Bianconi, Antonio
2012-01-01
Electronic functionalities in materials from silicon to transition metal oxides are, to a large extent, controlled by defects and their relative arrangement. Outstanding examples are the oxides of copper, where defect order is correlated with their high superconducting transition temperatures. The oxygen defect order can be highly inhomogeneous, even in optimal superconducting samples, which raises the question of the nature of the sample regions where the order does not exist but which nonetheless form the “glue” binding the ordered regions together. Here we use scanning X-ray microdiffraction (with a beam 300 nm in diameter) to show that for La2CuO4+y, the glue regions contain incommensurate modulated local lattice distortions, whose spatial extent is most pronounced for the best superconducting samples. For an underdoped single crystal with mobile oxygen interstitials in the spacer La2O2+y layers intercalated between the CuO2 layers, the incommensurate modulated local lattice distortions form droplets anticorrelated with the ordered oxygen interstitials, and whose spatial extent is most pronounced for the best superconducting samples. In this simplest of high temperature superconductors, there are therefore not one, but two networks of ordered defects which can be tuned to achieve optimal superconductivity. For a given stoichiometry, the highest transition temperature is obtained when both the ordered oxygen and lattice defects form fractal patterns, as opposed to appearing in isolated spots. We speculate that the relationship between material complexity and superconducting transition temperature Tc is actually underpinned by a fundamental relation between Tc and the distribution of ordered defect networks supported by the materials. PMID:22961255
Correlation between insula activation and self-reported quality of orgasm in women.
Ortigue, Stephanie; Grafton, Scott T; Bianchi-Demicheli, Francesco
2007-08-15
Current multidimensional models of women's sexual function acknowledge the implicit impact of psychosocial factors on women's sexual function. Interaction between human sexual function and intensity of love has been also assumed, even if love is not an absolute condition. Yet, whereas great insights have been made in understanding the central mechanisms of the peripheral manifestations of women's sexual response, including orgasm, the cerebral correlates sustaining the interaction between women's sexual satisfaction and the unconscious role of the partner in this interpersonal experience remain unknown. Using functional imaging, we assessed brain activity elicited when 29 healthy female volunteers were unconsciously exposed to the subliminal presentation of their significant partner's name (a task known to elicit a partner-related neural network) and correlated it with individual scores obtained from different sexual dimensions: self-reported partnered orgasm quality (ease, satisfaction, frequency), love intensity and emotional closeness with that partner. Behavioral results identified a correlation between love and self-reported partnered orgasm quality. The more women were in love/emotionally close to their partner, the more they tended to report being satisfied with the quality of their partnered orgasm. However, no relationship was found between intensity of love and partnered orgasm frequency. Neuroimaging data expanded these behavioral results by demonstrating the involvement of a specific left-lateralized insula focus of neural activity correlating with orgasm scores, irrespective of dimension (frequency, ease, satisfaction). In contrast, intensity of being in love was correlated with a network involving the angular gyrus. These findings strongly suggest that intimate and sexual relationships are sustained by partly different mechanisms, even if they share some emotional-related mechanisms. The critical correlation between self-reports of orgasm quality and activation of the left anterior insula, a part of the partner-related neural network known to play a pivotal role in somatic processes, suggests the importance of somatic information in the integration of sexual experience. On the other hand, the correlation between activation of the angular gyrus and love intensity reinforces the assumption that the representation of love calls for higher order cognitive levels, such as those related to the generation of abstract concepts. By highlighting the specific role of the anterior insula in the way women integrate components of physical satisfaction in the context of an intimate relationship with a partner, the current findings take a step in the understanding of a woman's sexual pleasure.
Wang, Yikai; Kang, Jian; Kemmer, Phebe B.; Guo, Ying
2016-01-01
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package “DensParcorr” can be downloaded from CRAN for implementing the proposed statistical methods. PMID:27242395
Wang, Yikai; Kang, Jian; Kemmer, Phebe B; Guo, Ying
2016-01-01
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package "DensParcorr" can be downloaded from CRAN for implementing the proposed statistical methods.
Doll, Anselm; Sorg, Christian; Manoliu, Andrei; Wöller, Andreas; Meng, Chun; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra M.; Riedl, Valentin
2013-01-01
Borderline personality disorder (BPD) is characterized by “stable instability” of emotions and behavior and their regulation. This emotional and behavioral instability corresponds with a neurocognitive triple network model of psychopathology, which suggests that aberrant emotional saliency and cognitive control is associated with aberrant interaction across three intrinsic connectivity networks [i.e., the salience network (SN), default mode network (DMN), and central executive network (CEN)]. The objective of the current study was to investigate whether and how such triple network intrinsic functional connectivity (iFC) is changed in patients with BPD. We acquired resting-state functional magnetic resonance imaging (rs-fMRI) data from 14 patients with BPD and 16 healthy controls. High-model order independent component analysis was used to extract spatiotemporal patterns of ongoing, coherent blood-oxygen-level-dependent signal fluctuations from rs-fMRI data. Main outcome measures were iFC within networks (intra-iFC) and between networks (i.e., network time course correlation inter-iFC). Aberrant intra-iFC was found in patients’ DMN, SN, and CEN, consistent with previous findings. While patients’ inter-iFC of the CEN was decreased, inter-iFC of the SN was increased. In particular, a balance index reflecting the relationship of CEN- and SN-inter-iFC across networks was strongly shifted from CEN to SN connectivity in patients. Results provide first preliminary evidence for aberrant triple network iFC in BPD. Our data suggest a shift of inter-network iFC from networks involved in cognitive control to those of emotion-related activity in BPD, potentially reflecting the persistent instability of emotion regulation in patients. PMID:24198777
Xu, Nan; Spreng, R Nathan; Doerschuk, Peter C
2017-01-01
Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD) signal from different regions of interest (ROIs). However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1) Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2) On simulated data designed to display the "common driver" problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3) On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain.
NASA Astrophysics Data System (ADS)
Hyman, J. D.; Aldrich, G.; Viswanathan, H.; Makedonska, N.; Karra, S.
2016-08-01
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.
Dynamics of moment neuronal networks.
Feng, Jianfeng; Deng, Yingchun; Rossoni, Enrico
2006-04-01
A theoretical framework is developed for moment neuronal networks (MNNs). Within this framework, the behavior of the system of spiking neurons is specified in terms of the first- and second-order statistics of their interspike intervals, i.e., the mean, the variance, and the cross correlations of spike activity. Since neurons emit and receive spike trains which can be described by renewal--but generally non-Poisson--processes, we first derive a suitable diffusion-type approximation of such processes. Two approximation schemes are introduced: the usual approximation scheme (UAS) and the Ornstein-Uhlenbeck scheme. It is found that both schemes approximate well the input-output characteristics of spiking models such as the IF and the Hodgkin-Huxley models. The MNN framework is then developed according to the UAS scheme, and its predictions are tested on a few examples.
Static sign language recognition using 1D descriptors and neural networks
NASA Astrophysics Data System (ADS)
Solís, José F.; Toxqui, Carina; Padilla, Alfonso; Santiago, César
2012-10-01
A frame work for static sign language recognition using descriptors which represents 2D images in 1D data and artificial neural networks is presented in this work. The 1D descriptors were computed by two methods, first one consists in a correlation rotational operator.1 and second is based on contour analysis of hand shape. One of the main problems in sign language recognition is segmentation; most of papers report a special color in gloves or background for hand shape analysis. In order to avoid the use of gloves or special clothing, a thermal imaging camera was used to capture images. Static signs were picked up from 1 to 9 digits of American Sign Language, a multilayer perceptron reached 100% recognition with cross-validation.
Chaminade, Thierry; Marchant, Jennifer L.; Kilner, James; Frith, Christopher D.
2012-01-01
As social agents, humans continually interact with the people around them. Here, motor cooperation was investigated using a paradigm in which pairs of participants, one being scanned with fMRI, jointly controlled a visually presented object with joystick movements. The object oscillated dynamically along two dimensions, color and width of gratings, corresponding to the two cardinal directions of joystick movements. While the overall control of each participant on the object was kept constant, the amount of cooperation along the two dimensions varied along four levels, from no (each participant controlled one dimension exclusively) to full (each participant controlled half of each dimension) cooperation. Increasing cooperation correlated with BOLD signal in the left parietal operculum and anterior cingulate cortex (ACC), while decreasing cooperation correlated with activity in the right inferior frontal and superior temporal gyri, the intraparietal sulci and inferior temporal gyri bilaterally, and the dorsomedial prefrontal cortex. As joint performance improved with the level of cooperation, we assessed the brain responses correlating with behavior, and found that activity in most of the areas associated with levels of cooperation also correlated with the joint performance. The only brain area found exclusively in the negative correlation with cooperation was in the dorso medial frontal cortex, involved in monitoring action outcome. Given the cluster location and condition-related signal change, we propose that this region monitored actions to extract the level of cooperation in order to optimize the joint response. Our results, therefore, indicate that, in the current experimental paradigm involving joint control of a visually presented object with joystick movements, the level of cooperation affected brain networks involved in action control, but not mentalizing. PMID:22715326
Yaseen, Zimri S; Zhang, Xian; Muran, J Christopher; Winston, Arnold; Galynker, Igor I
2016-01-01
The Adult Attachment Interview (AAI) has been the gold standard of attachment assessment, but requires special training. The Relationship Scales Questionnaire (RSQ) is a widely used self-report measure. We investigate how each correlates with brain activity during appraisal of subjects' mothers. Twenty-eight women were scored on the AAI, RSQ, and mood measures. During functional magnetic resonance imaging, subjects viewed their mothers in neutral-, valence-, and salience-rating conditions. We identified regions where contrasts in brain activity between appraisal and neutral viewing conditions correlated with each measure of attachment after covarying for mood. AAI and RSQ measures were then compared in terms of the extent to which regions of correlating brain activity overlapped with "default mode network" (DMN) vs. executive frontal network (EFN) masks and cortical vs. subcortical masks. Additionally, interactions with mood were examined. Salience and valence processing associated with increased thalamo-striatal, posterior cingulate, and visual cortex activity. Salience processing decreased PFC activity, whereas valence processing increased left insula activity. Activity correlating with AAI vs. RSQ measures demonstrated significantly more DMN and subcortical involvement. Interactions with mood were observed in the middle temporal gyrus and precuneus for both measures. The AAI appears to disproportionately correlate with conscious appraisal associated activity in DMN and subcortical structures, while the RSQ appears to tap EFN structures more extensively. Thus, the AAI may assess more interoceptive, 'core-self'-related processes, while the RSQ captures higher-order cognitions involved in attachment. Shared interaction effects between mood and AAI and RSQ-measures may suggest that processes tapped by each belong to a common system.
Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation.
Jurado-Navas, Antonio; Raddo, Thiago R; Garrido-Balsells, José María; Borges, Ben-Hur V; Olmos, Juan José Vegas; Monroy, Idelfonso Tafur
2016-07-25
In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.
Critical behavior and correlations on scale-free small-world networks: Application to network design
NASA Astrophysics Data System (ADS)
Ostilli, M.; Ferreira, A. L.; Mendes, J. F. F.
2011-06-01
We analyze critical phenomena on networks generated as the union of hidden variable models (networks with any desired degree sequence) with arbitrary graphs. The resulting networks are general small worlds similar to those à la Watts and Strogatz, but with a heterogeneous degree distribution. We prove that the critical behavior (thermal or percolative) remains completely unchanged by the presence of finite loops (or finite clustering). Then, we show that, in large but finite networks, correlations of two given spins may be strong, i.e., approximately power-law-like, at any temperature. Quite interestingly, if γ is the exponent for the power-law distribution of the vertex degree, for γ⩽3 and with or without short-range couplings, such strong correlations persist even in the thermodynamic limit, contradicting the common opinion that, in mean-field models, correlations always disappear in this limit. Finally, we provide the optimal choice of rewiring under which percolation phenomena in the rewired network are best performed, a natural criterion to reach best communication features, at least in noncongested regimes.
Infrared spectrometric study of acid-degradable glasses.
De Maeyer, E A P; Verbeeck, R M H; Vercruysse, C W J
2002-08-01
The composition of glasses used in glass-ionomer cements affects their leaching behavior and hence the properties of the cement. The aim of this study was to correlate the composition and leaching behavior of these glasses with their infrared absorption characteristics. The wavenumber of the absorption band of the Si-O asymmetric stretching vibration shifts to a higher value with decreasing content of mono- and bivalent cations in the glass. This effect can be ascribed to the influence of these extraneous ions on the glass network order and connectivity. Preferential leaching of these ions induces an increase of asymmetric stretching vibration and a general modification of the band profile. The results can be correlated with the x-ray diffraction characteristics of the glass.
Using bivariate signal analysis to characterize the epileptic focus: the benefit of surrogates.
Andrzejak, R G; Chicharro, D; Lehnertz, K; Mormann, F
2011-04-01
The disease epilepsy is related to hypersynchronous activity of networks of neurons. While acute epileptic seizures are the most extreme manifestation of this hypersynchronous activity, an elevated level of interdependence of neuronal dynamics is thought to persist also during the seizure-free interval. In multichannel recordings from brain areas involved in the epileptic process, this interdependence can be reflected in an increased linear cross correlation but also in signal properties of higher order. Bivariate time series analysis comprises a variety of approaches, each with different degrees of sensitivity and specificity for interdependencies reflected in lower- or higher-order properties of pairs of simultaneously recorded signals. Here we investigate which approach is best suited to detect putatively elevated interdependence levels in signals recorded from brain areas involved in the epileptic process. For this purpose, we use the linear cross correlation that is sensitive to lower-order signatures of interdependence, a nonlinear interdependence measure that integrates both lower- and higher-order properties, and a surrogate-corrected nonlinear interdependence measure that aims to specifically characterize higher-order properties. We analyze intracranial electroencephalographic recordings of the seizure-free interval from 29 patients with an epileptic focus located in the medial temporal lobe. Our results show that all three approaches detect higher levels of interdependence for signals recorded from the brain hemisphere containing the epileptic focus as compared to signals recorded from the opposite hemisphere. For the linear cross correlation, however, these differences are not significant. For the nonlinear interdependence measure, results are significant but only of moderate accuracy with regard to the discriminative power for the focal and nonfocal hemispheres. The highest significance and accuracy is obtained for the surrogate-corrected nonlinear interdependence measure.
Using bivariate signal analysis to characterize the epileptic focus: The benefit of surrogates
NASA Astrophysics Data System (ADS)
Andrzejak, R. G.; Chicharro, D.; Lehnertz, K.; Mormann, F.
2011-04-01
The disease epilepsy is related to hypersynchronous activity of networks of neurons. While acute epileptic seizures are the most extreme manifestation of this hypersynchronous activity, an elevated level of interdependence of neuronal dynamics is thought to persist also during the seizure-free interval. In multichannel recordings from brain areas involved in the epileptic process, this interdependence can be reflected in an increased linear cross correlation but also in signal properties of higher order. Bivariate time series analysis comprises a variety of approaches, each with different degrees of sensitivity and specificity for interdependencies reflected in lower- or higher-order properties of pairs of simultaneously recorded signals. Here we investigate which approach is best suited to detect putatively elevated interdependence levels in signals recorded from brain areas involved in the epileptic process. For this purpose, we use the linear cross correlation that is sensitive to lower-order signatures of interdependence, a nonlinear interdependence measure that integrates both lower- and higher-order properties, and a surrogate-corrected nonlinear interdependence measure that aims to specifically characterize higher-order properties. We analyze intracranial electroencephalographic recordings of the seizure-free interval from 29 patients with an epileptic focus located in the medial temporal lobe. Our results show that all three approaches detect higher levels of interdependence for signals recorded from the brain hemisphere containing the epileptic focus as compared to signals recorded from the opposite hemisphere. For the linear cross correlation, however, these differences are not significant. For the nonlinear interdependence measure, results are significant but only of moderate accuracy with regard to the discriminative power for the focal and nonfocal hemispheres. The highest significance and accuracy is obtained for the surrogate-corrected nonlinear interdependence measure.
Affective network and default mode network in depressive adolescents with disruptive behaviors
Kim, Sun Mi; Park, Sung Yong; Kim, Young In; Son, Young Don; Chung, Un-Sun; Min, Kyung Joon; Han, Doug Hyun
2016-01-01
Aim Disruptive behaviors are thought to affect the progress of major depressive disorder (MDD) in adolescents. In resting-state functional connectivity (RSFC) studies of MDD, the affective network (limbic network) and the default mode network (DMN) have garnered a great deal of interest. We aimed to investigate RSFC in a sample of treatment-naïve adolescents with MDD and disruptive behaviors. Methods Twenty-two adolescents with MDD and disruptive behaviors (disrup-MDD) and 20 age- and sex-matched healthy control (HC) participants underwent resting-state functional magnetic resonance imaging (fMRI). We used a seed-based correlation approach concerning two brain circuits including the affective network and the DMN, with two seed regions including the bilateral amygdala for the limbic network and the bilateral posterior cingulate cortex (PCC) for the DMN. We also observed a correlation between RSFC and severity of depressive symptoms and disruptive behaviors. Results The disrup-MDD participants showed lower RSFC from the amygdala to the orbitofrontal cortex and parahippocampal gyrus compared to HC participants. Depression scores in disrup-MDD participants were negatively correlated with RSFC from the amygdala to the right orbitofrontal cortex. The disrup-MDD participants had higher PCC RSFC compared to HC participants in a cluster that included the left precentral gyrus, left insula, and left parietal lobe. Disruptive behavior scores in disrup-MDD patients were positively correlated with RSFC from the PCC to the left insular cortex. Conclusion Depressive mood might be correlated with the affective network, and disruptive behavior might be correlated with the DMN in adolescent depression. PMID:26770059
Biffi, E; Menegon, A; Regalia, G; Maida, S; Ferrigno, G; Pedrocchi, A
2011-08-15
Modern drug discovery for Central Nervous System pathologies has recently focused its attention to in vitro neuronal networks as models for the study of neuronal activities. Micro Electrode Arrays (MEAs), a widely recognized tool for pharmacological investigations, enable the simultaneous study of the spiking activity of discrete regions of a neuronal culture, providing an insight into the dynamics of networks. Taking advantage of MEAs features and making the most of the cross-correlation analysis to assess internal parameters of a neuronal system, we provide an efficient method for the evaluation of comprehensive neuronal network activity. We developed an intra network burst correlation algorithm, we evaluated its sensitivity and we explored its potential use in pharmacological studies. Our results demonstrate the high sensitivity of this algorithm and the efficacy of this methodology in pharmacological dose-response studies, with the advantage of analyzing the effect of drugs on the comprehensive correlative properties of integrated neuronal networks. Copyright © 2011 Elsevier B.V. All rights reserved.
Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks.
Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Trautwein, Fynn-Mathis; Kanske, Philipp; Singer, Tania
2017-02-01
Functional neuroimaging studies have suggested the existence of 2 largely distinct social cognition networks, one for theory of mind (taking others' cognitive perspective) and another for empathy (sharing others' affective states). To address whether these networks can also be dissociated at the level of brain structure, we combined behavioral phenotyping across multiple socio-cognitive tasks with 3-Tesla MRI cortical thickness and structural covariance analysis in 270 healthy adults, recruited across 2 sites. Regional thickness mapping only provided partial support for divergent substrates, highlighting that individual differences in empathy relate to left insular-opercular thickness while no correlation between thickness and mentalizing scores was found. Conversely, structural covariance analysis showed clearly divergent network modulations by socio-cognitive and -affective phenotypes. Specifically, individual differences in theory of mind related to structural integration between temporo-parietal and dorsomedial prefrontal regions while empathy modulated the strength of dorsal anterior insula networks. Findings were robust across both recruitment sites, suggesting generalizability. At the level of structural network embedding, our study provides a double dissociation between empathy and mentalizing. Moreover, our findings suggest that structural substrates of higher-order social cognition are reflected rather in interregional networks than in the the local anatomical markup of specific regions per se. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Yin, Jun; Yang, Yuwang; Wang, Lei
2016-04-01
Joint design of compressed sensing (CS) and network coding (NC) has been demonstrated to provide a new data gathering paradigm for multi-hop wireless sensor networks (WSNs). By exploiting the correlation of the network sensed data, a variety of data gathering schemes based on NC and CS (Compressed Data Gathering--CDG) have been proposed. However, these schemes assume that the sparsity of the network sensed data is constant and the value of the sparsity is known before starting each data gathering epoch, thus they ignore the variation of the data observed by the WSNs which are deployed in practical circumstances. In this paper, we present a complete design of the feedback CDG scheme where the sink node adaptively queries those interested nodes to acquire an appropriate number of measurements. The adaptive measurement-formation procedure and its termination rules are proposed and analyzed in detail. Moreover, in order to minimize the number of overall transmissions in the formation procedure of each measurement, we have developed a NP-complete model (Maximum Leaf Nodes Minimum Steiner Nodes--MLMS) and realized a scalable greedy algorithm to solve the problem. Experimental results show that the proposed measurement-formation method outperforms previous schemes, and experiments on both datasets from ocean temperature and practical network deployment also prove the effectiveness of our proposed feedback CDG scheme.
Sparse brain network using penalized linear regression
NASA Astrophysics Data System (ADS)
Lee, Hyekyoung; Lee, Dong Soo; Kang, Hyejin; Kim, Boong-Nyun; Chung, Moo K.
2011-03-01
Sparse partial correlation is a useful connectivity measure for brain networks when it is difficult to compute the exact partial correlation in the small-n large-p setting. In this paper, we formulate the problem of estimating partial correlation as a sparse linear regression with a l1-norm penalty. The method is applied to brain network consisting of parcellated regions of interest (ROIs), which are obtained from FDG-PET images of the autism spectrum disorder (ASD) children and the pediatric control (PedCon) subjects. To validate the results, we check their reproducibilities of the obtained brain networks by the leave-one-out cross validation and compare the clustered structures derived from the brain networks of ASD and PedCon.
The QAP weighted network analysis method and its application in international services trade
NASA Astrophysics Data System (ADS)
Xu, Helian; Cheng, Long
2016-04-01
Based on QAP (Quadratic Assignment Procedure) correlation and complex network theory, this paper puts forward a new method named QAP Weighted Network Analysis Method. The core idea of the method is to analyze influences among relations in a social or economic group by building a QAP weighted network of networks of relations. In the QAP weighted network, a node depicts a relation and an undirect edge exists between any pair of nodes if there is significant correlation between relations. As an application of the QAP weighted network, we study international services trade by using the QAP weighted network, in which nodes depict 10 kinds of services trade relations. After the analysis of international services trade by QAP weighted network, and by using distance indicators, hierarchy tree and minimum spanning tree, the conclusion shows that: Firstly, significant correlation exists in all services trade, and the development of any one service trade will stimulate the other nine. Secondly, as the economic globalization goes deeper, correlations in all services trade have been strengthened continually, and clustering effects exist in those services trade. Thirdly, transportation services trade, computer and information services trade and communication services trade have the most influence and are at the core in all services trade.
Covariance, correlation matrix, and the multiscale community structure of networks.
Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing
2010-07-01
Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.
Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe
2016-07-01
Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed using the 1000 Functional Connectome Project database, which includes data obtained from 25 healthy subjects at three different occasions with long and short intervals between sessions. We demonstrated that SPARK provides an accurate and reliable estimation of k-hubness, suggesting a promising tool for understanding hub organization in resting-state fMRI. Copyright © 2016 Elsevier Inc. All rights reserved.
Modelling of Technological Solutions to 4th Generation DH Systems
NASA Astrophysics Data System (ADS)
Vigants, Edgars; Prodanuks, Toms; Vigants, Girts; Veidenbergs, Ivars; Blumberga, Dagnija
2017-11-01
Flue gas evaporation and condensing processes are investigated in a direct contact heat exchanger - condensing unit, which is installed after a furnace. By using equations describing processes of heat and mass transfer, as well as correlation coherences for determining wet gas parameters, a model is formed to create a no-filling, direct contact heat exchanger. Results of heating equipment modelling and experimental research on the gas condensing unit show, that the capacity of the heat exchanger increases, when return temperature of the district heating network decreases. In order to explain these alterations in capacity, the character of the changes in water vapour partial pressure, in the propelling force of mass transfer, in gas and water temperatures and in the determining parameters of heat transfer are used in this article. The positive impact on the direct contact heat exchanger by the decreased district heating (DH) network return temperature shows that introduction of the 4th generation DH system increases the energy efficiency of the heat exchanger. In order to make an assessment, the methodology suggested in the paper can be used in each particular situation.
Wong, Chi Wah; Olafsson, Valur; Tal, Omer; Liu, Thomas T.
2012-01-01
Resting-state functional connectivity magnetic resonance imaging is proving to be an essential tool for the characterization of functional networks in the brain. Two of the major networks that have been identified are the default mode network (DMN) and the task positive network (TPN). Although prior work indicates that these two networks are anti-correlated, the findings are controversial because the anti-correlations are often found only after the application of a pre-processing step, known as global signal regression, that can produce artifactual anti-correlations. In this paper, we show that, for subjects studied in an eyes-closed rest state, caffeine can significantly enhance the detection of anti-correlations between the DMN and TPN without the need for global signal regression. In line with these findings, we find that caffeine also leads to widespread decreases in connectivity and global signal amplitude. Using a recently introduced geometric model of global signal effects, we demonstrate that these decreases are consistent with the removal of an additive global signal confound. In contrast to the effects observed in the eyes-closed rest state, caffeine did not lead to significant changes in global functional connectivity in the eyes-open rest state. PMID:22743194
Large Scale Data Analysis and Knowledge Extraction in Communication Data
2017-03-31
this purpose, we developed a novel method the " Correlation Density Ran!C’ which finds probability density distribution of related frequent event on all...which is called " Correlation Density Rank", is developed to derive the community tree from the network. As in the real world, where a network is...Community Structure in Dynamic Social Networks using the Correlation Density Rank," 2014 ASE BigData/SocialCom/Cybersecurity Conference, Stanford
NASA Astrophysics Data System (ADS)
Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail
2018-03-01
This paper studies the daily connectivity time series of a wind speed-monitoring network using multifractal detrended fluctuation analysis. It investigates the long-range fluctuation and multifractality in the residuals of the connectivity time series. Our findings reveal that the daily connectivity of the correlation-based network is persistent for any correlation threshold. Further, the multifractality degree is higher for larger absolute values of the correlation threshold.
Neural network post-processing of grayscale optical correlator
NASA Technical Reports Server (NTRS)
Lu, Thomas T; Hughlett, Casey L.; Zhoua, Hanying; Chao, Tien-Hsin; Hanan, Jay C.
2005-01-01
In this paper we present the use of a radial basis function neural network (RBFNN) as a post-processor to assist the optical correlator to identify the objects and to reject false alarms. Image plane features near the correlation peaks are extracted and fed to the neural network for analysis. The approach is capable of handling large number of object variations and filter sets. Preliminary experimental results are presented and the performance is analyzed.
The structural role of weak and strong links in a financial market network
NASA Astrophysics Data System (ADS)
Garas, A.; Argyrakis, P.; Havlin, S.
2008-05-01
We investigate the properties of correlation based networks originating from economic complex systems, such as the network of stocks traded at the New York Stock Exchange (NYSE). The weaker links (low correlation) of the system are found to contribute to the overall connectivity of the network significantly more than the strong links (high correlation). We find that nodes connected through strong links form well defined communities. These communities are clustered together in more complex ways compared to the widely used classification according to the economic activity. We find that some companies, such as General Electric (GE), Coca Cola (KO), and others, can be involved in different communities. The communities are found to be quite stable over time. Similar results were obtained by investigating markets completely different in size and properties, such as the Athens Stock Exchange (ASE). The present method may be also useful for other networks generated through correlations.
