Sample records for order direct correlation

  1. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators

    NASA Astrophysics Data System (ADS)

    Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian

    2017-08-01

    Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.

  2. Direct reconstruction of the two-dimensional pair distribution function in partially ordered systems with angular correlations.

    PubMed

    Zaluzhnyy, I A; Kurta, R P; Menushenkov, A P; Ostrovskii, B I; Vartanyants, I A

    2016-09-01

    An x-ray scattering approach to determine the two-dimensional (2D) pair distribution function (PDF) in partially ordered 2D systems is proposed. We derive relations between the structure factor and PDF that enable quantitative studies of positional and bond-orientational (BO) order in real space. We apply this approach in the x-ray study of a liquid crystal (LC) film undergoing the smectic-A-hexatic-B phase transition, to analyze the interplay between the positional and BO order during the temperature evolution of the LC film. We analyze the positional correlation length in different directions in real space.

  3. Plenoptic imaging with second-order correlations of light

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Scarcelli, Giuliano; Garuccio, Augusto; D'Angelo, Milena

    2016-01-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable tridimensional imaging in a single shot. We demonstrate that it is possible to implement plenoptic imaging through second-order correlations of chaotic light, thus enabling to overcome the typical limitations of classical plenoptic devices.

  4. Leith diffusion model for homogeneous anisotropic turbulence

    DOE PAGES

    Rubinstein, Robert; Clark, Timothy T.; Kurien, Susan

    2017-06-01

    Here, a proposal for a spectral closure model for homogeneous anisotropic turbulence. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Here, numericalmore » simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.« less

  5. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-03

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  6. Correlation Plenoptic Imaging

    NASA Astrophysics Data System (ADS)

    D'Angelo, Milena; Pepe, Francesco V.; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  7. A time correlation function theory describing static field enhanced third order optical effects at interfaces.

    PubMed

    Neipert, Christine; Space, Brian

    2006-12-14

    Sum vibrational frequency spectroscopy, a second order optical process, is interface specific in the dipole approximation. At charged interfaces, there exists a static field, and as a direct consequence, the experimentally detected signal is a combination of enhanced second and static field induced third order contributions. There is significant evidence in the literature of the importance/relative magnitude of this third order contribution, but no previous molecularly detailed approach existed to separately calculate the second and third order contributions. Thus, for the first time, a molecularly detailed time correlation function theory is derived here that allows for the second and third order contributions to sum frequency vibrational spectra to be individually determined. Further, a practical, molecular dynamics based, implementation procedure for the derived correlation functions that describe the third order phenomenon is also presented. This approach includes a novel generalization of point atomic polarizability models to calculate the hyperpolarizability of a molecular system. The full system hyperpolarizability appears in the time correlation functions responsible for third order contributions in the presence of a static field.

  8. Velocity correlations in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, R.; Ouellette, N. T.

    2015-12-01

    In contrast to animal groups such as bird flocks or migratory herds that display net, directed motion, insect swarms do not possess global order. Without such order, it is difficult to define and characterize the transition to collective behavior in swarms; nevertheless, visual observation of swarms strongly suggests that swarming insects do behave collectively. It has recently been suggested that correlation rather than order is the hallmark of emergent collective behavior. Here, we report measurements of spatial velocity correlation functions in laboratory mating swarms of the non-biting midge Chironomus riparius. Although we find some correlation at short distances, our swarms are in general only weakly correlated, in contrast to what has been observed in field studies. Our results hint at the potentially important role of environmental conditions on collective behavior, and suggest that general indicators of the collective nature of swarming are still needed.

  9. Visualizing spatial correlation: structural and electronic orders in iron-based superconductors on atomic scale

    NASA Astrophysics Data System (ADS)

    Maksov, Artem; Ziatdinov, Maxim; Li, Li; Sefat, Athena; Maksymovych, Petro; Kalinin, Sergei

    Crystalline matter on the nanoscale level often exhibits strongly inhomogeneous structural and electronic orders, which have a profound effect on macroscopic properties. This may be caused by subtle interplay between chemical disorder, strain, magnetic, and structural order parameters. We present a novel approach based on combination of high resolution scanning tunneling microscopy/spectroscopy (STM/S) and deep data style analysis for automatic separation, extraction, and correlation of structural and electronic behavior which might lead us to uncovering the underlying sources of inhomogeneity in in iron-based family of superconductors (FeSe, BaFe2As2) . We identify STS spectral features using physically robust Bayesian linear unmixing, and show their direct relevance to the fundamental physical properties of the system, including electronic states associated with individual defects and impurities. We collect structural data from individual unit cells on the crystalline lattice, and calculate both global and local indicators of spatial correlation with electronic features, demonstrating, for the first time, a direct quantifiable connection between observed structural order parameters extracted from the STM data and electronic order parameters identified within the STS data. This research was sponsored by the Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, US DOE.

  10. A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts

    PubMed Central

    Onken, Arno; Dragoi, Valentin; Obermayer, Klaus

    2012-01-01

    Evaluating the importance of higher-order correlations of neural spike counts has been notoriously hard. A large number of samples are typically required in order to estimate higher-order correlations and resulting information theoretic quantities. In typical electrophysiology data sets with many experimental conditions, however, the number of samples in each condition is rather small. Here we describe a method that allows to quantify evidence for higher-order correlations in exactly these cases. We construct a family of reference distributions: maximum entropy distributions, which are constrained only by marginals and by linear correlations as quantified by the Pearson correlation coefficient. We devise a Monte Carlo goodness-of-fit test, which tests - for a given divergence measure of interest - whether the experimental data lead to the rejection of the null hypothesis that it was generated by one of the reference distributions. Applying our test to artificial data shows that the effects of higher-order correlations on these divergence measures can be detected even when the number of samples is small. Subsequently, we apply our method to spike count data which were recorded with multielectrode arrays from the primary visual cortex of anesthetized cat during an adaptation experiment. Using mutual information as a divergence measure we find that there are spike count bin sizes at which the maximum entropy hypothesis can be rejected for a substantial number of neuronal pairs. These results demonstrate that higher-order correlations can matter when estimating information theoretic quantities in V1. They also show that our test is able to detect their presence in typical in-vivo data sets, where the number of samples is too small to estimate higher-order correlations directly. PMID:22685392

  11. Magnetic Fluctuations, Precursor Phenomena, and Phase Transition in MnSi under a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Pappas, C.; Bannenberg, L. J.; Lelièvre-Berna, E.; Qian, F.; Dewhurst, C. D.; Dalgliesh, R. M.; Schlagel, D. L.; Lograsso, T. A.; Falus, P.

    2017-07-01

    The reference chiral helimagnet MnSi is the first system where Skyrmion lattice correlations have been reported. At a zero magnetic field the transition at TC to the helimagnetic state is of first order. Above TC, in a region dominated by precursor phenomena, neutron scattering shows the buildup of strong chiral fluctuating correlations over the surface of a sphere with radius 2 π /ℓ, where ℓ is the pitch of the helix. It has been suggested that these fluctuating correlations drive the helical transition to first order following a scenario proposed by Brazovskii for liquid crystals. We present a comprehensive neutron scattering study under magnetic fields, which provides evidence that this is not the case. The sharp first order transition persists for magnetic fields up to 0.4 T whereas the fluctuating correlations weaken and start to concentrate along the field direction already above 0.2 T. Our results thus disconnect the first order nature of the transition from the precursor fluctuating correlations. They also show no indication for a tricritical point, where the first order transition crosses over to second order with increasing magnetic field. In this light, the nature of the first order helical transition and the precursor phenomena above TC, both of general relevance to chiral magnetism, remain an open question.

  12. Structure and orientational ordering in a fluid of elongated quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra

    2013-01-01

    A second-order density-functional theory is used to study the effect of quadrupolar interactions on the isotropic-nematic transition in a system of fluids of elongated molecules interacting via the Gay-Berne potential. The direct pair-correlation functions of the coexisting isotropic fluid that enter in the theory as input information are obtained by solving the Ornstein-Zernike equation using the Percus-Yevick integral equation theory in the (reduced) temperature range of 1.6≤T∗≤3.0 for different densities, temperatures and quadrupole moments. Using the harmonic coefficients of the direct pair-correlation functions, isotropic-nematic phase coexistence and thermodynamic parameters have been calculated. The theoretical results have been compared with the available computer simulation results.

  13. Study of resonances produced in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Quattrocchi, L.; Acosta, L.; Auditore, L.; Cardella, G.; Chbihi, A.; De Filippo, E.; Favela, F.; Gnoffo, B.; Lanzalone, G.; Martel, I.; Martorana, N. S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.

    2018-05-01

    At Laboratori Nazionali del Sud of Catania an experiment has been carried out in order to investigate the correlations between particles produced in 12C+24Mg reaction at 35 AMeV incident energy. Two α correlation has been explored because provide information about temperature of 8Be nuclei produced in the reaction, while three α correaltion has been studied in order to evaluate the competition between sequential and direct decay mode of resonances produced in 12C quasi-projectiles.

  14. Short-range second order screened exchange correction to RPA correlation energies

    NASA Astrophysics Data System (ADS)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-01

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  15. Short-range second order screened exchange correction to RPA correlation energies.

    PubMed

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-28

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  16. On Direction of Dependence in Latent Variable Contexts

    ERIC Educational Resources Information Center

    von Eye, Alexander; Wiedermann, Wolfgang

    2014-01-01

    Approaches to determining direction of dependence in nonexperimental data are based on the relation between higher-than second-order moments on one side and correlation and regression models on the other. These approaches have experienced rapid development and are being applied in contexts such as research on partner violence, attention deficit…

  17. Anomalous barrier escape: The roles of noise distribution and correlation.

    PubMed

    Hu, Meng; Zhang, Jia-Ming; Bao, Jing-Dong

    2017-05-28

    We study numerically and analytically the barrier escape dynamics of a particle driven by an underlying correlated Lévy noise for a smooth metastable potential. A "quasi-monochrome-color" Lévy noise, i.e., the first-order derivative variable of a linear second-order differential equation subjected to a symmetric α-stable white Lévy noise, also called the harmonic velocity Lévy noise, is proposed. Note that the time-integral of the noise Green function of this kind is equal to zero. This leads to the existence of underlying negative time correlation and implies that a step in one direction is likely followed by a step in the other direction. By using the noise of this kind as a driving source, we discuss the competition between long flights and underlying negative correlations in the metastable dynamics. The quite rich behaviors in the parameter space including an optimum α for the stationary escape rate have been found. Remarkably, slow diffusion does not decrease the stationary rate while a negative correlation increases net escape. An approximate expression for the Lévy-Kramers rate is obtained to support the numerically observed dependencies.

  18. Anomalous barrier escape: The roles of noise distribution and correlation

    NASA Astrophysics Data System (ADS)

    Hu, Meng; Zhang, Jia-Ming; Bao, Jing-Dong

    2017-05-01

    We study numerically and analytically the barrier escape dynamics of a particle driven by an underlying correlated Lévy noise for a smooth metastable potential. A "quasi-monochrome-color" Lévy noise, i.e., the first-order derivative variable of a linear second-order differential equation subjected to a symmetric α-stable white Lévy noise, also called the harmonic velocity Lévy noise, is proposed. Note that the time-integral of the noise Green function of this kind is equal to zero. This leads to the existence of underlying negative time correlation and implies that a step in one direction is likely followed by a step in the other direction. By using the noise of this kind as a driving source, we discuss the competition between long flights and underlying negative correlations in the metastable dynamics. The quite rich behaviors in the parameter space including an optimum α for the stationary escape rate have been found. Remarkably, slow diffusion does not decrease the stationary rate while a negative correlation increases net escape. An approximate expression for the Lévy-Kramers rate is obtained to support the numerically observed dependencies.

  19. A simple but fully nonlocal correction to the random phase approximation

    NASA Astrophysics Data System (ADS)

    Ruzsinszky, Adrienn; Perdew, John P.; Csonka, Gábor I.

    2011-03-01

    The random phase approximation (RPA) stands on the top rung of the ladder of ground-state density functional approximations. The simple or direct RPA has been found to predict accurately many isoelectronic energy differences. A nonempirical local or semilocal correction to this direct RPA leaves isoelectronic energy differences almost unchanged, while improving total energies, ionization energies, etc., but fails to correct the RPA underestimation of molecular atomization energies. Direct RPA and its semilocal correction may miss part of the middle-range multicenter nonlocality of the correlation energy in a molecule. Here we propose a fully nonlocal, hybrid-functional-like addition to the semilocal correction. The added full nonlocality is important in molecules, but not in atoms. Under uniform-density scaling, this fully nonlocal correction scales like the second-order-exchange contribution to the correlation energy, an important part of the correction to direct RPA, and like the semilocal correction itself. For the atomization energies of ten molecules, and with the help of one fit parameter, it performs much better than the elaborate second-order screened exchange correction.

  20. Absence of long-range order in the frustrated magnet SrDy2O4 due to trapped defects from a dimensionality crossover

    NASA Astrophysics Data System (ADS)

    Gauthier, N.; Fennell, A.; Prévost, B.; Uldry, A.-C.; Delley, B.; Sibille, R.; Désilets-Benoit, A.; Dabkowska, H. A.; Nilsen, G. J.; Regnault, L.-P.; White, J. S.; Niedermayer, C.; Pomjakushin, V.; Bianchi, A. D.; Kenzelmann, M.

    2017-04-01

    Magnetic frustration and low dimensionality can prevent long-range magnetic order and lead to exotic correlated ground states. SrDy2O4 consists of magnetic Dy3 + ions forming magnetically frustrated zigzag chains along the c axis and shows no long-range order to temperatures as low as T =60 mK. We carried out neutron scattering and ac magnetic susceptibility measurements using powder and single crystals of SrDy2O4 . Diffuse neutron scattering indicates strong one-dimensional (1D) magnetic correlations along the chain direction that can be qualitatively accounted for by the axial next-nearest-neighbor Ising model with nearest-neighbor and next-nearest-neighbor exchange J1=0.3 meV and J2=0.2 meV, respectively. Three-dimensional (3D) correlations become important below T*≈0.7 K. At T =60 mK, the short-range correlations are characterized by a putative propagation vector k1 /2=(0 ,1/2 ,1/2 ) . We argue that the absence of long-range order arises from the presence of slowly decaying 1D domain walls that are trapped due to 3D correlations. This stabilizes a low-temperature phase without long-range magnetic order, but with well-ordered chain segments separated by slowly moving domain walls.

  1. High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.

    2015-03-01

    In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.

  2. Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H.

    2009-01-01

    Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.

  3. A Priori Analyses of Three Subgrid-Scale Models for One-Parameter Families of Filters

    NASA Technical Reports Server (NTRS)

    Pruett, C. David; Adams, Nikolaus A.

    1998-01-01

    The decay of isotropic turbulence a compressible flow is examined by direct numerical simulation (DNS). A priori analyses of the DNS data are then performed to evaluate three subgrid-scale (SGS) models for large-eddy simulation (LES): a generalized Smagorinsky model (M1), a stress-similarity model (M2), and a gradient model (M3). The models exploit one-parameter second- or fourth-order filters of Pade type, which permit the cutoff wavenumber k(sub c) to be tuned independently of the grid increment (delta)x. The modeled (M) and exact (E) SGS-stresses are compared component-wise by correlation coefficients of the form C(E,M) computed over the entire three-dimensional fields. In general, M1 correlates poorly against exact stresses (C < 0.2), M3 correlates moderately well (C approx. 0.6), and M2 correlates remarkably well (0.8 < C < 1.0). Specifically, correlations C(E, M2) are high provided the grid and test filters are of the same order. Moreover, the highest correlations (C approx.= 1.0) result whenever the grid and test filters are identical (in both order and cutoff). Finally, present results reveal the exact SGS stresses obtained by grid filters of differing orders to be only moderately well correlated. Thus, in LES the model should not be specified independently of the filter.

  4. Construct Validity of the WISC-IV with a Referred Sample: Direct versus Indirect Hierarchical Structures

    ERIC Educational Resources Information Center

    Canivez, Gary L.

    2014-01-01

    The Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) is one of the most frequently used intelligence tests in clinical assessments of children with learning difficulties. Construct validity studies of the WISC-IV have generally supported the higher order structure with four correlated first-order factors and one higher-order…

  5. Polarimetry of random fields

    NASA Astrophysics Data System (ADS)

    Ellis, Jeremy

    On temporal, spatial and spectral scales which are small enough, all fields are fully polarized. In the optical regime, however, instantaneous fields can rarely be examined, and, instead, only average quantities are accessible. The study of polarimetry is concerned with both the description of electromagnetic fields and the characterization of media a field has interacted with. The polarimetric information is conventionally presented in terms of second order field correlations which are averaged over the ensemble of field realizations. Motivated by the deficiencies of classical polarimetry in dealing with specific practical situations, this dissertation expands the traditional polarimetric approaches to include higher order field correlations and the description of fields fluctuating in three dimensions. In relation to characterization of depolarizing media, a number of fourth-order correlations are introduced in this dissertation. Measurements of full polarization distributions, and the subsequent evaluation of Stokes vector element correlations and Complex Degree of Mutual Polarization demonstrate the use of these quantities for material discrimination and characterization. Recent advancements in detection capabilities allow access to fields near their sources and close to material boundaries, where a unique direction of propagation is not evident. Similarly, there exist classical situations such as overlapping beams, focusing, or diffusive scattering in which there is no unique transverse direction. In this dissertation, the correlation matrix formalism is expanded to describe three dimensional electromagnetic fields, providing a definition for the degree of polarization of such a field. It is also shown that, because of the dimensionality of the problem, a second parameter is necessary to fully describe the polarimetric properties of three dimensional fields. Measurements of second-order correlations of a three dimensional field are demonstrated, allowing the determination of both the degree of polarization and the state of polarization. These new theoretical concepts and innovative experimental approaches introduced in this dissertation are expected to impact scientific areas as diverse as near field optics, remote sensing, high energy laser physics, fluorescence microscopy, and imaging.

  6. General and specific consciousness: a first-order representationalist approach

    PubMed Central

    Mehta, Neil; Mashour, George A.

    2013-01-01

    It is widely acknowledged that a complete theory of consciousness should explain general consciousness (what makes a state conscious at all) and specific consciousness (what gives a conscious state its particular phenomenal quality). We defend first-order representationalism, which argues that consciousness consists of sensory representations directly available to the subject for action selection, belief formation, planning, etc. We provide a neuroscientific framework for this primarily philosophical theory, according to which neural correlates of general consciousness include prefrontal cortex, posterior parietal cortex, and non-specific thalamic nuclei, while neural correlates of specific consciousness include sensory cortex and specific thalamic nuclei. We suggest that recent data support first-order representationalism over biological theory, higher-order representationalism, recurrent processing theory, information integration theory, and global workspace theory. PMID:23882231

  7. Polymer density functional theory approach based on scaling second-order direct correlation function.

    PubMed

    Zhou, Shiqi

    2006-06-01

    A second-order direct correlation function (DCF) from solving the polymer-RISM integral equation is scaled up or down by an equation of state for bulk polymer, the resultant scaling second-order DCF is in better agreement with corresponding simulation results than the un-scaling second-order DCF. When the scaling second-order DCF is imported into a recently proposed LTDFA-based polymer DFT approach, an originally associated adjustable but mathematically meaningless parameter now becomes mathematically meaningful, i.e., the numerical value lies now between 0 and 1. When the adjustable parameter-free version of the LTDFA is used instead of the LTDFA, i.e., the adjustable parameter is fixed at 0.5, the resultant parameter-free version of the scaling LTDFA-based polymer DFT is also in good agreement with the corresponding simulation data for density profiles. The parameter-free version of the scaling LTDFA-based polymer DFT is employed to investigate the density profiles of a freely jointed tangent hard sphere chain near a variable sized central hard sphere, again the predictions reproduce accurately the simulational results. Importance of the present adjustable parameter-free version lies in its combination with a recently proposed universal theoretical way, in the resultant formalism, the contact theorem is still met by the adjustable parameter associated with the theoretical way.

  8. Cellular-dendritic transition in directionally solidified binary alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Laxmanan, V.

    1987-01-01

    The microstructural development of binary alloys during directional solidification is studied. Cellular growth data for the Al-Cu and Pb-Sn binary alloy systems are analyzed in order evaluate the criteria of Kurz and Fisher (1981) and Trivedi (1984) for cellular-dendritic transition. It is observed that the experimental growth values do not correlate with the Kurz and Fisher or Trivedi data.

  9. Characteristics of angular cross correlations studied by light scattering from two-dimensional microsphere films

    NASA Astrophysics Data System (ADS)

    Schroer, M. A.; Gutt, C.; Grübel, G.

    2014-07-01

    Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.

  10. Distributions of positive correlations in sectoral value added growth in the global economic network*

    NASA Astrophysics Data System (ADS)

    Maluck, Julian; Donner, Reik V.

    2017-02-01

    International trade has grown considerably during the process of globalization. Complex supply chains for the production of goods have resulted in an increasingly connected International Trade Network (ITN). Traditionally, direct trade relations between industries have been regarded as mediators of supply and demand spillovers. With increasing network connectivity the question arises if higher-order relations become more important in explaining a national sector's susceptibility to supply and demand changes of its trading partner. In this study we address this question by investigating empirically to what extent the topological properties of the ITN provide information about positive correlations in the production of two industry sectors. We observe that although direct trade relations between industries serve as important indicators for correlations in the industries' value added growth, opportunities of substitution for required production inputs as well as second-order trade relations cannot be neglected. Our results contribute to a better understanding of the relation between trade and economic productivity and can serve as a basis for the improvement of crisis spreading models that evaluate contagion threats in the case of a node's failure in the ITN.

  11. Drainage - Structure Correlation in tectonically active Regions: Case studies in the Bolivian and Colombian Andes

    NASA Astrophysics Data System (ADS)

    Zeilinger, Gerold; Parra, Mauricio; Kober, Florian

    2017-04-01

    It is widely accepted, that drainage patterns are often controlled by tectonics/climate and geology/rheology. Classical drainage patterns can be found 1) in fault-and-thrust belt, where rives follow the valleys parallel or cut perpendicular to strike trough the ridges, forming a trellis pattern, 2) at dome structures where the drainage form a radial pattern or 3) rectangular patterns in strongly fractured regions. In this study, we focus on fault-and-thrust belts, that undergone different phases of tectonic activity. According to classical models, the deformation is propagating into the foreland, hence being youngest at the frontal part and getting successively older towards the axis of the orogen. Drainage patterns in the more interior parts of the orogenic wedge should be then less influenced by the direction of structures, as landscape evolution is changing to a tectonic passive stage. This relationship might represent the transience and maturity of drainage pattern evolution. Here we study drainage patterns of the Bolivian and the eastern Colombian Andes by comparing the relative orientation of the drainage network with the orogen structural grain. The drainage is extracted from Digital Elevation Models (SRTM 30 m) and indexed by their Strahler Order. Order 1 channels have an upstream area of 1 km2. The direction of all segments is analyzed by linear directional mean function that results in the mean orientation of input channels with approx. 500 m average length. The orientation of structures for different structural domains is calculated using the same function on digitized faults and fold-axis. Rose diagrams show the length-weighted directional distribution of structures, of higher (>= 4) and of lower order (<= 3) channels. The structural trend in the Bolivian Andes is controlled by the orocline, where a predominant NW-SE trend turns into an N-S trend at 18°S and where the eastern orogen comprise from west to east, the Eastern Cordillera (EC), the Interandean Zone and the Subandean Zone (SA), exhibiting a catchment relief of up to 5000 m. While the structural trend in the EC is predominately NW-SE with a uniform (no preferred orientation) distribution of lower order fluvial channels, it changes in the SA into a distinct N-S trend with a pronounced E-W orientation of lower order fluvial channels. A similar pattern is recognized in the Eastern Andes of Colombia, where the structural trend is NE-SW. The Eastern Cordillera comprise a frontal thin-skinned Neogene and Paleogene domain (FR) and the more interior lower Cretaceous an Upper Paleozoic thick-skinned region (IR). The trend of higher order channels is, as expected, parallel to the structures in the interior parts and perpendicular in the frontal part. However, the trend of lower order channels reveal no directional correlation to the structural trend in the interior, but a significant correlation to the structures in the frontal range that suffered relatively to the interior domains younger deformation phases. We therefore postulate a dependency of the directional evolution of drainage patterns on the relative timing of tectonic activity. The only weakly preferred orientation of drainages in the interior parts (EC and IR) suggests a balance between structural control and drainage occupation, and higher maturity of the landscape. In contrast, the distinct pattern of drainages oblique to the structural grain in the frontal ranges (SA and FR) highlights the alignment of tributaries and suggests an ongoing tectonic control on drainage orientation. We test the hypothesis whether the correlation between the direction of small order rivers and the direction of structures can be used as a proxy for relative tectonic activity, which might be relevant in questions on 1) dominance of tectonics over climate, 2) dynamics of deformation propagation in fault-and-thrust-belts and 3) occurrence of higher erosion rates despite "limited" relief or threshold slopes. Ongoing efforts will investigate the possibility to quantify or compare relative tectonic activity across sites.

  12. Doped YbRh2Si2: not only ferromagnetic correlations but ferromagnetic order.

    PubMed

    Lausberg, S; Hannaske, A; Steppke, A; Steinke, L; Gruner, T; Pedrero, L; Krellner, C; Klingner, C; Brando, M; Geibel, C; Steglich, F

    2013-06-21

    YbRh2Si2 is a prototypical system for studying unconventional antiferromagnetic quantum criticality. However, ferromagnetic correlations are present which can be enhanced via isoelectronic cobalt substitution for rhodium in Yb(Rh(1-x)Co(x))2Si2. So far, the magnetic order with increasing x was believed to remain antiferromagnetic. Here, we present the discovery of ferromagnetism for x = 0.27 below T(C) = 1.30  K in single crystalline samples. Unexpectedly, ordering occurs along the c axis, the hard crystalline electric field direction, where the g factor is an order of magnitude smaller than in the basal plane. Although the spontaneous magnetization is only 0.1 μB/Yb it corresponds to the full expected saturation moment along c taking into account partial Kondo screening.

  13. High quality GaAs single photon emitters on Si substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bietti, S.; Sanguinetti, S.; Cavigli, L.

    2013-12-04

    We describe a method for the direct epitaxial growth of a single photon emitter, based on GaAs quantum dots fabricated by droplet epitaxy, working at liquid nitrogen temperatures on Si substrates. The achievement of quantum photon statistics up to T=80 K is directly proved by antibunching in the second order correlation function as measured with a H anbury Brown and Twiss interferometer.

  14. A critical comparison of second order closures with direct numerical simulation of homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Lumley, John L.

    1991-01-01

    Recently, several second order closure models have been proposed for closing the second moment equations, in which the velocity-pressure gradient (and scalar-pressure gradient) tensor and the dissipation rate tensor are two of the most important terms. In the literature, these correlation tensors are usually decomposed into a so called rapid term and a return-to-isotropy term. Models of these terms have been used in global flow calculations together with other modeled terms. However, their individual behavior in different flows have not been fully examined because they are un-measurable in the laboratory. Recently, the development of direct numerical simulation (DNS) of turbulence has given us the opportunity to do this kind of study. With the direct numerical simulation, we may use the solution to exactly calculate the values of these correlation terms and then directly compare them with the values from their modeled formulations (models). Here, we make direct comparisons of five representative rapid models and eight return-to-isotropy models using the DNS data of forty five homogeneous flows which were done by Rogers et al. (1986) and Lee et al. (1985). The purpose of these direct comparisons is to explore the performance of these models in different flows and identify the ones which give the best performance. The modeling procedure, model constraints, and the various evaluated models are described. The detailed results of the direct comparisons are discussed, and a few concluding remarks on turbulence models are given.

  15. Appreciation of learning environment and development of higher-order learning skills in a problem-based learning medical curriculum.

    PubMed

    Mala-Maung; Abdullah, Azman; Abas, Zoraini W

    2011-12-01

    This cross-sectional study determined the appreciation of the learning environment and development of higher-order learning skills among students attending the Medical Curriculum at the International Medical University, Malaysia which provides traditional and e-learning resources with an emphasis on problem based learning (PBL) and self-directed learning. Of the 708 participants, the majority preferred traditional to e-resources. Students who highly appreciated PBL demonstrated a higher appreciation of e-resources. Appreciation of PBL is positively and significantly correlated with higher-order learning skills, reflecting the inculcation of self-directed learning traits. Implementers must be sensitive to the progress of learners adapting to the higher education environment and innovations, and to address limitations as relevant.

  16. Imaging Spatial Correlations of Rydberg Excitations in Cold Atom Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, A.; Sapiro, R. E.; Raithel, G.

    2011-09-02

    We use direct spatial imaging of cold {sup 85}Rb Rydberg atom clouds to measure the Rydberg-Rydberg correlation function. The results are in qualitative agreement with theoretical predictions [F. Robicheaux and J. V. Hernandez, Phys. Rev. A 72, 063403 (2005)]. We determine the blockade radius for states 44D{sub 5/2}, 60D{sub 5/2}, and 70D{sub 5/2} and investigate the dependence of the correlation behavior on excitation conditions and detection delay. Experimental data hint at the existence of long-range order.

  17. Quantifying the Hierarchical Order in Self-Aligned Carbon Nanotubes from Atomic to Micrometer Scale.

    PubMed

    Meshot, Eric R; Zwissler, Darwin W; Bui, Ngoc; Kuykendall, Tevye R; Wang, Cheng; Hexemer, Alexander; Wu, Kuang Jen J; Fornasiero, Francesco

    2017-06-27

    Fundamental understanding of structure-property relationships in hierarchically organized nanostructures is crucial for the development of new functionality, yet quantifying structure across multiple length scales is challenging. In this work, we used nondestructive X-ray scattering to quantitatively map the multiscale structure of hierarchically self-organized carbon nanotube (CNT) "forests" across 4 orders of magnitude in length scale, from 2.0 Å to 1.5 μm. Fully resolved structural features include the graphitic honeycomb lattice and interlayer walls (atomic), CNT diameter (nano), as well as the greater CNT ensemble (meso) and large corrugations (micro). Correlating orientational order across hierarchical levels revealed a cascading decrease as we probed finer structural feature sizes with enhanced sensitivity to small-scale disorder. Furthermore, we established qualitative relationships for single-, few-, and multiwall CNT forest characteristics, showing that multiscale orientational order is directly correlated with number density spanning 10 9 -10 12 cm -2 , yet order is inversely proportional to CNT diameter, number of walls, and atomic defects. Lastly, we captured and quantified ultralow-q meridional scattering features and built a phenomenological model of the large-scale CNT forest morphology, which predicted and confirmed that these features arise due to microscale corrugations along the vertical forest direction. Providing detailed structural information at multiple length scales is important for design and synthesis of CNT materials as well as other hierarchically organized nanostructures.

  18. Large eddy simulation of incompressible turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Moin, P.; Reynolds, W. C.; Ferziger, J. H.

    1978-01-01

    The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.

  19. Electronic origin of structural transition in 122 Fe based superconductors

    NASA Astrophysics Data System (ADS)

    Ghosh, Haranath; Sen, Smritijit; Ghosh, Abyay

    2017-03-01

    Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determined doping and temperature dependent structural parameters while the latter (the orthorhombicity) is taken from already established experimental studies; when normalized, both the above quantities quantitatively corresponds to each other in terms of their doping as well as temperature variations. This proves that the structural transition in Fe-based materials is electronic in nature due to orbital ordering. An universal correlations among various structural parameters and electronic structure are also obtained. Most remarkable among them is the mapping of two Fe-Fe distances in the low temperature orthorhombic phase, with the band energies Edxz, Edyz of Fe at the high symmetry points of the Brillouin zone. The fractional co-ordinate zAs of As which essentially determines anion height is inversely (directly) proportional to Fe-As bond distances (with exceptions of K doped BaFe2As2) for hole (electron) doped materials as a function of doping. On the other hand, Fe-As bond-distance is found to be inversely (directly) proportional to the density of states at the Fermi level for hole (electron) doped systems. Implications of these results to current issues of Fe based superconductivity are discussed.

  20. Learning strategies used by cardiology residents: assessment of learning styles and their correlations.

    PubMed

    de Lima, Alberto Alves; Bettati, María Ines; Baratta, Sergio; Falconi, Mariano; Sokn, Fernando; Galli, Amanda; Barrero, Carlos; Cagide, Arturo; Iglesias, Ricardo

    2006-11-01

    To identify the learning styles of a group of cardiology residents (R) undergoing a training program at the University of Buenos Aires and to identify correlations of these styles. Statistical data were obtained through a 120-question survey developed by Vermunt and colleagues, which identified four different learning styles: construction-directed; reproduction-directed; application-directed; and undirected. Four variables were identified [gender, previous experience as a teaching assistant (TA) in medical school, university final average (FA) and the public or private institution/centre of origin] in order to analyse level of correlation with learning styles (LS). Between April 2001 and April 2002, 149 residents (R) completed the survey. Average age was 29 (+/-2.7) years old; with 63% being men. The predominant LS were oriented toward knowledge application. In terms of variables, no differences regarding gender were detected; the R with TA showed undirected LS characteristics; those with a low FA registered a tendency towards reproduction-directed LS; and those residents at public/state medical centres indicated construction-directed LS tendencies. An application-directed learning style predominates in this group of residents. Information regarding learning styles can provide foundations upon which arguments can be made for changes in education that are traditionally not evidence-based.

  1. Spin correlations and spin-wave excitations in Dirac-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Araki, Yasufumi; Nomura, Kentaro

    We study correlations among magnetic dopants in three-dimensional Dirac and Weyl semimetals. Effective field theory for localized magnetic moments is derived by integrating out the itinerant electron degrees of freedom. We find that spin correlation in the spatial direction parallel to local magnetization is more rigid than that in the perpendicular direction, reflecting spin-momentum locking nature of the Dirac Hamiltonian. Such an anisotropy becomes stronger for Fermi level close to the Dirac points, due to Van Vleck paramagnetism triggered by spin-orbit coupling. One can expect topologically nontrivial spin textures under this anisotropy, such as a hedgehog around a single point, or a radial vortex around an axis, as well as a uniform ferromagnetic order. We further investigate the characteristics of spin waves in the ferromagnetic state. Spin-wave dispersion also shows a spatial anisotropy, which is less dispersed in the direction transverse to the magnetization than that in the longitudinal direction. The spin-wave dispersion anisotropy can be traced back to the rigidity and flexibility of spin correlations discussed above. This work was supported by Grant-in-Aid for Scientific Research (Grants No.15H05854, No.26107505, and No.26400308) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

  2. A novel coefficient for detecting and quantifying asymmetry of California electricity market based on asymmetric detrended cross-correlation analysis.

    PubMed

    Wang, Fang

    2016-06-01

    In order to detect and quantify asymmetry of two time series, a novel cross-correlation coefficient is proposed based on recent asymmetric detrended cross-correlation analysis (A-DXA), which we called A-DXA coefficient. The A-DXA coefficient, as an important extension of DXA coefficient ρDXA, contains two directional asymmetric cross-correlated indexes, describing upwards and downwards asymmetric cross-correlations, respectively. By using the information of directional covariance function of two time series and directional variance function of each series itself instead of power-law between the covariance function and time scale, the proposed A-DXA coefficient can well detect asymmetry between the two series no matter whether the cross-correlation is significant or not. By means of the proposed A-DXA coefficient conducted over the asymmetry for California electricity market, we found that the asymmetry between the prices and loads is not significant for daily average data in 1999 yr market (before electricity crisis) but extremely significant for those in 2000 yr market (during the crisis). To further uncover the difference of asymmetry between the years 1999 and 2000, a modified H statistic (MH) and ΔMH statistic are proposed. One of the present contributions is that the high MH values calculated for hourly data exist in majority months in 2000 market. Another important conclusion is that the cross-correlation with downwards dominates over the whole 1999 yr in contrast to the cross-correlation with upwards dominates over the 2000 yr.

  3. Azimuthal angle dependence of the charge imbalance from charge conservation effects

    NASA Astrophysics Data System (ADS)

    BoŻek, Piotr

    2018-03-01

    The experimental search for the chiral magnetic effect in heavy-ion collisions is based on charge-dependent correlations between emitted particles. Recently, a sensitive observable comparing event-by-event distributions of the charge splitting projected on the directions along and perpendicular to the direction of the elliptic flow has been proposed. The results of a (3 + 1)-dimensional hydrodynamic model show that the preliminary experimental data of the STAR Collaboration can be explained as due to background effects, such as resonance decays and local charge conservation in the particle production. A related observable based on the third-order harmonic flow is proposed to further investigate such background effects in charge-dependent correlations.

  4. Ordered polymer nanofibers enhance output brightness in bilayer light-emitting field-effect transistors.

    PubMed

    Hsu, Ben B Y; Seifter, Jason; Takacs, Christopher J; Zhong, Chengmei; Tseng, Hsin-Rong; Samuel, Ifor D W; Namdas, Ebinazar B; Bazan, Guillermo C; Huang, Fei; Cao, Yong; Heeger, Alan J

    2013-03-26

    Polymer light emitting field effect transistors are a class of light emitting devices that reveal interesting device physics. Device performance can be directly correlated to the most fundamental polymer science. Control over surface properties of the transistor dielectric can dramatically change the polymer morphology, introducing ordered phase. Electronic properties such as carrier mobility and injection efficiency on the interface can be promoted by ordered nanofibers in the polymer. Moreover, by controlling space charge in the polymer interface, the recombination zone can be spatially extended and thereby enhance the optical output.

  5. Applications of direct numerical simulation of turbulence in second order closures

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Lumley, John L.

    1995-01-01

    This paper discusses two methods of developing models for the rapid pressure-strain correlation term in the Reynolds stress transport equation using direct numerical simulation (DNS) data. One is a perturbation about isotropic turbulence, the other is a perturbation about two-component turbulence -- an extremely anisotropic turbulence. A model based on the latter method is proposed and is found to be very promising when compared with DNS data and other models.

  6. Correlation between polar values and vector analysis.

    PubMed

    Naeser, K; Behrens, J K

    1997-01-01

    To evaluate the possible correlation between polar value and vector analysis assessment of surgically induced astigmatism. Department of Ophthalmology, Aalborg Sygehus Syd, Denmark. The correlation between polar values and vector analysis was evaluated by simple mathematical and optical methods using accepted principles of trigonometry and first-order optics. Vector analysis and polar values report different aspects of surgically induced astigmatism. Vector analysis describes the total astigmatic change, characterized by both astigmatic magnitude and direction, while the polar value method produces a single, reduced figure that reports flattening or steepening in preselected directions, usually the plane of the surgical meridian. There is a simple Pythagorean correlation between vector analysis and two polar values separated by an arch of 45 degrees. The polar value calculated in the surgical meridian indicates the power or the efficacy of the surgical procedure. The polar value calculated in a plane inclined 45 degrees to the surgical meridian indicates the degree of cylinder rotation induced by surgery. These two polar values can be used to obtain other relevant data such as magnitude, direction, and sphere of an induced cylinder. Consistent use of these methods will enable surgeons to control and in many cases reduce preoperative astigmatism.

  7. Temporal correlation measurements of pulsed dual CO2 lidar returns. [for atmospheric pollution detection

    NASA Technical Reports Server (NTRS)

    Menyuk, N.; Killinger, D. K.

    1981-01-01

    A pulsed dual-laser direct-detection differential-absorption lidar DIAL system, operating near 10.6 microns, is used to measure the temporal correlation and statistical properties of backscattered returns from specular and diffuse topographic targets. Results show that atmospheric-turbulence fluctuations can effectively be frozen for pulse separation times on the order of 1-3 msec or less. The diffuse target returns, however, yielded a much lower correlation than that obtained with the specular targets; this being due to uncorrelated system noise effects and different statistics for the two types of target returns.

  8. Time-of-flight camera via a single-pixel correlation image sensor

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  9. Correlation of financial markets in times of crisis

    NASA Astrophysics Data System (ADS)

    Sandoval, Leonidas; Franca, Italo De Paula

    2012-01-01

    Using the eigenvalues and eigenvectors of correlations matrices of some of the main financial market indices in the world, we show that high volatility of markets is directly linked with strong correlations between them. This means that markets tend to behave as one during great crashes. In order to do so, we investigate financial market crises that occurred in the years 1987 (Black Monday), 1998 (Russian crisis), 2001 (Burst of the dot-com bubble and September 11), and 2008 (Subprime Mortgage Crisis), which mark some of the largest downturns of financial markets in the last three decades.

  10. Colour-dressed hexagon tessellations for correlation functions and non-planar corrections

    NASA Astrophysics Data System (ADS)

    Eden, Burkhard; Jiang, Yunfeng; le Plat, Dennis; Sfondrini, Alessandro

    2018-02-01

    We continue the study of four-point correlation functions by the hexagon tessellation approach initiated in [38] and [39]. We consider planar tree-level correlation functions in N=4 supersymmetric Yang-Mills theory involving two non-protected operators. We find that, in order to reproduce the field theory result, it is necessary to include SU( N) colour factors in the hexagon formalism; moreover, we find that the hexagon approach as it stands is naturally tailored to the single-trace part of correlation functions, and does not account for multi-trace admixtures. We discuss how to compute correlators involving double-trace operators, as well as more general 1 /N effects; in particular we compute the whole next-to-leading order in the large- N expansion of tree-level BMN two-point functions by tessellating a torus with punctures. Finally, we turn to the issue of "wrapping", Lüscher-like corrections. We show that SU( N) colour-dressing reproduces an earlier empirical rule for incorporating single-magnon wrapping, and we provide a direct interpretation of such wrapping processes in terms of N=2 supersymmetric Feynman diagrams.

  11. Chaos and complexity by design

    DOE PAGES

    Roberts, Daniel A.; Yoshida, Beni

    2017-04-20

    We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame poten-tial,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We also show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. In addition, we prove that these 2k-point correlators for Pauli operators completely determine the k-foldmore » channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.« less

  12. Structuring Stokes correlation functions using vector-vortex beam

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Anwar, Ali; Singh, R. P.

    2018-01-01

    Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.

  13. The present state and future direction of second order closure models for compressible flows

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B.; Sarkar, Sutanu; Speziale, Charles G.

    1992-01-01

    The topics are presented in viewgraph form and include: (1) Reynolds stress closure models; (2) Favre averages and governing equations; (3) the model for the deviatoric part of the pressure-strain rate correlation; (4) the SSG pressure-strain correlation model; (5) a compressible turbulent dissipation rate model; (6) variable viscosity effects; (7) near-wall stiffness problems; (8) models of the Reynolds mass and heat flux; and (9) a numerical solution of the compressible turbulent transport equation.

  14. Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices

    NASA Astrophysics Data System (ADS)

    Farnell, D. J. J.; Götze, O.; Richter, J.

    2016-06-01

    The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.

  15. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4.

    PubMed

    Dean, M P M; Cao, Y; Liu, X; Wall, S; Zhu, D; Mankowsky, R; Thampy, V; Chen, X M; Vale, J G; Casa, D; Kim, Jungho; Said, A H; Juhas, P; Alonso-Mori, R; Glownia, J M; Robert, A; Robinson, J; Sikorski, M; Song, S; Kozina, M; Lemke, H; Patthey, L; Owada, S; Katayama, T; Yabashi, M; Tanaka, Yoshikazu; Togashi, T; Liu, J; Rayan Serrao, C; Kim, B J; Huber, L; Chang, C-L; McMorrow, D F; Först, M; Hill, J P

    2016-06-01

    Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.

  16. Variational energy principle for compressible, baroclinic flow. 2: Free-energy form of Hamilton's principle

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1977-01-01

    The first and second variations are calculated for the irreducible form of Hamilton's Principle that involves the minimum number of dependent variables necessary to describe the kinetmatics and thermodynamics of inviscid, compressible, baroclinic flow in a specified gravitational field. The form of the second variation shows that, in the neighborhood of a stationary point that corresponds to physically stable flow, the action integral is a complex saddle surface in parameter space. There exists a form of Hamilton's Principle for which a direct solution of a flow problem is possible. This second form is related to the first by a Friedrichs transformation of the thermodynamic variables. This introduces an extra dependent variable, but the first and second variations are shown to have direct physical significance, namely they are equal to the free energy of fluctuations about the equilibrium flow that satisfies the equations of motion. If this equilibrium flow is physically stable, and if a very weak second order integral constraint on the correlation between the fluctuations of otherwise independent variables is satisfied, then the second variation of the action integral for this free energy form of Hamilton's Principle is positive-definite, so the action integral is a minimum, and can serve as the basis for a direct trail and error solution. The second order integral constraint states that the unavailable energy must be maximum at equilibrium, i.e. the fluctuations must be so correlated as to produce a second order decrease in the total unavailable energy.

  17. A novel coefficient for detecting and quantifying asymmetry of California electricity market based on asymmetric detrended cross-correlation analysis

    NASA Astrophysics Data System (ADS)

    Wang, Fang

    2016-06-01

    In order to detect and quantify asymmetry of two time series, a novel cross-correlation coefficient is proposed based on recent asymmetric detrended cross-correlation analysis (A-DXA), which we called A-DXA coefficient. The A-DXA coefficient, as an important extension of DXA coefficient ρ D X A , contains two directional asymmetric cross-correlated indexes, describing upwards and downwards asymmetric cross-correlations, respectively. By using the information of directional covariance function of two time series and directional variance function of each series itself instead of power-law between the covariance function and time scale, the proposed A-DXA coefficient can well detect asymmetry between the two series no matter whether the cross-correlation is significant or not. By means of the proposed A-DXA coefficient conducted over the asymmetry for California electricity market, we found that the asymmetry between the prices and loads is not significant for daily average data in 1999 yr market (before electricity crisis) but extremely significant for those in 2000 yr market (during the crisis). To further uncover the difference of asymmetry between the years 1999 and 2000, a modified H statistic (MH) and ΔMH statistic are proposed. One of the present contributions is that the high MH values calculated for hourly data exist in majority months in 2000 market. Another important conclusion is that the cross-correlation with downwards dominates over the whole 1999 yr in contrast to the cross-correlation with upwards dominates over the 2000 yr.

  18. Superconductor-insulator transition in a stripe-ordered cuprate

    NASA Astrophysics Data System (ADS)

    Tranquada, John; Homes, C.; Gu, G. D.; Li, Q.; Huecker, M.

    We reconsider the case of La2-xBaxCuO4 with x = 1 / 8 , where spin-stripe order and 2D superconducting correlations develop simultaneously at 40 K. The thermal evolution of the in-plane optical reflectivity suggests the development of a Josephson plasma resonance (JPR) between charge stripes, by analogy with the JPR seen in c-axis reflectivity in the superconducting state of Josephson-coupled CuO2 planes. At low-temperature, when the superconductivity is suppressed by a magnetic field, the resistivity exhibits insulating character. We interpret this as suppression of the Josephson coupling between pair correlations in neighboring charge stripes, with single-particle transport suppressed by the surviving spin-stripe order. To obtain direct evidence that the high-field insulator involves hole pairs localized to 1D stripes will require further experiments. Work at BNL supported by Office of Basic Energy Sciences, US DOE, under Contract No. DE-SC0012704.

  19. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  20. Generation and control of noncollinear magnetism by supercurrent

    NASA Astrophysics Data System (ADS)

    Takashima, Rina; Kato, Yasuyuki; Yanase, Youichi; Motome, Yukitoshi

    2018-02-01

    When superconductivity couples with noncollinear spin textures, rich physics arises, for instance, singlet Cooper pairs can be converted to triplet pairs, and topological superconductors can be realized. For their applications, the controllability of noncollinear magnetism is a crucial issue. Here, we propose that a supercurrent can induce and control noncollinear magnetic orders in a correlated metal on top of a singlet superconductor. We show that the magnetic instability in the correlated metal is enhanced by the proximity effect of supercurrents, which leads to phase transitions from a paramagnetic state to noncollinear magnetic phases with helical or vortexlike spin textures. Furthermore, these magnetic orders can be switched by the direction of the supercurrent. We also discuss the effect of the Rashba spin-orbit coupling and the experimental realization.

  1. Noninvasive Fetal Electrocardiography Part II: Segmented-Beat Modulation Method for Signal Denoising

    PubMed Central

    Agostinelli, Angela; Sbrollini, Agnese; Burattini, Luca; Fioretti, Sandro; Di Nardo, Francesco; Burattini, Laura

    2017-01-01

    Background: Fetal well-being evaluation may be accomplished by monitoring cardiac activity through fetal electrocardiography. Direct fetal electrocardiography (acquired through scalp electrodes) is the gold standard but its invasiveness limits its clinical applicability. Instead, clinical use of indirect fetal electrocardiography (acquired through abdominal electrodes) is limited by its poor signal quality. Objective: Aim of this study was to evaluate the suitability of the Segmented-Beat Modulation Method to denoise indirect fetal electrocardiograms in order to achieve a signal-quality at least comparable to the direct ones. Method: Direct and indirect recordings, simultaneously acquired from 5 pregnant women during labor, were filtered with the Segmented-Beat Modulation Method and correlated in order to assess their morphological correspondence. Signal-to-noise ratio was used to quantify their quality. Results: Amplitude was higher in direct than indirect fetal electrocardiograms (median:104 µV vs. 22 µV; P=7.66·10-4), whereas noise was comparable (median:70 µV vs. 49 µV, P=0.45). Moreover, fetal electrocardiogram amplitude was significantly higher than affecting noise in direct recording (P=3.17·10-2) and significantly in indirect recording (P=1.90·10-3). Consequently, signal-to-noise ratio was initially higher for direct than indirect recordings (median:3.3 dB vs. -2.3 dB; P=3.90·10-3), but became lower after denoising of indirect ones (median:9.6 dB; P=9.84·10-4). Eventually, direct and indirect recordings were highly correlated (median: ρ=0.78; P<10-208), indicating that the two electrocardiograms were morphologically equivalent. Conclusion: Segmented-Beat Modulation Method is particularly useful for denoising of indirect fetal electrocardiogram and may contribute to the spread of this noninvasive technique in the clinical practice. PMID:28567129

  2. Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites

    PubMed Central

    Jooss, Ch.; Wu, L.; Beetz, T.; Klie, R. F.; Beleggia, M.; Schofield, M. A.; Schramm, S.; Hoffmann, J.; Zhu, Y.

    2007-01-01

    Polarons, the combined motion of electrons in a cloth of their lattice distortions, are a key transport feature in doped manganites. To develop a profound understanding of the colossal resistance effects induced by external fields, the study of polaron correlations and the resulting collective polaron behavior, i.e., polaron ordering and transition from polaronic transport to metallic transport is essential. We show that static long-range ordering of Jahn–Teller polarons forms a polaron solid which represents a new type of charge and orbital ordered state. The related noncentrosymmetric lattice distortions establish a connection between colossal resistance effects and multiferroic properties, i.e., the coexistence of ferroelectric and antiferromagnetic ordering. Colossal resistance effects due to an electrically induced polaron solid–liquid transition are directly observed in a transmission electron microscope with local electric stimulus applied in situ using a piezo-controlled tip. Our results shed light onto the colossal resistance effects in magnetic field and have a strong impact on the development of correlated electron-device applications such as resistive random access memory (RRAM). PMID:17699633

  3. Dynamic Time Warping compared to established methods for validation of musculoskeletal models.

    PubMed

    Gaspar, Martin; Welke, Bastian; Seehaus, Frank; Hurschler, Christof; Schwarze, Michael

    2017-04-11

    By means of Multi-Body musculoskeletal simulation, important variables such as internal joint forces and moments can be estimated which cannot be measured directly. Validation can ensued by qualitative or by quantitative methods. Especially when comparing time-dependent signals, many methods do not perform well and validation is often limited to qualitative approaches. The aim of the present study was to investigate the capabilities of the Dynamic Time Warping (DTW) algorithm for comparing time series, which can quantify phase as well as amplitude errors. We contrast the sensitivity of DTW with other established metrics: the Pearson correlation coefficient, cross-correlation, the metric according to Geers, RMSE and normalized RMSE. This study is based on two data sets, where one data set represents direct validation and the other represents indirect validation. Direct validation was performed in the context of clinical gait-analysis on trans-femoral amputees fitted with a 6 component force-moment sensor. Measured forces and moments from amputees' socket-prosthesis are compared to simulated forces and moments. Indirect validation was performed in the context of surface EMG measurements on a cohort of healthy subjects with measurements taken of seven muscles of the leg, which were compared to simulated muscle activations. Regarding direct validation, a positive linear relation between results of RMSE and nRMSE to DTW can be seen. For indirect validation, a negative linear relation exists between Pearson correlation and cross-correlation. We propose the DTW algorithm for use in both direct and indirect quantitative validation as it correlates well with methods that are most suitable for one of the tasks. However, in DV it should be used together with methods resulting in a dimensional error value, in order to be able to interpret results more comprehensible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) for spaceborne measurements of CO

    NASA Astrophysics Data System (ADS)

    Johnson, Brian R.; Kampe, Thomas U.; Cook, William B.; Miecznik, Grzegorz; Novelli, Paul C.; Snell, Hilary E.; Turner-Valle, Jennifer A.

    2003-11-01

    An instrument concept for an Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) has been developed for measuring tropospheric carbon monoxide (CO) from space. The concept is based upon a correlation technique similar in nature to multi-order Fabry-Perot (FP) interferometer or gas filter radiometer techniques, which simultaneously measure atmospheric emission from several infrared vibration-rotation lines of CO. Correlation techniques provide a multiplex advantage for increased throughput, high spectral resolution and selectivity necessary for profiling tropospheric CO. Use of unconventional multilayer interference filter designs leads to improvement in CO spectral line correlation compared with the traditional FP multi-order technique, approaching the theoretical performance of gas filter correlation radiometry. In this implementation, however, the gas cell is replaced with a simple, robust solid interference filter. In addition to measuring CO, the correlation filter technique can be applied to measurements of other important gases such as carbon dioxide, nitrous oxide and methane. Imaging the scene onto a 2-D detector array enables a limited range of spectral sampling owing to the field-angle dependence of the filter transmission function. An innovative anamorphic optical system provides a relatively large instrument field-of-view for imaging along the orthogonal direction across the detector array. An important advantage of the IMOFPS concept is that it is a small, low mass and high spectral resolution spectrometer having no moving parts. A small, correlation spectrometer like IMOFPS would be well suited for global observations of CO2, CO, and CH4 from low Earth or regional observations from Geostationary orbit. A prototype instrument is in development for flight demonstration on an airborne platform with potential applications to atmospheric chemistry, wild fire and biomass burning, and chemical dispersion monitoring.

  5. Electrocatalysis of borohydride oxidation: a review of density functional theory approach combined with experimental validation.

    PubMed

    Escaño, Mary Clare Sison; Arevalo, Ryan Lacdao; Gyenge, Elod; Kasai, Hideaki

    2014-09-03

    The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4(-) on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.

  6. Electrocatalysis of borohydride oxidation: a review of density functional theory approach combined with experimental validation

    NASA Astrophysics Data System (ADS)

    Sison Escaño, Mary Clare; Lacdao Arevalo, Ryan; Gyenge, Elod; Kasai, Hideaki

    2014-09-01

    The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4- on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.

  7. Parametric correlation functions to model the structure of permanent environmental (co)variances in milk yield random regression models.

    PubMed

    Bignardi, A B; El Faro, L; Cardoso, V L; Machado, P F; Albuquerque, L G

    2009-09-01

    The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.

  8. Short-Range Nucleon-Nucleon Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Higinbotham

    2011-10-01

    Valence-shell nucleon knock-out experiments, such as 12C(e,e'p)11B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to directly observe these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, asmore » well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3 < xB < 0.7 deep inelastic scattering ratios.« less

  9. Fractal characterization of fracture surfaces in concrete

    USGS Publications Warehouse

    Saouma, V.E.; Barton, C.C.; Gamaleldin, N.A.

    1990-01-01

    Fractal geometry is used to characterize the roughness of cracked concrete surfaces through a specially built profilometer, and the fractal dimension is subsequently correlated to the fracture toughness and direction of crack propagation. Preliminary results indicate that the fracture surface is indeed fractal over two orders of magnitudes with a dimension of approximately 1.20. ?? 1990.

  10. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    NASA Technical Reports Server (NTRS)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  11. Mapping eQTL Networks with Mixed Graphical Markov Models

    PubMed Central

    Tur, Inma; Roverato, Alberto; Castelo, Robert

    2014-01-01

    Expression quantitative trait loci (eQTL) mapping constitutes a challenging problem due to, among other reasons, the high-dimensional multivariate nature of gene-expression traits. Next to the expression heterogeneity produced by confounding factors and other sources of unwanted variation, indirect effects spread throughout genes as a result of genetic, molecular, and environmental perturbations. From a multivariate perspective one would like to adjust for the effect of all of these factors to end up with a network of direct associations connecting the path from genotype to phenotype. In this article we approach this challenge with mixed graphical Markov models, higher-order conditional independences, and q-order correlation graphs. These models show that additive genetic effects propagate through the network as function of gene–gene correlations. Our estimation of the eQTL network underlying a well-studied yeast data set leads to a sparse structure with more direct genetic and regulatory associations that enable a straightforward comparison of the genetic control of gene expression across chromosomes. Interestingly, it also reveals that eQTLs explain most of the expression variability of network hub genes. PMID:25271303

  12. Anisotropic Invariance and the Distribution of Quantum Correlations.

    PubMed

    Cheng, Shuming; Hall, Michael J W

    2017-01-06

    We report the discovery of two new invariants for three-qubit states which, similarly to the three-tangle, are invariant under local unitary transformations and permutations of the parties. These quantities have a direct interpretation in terms of the anisotropy of pairwise spin correlations. Applications include a universal ordering of pairwise quantum correlation measures for pure three-qubit states; trade-off relations for anisotropy, three-tangle and Bell nonlocality; strong monogamy relations for Bell inequalities, Einstein-Podolsky-Rosen steering inequalities, geometric discord and fidelity of remote state preparation (including results for arbitrary three-party states); and a statistical and reference-frame-independent form of quantum secret sharing.

  13. Anisotropic Invariance and the Distribution of Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Cheng, Shuming; Hall, Michael J. W.

    2017-01-01

    We report the discovery of two new invariants for three-qubit states which, similarly to the three-tangle, are invariant under local unitary transformations and permutations of the parties. These quantities have a direct interpretation in terms of the anisotropy of pairwise spin correlations. Applications include a universal ordering of pairwise quantum correlation measures for pure three-qubit states; trade-off relations for anisotropy, three-tangle and Bell nonlocality; strong monogamy relations for Bell inequalities, Einstein-Podolsky-Rosen steering inequalities, geometric discord and fidelity of remote state preparation (including results for arbitrary three-party states); and a statistical and reference-frame-independent form of quantum secret sharing.

  14. New Models for Velocity/Pressure-Gradient Correlations in Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Poroseva, Svetlana; Murman, Scott

    2014-11-01

    To improve the performance of Reynolds-Averaged Navier-Stokes (RANS) turbulence models, one has to improve the accuracy of models for three physical processes: turbulent diffusion, interaction of turbulent pressure and velocity fluctuation fields, and dissipative processes. The accuracy of modeling the turbulent diffusion depends on the order of a statistical closure chosen as a basis for a RANS model. When the Gram-Charlier series expansions for the velocity correlations are used to close the set of RANS equations, no assumption on Gaussian turbulence is invoked and no unknown model coefficients are introduced into the modeled equations. In such a way, this closure procedure reduces the modeling uncertainty of fourth-order RANS (FORANS) closures. Experimental and direct numerical simulation data confirmed the validity of using the Gram-Charlier series expansions in various flows including boundary layers. We will address modeling the velocity/pressure-gradient correlations. New linear models will be introduced for the second- and higher-order correlations applicable to two-dimensional incompressible wall-bounded flows. Results of models' validation with DNS data in a channel flow and in a zero-pressure gradient boundary layer over a flat plate will be demonstrated. A part of the material is based upon work supported by NASA under award NNX12AJ61A.

  15. Ultra-accurate collaborative information filtering via directed user similarity

    NASA Astrophysics Data System (ADS)

    Guo, Q.; Song, W.-J.; Liu, J.-G.

    2014-07-01

    A key challenge of the collaborative filtering (CF) information filtering is how to obtain the reliable and accurate results with the help of peers' recommendation. Since the similarities from small-degree users to large-degree users would be larger than the ones in opposite direction, the large-degree users' selections are recommended extensively by the traditional second-order CF algorithms. By considering the users' similarity direction and the second-order correlations to depress the influence of mainstream preferences, we present the directed second-order CF (HDCF) algorithm specifically to address the challenge of accuracy and diversity of the CF algorithm. The numerical results for two benchmark data sets, MovieLens and Netflix, show that the accuracy of the new algorithm outperforms the state-of-the-art CF algorithms. Comparing with the CF algorithm based on random walks proposed by Liu et al. (Int. J. Mod. Phys. C, 20 (2009) 285) the average ranking score could reach 0.0767 and 0.0402, which is enhanced by 27.3% and 19.1% for MovieLens and Netflix, respectively. In addition, the diversity, precision and recall are also enhanced greatly. Without relying on any context-specific information, tuning the similarity direction of CF algorithms could obtain accurate and diverse recommendations. This work suggests that the user similarity direction is an important factor to improve the personalized recommendation performance.

  16. Direct Delta-MBPT(2) method for ionization potentials, electron affinities, and excitation energies using fractional occupation numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beste, Ariana; Vazquez-Mayagoitia, Alvaro; Ortiz, J. Vincent

    2013-01-01

    A direct method (D-Delta-MBPT(2)) to calculate second-order ionization potentials (IPs), electron affinities (EAs), and excitation energies is developed. The Delta-MBPT(2) method is defined as the correlated extension of the Delta-HF method. Energy differences are obtained by integrating the energy derivative with respect to occupation numbers over the appropriate parameter range. This is made possible by writing the second-order energy as a function of the occupation numbers. Relaxation effects are fully included at the SCF level. This is in contrast to linear response theory, which makes the D-Delta-MBPT(2) applicable not only to single excited but also higher excited states. We showmore » the relationship of the D-Delta-MBPT(2) method for IPs and EAs to a second-order approximation of the effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method. We also discuss the connection between the D-Delta-MBPT(2) method for excitation energies and the CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization potentials and excitation energies of some small molecules. For IPs, the Delta-MBPT(2) results compare well to the second-order solution of the Dyson equation. For excitation energies, the deviation from EOM-CCSD increases when correlation becomes more important. When using the numerical integration technique, we encounter difficulties that prevented us from reaching the Delta-MBPT(2) values. Most importantly, relaxation beyond the Hartree Fock level is significant and needs to be included in future research.« less

  17. Verification of the directivity index and other measures of directivity in predicting directional benefit

    NASA Astrophysics Data System (ADS)

    Dittberner, Andrew; Bentler, Ruth

    2005-09-01

    The relationship between various directivity measures and subject performance with directional microphone hearing aids was determined. Test devices included first- and second-order directional microphones. Recordings of sentences and noise (Hearing in Noise Test, HINT) were made through each test device in simple, complex, and anisotropic background noise conditions. Twenty-six subjects, with normal hearing, were administered the HINT test recordings, and directional benefit was computed. These measures were correlated to theoretical, free-field, and KEMAR DI values, as well as front-to-back ratios, in situ SNRs, and a newly proposed Db-SNR, wherein a predictive value of the SNR improvement is calculated as a function of the noise source incidence. The different predictive scores showed high correlation to the measured directional benefit scores in the complex (diffuse-like) background noise condition (r=0.89-0.97, p<0.05) but not across all background noise conditions (r=0.45-0.97, p<0.05). The Db-SNR approach and the in situ SNR measures provided excellent prediction of subject performance in all background noise conditions (0.85-0.97, p<0.05) None of the predictive measures could account for the effects of reverberation on the speech signal (r=0.35-0.40, p<0.05).

  18. Gravitational wave searches with pulsar timing arrays: Cancellation of clock and ephemeris noises

    NASA Astrophysics Data System (ADS)

    Tinto, Massimo

    2018-04-01

    We propose a data processing technique to cancel monopole and dipole noise sources (such as clock and ephemeris noises, respectively) in pulsar timing array searches for gravitational radiation. These noises are the dominant sources of correlated timing fluctuations in the lower-part (≈10-9-10-8 Hz ) of the gravitational wave band accessible by pulsar timing experiments. After deriving the expressions that reconstruct these noises from the timing data, we estimate the gravitational wave sensitivity of our proposed processing technique to single-source signals to be at least one order of magnitude higher than that achievable by directly processing the timing data from an equal-size array. Since arrays can generate pairs of clock and ephemeris-free timing combinations that are no longer affected by correlated noises, we implement with them the cross-correlation statistic to search for an isotropic stochastic gravitational wave background. We find the resulting optimal signal-to-noise ratio to be more than one order of magnitude larger than that obtainable by correlating pairs of timing data from arrays of equal size.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepori, Francesca; Viel, Matteo; Baccigalupi, Carlo

    We investigate the Alcock Paczy'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, causing different values of galaxy bias to induce offsets up to 1% in the AP test. On the other hand, we find that the lensing correction around the BAO scale modifiesmore » the amplitude but not the shape of the correlation function and therefore does not introduce any systematic effect. Furthermore, we investigate in details how the AP test is sensitive to redshift binning: a window function in transverse direction suppresses correlations and shifts the peak position toward smaller angular scales. We determine the correction that should be applied in order to account for this effect, when performing the test with data from three future planned galaxy redshift surveys: Euclid, the Dark Energy Spectroscopic Instrument (DESI) and the Square Kilometer Array (SKA).« less

  20. Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet

    NASA Astrophysics Data System (ADS)

    Chung, E. M. L.; Lees, M. R.; McIntyre, G. J.; Wilkinson, C.; Balakrishnan, G.; Hague, J. P.; Visser, D.; McK Paul, D.

    2004-11-01

    The possibilities of two-dimensional (2D) short-range magnetic correlations and frustration effects in the mineral tapiolite are investigated using bulk-property measurements and neutron Laue diffraction. In this study of the magnetic properties of synthetic single-crystals of tapiolite, we find that single crystals of FeTa2O6 order antiferromagnetically at TN = 7.95 ± 0.05 K, with extensive two-dimensional correlations existing up to at least 40 K. Although we find no evidence that FeTa2O6 is magnetically frustrated, hallmarks of two-dimensional magnetism observed in our single-crystal data include: (i) broadening of the susceptibility maximum due to short-range correlations, (ii) a spin-flop transition and (iii) lambda anomalies in the heat capacity and d(χT)/dT. Complementary neutron Laue diffraction measurements reveal 1D magnetic diffuse scattering extending along the c* direction perpendicular to the magnetic planes. This magnetic diffuse scattering, observed for the first time using the neutron Laue technique by VIVALDI, arises directly as a result of 2D short-range spin correlations.

  1. Distinguishing and correlating deposits from large ignimbrite eruptions using paleomagnetism: The Cougar Point Tuffs (mid-Miocene), southern Snake River Plain, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Finn, David R.; Coe, Robert S.; Brown, Ethan; Branney, Michael; Reichow, Marc; Knott, Thomas; Storey, Michael; Bonnichsen, Bill

    2016-09-01

    In this paper, we present paleomagnetic, geochemical, mineralogical, and geochronologic evidence for correlation of the mid-Miocene Cougar Point Tuff (CPT) in southwest Snake River Plain (SRP) of Idaho. The new stratigraphy presented here significantly reduces the frequency and increases the scale of known SRP ignimbrite eruptions. The CPT section exposed at the Black Rock Escarpment along the Bruneau River has been correlated eastward to the Brown's Bench escarpment (six common eruption units) and Cassia Mountains (three common eruption units) regions of southern Idaho. The CPT records an unusual pattern of geomagnetic field directions that provides the basis for robust stratigraphic correlations. Paleomagnetic characterization of eruption units based on geomagnetic field variation has a resolution on the order of a few centuries, providing a strong test of whether two deposits could have been emplaced from the same eruption or from temporally separate events. To obtain reliable paleomagnetic directions, the anisotropy of anhysteretic remanence was measured to correct for magnetic anisotropy, and an efficient new method was used to remove gyroremanence acquired during alternating field demagnetization.

  2. Motion of spin label side chains in cellular retinol-binding protein: correlation with structure and nearest-neighbor interactions in an antiparallel beta-sheet.

    PubMed

    Lietzow, Michael A; Hubbell, Wayne L

    2004-03-23

    A goal in the development of site-directed spin labeling in proteins is to correlate the motion of a nitroxide side chain with local structure, interactions, and dynamics. Significant progress toward this goal has been made using alpha-helical proteins of known structure, and the present study is the first step in a similar exploration of a beta-sheet protein, cellular retinol-binding protein (CRBP). Nitroxide side chains were introduced along both interior and edge strands. At sites in interior strands, the side-chain motion is strongly influenced by interactions with side chains of neighboring strands, giving rise to a rich variety of dynamic modes (weakly ordered, strongly ordered, immobilized) and complex electron paramagnetic resonance spectra that are modulated by strand twist. The interactions giving rise to the dynamic modes are explored using mutagenesis, and the results demonstrate the particular importance of the non-hydrogen-bonded neighbor residue in giving rise to highly ordered states. Along edge strands of the beta-sheet, the motion of the side chain is simple and weakly ordered, resembling that at solvent-exposed surfaces of an alpha-helix. A simple working model is proposed that can account for the wide variety of dynamic modes encountered. Collectively, the results suggest that the nitroxide side chain is an effective probe of side-chain interactions, and that site-directed spin labeling should be a powerful means of monitoring conformational changes that involve changes in beta-sheet topology.

  3. Some Research on the Lift and Stability of Wing-Body Combinations

    NASA Technical Reports Server (NTRS)

    Purser, Paul E.; Fields, E. M.

    1959-01-01

    The present paper summarizes and correlates broadly some of the research results applicable to fin-stabilized ammunition. The discussion and correlation are intended to be comprehensive, rather than detailed, in order to show general trends over the Mach number range up to 7.0. Some discussion of wings, bodies, and wing-body interference is presented, and a list of 179 papers containing further information is included. The present paper is intended to serve more as a bibliography and source of reference material than as a direct source of design information.

  4. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr 2IrO 4

    DOE PAGES

    Dean, M. P. M.; Cao, Y.; Liu, X.; ...

    2016-05-09

    Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity 1, 2, 3, 4. Recently, photo-excitation has been used to induce similarly exotic states transiently 5, 6, 7. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr 2IrO 4. We find that the non-equilibrium state, 2more » ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. In conclusion, the marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.« less

  5. 77 FR 67707 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Granting Approval of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... and expenses) that correlate positively to three times (300%) the daily return of a target benchmark, meaning a Leveraged Bull Fund will attempt to move in the same direction as the target benchmark. The... inverse (opposite) of three times the return of a target benchmark, meaning that the Leveraged Bear Funds...

  6. Kinetic field theory: exact free evolution of Gaussian phase-space correlations

    NASA Astrophysics Data System (ADS)

    Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias

    2018-04-01

    In recent work we developed a description of cosmic large-scale structure formation in terms of non-equilibrium ensembles of classical particles, with time evolution obtained in the framework of a statistical field theory. In these works, the initial correlations between particles sampled from random Gaussian density and velocity fields have so far been treated perturbatively or restricted to pure momentum correlations. Here we treat the correlations between all phase-space coordinates exactly by adopting a diagrammatic language for the different forms of correlations, directly inspired by the Mayer cluster expansion. We will demonstrate that explicit expressions for phase-space density cumulants of arbitrary n-point order, which fully capture the non-linear coupling of free streaming kinematics due to initial correlations, can be obtained from a simple set of Feynman rules. These cumulants will be the foundation for future investigations of perturbation theory in particle interactions.

  7. Tactile Evaluation Feedback System for Multi-Layered Structure Inspired by Human Tactile Perception Mechanism.

    PubMed

    Hashim, Iza Husna Mohamad; Kumamoto, Shogo; Takemura, Kenjiro; Maeno, Takashi; Okuda, Shin; Mori, Yukio

    2017-11-11

    Tactile sensation is one type of valuable feedback in evaluating a product. Conventionally, sensory evaluation is used to get direct subjective responses from the consumers, in order to improve the product's quality. However, this method is a time-consuming and costly process. Therefore, this paper proposes a novel tactile evaluation system that can give tactile feedback from a sensor's output. The main concept of this system is hierarchically layering the tactile sensation, which is inspired by the flow of human perception. The tactile sensation is classified from low-order of tactile sensation (LTS) to high-order of tactile sensation (HTS), and also to preference. Here, LTS will be correlated with physical measures. Furthermore, the physical measures that are used to correlate with LTS are selected based on four main aspects of haptic information (roughness, compliance, coldness, and slipperiness), which are perceived through human tactile sensors. By using statistical analysis, the correlation between each hierarchy was obtained, and the preference was derived in terms of physical measures. A verification test was conducted by using unknown samples to determine the reliability of the system. The results showed that the system developed was capable of estimating preference with an accuracy of approximately 80%.

  8. Dynamic accommodation with simulated targets blurred with high order aberrations

    PubMed Central

    Gambra, Enrique; Wang, Yinan; Yuan, Jing; Kruger, Philip B.; Marcos, Susana

    2010-01-01

    High order aberrations have been suggested to play a role in determining the direction of accommodation. We have explored the effect of retinal blur induced by high order aberrations on dynamic accommodation by measuring the accommodative response to sinusoidal variations in accommodative demand (1–3 D). The targets were blurred with 0.3 and 1 μm (for a 3-mm pupil) of defocus, coma, trefoil and spherical aberration. Accommodative gain decreased significantly when 1-μm of aberration was induced. We found a strong correlation between the relative accommodative gain (and phase lag) and the contrast degradation imposed on the target at relevant spatial frequencies. PMID:20600230

  9. Dimensional Crossover of Charge-Density Wave Correlations in the Cuprates

    NASA Astrophysics Data System (ADS)

    Caplan, Yosef; Orgad, Dror

    2017-09-01

    Short-range charge-density wave correlations are ubiquitous in underdoped cuprates. They are largely confined to the copper-oxygen planes and typically oscillate out of phase from one unit cell to the next in the c direction. Recently, it was found that a considerably longer-range charge-density wave order develops in YBa2 Cu3 O6 +x above a sharply defined crossover magnetic field. This order is more three-dimensional and is in-phase along the c axis. Here, we show that such behavior is a consequence of the conflicting ordering tendencies induced by the disorder potential and the Coulomb interaction, where the magnetic field acts to tip the scales from the former to the latter. We base our conclusion on analytic large-N analysis and Monte Carlo simulations of a nonlinear sigma model of competing superconducting and charge-density wave orders. Our results are in agreement with the observed phenomenology in the cuprates, and we discuss their implications to other members of this family, which have not been measured yet at high magnetic fields.

  10. Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping

    DOE PAGES

    Pekin, Thomas C.; Gammer, Christoph; Ciston, Jim; ...

    2017-01-28

    Scanning nanobeam electron diffraction strain mapping is a technique by which the positions of diffracted disks sampled at the nanoscale over a crystalline sample can be used to reconstruct a strain map over a large area. However, it is important that the disk positions are measured accurately, as their positions relative to a reference are directly used to calculate strain. Here in this study, we compare several correlation methods using both simulated and experimental data in order to directly probe susceptibility to measurement error due to non-uniform diffracted disk illumination structure. We found that prefiltering the diffraction patterns with amore » Sobel filter before performing cross correlation or performing a square-root magnitude weighted phase correlation returned the best results when inner disk structure was present. Lastly, we have tested these methods both on simulated datasets, and experimental data from unstrained silicon as well as a twin grain boundary in 304 stainless steel.« less

  11. Airborne electromagnetic data levelling using principal component analysis based on flight line difference

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang

    2018-04-01

    A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.

  12. Measuring transferring similarity via local information

    NASA Astrophysics Data System (ADS)

    Yin, Likang; Deng, Yong

    2018-05-01

    Recommender systems have developed along with the web science, and how to measure the similarity between users is crucial for processing collaborative filtering recommendation. Many efficient models have been proposed (i.g., the Pearson coefficient) to measure the direct correlation. However, the direct correlation measures are greatly affected by the sparsity of dataset. In other words, the direct correlation measures would present an inauthentic similarity if two users have a very few commonly selected objects. Transferring similarity overcomes this drawback by considering their common neighbors (i.e., the intermediates). Yet, the transferring similarity also has its drawback since it can only provide the interval of similarity. To break the limitations, we propose the Belief Transferring Similarity (BTS) model. The contributions of BTS model are: (1) BTS model addresses the issue of the sparsity of dataset by considering the high-order similarity. (2) BTS model transforms uncertain interval to a certain state based on fuzzy systems theory. (3) BTS model is able to combine the transferring similarity of different intermediates using information fusion method. Finally, we compare BTS models with nine different link prediction methods in nine different networks, and we also illustrate the convergence property and efficiency of the BTS model.

  13. Direct and indirect influence of parental bedrock on streambed microbial community structure in forested streams.

    PubMed

    Mosher, Jennifer J; Findlay, Robert H

    2011-11-01

    A correlative study was performed to determine if variation in streambed microbial community structure in low-order forested streams can be directly or indirectly linked to the chemical nature of the parental bedrock of the environments through which the streams flow. Total microbial and photosynthetic biomass (phospholipid phosphate [PLP] and chlorophyll a), community structure (phospholipid fatty acid analysis), and physical and chemical parameters were measured in six streams, three located in sandstone and three in limestone regions of the Bankhead National Forest in northern Alabama. Although stream water flowing through the two different bedrock types differed significantly in chemical composition, there were no significant differences in total microbial and photosynthetic biomass in the sediments. In contrast, sedimentary microbial community structure differed between the bedrock types and was significantly correlated with stream water ion concentrations. A pattern of seasonal variation in microbial community structure was also observed. Further statistical analysis indicated dissolved organic matter (DOM) quality, which was previously shown to be influenced by geological variation, correlated with variation in bacterial community structure. These results indicate that the geology of underlying bedrock influences benthic microbial communities directly via changes in water chemistry and also indirectly via stream water DOM quality.