Multiplication free neural network for cancer stem cell detection in H-and-E stained liver images
NASA Astrophysics Data System (ADS)
Badawi, Diaa; Akhan, Ece; Mallah, Ma'en; Üner, Ayşegül; ćetin-Atalay, Rengül; ćetin, A. Enis
2017-05-01
Markers such as CD13 and CD133 have been used to identify Cancer Stem Cells (CSC) in various tissue images. It is highly likely that CSC nuclei appear as brown in CD13 stained liver tissue images. We observe that there is a high correlation between the ratio of brown to blue colored nuclei in CD13 images and the ratio between the dark blue to blue colored nuclei in H&E stained liver images. Therefore, we recommend that a pathologist observing many dark blue nuclei in an H&E stained tissue image may also order CD13 staining to estimate the CSC ratio. In this paper, we describe a computer vision method based on a neural network estimating the ratio of dark blue to blue colored nuclei in an H&E stained liver tissue image. The neural network structure is based on a multiplication free operator using only additions and sign operations. Experimental results are presented.
Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism
NASA Astrophysics Data System (ADS)
Trugenberger, Carlo A.
2015-12-01
Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.
Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network
Yu, Ying; Wang, Yirui; Tang, Zheng
2017-01-01
With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient. PMID:28246527
Class identity assignment for amphetamines using neural networks and GC-FTIR data
NASA Astrophysics Data System (ADS)
Gosav, S.; Praisler, M.; Van Bocxlaer, J.; De Leenheer, A. P.; Massart, D. L.
2006-08-01
An exploratory analysis was performed in order to evaluate the feasibility of building of neural network (NN) systems automating the identification of amphetamines necessary in the investigation of drugs of abuse for epidemiological, clinical and forensic purposes. A first neural network system was built to distinguish between amphetamines and nonamphetamines. A second, more refined system, aimed to the recognition of amphetamines according to their toxicological activity (stimulant amphetamines, hallucinogenic amphetamines, nonamphetamines). Both systems proved that discrimination between amphetamines and nonamphetamines, as well as between stimulants, hallucinogens and nonamphetamines is possible (83.44% and 85.71% correct classification rate, respectively). The spectroscopic interpretation of the 40 most important input variables (GC-FTIR absorption intensities) shows that the modeling power of an input variable seems to be correlated with the stability and not with the intensity of the spectral interaction. Thus, discarding variables only because they correspond to spectral windows with weak absorptions does not seem be not advisable.
Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network.
Yu, Ying; Wang, Yirui; Gao, Shangce; Tang, Zheng
2017-01-01
With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient.
Inconsistencies in spontaneous and intentional trait inferences.
Ma, Ning; Vandekerckhove, Marie; Baetens, Kris; Van Overwalle, Frank; Seurinck, Ruth; Fias, Wim
2012-11-01
This study explores the fMRI correlates of observers making trait inferences about other people under conflicting social cues. Participants were presented with several behavioral descriptions involving an agent that implied a particular trait. The last behavior was either consistent or inconsistent with the previously implied trait. This was done under instructions that elicited either spontaneous trait inferences ('read carefully') or intentional trait inferences ('infer a trait'). The results revealed that when the behavioral descriptions violated earlier trait implications, regardless of instruction, the medial prefrontal cortex (mPFC) was more strongly recruited as well as the domain-general conflict network including the posterior medial frontal cortex (pmFC) and the right prefrontal cortex (rPFC). These latter two areas were more strongly activated under intentional than spontaneous instructions. These findings suggest that when trait-relevant behavioral information is inconsistent, not only is activity increased in the mentalizing network responsible for trait processing, but control is also passed to a higher level conflict monitoring network in order to detect and resolve the contradiction.
Negative Correlations in Visual Cortical Networks
Chelaru, Mircea I.; Dragoi, Valentin
2016-01-01
The amount of information encoded by cortical circuits depends critically on the capacity of nearby neurons to exhibit trial-to-trial (noise) correlations in their responses. Depending on their sign and relationship to signal correlations, noise correlations can either increase or decrease the population code accuracy relative to uncorrelated neuronal firing. Whereas positive noise correlations have been extensively studied using experimental and theoretical tools, the functional role of negative correlations in cortical circuits has remained elusive. We addressed this issue by performing multiple-electrode recording in the superficial layers of the primary visual cortex (V1) of alert monkey. Despite the fact that positive noise correlations decayed exponentially with the difference in the orientation preference between cells, negative correlations were uniformly distributed across the population. Using a statistical model for Fisher Information estimation, we found that a mild increase in negative correlations causes a sharp increase in network accuracy even when mean correlations were held constant. To examine the variables controlling the strength of negative correlations, we implemented a recurrent spiking network model of V1. We found that increasing local inhibition and reducing excitation causes a decrease in the firing rates of neurons while increasing the negative noise correlations, which in turn increase the population signal-to-noise ratio and network accuracy. Altogether, these results contribute to our understanding of the neuronal mechanism involved in the generation of negative correlations and their beneficial impact on cortical circuit function. PMID:25217468
VTAC: virtual terrain assisted impact assessment for cyber attacks
NASA Astrophysics Data System (ADS)
Argauer, Brian J.; Yang, Shanchieh J.
2008-03-01
Overwhelming intrusion alerts have made timely response to network security breaches a difficult task. Correlating alerts to produce a higher level view of intrusion state of a network, thus, becomes an essential element in network defense. This work proposes to analyze correlated or grouped alerts and determine their 'impact' to services and users of the network. A network is modeled as 'virtual terrain' where cyber attacks maneuver. Overlaying correlated attack tracks on virtual terrain exhibits the vulnerabilities exploited by each track and the relationships between them and different network entities. The proposed impact assessment algorithm utilizes the graph-based virtual terrain model and combines assessments of damages caused by the attacks. The combined impact scores allow to identify severely damaged network services and affected users. Several scenarios are examined to demonstrate the uses of the proposed Virtual Terrain Assisted Impact Assessment for Cyber Attacks (VTAC).
Statistical indicators of collective behavior and functional clusters in gene networks of yeast
NASA Astrophysics Data System (ADS)
Živković, J.; Tadić, B.; Wick, N.; Thurner, S.
2006-03-01
We analyze gene expression time-series data of yeast (S. cerevisiae) measured along two full cell-cycles. We quantify these data by using q-exponentials, gene expression ranking and a temporal mean-variance analysis. We construct gene interaction networks based on correlation coefficients and study the formation of the corresponding giant components and minimum spanning trees. By coloring genes according to their cell function we find functional clusters in the correlation networks and functional branches in the associated trees. Our results suggest that a percolation point of functional clusters can be identified on these gene expression correlation networks.
NASA Technical Reports Server (NTRS)
Lu, Thomas; Pham, Timothy; Liao, Jason
2011-01-01
This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.
Characteristics of group networks in the KOSPI and the KOSDAQ
NASA Astrophysics Data System (ADS)
Kim, Kyungsik; Ko, Jeung-Su; Yi, Myunggi
2012-02-01
We investigate the main feature of group networks in the KOSPI and KOSDAQ of Korean financial markets and analyze daily cross-correlations between price fluctuations for the 5-year time period from 2006 to 2010. We discuss the stabilities by undressing the market-wide effect using the Markowitz multi-factor model and the network-based approach. In particular we ascertain the explicit list of significant firms in the few largest eigenvectors from the undressed correlation matrix. Finally, we show the structure of group correlation by applying a network-based approach. In addition, the relation between market capitalizations and businesses is examined.
Two-Way Gene Interaction From Microarray Data Based on Correlation Methods.
Alavi Majd, Hamid; Talebi, Atefeh; Gilany, Kambiz; Khayyer, Nasibeh
2016-06-01
Gene networks have generated a massive explosion in the development of high-throughput techniques for monitoring various aspects of gene activity. Networks offer a natural way to model interactions between genes, and extracting gene network information from high-throughput genomic data is an important and difficult task. The purpose of this study is to construct a two-way gene network based on parametric and nonparametric correlation coefficients. The first step in constructing a Gene Co-expression Network is to score all pairs of gene vectors. The second step is to select a score threshold and connect all gene pairs whose scores exceed this value. In the foundation-application study, we constructed two-way gene networks using nonparametric methods, such as Spearman's rank correlation coefficient and Blomqvist's measure, and compared them with Pearson's correlation coefficient. We surveyed six genes of venous thrombosis disease, made a matrix entry representing the score for the corresponding gene pair, and obtained two-way interactions using Pearson's correlation, Spearman's rank correlation, and Blomqvist's coefficient. Finally, these methods were compared with Cytoscape, based on BIND, and Gene Ontology, based on molecular function visual methods; R software version 3.2 and Bioconductor were used to perform these methods. Based on the Pearson and Spearman correlations, the results were the same and were confirmed by Cytoscape and GO visual methods; however, Blomqvist's coefficient was not confirmed by visual methods. Some results of the correlation coefficients are not the same with visualization. The reason may be due to the small number of data.
Structural and functional cerebral correlates of hypnotic suggestibility.
Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo
2014-01-01
Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.
NASA Astrophysics Data System (ADS)
Chowdhry, Bhawani Shankar; White, Neil M.; Jeswani, Jai Kumar; Dayo, Khalil; Rathi, Manorma
2009-07-01
Disasters affecting infrastructure, such as the 2001 earthquakes in India, 2005 in Pakistan, 2008 in China and the 2004 tsunami in Asia, provide a common need for intelligent buildings and smart civil structures. Now, imagine massive reductions in time to get the infrastructure working again, realtime information on damage to buildings, massive reductions in cost and time to certify that structures are undamaged and can still be operated, reductions in the number of structures to be rebuilt (if they are known not to be damaged). Achieving these ideas would lead to huge, quantifiable, long-term savings to government and industry. Wireless sensor networks (WSNs) can be deployed in buildings to make any civil structure both smart and intelligent. WSNs have recently gained much attention in both public and research communities because they are expected to bring a new paradigm to the interaction between humans, environment, and machines. This paper presents the deployment of WSN nodes in the Top Quality Centralized Instrumentation Centre (TQCIC). We created an ad hoc networking application to collect real-time data sensed from the nodes that were randomly distributed throughout the building. If the sensors are relocated, then the application automatically reconfigures itself in the light of the new routing topology. WSNs are event-based systems that rely on the collective effort of several micro-sensor nodes, which are continuously observing a physical phenomenon. WSN applications require spatially dense sensor deployment in order to achieve satisfactory coverage. The degree of spatial correlation increases with the decreasing inter-node separation. Energy consumption is reduced dramatically by having only those sensor nodes with unique readings transmit their data. We report on an algorithm based on a spatial correlation technique that assures high QoS (in terms of SNR) of the network as well as proper utilization of energy, by suppressing redundant data transmission. The visualization and analysis of WSN data are presented in a Windows-based user interface.
Source-reconstruction of the sensorimotor network from resting-state macaque electrocorticography.
Hindriks, R; Micheli, C; Bosman, C A; Oostenveld, R; Lewis, C; Mantini, D; Fries, P; Deco, G
2018-06-07
The discovery of hemodynamic (BOLD-fMRI) resting-state networks (RSNs) has brought about a fundamental shift in our thinking about the role of intrinsic brain activity. The electrophysiological underpinnings of RSNs remain largely elusive and it has been shown only recently that electric cortical rhythms are organized into the same RSNs as hemodynamic signals. Most electrophysiological studies into RSNs use magnetoencephalography (MEG) or scalp electroencephalography (EEG), which limits the spatial resolution with which electrophysiological RSNs can be observed. Due to their close proximity to the cortical surface, electrocorticographic (ECoG) recordings can potentially provide a more detailed picture of the functional organization of resting-state cortical rhythms, albeit at the expense of spatial coverage. In this study we propose using source-space spatial independent component analysis (spatial ICA) for identifying generators of resting-state cortical rhythms as recorded with ECoG and for reconstructing their functional connectivity. Network structure is assessed by two kinds of connectivity measures: instantaneous correlations between band-limited amplitude envelopes and oscillatory phase-locking. By simulating rhythmic cortical generators, we find that the reconstruction of oscillatory phase-locking is more challenging than that of amplitude correlations, particularly for low signal-to-noise levels. Specifically, phase-lags can both be over- and underestimated, which troubles the interpretation of lag-based connectivity measures. We illustrate the methodology on somatosensory beta rhythms recorded from a macaque monkey using ECoG. The methodology decomposes the resting-state sensorimotor network into three cortical generators, distributed across primary somatosensory and primary and higher-order motor areas. The generators display significant and reproducible amplitude correlations and phase-locking values with non-zero lags. Our findings illustrate the level of spatial detail attainable with source-projected ECoG and motivates wider use of the methodology for studying resting-state as well as event-related cortical dynamics in macaque and human. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
He, Fang; Chen, Xi
2016-11-01
The accelerating accumulation and risk concentration of Chinese local financing platforms debts have attracted wide attention throughout the world. Due to the network of financial exposures among institutions, the failure of several platforms or regions of systemic importance will probably trigger systemic risk and destabilize the financial system. However, the complex network of credit relationships in Chinese local financing platforms at the state level remains unknown. To fill this gap, we presented the first complex networks and hierarchical cluster analysis of the credit market of Chinese local financing platforms using the ;bottom up; method from firm-level data. Based on balance-sheet channel, we analyzed the topology and taxonomy by applying the analysis paradigm of subdominant ultra-metric space to an empirical data in 2013. It is remarked that we chose to extract the network of co-financed financing platforms in order to evaluate the effect of risk contagion from platforms to bank system. We used the new credit similarity measure by combining the factor of connectivity and size, to extract minimal spanning trees (MSTs) and hierarchical trees (HTs). We found that: (1) the degree distributions of credit correlation backbone structure of Chinese local financing platforms are fat tailed, and the structure is unstable with respect to targeted failures; (2) the backbone is highly hierarchical, and largely explained by the geographic region; (3) the credit correlation backbone structure based on connectivity and size is significantly heterogeneous; (4) key platforms and regions of systemic importance, and contagion path of systemic risk are obtained, which are contributed to preventing systemic risk and regional risk of Chinese local financing platforms and preserving financial stability under the framework of macro prudential supervision. Our approach of credit similarity measure provides a means of recognizing ;systemically important; institutions and regions for a targeted policy with risk minimization which gives a flexible and comprehensive consideration to both aspects of ;too big to fail; and ;too central to fail;.
Toppi, Jlenia; Astolfi, Laura; Risetti, Monica; Anzolin, Alessandra; Kober, Silvia E.; Wood, Guilherme; Mattia, Donatella
2018-01-01
Several non-invasive imaging methods have contributed to shed light on the brain mechanisms underlying working memory (WM). The aim of the present study was to depict the topology of the relevant EEG-derived brain networks associated to distinct operations of WM function elicited by the Sternberg Item Recognition Task (SIRT) such as encoding, storage, and retrieval in healthy, middle age (46 ± 5 years) adults. High density EEG recordings were performed in 17 participants whilst attending a visual SIRT. Neural correlates of WM were assessed by means of a combination of EEG signal processing methods (i.e., time-varying connectivity estimation and graph theory), in order to extract synthetic descriptors of the complex networks underlying the encoding, storage, and retrieval phases of WM construct. The group analysis revealed that the encoding phase exhibited a significantly higher small-world topology of EEG networks with respect to storage and retrieval in all EEG frequency oscillations, thus indicating that during the encoding of items the global network organization could “optimally” promote the information flow between WM sub-networks. We also found that the magnitude of such configuration could predict subject behavioral performance when memory load increases as indicated by the negative correlation between Reaction Time and the local efficiency values estimated during the encoding in the alpha band in both 4 and 6 digits conditions. At the local scale, the values of the degree index which measures the degree of in- and out- information flow between scalp areas were found to specifically distinguish the hubs within the relevant sub-networks associated to each of the three different WM phases, according to the different role of the sub-network of regions in the different WM phases. Our findings indicate that the use of EEG-derived connectivity measures and their related topological indices might offer a reliable and yet affordable approach to monitor WM components and thus theoretically support the clinical assessment of cognitive functions in presence of WM decline/impairment, as it occurs after stroke. PMID:29379425
Climate Controls on Tree Growth in the Western Mediterranean
NASA Technical Reports Server (NTRS)
Touchan, Ramzi; Anchukaitis, Kevin J.; Meko, David M.; Kerchouche, Dalila; Slimani, Said; Ilmen, Rachid; Hasnaoui, Fouad; Guibal, Frederic; Canarerim Hesys Hykui; Sanchez-Salguero, Raul;
2017-01-01
The first large-scale network of tree-ring chronologies from the western Mediterranean (WM; 32 deg N-43 deg N, 10 deg W-17 deg E) is described and analyzed to identify the seasonal climatic signal in indices of annual ring width. Correlation and rotated empirical orthogonal function analyses are applied to 85 tree-ring series and corresponding gridded climate data to assess the climate signal embedded in the network. Chronologies range in length from 80 to 1129 years. Monthly correlations and partial correlations show overall positive associations for Pinus halepensis (PIHA) and Cedrus atlantica (CDAT) with winter (December-February) and spring (March-May) precipitation across this network. In both seasons, the precipitation correlation with PIHA is stronger, while CDAT chronologies tend to be longer. A combination of positive correlations between growth and winter-summer precipitation and negative partial correlations with growing season temperatures suggests that chronologies in at least part of the network reflect soil moisture and the integrated effects of precipitation and evapotranspiration signal. The range of climate response observed across this network reflects a combination of both species and geographic influences. Western Moroccan chronologies have the strongest association with the North Atlantic Oscillation.
Development of stock correlation networks using mutual information and financial big data.
Guo, Xue; Zhang, Hu; Tian, Tianhai
2018-01-01
Stock correlation networks use stock price data to explore the relationship between different stocks listed in the stock market. Currently this relationship is dominantly measured by the Pearson correlation coefficient. However, financial data suggest that nonlinear relationships may exist in the stock prices of different shares. To address this issue, this work uses mutual information to characterize the nonlinear relationship between stocks. Using 280 stocks traded at the Shanghai Stocks Exchange in China during the period of 2014-2016, we first compare the effectiveness of the correlation coefficient and mutual information for measuring stock relationships. Based on these two measures, we then develop two stock networks using the Minimum Spanning Tree method and study the topological properties of these networks, including degree, path length and the power-law distribution. The relationship network based on mutual information has a better distribution of the degree and larger value of the power-law distribution than those using the correlation coefficient. Numerical results show that mutual information is a more effective approach than the correlation coefficient to measure the stock relationship in a stock market that may undergo large fluctuations of stock prices.