  14. Odd-frequency triplet pairing in mixed-parity superconductors

    NASA Astrophysics Data System (ADS)

    Cuoco, Mario; Gentile, Paola; Noce, Canio; Romano, Alfonso; Annunziata, Gaetano; Linder, Jacob

    2012-02-01

    We show that mixed-parity superconductors may exhibit equal-spin pair correlations that are odd-in-time and can be tuned by means of an applied field. The direction and the amplitude of the pair correlator in the spin space turn out to be strongly dependent on the symmetry of the order parameter, and thus provide a tool to identify different types of singlet-triplet mixed configurations. We suggest that odd-in-time spin-polarized pair correlations can be generated without magnetic inhomogeneities in superconducting/ferromagnetic hybrids with non-centrosymmetric superconductor or when parity mixing is induced at the interface. Paola Gentile, Canio Noce, Alfonso Romano, Gaetano Annunziata, Jacob Linder, Mario Cuoco, arXiv:1109.4885

  15. Multivariate Analysis of Two-Dimensional 1H, 13C Methyl NMR Spectra of Monoclonal Antibody Therapeutics To Facilitate Assessment of Higher Order Structure.

    PubMed

    Arbogast, Luke W; Delaglio, Frank; Schiel, John E; Marino, John P

    2017-11-07

    Two-dimensional (2D) 1 H- 13 C methyl NMR provides a powerful tool to probe the higher order structure (HOS) of monoclonal antibodies (mAbs), since spectra can readily be acquired on intact mAbs at natural isotopic abundance, and small changes in chemical environment and structure give rise to observable changes in corresponding spectra, which can be interpreted at atomic resolution. This makes it possible to apply 2D NMR spectral fingerprinting approaches directly to drug products in order to systematically characterize structure and excipient effects. Systematic collections of NMR spectra are often analyzed in terms of the changes in specifically identified peak positions, as well as changes in peak height and line widths. A complementary approach is to apply principal component analysis (PCA) directly to the matrix of spectral data, correlating spectra according to similarities and differences in their overall shapes, rather than according to parameters of individually identified peaks. This is particularly well-suited for spectra of mAbs, where some of the individual peaks might not be well resolved. Here we demonstrate the performance of the PCA method for discriminating structural variation among systematic sets of 2D NMR fingerprint spectra using the NISTmAb and illustrate how spectral variability identified by PCA may be correlated to structure.

  16. Direct evidence of single quantum dot emission from GaN islands formed at threading dislocations using nanoscale cathodoluminescence: A source of single photons in the ultraviolet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Gordon, E-mail: Gordon.Schmidt@ovgu.de; Berger, Christoph; Veit, Peter

    2015-06-22

    Intense emission from GaN islands embedded in AlN resulting from GaN/AlN quantum well growth is directly resolved by performing cathodoluminescence spectroscopy in a scanning transmission electron microscope. Line widths down to 440 μeV are measured in a wavelength region between 220 and 310 nm confirming quantum dot like electronic properties in the islands. These quantum dot states can be structurally correlated to islands of slightly enlarged thicknesses of the GaN/AlN quantum well layer preferentially formed in vicinity to dislocations. The quantum dot states exhibit single photon emission in Hanbury Brown-Twiss experiments with a clear antibunching in the second order correlation function atmore » zero time delay.« less

  17. Ease of articulation: A replication.

    PubMed

    Shuster, Linda I; Cottrill, Claire

    2015-01-01

    Researchers, as well as the lay public and the popular press, have become increasingly concerned about the lack of reproducibility of research findings. Despite this concern, research has shown that replications of previously published work comprise a very small proportion of published studies. Moreover, there are fewer published direct replications of research studies by independent investigators, and this type of replication is much less likely to confirm the results of the original research than are replications by the original investigator or conceptual replications. A search of the communication disorders research literature reveals that direct replications by independent investigators are virtually non-existent. The purpose of this project was to describe the major issues related to research reproducibility and report the results of a direct replication of a study by Locke (1972) regarding ease of articulation. Two methods for rating ease of articulation were employed. We were able to reproduce the results of the original study for the first method, obtaining a moderate positive correlation between our rankings of phoneme difficulty and Locke's rankings. We obtained a very high positive correlation between our phoneme rankings and rankings obtained in the original study for the second method. Moreover, we found a higher correlation between difficulty rankings and order of speech sound acquisition for American English than was found in the original study. Direct replication is not necessary for all studies in communication disorders, but should be considered for high impact studies, treatment studies, and those that provide data to support models and theories. The reader will be able to: (1) describe the major concerns related to the replicability of research findings; (2) describe the status of research replications in communication disorders; (3) describe how ease of articulation may relate to the order of speech sound acquisition in children; (4) list some types/areas of research that might be candidates for replication in the field of communication disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Quantitative kinetic theory of active matter

    NASA Astrophysics Data System (ADS)

    Ihle, Thomas; Chou, Yen-Liang

    2014-03-01

    Models of self-driven agents similar to the Vicsek model [Phys. Rev. Lett. 75 (1995) 1226] are studied by means of kinetic theory. In these models, particles try to align their travel directions with the average direction of their neighbours. At strong alignment a globally ordered state of collective motion forms. An Enskog-like kinetic theory is derived from the exact Chapman-Kolmogorov equation in phase space using Boltzmann's mean-field approximation of molecular chaos. The kinetic equation is solved numerically by a nonlocal Lattice-Boltzmann-like algorithm. Steep soliton-like waves are observed that lead to an abrupt jump of the global order parameter if the noise level is changed. The shape of the wave is shown to follow a novel scaling law and to quantitatively agree within 3 % with agent-based simulations at large particle speeds. This provides a mean-field mechanism to change the second-order character of the flocking transition to first order. Diagrammatic techniques are used to investigate small particle speeds, where the mean-field assumption of Molecular Chaos is invalid and where correlation effects need to be included.

  19. Stochastic Modeling of Direct Radiation Transmission in Particle-Laden Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Banko, Andrew; Villafane, Laura; Kim, Ji Hoon; Esmaily Moghadam, Mahdi; Eaton, John K.

    2017-11-01

    Direct radiation transmission in turbulent flows laden with heavy particles plays a fundamental role in systems such as clouds, spray combustors, and particle-solar-receivers. Owing to their inertia, the particles preferentially concentrate and the resulting voids and clusters lead to deviations in mean transmission from the classical Beer-Lambert law for exponential extinction. Additionally, the transmission fluctuations can exceed those of Poissonian media by an order of magnitude, which implies a gross misprediction in transmission statistics if the correlations in particle positions are neglected. On the other hand, tracking millions of particles in a turbulence simulation can be prohibitively expensive. This work presents stochastic processes as computationally cheap reduced order models for the instantaneous particle number density field and radiation transmission therein. Results from the stochastic processes are compared to Monte Carlo Ray Tracing (MCRT) simulations using the particle positions obtained from the point-particle DNS of isotropic turbulence at a Taylor Reynolds number of 150. Accurate transmission statistics are predicted with respect to MCRT by matching the mean, variance, and correlation length of DNS number density fields. Funded by the U.S. Department of Energy under Grant No. DE-NA0002373-1 and the National Science Foundation under Grant No. DGE-114747.

  20. Direct ophthalmoscopy on YouTube: analysis of instructional YouTube videos' content and approach to visualization.

    PubMed

    Borgersen, Nanna Jo; Henriksen, Mikael Johannes Vuokko; Konge, Lars; Sørensen, Torben Lykke; Thomsen, Ann Sofia Skou; Subhi, Yousif

    2016-01-01

    Direct ophthalmoscopy is well-suited for video-based instruction, particularly if the videos enable the student to see what the examiner sees when performing direct ophthalmoscopy. We evaluated the pedagogical effectiveness of instructional YouTube videos on direct ophthalmoscopy by evaluating their content and approach to visualization. In order to synthesize main themes and points for direct ophthalmoscopy, we formed a broad panel consisting of a medical student, junior and senior physicians, and took into consideration book chapters targeting medical students and physicians in general. We then systematically searched YouTube. Two authors reviewed eligible videos to assess eligibility and extract data on video statistics, content, and approach to visualization. Correlations between video statistics and contents were investigated using two-tailed Spearman's correlation. We screened 7,640 videos, of which 27 were found eligible for this study. Overall, a median of 12 out of 18 points (interquartile range: 8-14 key points) were covered; no videos covered all of the 18 points assessed. We found the most difficulties in the approach to visualization of how to approach the patient and how to examine the fundus. Time spent on fundus examination correlated with the number of views per week (Spearman's ρ=0.53; P=0.029). Videos may help overcome the pedagogical issues in teaching direct ophthalmoscopy; however, the few available videos on YouTube fail to address this particular issue adequately. There is a need for high-quality videos that include relevant points, provide realistic visualization of the examiner's view, and give particular emphasis on fundus examination.

  1. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  2. Spreading of correlations in the Falicov-Kimball model

    NASA Astrophysics Data System (ADS)

    Herrmann, Andreas J.; Antipov, Andrey E.; Werner, Philipp

    2018-04-01

    We study dynamical properties of the one- and two-dimensional Falicov-Kimball model using lattice Monte Carlo simulations. In particular, we calculate the spreading of charge correlations in the equilibrium model and after an interaction quench. The results show a reduction of the light-cone velocity with interaction strength at low temperature, while the phase velocity increases. At higher temperature, the initial spreading is determined by the Fermi velocity of the noninteracting system and the maximum range of the correlations decreases with increasing interaction strength. Charge order correlations in the disorder potential enhance the range of the correlations. We also use the numerically exact lattice Monte Carlo results to benchmark the accuracy of equilibrium and nonequilibrium dynamical cluster approximation calculations. It is shown that the bias introduced by the mapping to a periodized cluster is substantial, and that from a numerical point of view, it is more efficient to simulate the lattice model directly.

  3. Linear and non-linear bias: predictions versus measurements

    NASA Astrophysics Data System (ADS)

    Hoffmann, K.; Bel, J.; Gaztañaga, E.

    2017-02-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ˜5 per cent with respect to results from two-point correlations for different halo samples with masses between ˜1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.

  4. Combined infrared and ultraviolet-visible spectroscopy matrix-isolated carbon vapor

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Huffman, Donald R.

    1990-01-01

    Infrared and UV-visible absorption spectra have been measured on the same sample of matrix-isolated carbon vapor in order to establish correlations between absorption intensities of vibrational and electronic transitions as a function of sample annealing. A high degree of correlation has been found between the IR feature at 1998/cm recently assigned to C8 and a UV absorption feature at about 3100 A. Thus, for the first time, direct evidence is given for the assignment of one of the unknown UV-visible features of the long-studied matrix-isolated carbon vapor spectrum.

  5. Induction and quantification of collagen fiber alignment in a three-dimensional hydroxyapatite-collagen composite scaffold.

    PubMed

    Banglmaier, Richard F; Sander, Edward A; VandeVord, Pamela J

    2015-04-01

    Hydroxyapatite-collagen composite scaffolds are designed to serve as a regenerative load bearing replacement that mimics bone. However, the material properties of these scaffolds are at least an order of magnitude less than that of bone and subject to fail under physiological loading conditions. These scaffolds compositionally resemble bone but they do not possess important structural attributes such as an ordered arrangement of collagen fibers, which is a correlate to the mechanical properties in bone. Furthermore, it is unclear how much ordering of structure is satisfactory to mimic bone. Therefore, quantitative methods are needed to characterize collagen fiber alignment in these scaffolds for better correlation between the scaffold structure and the mechanical properties. A combination of extrusion and compaction was used to induce collagen fiber alignment in composite scaffolds. Collagen fiber alignment, due to extrusion and compaction, was quantified from polarized light microscopy images with a Fourier transform image processing algorithm. The Fourier transform method was capable of resolving the degree of collagen alignment from polarized light images. Anisotropy indices of the image planes ranged from 0.08 to 0.45. Increases in the degree of fiber alignment induced solely by extrusion (0.08-0.25) or compaction (0.25-0.44) were not as great as those by the combination of extrusion and compaction (0.35-0.45). Additional measures of randomness and fiber direction corroborate these anisotropy findings. This increased degree of collagen fiber alignment was induced in a preferred direction that is consistent with the extrusion direction and parallel with the compacted plane. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Assessment of the content, structure, and source of soil dissolved organic matter in the coastal wetlands of Jiaozhou Bay, China

    NASA Astrophysics Data System (ADS)

    Xi, Min; Zi, Yuanyuan; Wang, Qinggai; Wang, Sen; Cui, Guolu; Kong, Fanlong

    2018-02-01

    The contents and the spectral analysis of dissolved organic matter (DOM) in four typical wetlands, such as naked tidal, suaeda salsa, reed and spartina, were conducted to investigate the content, structure, and source of DOM in coastal wetland soil. The soil samples were obtained from Jiaozhou Bay in January, April, July, and October of 2014. Results showed that the DOM contents in soil of four typical wetland were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in horizontal direction, and decreased with the increase of soil depth on vertical section. In addition, the DOM contents changed with the seasons, in order of spring > summer > autumn > winter. The structural characteristics of DOM in Jiaozhou Bay wetland, such as aromaticity, hydrophobicity, molecular weight, polymerization degree of benzene ring carbon frame structure and so on were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in the horizontal direction. On the vertical direction, they showed a decreasing trend with the increase of soil depth. The results of three dimensional fluorescence spectra and fluorescence spectrum parameters (FI, HIX, and BIX) indicated that the DOM in Jiaozhou Bay was mainly derived from the biological activities. The contents and structure of DOM had certain relevance, but the contents and source as well as the structure and source of DOM had no significant correlation. The external pollution including domestic sewage, industrial wastewater, and aquaculture sewage affected the correlation among the content, structure and source of DOM by influencing the percentage of non-fluorescent substance in DOM and disturbing the determination of protein-like fluorescence.

  7. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina

    2005-01-01

    We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).

  8. Protein assignments without peak lists using higher-order spectra.

    PubMed

    Benison, Gregory; Berkholz, Donald S; Barbar, Elisar

    2007-12-01

    Despite advances in automating the generation and manipulation of peak lists for assigning biomolecules, there are well-known advantages to working directly with spectra: the eye is still superior to computer algorithms when it comes to picking out peak relationships from contour plots in the presence of confounding factors such as noise, overlap, and spectral artifacts. Here, we present constructs called higher-order spectra for identifying, through direct visual examination, many of the same relationships typically identified by searching peak lists, making them another addition to the set of tools (alongside peak picking and automated assignment) that can be used to solve the assignment problem. The technique is useful for searching for correlated peaks in any spectrum type. Application of this technique to novel, complete sequential assignment of two proteins (AhpFn and IC74(84-143)) is demonstrated. The program "burrow-owl" for the generation and display of higher-order spectra is available at (http://sourceforge.net/projects/burrow-owl) or from the authors.

  9. Spin Solid versus Magnetic Charge Ordered State in Artificial Honeycomb Lattice of Connected Elements

    PubMed Central

    Glavic, Artur; Summers, Brock; Dahal, Ashutosh; Kline, Joseph; Van Herck, Walter; Sukhov, Alexander; Ernst, Arthur

    2018-01-01

    Abstract The nature of magnetic correlation at low temperature in two‐dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as T → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature‐dependent micromagnetic simulations. Numerical modeling of the polarized neutron reflectometry data elucidates the temperature‐dependent evolution of spin correlation in this system. As temperature reduces to ≈7 K, the system tends to develop novel spin solid state, manifested by the alternating distribution of magnetic vortex loops of opposite chiralities. Experimental results are complemented by temperature‐dependent micromagnetic simulations that confirm the dominance of spin solid state over local magnetic charge ordered state in the artificial honeycomb lattice with connected elements. These results enable a direct investigation of novel spin solid correlation in the connected honeycomb geometry of 2D artificial structure. PMID:29721429

  10. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy.

    PubMed

    Zhang, Zhengyang; Lambrev, Petar H; Wells, Kym L; Garab, Győző; Tan, Howe-Siang

    2015-07-31

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  11. Short- and long-range magnetic order in LaMnAsO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Michael A.; Garlea, Vasile Ovidiu

    2016-02-02

    The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the Néel temperature T N = 360(1) K. Below T N the critical exponent describing the magnetic order parameter is β=0.33–0.35 , consistent with a three-dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to T SRO = 650(10) K. Morevoer, the magnetic susceptibility shows a weak anomaly at T SRO and no anomaly at T N. Analysis of the diffuse scattering data using a reverse Montemore » Carlo algorithm indicates that above T N nearly two-dimensional, short-range magnetic order is present with a correlation length of 9.3(3) Å within the Mn layers at 400 K. The inelastic scattering data reveal a spin gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasielastic) magnetic excitations emerging in the short-range ordered state. When we compared it with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above T N is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.« less

  12. Expectations Among Academic Clinicians of Inpatient Imaging Turnaround Time: Does it Correlate with Satisfaction?

    PubMed

    Chan, Keith T; Carroll, Tamara; Linnau, Ken F; Lehnert, Bruce

    2015-11-01

    Imaging report turnaround time (RTAT) is an important measure of radiology performance and has become the leading priority in customer satisfaction surveys conducted among nonradiologists, who may not be familiar with the imaging workflow. Our aim was to assess physicians' expected RTAT for commonly ordered studies and determine if satisfaction correlates with met expectations. Retrospective review of inpatient imaging was conducted at a single academic institution, and RTAT for 18,414 studies was calculated. Examinations were grouped by study type, priority, and time of day. A cross-sectional survey instrument was completed by 48 internal medicine and surgery resident physicians with questions regarding RTAT and their level of satisfaction with various examinations. Actual RTAT ranged from 1.6 to 26.0 hours, with chest radiographs and computed tomographies generally faster than magnetic resonance images and ultrasounds. Urgent (STAT) examinations and those ordered during business hours have shorter RTAT. The time for image interpretation largely contributed to the RTAT because of the lack of night-time radiology coverage. Referring physician expectations were consistently shorter than actual RTAT, ranging from 30 minutes to 24 hours. Overall satisfaction scores were inversely correlated with RTAT, with a strong correlation to the time from study order to imaging (r(2) = 0.63) and a weak correlation to the image interpretation time (r(2) = 0.17). Satisfaction scores did not correlate with whether the actual RTAT met expectations (r(2) = 0.06). Referring physician satisfaction is likely multifactorial. Although RTAT has been reported as a priority, shortening turnaround time alone may not directly improve clinician satisfaction. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  13. Study of anyon condensation and topological phase transitions from a Z4 topological phase using the projected entangled pair states approach

    NASA Astrophysics Data System (ADS)

    Iqbal, Mohsin; Duivenvoorden, Kasper; Schuch, Norbert

    2018-05-01

    We use projected entangled pair states (PEPS) to study topological quantum phase transitions. The local description of topological order in the PEPS formalism allows us to set up order parameters which measure condensation and deconfinement of anyons and serve as substitutes for conventional order parameters. We apply these order parameters, together with anyon-anyon correlation functions and some further probes, to characterize topological phases and phase transitions within a family of models based on a Z4 symmetry, which contains Z4 quantum double, toric code, double semion, and trivial phases. We find a diverse phase diagram which exhibits a variety of different phase transitions of both first and second order which we comprehensively characterize, including direct transitions between the toric code and the double semion phase.

  14. [Correlation analysis of major agronomic characters and the polysaccharide contents in Dendrobium officinale].

    PubMed

    Zhang, Lei; Zheng, Xi-Long; Qiu, Dao-Shou; Cai, Shi-Ke; Luo, Huan-Ming; Deng, Rui-Yun; Liu, Xiao-Jin

    2013-10-01

    In order to provide theoretical and technological basis for the germplasm innovation and variety breeding in Dendrobium officinale, a study of the correlation between polysaccharide content and agronomic characters was conducted. Based on the polysaccharide content determination and the agronomic characters investigation of 30 copies (110 individual plants) of Dendrobium officinale germplasm resources, the correlation between polysaccharide content and agronomic characters was analyzed via path and correlation analysis. Correlation analysis results showed that there was a significant negative correlation between average spacing and polysaccharide content, the correlation coefficient was -0.695. And the blade thickness was positively correlated with the polysaccharide content, but the correlation was not significant. The path analysis results showed that the stem length was the maximum influence factor to the polysaccharide, and it was positive effect, the direct path coefficient was 1.568. According to thess results, the polysaccharide content can be easily and intuitively estimated by the agronomic characters investigating data in the germpalsm resources screening and variety breeding. Therefore, it is a visual and practical technology guidance in quality variety breeding of Dendrobium officinale.

  15. The role of large scale motions on passive scalar transport

    NASA Astrophysics Data System (ADS)

    Dharmarathne, Suranga; Araya, Guillermo; Tutkun, Murat; Leonardi, Stefano; Castillo, Luciano

    2014-11-01

    We study direct numerical simulation (DNS) of turbulent channel flow at Reτ = 394 to investigate effect of large scale motions on fluctuating temperature field which forms a passive scalar field. Statistical description of the large scale features of the turbulent channel flow is obtained using two-point correlations of velocity components. Two-point correlations of fluctuating temperature field is also examined in order to identify possible similarities between velocity and temperature fields. The two-point cross-correlations betwen the velocity and temperature fluctuations are further analyzed to establish connections between these two fields. In addition, we use proper orhtogonal decompotion (POD) to extract most dominant modes of the fields and discuss the coupling of large scale features of turbulence and the temperature field.

  16. Characterizing the EEG correlates of exploratory behavior.

    PubMed

    Bourdaud, Nicolas; Chavarriaga, Ricardo; Galan, Ferran; Millan, José Del R

    2008-12-01

    This study aims to characterize the electroencephalography (EEG) correlates of exploratory behavior. Decision making in an uncertain environment raises a conflict between two opposing needs: gathering information about the environment and exploiting this knowledge in order to optimize the decision. Exploratory behavior has already been studied using functional magnetic resonance imaging (fMRI). Based on a usual paradigm in reinforcement learning, this study has shown bilateral activation in the frontal and parietal cortex. To our knowledge, no previous study has been done on it using EEG. The study of the exploratory behavior using EEG signals raises two difficulties. First, the labels of trial as exploitation or exploration cannot be directly derived from the subject action. In order to access this information, a model of how the subject makes his decision must be built. The exploration related information can be then derived from it. Second, because of the complexity of the task, its EEG correlates are not necessarily time locked with the action. So the EEG processing methods used should be designed in order to handle signals that shift in time across trials. Using the same experimental protocol as the fMRI study, results show that the bilateral frontal and parietal areas are also the most discriminant. This strongly suggests that the EEG signal also conveys information about the exploratory behavior.

  17. Size-dependent physicochemical and mechanical interactions in battery paste anodes of Si-microwires revealed by Fast-Fourier-Transform Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hansen, Sandra; Quiroga-González, Enrique; Carstensen, Jürgen; Adelung, Rainer; Föll, Helmut

    2017-05-01

    Perfectly aligned silicon microwire arrays show exceptionally high cycling stability with record setting (high) areal capacities of 4.25 mAh cm-2. Those wires have a special, modified length and thickness in order to perform this good. Geometry and sizes are the most important parameters of an anode to obtain batteries with high cycling stability without irreversible losses. The wires are prepared with a unique etching fabrication method, which allows to fabricate wires of very precise sizes. In order to investigate how good randomly oriented silicon wires perform in contrast to the perfect order of the array, the wires are embedded in a paste. This study reveals the fundamental correlation between geometry, mechanics and charge transfer kinetics of silicon electrodes. Using a suitable RC equivalent circuit allows to evaluate data from cyclic voltammetry and simultaneous FFT-Impedance Spectroscopy (FFT-IS), yielding in time-resolved resistances, time constants, and their direct correlation to the phase transformations. The change of the resistances during lithiation and delithiation correlates to kinetics and charge transfer mechanisms. This study demonstrates how the mechanical and physiochemical interactions at the silicon/paste interface inside the paste electrodes lead to void formation around silicon and with it to material loss and capacity fading.

  18. WESBES: A Wireless Embedded Sensor for Improving Human Comfort Metrics using Temporospatially Correlated Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joel Hewlett; Milos Manic; Craig Rieger

    2012-08-01

    When utilized properly, energy management systems (EMS) can offer significant energy savings by optimizing the efficiency of heating, ventilation, and air-conditioning (HVAC) systems. However, difficulty often arises due to the constraints imposed by the need to maintain an acceptable level of comfort for a building’s occupants. This challenge is compounded by the fact that human comfort is difficult to define in a measurable way. One way to address this problem is to provide a building manager with direct feedback from the building’s users. Still, this data is relative in nature, making it difficult to determine the actions that need tomore » be taken, and while some useful comfort correlations have been devised, such as ASHRAE’s Predicted Mean Vote index, they are rules of thumb that do not connect individual feedback with direct, diverse feedback sensing. As they are a correlation, quantifying effects of climate, age of buildings and associated defects such as draftiness, are outside the realm of this correlation. Therefore, the contribution of this paper is the Wireless Embedded Smart Block for Environment Sensing (WESBES); an affordable wireless sensor platform that allows subjective human comfort data to be directly paired with temporospatially correlated objective sensor measurements for use in EMS. The described device offers a flexible research platform for analyzing the relationship between objective and subjective occupant feedback in order to formulate more meaningful measures of human comfort. It could also offer an affordable and expandable option for real world deployment in existing EMS.« less

  19. Quantum Chemical Insight into the Interactions and Thermodynamics Present in Choline Chloride Based Deep Eutectic Solvents.

    PubMed

    Wagle, Durgesh V; Deakyne, Carol A; Baker, Gary A

    2016-07-14

    We report quantum chemical calculations performed on three popular deep eutectic solvents (DESs) in order to elucidate the molecular interactions, charge transfer interactions, and thermodynamics associated with these systems. The DESs studied comprise 1:2 choline chloride/urea (reline), 1:2 choline chloride/ethylene glycol (ethaline), and 1:1 choline chloride/malonic acid (maloline). The excellent correlation between calculated and experimental vibrational spectra allowed for identification of dominant interactions in the DES systems. The DESs were found to be stabilized by both conventional hydrogen bonds and C-H···O/C-H···π interactions between the components. The hydrogen-bonding network established in the DES is clearly distinct from that which exists within the neat hydrogen-bond donor dimer. Charge decomposition analysis indicates significant charge transfer from choline and chloride to the hydrogen-bond donor with a higher contribution from the cation, and a density of states analysis confirms the direction of the charge transfer. Consequently, the sum of the bond orders of the choline-Cl(-) interactions in the DESs correlates directly with the melting temperatures of the DESs, a correlation that offers insight into the effect of the tuning of the choline-Cl(-) interactions by the hydrogen-bond donors on the physical properties of the DESs. Finally, the differences in the vibrational entropy changes upon DES formation are consistent with the trend in the overall entropy changes upon DES formation.

  20. Oxaliplatin loaded PLAGA microspheres: design of specific release profiles.

    PubMed

    Lagarce, F; Cruaud, O; Deuschel, C; Bayssas, M; Griffon-Etienne, G; Benoit, J

    2002-08-21

    Oxaliplatin loaded PLAGA microspheres have been prepared by solvent extraction process. Parameters affecting the release kinetics in vitro have been studied in order to design specific release profiles suitable for direct intra-tumoral injection. By varying the nature and the relative proportions of different polymers we managed to prepare microspheres with good encapsulation efficiency (75-90%) and four different release profiles: zero order kinetics (type II) and the classical sigmoïd release profile with three different sizes of plateau and burst. These results, if correlated with in vivo activity, are promising to enhance effectiveness of local tumor treatment.

  1. Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences.

    PubMed

    Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria

    2018-01-26

    Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.

  2. Revisiting the Relationship between Individual Differences in Analytic Thinking and Religious Belief: Evidence That Measurement Order Moderates Their Inverse Correlation.

    PubMed

    Finley, Anna J; Tang, David; Schmeichel, Brandon J

    2015-01-01

    Prior research has found that persons who favor more analytic modes of thought are less religious. We propose that individual differences in analytic thought are associated with reduced religious beliefs particularly when analytic thought is measured (hence, primed) first. The current study provides a direct replication of prior evidence that individual differences in analytic thinking are negatively related to religious beliefs when analytic thought is measured before religious beliefs. When religious belief is measured before analytic thinking, however, the negative relationship is reduced to non-significance, suggesting that the link between analytic thought and religious belief is more tenuous than previously reported. The current study suggests that whereas inducing analytic processing may reduce religious belief, more analytic thinkers are not necessarily less religious. The potential for measurement order to inflate the inverse correlation between analytic thinking and religious beliefs deserves additional consideration.

  3. Revisiting the Relationship between Individual Differences in Analytic Thinking and Religious Belief: Evidence That Measurement Order Moderates Their Inverse Correlation

    PubMed Central

    Finley, Anna J.; Tang, David; Schmeichel, Brandon J.

    2015-01-01

    Prior research has found that persons who favor more analytic modes of thought are less religious. We propose that individual differences in analytic thought are associated with reduced religious beliefs particularly when analytic thought is measured (hence, primed) first. The current study provides a direct replication of prior evidence that individual differences in analytic thinking are negatively related to religious beliefs when analytic thought is measured before religious beliefs. When religious belief is measured before analytic thinking, however, the negative relationship is reduced to non-significance, suggesting that the link between analytic thought and religious belief is more tenuous than previously reported. The current study suggests that whereas inducing analytic processing may reduce religious belief, more analytic thinkers are not necessarily less religious. The potential for measurement order to inflate the inverse correlation between analytic thinking and religious beliefs deserves additional consideration. PMID:26402334

  4. Silk industry and carbon footprint mitigation

    NASA Astrophysics Data System (ADS)

    Giacomin, A. M.; Garcia, J. B., Jr.; Zonatti, W. F.; Silva-Santos, M. C.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    Currently there is a concern with issues related to sustainability and more conscious consumption habits. The carbon footprint measures the total amount of greenhouse gas (GHG) emissions produced directly and indirectly by human activities and is usually expressed in tonnes of carbon dioxide (CO2) equivalents. The present study takes into account data collected in scientific literature regarding the carbon footprint, garments produced with silk fiber and the role of mulberry as a CO2 mitigation tool. There is an indication of a positive correlation between silk garments and carbon footprint mitigation when computed the cultivation of mulberry trees in this calculation. A field of them mitigates CO2 equivalents in a proportion of 735 times the weight of the produced silk fiber by the mulberry cultivated area. At the same time, additional researches are needed in order to identify and evaluate methods to advertise this positive correlation in order to contribute to a more sustainable fashion industry.

  5. Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences

    NASA Astrophysics Data System (ADS)

    Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria

    2018-01-01

    Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.

  6. Block correlated second order perturbation theory with a generalized valence bond reference function.

    PubMed

    Xu, Enhua; Li, Shuhua

    2013-11-07

    The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a "multi-orbital" block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Mo̸ller-Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods.

  7. Measuring Fisher Information Accurately in Correlated Neural Populations

    PubMed Central

    Kohn, Adam; Pouget, Alexandre

    2015-01-01

    Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively. PMID:26030735

  8. Report on objective ride quality evaluation

    NASA Technical Reports Server (NTRS)

    Wambold, J. C.; Park, W. H.

    1974-01-01

    The correlation of absorbed power as an objective ride measure to the subjective evaluation for the bus data was investigated. For some individual bus rides the correlations were poor, but when a sufficient number of rides was used to give reasonable sample base, an excellent correlation was obtained. The following logarithmical function was derived: S = 1.7245 1n (39.6849 AP), where S = one subjective rating of the ride; and AP = the absorbed power in watts. A six-degree-of-freedom method developed for aircraft data was completed. Preliminary correlation of absorbed power with ISO standards further enhances the bus ride and absorbed power correlation numbers since the AP's obtained are of the same order of magnitude for both correlations. While it would then appear that one could just use ISO standards, there is no way to add the effect of three degrees of freedom. The absorbed power provides a method of adding the effects due to the three major directions plus the pitch and roll.

  9. Implementation and Initial Testing of Advanced Processing and Analysis Algorithms for Correlated Neutron Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santi, Peter Angelo; Cutler, Theresa Elizabeth; Favalli, Andrea

    In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects inmore » all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.« less

  10. Non-local order in Mott insulators, duality and Wilson loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rath, Steffen Patrick, E-mail: steffen.rath@ph.tum.de; Simeth, Wolfgang; Endres, Manuel

    2013-07-15

    It is shown that the Mott insulating and superfluid phases of bosons in an optical lattice may be distinguished by a non-local ‘parity order parameter’ which is directly accessible via single site resolution imaging. In one dimension, the lattice Bose model is dual to a classical interface roughening problem. We use known exact results from the latter to prove that the parity order parameter exhibits long range order in the Mott insulating phase, consistent with recent experiments by Endres et al. [M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Gross, L. Mazza, M.C. Bañuls, L. Pollet, I.more » Bloch, et al., Science 334 (2011) 200]. In two spatial dimensions, the parity order parameter can be expressed in terms of an equal time Wilson loop of a non-trivial U(1) gauge theory in 2+1 dimensions which exhibits a transition between a Coulomb and a confining phase. The negative logarithm of the parity order parameter obeys a perimeter law in the Mott insulator and is enhanced by a logarithmic factor in the superfluid. -- Highlights: •Number statistics of cold atoms in optical lattices show non-local correlations. •These correlations are measurable via single site resolution imaging. •Incompressible phases exhibit an area law in particle number fluctuations. •This leads to long-range parity order of Mott-insulators in one dimension. •Parity order in 2d is connected with a Wilson-loop in a lattice gauge theory.« less

  11. Statistical properties of a filtered Poisson process with additive random noise: distributions, correlations and moment estimation

    NASA Astrophysics Data System (ADS)

    Theodorsen, A.; E Garcia, O.; Rypdal, M.

    2017-05-01

    Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type.

  12. Correlation between experimental human and murine skin sensitization induction thresholds.

    PubMed

    Api, Anne Marie; Basketter, David; Lalko, Jon

    2015-01-01

    Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the "EC3" value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).

  13. Neural activity in the posterior superior temporal region during eye contact perception correlates with autistic traits.

    PubMed

    Hasegawa, Naoya; Kitamura, Hideaki; Murakami, Hiroatsu; Kameyama, Shigeki; Sasagawa, Mutsuo; Egawa, Jun; Endo, Taro; Someya, Toshiyuki

    2013-08-09

    The present study investigated the relationship between neural activity associated with gaze processing and autistic traits in typically developed subjects using magnetoencephalography. Autistic traits in 24 typically developed college students with normal intelligence were assessed using the Autism Spectrum Quotient (AQ). The Minimum Current Estimates method was applied to estimate the cortical sources of magnetic responses to gaze stimuli. These stimuli consisted of apparent motion of the eyes, displaying direct or averted gaze motion. Results revealed gaze-related brain activations in the 150-250 ms time window in the right posterior superior temporal sulcus (pSTS), and in the 150-450 ms time window in medial prefrontal regions. In addition, the mean amplitude in the 150-250 ms time window in the right pSTS region was modulated by gaze direction, and its activity in response to direct gaze stimuli correlated with AQ score. pSTS activation in response to direct gaze is thought to be related to higher-order social processes. Thus, these results suggest that brain activity linking eye contact and social signals is associated with autistic traits in a typical population. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Surface shear inviscidity of soluble surfactants

    PubMed Central

    Zell, Zachary A.; Nowbahar, Arash; Mansard, Vincent; Leal, L. Gary; Deshmukh, Suraj S.; Mecca, Jodi M.; Tucker, Christopher J.; Squires, Todd M.

    2014-01-01

    Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 103–104 times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants. PMID:24563383

  15. Comparison of cumulant expansion and q-space imaging estimates for diffusional kurtosis in brain.

    PubMed

    Mohanty, Vaibhav; McKinnon, Emilie T; Helpern, Joseph A; Jensen, Jens H

    2018-05-01

    To compare estimates for the diffusional kurtosis in brain as obtained from a cumulant expansion (CE) of the diffusion MRI (dMRI) signal and from q-space (QS) imaging. For the CE estimates of the kurtosis, the CE was truncated to quadratic order in the b-value and fit to the dMRI signal for b-values from 0 up to 2000s/mm 2 . For the QS estimates, b-values ranging from 0 up to 10,000s/mm 2 were used to determine the diffusion displacement probability density function (dPDF) via Stejskal's formula. The kurtosis was then calculated directly from the second and fourth order moments of the dPDF. These two approximations were studied for in vivo human data obtained on a 3T MRI scanner using three orthogonal diffusion encoding directions. The whole brain mean values for the CE and QS kurtosis estimates differed by 16% or less in each of the considered diffusion encoding directions, and the Pearson correlation coefficients all exceeded 0.85. Nonetheless, there were large discrepancies in many voxels, particularly those with either very high or very low kurtoses relative to the mean values. Estimates of the diffusional kurtosis in brain obtained using CE and QS approximations are strongly correlated, suggesting that they encode similar information. However, for the choice of b-values employed here, there may be substantial differences, depending on the properties of the diffusion microenvironment in each voxel. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Quantifying Direct and Indirect Effects of Elevated CO2 on Ecosystem Response

    NASA Astrophysics Data System (ADS)

    Fatichi, S.; Leuzinger, S.; Paschalis, A.; Donnellan-Barraclough, A.; Hovenden, M. J.; Langley, J. A.

    2015-12-01

    Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation, evapotranspiration (ET) and ultimately plant growth. Direct leaf biochemical effects have been widely investigated, while indirect effects, although documented, are very difficult to quantify in experiments. We hypothesize that the interaction of direct and indirect effects is a possible reason for conflicting results concerning the magnitude of CO2 fertilization effects across different climates and ecosystems. A mechanistic ecohydrological model (Tethys-Chloris) is used to investigate the relative contribution of direct (through plant physiology) and indirect (via stomatal closure and thus soil moisture, and changes in Leaf Area Index, LAI) effects of elevated CO2 across a number of ecosystems. We specifically ask in which ecosystems and climate indirect effects are expected to be largest. Data and boundary conditions from flux-towers and free air CO2 enrichment (FACE) experiments are used to force the model and evaluate its performance. Numerical results suggest that indirect effects of elevated CO2, through water savings and increased LAI, are very significant and sometimes larger than direct effects. Indirect effects tend to be considerably larger in water-limited ecosystems, while direct effects correlate positively with mean air temperature. Increasing CO2 from 375 to 550 ppm causes a total effect on Net Primary Production in the order of 15 to 40% and on ET from 0 to -8%, depending on climate and ecosystem type. The total CO2 effect has a significant negative correlation with the wetness index and positive correlation with vapor pressure deficit. These results provide a more general mechanistic understanding of relatively short-term (less than 20 years) implications of elevated CO2 on ecosystem response and suggest plausible magnitudes for the expected changes.

  17. Direct ophthalmoscopy on YouTube: analysis of instructional YouTube videos’ content and approach to visualization

    PubMed Central

    Borgersen, Nanna Jo; Henriksen, Mikael Johannes Vuokko; Konge, Lars; Sørensen, Torben Lykke; Thomsen, Ann Sofia Skou; Subhi, Yousif

    2016-01-01

    Background Direct ophthalmoscopy is well-suited for video-based instruction, particularly if the videos enable the student to see what the examiner sees when performing direct ophthalmoscopy. We evaluated the pedagogical effectiveness of instructional YouTube videos on direct ophthalmoscopy by evaluating their content and approach to visualization. Methods In order to synthesize main themes and points for direct ophthalmoscopy, we formed a broad panel consisting of a medical student, junior and senior physicians, and took into consideration book chapters targeting medical students and physicians in general. We then systematically searched YouTube. Two authors reviewed eligible videos to assess eligibility and extract data on video statistics, content, and approach to visualization. Correlations between video statistics and contents were investigated using two-tailed Spearman’s correlation. Results We screened 7,640 videos, of which 27 were found eligible for this study. Overall, a median of 12 out of 18 points (interquartile range: 8–14 key points) were covered; no videos covered all of the 18 points assessed. We found the most difficulties in the approach to visualization of how to approach the patient and how to examine the fundus. Time spent on fundus examination correlated with the number of views per week (Spearman’s ρ=0.53; P=0.029). Conclusion Videos may help overcome the pedagogical issues in teaching direct ophthalmoscopy; however, the few available videos on YouTube fail to address this particular issue adequately. There is a need for high-quality videos that include relevant points, provide realistic visualization of the examiner’s view, and give particular emphasis on fundus examination. PMID:27574393

  18. Non-parametric directionality analysis - Extension for removal of a single common predictor and application to time series.

    PubMed

    Halliday, David M; Senik, Mohd Harizal; Stevenson, Carl W; Mason, Rob

    2016-08-01

    The ability to infer network structure from multivariate neuronal signals is central to computational neuroscience. Directed network analyses typically use parametric approaches based on auto-regressive (AR) models, where networks are constructed from estimates of AR model parameters. However, the validity of using low order AR models for neurophysiological signals has been questioned. A recent article introduced a non-parametric approach to estimate directionality in bivariate data, non-parametric approaches are free from concerns over model validity. We extend the non-parametric framework to include measures of directed conditional independence, using scalar measures that decompose the overall partial correlation coefficient summatively by direction, and a set of functions that decompose the partial coherence summatively by direction. A time domain partial correlation function allows both time and frequency views of the data to be constructed. The conditional independence estimates are conditioned on a single predictor. The framework is applied to simulated cortical neuron networks and mixtures of Gaussian time series data with known interactions. It is applied to experimental data consisting of local field potential recordings from bilateral hippocampus in anaesthetised rats. The framework offers a non-parametric approach to estimation of directed interactions in multivariate neuronal recordings, and increased flexibility in dealing with both spike train and time series data. The framework offers a novel alternative non-parametric approach to estimate directed interactions in multivariate neuronal recordings, and is applicable to spike train and time series data. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Estimation of heat transfer coefficients for biomass particles by direct numerical simulation using microstructured particle models in the Laminar regime

    DOE PAGES

    Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.; ...

    2016-11-08

    Here, direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positionedmore » in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.« less

  20. Estimation of heat transfer coefficients for biomass particles by direct numerical simulation using microstructured particle models in the Laminar regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.

    Here, direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positionedmore » in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.« less

  1. Injury Source and Correlation Analysis of Riders in Car-Electric Bicycle Accidents.

    PubMed

    Zou, Tiefang; Yi, Liang; Cai, Ming; Hu, Lin; Li, Yuelin

    2018-01-01

    The knowledge about the injury source and correlation of riders in car-electric bicycle accident will be helpful in the cross validation of traces and vehicle safety design. In order to know more information about such kind of knowledge, 57 true car-electric bicycle accidents were reconstructed by PC-Crash and then data on injury information of riders were collected directly from the reconstructed cases. These collected data were validated by some existing research results firstly, and then 4 abnormal cases were deleted according to the statistical method. Finally, conclusions can be obtained according to the data obtained from the remaining 53 cases. Direct injuries of the head and right leg are from the road pavement upon low speed; the source laws of indirect head injuries are not obvious. Upon intermediate and high speed, the injuries of the above parts are from automobiles. Injuries of the left leg, femur, and right knee are from automobiles; left knee injuries are from automobiles, the road pavement and automobiles, respectively, upon low, intermediate, and high speed. The source laws of indirect torso injuries are not obvious upon intermediate and low speed, which are from automobiles upon high speed, while direct torso injuries are from the road pavement. And there is no high correlation between all parts of the injury of riders. The largest correlation coefficient was the head-left femur and left femur-right femur, which was 0.647, followed by the head-right femur (0.638) and head-torso which was 0.617.

  2. Hospital nurses' individual priorities, internal psychological states and work motivation.

    PubMed

    Toode, K; Routasalo, P; Helminen, M; Suominen, T

    2014-09-01

    This study looks to describe the relationships between hospital nurses' individual priorities, internal psychological states and their work motivation. Connections between hospital nurses' work-related needs, values and work motivation are essential for providing safe and high quality health care. However, there is insufficient empirical knowledge concerning these connections for the practice development. A cross-sectional empirical research study was undertaken. A total of 201 registered nurses from all types of Estonian hospitals filled out an electronic self-reported questionnaire. Descriptive statistics, Mann-Whitney, Kruskal-Wallis and Spearman's correlation were used for data analysis. In individual priorities, higher order needs strength were negatively correlated with age and duration of service. Regarding nurses' internal psychological states, central hospital nurses had less sense of meaningfulness of work. Nurses' individual priorities (i.e. their higher order needs strength and shared values with the organization) correlated with their work motivation. Their internal psychological states (i.e. their experienced meaningfulness of work, experienced responsibility for work outcomes and their knowledge of results) correlated with intrinsic work motivation. Nurses who prioritize their higher order needs are more motivated to work. The more their own values are compatible with those of the organization, the more intrinsically motivated they are likely to be. Nurses' individual achievements, autonomy and training are key factors which influence their motivation to work. The small sample size and low response rate of the study limit the direct transferability of the findings to the wider nurse population, so further research is needed. This study highlights the need and importance to support nurses' professional development and self-determination, in order to develop and retain motivated nurses. It also indicates a need to value both nurses and nursing in healthcare policy and management. © 2014 International Council of Nurses.

  3. Lateral heterogeneity and azimuthal anistropy of the upper mantle: Love and Rayleigh waves 100-250 sec

    NASA Technical Reports Server (NTRS)

    Tanimoto, T.; Anderson, D. L.

    1983-01-01

    The lateral heterogeneity and apparent anisotropy of the upper mantle are studied by measuring Rayleigh and Love wave phase velocities in the period range 100-250 sec. Spherical harmonic descriptions of the lateral heterogeneity are obtained for order and degree up to 1=m=10. Slow regions are evident at the East Pacific rise, northeast Africa, Tibet, Tasman sea, southwestern North America and triple junctions in the Northern Atlantic and Indian oceans. Fast regions occur in Australia, western Pacific and the eastern Atlantic. Details which are not evident in previous studies include two fast regions in the central Pacific and the subduction zone in the Scotia Arc region. Inversion for azimuthal dependence showed (1) little correlation between the fast phase velocity directions and the plate motion vector in plate interiors, but (2) correlation of the fast direction with the perpendicular direction to trenches and ridges. Phase velocity is high when waves propagate perpendicular to these structures. Severe tradeoffs exist between heterogeneity and azimuthal dependence because of the yet unsatisfactory path coverage.

  4. Lateral heterogeneity and azimuthal anisotropy of the upper mantle - Love and Rayleigh waves 100-250 sec

    NASA Technical Reports Server (NTRS)

    Tanimoto, T.; Anderson, D. L.

    1985-01-01

    The lateral heterogeneity and apparent anisotropy of the upper mantle are studied by measuring Rayleigh and Love wave phase velocities in the period range 100-250 sec. Spherical harmonic descriptions of the lateral heterogeneity are obtained for order and degree up to 1=m=10. Slow regions are evident at the East Pacific rise, northeast Africa, Tibet, Tasman sea, southwestern North America and triple junctions in the Northern Atlantic and Indian oceans. Fast regions occur in Australia, western Pacific and the eastern Atlantic. Details which are not evident in previous studies include two fast regions in the central Pacific and the subduction zone in the Scotia Arc region. Inversion for azimuthal dependence showed (1) little correlation between the fast phase velocity directions and the plate motion vector in plate interiors, but (2) correlation of the fast direction with the perpendicular direction to trenches and ridges. Phase velocity is high when waves propagate perpendicular to these structures. Severe tradeoffs exist between heterogeneity and azimuthal dependence because of the yet unsatisfactory path coverage.

  5. Birth order, self-concept, and participation in dangerous sports.

    PubMed

    Seff, M A; Gecas, V; Frey, J H

    1993-03-01

    We examined the effect of birth order on participation in dangerous sports, using data from a mail survey of 841 members of the United States Parachute Association drawn from the membership list of over 18,000; 52% (N = 436) responded. The questionnaires included detailed information on participation in leisure activities, background characteristics, reasons for parachuting, and self-concept; answers were obtained from an overwhelmingly middle-class, White, male, young, and college educated sample. The findings (based on descriptive statistics, correlations, and regression analysis) did not support our expectations regarding birth order and participation in dangerous sports. Several were even in opposite direction to our expectations. We did find some support for our expectation that self-efficacy would be positively related to participation in dangerous sports, but not for our expectation that self-efficacy would be related to birth order. We concluded that birth order continues to be a frustrating variable in studies of socialization.

  6. Self-Organized Dynamic Flocking Behavior from a Simple Deterministic Map

    NASA Astrophysics Data System (ADS)

    Krueger, Wesley

    2007-10-01

    Coherent motion exhibiting large-scale order, such as flocking, swarming, and schooling behavior in animals, can arise from simple rules applied to an initial random array of self-driven particles. We present a completely deterministic dynamic map that exhibits emergent, collective, complex motion for a group of particles. Each individual particle is driven with a constant speed in two dimensions adopting the average direction of a fixed set of non-spatially related partners. In addition, the particle changes direction by π as it reaches a circular boundary. The dynamical patterns arising from these rules range from simple circular-type convective motion to highly sophisticated, complex, collective behavior which can be easily interpreted as flocking, schooling, or swarming depending on the chosen parameters. We present the results as a series of short movies and we also explore possible order parameters and correlation functions capable of quantifying the resulting coherence.

  7. Top quark polarization and T-odd spin correlations as tools for testing (non) Standard Model predictions

    NASA Astrophysics Data System (ADS)

    Bernreuther, W.; Ma, J. P.; Schroeder, T.

    In this paper a number of T-odd spin-momentum correlations are defined for t and t-bar quarks and directly measurable correlations involving the momenta of the charged leptons and/or b jets from t and t-bar decay are identified. It concentrates on observables which can be classified as being even under a CP symmetry transformation in the case of e(sup +)e(sup -) yields tt-bar X or pp-bar yields tt-bar X (unpolarized or transversely polarized beams). These correlations project onto absorptive parts of the scattering matrix which are induced by CP-conserving interactions. In order to estimate the effects of the Standard Model interactions the Quantum Chromodynamics and Higgs boson contributions were calculated to a number of these observables. Several of them are considered to be useful tools for a detailed study of the tt-bar system at future hadron colliders.

  8. A stochastic-dynamic model for global atmospheric mass field statistics

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Balgovind, R.; Kalnay-Rivas, E.

    1981-01-01

    A model that yields the spatial correlation structure of atmospheric mass field forecast errors was developed. The model is governed by the potential vorticity equation forced by random noise. Expansion in spherical harmonics and correlation function was computed analytically using the expansion coefficients. The finite difference equivalent was solved using a fast Poisson solver and the correlation function was computed using stratified sampling of the individual realization of F(omega) and hence of phi(omega). A higher order equation for gamma was derived and solved directly in finite differences by two successive applications of the fast Poisson solver. The methods were compared for accuracy and efficiency and the third method was chosen as clearly superior. The results agree well with the latitude dependence of observed atmospheric correlation data. The value of the parameter c sub o which gives the best fit to the data is close to the value expected from dynamical considerations.

  9. Effect of Correlated Precision Errors on Uncertainty of a Subsonic Venturi Calibration

    NASA Technical Reports Server (NTRS)

    Hudson, S. T.; Bordelon, W. J., Jr.; Coleman, H. W.

    1996-01-01

    An uncertainty analysis performed in conjunction with the calibration of a subsonic venturi for use in a turbine test facility produced some unanticipated results that may have a significant impact in a variety of test situations. Precision uncertainty estimates using the preferred propagation techniques in the applicable American National Standards Institute/American Society of Mechanical Engineers standards were an order of magnitude larger than precision uncertainty estimates calculated directly from a sample of results (discharge coefficient) obtained at the same experimental set point. The differences were attributable to the effect of correlated precision errors, which previously have been considered negligible. An analysis explaining this phenomenon is presented. The article is not meant to document the venturi calibration, but rather to give a real example of results where correlated precision terms are important. The significance of the correlated precision terms could apply to many test situations.

  10. Wall-based identification of coherent structures in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Sanmiguel Vila, C.; Flores, O.

    2018-04-01

    During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.

  11. Radar correlated imaging for extended target by the combination of negative exponential restraint and total variation

    NASA Astrophysics Data System (ADS)

    Qian, Tingting; Wang, Lianlian; Lu, Guanghua

    2017-07-01

    Radar correlated imaging (RCI) introduces the optical correlated imaging technology to traditional microwave imaging, which has raised widespread concern recently. Conventional RCI methods neglect the structural information of complex extended target, which makes the quality of recovery result not really perfect, thus a novel combination of negative exponential restraint and total variation (NER-TV) algorithm for extended target imaging is proposed in this paper. The sparsity is measured by a sequential order one negative exponential function, then the 2D total variation technique is introduced to design a novel optimization problem for extended target imaging. And the proven alternating direction method of multipliers is applied to solve the new problem. Experimental results show that the proposed algorithm could realize high resolution imaging efficiently for extended target.

  12. Ionization energies and electron affinities from a random-phase-approximation many-body Green's-function method including exchange interactions

    NASA Astrophysics Data System (ADS)

    Heßelmann, Andreas

    2017-06-01

    A many-body Green's-function method employing an infinite order summation of ring and exchange-ring contributions to the self-energy is presented. The individual correlation and relaxation contributions to the quasiparticle energies are calculated using an iterative scheme which utilizes density fitting of the particle-hole, particle-particle and hole-hole densities. It is shown that the ionization energies and electron affinities of this approach agree better with highly accurate coupled-cluster singles and doubles with perturbative triples energy difference results than those obtained with second-order Green's-function approaches. An analysis of the correlation and relaxation terms of the self-energy for the direct- and exchange-random-phase-approximation (RPA) Green's-function methods shows that the inclusion of exchange interactions leads to a reduction of the two contributions in magnitude. These differences, however, strongly cancel each other when summing the individual terms to the quasiparticle energies. Due to this, the direct- and exchange-RPA methods perform similarly for the description of ionization energies (IPs) and electron affinities (EAs). The coupled-cluster reference IPs and EAs, if corrected to the adiabatic energy differences between the neutral and charged molecules, were shown to be in very good agreement with experimental measurements.

  13. Investigating Non-Equilibrium Fluctuations of Nanocolloids in a Magnetic Field Using Direct Imaging Methods

    NASA Astrophysics Data System (ADS)

    Rice, Ashley; Oprisan, Ana; Oprisan, Sorinel; Rice-Oprisan College of Charleston Team

    Nanoparticles of iron oxide have a high surface area and can be controlled by an external magnetic field. Since they have a fast response to the applied magnetic field, these systems have been used for numerous in vivo applications, such as MRI contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, drug delivery, and cell separation. We performed three direct imaging experiments in order to investigate the concentration-driven fluctuations using magnetic nanoparticles in the absence and in the presence of magnetic field. Our direct imaging experimental setup involved a glass cell filled with magnetic nanocolloidal suspension and water with the concentration gradient oriented against the gravitational field and a superluminescent diode (SLD) as the light source. Nonequilibrium concentration-driven fluctuations were recorded using a direct imaging technique. We used a dynamic structure factor algorithm for image processing in order to compute the structure factor and to find the power law exponents. We saw evidence of large concentration fluctuations and permanent magnetism. Further research will use the correlation time to approximate the diffusion coefficient for the free diffusion experiment. Funded by College of Charleston Department of Undergraduate Research and Creative Activities SURF grant.

  14. Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene.

    PubMed

    Hunt, B M; Li, J I A; Zibrov, A A; Wang, L; Taniguchi, T; Watanabe, K; Hone, J; Dean, C R; Zaletel, M; Ashoori, R C; Young, A F

    2017-10-16

    The high magnetic field electronic structure of bilayer graphene is enhanced by the spin, valley isospin, and an accidental orbital degeneracy, leading to a complex phase diagram of broken symmetry states. Here, we present a technique for measuring the layer-resolved charge density, from which we directly determine the valley and orbital polarization within the zero energy Landau level. Layer polarization evolves in discrete steps across 32 electric field-tuned phase transitions between states of different valley, spin, and orbital order, including previously unobserved orbitally polarized states stabilized by skew interlayer hopping. We fit our data to a model that captures both single-particle and interaction-induced anisotropies, providing a complete picture of this correlated electron system. The resulting roadmap to symmetry breaking paves the way for deterministic engineering of fractional quantum Hall states, while our layer-resolved technique is readily extendable to other two-dimensional materials where layer polarization maps to the valley or spin quantum numbers.The phase diagram of bilayer graphene at high magnetic fields has been an outstanding question, with orders possibly between multiple internal quantum degrees of freedom. Here, Hunt et al. report the measurement of the valley and orbital order, allowing them to directly reconstruct the phase diagram.

  15. Development of an Empirical Methods for Predicting Jet Mixing Noise of Cold Flow Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Russell, James W.

    1999-01-01

    This report presents an empirical method for predicting the jet mixing noise levels of cold flow rectangular jets. The report presents a detailed analysis of the methodology used in development of the prediction method. The empirical correlations used are based on narrow band acoustic data for cold flow rectangular model nozzle tests conducted in the NASA Langley Jet Noise Laboratory. There were 20 separate nozzle test operating conditions. For each operating condition 60 Hz bandwidth microphone measurements were made over a frequency range from 0 to 60,000 Hz. Measurements were performed at 16 polar directivity angles ranging from 45 degrees to 157.5 degrees. At each polar directivity angle, measurements were made at 9 azimuth directivity angles. The report shows the methods employed to remove screech tones and shock noise from the data in order to obtain the jet mixing noise component. The jet mixing noise was defined in terms of one third octave band spectral content, polar and azimuth directivity, and overall power level. Empirical correlations were performed over the range of test conditions to define each of these jet mixing noise parameters as a function of aspect ratio, jet velocity, and polar and azimuth directivity angles. The report presents the method for predicting the overall power level, the average polar directivity, the azimuth directivity and the location and shape of the spectra for jet mixing noise of cold flow rectangular jets.

  16. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    PubMed

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  17. Genetic parameters for body weight from birth to calving and associations between weights with test-day, health, and female fertility traits.

    PubMed

    Yin, Tong; König, Sven

    2018-03-01

    A data set including 57,868 records for calf birth weight (CABW) and 9,462 records for weight at first insemination (IBW) were used for the estimation of direct and maternal genetic effects in Holstein Friesian dairy cattle. Furthermore, CABW and IBW were correlated with test-day production records and health traits in first-lactation cows, and with nonreturn rates in heifers. Health traits considered overall disease categories from the International Committee for Animal Recording diagnosis key, including the general disease status, diarrhea, respiratory diseases, mastitis, claw disorders, female fertility disorders, and metabolic disorders. For single-trait measurements of CABW and IBW, animal models with maternal genetic effects were applied. The direct heritability was 0.47 for CABW and 0.20 for IBW, and the direct genetic correlation between CABW and IBW was 0.31. A moderate maternal heritability (0.19) was identified for CABW, but the maternal genetic effect was close to zero for IBW. The correlation between direct and maternal genetic effects was antagonistic for CABW (-0.39) and for IBW (-0.24). In bivariate animal models, only weak genetic and phenotypic correlations were identified between CABW and IBW with either test-day production or health traits in early lactation. Apart from metabolic disorders, there was a general tendency for increasing disease susceptibilities with increasing CABW. The genetic correlation between IBW and nonreturn rates in heifers after 56 d and after 90 d was slightly positive (0.18), but close to zero when correlating nonreturn rates with CABW. For the longitudinal BW structure from birth to the age of 24 mo, random regression models with the time-dependent covariate "age in months" were applied. Evaluation criteria (Bayesian information criterion and residual variances) suggested Legendre polynomials of order 3 to modeling the longitudinal body weight (BW) structure. Direct heritabilities around birth and insemination dates were slightly larger than estimates for CABW and IBW from the single-trait models, but maternal heritabilities were exactly the same from both models. Genetic correlations between BW were close to 1 for neighboring age classes, but decreased with increasing time spans. The genetic correlation between BW at d 0 (birth date) and at 24 mo was even negative (-0.20). Random regression model estimates confirmed the antagonistic relationship between direct and maternal genetic effects, especially during calfhood. This study based on a large data set in dairy cattle confirmed genetic parameters and (co)variance components for BW as identified in beef cattle populations. However, BW records from an early stage of life were inappropriate early predictors for dairy cow health and productivity. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Experimental characterization of a quantum many-body system via higher-order correlations.

    PubMed

    Schweigler, Thomas; Kasper, Valentin; Erne, Sebastian; Mazets, Igor; Rauer, Bernhard; Cataldini, Federica; Langen, Tim; Gasenzer, Thomas; Berges, Jürgen; Schmiedmayer, Jörg

    2017-05-17

    Quantum systems can be characterized by their correlations. Higher-order (larger than second order) correlations, and the ways in which they can be decomposed into correlations of lower order, provide important information about the system, its structure, its interactions and its complexity. The measurement of such correlation functions is therefore an essential tool for reading, verifying and characterizing quantum simulations. Although higher-order correlation functions are frequently used in theoretical calculations, so far mainly correlations up to second order have been studied experimentally. Here we study a pair of tunnel-coupled one-dimensional atomic superfluids and characterize the corresponding quantum many-body problem by measuring correlation functions. We extract phase correlation functions up to tenth order from interference patterns and analyse whether, and under what conditions, these functions factorize into correlations of lower order. This analysis characterizes the essential features of our system, the relevant quasiparticles, their interactions and topologically distinct vacua. From our data we conclude that in thermal equilibrium our system can be seen as a quantum simulator of the sine-Gordon model, relevant for diverse disciplines ranging from particle physics to condensed matter. The measurement and evaluation of higher-order correlation functions can easily be generalized to other systems and to study correlations of any other observable such as density, spin and magnetization. It therefore represents a general method for analysing quantum many-body systems from experimental data.

  19. Modelling of Technological Solutions to 4th Generation DH Systems

    NASA Astrophysics Data System (ADS)

    Vigants, Edgars; Prodanuks, Toms; Vigants, Girts; Veidenbergs, Ivars; Blumberga, Dagnija

    2017-11-01

    Flue gas evaporation and condensing processes are investigated in a direct contact heat exchanger - condensing unit, which is installed after a furnace. By using equations describing processes of heat and mass transfer, as well as correlation coherences for determining wet gas parameters, a model is formed to create a no-filling, direct contact heat exchanger. Results of heating equipment modelling and experimental research on the gas condensing unit show, that the capacity of the heat exchanger increases, when return temperature of the district heating network decreases. In order to explain these alterations in capacity, the character of the changes in water vapour partial pressure, in the propelling force of mass transfer, in gas and water temperatures and in the determining parameters of heat transfer are used in this article. The positive impact on the direct contact heat exchanger by the decreased district heating (DH) network return temperature shows that introduction of the 4th generation DH system increases the energy efficiency of the heat exchanger. In order to make an assessment, the methodology suggested in the paper can be used in each particular situation.

  20. Statistics of spatial derivatives of velocity and pressure in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Vreman, A. W.; Kuerten, J. G. M.

    2014-08-01

    Statistical profiles of the first- and second-order spatial derivatives of velocity and pressure are reported for turbulent channel flow at Reτ = 590. The statistics were extracted from a high-resolution direct numerical simulation. To quantify the anisotropic behavior of fine-scale structures, the variances of the derivatives are compared with the theoretical values for isotropic turbulence. It is shown that appropriate combinations of first- and second-order velocity derivatives lead to (directional) viscous length scales without explicit occurrence of the viscosity in the definitions. To quantify the non-Gaussian and intermittent behavior of fine-scale structures, higher-order moments and probability density functions of spatial derivatives are reported. Absolute skewnesses and flatnesses of several spatial derivatives display high peaks in the near wall region. In the logarithmic and central regions of the channel flow, all first-order derivatives appear to be significantly more intermittent than in isotropic turbulence at the same Taylor Reynolds number. Since the nine variances of first-order velocity derivatives are the distinct elements of the turbulence dissipation, the budgets of these nine variances are shown, together with the budget of the turbulence dissipation. The comparison of the budgets in the near-wall region indicates that the normal derivative of the fluctuating streamwise velocity (∂u'/∂y) plays a more important role than other components of the fluctuating velocity gradient. The small-scale generation term formed by triple correlations of fluctuations of first-order velocity derivatives is analyzed. A typical mechanism of small-scale generation near the wall (around y+ = 1), the intensification of positive ∂u'/∂y by local strain fluctuation (compression in normal and stretching in spanwise direction), is illustrated and discussed.

  1. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yingchuan; College of Mathematics and Physics, University of South China, Hengyang 421001; Kuang Leman

    2011-05-15

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that themore » visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.« less

  2. Graphene: A partially ordered non-periodic solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Dongshan; Wang, Feng, E-mail: fengwang@uark.edu

    2014-10-14

    Molecular dynamics simulations were performed to study the structural features of graphene over a wide range of temperatures from 50 to 4000 K using the PPBE-G potential [D. Wei, Y. Song, and F. Wang, J. Chem. Phys. 134, 184704 (2011)]. This potential was developed by force matching the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional and has been validated previously to provide accurate potential energy surface for graphene at temperatures as high as 3000 K. Simulations with the PPBE‑G potential are the best available approximation to a direct Car-Parrinello Molecular Dynamics study of graphene. One advantage of the PBE-G potential is to allowmore » large simulation boxes to be modeled efficiently so that properties showing strong finite size effects can be studied. Our simulation box contains more than 600 000 C atoms and is one of the largest graphene boxes ever modeled. With the PPBE-G potential, the thermal-expansion coefficient is negative up to 4000 K. With a large box and an accurate potential, the critical exponent for the scaling properties associated with the normal-normal and height-height correlation functions was confirmed to be 0.85. This exponent remains constant up to 4000 K suggesting graphene to be in the deeply cooled regime even close to the experimental melting temperature. The reduced peak heights in the radial distribution function of graphene show an inverse power law dependence to distance, which indicates that a macroscopic graphene sheet will lose long-range crystalline order as predicted by the Mermin-Wagner instability. Although graphene loses long-range translational order, it retains long range orientational order as indicated by its orientational correlation function; graphene is thus partially ordered but not periodic.« less

  3. Sensing land pollution.

    NASA Technical Reports Server (NTRS)

    Bowden, L. W.

    1971-01-01

    Land pollution is described in numerous ways by various societies. Pollutants of land are material by-products of human activity and range from environmentally ineffective to positively toxic. The pollution of land by man is centuries old and correlates directly with economy, technology and population. In order to remotely sense land pollution, standards or thresholds must be established. Examples of the potential for sensing land pollution and quality are presented. The technological capabilities for remotely sensed land quality is far advanced over the judgment on how to use the sensed data. Until authoritative and directive decisions on land pollution policy are made, sensing of pollutants will be a random, local and academic affair.

  4. Gamma-ray evidence for a stellar-mass black hole near the Galactic center

    NASA Technical Reports Server (NTRS)

    Ramaty, Reuven; Lingenfelter, Richard E.

    1989-01-01

    An analysis of the time variability of the observed 511-keV line emission from the direction of the Galactic center and the correlation of its variations in the continuum emission above 511 keV from the same direction suggest the existence of a compact object at or near the Galactic center. A possible mechanism of the observed positron annihilation is consistent with a compact interaction region of the order of 10 to the 8th cm. A black hole of several hundred solar masses is favored as a candidate for this compact object; arguments in support of this suggestion are presented.

  5. Estimation of Genetic Parameters from Longitudinal Records of Body Weight of Berkshire Pigs

    PubMed Central

    Lee, Dong-Hee; Do, Chang-Hee

    2012-01-01

    Direct and maternal genetic heritabilities and their correlations with body weight at 5 stages in the life span of purebred Berkshire pigs, from birth to harvest, were estimated to scrutinize body weight development with the records for 5,088 purebred Berkshire pigs in a Korean farm, using the REML based on an animal model. Body weights were measured at birth (Birth), at weaning (Weaning: mean 22.9 d), at the beginning of a performance test (On: mean 72.7 d), at the end of a performance test (Off: mean 152.4 d), and at harvest (Finish: mean 174.3 d). Ordinary polynomials and Legendre with order 1, 2, and 3 were adopted to adjust body weight with age in the multivariate animal models. Legendre with order 3 fitted best concerning prediction error deviation (PED) and yielded the lowest AIC for multivariate analysis of longitudinal body weights. Direct genetic correlations between body weight at Birth and body weight at Weaning, On, Off, and Finish were 0.48, 0.36, 0.10, and 0.10, respectively. The estimated maternal genetic correlations of body weight at Finish with body weight at Birth, Weaning, On, and Off were 0.39, 0.49, 0.65, and 0.90, respectively. Direct genetic heritabilities progressively increased from birth to harvest and were 0.09, 0.11, 0.20, 0.31, and 0.43 for body weight at Birth, Weaning, On, Off, and Finish, respectively. Maternal genetic heritabilities generally decreased and were 0.26, 0.34, 0.15, 0.10, and 0.10 for body weight at Birth, Weaning, On, Off, and Finish, respectively. As pigs age, maternal genetic effects on growth are reduced and pigs begin to rely more on the expression of their own genes. Although maternal genetic effects on body weight may not be large, they are sustained through life. PMID:25049624

  6. Systematic expansion in the order parameter for replica theory of the dynamical glass transition.

    PubMed

    Jacquin, Hugo; Zamponi, Francesco

    2013-03-28

    It has been shown recently that predictions from mode-coupling theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on the regime around the dynamical transition in three dimensions, mode-coupling results are far more convincing than replica theory predictions. It seems thus necessary to reconcile the two theoretic approaches in order to obtain a theory that interpolates between low-dimensional, mode-coupling results, and "mean-field" results from replica theory. Even though quantitative results for the dynamical transition issued from replica theory are not accurate in low dimensions, two different approximation schemes--small cage expansion and replicated hyper-netted-chain (RHNC)--provide the correct qualitative picture for the transition, namely, a discontinuous jump of a static order parameter from zero to a finite value. The purpose of this work is to develop a systematic expansion around the RHNC result in powers of the static order parameter, and to calculate the first correction in this expansion. Interestingly, this correction involves the static three-body correlations of the liquid. More importantly, we separately demonstrate that higher order terms in the expansion are quantitatively relevant at the transition, and that the usual mode-coupling kernel, involving two-body direct correlation functions of the liquid, cannot be recovered from static computations.

  7. Linear and Order Statistics Combiners for Pattern Classification

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Ghosh, Joydeep; Lau, Sonie (Technical Monitor)

    2001-01-01

    Several researchers have experimentally shown that substantial improvements can be obtained in difficult pattern recognition problems by combining or integrating the outputs of multiple classifiers. This chapter provides an analytical framework to quantify the improvements in classification results due to combining. The results apply to both linear combiners and order statistics combiners. We first show that to a first order approximation, the error rate obtained over and above the Bayes error rate, is directly proportional to the variance of the actual decision boundaries around the Bayes optimum boundary. Combining classifiers in output space reduces this variance, and hence reduces the 'added' error. If N unbiased classifiers are combined by simple averaging. the added error rate can be reduced by a factor of N if the individual errors in approximating the decision boundaries are uncorrelated. Expressions are then derived for linear combiners which are biased or correlated, and the effect of output correlations on ensemble performance is quantified. For order statistics based non-linear combiners, we derive expressions that indicate how much the median, the maximum and in general the i-th order statistic can improve classifier performance. The analysis presented here facilitates the understanding of the relationships among error rates, classifier boundary distributions, and combining in output space. Experimental results on several public domain data sets are provided to illustrate the benefits of combining and to support the analytical results.

  8. Superconducting quantum simulator for topological order and the toric code

    NASA Astrophysics Data System (ADS)

    Sameti, Mahdi; Potočnik, Anton; Browne, Dan E.; Wallraff, Andreas; Hartmann, Michael J.

    2017-04-01

    Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based on symmetries. Fractional quantum Hall systems and quantum spin liquids are receiving substantial interest because of their intriguing quantum correlations, their exotic excitations, and prospects for protecting stored quantum information against errors. Here, we show that the Hamiltonian of the central model of this class of systems, the toric code, can be directly implemented as an analog quantum simulator in lattices of superconducting circuits. The four-body interactions, which lie at its heart, are in our concept realized via superconducting quantum interference devices (SQUIDs) that are driven by a suitably oscillating flux bias. All physical qubits and coupling SQUIDs can be individually controlled with high precision. Topologically ordered states can be prepared via an adiabatic ramp of the stabilizer interactions. Strings of qubit operators, including the stabilizers and correlations along noncontractible loops, can be read out via a capacitive coupling to read-out resonators. Moreover, the available single-qubit operations allow to create and propagate elementary excitations of the toric code and to verify their fractional statistics. The architecture we propose allows to implement a large variety of many-body interactions and thus provides a versatile analog quantum simulator for topological order and lattice gauge theories.

  9. Compressive Sensing for Radar and Radar Sensor Networks

    DTIC Science & Technology

    2013-12-02

    Zero Correlation Zone Sequence Pair Sets for MIMO Radar Inspired by recent advances in MIMO radar, we apply orthogonal phase coded waveforms to MIMO ...radar system in order to gain better range resolution and target direction finding performance [2]. We provide and investigate a generalized MIMO radar...ZCZ) sequence-Pair Set (ZCZPS). We also study the MIMO radar ambiguity function of the system using phase coded waveforms, based on which we analyze

  10. Effects of Eddy Viscosity on Time Correlations in Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Subgrid-scale (SGS) models for large. eddy simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large eddy simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the eddy viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective eddy viscosity associated with time correlations is formulated, to which the eddy viscosity associated with energy transfer is a leading order approximation.

  11. Injury Source and Correlation Analysis of Riders in Car-Electric Bicycle Accidents

    PubMed Central

    Yi, Liang; Hu, Lin; Li, Yuelin

    2018-01-01

    The knowledge about the injury source and correlation of riders in car-electric bicycle accident will be helpful in the cross validation of traces and vehicle safety design. In order to know more information about such kind of knowledge, 57 true car-electric bicycle accidents were reconstructed by PC-Crash and then data on injury information of riders were collected directly from the reconstructed cases. These collected data were validated by some existing research results firstly, and then 4 abnormal cases were deleted according to the statistical method. Finally, conclusions can be obtained according to the data obtained from the remaining 53 cases. Direct injuries of the head and right leg are from the road pavement upon low speed; the source laws of indirect head injuries are not obvious. Upon intermediate and high speed, the injuries of the above parts are from automobiles. Injuries of the left leg, femur, and right knee are from automobiles; left knee injuries are from automobiles, the road pavement and automobiles, respectively, upon low, intermediate, and high speed. The source laws of indirect torso injuries are not obvious upon intermediate and low speed, which are from automobiles upon high speed, while direct torso injuries are from the road pavement. And there is no high correlation between all parts of the injury of riders. The largest correlation coefficient was the head-left femur and left femur-right femur, which was 0.647, followed by the head-right femur (0.638) and head-torso which was 0.617. PMID:29849757

  12. Random matrix theory for analyzing the brain functional network in attention deficit hyperactivity disorder

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan

    2016-11-01

    Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.

  13. Visual coding with a population of direction-selective neurons.

    PubMed

    Fiscella, Michele; Franke, Felix; Farrow, Karl; Müller, Jan; Roska, Botond; da Silveira, Rava Azeredo; Hierlemann, Andreas

    2015-10-01

    The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. Copyright © 2015 the American Physiological Society.

  14. Visual coding with a population of direction-selective neurons

    PubMed Central

    Farrow, Karl; Müller, Jan; Roska, Botond; Azeredo da Silveira, Rava; Hierlemann, Andreas

    2015-01-01

    The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. PMID:26289471

  15. Memory Asymmetry of Forward and Backward Associations in Recognition Tasks

    PubMed Central

    Yang, Jiongjiong; Zhu, Zijian; Mecklinger, Axel; Fang, Zhiyong; Li, Han

    2013-01-01

    There is an intensive debate on whether memory for serial order is symmetric. The objective of this study was to explore whether associative asymmetry is modulated by memory task (recognition vs. cued recall). Participants were asked to memorize word triples (Experiment 1–2) or pairs (Experiment 3–6) during the study phase. They then recalled the word by a cue during a cued recall task (Experiment 1–4), and judged whether the presented two words were in the same or in a different order compared to the study phase during a recognition task (Experiment 1–6). To control for perceptual matching between the study and test phase, participants were presented with vertical test pairs when they made directional judgment in Experiment 5. In Experiment 6, participants also made associative recognition judgments for word pairs presented at the same or the reversed position. The results showed that forward associations were recalled at similar levels as backward associations, and that the correlations between forward and backward associations were high in the cued recall tasks. On the other hand, the direction of forward associations was recognized more accurately (and more quickly) than backward associations, and their correlations were comparable to the control condition in the recognition tasks. This forward advantage was also obtained for the associative recognition task. Diminishing positional information did not change the pattern of associative asymmetry. These results suggest that associative asymmetry is modulated by cued recall and recognition manipulations, and that direction as a constituent part of a memory trace can facilitate associative memory. PMID:22924326

  16. Probing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisions

    DOE PAGES

    Benic, Sanjin; Fukushima, Kenji; Garcia-Montero, Oscar; ...

    2017-01-26

    Here, we compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations inmore » the gluon saturation regime of QCD. We demonstrate that k ⊥ and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small x. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges.« less

  17. Inferring gene regression networks with model trees

    PubMed Central

    2010-01-01

    Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database) is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear regressions to separate areas of the search space favoring to infer localized similarities over a more global similarity. Furthermore, experimental results show the good performance of REGNET. PMID:20950452

  18. Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus

    PubMed Central

    Smeesters, Pierre R.; Frost, Hannah R. C.; Steer, Andrew C.