Development of stock correlation networks using mutual information and financial big data
Guo, Xue; Zhang, Hu
2018-01-01
Stock correlation networks use stock price data to explore the relationship between different stocks listed in the stock market. Currently this relationship is dominantly measured by the Pearson correlation coefficient. However, financial data suggest that nonlinear relationships may exist in the stock prices of different shares. To address this issue, this work uses mutual information to characterize the nonlinear relationship between stocks. Using 280 stocks traded at the Shanghai Stocks Exchange in China during the period of 2014-2016, we first compare the effectiveness of the correlation coefficient and mutual information for measuring stock relationships. Based on these two measures, we then develop two stock networks using the Minimum Spanning Tree method and study the topological properties of these networks, including degree, path length and the power-law distribution. The relationship network based on mutual information has a better distribution of the degree and larger value of the power-law distribution than those using the correlation coefficient. Numerical results show that mutual information is a more effective approach than the correlation coefficient to measure the stock relationship in a stock market that may undergo large fluctuations of stock prices. PMID:29668715
Inversion of quasi-3D DC resistivity imaging data using artificial neural networks
NASA Astrophysics Data System (ADS)
Neyamadpour, Ahmad; Wan Abdullah, W. A. T.; Taib, Samsudin
2010-02-01
The objective of this paper is to investigate the applicability of artificial neural networks in inverting quasi-3D DC resistivity imaging data. An electrical resistivity imaging survey was carried out along seven parallel lines using a dipole-dipole array to confirm the validation of the results of an inversion using an artificial neural network technique. The model used to produce synthetic data to train the artificial neural network was a homogeneous medium of 100Ωm resistivity with an embedded anomalous body of 1000Ωm resistivity. The network was trained using 21 datasets (comprising 12159 data points) and tested on another 11 synthetic datasets (comprising 6369 data points) and on real field data. Another 24 test datasets (comprising 13896 data points) consisting of different resistivities for the background and the anomalous bodies were used in order to test the interpolation and extrapolation of network properties. Different learning paradigms were tried in the training process of the neural network, with the resilient propagation paradigm being the most efficient. The number of nodes, hidden layers, and efficient values for learning rate and momentum coefficient have been studied. Although a significant correlation between results of the neural network and the conventional robust inversion technique was found, the ANN results show more details of the subsurface structure, and the RMS misfits for the results of the neural network are less than seen with conventional methods. The interpreted results show that the trained network was able to invert quasi-3D electrical resistivity imaging data obtained by dipole-dipole configuration both rapidly and accurately.
Chaotic simulated annealing by a neural network with a variable delay: design and application.
Chen, Shyan-Shiou
2011-10-01
In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem. © 2011 IEEE
Ding, Haiquan; Lu, Qipeng; Gao, Hongzhi; Peng, Zhongqi
2014-01-01
To facilitate non-invasive diagnosis of anemia, specific equipment was developed, and non-invasive hemoglobin (HB) detection method based on back propagation artificial neural network (BP-ANN) was studied. In this paper, we combined a broadband light source composed of 9 LEDs with grating spectrograph and Si photodiode array, and then developed a high-performance spectrophotometric system. By using this equipment, fingertip spectra of 109 volunteers were measured. In order to deduct the interference of redundant data, principal component analysis (PCA) was applied to reduce the dimensionality of collected spectra. Then the principal components of the spectra were taken as input of BP-ANN model. On this basis we obtained the optimal network structure, in which node numbers of input layer, hidden layer, and output layer was 9, 11, and 1. Calibration and correction sample sets were used for analyzing the accuracy of non-invasive hemoglobin measurement, and prediction sample set was used for testing the adaptability of the model. The correlation coefficient of network model established by this method is 0.94, standard error of calibration, correction, and prediction are 11.29g/L, 11.47g/L, and 11.01g/L respectively. The result proves that there exist good correlations between spectra of three sample sets and actual hemoglobin level, and the model has a good robustness. It is indicated that the developed spectrophotometric system has potential for the non-invasive detection of HB levels with the method of BP-ANN combined with PCA. PMID:24761296
Sensory-Motor Networks Involved in Speech Production and Motor Control: An fMRI Study
Behroozmand, Roozbeh; Shebek, Rachel; Hansen, Daniel R.; Oya, Hiroyuki; Robin, Donald A.; Howard, Matthew A.; Greenlee, Jeremy D.W.
2015-01-01
Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking. PMID:25623499
Hashimoto, Ryu-Ichiro; Itahashi, Takashi; Okada, Rieko; Hasegawa, Sayaka; Tani, Masayuki; Kato, Nobumasa; Mimura, Masaru
2018-01-01
Abnormalities in functional brain networks in schizophrenia have been studied by examining intrinsic and extrinsic brain activity under various experimental paradigms. However, the identified patterns of abnormal functional connectivity (FC) vary depending on the adopted paradigms. Thus, it is unclear whether and how these patterns are inter-related. In order to assess relationships between abnormal patterns of FC during intrinsic activity and those during extrinsic activity, we adopted a data-fusion approach and applied partial least square (PLS) analyses to FC datasets from 25 patients with chronic schizophrenia and 25 age- and sex-matched normal controls. For the input to the PLS analyses, we generated a pair of FC maps during the resting state (REST) and the auditory deviance response (ADR) from each participant using the common seed region in the left middle temporal gyrus, which is a focus of activity associated with auditory verbal hallucinations (AVHs). PLS correlation (PLS-C) analysis revealed that patients with schizophrenia have significantly lower loadings of a component containing positive FCs in default-mode network regions during REST and a component containing positive FCs in the auditory and attention-related networks during ADR. Specifically, loadings of the REST component were significantly correlated with the severities of positive symptoms and AVH in patients with schizophrenia. The co-occurrence of such altered FC patterns during REST and ADR was replicated using PLS regression, wherein FC patterns during REST are modeled to predict patterns during ADR. These findings provide an integrative understanding of altered FCs during intrinsic and extrinsic activity underlying core schizophrenia symptoms.
Ákos, Zsuzsa; Beck, Róbert; Nagy, Máté; Vicsek, Tamás; Kubinyi, Enikő
2014-01-01
Movement interactions and the underlying social structure in groups have relevance across many social-living species. Collective motion of groups could be based on an "egalitarian" decision system, but in practice it is often influenced by underlying social network structures and by individual characteristics. We investigated whether dominance rank and personality traits are linked to leader and follower roles during joint motion of family dogs. We obtained high-resolution spatio-temporal GPS trajectory data (823,148 data points) from six dogs belonging to the same household and their owner during 14 30-40 min unleashed walks. We identified several features of the dogs' paths (e.g., running speed or distance from the owner) which are characteristic of a given dog. A directional correlation analysis quantifies interactions between pairs of dogs that run loops jointly. We found that dogs play the role of the leader about 50-85% of the time, i.e. the leader and follower roles in a given pair are dynamically interchangable. However, on a longer timescale tendencies to lead differ consistently. The network constructed from these loose leader-follower relations is hierarchical, and the dogs' positions in the network correlates with the age, dominance rank, trainability, controllability, and aggression measures derived from personality questionnaires. We demonstrated the possibility of determining dominance rank and personality traits of an individual based only on its logged movement data. The collective motion of dogs is influenced by underlying social network structures and by characteristics such as personality differences. Our findings could pave the way for automated animal personality and human social interaction measurements.
Xu, Nan; Spreng, R. Nathan; Doerschuk, Peter C.
2017-01-01
Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD) signal from different regions of interest (ROIs). However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1) Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2) On simulated data designed to display the “common driver” problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3) On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain. PMID:28559793
NASA Astrophysics Data System (ADS)
Zeidler, Anita; Salmon, Philip S.; Whittaker, Dean A. J.; Pizzey, Keiron J.; Hannon, Alex C.
2017-11-01
The topological ordering of the network structure in vitreous Ge_xSe_{1-x} was investigated across most of the glass-forming region (0 ≤ x ≤ 0.4) by using high-resolution neutron diffraction to measure the Bhatia-Thornton number-number partial structure factor. This approach gives access to the composition dependence of the mean coordination number \\bar{n} and correlation lengths associated with the network ordering. The thermal properties of the samples were also measured by using temperature-modulated differential scanning calorimetry. The results do not point to a structural origin of the so-called intermediate phase, which in our work is indicated for the composition range 0.175(8) ≤ x ≤ 0.235(8) by a vanishingly-small non-reversing enthalpy near the glass transition. The midpoint of this range coincides with the mean-field expectation of a floppy-to-rigid transition at x = 0.20. The composition dependence of the liquid viscosity, as taken from the literature, was also investigated to look for a dynamical origin of the intermediate phase, using the Mauro-Yue-Ellison-Gupta-Allan (MYEGA) model to estimate the viscosity at the liquidus temperature. The evidence points to a maximum in the viscosity at the liquidus temperature, and a minimum in the fragility index, for the range 0.20 ≤ x ≤ 0.22. The utility of the intermediate phase as a predictor of the material properties in network glass-forming systems is discussed.