    2015-01-01

    Group A streptococcus (GAS) is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates. PMID:26101780

  19. Fourth-Order Spatial Correlation of Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Zhang, Xun; Xue, Xin-Xin; Sun, Jia; Song, Jian-Ping; Zhang, Yan-Peng

    2014-11-01

    We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging.

  20. An estimate for the thermal photon rate from lattice QCD

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Francis, Anthony; Harris, Tim; Meyer, Harvey B.; Steinberg, Aman

    2018-03-01

    We estimate the production rate of photons by the quark-gluon plasma in lattice QCD. We propose a new correlation function which provides better control over the systematic uncertainty in estimating the photon production rate at photon momenta in the range πT/2 to 2πT. The relevant Euclidean vector current correlation functions are computed with Nf = 2 Wilson clover fermions in the chirally-symmetric phase. In order to estimate the photon rate, an ill-posed problem for the vector-channel spectral function must be regularized. We use both a direct model for the spectral function and a modelindependent estimate from the Backus-Gilbert method to give an estimate for the photon rate.

  1. High-resolution definition of humoral immune response correlates of effective immunity against HIV.

    PubMed

    Alter, Galit; Dowell, Karen G; Brown, Eric P; Suscovich, Todd J; Mikhailova, Anastassia; Mahan, Alison E; Walker, Bruce D; Nimmerjahn, Falk; Bailey-Kellogg, Chris; Ackerman, Margaret E

    2018-03-26

    Defining correlates of immunity by comprehensively interrogating the extensive biological diversity in naturally or experimentally protected subjects may provide insights critical for guiding the development of effective vaccines and antibody-based therapies. We report advances in a humoral immunoprofiling approach and its application to elucidate hallmarks of effective HIV-1 viral control. Systematic serological analysis for a cohort of HIV-infected subjects with varying viral control was conducted using both a high-resolution, high-throughput biophysical antibody profiling approach, providing unbiased dissection of the humoral response, along with functional antibody assays, characterizing antibody-directed effector functions such as complement fixation and phagocytosis that are central to protective immunity. Profiles of subjects with varying viral control were computationally analyzed and modeled in order to deconvolute relationships among IgG Fab properties, Fc characteristics, and effector functions and to identify humoral correlates of potent antiviral antibody-directed effector activity and effective viral suppression. The resulting models reveal multifaceted and coordinated contributions of polyclonal antibodies to diverse antiviral responses, and suggest key biophysical features predictive of viral control. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST

    NASA Astrophysics Data System (ADS)

    Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan

    2017-10-01

    Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.

  3. Spatio-temporal correlations in models of collective motion ruled by different dynamical laws.

    PubMed

    Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano

    2016-11-15

    Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.

  4. Superconducting scanning tunneling microscopy tips in a magnetic field: Geometry-controlled order of the phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eltschka, Matthias, E-mail: m.eltschka@fkf.mpg.de; Jäck, Berthold; Assig, Maximilian

    The properties of geometrically confined superconductors significantly differ from their bulk counterparts. Here, we demonstrate the geometrical impact for superconducting scanning tunneling microscopy (STM) tips, where the confinement ranges from the atomic to the mesoscopic scale. To this end, we compare the experimentally determined magnetic field dependence for several vanadium tips to microscopic calculations based on the Usadel equation. For our theoretical model of a superconducting cone, we find a direct correlation between the geometry and the order of the superconducting phase transition. Increasing the opening angle of the cone changes the phase transition from first to second order. Comparingmore » our experimental findings to the theory reveals first and second order quantum phase transitions in the vanadium STM tips. In addition, the theory also explains experimentally observed broadening effects by the specific tip geometry.« less

  5. A time-dependent order parameter for ultrafast photoinduced phase transitions.

    PubMed

    Beaud, P; Caviezel, A; Mariager, S O; Rettig, L; Ingold, G; Dornes, C; Huang, S-W; Johnson, J A; Radovic, M; Huber, T; Kubacka, T; Ferrer, A; Lemke, H T; Chollet, M; Zhu, D; Glownia, J M; Sikorski, M; Robert, A; Wadati, H; Nakamura, M; Kawasaki, M; Tokura, Y; Johnson, S L; Staub, U

    2014-10-01

    Strongly correlated electron systems often exhibit very strong interactions between structural and electronic degrees of freedom that lead to complex and interesting phase diagrams. For technological applications of these materials it is important to learn how to drive transitions from one phase to another. A key question here is the ultimate speed of such phase transitions, and to understand how a phase transition evolves in the time domain. Here we apply time-resolved X-ray diffraction to directly measure the changes in long-range order during ultrafast melting of the charge and orbitally ordered phase in a perovskite manganite. We find that although the actual change in crystal symmetry associated with this transition occurs over different timescales characteristic of the many electronic and vibrational coordinates of the system, the dynamics of the phase transformation can be well described using a single time-dependent 'order parameter' that depends exclusively on the electronic excitation.

  6. Understanding and improving the low optical emission of InGaAs quantum wells grown on oxidized patterned (001) silicon substrate

    NASA Astrophysics Data System (ADS)

    Roque, J.; Haas, B.; David, S.; Rochat, N.; Bernier, N.; Rouvière, J. L.; Salem, B.; Gergaud, P.; Moeyaert, J.; Martin, M.; Bertin, F.; Baron, T.

    2018-05-01

    In 0.3 Ga 0.7 As quantum wells (QW) embedded in AlGaAs barriers and grown on oxidized patterned (001) silicon substrates by metalorganic chemical vapor deposition using the aspect ratio trapping method are studied. An appropriate method combining cathodoluminescence and high resolution scanning transmission electron microscopy characterization is performed to spatially correlate the optical and structural properties of the QW. A triple period (TP) ordering along the ⟨111⟩ direction induced by the temperature decrease during the growth to favor indium incorporation and aligned along the oxidized patterns is observed in the QW. Local ordering affects the band gap and contributes to the decrease of the optical emission efficiency. Using thermal annealing, we were able to remove the TP ordering and improve the QW optical emission by two orders of magnitude.

  7. Correlating seabird movements with ocean winds: linking satellite telemetry with ocean scatterometry.

    USGS Publications Warehouse

    Adams, Josh; Flora, Stephanie

    2010-01-01

    Satellite telemetry studies of the movements of seabirds are now common and have revealed impressive flight capabilities and extensive distributions among individuals and species at sea. Linking seabird movements with environmental conditions over vast expanses of the world's open ocean, however, remains difficult. Seabirds of the order Procellariiformes (e.g., petrels, albatrosses, and shearwaters) depend largely on wind and wave energy for efficient flight. We present a new method for quantifying the movements of far-ranging seabirds in relation to ocean winds measured by the SeaWinds scatterometer onboard the QuikSCAT satellite. We apply vector correlation (as defined by Crosby et al. in J Atm Ocean Tech 10:355-367, 1993) to evaluate how the trajectories (ground speed and direction) for five procellariiform seabirds outfitted with satellite transmitters are related to ocean winds. Individual seabirds (Sooty Shearwater, Pink-footed Shearwater, Hawaiian Petrel, Grey-faced Petrel, and Black-footed Albatross) all traveled predominantly with oblique, isotropic crossing to quartering tail-winds (i.e., 105-165 degrees in relation to birds' trajectory). For all five seabirds, entire track line trajectories were significantly correlated with co-located winds. Greatest correlations along 8-day path segments were related to wind patterns during birds' directed, long-range migration (Sooty Shearwater) as well as movements associated with mega-scale meteorological phenomena, including Pacific Basin anticyclones (Hawaiian Petrel, Grey-faced Petrel) and eastward-propagating north Pacific cyclones (Black-footed Albatross). Wind strength and direction are important factors related to the overall movements that delineate the distribution of petrels at sea. We suggest that vector correlation can be used to quantify movements for any marine vertebrate when tracking and environmental data (winds or currents) are of sufficient quality and sample size. Vector correlation coefficients can then be used to assess population--or species-specific variability and used to test specific hypotheses related to how animal movements are associated with fluid environments.

  8. Constraints on the Martian Plate Tectonic Hypothesis from Gravity and Topography Data

    NASA Technical Reports Server (NTRS)

    Smrekar, S.; Raymond, C.

    1999-01-01

    The Mars Global Surveyor Magnetic Fields Experiment/ Electron Reflectometer (MGS MAG/ER) experiment serendipitously discovered unanticipated and unprecedented regions of high amplitude crustal magnetic anomalies, indicating strong sources of remanent crustal magnetism. In one area of the southern hemisphere, the anomalies appear lineated and alternate in direction, resembling the stripes formed at terrestrial oceanic spread-ing regions. However, many significant differences exist. The inferred magnetization are easily an order of magnitude greater in strength than terrestrial counterparts. The width of the anomalies appears to be approximately 200 km, in comparison to a variable width of order 10-1000 km at terrestrial spreading centers. However, the spacecraft altitude of 100-200 km may be such that narrower anomalies are simply unresolved. Although the majority of strong anomalies are found in the southern highlands, there is no clear correlation with landforms at the surface. The lack of a correlation between magnetism and topography hinders the confident interpretation of magnetic sources. Additional information is contained in the original extended abstract.

  9. Event shapes and azimuthal correlations in Z +jets events in pp collisions at √{ s} = 7 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Mahrous, A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellato, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Gundacker, S.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-05-01

    Measurements of event shapes and azimuthal correlations are presented for events where a Z boson is produced in association with jets in proton-proton collisions. The data collected with the CMS detector at the CERN LHC at √{ s} = 7 TeV correspond to an integrated luminosity of 5.0 fb-1. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictions from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z +1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD models.

  10. Volatilities, Traded Volumes, and Price Increments in Derivative Securities

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsik; Lim, Gyuchang; Kim, Soo Yong; Scalas, Enrico

    2007-03-01

    We apply the detrended fluctuation analysis (DFA) to the statistics of the Korean treasury bond (KTB) futures from which the logarithmic increments, volatilities, and traded volumes are estimated over a specific time lag. For our case, the logarithmic increment of futures prices has no long-memory property, while the volatility and the traded volume exhibit the existence of long-memory property. To analyze and calculate whether the volatility clustering is due to the inherent higher-order correlation not detected by applying directly the DFA to logarithmic increments of the KTB futures, it is of importance to shuffle the original tick data of futures prices and to generate the geometric Brownian random walk with the same mean and standard deviation. It is really shown from comparing the three tick data that the higher-order correlation inherent in logarithmic increments makes the volatility clustering. Particularly, the result of the DFA on volatilities and traded volumes may be supported the hypothesis of price changes.

  11. Volatilities, traded volumes, and the hypothesis of price increments in derivative securities

    NASA Astrophysics Data System (ADS)

    Lim, Gyuchang; Kim, SooYong; Scalas, Enrico; Kim, Kyungsik

    2007-08-01

    A detrended fluctuation analysis (DFA) is applied to the statistics of Korean treasury bond (KTB) futures from which the logarithmic increments, volatilities, and traded volumes are estimated over a specific time lag. In this study, the logarithmic increment of futures prices has no long-memory property, while the volatility and the traded volume exhibit the existence of the long-memory property. To analyze and calculate whether the volatility clustering is due to a inherent higher-order correlation not detected by with the direct application of the DFA to logarithmic increments of KTB futures, it is of importance to shuffle the original tick data of future prices and to generate a geometric Brownian random walk with the same mean and standard deviation. It was found from a comparison of the three tick data that the higher-order correlation inherent in logarithmic increments leads to volatility clustering. Particularly, the result of the DFA on volatilities and traded volumes can be supported by the hypothesis of price changes.

  12. Event shapes and azimuthal correlations in Z + jets events in pp collisions at s = 7   TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    Measurements of event shapes and azimuthal correlations are presented for events where a Z boson is produced in association with jets in proton-proton collisions. The data collected with the CMS detector at the CERN LHC at sqrt(s) = 7 TeV correspond to an integrated luminosity of 5.0 inverse femtobarns. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictionsmore » from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z + 1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD models.« less

  13. The known unknowns: neural representation of second-order uncertainty, and ambiguity

    PubMed Central

    Bach, Dominik R.; Hulme, Oliver; Penny, William D.; Dolan, Raymond J.

    2011-01-01

    Predictions provided by action-outcome probabilities entail a degree of (first-order) uncertainty. However, these probabilities themselves can be imprecise and embody second-order uncertainty. Tracking second-order uncertainty is important for optimal decision making and reinforcement learning. Previous functional magnetic resonance imaging investigations of second-order uncertainty in humans have drawn on an economic concept of ambiguity, where action-outcome associations in a gamble are either known (unambiguous) or completely unknown (ambiguous). Here, we relaxed the constraints associated with a purely categorical concept of ambiguity and varied the second-order uncertainty of gambles continuously, quantified as entropy over second-order probabilities. We show that second-order uncertainty influences decisions in a pessimistic way by biasing second-order probabilities, and that second-order uncertainty is negatively correlated with posterior cingulate cortex activity. The category of ambiguous (compared to non-ambiguous) gambles also biased choice in a similar direction, but was associated with distinct activation of a posterior parietal cortical area; an activation that we show reflects a different computational mechanism. Our findings indicate that behavioural and neural responses to second-order uncertainty are distinct from those associated with ambiguity and may call for a reappraisal of previous data. PMID:21451019

  14. Four-Photon Imaging with Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Xue, Xinxin; Zhang, Xun; Yuan, Chenzhi; Sun, Jia; Song, Jianping; Zhang, Yanpeng

    2014-10-01

    In a near-field four-photon correlation measurement, ghost imaging with classical incoherent light is investigated. By applying the Klyshko advanced-wave picture, we consider the properties of four-photon spatial correlation and find that the fourth-order spatial correlation function can be decomposed into multiple lower-order correlation functions. On the basis of the spatial correlation properties, a proof-of-principle four-photon ghost imaging is proposed, and the effect of each part in a fourth-order correlation function on imaging is also analyzed. In addition, the similarities and differences among ghost imaging by fourth-, second-, and third-order correlations are also discussed. It is shown that the contrast and visibility of fourth-order correlated imaging are improved significantly, while the resolution is unchanged. Such studies can be very useful in better understanding multi photon interference and multi-channel correlation imaging.

  15. Influence of reciprocal edges on degree distribution and degree correlations

    NASA Astrophysics Data System (ADS)

    Zlatić, Vinko; Štefančić, Hrvoje

    2009-07-01

    Reciprocal edges represent the lowest-order cycle possible to find in directed graphs without self-loops. Representing also a measure of feedback between vertices, it is interesting to understand how reciprocal edges influence other properties of complex networks. In this paper, we focus on the influence of reciprocal edges on vertex degree distribution and degree correlations. We show that there is a fundamental difference between properties observed on the static network compared to the properties of networks, which are obtained by simple evolution mechanism driven by reciprocity. We also present a way to statistically infer the portion of reciprocal edges, which can be explained as a consequence of feedback process on the static network. In the rest of the paper, the influence of reciprocal edges on a model of growing network is also presented. It is shown that our model of growing network nicely interpolates between Barabási-Albert (BA) model for undirected and the BA model for directed networks.

  16. PyLDTk: Python toolkit for calculating stellar limb darkening profiles and model-specific coefficients for arbitrary filters

    NASA Astrophysics Data System (ADS)

    Parviainen, Hannu

    2015-10-01

    PyLDTk automates the calculation of custom stellar limb darkening (LD) profiles and model-specific limb darkening coefficients (LDC) using the library of PHOENIX-generated specific intensity spectra by Husser et al. (2013). It facilitates exoplanet transit light curve modeling, especially transmission spectroscopy where the modeling is carried out for custom narrow passbands. PyLDTk construct model-specific priors on the limb darkening coefficients prior to the transit light curve modeling. It can also be directly integrated into the log posterior computation of any pre-existing transit modeling code with minimal modifications to constrain the LD model parameter space directly by the LD profile, allowing for the marginalization over the whole parameter space that can explain the profile without the need to approximate this constraint by a prior distribution. This is useful when using a high-order limb darkening model where the coefficients are often correlated, and the priors estimated from the tabulated values usually fail to include these correlations.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Teppei; Seljak, Uroš; McDonald, Patrick

    Measurement of redshift-space distortions (RSD) offers an attractive method to directly probe the cosmic growth history of density perturbations. A distribution function approach where RSD can be written as a sum over density weighted velocity moment correlators has recently been developed. In this paper we use results of N-body simulations to investigate the individual contributions and convergence of this expansion for dark matter. If the series is expanded as a function of powers of μ, cosine of the angle between the Fourier mode and line of sight, then there are a finite number of terms contributing at each order. Wemore » present these terms and investigate their contribution to the total as a function of wavevector k. For μ{sup 2} the correlation between density and momentum dominates on large scales. Higher order corrections, which act as a Finger-of-God (FoG) term, contribute 1% at k ∼ 0.015hMpc{sup −1}, 10% at k ∼ 0.05hMpc{sup −1} at z = 0, while for k > 0.15hMpc{sup −1} they dominate and make the total negative. These higher order terms are dominated by density-energy density correlations which contributes negatively to the power, while the contribution from vorticity part of momentum density auto-correlation adds to the total power, but is an order of magnitude lower. For μ{sup 4} term the dominant term on large scales is the scalar part of momentum density auto-correlation, while higher order terms dominate for k > 0.15hMpc{sup −1}. For μ{sup 6} and μ{sup 8} we find it has very little power for k < 0.15hMpc{sup −1}, shooting up by 2–3 orders of magnitude between k < 0.15hMpc{sup −1} and k < 0.4hMpc{sup −1}. We also compare the expansion to the full 2-d P{sup ss}(k,μ), as well as to the monopole, quadrupole, and hexadecapole integrals of P{sup ss}(k,μ). For these statistics an infinite number of terms contribute and we find that the expansion achieves percent level accuracy for kμ < 0.15hMpc{sup −1} at 6-th order, but breaks down on smaller scales because the series is no longer perturbative. We explore resummation of the terms into FoG kernels, which extend the convergence up to a factor of 2 in scale. We find that the FoG kernels are approximately Lorentzian with velocity dispersions around 600 km/s at z = 0.« less

  18. Engagement of large-scale networks is related to individual differences in inhibitory control

    PubMed Central

    Congdon, Eliza; Mumford, Jeanette A.; Cohen, Jessica R.; Galvan, Adriana; Aron, Adam R.; Xue, Gui; Miller, Eric; Poldrack, Russell A.

    2010-01-01

    Understanding which brain regions regulate the execution, and suppression, of goal-directed behavior has implications for a number of areas of research. In particular, understanding which brain regions engaged during tasks requiring the execution and inhibition of a motor response provides insight into the mechanisms underlying individual differences in response inhibition ability. However, neuroimaging studies examing the relation between activation and stopping have been inconsistent regarding the direction of the relationship, and also regarding the anatomical location of regions that correlate with behavior. These limitations likely arise from the relatively low power of vox-elwise correlations with small sample sizes. Here, we pooled data over five separate fMRI studies of the Stop-signal task in order to obtain a sufficiently large sample size to robustly detect brain/behavior correlations. In addition, rather than performing mass univariate correlation analysis across all voxels, we increased statistical power by reducing the dimensionality of the data set using independent components analysis and then examined correlations between behavior and the resulting component scores. We found that components reflecting activity in regions thought to be involved in stopping were associated with better stopping ability, while activity in a default-mode network was associated with poorer stopping ability across individuals. These results clearly show a relationship between individual differences in stopping ability in specific activated networks, including regions known to be critical for the behavior. The results also highlight the usefulness of using dimensionality reduction to increase the power to detect brain/behavior correlations in individual differences research. PMID:20600962

  19. Inelastic Strain and Damage in Surface Instability Tests

    NASA Astrophysics Data System (ADS)

    Kao, Chu-Shu; Tarokh, Ali; Biolzi, Luigi; Labuz, Joseph F.

    2016-02-01

    Spalling near a free surface in laboratory experiments on two sandstones was characterized using acoustic emission and digital image correlation. A surface instability apparatus was used to reproduce a state of plane strain near a free surface in a modeled semi-infinite medium subjected to far-field compressive stress. Comparison between AE locations and crack trajectory mapped after the test showed good consistency. Digital image correlation was used to find the displacements in directions parallel (axial direction) and perpendicular (lateral direction) to the free surface at various stages of loading. At a load ratio, LR = current load/peak load, of approximately 30 %, elastic deformation was measured. At 70-80 % LR, the free-face effect started to appear in the displacement contours, especially for the lateral displacement measurements. As the axial compressive stress increased close to peak, extensional lateral strain started to show concentrations associated with localized damage. Continuum damage mechanics was used to describe damage evolution in the surface instability test, and it was shown that a critical value of extensional inelastic strain, on the order of -10-3 for the virgin sandstones, may provide an indicator for determining the onset of surface spalling.

  20. Separating Direct and Indirect Turbofan Engine Combustion Noise While Estimating Post-Combustion (Post-Flame) Residence Time Using the Correlation Function

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2011-01-01

    A previous investigation on the presence of direct and indirect combustion noise for a full-scale turbofan engine using a far-field microphone at 130 is extended by also examining signals obtained at two additional downstream directions using far-field microphones at 110 deg and 160 deg. A generalized cross-correlation function technique is used to study the change in propagation time to the far field of the combined direct and indirect combustion noise signal as a sequence of low-pass filters are applied. The filtering procedure used produces no phase distortion. As the low-pass filter frequency is decreased, the travel time increases because the relative amount of direct combustion noise is reduced. The indirect combustion noise signal travels more slowly because in the combustor entropy fluctuations move with the flow velocity, which is slow compared to the local speed of sound. The indirect combustion noise signal travels at acoustic velocities after reaching the turbine and being converted into an acoustic signal. The direct combustion noise is always propagating at acoustic velocities. The results show that the estimated indirect combustion noise time delay values (post-combustion residence times) measured at each angle are fairly consistent with one another for a relevant range of operating conditions and demonstrate source separation of a mixture of direct and indirect combustion noise. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting turbofan engine core noise.

  1. The Performance of a PN Spread Spectrum Receiver Preceded by an Adaptive Interference Suppression Filter.

    DTIC Science & Technology

    1982-12-01

    Sequence dj Estimate of the Desired Signal DEL Sampling Time Interval DS Direct Sequence c Sufficient Statistic E/T Signal Power Erfc Complimentary Error...Namely, a white Gaussian noise (WGN) generator was added. Also, a statistical subroutine was added in order to assess performance improvement at the...reference code and then passed through a correlation detector whose output is the sufficient 1 statistic , e . Using a threshold device and the sufficient

  2. Analysis of aggregated tick returns: Evidence for anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Weber, Philipp

    2007-01-01

    In order to investigate the origin of large price fluctuations, we analyze stock price changes of ten frequently traded NASDAQ stocks in the year 2002. Though the influence of the trading frequency on the aggregate return in a certain time interval is important, it cannot alone explain the heavy-tailed distribution of stock price changes. For this reason, we analyze intervals with a fixed number of trades in order to eliminate the influence of the trading frequency and investigate the relevance of other factors for the aggregate return. We show that in tick time the price follows a discrete diffusion process with a variable step width while the difference between the number of steps in positive and negative direction in an interval is Gaussian distributed. The step width is given by the return due to a single trade and is long-term correlated in tick time. Hence, its mean value can well characterize an interval of many trades and turns out to be an important determinant for large aggregate returns. We also present a statistical model reproducing the cumulative distribution of aggregate returns. For an accurate agreement with the empirical distribution, we also take into account asymmetries of the step widths in different directions together with cross correlations between these asymmetries and the mean step width as well as the signs of the steps.

  3. Coherent Two-Dimensional Terahertz Magnetic Resonance Spectroscopy of Collective Spin Waves.

    PubMed

    Lu, Jian; Li, Xian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Kurihara, Takayuki; Suemoto, Tohru; Nelson, Keith A

    2017-05-19

    We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. The 2D THz spectra show all of the third-order nonlinear magnon signals including magnon spin echoes, and 2-quantum signals that reveal pairwise correlations between magnons at the Brillouin zone center. We also observe second-order nonlinear magnon signals showing resonance-enhanced second-harmonic and difference-frequency generation. Numerical simulations of the spin dynamics reproduce all of the spectral features in excellent agreement with the experimental 2D THz spectra.

  4. Biological versus nonbiological older brothers and men's sexual orientation.

    PubMed

    Bogaert, Anthony F

    2006-07-11

    The most consistent biodemographic correlate of sexual orientation in men is the number of older brothers (fraternal birth order). The mechanism underlying this effect remains unknown. In this article, I provide a direct test pitting prenatal against postnatal (e.g., social/rearing) mechanisms. Four samples of homosexual and heterosexual men (total n = 944), including one sample of men raised in nonbiological and blended families (e.g., raised with half- or step-siblings or as adoptees) were studied. Only biological older brothers, and not any other sibling characteristic, including nonbiological older brothers, predicted men's sexual orientation, regardless of the amount of time reared with these siblings. These results strongly suggest a prenatal origin to the fraternal birth-order effect.

  5. Equations of motion for the gravitational two-body problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, C.K.

    1988-01-01

    This paper reinvestigates the well-known gravitational two-body problem, in light of new information concerning the electrodynamic version of the problem. The well-known Lienard-Wiechert potentials, and the fields derived from them, are suspected to be time-shifted, anticipating the true potentials and fields by the time required for signal propagation from the source to the observer. This time shift is significant because it implies field directions different to first order in v/c. In the gravitational problem, the resulting observer accelerations become correlated with retarded source positions, rather than with present, unretarded source positions as was previously believed. This means there exist previouslymore » unrecognized first-order effects in gravitational systems.« less

  6. Logarithmic violation of scaling in strongly anisotropic turbulent transfer of a passive vector field

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2015-01-01

    Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field-theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t') /k⊥d -1 +ξ , where k⊥=|k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction ("direction of the flow")—the d -dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131, 381 (1990), 10.1007/BF02161420]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: Instead of powerlike corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L . The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for the correlation functions of arbitrary order.

  7. Diffusion in Colocation Contact Networks: The Impact of Nodal Spatiotemporal Dynamics.

    PubMed

    Thomas, Bryce; Jurdak, Raja; Zhao, Kun; Atkinson, Ian

    2016-01-01

    Temporal contact networks are studied to understand dynamic spreading phenomena such as communicable diseases or information dissemination. To establish how spatiotemporal dynamics of nodes impact spreading potential in colocation contact networks, we propose "inducement-shuffling" null models which break one or more correlations between times, locations and nodes. By reconfiguring the time and/or location of each node's presence in the network, these models induce alternative sets of colocation events giving rise to contact networks with varying spreading potential. This enables second-order causal reasoning about how correlations in nodes' spatiotemporal preferences not only lead to a given contact network but ultimately influence the network's spreading potential. We find the correlation between nodes and times to be the greatest impediment to spreading, while the correlation between times and locations slightly catalyzes spreading. Under each of the presented null models we measure both the number of contacts and infection prevalence as a function of time, with the surprising finding that the two have no direct causality.

  8. Photoconductivity in BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L.

    2008-03-01

    The optical properties of epitaxial BiFeO3 thin films have been characterized in the visible range. Variable temperature spectra show an absorption onset near 2.17eV, a direct gap (2.667±0.005eV at 300K), and charge transfer excitations at higher energy. Additionally, we report photoconductivity in BiFeO3 films under illumination from a 100mW /cm2 white light source. A direct correlation is observed between the magnitude of the photoconductivity and postgrowth cooling pressure. Dark conductivities increased by an order of magnitude when comparing films cooled in 760 and 0.1Torr. Large increases in photoconductivity are observed in light.

  9. Hair whorl direction and sexual orientation in human males.

    PubMed

    Rahman, Qazi; Clarke, Kenneth; Morera, Tirma

    2009-04-01

    Hair whorl direction is a somatic feature that is organized early during neurodevelopment and unlikely to be influenced by social factors. This study aimed to replicate a widely reported association by A. J. S. Klar (2003) between counterclockwise hair whorl direction and homosexuality in men, using more objective methodology. The authors took digital photographs of parietal surface hair whorls from 100 heterosexual men and 100 homosexual men who were predominantly right-handed. These images were rated for clockwise and counterclockwise direction (for which no more than 1 hair whorl was present) by 2 raters unaware of sexual orientation. The authors found no significant difference between heterosexual and homosexual men in hair whorl direction, but the authors did replicate the fraternal birth order effect (more older brothers for homosexual men). Number of older sisters was positively correlated with counterclockwise hair whorls in heterosexual men. These data were discussed in relation to prenatal factors assumed to play a role in the neurodevelopment of male homosexuality. (c) 2009 APA, all rights reserved.

  10. An assessment of first-order stochastic dispersion theories in porous media

    NASA Astrophysics Data System (ADS)

    Chin, David A.

    1997-12-01

    Random realizations of three-dimensional exponentially correlated hydraulic conductivity fields are used in a finite-difference numerical flow model to calculate the mean and covariance of the corresponding Lagrangian-velocity fields. The dispersivity of the porous medium is then determined from the Lagrangian-velocity statistics using the Taylor definition. This estimation procedure is exact, except for numerical errors, and the results are used to assess the accuracy of various first-order dispersion theories in both isotropic and anisotropic porous media. The results show that the Dagan theory is by far the most robust in both isotropic and anisotropic media, producing accurate values of the principal dispersivity components for σy as high as 1.0, In the case of anisotropic media where the flow is at an angle to the principal axis of hydraulic conductivity, it is shown that the dispersivity tensor is rotated away from the flow direction in the non-Fickian phase, but eventually coincides with the flow direction in the Fickian phase.

  11. Integral Equation Study of Molecular Fluids and Liquid Crystals in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Ward, David Atlee

    The Ornstein-Zernike (OZ) equation is solved with a Percus-Yevick (PY) closure for the hard ellipse and hard planar dumbell fluids in two dimensions. The correlation functions, including the orientation correlation function, are expanded in a set of orthogonal functions and the coefficients are solved for using an iterative algorithm developed by Lado. The pressure, compressibility, and orientation coefficients are computed for a variety of densities and molecular elongations. The hard planar dumbell fluid shows no orientational ordering. The PY values for the pressure differ from the corresponding Monte Carlo (MC) values by as much as 8% for the cases studied. The hard ellipse fluid exhibits some orientational ordering. Ordering is much more pronounced for ellipses with an axis ratio larger than 2.0. Pressure values computed for the hard ellipse fluid from the PY theory differ from the corresponding MC values by as much as 11% for the cases studied. As the PY solutions do exhibit a nematic character in the hard ellipse fluid, we find it to be a viable reference system for further studies of the nematic liquid crystal phase, though the isotropic-nematic (I-N) phase transition found by Vieillard-Baron was not observed in the PY solutions. The Maier-Saupe theory was reformulated based on the density functional formalism of Sluckin and Shukla. Using PY data of the hard ellipse as input for the direct correlation function in the isotropic phase, the orientational distribution was calculated. The values obtained showed only extremely weak nematic behavior.

  12. Correlation between obesity and severity of distal radius fractures.

    PubMed

    Acosta-Olivo, C; Gonzalez-Saldivar, J C; Villarreal-Villarreal, G; Torres-Botello, A; Gomez-Garcia, E; Tamez-Mata, Y; Peña-Martinez, V

    2017-04-01

    The incidence of obesity has increased significantly worldwide. Our hypothesis was that patients with obesity have a more severe distal radius fracture and we realized a study to evaluate this correlation between obesity and severity of distal radius fractures caused by low-energy injuries. A total of 114 patients with distal radius fracture were examined in a cross-sectional, observational study. Fractures were classified according to the international AO-Müller/Orthopedic Trauma Association (AO/OTA) classification in order to determine the severity. The patient's Body Mass Index (BMI) was calculated and a Pearson correlation was performed. The patients were predominantly female, and left side was more frequently affected. Most of the fractures were AO/OTA type A (71 patients). The majority of the involved patients in our study were overweighed or obese. We do not observe a direct correlation between grade of obesity and distal radius fracture severity. Based on the results of this study obesity and severity of distal radius fractures do not correlate. Prognostic. Level IV. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential

    USGS Publications Warehouse

    Cetin, K.O.; Seed, R.B.; Der Kiureghian, A.; Tokimatsu, K.; Harder, L.F.; Kayen, R.E.; Moss, R.E.S.

    2004-01-01

    This paper presents'new correlations for assessment of the likelihood of initiation (or triggering) of soil liquefaction. These new correlations eliminate several sources of bias intrinsic to previous, similar correlations, and provide greatly reduced overall uncertainty and variance. Key elements in the development of these new correlations are (1) accumulation of a significantly expanded database of field performance case histories; (2) use of improved knowledge and understanding of factors affecting interpretation of standard penetration test data; (3) incorporation of improved understanding of factors affecting site-specific earthquake ground motions (including directivity effects, site-specific response, etc.); (4) use of improved methods for assessment of in situ cyclic shear stress ratio; (5) screening of field data case histories on a quality/uncertainty basis; and (6) use of high-order probabilistic tools (Bayesian updating). The resulting relationships not only provide greatly reduced uncertainty, they also help to resolve a number of corollary issues that have long been difficult and controversial including: (1) magnitude-correlated duration weighting factors, (2) adjustments for fines content, and (3) corrections for overburden stress. ?? ASCE.

  14. High-speed technique based on a parallel projection correlation procedure for digital image correlation

    NASA Astrophysics Data System (ADS)

    Zaripov, D. I.; Renfu, Li

    2018-05-01

    The implementation of high-efficiency digital image correlation methods based on a zero-normalized cross-correlation (ZNCC) procedure for high-speed, time-resolved measurements using a high-resolution digital camera is associated with big data processing and is often time consuming. In order to speed-up ZNCC computation, a high-speed technique based on a parallel projection correlation procedure is proposed. The proposed technique involves the use of interrogation window projections instead of its two-dimensional field of luminous intensity. This simplification allows acceleration of ZNCC computation up to 28.8 times compared to ZNCC calculated directly, depending on the size of interrogation window and region of interest. The results of three synthetic test cases, such as a one-dimensional uniform flow, a linear shear flow and a turbulent boundary-layer flow, are discussed in terms of accuracy. In the latter case, the proposed technique is implemented together with an iterative window-deformation technique. On the basis of the results of the present work, the proposed technique is recommended to be used for initial velocity field calculation, with further correction using more accurate techniques.

  15. Elevated Concentrations of Serum Immunoglobulin Free Light Chains in Systemic Lupus Erythematosus Patients in Relation to Disease Activity, Inflammatory Status, B Cell Activity and Epstein-Barr Virus Antibodies

    PubMed Central

    Draborg, Anette H.; Lydolph, Magnus C.; Westergaard, Marie; Olesen Larsen, Severin; Nielsen, Christoffer T.; Duus, Karen; Jacobsen, Søren; Houen, Gunnar

    2015-01-01

    Objective In this study, we examined the concentration of serum immunoglobulin free light chains (FLCs) in systemic lupus erythematosus (SLE) patients and investigated its association with various disease parameters in order to evaluate the role of FLCs as a potential biomarker in SLE. Furthermore, FLCs’ association with Epstein-Barr virus (EBV) antibodies was examined. Methods Using a nephelometric assay, κFLC and λFLC concentrations were quantified in sera from 45 SLE patients and 40 healthy controls. SLE patients with renal insufficiency were excluded in order to preclude high concentrations of serum FLCs due to decreased clearance. Results Serum FLC concentrations were significantly elevated in SLE patients compared to healthy controls (p<0.0001) also after adjusting for Ig levels (p<0.0001). The concentration of serum FLCs correlated with a global disease activity (SLE disease activity index (SLEDAI)) score of the SLE patients (r = 0.399, p = 0.007). Furthermore, concentrations of FLCs correlated with titers of dsDNA antibodies (r = 0.383, p = 0.009), and FLC levels and SLEDAI scores correlated in the anti-dsDNA-positive SLE patients, but not in anti-dsDNA-negative SLE patients. Total immunoglobulin (IgG and IgA) concentrations correlated with FLC concentrations and elevated FLC levels were additionally shown to associate with the inflammatory marker C-reactive protein and also with complement consumption determined by low C4 in SLE patients. Collectively, results indicated that elevated serum FLCs reflects increased B cell activity in relation to inflammation. SLE patients had an increased seropositivity of EBV-directed antibodies that did not associate with elevated FLC concentrations. An explanation for this could be that serum FLC concentrations reflect the current EBV activity (reactivation) whereas EBV-directed antibodies reflect the extent of previous infection/reactivations. Conclusion SLE patients have elevated concentrations of serum FLCs that correlate with global disease activity scores and especially serologic markers for active disease. These findings are suggestive of circulating FLCs having potential as a new supplementary serologic biomarker in SLE. PMID:26402865

  16. Dynamic pathway of the photoinduced phase transition of TbMnO3

    NASA Astrophysics Data System (ADS)

    Bothschafter, Elisabeth M.; Abreu, Elsa; Rettig, Laurenz; Kubacka, Teresa; Parchenko, Sergii; Porer, Michael; Dornes, Christian; Windsor, Yoav William; Ramakrishnan, Mahesh; Alberca, Aurora; Manz, Sebastian; Saari, Jonathan; Koohpayeh, Seyed M.; Fiebig, Manfred; Forrest, Thomas; Werner, Philipp; Dhesi, Sarnjeet S.; Johnson, Steven L.; Staub, Urs

    2017-11-01

    We investigate the demagnetization dynamics of the cycloidal and sinusoidal phases of multiferroic TbMnO3 by means of time-resolved resonant soft x-ray diffraction following excitation by an optical pump. The use of orthogonal linear x-ray polarizations provides information on the contribution from the different magnetic moment directions, which can be interpreted as signatures from multiferroic cycloidal spin order and sinusoidal spin order. Tracking these signatures in the time domain enables us to identify the transient magnetic phase created by intense photoexcitation of the electrons and subsequent heating of the spin system on a picosecond time scale. The transient phase is shown to exhibit mostly spin density wave character, as in the adiabatic case, while nevertheless retaining the wave vector of the cycloidal long-range order. Two different pump photon energies, 1.55 and 3.1 eV, lead to population of the conduction band predominantly via intersite d -d or intrasite p -d transitions, respectively. We find that the nature of the optical excitation does not play an important role in determining the dynamics of magnetic order melting. Further, we observe that the orbital reconstruction, which is induced by the spin ordering, disappears on a time scale comparable to that of the cycloidal order, attesting to a direct coupling between magnetic order and orbital reconstruction. Our observations are discussed in the context of recent theoretical models of demagnetization dynamics in strongly correlated systems, revealing the potential of this type of measurement as a benchmark for such theoretical studies.

  17. Social and demographic correlates of loneliness in late life.

    PubMed

    Revenson, T A; Johnson, J L

    1984-02-01

    Although loneliness is often viewed as a serious problem of old age, few studies have addressed either its measurement or prevalence among older populations. The present study analyzed survey data from newspaper questionnaires circulated in three North American cities (N = 2,026) in order to examine the prevalence of loneliness across the life-span and some of its correlates in late life. Loneliness decreased across the adult life-span, with respondents age 65 and older the least lonely; elders were also more satisfied with their social relationships. Neither gender nor living alone was related to loneliness for older people. The data also partially confirm the desolation hypothesis, suggesting that desolation, or the loss of an intimate attachment, rather than isolation per se is a major correlate of loneliness in late life. Further, recency of loss was strongly related to increased loneliness. Directions for future research and intervention are discussed.

  18. Redshift space clustering of galaxies and cold dark matter model

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt

    1993-01-01

    The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.

  19. Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects.

    PubMed

    Arnold, J B; Liow, J S; Schaper, K A; Stern, J J; Sled, J G; Shattuck, D W; Worth, A J; Cohen, M S; Leahy, R M; Mazziotta, J C; Rottenberg, D A

    2001-05-01

    The desire to correct intensity nonuniformity in magnetic resonance images has led to the proliferation of nonuniformity-correction (NUC) algorithms with different theoretical underpinnings. In order to provide end users with a rational basis for selecting a given algorithm for a specific neuroscientific application, we evaluated the performance of six NUC algorithms. We used simulated and real MRI data volumes, including six repeat scans of the same subject, in order to rank the accuracy, precision, and stability of the nonuniformity corrections. We also compared algorithms using data volumes from different subjects and different (1.5T and 3.0T) MRI scanners in order to relate differences in algorithmic performance to intersubject variability and/or differences in scanner performance. In phantom studies, the correlation of the extracted with the applied nonuniformity was highest in the transaxial (left-to-right) direction and lowest in the axial (top-to-bottom) direction. Two of the six algorithms demonstrated a high degree of stability, as measured by the iterative application of the algorithm to its corrected output. While none of the algorithms performed ideally under all circumstances, locally adaptive methods generally outperformed nonadaptive methods. Copyright 2001 Academic Press.

  20. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    PubMed

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  1. Financial Knudsen number: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures confirmed by high-precision order-book information.

    PubMed

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2015-10-01

    We generalize the description of the dynamics of the order book of financial markets in terms of a Brownian particle embedded in a fluid of incoming, exiting, and annihilating particles by presenting a model of the velocity on each side (buy and sell) independently. The improved model builds on the time-averaged number of particles in the inner layer and its change per unit time, where the inner layer is revealed by the correlations between price velocity and change in the number of particles (limit orders). This allows us to introduce the Knudsen number of the financial Brownian particle motion and its asymmetric version (on the buy and sell sides). Not being considered previously, the asymmetric Knudsen numbers are crucial in finance in order to detect asymmetric price changes. The Knudsen numbers allows us to characterize the conditions for the market dynamics to be correctly described by a continuous stochastic process. Not questioned until now for large liquid markets such as the USD-JPY and EUR-USD exchange rates, we show that there are regimes when the Knudsen numbers are so high that discrete particle effects dominate, such as during market stresses and crashes. We document the presence of imbalances of particles depletion rates on the buy and sell sides that are associated with high Knudsen numbers and violent directional price changes. This indicator can detect the direction of the price motion at the early stage while the usual volatility risk measure is blind to the price direction.

  2. Financial Knudsen number: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures confirmed by high-precision order-book information

    NASA Astrophysics Data System (ADS)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2015-10-01

    We generalize the description of the dynamics of the order book of financial markets in terms of a Brownian particle embedded in a fluid of incoming, exiting, and annihilating particles by presenting a model of the velocity on each side (buy and sell) independently. The improved model builds on the time-averaged number of particles in the inner layer and its change per unit time, where the inner layer is revealed by the correlations between price velocity and change in the number of particles (limit orders). This allows us to introduce the Knudsen number of the financial Brownian particle motion and its asymmetric version (on the buy and sell sides). Not being considered previously, the asymmetric Knudsen numbers are crucial in finance in order to detect asymmetric price changes. The Knudsen numbers allows us to characterize the conditions for the market dynamics to be correctly described by a continuous stochastic process. Not questioned until now for large liquid markets such as the USD-JPY and EUR-USD exchange rates, we show that there are regimes when the Knudsen numbers are so high that discrete particle effects dominate, such as during market stresses and crashes. We document the presence of imbalances of particles depletion rates on the buy and sell sides that are associated with high Knudsen numbers and violent directional price changes. This indicator can detect the direction of the price motion at the early stage while the usual volatility risk measure is blind to the price direction.

  3. Alignment of cell division axes in directed epithelial cell migration

    NASA Astrophysics Data System (ADS)

    Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens

    2014-11-01

    Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.

  4. Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor

    NASA Astrophysics Data System (ADS)

    Kagawa, Naoki; Wada, Osami; Koga, Ryuji

    1999-05-01

    This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.

  5. Covariance functions for body weight from birth to maturity in Nellore cows.

    PubMed

    Boligon, A A; Mercadante, M E Z; Forni, S; Lôbo, R B; Albuquerque, L G

    2010-03-01

    The objective of this study was to estimate (co)variance functions using random regression models on Legendre polynomials for the analysis of repeated measures of BW from birth to adult age. A total of 82,064 records from 8,145 females were analyzed. Different models were compared. The models included additive direct and maternal effects, and animal and maternal permanent environmental effects as random terms. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of animal age (cubic regression) were considered as random covariables. Eight models with polynomials of third to sixth order were used to describe additive direct and maternal effects, and animal and maternal permanent environmental effects. Residual effects were modeled using 1 (i.e., assuming homogeneity of variances across all ages) or 5 age classes. The model with 5 classes was the best to describe the trajectory of residuals along the growth curve. The model including fourth- and sixth-order polynomials for additive direct and animal permanent environmental effects, respectively, and third-order polynomials for maternal genetic and maternal permanent environmental effects were the best. Estimates of (co)variance obtained with the multi-trait and random regression models were similar. Direct heritability estimates obtained with the random regression models followed a trend similar to that obtained with the multi-trait model. The largest estimates of maternal heritability were those of BW taken close to 240 d of age. In general, estimates of correlation between BW from birth to 8 yr of age decreased with increasing distance between ages.

  6. Diagrammatic analysis of correlations in polymer fluids: Cluster diagrams via Edwards' field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, David C.

    2006-10-15

    Edwards' functional integral approach to the statistical mechanics of polymer liquids is amenable to a diagrammatic analysis in which free energies and correlation functions are expanded as infinite sums of Feynman diagrams. This analysis is shown to lead naturally to a perturbative cluster expansion that is closely related to the Mayer cluster expansion developed for molecular liquids by Chandler and co-workers. Expansion of the functional integral representation of the grand-canonical partition function yields a perturbation theory in which all quantities of interest are expressed as functionals of a monomer-monomer pair potential, as functionals of intramolecular correlation functions of non-interacting molecules,more » and as functions of molecular activities. In different variants of the theory, the pair potential may be either a bare or a screened potential. A series of topological reductions yields a renormalized diagrammatic expansion in which collective correlation functions are instead expressed diagrammatically as functionals of the true single-molecule correlation functions in the interacting fluid, and as functions of molecular number density. Similar renormalized expansions are also obtained for a collective Ornstein-Zernicke direct correlation function, and for intramolecular correlation functions. A concise discussion is given of the corresponding Mayer cluster expansion, and of the relationship between the Mayer and perturbative cluster expansions for liquids of flexible molecules. The application of the perturbative cluster expansion to coarse-grained models of dense multi-component polymer liquids is discussed, and a justification is given for the use of a loop expansion. As an example, the formalism is used to derive a new expression for the wave-number dependent direct correlation function and recover known expressions for the intramolecular two-point correlation function to first-order in a renormalized loop expansion for coarse-grained models of binary homopolymer blends and diblock copolymer melts.« less

  7. Genetic evaluation of weekly body weight in Japanese quail using random regression models.

    PubMed

    Karami, K; Zerehdaran, S; Tahmoorespur, M; Barzanooni, B; Lotfi, E

    2017-02-01

    1. A total of 11 826 records from 2489 quails, hatched between 2012 and 2013, were used to estimate genetic parameters for BW (body weight) of Japanese quail using random regression models. Weekly BW was measured from hatch until 49 d of age. WOMBAT software (University of New England, Australia) was used for estimating genetic and phenotypic parameters. 2. Nineteen models were evaluated to identify the best orders of Legendre polynomials. A model with Legendre polynomial of order 3 for additive genetic effect, order 3 for permanent environmental effects and order 1 for maternal permanent environmental effects was chosen as the best model. 3. According to the best model, phenotypic and genetic variances were higher at the end of the rearing period. Although direct heritability for BW reduced from 0.18 at hatch to 0.12 at 7 d of age, it gradually increased to 0.42 at 49 d of age. It indicates that BW at older ages is more controlled by genetic components in Japanese quail. 4. Phenotypic and genetic correlations between adjacent periods except hatching weight were more closely correlated than remote periods. The present results suggested that BW at earlier ages, especially at hatch, are different traits compared to BW at older ages. Therefore, BW at earlier ages could not be used as a selection criterion for improving BW at slaughter age.

  8. Revealing cancer subtypes with higher-order correlations applied to imaging and omics data.

    PubMed

    Graim, Kiley; Liu, Tiffany Ting; Achrol, Achal S; Paull, Evan O; Newton, Yulia; Chang, Steven D; Harsh, Griffith R; Cordero, Sergio P; Rubin, Daniel L; Stuart, Joshua M

    2017-03-31

    Patient stratification to identify subtypes with different disease manifestations, severity, and expected survival time is a critical task in cancer diagnosis and treatment. While stratification approaches using various biomarkers (including high-throughput gene expression measurements) for patient-to-patient comparisons have been successful in elucidating previously unseen subtypes, there remains an untapped potential of incorporating various genotypic and phenotypic data to discover novel or improved groupings. Here, we present HOCUS, a unified analytical framework for patient stratification that uses a community detection technique to extract subtypes out of sparse patient measurements. HOCUS constructs a patient-to-patient network from similarities in the data and iteratively groups and reconstructs the network into higher order clusters. We investigate the merits of using higher-order correlations to cluster samples of cancer patients in terms of their associations with survival outcomes. In an initial test of the method, the approach identifies cancer subtypes in mutation data of glioblastoma, ovarian, breast, prostate, and bladder cancers. In several cases, HOCUS provides an improvement over using the molecular features directly to compare samples. Application of HOCUS to glioblastoma images reveals a size and location classification of tumors that improves over human expert-based stratification. Subtypes based on higher order features can reveal comparable or distinct groupings. The distinct solutions can provide biologically- and treatment-relevant solutions that are just as significant as solutions based on the original data.

  9. Performance Analysis of Blind Subspace-Based Signature Estimation Algorithms for DS-CDMA Systems with Unknown Correlated Noise

    NASA Astrophysics Data System (ADS)

    Zarifi, Keyvan; Gershman, Alex B.

    2006-12-01

    We analyze the performance of two popular blind subspace-based signature waveform estimation techniques proposed by Wang and Poor and Buzzi and Poor for direct-sequence code division multiple-access (DS-CDMA) systems with unknown correlated noise. Using the first-order perturbation theory, analytical expressions for the mean-square error (MSE) of these algorithms are derived. We also obtain simple high SNR approximations of the MSE expressions which explicitly clarify how the performance of these techniques depends on the environmental parameters and how it is related to that of the conventional techniques that are based on the standard white noise assumption. Numerical examples further verify the consistency of the obtained analytical results with simulation results.

  10. The GLORIE Campaign: Assessment of the Capabilities of Airborne GNSS-R for Land Remote Sensing.

    NASA Astrophysics Data System (ADS)

    Mangiarotti, S.; Motte, E.; Zribi, M., Sr.; Fanise, P., Sr.

    2015-12-01

    In June and July 2015 an intensive flight campaign was conducted over the south west of France to test the sensitivity of Global Navigation Satellite System Reflectometry (GNSS-R) to the geophysical parameters of continental surfaces. Namely, the parameters of interest were soil moisture, soil roughness, plant water content, forest biomass and level of inland water bodies and rivers. We used the GLORI polarimetric GNSS-R instrument, collecting raw 10MSPS 2-bit IQ direct (RHCP, zenith) and reflected (RHCP and LHCP, nadir) signals at GPS L1 frequency aboard the ATR-42 aircraft of the SAFIRE fleet. Simultaneous measurement of aircraft attitude and position were recorded. The flight plan included flyovers of several areas of interests, with collocated ground truth measurements of soil moisture, soil roughness, cultivated biomass, and forest biomass. Also flyovers of ponds, lakes and river were included for power calibration and altimetry retrievals. In total, 6 flights were performed between June 19th and July 6th, representing more than 15 hours of raw data. A conventional GNSS-R processing of the data was performed in order to compute the direct and reflected complex waveforms. A preliminary data analysis based on the variations of the ratio of reflected maximum correlation amplitude in the LHCP antenna to direct maximum correlated amplitude shows measurements sensitivity to soil type, land use and incidence angle. Also, first altimetric retrievals using phase-delay techniques shows very promising results over calm waters. Current work is ongoing in order to fit the observed polarimetric measurements with innovative bistatic scattering models capable of taking into account complex geometries and land use configurations.

  11. Observation of improved and degraded confinement with driven flow on the LAPD

    NASA Astrophysics Data System (ADS)

    Schaffner, David

    2012-10-01

    External continuous control over azimuthal flow and flow shear has been achieved in a linear plasma device for the first time allowing for a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the edge of the Large Plasma Device (LAPD). The flow is controlled using biasable iris-like limiters situated axially between the cathode source and main plasma chamber. LAPD rotates spontaneously in the ion diamagnetic direction (IDD); positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction (EDD). Degradation of particle confinement is observed in the minimum shearing state and reduction in turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (>10kHz) density fluctuations and a reduction in the radial correlation length. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. Magnetic field is varied in order to explore whether and how field effects transport modification. Calculations of transport equations are used to predict density profiles given source and temperature profiles and can show the level of transport predicted to be necessary in order to produce the experimental density profiles observed. Finally, the variations of density fluctuations and radial correlation length are fit well with power-laws and compare favorably to simple models of shear suppression of transport.

  12. Unidimensional factor models imply weaker partial correlations than zero-order correlations.

    PubMed

    van Bork, Riet; Grasman, Raoul P P P; Waldorp, Lourens J

    2018-06-01

    In this paper we present a new implication of the unidimensional factor model. We prove that the partial correlation between two observed variables that load on one factor given any subset of other observed variables that load on this factor lies between zero and the zero-order correlation between these two observed variables. We implement this result in an empirical bootstrap test that rejects the unidimensional factor model when partial correlations are identified that are either stronger than the zero-order correlation or have a different sign than the zero-order correlation. We demonstrate the use of the test in an empirical data example with data consisting of fourteen items that measure extraversion.

  13. Genetic analyses of partial egg production in Japanese quail using multi-trait random regression models.

    PubMed

    Karami, K; Zerehdaran, S; Barzanooni, B; Lotfi, E

    2017-12-01

    1. The aim of the present study was to estimate genetic parameters for average egg weight (EW) and egg number (EN) at different ages in Japanese quail using multi-trait random regression (MTRR) models. 2. A total of 8534 records from 900 quail, hatched between 2014 and 2015, were used in the study. Average weekly egg weights and egg numbers were measured from second until sixth week of egg production. 3. Nine random regression models were compared to identify the best order of the Legendre polynomials (LP). The most optimal model was identified by the Bayesian Information Criterion. A model with second order of LP for fixed effects, second order of LP for additive genetic effects and third order of LP for permanent environmental effects (MTRR23) was found to be the best. 4. According to the MTRR23 model, direct heritability for EW increased from 0.26 in the second week to 0.53 in the sixth week of egg production, whereas the ratio of permanent environment to phenotypic variance decreased from 0.48 to 0.1. Direct heritability for EN was low, whereas the ratio of permanent environment to phenotypic variance decreased from 0.57 to 0.15 during the production period. 5. For each trait, estimated genetic correlations among weeks of egg production were high (from 0.85 to 0.98). Genetic correlations between EW and EN were low and negative for the first two weeks, but they were low and positive for the rest of the egg production period. 6. In conclusion, random regression models can be used effectively for analysing egg production traits in Japanese quail. Response to selection for increased egg weight would be higher at older ages because of its higher heritability and such a breeding program would have no negative genetic impact on egg production.

  14. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise.

    PubMed

    Brezinski, M E

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  15. The Analysis and Suppression of the spike noise in vibrator record

    NASA Astrophysics Data System (ADS)

    Jia, H.; Jiang, T.; Xu, X.; Ge, L.; Lin, J.; Yang, Z.

    2013-12-01

    During the seismic exploration with vibrator, seismic recording systems have often been affected by random spike noise in the background, which leads to strong data distortions as a result of the cross-correlation processing of the vibrator method. Partial or total loss of the desired seismic information is possible if no automatic spike reduction is available in the field prior to correlation of the field record. Generally speaking, original record of vibrator is uncorrelated data, in which the signal is non-wavelet form. In order to obtain the seismic record similar to explosive source, the signal of uncorrelated data needs to use the correlation algorithm to compress into wavelet form. The correlation process results in that the interference of spike in correlated data is not only being suppressed, but also being expanded. So the spike noise suppression of vibrator is indispensable. According to numerical simulation results, the effect of spike in the vibrator record is mainly affected by the amplitude and proportional points in the uncorrelated record. When the spike noise ratio in uncorrelated record reaches 1.5% and the average amplitude exceeds 200, it will make the SNR(signal-to-noise ratio) of the correlated record lower than 0dB, so that it is difficult to separate the signal. While the amplitude and ratio is determined by the intensity of background noise. Therefore, when the noise level is strong, in order to improve SNR of the seismic data, the uncorrelated record of vibrator need to take necessary steps to suppress spike noise. For the sake of reducing the influence of the spike noise, we need to make the detection and suppression of spike noise process for the uncorrelated record. Because vibrator works by inputting sweep signal into the underground long time, ideally, the peak and valley values of each trace have little change. On the basis of the peak and valley values, we can get a reference amplitude value. Then the spike can be detected and suppressed. After this process, it can reduce the effection of spike noise in the uncorrelated record to improve the SNR. At present, because the memory space of vibrator uncorrelated data is always very large, in order to reduce acquisition costs, we usually record correlated data directly. It's reasonable if there is no strong spike sneaking into uncorrelated record. However, due to the fact that the random spike in the background is not avoidable in the acquisition process, and the instantaneous input energy of the vibrator is probably smaller than spike noise, which makes the uncorrelated data contain a certain amount of spike noise, it severely reduces the acquisition quality of vibrator if there is no noise suppression module beforehand. Of course, the suppressing process of spike noise can be carried out in the field acquisition or data processing stage. In the field of vibrator acquisition system, we can use the spike noise suppression before the correlated module, so that it can directly record correlated data without the spike affection. If in the stage of data processing, it is necessary to record uncorrelated data.

  16. Extension of the KLI approximation toward the exact optimized effective potential.

    PubMed

    Iafrate, G J; Krieger, J B

    2013-03-07

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be determined by iteration with the natural zeroth order correction given by the KLI exchange-correlation potential. Explicit analytic results are provided to illustrate the first order iterative correction beyond the KLI approximation. The derived correction term to the KLI potential explicitly involves spatially weighted products of occupied orbital densities in any assumed orbital-dependent exchange-correlation energy functional; as well, the correction term is obtained with no adjustable parameters. Moreover, if the equation for the exact optimized effective potential is further iterated, one can obtain the OEP as accurately as desired.

  17. Extension of the KLI approximation toward the exact optimized effective potential

    NASA Astrophysics Data System (ADS)

    Iafrate, G. J.; Krieger, J. B.

    2013-03-01

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be determined by iteration with the natural zeroth order correction given by the KLI exchange-correlation potential. Explicit analytic results are provided to illustrate the first order iterative correction beyond the KLI approximation. The derived correction term to the KLI potential explicitly involves spatially weighted products of occupied orbital densities in any assumed orbital-dependent exchange-correlation energy functional; as well, the correction term is obtained with no adjustable parameters. Moreover, if the equation for the exact optimized effective potential is further iterated, one can obtain the OEP as accurately as desired.

  18. Using statistical correlation to compare geomagnetic data sets

    NASA Astrophysics Data System (ADS)

    Stanton, T.

    2009-04-01

    The major features of data curves are often matched, to a first order, by bump and wiggle matching to arrive at an offset between data sets. This poster describes a simple statistical correlation program that has proved useful during this stage by determining the optimal correlation between geomagnetic curves using a variety of fixed and floating windows. Its utility is suggested by the fact that it is simple to run, yet generates meaningful data comparisons, often when data noise precludes the obvious matching of curve features. Data sets can be scaled, smoothed, normalised and standardised, before all possible correlations are carried out between selected overlapping portions of each curve. Best-fit offset curves can then be displayed graphically. The program was used to cross-correlate directional and palaeointensity data from Holocene lake sediments (Stanton et al., submitted) and Holocene lava flows. Some example curve matches are shown, including some that illustrate the potential of this technique when examining particularly sparse data sets. Stanton, T., Snowball, I., Zillén, L. and Wastegård, S., submitted. Detecting potential errors in varve chronology and 14C ages using palaeosecular variation curves, lead pollution history and statistical correlation. Quaternary Geochronology.

  19. Comparison and combination of "direct" and fragment based local correlation methods: Cluster in molecules and domain based local pair natural orbital perturbation and coupled cluster theories

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Becker, Ute; Neese, Frank

    2018-03-01

    Local correlation theories have been developed in two main flavors: (1) "direct" local correlation methods apply local approximation to the canonical equations and (2) fragment based methods reconstruct the correlation energy from a series of smaller calculations on subsystems. The present work serves two purposes. First, we investigate the relative efficiencies of the two approaches using the domain-based local pair natural orbital (DLPNO) approach as the "direct" method and the cluster in molecule (CIM) approach as the fragment based approach. Both approaches are applied in conjunction with second-order many-body perturbation theory (MP2) as well as coupled-cluster theory with single-, double- and perturbative triple excitations [CCSD(T)]. Second, we have investigated the possible merits of combining the two approaches by performing CIM calculations with DLPNO methods serving as the method of choice for performing the subsystem calculations. Our cluster-in-molecule approach is closely related to but slightly deviates from approaches in the literature since we have avoided real space cutoffs. Moreover, the neglected distant pair correlations in the previous CIM approach are considered approximately. Six very large molecules (503-2380 atoms) were studied. At both MP2 and CCSD(T) levels of theory, the CIM and DLPNO methods show similar efficiency. However, DLPNO methods are more accurate for 3-dimensional systems. While we have found only little incentive for the combination of CIM with DLPNO-MP2, the situation is different for CIM-DLPNO-CCSD(T). This combination is attractive because (1) the better parallelization opportunities offered by CIM; (2) the methodology is less memory intensive than the genuine DLPNO-CCSD(T) method and, hence, allows for large calculations on more modest hardware; and (3) the methodology is applicable and efficient in the frequently met cases, where the largest subsystem calculation is too large for the canonical CCSD(T) method.

  20. Human- and computer-accessible 2D correlation data for a more reliable structure determination of organic compounds. Future roles of researchers, software developers, spectrometer managers, journal editors, reviewers, publisher and database managers toward artificial-intelligence analysis of NMR spectra.

    PubMed

    Jeannerat, Damien

    2017-01-01

    The introduction of a universal data format to report the correlation data of 2D NMR spectra such as COSY, HSQC and HMBC spectra will have a large impact on the reliability of structure determination of small organic molecules. These lists of assigned cross peaks will bridge signals found in NMR 1D and 2D spectra and the assigned chemical structure. The record could be very compact, human and computer readable so that it can be included in the supplementary material of publications and easily transferred into databases of scientific literature and chemical compounds. The records will allow authors, reviewers and future users to test the consistency and, in favorable situations, the uniqueness of the assignment of the correlation data to the associated chemical structures. Ideally, the data format of the correlation data should include direct links to the NMR spectra to make it possible to validate their reliability and allow direct comparison of spectra. In order to take the full benefits of their potential, the correlation data and the NMR spectra should therefore follow any manuscript in the review process and be stored in open-access database after publication. Keeping all NMR spectra, correlation data and assigned structures together at all time will allow the future development of validation tools increasing the reliability of past and future NMR data. This will facilitate the development of artificial intelligence analysis of NMR spectra by providing a source of data than can be used efficiently because they have been validated or can be validated by future users. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson's disease.

    PubMed

    Nobili, Flavio; Arnaldi, Dario; Campus, Claudio; Ferrara, Michela; De Carli, Fabrizio; Brugnolo, Andrea; Dessi, Barbara; Girtler, Nicola; Morbelli, Silvia; Abruzzese, Giovanni; Sambuceti, Gianmario; Rodriguez, Guido

    2011-12-01

    Subtle cognitive impairment is recognized in the first stages of Parkinson's disease (PD), including executive, memory and visuospatial dysfunction, but its pathophysiological basis is still debated. Twenty-six consecutive, drug-naïve, de novo PD patients underwent an extended neuropsychological battery, dopamine transporter (DAT) and brain perfusion single photon emission computed tomography (SPECT). We previously reported that nigrocaudate impairment correlates with executive functions, and nigroputaminal impairment with visuospatial abilities. Here perfusion SPECT was first compared between the PD group and age-matched controls (CTR). Then, perfusion SPECT was correlated with both DAT SPECT and four neuropsychological factors by means of voxel-based analysis (SPM8) with a height threshold of p < 0.005 at peak level and p < 0.05 false discovery rate-corrected at cluster level. Both perfusion and DAT SPECT images were flipped in order to have the more affected hemisphere (MAH), defined clinically, on the same side. Significant hypoperfusion was found in an occipital area of the MAH in PD patients as compared to CTR. Executive functions directly correlated with brain perfusion in bilateral posterior cingulate cortex and precuneus in the less affected hemisphere (LAH), while verbal memory directly correlated with perfusion in the precuneus, inferior parietal lobule and superior temporal gyrus in the LAH. Furthermore, positive correlation was highlighted between nigrocaudate and nigroputaminal impairment and brain perfusion in the precuneus, posterior cingulate and parahippocampal gyri of the LAH. These data support the evidence showing an early involvement of the cholinergic system in the early cognitive dysfunction and point to a more relevant role of parietal lobes and posterior cingulate in executive functions in PD.

  2. Measurement of Long-Range Angular Correlation and Quadrupole Anisotropy of Pions and (Anti)Protons in Central d+Au Collisions at sqrt[s_{NN}]=200 GeV.

    PubMed

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Al-Ta'ani, H; Alexander, J; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Ben-Benjamin, J; Bennett, R; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa Del Valle, Z; Connors, M; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gal, C; Garishvili, I; Glenn, A; Gong, H; Gong, X; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Guo, L; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Harper, C; Hashimoto, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; John, D; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E-J; Kim, Y-J; Kim, Y K; Kinney, E; Kiss, Á; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Lim, S H; Linden Levy, L A; Liška, T; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Park, W J; Pate, S F; Patel, L; Pei, H; Peng, J-C; Pereira, H; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Yoo, J S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhou, S

    2015-05-15

    We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d+Au and minimum bias p+p collisions at sqrt[s_{NN}]=200 GeV. The charged hadron is measured at midrapidity |η|<0.35, and the energy is measured at large rapidity (-3.7<η<-3.1, Au-going direction). An enhanced near-side angular correlation across |Δη|>2.75 is observed in d+Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v_{2} for inclusive charged hadrons at midrapidity up to p_{T}=4.5 GeV/c. We also present the measurement of v_{2} for identified π^{±} and (anti)protons in central d+Au collisions, and observe a mass-ordering pattern similar to that seen in heavy-ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from p+Pb at sqrt[s_{NN}]=5.02 TeV. The magnitude of the mass ordering in d+Au is found to be smaller than that in p+Pb collisions, which may indicate smaller radial flow in lower energy d+Au collisions.

  3. Measurement of Long-Range Angular Correlation and Quadrupole Anisotropy of Pions and (Anti)Protons in Central d +Au Collisions at √{sN N }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'Ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Bhom, J. H.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Caringi, A.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Garishvili, I.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Harper, C.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; Jin, J.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, D. J.; Kim, E.-J.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Miyachi, Y.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, T.; Savastio, M.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Sodre, T.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration

    2015-05-01

    We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d +Au and minimum bias p +p collisions at √{sN N }=200 GeV . The charged hadron is measured at midrapidity |η |<0.35 , and the energy is measured at large rapidity (-3.7 <η <-3.1 , Au-going direction). An enhanced near-side angular correlation across |Δ η |>2.75 is observed in d +Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v2 for inclusive charged hadrons at midrapidity up to pT=4.5 GeV /c . We also present the measurement of v2 for identified π± and (anti)protons in central d +Au collisions, and observe a mass-ordering pattern similar to that seen in heavy-ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from p +Pb at √{sN N }=5.02 TeV . The magnitude of the mass ordering in d +Au is found to be smaller than that in p +Pb collisions, which may indicate smaller radial flow in lower energy d +Au collisions.

  4. High order neural correlates of social behavior in the honeybee brain.

    PubMed

    Duer, Aron; Paffhausen, Benjamin H; Menzel, Randolf

    2015-10-30

    Honeybees are well established models of neural correlates of sensory function, learning and memory formation. Here we report a novel approach allowing to record high-order mushroom body-extrinsic interneurons in the brain of worker bees within a functional colony. New method The use of two 100 cm long twisted copper electrodes allowed recording of up to four units of mushroom body-extrinsic neurons simultaneously for up to 24h in animals moving freely between members of the colony. Every worker, including the recorded bee, hatched in the experimental environment. The group consisted of 200 animals in average. Animals explored different regions of the comb and interacted with other colony members. The activities of the units were not selective for locations on the comb, body directions with respect to gravity and olfactory signals on the comb, or different social interactions. However, combinations of these parameters defined neural activity in a unit-specific way. In addition, units recorded from the same animal co-varied according to unknown factors. Comparison with existing method(s): All electrophysiological studies with honey bees were performed so far on constrained animals outside their natural behavioral contexts. Yet no neuronal correlates were measured in a social context. Free mobility of recoded insects over a range of a quarter square meter allows addressing questions concerning neural correlates of social communication, planning of tasks within the colony and attention-like processes. The method makes it possible to study neural correlates of social behavior in a near-natural setting within the honeybee colony. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bacterial adhesion on direct and indirect dental restorative composite resins: An in vitro study on a natural biofilm.

    PubMed

    Derchi, Giacomo; Vano, Michele; Barone, Antonio; Covani, Ugo; Diaspro, Alberto; Salerno, Marco

    2017-05-01

    Both direct and indirect techniques are used for dental restorations. Which technique should be preferred or whether they are equivalent with respect to bacterial adhesion is unclear. The purpose of this in vitro study was to determine the affinity of bacterial biofilm to dental restorative composite resins placed directly and indirectly. Five direct composite resins for restorations (Venus Diamond, Adonis, Optifil, Enamel Plus HRi, Clearfil Majesty Esthetic) and 3 indirect composite resins (Gradia, Estenia, Signum) were selected. The materials were incubated in unstimulated whole saliva for 1 day. The biofilms grown were collected and their bacterial cells counted. In parallel, the composite resin surface morphology was analyzed with atomic force microscopy. Both bacterial cell count and surface topography parameters were subjected to statistical analysis (α=.05). Indirect composite resins showed significantly lower levels than direct composite resins for bacterial cell adhesion, (P<.001). No significant differences were observed within the direct composite resins (P>.05). However, within the indirect composite resins a significantly lower level was found for Gradia than Estenia or Signum (P<.01). A partial correlation was observed between composite resin roughness and bacterial adhesion when the second and particularly the third-order statistical moments of the composite resin height distributions were considered. Indirect dental restorative composite resins were found to be less prone to biofilm adhesion than direct composite resins. A correlation of bacterial adhesion to surface morphology exists that is described by kurtosis; thus, advanced data analysis is required to discover possible insights into the biologic effects of morphology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. The impact of insight on social functioning in patients with schizophrenia.

    PubMed

    Erol, Almila; Delibas, Hakan; Bora, Ozlem; Mete, Levent

    2015-06-01

    It is still unclear whether insight has a direct association with social functioning in schizophrenia, independent of its association with symptoms. This study aimed to investigate the relationship of insight and its dimensions with social functioning in schizophrenia. A total of 170 outpatients with schizophrenia were included in this study. All patients were evaluated with the Scale to Assess Unawareness of Mental Disorder (SUMD), Positive and Negative Syndrome Scale (PANSS) and Personal and Social Performance Scale (PSP). Patients with impaired insight and patients with unimpaired insight were compared for PSP score through independent samples t test. Pearson's correlation analysis was used to determine the correlations between study variables. Multiple stepwise linear regression analysis was used in order to determine the variables that predict social performance. The PSP score of patients with impaired insight was significantly lower than that of patients with unimpaired insight. There were significant correlations between insight dimensions and PSP score. PANSS negative scale score, awareness of achieved effects of medication and awareness of anhedonia/asociality were significant predictors of social performance. Insight has a significant impact on social functioning in schizophrenia, and some, but not all, insight dimensions have direct impact on social performance, independent of their association with symptoms. © The Author(s) 2014.

  7. Unconventional antiferromagnetic correlations of the doped Haldane gapsystem Y 2 BaNi 1 - x Zn x O 5

    NASA Astrophysics Data System (ADS)

    Villar, V.; Mélin, R.; Paulsen, C.; Souletie, J.; Janod, E.; Payen, C.

    2002-01-01

    We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y2BaNi1-xZnxO5. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unconventional because antiferromagnetism coexists with random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-Weiss susceptibility χ(T) C/(Θ + T) as expected for antiferromagnetic correlations but we do not obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the ``impurity'' susceptibility (T) by subtracting the Haldane gap contribution to the total susceptibility. In the temperature range [1 K, 300 K] the experimental data are well fitted by T (T) = Cimp 1 + Timp/T . In the temperature range [100 mK, 1 K] the experimental data are well fitted by T (T) = A ln(T/Tc), where Tc increases with x. This fit suggests the existence of a finite Néel temperature which is however too small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence of the ac-susceptibility (T) which suggests the existence of antiferromagnetic correlations at very low temperature.

  8. Implementation of a direct-imaging and FX correlator for the BEST-2 array

    NASA Astrophysics Data System (ADS)

    Foster, G.; Hickish, J.; Magro, A.; Price, D.; Zarb Adami, K.

    2014-04-01

    A new digital backend has been developed for the Basic Element for SKA Training II (BEST-2) array at Radiotelescopi di Medicina, INAF-IRA, Italy, which allows concurrent operation of an FX correlator, and a direct-imaging correlator and beamformer. This backend serves as a platform for testing some of the spatial Fourier transform concepts which have been proposed for use in computing correlations on regularly gridded arrays. While spatial Fourier transform-based beamformers have been implemented previously, this is, to our knowledge, the first time a direct-imaging correlator has been deployed on a radio astronomy array. Concurrent observations with the FX and direct-imaging correlator allow for direct comparison between the two architectures. Additionally, we show the potential of the direct-imaging correlator for time-domain astronomy, by passing a subset of beams though a pulsar and transient detection pipeline. These results provide a timely verification for spatial Fourier transform-based instruments that are currently in commissioning. These instruments aim to detect highly redshifted hydrogen from the epoch of reionization and/or to perform wide-field surveys for time-domain studies of the radio sky. We experimentally show the direct-imaging correlator architecture to be a viable solution for correlation and beamforming.

  9. Causal and causally separable processes

    NASA Astrophysics Data System (ADS)

    Oreshkov, Ognyan; Giarmatzi, Christina

    2016-09-01

    The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and outcomes for each party, these correlations form a polytope whose facets define causal inequalities. The case of quantum correlations in this paradigm is captured by the process matrix formalism. We investigate the link between causality and the closely related notion of causal separability of quantum processes, which we here define rigorously in analogy with the link between Bell locality and separability of quantum states. We show that causality and causal separability are not equivalent in general by giving an example of a physically admissible tripartite quantum process that is causal but not causally separable. We also show that there are causally separable quantum processes that become non-causal if extended by supplying the parties with entangled ancillas. This motivates the concepts of extensibly causal and extensibly causally separable (ECS) processes, for which the respective property remains invariant under extension. We characterize the class of ECS quantum processes in the tripartite case via simple conditions on the form of the process matrix. We show that the processes realizable by classically controlled quantum circuits are ECS and conjecture that the reverse also holds.

  10. Identification of Correlated GRACE Monthly Harmonic Coefficients Using Pattern Recognition and Neural Networks

    NASA Astrophysics Data System (ADS)

    Piretzidis, D.; Sra, G.; Sideris, M. G.

    2016-12-01

    This study explores new methods for identifying correlation errors in harmonic coefficients derived from monthly solutions of the Gravity Recovery and Climate Experiment (GRACE) satellite mission using pattern recognition and neural network algorithms. These correlation errors are evidenced in the differences between monthly solutions and can be suppressed using a de-correlation filter. In all studies so far, the implementation of the de-correlation filter starts from a specific minimum order (i.e., 11 for RL04 and 38 for RL05) until the maximum order of the monthly solution examined. This implementation method has two disadvantages, namely, the omission of filtering correlated coefficients of order less than the minimum order and the filtering of uncorrelated coefficients of order higher than the minimum order. In the first case, the filtered solution is not completely free of correlated errors, whereas the second case results in a monthly solution that suffers from loss of geophysical signal. In the present study, a new method of implementing the de-correlation filter is suggested, by identifying and filtering only the coefficients that show indications of high correlation. Several numerical and geometric properties of the harmonic coefficient series of all orders are examined. Extreme cases of both correlated and uncorrelated coefficients are selected, and their corresponding properties are used to train a two-layer feed-forward neural network. The objective of the neural network is to identify and quantify the correlation by providing the probability of an order of coefficients to be correlated. Results show good performance of the neural network, both in the validation stage of the training procedure and in the subsequent use of the trained network to classify independent coefficients. The neural network is also capable of identifying correlated coefficients even when a small number of training samples and neurons are used (e.g.,100 and 10, respectively).

  11. Correlations and Areal Distribution of the Table Mountain Formation, Stanislaus Group; Central Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Torrez, G.; Carlson, C. W.; Putirka, K. D.; Pluhar, C. J.; Sharma, R. K.