Learning Bayesian Networks from Correlated Data
NASA Astrophysics Data System (ADS)
Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola
2016-05-01
Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.
Wang, Kun; Jiang, Tianzi; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Liu, Zhening
2006-01-01
In this work, we proposed a discriminative model of Alzheimer's disease (AD) on the basis of multivariate pattern classification and functional magnetic resonance imaging (fMRI). This model used the correlation/anti-correlation coefficients of two intrinsically anti-correlated networks in resting brains, which have been suggested by two recent studies, as the feature of classification. Pseudo-Fisher Linear Discriminative Analysis (pFLDA) was then performed on the feature space and a linear classifier was generated. Using leave-one-out (LOO) cross validation, our results showed a correct classification rate of 83%. We also compared the proposed model with another one based on the whole brain functional connectivity. Our proposed model outperformed the other one significantly, and this implied that the two intrinsically anti-correlated networks may be a more susceptible part of the whole brain network in the early stage of AD.
NASA Astrophysics Data System (ADS)
Yeh, Cheng-Ta; Lin, Yi-Kuei; Yang, Jo-Yun
2018-07-01
Network reliability is an important performance index for many real-life systems, such as electric power systems, computer systems and transportation systems. These systems can be modelled as stochastic-flow networks (SFNs) composed of arcs and nodes. Most system supervisors respect the network reliability maximization by finding the optimal multi-state resource assignment, which is one resource to each arc. However, a disaster may cause correlated failures for the assigned resources, affecting the network reliability. This article focuses on determining the optimal resource assignment with maximal network reliability for SFNs. To solve the problem, this study proposes a hybrid algorithm integrating the genetic algorithm and tabu search to determine the optimal assignment, called the hybrid GA-TS algorithm (HGTA), and integrates minimal paths, recursive sum of disjoint products and the correlated binomial distribution to calculate network reliability. Several practical numerical experiments are adopted to demonstrate that HGTA has better computational quality than several popular soft computing algorithms.
Conflict and convention in dynamic networks.
Foley, Michael; Forber, Patrick; Smead, Rory; Riedl, Christoph
2018-03-01
An important way to resolve games of conflict (snowdrift, hawk-dove, chicken) involves adopting a convention: a correlated equilibrium that avoids any conflict between aggressive strategies. Dynamic networks allow individuals to resolve conflict via their network connections rather than changing their strategy. Exploring how behavioural strategies coevolve with social networks reveals new dynamics that can help explain the origins and robustness of conventions. Here, we model the emergence of conventions as correlated equilibria in dynamic networks. Our results show that networks have the tendency to break the symmetry between the two conventional solutions in a strongly biased way. Rather than the correlated equilibrium associated with ownership norms (play aggressive at home, not away), we usually see the opposite host-guest norm (play aggressive away, not at home) evolve on dynamic networks, a phenomenon common to human interaction. We also show that learning to avoid conflict can produce realistic network structures in a way different than preferential attachment models. © 2017 The Author(s).
Knowledge extraction from evolving spiking neural networks with rank order population coding.
Soltic, Snjezana; Kasabov, Nikola
2010-12-01
This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.
Neural Systems Underlying Individual Differences in Intertemporal Decision-making.
Elton, Amanda; Smith, Christopher T; Parrish, Michael H; Boettiger, Charlotte A
2017-03-01
Excessively choosing immediate over larger future rewards, or delay discounting (DD), associates with multiple clinical conditions. Individual differences in DD likely depend on variations in the activation of and functional interactions between networks, representing possible endophenotypes for associated disorders, including alcohol use disorders (AUDs). Numerous fMRI studies have probed the neural bases of DD, but investigations of large-scale networks remain scant. We addressed this gap by testing whether activation within large-scale networks during Now/Later decision-making predicts individual differences in DD. To do so, we scanned 95 social drinkers (18-40 years old; 50 women) using fMRI during hypothetical choices between small monetary amounts available "today" or larger amounts available later. We identified neural networks engaged during Now/Later choice using independent component analysis and tested the relationship between component activation and degree of DD. The activity of two components during Now/Later choice correlated with individual DD rates: A temporal lobe network positively correlated with DD, whereas a frontoparietal-striatal network negatively correlated with DD. Activation differences between these networks predicted individual differences in DD, and their negative correlation during Now/Later choice suggests functional competition. A generalized psychophysiological interactions analysis confirmed a decrease in their functional connectivity during decision-making. The functional connectivity of these two networks negatively correlates with alcohol-related harm, potentially implicating these networks in AUDs. These findings provide novel insight into the neural underpinnings of individual differences in impulsive decision-making with potential implications for addiction and related disorders in which impulsivity is a defining feature.
Optimal Design of River Monitoring Network in Taizihe River by Matter Element Analysis
Wang, Hui; Liu, Zhe; Sun, Lina; Luo, Qing
2015-01-01
The objective of this study is to optimize the river monitoring network in Taizihe River, Northeast China. The situation of the network and water characteristics were studied in this work. During this study, water samples were collected once a month during January 2009 - December 2010 from seventeen sites. Futhermore, the 16 monitoring indexes were analyzed in the field and laboratory. The pH value of surface water sample was found to be in the range of 6.83 to 9.31, and the average concentrations of NH4 +-N, chemical oxygen demand (COD), volatile phenol and total phosphorus (TP) were found decreasing significantly. The water quality of the river has been improved from 2009 to 2010. Through the calculation of the data availability and the correlation between adjacent sections, it was found that the present monitoring network was inefficient as well as the optimization was indispensable. In order to improve the situation, the matter element analysis and gravity distance were applied in the optimization of river monitoring network, which were proved to be a useful method to optimize river quality monitoring network. The amount of monitoring sections were cut from 17 to 13 for the monitoring network was more cost-effective after being optimized. The results of this study could be used in developing effective management strategies to improve the environmental quality of Taizihe River. Also, the results show that the proposed model can be effectively used for the optimal design of monitoring networks in river systems. PMID:26023785
Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; ...
2016-08-01
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less
Enabling Tussle-Agile Inter-networking Architectures by Underlay Virtualisation
NASA Astrophysics Data System (ADS)
Dianati, Mehrdad; Tafazolli, Rahim; Moessner, Klaus
In this paper, we propose an underlay inter-network virtualisation framework in order to enable tussle-agile flexible networking over the existing inter-network infrastructures. The functionalities that inter-networking elements (transit nodes, access networks, etc.) need to support in order to enable virtualisation are discussed. We propose the base architectures of each the abstract elements to support the required inter-network virtualisation functionalities.
Yan, Yan; Song, Jian; Xu, Guozheng; Yao, Shun; Cao, Chenglong; Li, Chang; Peng, Guibao; Du, Hao
2017-10-01
This study investigated the characteristics of the small-world brain network architecture of patients with mild traumatic brain injury (MTBI), and a correlation between brain functional connectivity network properties in the resting-state fMRI and Standardized Assessment of Concussion (SAC) parameters. The neurological conditions of 22 MTBI patients and 17 normal control individuals were evaluated according to the SAC. Resting-state fMRI was performed in all subjects 3 and 7days after injury respectively. After preprocessing the fMRI data, cortex functional regions were marked using AAL90 and Dosenbach160 templates. The small-world network parameters and areas under the integral curves were computed in the range of sparsity from 0.01 to 0.5. Independent-sample t-tests were used to compare these parameters between the MTBI and control group. Significantly different parameters were investigated for correlations with SAC scores; those that correlated were chosen for further curve fitting. The clustering coefficient, the communication efficiency across in local networks, and the strength of connectivity were all higher in MTBI patients relative to control individuals. Parameters in 160 brain regions of the MTBI group significantly correlated with total SAC score and score for attention; the network parameters may be a quadratic function of attention scores of SAC and a cubic function of SAC scores. MTBI patients were characterized by elevated communication efficiency across global brain regions, and in local networks, and strength of mean connectivity. These features may be associated with brain function compensation. The network parameters significantly correlated with SAC total and attention scores. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthavali, Supriya
Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) andmore » the criticality index is found to be effective for one test network to identify the vulnerable nodes.« less
Exact sampling of graphs with prescribed degree correlations
NASA Astrophysics Data System (ADS)
Bassler, Kevin E.; Del Genio, Charo I.; Erdős, Péter L.; Miklós, István; Toroczkai, Zoltán
2015-08-01
Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree and conversely, in biological and technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, requires the sampling of networks with a specified set of constraints. We present a solution to the sampling problem when the constraints imposed are the degree correlations. In particular, we develop an exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus completely specifying all pairwise degree correlations, and additionally, the degree sequence itself. Our algorithm always produces independent samples without backtracking. The complexity of the graph construction algorithm is {O}({NM}) where N is the number of nodes and M is the number of edges.
Higher-Order Neural Networks Recognize Patterns
NASA Technical Reports Server (NTRS)
Reid, Max B.; Spirkovska, Lilly; Ochoa, Ellen
1996-01-01
Networks of higher order have enhanced capabilities to distinguish between different two-dimensional patterns and to recognize those patterns. Also enhanced capabilities to "learn" patterns to be recognized: "trained" with far fewer examples and, therefore, in less time than necessary to train comparable first-order neural networks.