    2011-12-01

    Late Cenozoic evolution of the western Cordillera is a matter of ongoing debate in geologic studies. Volcanic deposits within, and adjacent to the Sierra Nevada have played a significant role in many of these debates. With local faulting coincident with eruption of members of the Stanislaus Group at ca. 38°N, the composition and correlation of these volcanics can greatly aid our understanding of Sierra Nevada tectonics. At the crest of the central Sierra Nevada, 23 trachyandesite lava flows of the Table Mountain Formation, dated at ~10 Ma, cap Sonora Peak. These 23 flows compose the thickest and most complete known stratigraphic section of the Table Mountain Formation in the region. Located ~12 km east of Sonora Peak are 16 flows of trachyandesite at Grouse Meadow. We have collected a detailed set of geochemical and paleomagnetic data for flows of these two sections at Sonora Peak and Grouse Meadows in an attempt to correlate volcanic, paleomagnetic and structural events related to uplift and extension in the Sierra Nevada and the Walker Lane. Correlation of individual flows is possible based on: stratigraphic order, temporal gaps in deposition as determined by paleomagnetic remanence direction and nonconformities, and flow geochemistry. These correlations allow us to infer source localities, flow directions, and temporal changes in flow routes. The large number of flows present at Grouse Meadow provides an additional data set from which to correlate various localities in the region to those units not represented at Sonora Peak. Several flows which occur in the upper portions of the Sonora Peak and Grouse Meadow stratigraphic sections do not correlate between these localities. The causes of stratigraphic discontinuity potentially represent: tectonic isolation across the Sierran Crest, topographic isolation by the emplacement of younger flows, or the combination of the two. Additional to the correlation of individual flows at these localities, this study shows a significant shift in geochemistry across a stratigraphic boundary at both localities.

  12. Exotic chemical arrangements and magnetic moment evolution of NixPt1-x (0 ≤x≤ 1) nanoparticles

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-06-01

    We present a systematic study on the chemical ordering pattern and the magnetic properties of NixPt1-x (0 ⩽ x≤ 1) nanoparticles having a size of 1.5 nm by means of an approach which combines basin hopping structure sampling technique and spin-polarized density functional theory. We found exotic chemical ordering patterns for different Ni/Pt ratios. In addition, we observed a sharp phase transition from non-magnetic to ferromagnetic behaviour around x = 67%. We show that this is a direct consequence of a unique atomic arrangement on the surface in which Ni atoms club together causing the strong Ni-Ni magnetic interaction. The observed magnetic properties are correlated to the electronic density of states.

  13. New era of radiotherapy: an update in radiation-induced lung disease

    PubMed Central

    Benveniste, M. F. K.; Welsh, J.; Godoy, M. C. B.; Betancourt, S. L.; Mawlawi, O. R; Munden, R. F.

    2014-01-01

    Over the last few decades, advances in radiotherapy (RT) technology have improved delivery of radiation therapy dramatically. Advances in treatment planning with the development of image-guided radiotherapy and in techniques such as proton therapy, allows the radiation therapist to direct high doses of radiation to the tumour. These advancements result in improved local regional control while reducing potentially damaging dosage to surrounding normal tissues. It is important for radiologists to be aware of the radiological findings from these advances in order to differentiate expected radiation-induced lung injury (RILD) from recurrence, infection, and other lung diseases. In order to understand these changes and correlate them with imaging, the radiologist should have access to the radiation therapy treatment plans. PMID:23473474

  14. Non-local Second Order Closure Scheme for Boundary Layer Turbulence and Convection

    NASA Astrophysics Data System (ADS)

    Meyer, Bettina; Schneider, Tapio

    2017-04-01

    There has been scientific consensus that the uncertainty in the cloud feedback remains the largest source of uncertainty in the prediction of climate parameters like climate sensitivity. To narrow down this uncertainty, not only a better physical understanding of cloud and boundary layer processes is required, but specifically the representation of boundary layer processes in models has to be improved. General climate models use separate parameterisation schemes to model the different boundary layer processes like small-scale turbulence, shallow and deep convection. Small scale turbulence is usually modelled by local diffusive parameterisation schemes, which truncate the hierarchy of moment equations at first order and use second-order equations only to estimate closure parameters. In contrast, the representation of convection requires higher order statistical moments to capture their more complex structure, such as narrow updrafts in a quasi-steady environment. Truncations of moment equations at second order may lead to more accurate parameterizations. At the same time, they offer an opportunity to take spatially correlated structures (e.g., plumes) into account, which are known to be important for convective dynamics. In this project, we study the potential and limits of local and non-local second order closure schemes. A truncation of the momentum equations at second order represents the same dynamics as a quasi-linear version of the equations of motion. We study the three-dimensional quasi-linear dynamics in dry and moist convection by implementing it in a LES model (PyCLES) and compare it to a fully non-linear LES. In the quasi-linear LES, interactions among turbulent eddies are suppressed but nonlinear eddy—mean flow interactions are retained, as they are in the second order closure. In physical terms, suppressing eddy—eddy interactions amounts to suppressing, e.g., interactions among convective plumes, while retaining interactions between plumes and the environment (e.g., entrainment and detrainment). In a second part, we employ the possibility to include non-local statistical correlations in a second-order closure scheme. Such non-local correlations allow to directly incorporate the spatially coherent structures that occur in the form of convective updrafts penetrating the boundary layer. This allows us to extend the work that has been done using assumed-PDF schemes for parameterising boundary layer turbulence and shallow convection in a non-local sense.

  15. Reversible ratchet effects for vortices in conformal pinning arrays

    DOE PAGES

    Reichhardt, Charles; Ray, Dipanjan; Reichhardt, Cynthia Jane Olson

    2015-05-04

    A conformal transformation of a uniform triangular pinning array produces a structure called a conformal crystal which preserves the sixfold ordering of the original lattice but contains a gradient in the pinning density. Here we use numerical simulations to show that vortices in type-II superconductors driven with an ac drive over gradient pinning arrays produce the most pronounced ratchet effect over a wide range of parameters for a conformal array, while square gradient or random gradient arrays with equivalent pinning densities give reduced ratchet effects. In the conformal array, the larger spacing of the pinning sites in the direction transversemore » to the ac drive permits easy funneling of interstitial vortices for one driving direction, producing the enhanced ratchet effect. In the square array, the transverse spacing between pinning sites is uniform, giving no asymmetry in the funneling of the vortices as the driving direction switches, while in the random array, there are numerous easy-flow channels present for either direction of drive. We find multiple ratchet reversals in the conformal arrays as a function of vortex density and ac amplitude, and correlate the features with a reversal in the vortex ordering, which is greater for motion in the ratchet direction. In conclusion, the enhanced conformal pinning ratchet effect can also be realized for colloidal particles moving over a conformal array, indicating the general usefulness of conformal structures for controlling the motion of particles.« less

  16. Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well

    NASA Astrophysics Data System (ADS)

    Yépez, V. S.; Sagar, R. P.; Laguna, H. G.

    2017-12-01

    The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.

  17. Correlative weighted stacking for seismic data in the wavelet domain

    USGS Publications Warehouse

    Zhang, S.; Xu, Y.; Xia, J.; ,

    2004-01-01

    Horizontal stacking plays a crucial role for modern seismic data processing, for it not only compresses random noise and multiple reflections, but also provides a foundational data for subsequent migration and inversion. However, a number of examples showed that random noise in adjacent traces exhibits correlation and coherence. The average stacking and weighted stacking based on the conventional correlative function all result in false events, which are caused by noise. Wavelet transform and high order statistics are very useful methods for modern signal processing. The multiresolution analysis in wavelet theory can decompose signal on difference scales, and high order correlative function can inhibit correlative noise, for which the conventional correlative function is of no use. Based on the theory of wavelet transform and high order statistics, high order correlative weighted stacking (HOCWS) technique is presented in this paper. Its essence is to stack common midpoint gathers after the normal moveout correction by weight that is calculated through high order correlative statistics in the wavelet domain. Synthetic examples demonstrate its advantages in improving the signal to noise (S/N) ration and compressing the correlative random noise.

  18. Temperature Knowledge and Model Correlation for the Soil Moisture Active and Passive (SMAP) Reflector Mesh

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Dawson, Douglas; Kwack, Eug

    2014-01-01

    NASA's Earth observing Soil Moisture Active & Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 km near-polar, sun synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its 3 year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within 3 days. In order to make the necessary precise surface emission measurements from space, a temperature knowledge of 60 deg C for the mesh reflector is required. In order to show compliance, a thermal vacuum test was conducted using a portable solar simulator to illuminate a non flight, but flight-like test article through the quartz window of the vacuum chamber. The molybdenum wire of the antenna mesh is too fine to accommodate thermal sensors for direct temperature measurements. Instead, the mesh temperature was inferred from resistance measurements made during the test. The test article was rotated to five separate angles between 10 deg and 90 deg via chamber breaks to simulate the maximum expected on-orbit solar loading during the mission. The resistance measurements were converted to temperature via a resistance versus temperature calibration plot that was constructed from data collected in a separate calibration test. A simple thermal model of two different representations of the mesh (plate and torus) was created to correlate the mesh temperature predictions to within 60 deg C. The on-orbit mesh temperature will be predicted using the correlated analytical thermal model since direct measurements from in-situ flight thermal sensors are not possible.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kira, M., E-mail: mackillo.kira@physik.uni-marburg.de

    Atomic Bose–Einstein condensates (BECs) can be viewed as macroscopic objects where atoms form correlated atom clusters to all orders. Therefore, the presence of a BEC makes the direct use of the cluster-expansion approach–lucrative e.g. in semiconductor quantum optics–inefficient when solving the many-body kinetics of a strongly interacting Bose. An excitation picture is introduced with a nonunitary transformation that describes the system in terms of atom clusters within the normal component alone. The nontrivial properties of this transformation are systematically studied, which yields a cluster-expansion friendly formalism for a strongly interacting Bose gas. Its connections and corrections to the standard Hartree–Fock–Bogoliubov approachmore » are discussed and the role of the order parameter and the Bogoliubov excitations are identified. The resulting interaction effects are shown to visibly modify number fluctuations of the BEC. Even when the BEC has a nearly perfect second-order coherence, the BEC number fluctuations can still resolve interaction-generated non-Poissonian fluctuations. - Highlights: • Excitation picture expresses interacting Bose gas with few atom clusters. • Semiconductor and BEC many-body investigations are connected with cluster expansion. • Quantum statistics of BEC is identified in terms of atom clusters. • BEC number fluctuations show extreme sensitivity to many-body correlations. • Cluster-expansion friendly framework is established for an interacting Bose gas.« less

  20. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise

    PubMed Central

    Brezinski, ME

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II. PMID:29863177

  1. Development of Open-Ended Problems for Measuring The Higher-Order-Thinking-Skills of High School Students on Global Warming Phenomenon

    NASA Astrophysics Data System (ADS)

    Fianti; Najwa, F. L.; Linuwih, S.

    2017-04-01

    Higher-order-thinking-skills can not be developed directly, except by training which is employing open-ended problems for measuring and developing critics, creativeness, and problem-solving thinking-skills of students. This study is a research and development producing open-ended problems. The purpose of this study is to measure the properness and effectiveness of the developed product and to observe the profile of higher-order-thinking-skills of students on global warming phenomenon. The result of properness test of open-ended problems according to the experts is 92,59% on the first stage and 97,53% on the second stage, so we can assume that the product isvery proper. The result of effectiveness test shows the coefficient of correlation between student’s midterm test scores and open-ended questions is 0,634 which is in the category of strong. Higher-order-thinking-skills of SMA Negeri 1 Salatiga students is in the category of good with the average achievement scores 61,28.

  2. Mesoporous MFI Zeolite with a 2D Square Structure Directed by Surfactants with an Azobenzene Tail Group.

    PubMed

    Shen, Xuefeng; Mao, Wenting; Ma, Yanhang; Peng, Honggen; Xu, Dongdong; Wu, Peng; Han, Lu; Che, Shunai

    2018-06-18

    Mesoporous MFI zeolites (MMZs) have been constructed by using the surfactant-containing azobenzene segment in the hydrophobic tail. The cylindrical π-π stacking of azeobenzene groups is considered to be the key factor to form the ordered mesostructure through cooperative structural matching and the rearrangement of MFI frameworks. The mesostructure has been tuned from a disordered hierarchical arrangement into an ordered 2D square p4mm structure by changing the length of the alkyl chain between the diquaternary ammonium head group and azobenzene group. The geometric matching between the MFI zeolitic framework and the alkyl chain length plays an important role in the construction of the crystallographically correlated mesostructure with 2D square ordering. A combination of X-ray diffraction patterns and electron microscopy studies provides visible evidence for the mesostructural transformation from a short-range hexagonal or lamellar ordering to 2D square mesostructure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Theories and applications of second-order correlation of longitudinal velocity increments at three points in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Fang, L.; Shao, L.; Lu, L. P.

    2018-06-01

    In order to introduce new physics to traditional two-point correlations, we define the second-order correlation of longitudinal velocity increments at three points and obtain the analytical expressions in isotropic turbulence. By introducing the Kolmogorov 4/5 law, this three-point correlation explicitly contains velocity second- and third-order moments, which correspond to energy and energy transfer respectively. The combination of them then shows additional information of non-equilibrium turbulence by comparing to two-point correlations. Moreover, this three-point correlation shows the underlying inconsistency between numerical interpolation and three-point scaling law in numerical calculations, and inspires a preliminary model to correct this problem in isotropic turbulence.

  4. Statistical mechanical theory of liquid entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, D.C.

    The multiparticle correlation expansion for the entropy of a classical monatomic liquid is presented. This entropy expresses the physical picture in which there is no free particle motion, but rather, each atom moves within a cage formed by its neighbors. The liquid expansion, including only pair correlations, gives an excellent account of the experimental entropy of most liquid metals, of liquid argon, and the hard sphere liquid. The pair correlation entropy is well approximated by a universal function of temperature. Higher order correlation entropy, due to n-particle irreducible correlations for n{ge}3, is significant in only a few liquid metals, andmore » its occurrence suggests the presence of n-body forces. When the liquid theory is applied to the study of melting, the author discovers the important classification of normal and anomalous melting, according to whether there is not or is a significant change in the electronic structure upon melting, and he discovers the universal disordering entropy for melting of a monatomic crystal. Interesting directions for future research are: extension to include orientational correlations of molecules, theoretical calculation of the entropy of water, application to the entropy of the amorphous state, and correlational entropy of compressed argon. The author clarifies the relation among different entropy expansions in the recent literature.« less

  5. Procedures utilized for obtaining direct and remote atmospheric carbon monoxide measurements over the lower Lake Michigan Basin in August of 1976

    NASA Technical Reports Server (NTRS)

    Casas, J. C.; Condon, E.; Campbell, S. A.

    1978-01-01

    In order to establish the applicability of a gas filter correlation radiometer, GFCR, to remote carbon monoxide, CO, measurements on a regional and worldwide basis, Old Dominion University has been engaged in the development of accurate and cost effective techniques for inversion of GFCR CO data and in the development of an independent gas chromatographic technique for measuring CO. This independent method is used to verify the results and the associated inversion method obtained from the GFCR. A description of both methods (direct and remote) will be presented. Data obtained by both techniques during a flight test over the lower Lake Michigan Basin in August of 1976 will also be discussed.

  6. A Reduced-Order Successive Linear Estimator for Geostatistical Inversion and its Application in Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Zha, Yuanyuan; Yeh, Tian-Chyi J.; Illman, Walter A.; Zeng, Wenzhi; Zhang, Yonggen; Sun, Fangqiang; Shi, Liangsheng

    2018-03-01

    Hydraulic tomography (HT) is a recently developed technology for characterizing high-resolution, site-specific heterogeneity using hydraulic data (nd) from a series of cross-hole pumping tests. To properly account for the subsurface heterogeneity and to flexibly incorporate additional information, geostatistical inverse models, which permit a large number of spatially correlated unknowns (ny), are frequently used to interpret the collected data. However, the memory storage requirements for the covariance of the unknowns (ny × ny) in these models are prodigious for large-scale 3-D problems. Moreover, the sensitivity evaluation is often computationally intensive using traditional difference method (ny forward runs). Although employment of the adjoint method can reduce the cost to nd forward runs, the adjoint model requires intrusive coding effort. In order to resolve these issues, this paper presents a Reduced-Order Successive Linear Estimator (ROSLE) for analyzing HT data. This new estimator approximates the covariance of the unknowns using Karhunen-Loeve Expansion (KLE) truncated to nkl order, and it calculates the directional sensitivities (in the directions of nkl eigenvectors) to form the covariance and cross-covariance used in the Successive Linear Estimator (SLE). In addition, the covariance of unknowns is updated every iteration by updating the eigenvalues and eigenfunctions. The computational advantages of the proposed algorithm are demonstrated through numerical experiments and a 3-D transient HT analysis of data from a highly heterogeneous field site.

  7. Optical High Harmonic Generation in C60

    NASA Astrophysics Data System (ADS)

    Zhang, Guoping

    2005-03-01

    C60 et al. Physical Review Letters Physical Review B High harmonic generation (HHG) requires a strong laser field, but in a relatively weak laser field is sufficient. Numerical results presented here show while its low order harmonics result from the laser field, its high order ones are mainly from the multiple excitations. Since high order harmonics directly correlate electronic transitions, the HHG spectrum accurately measures transition energies. Therefore, is not only a promising material for HHG, but may also present an opportunity to develop HHG into an electronic structure probing tool. References: G. P. Zhang, 91, 176801 (2003); G. P. Zhang and T. F. George, 68, 165410 (2003); P. B. Corkum, 71, 1994 (1993); G. P. Zhang and Thomas F. George, 93, 147401 (2004); H. Niikura ,ature 417, 917 (2002); ibid. 421, 826 (2003); Y. Mairesse ,cience 302, 1540 (2003); A. Baltuska ,ature 421, 611 (2003).

  8. Near-field spectral shift of a zero-order Bessel beam scattered from a spherical particle

    NASA Astrophysics Data System (ADS)

    Chen, Feinan; Li, Jia; Belafhal, Abdelmajid; Chafiq, Abdelghani; Sun, Xiaobing

    2018-06-01

    Within the accuracy of the first-order Born approximation, expressions are derived for the near-zone spectrum of a zero-order Bessel beam scattered from a spherical particle whose correlation function satisfies a Gaussian distribution. The dependence of the spectral shift and spectral switch of the scattered field on the effective size of the scattering potential (ESSP) are determined by numerical simulations. It is shown that the spectral shift of the scattered field does not occur along the longitudinal propagation direction. Furthermore, when the medium’s ESSP is comparable with the central wavelength of the beam, the spectrum of the scattered field loses the Gaussian distribution and exhibits a blue shift as the reference point sufficiently far away from central origin. These results may have prospective applications in guiding tiny particles when the near-zone spectrums of scattered beams are captured and analyzed.

  9. Bond Order Correlations in the 2D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark

    We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  10. Real-space investigation of short-range magnetic correlations in fluoride pyrochlores NaCaCo 2F 7 and NaSrCo 2F 7 with magnetic pair distribution function analysis

    DOE PAGES

    Frandsen, Benjamin A.; Billinge, Simon J. L.; Ross, Kathryn A.; ...

    2017-12-29

    Here, we present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo 2F 7 and NaSrCo 2F 7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. Thismore » model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.« less

  11. Real-space investigation of short-range magnetic correlations in fluoride pyrochlores NaCaCo 2F 7 and NaSrCo 2F 7 with magnetic pair distribution function analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frandsen, Benjamin A.; Billinge, Simon J. L.; Ross, Kathryn A.

    Here, we present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo 2F 7 and NaSrCo 2F 7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. Thismore » model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.« less

  12. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Lawrence; Smith, Justin

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow ormore » simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by« less

  13. Real-space investigation of short-range magnetic correlations in fluoride pyrochlores NaCaCo2F7 and NaSrCo2F7 with magnetic pair distribution function analysis

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Ross, Kate A.; Krizan, Jason W.; Nilsen, Gøran J.; Wildes, Andrew R.; Cava, Robert J.; Birgeneau, Robert J.; Billinge, Simon J. L.

    2017-12-01

    We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo2F7 and NaSrCo2F7 , which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. This model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing an opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.

  14. White noise effects of U.S. crude oil spot prices on stock prices of a publicly traded company: A case study cross-correlation analysis based on green energy management theory

    NASA Astrophysics Data System (ADS)

    Roberts, Peter M.

    The purpose of this study was to examine white noise effects of U.S. crude oil spot prices on the stock prices of a green energy company. Epistemological, Phenomenological, Axiological and Ontological assumptions of Green Energy Management (GEM) Theory were utilized for selecting Air Products and Chemicals Inc. (APD) as the case study. Exxon Mobil (XOM) was used as a control for triangulation purposes. The period of time examined was between January of 1999 and December of 2008. Monthly stock prices for APD and XOM for the ten year period of time were collected from the New York Stock Exchange. Monthly U.S. crude oil spot prices for the ten year period of time were collected from the US Energy Information Administration. The data was entered into SPSS 17.0 software in order to conduct cross-correlation analysis. The six cross-correlation assumptions were satisfied in order to conduct a Cross-correlation Mirror Test (CCMT). The CCMT established the lag time direction and verified that U.S. crude oil spot prices serve as white noise for stock prices of APD and XOM. The Theory of Relative Weakness was employed in order to analyze the results. A 2 year period of time between December, 2006 and December, 2008 was examined. The correlation coefficient r = - .155 indicates that U.S. crude oil spot prices lead APD stock prices by 4 months. During the same 2 year period of time, U.S. crude oil spot prices lead XOM stock prices by 4 months at r = -.283. XOM stock prices and APD stock prices were positively correlated with 0 lag in time with a positive r = .566. The 4 month cycle was an exact match between APD stock prices, XOM stock prices and U.S. crude oil spot prices. The 4 month cycle was due to the random price fluctuation of U.S. crude oil spot prices that obscured the true stock prices of APD and XOM for the 2 year period of time.

  15. Preclinical evaluation of parametric image reconstruction of [18F]FMISO PET: correlation with ex vivo immunohistochemistry

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoyin; Bayer, Christine; Maftei, Constantin-Alin; Astner, Sabrina T.; Vaupel, Peter; Ziegler, Sibylle I.; Shi, Kuangyu

    2014-01-01

    Compared to indirect methods, direct parametric image reconstruction (PIR) has the advantage of high quality and low statistical errors. However, it is not yet clear if this improvement in quality is beneficial for physiological quantification. This study aimed to evaluate direct PIR for the quantification of tumor hypoxia using the hypoxic fraction (HF) assessed from immunohistological data as a physiological reference. Sixteen mice with xenografted human squamous cell carcinomas were scanned with dynamic [18F]FMISO PET. Afterward, tumors were sliced and stained with H&E and the hypoxia marker pimonidazole. The hypoxic signal was segmented using k-means clustering and HF was specified as the ratio of the hypoxic area over the viable tumor area. The parametric Patlak slope images were obtained by indirect voxel-wise modeling on reconstructed images using filtered back projection and ordered-subset expectation maximization (OSEM) and by direct PIR (e.g., parametric-OSEM, POSEM). The mean and maximum Patlak slopes of the tumor area were investigated and compared with HF. POSEM resulted in generally higher correlations between slope and HF among the investigated methods. A strategy for the delineation of the hypoxic tumor volume based on thresholding parametric images at half maximum of the slope is recommended based on the results of this study.

  16. Cathode signal in a TPC directional detector: implementation and validation measuring the drift velocity

    NASA Astrophysics Data System (ADS)

    Couturier, C.; Riffard, Q.; Sauzet, N.; Guillaudin, O.; Naraghi, F.; Santos, D.

    2017-11-01

    Low-pressure gaseous TPCs are well suited detectors to correlate the directions of nuclear recoils to the galactic Dark Matter (DM) halo. Indeed, in addition to providing a measure of the energy deposition due to the elastic scattering of a DM particle on a nucleus in the target gas, they allow for the reconstruction of the track of the recoiling nucleus. In order to exclude the background events originating from radioactive decays on the surfaces of the detector materials within the drift volume, efforts are ongoing to precisely localize the track nuclear recoil in the drift volume along the axis perpendicular to the cathode plane. We report here the implementation of the measure of the signal induced on the cathode by the motion of the primary electrons toward the anode in a MIMAC chamber. As a validation, we performed an independent measurement of the drift velocity of the electrons in the considered gas mixture, correlating in time the cathode signal with the measure of the arrival times of the electrons on the anode.

  17. Chloromethane to olefins over H-SAPO-34: Probing the hydrocarbon pool mechanism

    DOE PAGES

    Fickel, Dustin W.; Sabnis, Kaiwalya D.; Li, Luanyi; ...

    2016-09-09

    In this paper, by means of in situ FTIR and ex situ 13C NMR studies, the initial periods of the chloromethane-to-olefins (CTO) reaction over SAPO-34 were probed in order to investigate the activation period of the reaction and to elucidate the formation of the catalyst active site. A methylated benzene species has been observed to form during the initial activation period of the reaction, and a direct positive correlation was constructed between the formation of this species and the catalytic activity. The data thus indicate that these methylated benzene species contribute to the formation of active sites within SAPO-34 formore » the CTO reaction. This is the first known report identifying a direct semi-quantitative correlation between the catalyst activity and growth of a methylated benzene active species, during the activation period of the chloromethane to olefins reaction. Finally, the findings here in correspond well to those reported for the methanol to olefins reaction, suggesting that a similar ‘hydrocarbon pool’ mechanism may be responsible for the formation of light olefins in CTO chemistry as well.« less

  18. Reflected Light from Giant Planets in Habitable Zones: Tapping into the Power of the Cross-Correlation Function

    NASA Astrophysics Data System (ADS)

    Martins, J. H. C.; Santos, N. C.; Figueira, P.; Melo, C.

    2016-11-01

    The direct detection of reflected light from exoplanets is an excellent probe for the characterization of their atmospheres. The greatest challenge for this task is the low planet-to-star flux ratio, which even in the most favourable case is of the order of 10-4 in the optical. This ratio decreases even more for planets in their host's habitable zone, typically lower than 10-7. To reach the signal-to-noise level required for such detections, we propose to unleash the power of the Cross Correlation Function in combination with the collecting power of next generation observing facilities. The technique we propose has already yielded positive results by detecting the reflected spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted to infer the number of hours required for the detection of several planets in their host's habitable zone using the aforementioned technique from theoretical EELT observations. Our results show that for 5 of the selected planets it should be possible to directly recover their reflected spectral signature.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fickel, Dustin W.; Sabnis, Kaiwalya D.; Li, Luanyi

    In this paper, by means of in situ FTIR and ex situ 13C NMR studies, the initial periods of the chloromethane-to-olefins (CTO) reaction over SAPO-34 were probed in order to investigate the activation period of the reaction and to elucidate the formation of the catalyst active site. A methylated benzene species has been observed to form during the initial activation period of the reaction, and a direct positive correlation was constructed between the formation of this species and the catalytic activity. The data thus indicate that these methylated benzene species contribute to the formation of active sites within SAPO-34 formore » the CTO reaction. This is the first known report identifying a direct semi-quantitative correlation between the catalyst activity and growth of a methylated benzene active species, during the activation period of the chloromethane to olefins reaction. Finally, the findings here in correspond well to those reported for the methanol to olefins reaction, suggesting that a similar ‘hydrocarbon pool’ mechanism may be responsible for the formation of light olefins in CTO chemistry as well.« less

  20. Reflected Light from Giant Planets in Habitable Zones: Tapping into the Power of the Cross-Correlation Function.

    PubMed

    Martins, J H C; Santos, N C; Figueira, P; Melo, C

    2016-11-01

    The direct detection of reflected light from exoplanets is an excellent probe for the characterization of their atmospheres. The greatest challenge for this task is the low planet-to-star flux ratio, which even in the most favourable case is of the order of 10 -4 in the optical. This ratio decreases even more for planets in their host's habitable zone, typically lower than 10 -7 . To reach the signal-to-noise level required for such detections, we propose to unleash the power of the Cross Correlation Function in combination with the collecting power of next generation observing facilities. The technique we propose has already yielded positive results by detecting the reflected spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted to infer the number of hours required for the detection of several planets in their host's habitable zone using the aforementioned technique from theoretical EELT observations. Our results show that for 5 of the selected planets it should be possible to directly recover their reflected spectral signature.

  1. Classical density functional theory and the phase-field crystal method using a rational function to describe the two-body direct correlation function.

    PubMed

    Pisutha-Arnond, N; Chan, V W L; Iyer, M; Gavini, V; Thornton, K

    2013-01-01

    We introduce a new approach to represent a two-body direct correlation function (DCF) in order to alleviate the computational demand of classical density functional theory (CDFT) and enhance the predictive capability of the phase-field crystal (PFC) method. The approach utilizes a rational function fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to show that short-wavelength contributions of the two-body DCF play an important role in determining the thermodynamic properties of materials. We further show that using the RFF to empirically parametrize the two-body DCF allows us to obtain the thermodynamic properties of solids and liquids that agree with the results of CDFT simulations with the full two-body DCF without incurring significant computational costs. In addition, the RFF can also be used to improve the representation of the two-body DCF in the PFC method. Last, the RFF allows for a real-space reformulation of the CDFT and PFC method, which enables descriptions of nonperiodic systems and the use of nonuniform and adaptive grids.

  2. Enabling real-time ultrasound imaging of soft tissue mechanical properties by simplification of the shear wave motion equation.

    PubMed

    Engel, Aaron J; Bashford, Gregory R

    2015-08-01

    Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.

  3. Avoiding the Pitfalls of Anisotropy in Paleomagnetic Correlation of Snake River Plain Ignimbrites

    NASA Astrophysics Data System (ADS)

    Finn, D. R.; Coe, R. S.; Kelly, H.; Murphy, J.; Reichow, M. K.; Knott, T.; Branney, M.

    2013-12-01

    Migration of the Yellowstone hotspot center tracks northeast along the central Snake River Plain (cSRP), leaving a succession of calderas, bimodal rhyolitic and basaltic volcanism, and crustal deformation. Large-scale explosive volcanism common to this province between 12.5-8 Ma is characterized by unusually high-temperature, intensely welded, rheomorphic rhyolitic ignimbrites, typical of what is now known as ';Snake River (SR)-type volcanism'. Individual eruption volumes likely exceed 450 km3 but are poorly known due to the difficulty of correlating units between widely spaced (50-200 km) exposures along the north and south of the plain. Radiometric dating does not have the resolution to identify the eruptive units. Our goal is to use a combination of paleomagnetic, petrographic, chemical and field characterization to establish robust correlations and better constrain eruption volumes and frequencies. Paleomagnetic correlation using the stable remanence, which is the focus of this presentation, has the advantage of very high temporal resolution of the order of centuries. This is due to the geologically rapid rate of geomagnetic secular variation and high accuracy to which extrusive rocks may record the instantaneous direction of the magnetic field. We have collected more than 1200 paleomagnetic samples from over 90 sites to help build a regional stratigraphy between the dozens of known ignimbrite units in the cSRP. During this process, however, we have found that the use of paleomagnetism is complicated by the large variation in the paleomagnetic direction that sometimes exists both within and between sub-lithologies of the same flow. Individual SR-type ignimbrite cooling-units have an upper and lower glassy margin (vitrophyre) enclosing a lithoidal (microcrystalline) zone. These vitrophyre lithologies often have a shallow paleomagnetic direction compared to the lithoidal lithologies. Here we present preliminary results from a detailed paleomagnetic and rock magnetic study of one cooling unit and its thermal contact zone to better understand the source of discrepant directions. We found a relationship between anisotropy of thermal remanent magnetization (ATRM), coercivity, natural remanent magnetization intensity, and deflection of remanence direction. A strong lineation in the ATRM anisotropy suggests contemporaneous rheomorphic shear strain of the welding fabric during early stages of emplacement plays a key role in generating magnetic anisotropy. The low anisotropy of the lithoidal zone and its correlation with the magnetic direction of the underlying baked soil implies that crystallization somehow helps anneal this anisotropy prior to cooling below the unblocking temperature of the constituent magnetic minerals. We hypothesize that the glassy margins retain an anisotropic fabric related to emplacement which affects their ability to accurately record the magnetic field during cooling. The anisotropic fabric in the lithoidal zone is overprinted by continued grain growth and/or alteration and, therefore, more accurately records the paleomagnetic field direction.

  4. Dynamic reorganization of human resting-state networks during visuospatial attention.

    PubMed

    Spadone, Sara; Della Penna, Stefania; Sestieri, Carlo; Betti, Viviana; Tosoni, Annalisa; Perrucci, Mauro Gianni; Romani, Gian Luca; Corbetta, Maurizio

    2015-06-30

    Fundamental problems in neuroscience today are understanding how patterns of ongoing spontaneous activity are modified by task performance and whether/how these intrinsic patterns influence task-evoked activation and behavior. We examined these questions by comparing instantaneous functional connectivity (IFC) and directed functional connectivity (DFC) changes in two networks that are strongly correlated and segregated at rest: the visual (VIS) network and the dorsal attention network (DAN). We measured how IFC and DFC during a visuospatial attention task, which requires dynamic selective rerouting of visual information across hemispheres, changed with respect to rest. During the attention task, the two networks remained relatively segregated, and their general pattern of within-network correlation was maintained. However, attention induced a decrease of correlation in the VIS network and an increase of the DAN→VIS IFC and DFC, especially in a top-down direction. In contrast, within the DAN, IFC was not modified by attention, whereas DFC was enhanced. Importantly, IFC modulations were behaviorally relevant. We conclude that a stable backbone of within-network functional connectivity topography remains in place when transitioning between resting wakefulness and attention selection. However, relative decrease of correlation of ongoing "idling" activity in visual cortex and synchronization between frontoparietal and visual cortex were behaviorally relevant, indicating that modulations of resting activity patterns are important for task performance. Higher order resting connectivity in the DAN was relatively unaffected during attention, potentially indicating a role for simultaneous ongoing activity as a "prior" for attention selection.

  5. Factor analysis and multiple regression between topography and precipitation on Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Um, Myoung-Jin; Yun, Hyeseon; Jeong, Chang-Sam; Heo, Jun-Haeng

    2011-11-01

    SummaryIn this study, new factors that influence precipitation were extracted from geographic variables using factor analysis, which allow for an accurate estimation of orographic precipitation. Correlation analysis was also used to examine the relationship between nine topographic variables from digital elevation models (DEMs) and the precipitation in Jeju Island. In addition, a spatial analysis was performed in order to verify the validity of the regression model. From the results of the correlation analysis, it was found that all of the topographic variables had a positive correlation with the precipitation. The relations between the variables also changed in accordance with a change in the precipitation duration. However, upon examining the correlation matrix, no significant relationship between the latitude and the aspect was found. According to the factor analysis, eight topographic variables (latitude being the exception) were found to have a direct influence on the precipitation. Three factors were then extracted from the eight topographic variables. By directly comparing the multiple regression model with the factors (model 1) to the multiple regression model with the topographic variables (model 3), it was found that model 1 did not violate the limits of statistical significance and multicollinearity. As such, model 1 was considered to be appropriate for estimating the precipitation when taking into account the topography. In the study of model 1, the multiple regression model using factor analysis was found to be the best method for estimating the orographic precipitation on Jeju Island.

  6. Saving time and energy with oversubscription and semi-direct Møller-Plesset second order perturbation methods.

    PubMed

    Fought, Ellie L; Sundriyal, Vaibhav; Sosonkina, Masha; Windus, Theresa L

    2017-04-30

    In this work, the effect of oversubscription is evaluated, via calling 2n, 3n, or 4n processes for n physical cores, on semi-direct MP2 energy and gradient calculations and RI-MP2 energy calculations with the cc-pVTZ basis using NWChem. Results indicate that on both Intel and AMD platforms, oversubscription reduces total time to solution on average for semi-direct MP2 energy calculations by 25-45% and reduces total energy consumed by the CPU and DRAM on average by 10-15% on the Intel platform. Semi-direct gradient time to solution is shortened on average by 8-15% and energy consumption is decreased by 5-10%. Linear regression analysis shows a strong correlation between time to solution and total energy consumed. Oversubscribing during RI-MP2 calculations results in performance degradations of 30-50% at the 4n level. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Matching the quasiparton distribution in a momentum subtraction scheme

    NASA Astrophysics Data System (ADS)

    Stewart, Iain W.; Zhao, Yong

    2018-03-01

    The quasiparton distribution is a spatial correlation of quarks or gluons along the z direction in a moving nucleon which enables direct lattice calculations of parton distribution functions. It can be defined with a nonperturbative renormalization in a regularization independent momentum subtraction scheme (RI/MOM), which can then be perturbatively related to the collinear parton distribution in the MS ¯ scheme. Here we carry out a direct matching from the RI/MOM scheme for the quasi-PDF to the MS ¯ PDF, determining the non-singlet quark matching coefficient at next-to-leading order in perturbation theory. We find that the RI/MOM matching coefficient is insensitive to the ultraviolet region of convolution integral, exhibits improved perturbative convergence when converting between the quasi-PDF and PDF, and is consistent with a quasi-PDF that vanishes in the unphysical region as the proton momentum Pz→∞ , unlike other schemes. This direct approach therefore has the potential to improve the accuracy for converting quasidistribution lattice calculations to collinear distributions.

  8. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    PubMed Central

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  9. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    PubMed

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  10. Assessment of higher order correlation effects with the help of Moller-Plesset perturbation theory up to sixth order

    NASA Astrophysics Data System (ADS)

    He, Yuan; Cremer, Dieter

    For 30 molecules and two atoms, MP n correlation energies up to n = 6 are computed and used to analyse higher order correlation effects and the initial convergence behaviour of the MP n series. Particularly useful is the analysis of correlation contributions E(n)XY ...( n = 4,5,6; X , Y ,... = S, D, T, Q denoting single, double, triple, and quadruple excitations) in the form of correlation energy spectra. Two classes of system are distinguished, namely class A systems possessing well separated electron pairs and class B systems which are characterized by electron clustering in certain regions of atomic and molecular space. For class A systems, electron pair correlation effects as described by D, Q, DD, DQ, QQ, DDD, etc., contributions are most important, which are stepwise included at MP n with n = 2,... ,6. Class A systems are reasonably described by MP n theory, which is reflected by the fact that convergence of the MP n series is monotonic (but relatively slow) for class A systems. The description of class B systems is difficult since three- and four-electron correlation effects and couplings between two-, three-, and four-electron correlation effects missing for lower order perturbation theory are significant. MP n methods, which do not cover these effects, simulate higher order with lower order correlation effects thus exaggerating the latter, which has to be corrected with increasing n. Consequently, the MP n series oscillates for class B systems at low orders. A possible divergence of the MP n series is mostly a consequence of an unbalanced basis set. For example, diffuse functions added to an unsaturated sp basis lead to an exaggeration of higher order correlation effects, which can cause enhanced oscillations and divergence of the MP n series.

  11. Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells

    NASA Astrophysics Data System (ADS)

    Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke

    2011-06-01

    Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.

  12. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    PubMed

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-10-01

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13 C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH 2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H N , N and C α the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13 C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  13. Correlation between Photovoltaic Performance and Interchain Ordering Induced Delocalization of Electronics States in Conjugated Polymer Blends.