Impact of leakage delay on bifurcation in high-order fractional BAM neural networks.
Huang, Chengdai; Cao, Jinde
2018-02-01
The effects of leakage delay on the dynamics of neural networks with integer-order have lately been received considerable attention. It has been confirmed that fractional neural networks more appropriately uncover the dynamical properties of neural networks, but the results of fractional neural networks with leakage delay are relatively few. This paper primarily concentrates on the issue of bifurcation for high-order fractional bidirectional associative memory(BAM) neural networks involving leakage delay. The first attempt is made to tackle the stability and bifurcation of high-order fractional BAM neural networks with time delay in leakage terms in this paper. The conditions for the appearance of bifurcation for the proposed systems with leakage delay are firstly established by adopting time delay as a bifurcation parameter. Then, the bifurcation criteria of such system without leakage delay are successfully acquired. Comparative analysis wondrously detects that the stability performance of the proposed high-order fractional neural networks is critically weakened by leakage delay, they cannot be overlooked. Numerical examples are ultimately exhibited to attest the efficiency of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Yingjie; Cao, Dan; Wei, Ling; Tang, Yingying; Wang, Jijun
2015-11-01
This paper evaluates the large-scale structure of functional brain networks using graph theoretical concepts and investigates the difference in brain functional networks between patients with depression and healthy controls while they were processing emotional stimuli. Electroencephalography (EEG) activities were recorded from 16 patients with depression and 14 healthy controls when they performed a spatial search task for facial expressions. Correlations between all possible pairs of 59 electrodes were determined by coherence, and the coherence matrices were calculated in delta, theta, alpha, beta, and gamma bands (low gamma: 30-50Hz and high gamma: 50-80Hz, respectively). Graph theoretical analysis was applied to these matrices by using two indexes: the clustering coefficient and the characteristic path length. The global EEG coherence of patients with depression was significantly higher than that of healthy controls in both gamma bands, especially in the high gamma band. The global coherence in both gamma bands from healthy controls appeared higher in negative conditions than in positive conditions. All the brain networks were found to hold a regular and ordered topology during emotion processing. However, the brain network of patients with depression appeared randomized compared with the normal one. The abnormal network topology of patients with depression was detected in both the prefrontal and occipital regions. The negative bias from healthy controls occurred in both gamma bands during emotion processing, while it disappeared in patients with depression. The proposed work studied abnormally increased connectivity of brain functional networks in patients with depression. By combing the clustering coefficient and the characteristic path length, we found that the brain networks of patients with depression and healthy controls had regular networks during emotion processing. Yet the brain networks of the depressed group presented randomization trends. Moreover, negative bias was detected in the healthy controls during emotion processing, while it was not detected in patients with depression, which might be related to the types of negative stimuli used in this study. The brain networks from both patients with depression and healthy controls were found to hold a regular and ordered topology. Yet the brain networks of patients with depression had randomization trends. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Gao, Wei; Alcauter, Sarael; Elton, Amanda; Hernandez-Castillo, Carlos R.; Smith, J. Keith; Ramirez, Juanita; Lin, Weili
2015-01-01
The first postnatal year is characterized by the most dramatic functional network development of the human lifespan. Yet, the relative sequence of the maturation of different networks and the impact of socioeconomic status (SES) on their development during this critical period remains poorly characterized. Leveraging a large, normally developing infant sample with multiple longitudinal resting-state functional magnetic resonance imaging scans during the first year (N = 65, scanned every 3 months), we aimed to delineate the relative maturation sequence of 9 key brain functional networks and examine their SES correlations. Our results revealed a maturation sequence from primary sensorimotor/auditory to visual to attention/default-mode, and finally to executive control networks. Network-specific critical growth periods were also identified. Finally, marginally significant positive SES–brain correlations were observed at 6 months of age for both the sensorimotor and default-mode networks, indicating interesting SES effects on functional brain maturation. To the best of our knowledge, this is the first study delineating detailed longitudinal growth trajectories of all major functional networks during the first year of life and their SES correlations. Insights from this study not only improve our understanding of early brain development, but may also inform the critical periods for SES expression during infancy. PMID:24812084
Influence of the time scale on the construction of financial networks.
Emmert-Streib, Frank; Dehmer, Matthias
2010-09-30
In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.
Song, Xiaopeng; Zhou, Shuqin; Zhang, Yi; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong
2015-01-01
The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel's original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01-0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0-0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02-0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC.
Weighted network analysis of high-frequency cross-correlation measures
NASA Astrophysics Data System (ADS)
Iori, Giulia; Precup, Ovidiu V.
2007-03-01
In this paper we implement a Fourier method to estimate high-frequency correlation matrices from small data sets. The Fourier estimates are shown to be considerably less noisy than the standard Pearson correlation measures and thus capable of detecting subtle changes in correlation matrices with just a month of data. The evolution of correlation at different time scales is analyzed from the full correlation matrix and its minimum spanning tree representation. The analysis is performed by implementing measures from the theory of random weighted networks.
Kraft, Andrew W.; Mitra, Anish; Bauer, Adam Q.; Raichle, Marcus E.; Culver, Joseph P.; Lee, Jin-Moo
2017-01-01
Decades of work in experimental animals has established the importance of visual experience during critical periods for the development of normal sensory-evoked responses in the visual cortex. However, much less is known concerning the impact of early visual experience on the systems-level organization of spontaneous activity. Human resting-state fMRI has revealed that infraslow fluctuations in spontaneous activity are organized into stereotyped spatiotemporal patterns across the entire brain. Furthermore, the organization of spontaneous infraslow activity (ISA) is plastic in that it can be modulated by learning and experience, suggesting heightened sensitivity to change during critical periods. Here we used wide-field optical intrinsic signal imaging in mice to examine whole-cortex spontaneous ISA patterns. Using monocular or binocular visual deprivation, we examined the effects of critical period visual experience on the development of ISA correlation and latency patterns within and across cortical resting-state networks. Visual modification with monocular lid suturing reduced correlation between left and right cortices (homotopic correlation) within the visual network, but had little effect on internetwork correlation. In contrast, visual deprivation with binocular lid suturing resulted in increased visual homotopic correlation and increased anti-correlation between the visual network and several extravisual networks, suggesting cross-modal plasticity. These network-level changes were markedly attenuated in mice with genetic deletion of Arc, a gene known to be critical for activity-dependent synaptic plasticity. Taken together, our results suggest that critical period visual experience induces global changes in spontaneous ISA relationships, both within the visual network and across networks, through an Arc-dependent mechanism. PMID:29087327
Stepwise Elastic Behavior in a Model Elastomer
NASA Astrophysics Data System (ADS)
Bhawe, Dhananjay M.; Cohen, Claude; Escobedo, Fernando A.
2004-12-01
MonteCarlo simulations of an entanglement-free cross-linked polymer network of semiflexible chains reveal a peculiar stepwise elastic response. For increasing stress, step jumps in strain are observed that do not correlate with changes in the number of aligned chains. We show that this unusual behavior stems from the ability of the system to form multiple ordered chain domains that exclude the cross-linking species. This novel elastomer shows a toughening behavior similar to that observed in biological structural materials, such as muscle proteins and abalone shell adhesive.
Two-Way Gene Interaction From Microarray Data Based on Correlation Methods
Alavi Majd, Hamid; Talebi, Atefeh; Gilany, Kambiz; Khayyer, Nasibeh
2016-01-01
Background Gene networks have generated a massive explosion in the development of high-throughput techniques for monitoring various aspects of gene activity. Networks offer a natural way to model interactions between genes, and extracting gene network information from high-throughput genomic data is an important and difficult task. Objectives The purpose of this study is to construct a two-way gene network based on parametric and nonparametric correlation coefficients. The first step in constructing a Gene Co-expression Network is to score all pairs of gene vectors. The second step is to select a score threshold and connect all gene pairs whose scores exceed this value. Materials and Methods In the foundation-application study, we constructed two-way gene networks using nonparametric methods, such as Spearman’s rank correlation coefficient and Blomqvist’s measure, and compared them with Pearson’s correlation coefficient. We surveyed six genes of venous thrombosis disease, made a matrix entry representing the score for the corresponding gene pair, and obtained two-way interactions using Pearson’s correlation, Spearman’s rank correlation, and Blomqvist’s coefficient. Finally, these methods were compared with Cytoscape, based on BIND, and Gene Ontology, based on molecular function visual methods; R software version 3.2 and Bioconductor were used to perform these methods. Results Based on the Pearson and Spearman correlations, the results were the same and were confirmed by Cytoscape and GO visual methods; however, Blomqvist’s coefficient was not confirmed by visual methods. Conclusions Some results of the correlation coefficients are not the same with visualization. The reason may be due to the small number of data. PMID:27621916
NASA Astrophysics Data System (ADS)
Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke
2017-05-01
Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.
NASA Astrophysics Data System (ADS)
Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail
2018-02-01
In this paper, we study the periodic fluctuations of connectivity density time series of a wind speed-monitoring network in Switzerland. By using the correlogram-based robust periodogram annual periodic oscillations were found in the correlation-based network. The intensity of such annual periodic oscillations is larger for lower correlation thresholds and smaller for higher. The annual periodicity in the connectivity density seems reasonably consistent with the seasonal meteo-climatic cycle.