    PubMed

    Chandrasekaran, Naresh; Gann, Eliot; Jain, Nakul; Kumar, Anshu; Gopinathan, Sreelekha; Sadhanala, Aditya; Friend, Richard H; Kumar, Anil; McNeill, Christopher R; Kabra, Dinesh

    2016-08-10

    In this paper we correlate the solar cell performance with bimolecular packing of donor:acceptor bulk heterojunction (BHJ) organic solar cells (OSCs), where interchain ordering of the donor molecule and its influence on morphology, optical properties, and charge carrier dynamics of BHJ solar cells are studied in detail. Solar cells that are fabricated using more ordered defect free 100% regioregular poly(3-hexylthiophene) (DF-P3HT) as the donor polymer show ca. 10% increase in the average power conversion efficiency (PCE) when compared to that of the solar cell fabricated using 92% regioregularity P3HT, referred to as rr-P3HT. EQE and UV-vis absorption spectrum show a clear increase in the 607 nm vibronic shoulder of the DF-P3HT blend suggesting better interchain ordering which was also reflected in the less Urbach energy (Eu) value for this system. The increase in ordering inside the blend has enhanced the hole-mobility which is calculated from the single carrier device J-V characteristics. Electroluminance (EL) studies on the DF-P3HT system showed a red-shifted peak when compared to rr-P3HT-based devices suggesting low CT energy states in DF-P3HT. The morphologies of the blend films are studied using AFM and grazing-incidence wide-angle X-ray scattering (GIWAXS) suggesting increase in the roughness and phase segregation which could enhance the internal scattering of the light inside the device and improvement in the crystallinity along alkyl and π-stacking direction. Hence, higher PCE, lower Eu, red-shifted EL emission, high hole-mobility, and better crystallinity suggest improved interchain ordering has facilitated a more delocalized HOMO state in DF-P3HT-based BHJ solar cells.

  14. Zeroth-order phase-contrast technique.

    PubMed

    Pizolato, José Carlos; Cirino, Giuseppe Antonio; Gonçalves, Cristhiane; Neto, Luiz Gonçalves

    2007-11-01

    What we believe to be a new phase-contrast technique is proposed to recover intensity distributions from phase distributions modulated by spatial light modulators (SLMs) and binary diffractive optical elements (DOEs). The phase distribution is directly transformed into intensity distributions using a 4f optical correlator and an iris centered in the frequency plane as a spatial filter. No phase-changing plates or phase dielectric dots are used as a filter. This method allows the use of twisted nematic liquid-crystal televisions (LCTVs) operating in the real-time phase-mostly regime mode between 0 and p to generate high-intensity multiple beams for optical trap applications. It is also possible to use these LCTVs as input SLMs for optical correlators to obtain high-intensity Fourier transform distributions of input amplitude objects.

  15. The Perception of Materials through Oral Sensation

    PubMed Central

    Howes, Philip D.; Wongsriruksa, Supinya; Laughlin, Zoe; Witchel, Harry J.; Miodownik, Mark

    2014-01-01

    This paper presents the results of a multimodal study of oral perception conducted with a set of material samples made from metals, polymers and woods, in which both the somatosensory and taste factors were examined. A multidimensional scaling analysis coupled with subjective attribute ratings was performed to assess these factors both qualitatively and quantitatively. The perceptual somatosensory factors of warmth, hardness and roughness dominated over the basic taste factors, and roughness was observed to be a less significant sensation compared to touch-only experiments. The perceptual somatosensory ratings were compared directly with physical property data in order to assess the correlation between the perceived properties and measured physical properties. In each case, a strong correlation was observed, suggesting that physical properties may be useful in industrial design for predicting oral perception. PMID:25136793

  16. Towards Mott design by δ-doping of strongly correlated titanates

    NASA Astrophysics Data System (ADS)

    Lechermann, Frank; Obermeyer, Michael

    2015-04-01

    Doping the distorted-perovskite Mott insulators LaTiO3 and GdTiO3 with a single SrO layer along the [001] direction gives rise to a rich correlated electronic structure. A realistic superlattice study by means of the charge self-consistent combination of density functional theory with dynamical mean-field theory reveals layer- and temperature-dependent multi-orbital metal-insulator transitions. An orbital-selective metallic layer at the interface dissolves via an orbital-polarized doped-Mott state into an orbital-ordered insulating regime beyond the two conducting TiO2 layers. We find large differences in the scattering behavior within the latter. Breaking the spin symmetry in δ-doped GdTiO3 results in blocks of ferromagnetic itinerant and ferromagnetic Mott-insulating layers that are coupled antiferromagnetically.

  17. Understanding luminescence properties of grain boundaries in GaN thin films and their atomistic origin

    NASA Astrophysics Data System (ADS)

    Yoo, Hyobin; Yoon, Sangmoon; Chung, Kunook; Kang, Seoung-Hun; Kwon, Young-Kyun; Yi, Gyu-Chul; Kim, Miyoung

    2018-03-01

    We report our findings on the optical properties of grain boundaries in GaN films grown on graphene layers and discuss their atomistic origin. We combine electron backscatter diffraction with cathodoluminescence to directly correlate the structural defects with their optical properties, enabling the high-precision local luminescence measurement of the grain boundaries in GaN films. To further understand the atomistic origin of the luminescence properties, we carefully probed atomic core structures of the grain boundaries by exploiting aberration-corrected scanning transmission electron microscopy. The atomic core structures of grain boundaries show different ordering behaviors compared with those observed previously in threading dislocations. Energetics of the grain boundary core structures and their correlation with electronic structures were studied by first principles calculation.

  18. Applying complex networks to evaluate precipitation patterns over South America

    NASA Astrophysics Data System (ADS)

    Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique; Kurths, Jürgen; Rammig, Anja

    2016-04-01

    The climate of South America exhibits pronounced differences between the wet- and the dry-season, which are accompanied by specific synoptic events like changes in the location of the South American Low Level Jet (SALLJ) and the establishment of the South American Convergence Zone (SACZ). The onset of these events can be related to the presence of typical large-scale precipitation patterns over South America, as previous studies have shown[1,2]. The application of complex network methods to precipitation data recently received increased scientific attention for the special case of extreme events, as it is possible with such methods to analyze the spatiotemporal correlation structure as well as possible teleconnections of these events[3,4]. In these approaches the correlation between precipitation datasets is calculated by means of Event Synchronization which restricts their applicability to extreme precipitation events. In this work, we propose a method which is able to consider not only extreme precipitation but complete time series. A direct application of standard similarity measures in order to correlate precipitation time series is impossible due to their intricate statistical properties as the large amount of zeros. Therefore, we introduced and evaluated a suitable modification of Pearson's correlation coefficient to construct spatial correlation networks of precipitation. By analyzing the characteristics of spatial correlation networks constructed on the basis of this new measure, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections of correlated areas, and detect central regions for precipitation correlation. By analyzing the change of the network over the year[5], we are also able to determine local and global changes in precipitation correlation patterns. Additionally, global network characteristics as the network connectivity yield indications for beginning and end of wet- and dry season. In order to identify large-scale synoptic events like the SACZ and SALLJ onset, detecting the changes of correlation over time between certain regions is of significant relevance. [1] Nieto-Ferreira et al. Quarterly Journal of the Royal Meteorological Society (2011) [2] Vera et al. Bulletin of the American Meteorological Society (2006) [3] Quiroga et al. Physical review E (2002) [4] Boers et al. nature communications (2014) [5] Radebach et al. Physical review E (2013)

  19. Agility and change of direction in soccer: differences according to the player ages.

    PubMed

    Fiorilli, Giovanni; Mitrotasios, Michalis; Iuliano, Enzo; Pistone, Eugenio M; Aquino, Giovanna; Calcagno, Giuseppe; DI Cagno, Alessandra

    2017-12-01

    The goal of this study was to compare the changes of direction speed (CODS) and reactive agility (RA) in soccer players of different ages, in order to optimize the best training of these skills. One hundred eighty-seven players, divided into bi-annual age-groups, U12, U14, U16 and U18, performed two tests: Y-Agility Test, carried out in planned and reactive mode (Y-PLAN and Y-REAC) and Illinois for Change of Direction Test (ICODT). Difference between Y-REAC minus Y-PLAN represents the index of reactivity (REAC-INDEX). MANOVA showed significant differences among groups (F3,182=14.591; P<0.01; η2p=0.244). Y-PLAN showed significant differences only between U12 and the other groups (P<0.01). ICODT results were significantly different between the groups U12 and U14 and the other groups (P<0.01). Significant Pearson's correlations between Y-TEST and ICODT, for the three categories of young players (0.398 P<0.05; 0.615 P<0.01; 0.608 P<0.01 respectively), were found, whereas no significant correlation was found in U18 group. The best performance of Y-PLAN and ICODT, through age, depends on physical skill level, whereas the best RA results depend on technique and experience that help the players to use anticipatory skill. The high correlations between CODS and RA performances, differently than adult athletes, suggest that an effective work program for young players may include RA and CODS training at the same time.

  20. An infinite set of Ward identities for adiabatic modes in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinterbichler, Kurt; Hui, Lam; Khoury, Justin, E-mail: khinterbichler@perimeterinstitute.ca, E-mail: lh399@columbia.edu, E-mail: jkhoury@sas.upenn.edu

    2014-01-01

    We show that the correlation functions of any single-field cosmological model with constant growing-modes are constrained by an infinite number of novel consistency relations, which relate N+1-point correlation functions with a soft-momentum scalar or tensor mode to a symmetry transformation on N-point correlation functions of hard-momentum modes. We derive these consistency relations from Ward identities for an infinite tower of non-linearly realized global symmetries governing scalar and tensor perturbations. These symmetries can be labeled by an integer n. At each order n, the consistency relations constrain — completely for n = 0,1, and partially for n ≥ 2 — themore » q{sup n} behavior of the soft limits. The identities at n = 0 recover Maldacena's original consistency relations for a soft scalar and tensor mode, n = 1 gives the recently-discovered conformal consistency relations, and the identities for n ≥ 2 are new. As a check, we verify directly that the n = 2 identity is satisfied by known correlation functions in slow-roll inflation.« less

  1. The correlated molecular electrostatic potential and electric field of 2 (1H)-pyrimidone and 2-hydroxypyrimidine

    NASA Astrophysics Data System (ADS)

    Leś, Andrzej; Adamowicz, Ludwik

    1991-06-01

    The molecular electrostatic potential and molecular electric field have been estimated by means of the expectation values of the respective one-electron operators. We used the molecular density matrix that includes the electron correlation effects up to the second-order of the many body perturbation theory. The results show that around the 2(1H)-pyrimidone molecule one may distinguish the electrophilic and nucleophilic regions, the latter characterized by two potential minima of -2.9 V. In the tautomeric form, 2-hydroxypyrimidine, a third potential minimum of -2.1 V appears close to the N1 nitrogen atom. For both molecules strong orientational forces acting on polar solvents are predicted in the vicinity of oxygen (O7) and nitrogen (N3) atoms. The electron correlation effects do not significantly alter the SCF values of the electrostatic potential and electric field at the distances within the van der Waals envelope of the pyrimidine bases. At larger distances, however, the correlation correction is significant, particularly in the direction facing the proton transfer path.

  2. Optimized effective potential method and application to static RPA correlation

    NASA Astrophysics Data System (ADS)

    Fukazawa, Taro; Akai, Hisazumi

    2015-03-01

    The optimized effective potential (OEP) method is a promising technique for calculating the ground state properties of a system within the density functional theory. However, it is not widely used as its computational cost is rather high and, also, some ambiguity remains in the theoretical framework. In order to overcome these problems, we first introduced a method that accelerates the OEP scheme in a static RPA-level correlation functional. Second, the Krieger-Li-Iafrate (KLI) approximation is exploited to solve the OEP equation. Although seemingly too crude, this approximation did not reduce the accuracy of the description of the magnetic transition metals (Fe, Co, and Ni) examined here, the magnetic properties of which are rather sensitive to correlation effects. Finally, we reformulated the OEP method to render it applicable to the direct RPA correlation functional and other, more precise, functionals. Emphasis is placed on the following three points of the discussion: (i) level-crossing at the Fermi surface is taken into account; (ii) eigenvalue variations in a Kohn-Sham functional are correctly treated; and (iii) the resultant OEP equation is different from those reported to date.

  3. [Occlusion and posture: is there evidence of correlation?].

    PubMed

    Michelotti, A; Manzo, P; Farella, M; Martina, R

    1999-11-01

    The observation that the masticatory system and the postural body regulating system are anatomically and functionally related, has led to postulate several hypotheses of correlation between occlusal and postural disturbances. In the last decade, these arguments have gained a great social impact, also because they have been broadly spread by the mass-media. As a consequence, there has been a growing number of patients seeking concomitant occlusal and postural treatments. The aim of this study was to review critically the current evidence of correlation between the two systems; this in order to address clinical issues for the management of patients. Methodology of the studies reviewed has been evaluated according to the criteria suggested by Storey and Rugh 20 rif. Although there are some evidences of correlation between occlusion and posture, this appears limited to the cranio-cervical tract of the column and tends to disappear when descending in cranio-caudal direction. On the basis of this review of the literature, it's not advisable to treat postural imbalance by means of occlusal treatment or vice versa, particularly if the therapeutic modalities are irreversible.

  4. Direct observation of the actin filament by tip-scan atomic force microscopy

    PubMed Central

    Narita, Akihiro; Usukura, Eiji; Yagi, Akira; Tateyama, Kiyohiko; Akizuki, Shogo; Kikumoto, Mahito; Matsumoto, Tomoharu; Maéda, Yuichiro; Ito, Shuichi; Usukura, Jiro

    2016-01-01

    Actin filaments, the actin–myosin complex and the actin–tropomyosin complex were observed by a tip-scan atomic force microscope (AFM), which was recently developed by Olympus as the AFM part of a correlative microscope. This newly developed AFM uses cantilevers of similar size as stage-scan AFMs to improve substantially the spatial and temporal resolution. Such an approach has previously never been possible by a tip-scan system, in which a cantilever moves in the x, y and z directions. We evaluated the performance of this developed tip-scan AFM by observing the molecular structure of actin filaments and the actin–tropomyosin complex. In the image of the actin filament, the molecular interval of the actin subunits (∼5.5 nm) was clearly observed as stripes. From the shape of the stripes, the polarity of the actin filament was directly determined and the results were consistent with the polarity determined by myosin binding. In the image of the actin–tropomyosin complex, each tropomyosin molecule (∼2 nm in diameter) on the actin filament was directly observed without averaging images of different molecules. Each tropomyosin molecule on the actin filament has never been directly observed by AFM or electron microscopy. Thus, our developed tip-scan AFM offers significant potential in observing purified proteins and cellular structures at nanometer resolution. Current results represent an important step in the development of a new correlative microscope to observe nm-order structures at an acceptable frame rate (∼10 s/frame) by AFM at the position indicated by the fluorescent dye observed under a light microscope. PMID:27242058

  5. Diffuse correlation tomography in the transport regime: A theoretical study of the sensitivity to Brownian motion.

    PubMed

    Tricoli, Ugo; Macdonald, Callum M; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A

    2018-02-01

    Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.

  6. Diffuse correlation tomography in the transport regime: A theoretical study of the sensitivity to Brownian motion

    NASA Astrophysics Data System (ADS)

    Tricoli, Ugo; Macdonald, Callum M.; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A.

    2018-02-01

    Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.

  7. Study on the mapping of dark matter clustering from real space to redshift space

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Song, Yong-Seon

    2016-08-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.

  8. A Report from the Thermal Science Research Center (TSRC)

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.

    1998-01-01

    A vertical flow loop was designed and assembled to determine the local (circumferential and axial) and mean wall temperature distributions for single-phase and two-phase (subcooled and saturated) downward flow in both uniformly-heated and single-side heated vertical channels. Freon-11 was used as the working fluid in order to directly relate and compare the results with a previous experimental campaign which employed this same working fluid. For a given steady-state experiment, the following parameters were held constant: (1) exit pressure, (2) inlet temperature, and (3) mass velocity. For a given configuration of the 2.2 m long cylindrical channel test section, which had a 1.2 m long heated section, the applied heat rate was varied from zero through successive quasi-steady states to a level which corresponded to localized film boiling in the test section. The measurements showed that the boiling curve changes significantly at higher mass velocities with respect to both the circumferential and axial directions. The slope of the boiling curve changes in a non-monotonic fashion with respect to the circumferential directions. The slope of the boiling curve changes in a non-monotonic fashion with respect to the circumferential direction. The measurements point to the existence of a dry-out phenomenon occurring at multiple levels of the applied heat for the single-side heated channel. In comparing the heat transfer for horizontal channel flow with a vertically downward flow, the results show that significantly lower heat transfer occurs in the horizontal flow. However, this trend reverses as both the Reynolds number and the applied heat rate increase. Both the Liu-Winterton and Shah correlations were compared with the experimental data. The Shah correlation predicted the uniformly heated tube data better. When a thermal hydraulic diameter approach was used for the single-side heated case, the data at upstream locations for Z/L less than 0.5 was bounded above by the Liu-Winterton correlation and below by the Shah correlation. At Z/L = 0.5, the Shah correlation bounded the data; and for Z/L greater than 0.5, both correlations overpredicted the data with the Shah correlation being closest to the data. The present results indicate that additional correlational development is needed. In addressing some of the advanced space thermal management objectives concerning accommodating high heat fluxes in non-uniformly heated systems, a large battery of experiments 88 have been completed where local two-dimensional wall temperature variations were measured for both single-phase and two-phase flow in a single-side heated circular tube. As noted above, the results show significant axial and circumferential variations. Accurately accounting for such variations can result in optimized future advanced space, enhanced (high heat flux) thermal management systems.

  9. Convergence behavior of the random phase approximation renormalized correlation energy

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn

    2017-05-01

    Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.

  10. Magnetic structure and dispersion relation of the S = 1 2 quasi-one-dimensional Ising-like antiferromagnet BaCo 2 V 2 O 8 in a transverse magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, M.; Onishi, H.; Okutani, A.

    Here, BaCo 2V 2O 8 consists of Co chains in which a Co 2+ ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo 2V 2O 8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis.more » We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 XXZ antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.« less

  11. Magnetic structure and dispersion relation of the S = 1 2 quasi-one-dimensional Ising-like antiferromagnet BaCo 2 V 2 O 8 in a transverse magnetic field

    DOE PAGES

    Matsuda, M.; Onishi, H.; Okutani, A.; ...

    2017-07-25

    Here, BaCo 2V 2O 8 consists of Co chains in which a Co 2+ ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo 2V 2O 8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis.more » We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 XXZ antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.« less

  12. Magnetic structure and dispersion relation of the S =1/2 quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8 in a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Onishi, H.; Okutani, A.; Ma, J.; Agrawal, H.; Hong, T.; Pajerowski, D. M.; Copley, J. R. D.; Okunishi, K.; Mori, M.; Kimura, S.; Hagiwara, M.

    2017-07-01

    BaCo2V2O8 consists of Co chains in which a Co2 + ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo2V2O8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis. We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 X X Z antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.

  13. Estimation of genetic parameters related to eggshell strength using random regression models.

    PubMed

    Guo, J; Ma, M; Qu, L; Shen, M; Dou, T; Wang, K

    2015-01-01

    This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen's laying life using random regression. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.

  14. Direct measurement of the low temperature spin state transitions in La1-xSrxCoO3 (0.05 < x < 0.3)

    NASA Astrophysics Data System (ADS)

    Gulec, A.; Klie, R. F.

    2014-12-01

    Sr-doped LaCoO3 has a complex magnetic phase diagram, which is believed to be directly correlated to changes in the crystal structure and ordering of the Co3+ spin states. In this work, we study the low temperature Co3+-ion spin state transitions in Sr-doped LaCoO3 around the critical doping concentration where a metal to insulator transition has been observed using electron energy-loss spectroscopy of the O K-edge combined with the Co L-edge fine structure. We measure the local spin state of the Co3+-ions and we demonstrate that the Co3+ spin-state transition only occurs in La0.95Sr0.05CoO3 single-crystal materials in the temperature range accessible by LN2 in-situ cooling, while no structural symmetry change is observed. The presence of this low-temperature spin-state transition in La1-xSrxCoO3 (x < 0.17) has been proposed as the origin of the percolative magnetic ordering in doped LaCoO3.

  15. The low-lying electronic states of pentacene and their roles in singlet fission.

    PubMed

    Zeng, Tao; Hoffmann, Roald; Ananth, Nandini

    2014-04-16

    We present a detailed study of pentacene monomer and dimer that serves to reconcile extant views of its singlet fission. We obtain the correct ordering of singlet excited-state energy levels in a pentacene molecule (E (S1) < E (D)) from multireference calculations with an appropriate active orbital space and dynamical correlation being incorporated. In order to understand the mechanism of singlet fission in pentacene, we use a well-developed diabatization scheme to characterize the six low-lying singlet states of a pentacene dimer that approximates the unit cell structure of crystalline pentacene. The local, single-excitonic diabats are not directly coupled with the important multiexcitonic state but rather mix through their mutual couplings with one of the charge-transfer configurations. We analyze the mixing of diabats as a function of monomer separation and pentacene rotation. By defining an oscillator strength measure of the coherent population of the multiexcitonic diabat, essential to singlet fission, we find this population can, in principle, be increased by small compression along a specific crystal direction.

  16. Protein Conformational Entropy is Independent of Solvent

    NASA Astrophysics Data System (ADS)

    Nucci, Nathaniel; Moorman, Veronica; Gledhill, John; Valentine, Kathleen; Wand, A. Joshua

    Proteins exhibit most of their conformational entropy in individual bond vector motions on the ps-ns timescale. These motions can be examined through determination of the Lipari-Szabo generalized squared order parameter (O2) using NMR spin relaxation measurements. It is often argued that most protein motions are intimately dependent on the nature of the solvating environment. Here the solvent dependence of the fast protein dynamics is directly assessed. Using the model protein ubiquitin, the order parameters of the backbone and methyl groups are shown to be generally unaffected by up to a six-fold increase in bulk viscosity or by encapsulation in the nanoscale interior of a reverse micelle. In addition, the reverse micelle condition permits direct comparison of protein dynamics to the mobility of the hydration layer; no correlation is observed. The dynamics of aromatic side chains are also assessed and provide an estimate of the length- and timescale of protein motions where solvent dependence is seen. These data demonstrate the solvent independence of conformational entropy, clarifying a long-held misconception in the fundamental behavior of biological macromolecules. Supported by the National Science Foundation.

  17. Using GLONASS signal for clock synchronization

    NASA Technical Reports Server (NTRS)

    Gouzhva, Yuri G.; Gevorkyan, Arvid G.; Bogdanov, Pyotr P.; Ovchinnikov, Vitaly V.

    1994-01-01

    Although in accuracy parameters GLONASS is correlated with GPS, using GLONASS signals for high-precision clock synchronization was, up to the recent time, of limited utility due to the lack of specialized time receivers. In order to improve this situation, in late 1992 the Russian Institute of Radionavigation and Time (RMT) began to develop a GLONASS time receiver using as a basis the airborne ASN-16 receiver. This paper presents results of estimating user clock synchronization accuracy via GLONASS signals using ASN-16 receiver in the direct synchronization and common-view modes.

  18. Knowledge Operation Capability Evaluation Model and Strategic Orientation of Supply Chain: Exploratory Research Based on View of Ecology

    NASA Astrophysics Data System (ADS)

    Zhou, Wen-Yong; Song, Ze-Qian

    The competitiveness of Supply Chain (SC) correlates intimately with its knowledge operation (KO). In order to realize better assessment value, this paper constructed an evaluation framework on knowledge operation of SC and a detailed index system. According to theory of ecology, expounded the evaluation orientation and future research direction from view of comprehensiveness and adaptability. Additionally, a case about Toyota recall-gate was analyzed. Through research, it provides two dimensions of results evaluating orientation which may help enterprise make right decision upon SC.

  19. [Nonesterified fatty acids and the titrable acidity of breast milk. Consequences for collection conditions in milk bans].

    PubMed

    Luzeau, R; Barrois, V; Odièvre, M

    1983-01-01

    The study of breast-milk samples, fresh or after storage, shows that the titrable acidity (expressed in degrees Dornic) is directly correlated with their nonesterified fatty acid concentration. Those fresh samples which contain a high activity of lipoprotein lipase can develop in situ lipolysis. The resulting elevated titrable acidity may lead to consider these samples as unsuitable for infant nutrition. These results suggest that collection and storage of breast-milk have to be reassessed in order to avoid in situ lipolysis.

  20. Primordial non-Gaussianity with μ-type and y-type spectral distortions: exploiting Cosmic Microwave Background polarization and dealing with secondary sources

    NASA Astrophysics Data System (ADS)

    Ravenni, Andrea; Liguori, Michele; Bartolo, Nicola; Shiraishi, Maresuke

    2017-09-01

    Cross-correlations between Cosmic Microwave Background (CMB) temperature and y-spectral distortion anisotropies have been previously proposed as a way to measure the local bispectrum parameter fNLloc. in a range of scales inaccessible to either CMB (T, E) bispectra or μ T correlations. This is useful e.g. to test scale dependence of primordial non-Gaussianity. Unfortunately, the primordial y T signal is strongly contaminated by the late-time correlation between the Integrated Sachs Wolfe and Sunyaev-Zel'dovich (SZ) effects. Moreover, SZ itself generates a large noise contribution in the y-parameter map. We consider two original ways to address these issues. In order to remove the bias due to the SZ-CMB temperature coupling, while also providing additional signal, we include in the analysis the cross-correlation between y-distortions and CMB polarization. In order to reduce the noise, we propose to clean the y-map by subtracting a SZ template, reconstructed via cross-correlation with external tracers (CMB and galaxy-lensing signals). We combine this SZ template subtraction with the previously suggested solution of directly masking detected clusters. Our final forecasts show that, using y-distortions, a PRISM-like survey can achieve 1σ(fNLloc.) = 300, while an ideal experiment will achieve 1σ(fNLloc.) = 130 with improvements of a factor between 2.1 and 3.8, depending on the considered survey, from adding the y E signal, and a further 20-30 % from template cleaning. These forecasts are much worse than current fNLloc. boundaries from Planck, but we stress that they refer to completely different scales.

  1. Correlation plenoptic imaging

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Di Lena, Francesco; Garuccio, Augusto; D'Angelo, Milena

    2017-06-01

    Plenoptic Imaging (PI) is a novel optical technique for achieving tridimensional imaging in a single shot. In conventional PI, a microlens array is inserted in the native image plane and the sensor array is moved behind the microlenses. On the one hand, the microlenses act as imaging pixels to reproduce the image of the scene; on the other hand, each microlens reproduces on the sensor array an image of the camera lens, thus providing the angular information associated with each imaging pixel. The recorded propagation direction is exploited, in post- processing, to computationally retrace the geometrical light path, thus enabling the refocusing of different planes within the scene, the extension of the depth of field of the acquired image, as well as the 3D reconstruction of the scene. However, a trade-off between spatial and angular resolution is built in the standard plenoptic imaging process. We demonstrate that the second-order spatio-temporal correlation properties of light can be exploited to overcome this fundamental limitation. Using two correlated beams, from either a chaotic or an entangled photon source, we can perform imaging in one arm and simultaneously obtain the angular information in the other arm. In fact, we show that the second order correlation function possesses plenoptic imaging properties (i.e., it encodes both spatial and angular information), and is thus characterized by a key re-focusing and 3D imaging capability. From a fundamental standpoint, the plenoptic application is the first situation where the counterintuitive properties of correlated systems are effectively used to beat intrinsic limits of standard imaging systems. From a practical standpoint, our protocol can dramatically enhance the potentials of PI, paving the way towards its promising applications.

  2. Primordial non-Gaussianity with μ-type and y -type spectral distortions: exploiting Cosmic Microwave Background polarization and dealing with secondary sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravenni, Andrea; Liguori, Michele; Bartolo, Nicola

    Cross-correlations between Cosmic Microwave Background (CMB) temperature and y -spectral distortion anisotropies have been previously proposed as a way to measure the local bispectrum parameter f {sub NL}{sup loc}. in a range of scales inaccessible to either CMB ( T , E ) bispectra or μ T correlations. This is useful e.g. to test scale dependence of primordial non-Gaussianity. Unfortunately, the primordial y T signal is strongly contaminated by the late-time correlation between the Integrated Sachs Wolfe and Sunyaev-Zel'dovich (SZ) effects. Moreover, SZ itself generates a large noise contribution in the y -parameter map. We consider two original ways tomore » address these issues. In order to remove the bias due to the SZ-CMB temperature coupling, while also providing additional signal, we include in the analysis the cross-correlation between y -distortions and CMB polarization . In order to reduce the noise, we propose to clean the y -map by subtracting a SZ template, reconstructed via cross-correlation with external tracers (CMB and galaxy-lensing signals). We combine this SZ template subtraction with the previously suggested solution of directly masking detected clusters. Our final forecasts show that, using y -distortions, a PRISM-like survey can achieve 1σ( f {sub NL}{sup loc}.) = 300, while an ideal experiment will achieve 1σ( f {sub NL}{sup loc}.) = 130 with improvements of a factor between 2.1 and 3.8, depending on the considered survey, from adding the y E signal, and a further 20–30 % from template cleaning. These forecasts are much worse than current f {sub NL}{sup loc}. boundaries from Planck , but we stress that they refer to completely different scales.« less

  3. Correlation functions of main-chain polymer nematics constrained by tensorial and vectorial conservation laws

    NASA Astrophysics Data System (ADS)

    Svenšek, Daniel; Podgornik, Rudolf

    2015-09-01

    We present and analyze correlation functions of a main-chain polymer nematic in a continuum worm-like chain description for two types of constraints formalized by the tensorial and vectorial conservation laws, both originating in the microscopic chain integrity, i.e., the connectivity of the polymer chains. In particular, our aim is to identify the features of the correlation functions that are most susceptible to the differences between the two constraints. Besides the density and director autocorrelations in both the tensorial and vectorial cases, we calculate also the density-director correlation functions, the latter being a direct signature of the presence of a specific constraint. Its amplitude is connected to the strength of the constraint and is zero if none of the constraints are present, i.e., for a standard non-polymeric nematic. Generally, the correlation functions with the constraints differ substantially from the correlation functions in the non-polymeric case, if the constraints are strong which in practice requires long chains. Moreover, for the tensorial conservation law to be well distinguishable from the vectorial one, the chain persistence length should be much smaller than the total length of the chain, so that hairpins (chain backfolding) are numerous and the polar order is small.

  4. Divergent neural responses to narrative speech in disorders of consciousness.

    PubMed

    Iotzov, Ivan; Fidali, Brian C; Petroni, Agustin; Conte, Mary M; Schiff, Nicholas D; Parra, Lucas C

    2017-11-01

    Clinical assessment of auditory attention in patients with disorders of consciousness is often limited by motor impairment. Here, we employ intersubject correlations among electroencephalography responses to naturalistic speech in order to assay auditory attention among patients and healthy controls. Electroencephalographic data were recorded from 20 subjects with disorders of consciousness and 14 healthy controls during of two narrative audio stimuli, presented both forwards and time-reversed. Intersubject correlation of evoked electroencephalography signals were calculated, comparing responses of both groups to those of the healthy control subjects. This analysis was performed blinded and subsequently compared to the diagnostic status of each patient based on the Coma Recovery Scale-Revised. Subjects with disorders of consciousness exhibit significantly lower intersubject correlation than healthy controls during narrative speech. Additionally, while healthy subjects had higher intersubject correlation values in forwards versus backwards presentation, neural responses did not vary significantly with the direction of playback in subjects with disorders of consciousness. Increased intersubject correlation values in the backward speech condition were noted with improving disorder of consciousness diagnosis, both in cross-sectional analysis and in a subset of patients with longitudinal data. Intersubject correlation of neural responses to narrative speech audition differentiates healthy controls from patients and appears to index clinical diagnoses in disorders of consciousness.

  5. Horizontal Residual Mean Circulation: Evaluation of Spatial Correlations in Coarse Resolution Ocean Models

    NASA Astrophysics Data System (ADS)

    Li, Y.; McDougall, T. J.

    2016-02-01

    Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.

  6. Influence of Polymers on the Crystal Growth Rate of Felodipine: Correlating Adsorbed Polymer Surface Coverage to Solution Crystal Growth Inhibition.

    PubMed

    Schram, Caitlin J; Taylor, Lynne S; Beaudoin, Stephen P

    2015-10-20

    The bioavailability of orally administered drugs that exhibit poor aqueous solubility can be enhanced with the use of supersaturating dosage forms. Stabilization of these forms by preventing or inhibiting crystallization in solution is an important area of study. Polymers can be used to stabilize supersaturated systems; however, the properties that impact their effectiveness as crystal growth rate inhibitors are not yet fully understood. In this study, the impact of various polymers on the crystal growth rate of felodipine and the conformation of these polymers adsorbed to crystalline felodipine was investigated in order to gain a mechanistic understanding of crystal growth inhibition. It was determined that polymer hydrophobicity impacted polymer adsorption as well as adsorbed polymer conformation. Polymer conformation impacts its surface coverage, which was shown to directly correlate to the polymer's effectiveness as a growth rate inhibitor. By modeling this correlation, it is possible to predict polymer effectiveness given the surface coverage of the polymer.

  7. A study of phase defect measurement on EUV mask by multiple detectors CD-SEM

    NASA Astrophysics Data System (ADS)

    Yonekura, Isao; Hakii, Hidemitsu; Morisaki, Shinya; Murakawa, Tsutomu; Shida, Soichi; Kuribara, Masayuki; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki

    2013-06-01

    We have studied MVM (Multi Vision Metrology) -SEM® E3630 to measure 3D shape of defects. The four detectors (Detector A, B, C and D) are independently set up in symmetry for the primary electron beam axis. Signal processing of four direction images enables not only 2D (width) measurement but also 3D (height) measurement. At last PMJ, we have investigated the relation between the E3630's signal of programmed defect on MoSi-HT and defect height measured by AFM (Atomic Force Microscope). It was confirmed that height of integral profile by this tool is correlated with AFM. It was tested that E3630 has capability of observing multilayer defect on EUV. We have investigated correlation with AFM of width and depth or height of multilayer defect. As the result of observing programmed defects, it was confirmed that measurement result by E3630 is well correlated with AFM. And the function of 3D view image enables to show nm order defect.

  8. Direct Measurement of Lateral Correlations under Controlled Nanoconfinement

    NASA Astrophysics Data System (ADS)

    Kékicheff, P.; Iss, J.; Fontaine, P.; Johner, A.

    2018-03-01

    Lateral correlations along hydrophobic surfaces whose separation can be varied continuously are measured by x-ray scattering using a modified surface force apparatus coupled with synchrotron radiation, named SFAX. A weak isotropic diffuse scattering along the equatorial plane is revealed for mica surfaces rendered hydrophobic and charge neutral by immersion in cationic surfactant solutions at low concentrations. The peak corresponds to a lateral surface correlation length ξ ≈12 nm , without long-range order. These findings are compatible with the atomic force microscopy imaging of a single surface, where adsorbed surfactant stripes appear surrounded by bare mica zones. Remarkably, the scattering patterns remain stable for gap widths D larger than the lateral period but change in intensity and shape (to a lesser extent) as soon as D <ξ . This evolution codes for a redistribution of counterions (counterion release from antagonistic patches) and the associated new x-ray labeling of the patterns. The redistribution of counterions is also the key mechanism to the long-range electrostatic attraction between similar, overall charge-neutral walls, reported earlier.

  9. Precedents of perceived social support: personality and early life experiences.

    PubMed

    Kitamura, T; Kijima, N; Watanabe, K; Takezaki, Y; Tanaka, E

    1999-12-01

    In order to examine the effects of personality and early life experiences on perceived social support, a total of 97 young Japanese women were investigated. Current interpersonal relationships were measured by an interview modified from Henderson et al.'s Interview Schedule for Social Interaction (ISSI). Personality was measured by Cloninger et al.'s Temperament and Character Inventory. Early life experiences at home and outside of home were also identified in the interview. The number of sources of perceived support was correlated with self-directness, while satisfaction with perceived support was correlated with novelty seeking and with low harm avoidance. No early life experiences--early loss of a parent, perceived parenting, childhood abuse experiences, experiences of being bullied and/or other life events--showed significant correlations with the number or satisfaction of supportive people. The quantity and quality of perception of social support differ in their link to personality, and perceived social support may, to some extent, be explainable in terms of personality.

  10. Three-dimensional self-organization of crystalline gold nanoparticles in amorphous alumina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Chunming; Zhou Honghui; Wei Wei

    Multilayered heterostructures containing gold nanoparticles embedded in amorphous alumina matrices were deposited on silicon (001) substrates using pulsed laser deposition. The three-dimensional ordering of gold nanoparticles within these multilayered heterostructures was investigated using cross-sectional transmission electron microscopy and image Fourier transformation. Self-organization of gold nanoparticles along the vertical direction was observed in films grown at 20 and at 320 deg. C. Self-organization occurred by means of two different growth modes; both vertically correlated growth (top-on-top) and anticorrelated growth (top-on-middle) mechanisms were observed. The results of these studies suggest that the driving force for vertical ordering in this material is relatedmore » to the long-range elastic interactions among the nanoparticles within the growing films.« less

  11. Quantum Order-by-Disorder in Strongly Correlated Metals

    NASA Astrophysics Data System (ADS)

    Green, Andrew G.; Conduit, Gareth; Krüger, Frank

    2018-03-01

    Entropic forces in classical many-body systems, e.g., colloidal suspensions, can lead to the formation of new phases. Quantum fluctuations can have similar effects: spin fluctuations drive the superfluidity of helium-3, and a similar mechanism operating in metals can give rise to superconductivity. It is conventional to discuss the latter in terms of the forces induced by the quantum fluctuations. However, focusing directly upon the free energy provides a useful alternative perspective in the classical case and can also be applied to study quantum fluctuations. Villain first developed this approach for insulating magnets and coined the term order-by-disorder to describe the observed effect. We discuss the application of this idea to metallic systems, recent progress made in doing so, and the broader prospects for the future.

  12. Soft Decision Analyzer

    NASA Technical Reports Server (NTRS)

    Steele, Glen; Lansdowne, Chatwin; Zucha, Joan; Schlensinger, Adam

    2013-01-01

    The Soft Decision Analyzer (SDA) is an instrument that combines hardware, firmware, and software to perform realtime closed-loop end-to-end statistical analysis of single- or dual- channel serial digital RF communications systems operating in very low signal-to-noise conditions. As an innovation, the unique SDA capabilities allow it to perform analysis of situations where the receiving communication system slips bits due to low signal-to-noise conditions or experiences constellation rotations resulting in channel polarity in versions or channel assignment swaps. SDA s closed-loop detection allows it to instrument a live system and correlate observations with frame, codeword, and packet losses, as well as Quality of Service (QoS) and Quality of Experience (QoE) events. The SDA s abilities are not confined to performing analysis in low signal-to-noise conditions. Its analysis provides in-depth insight of a communication system s receiver performance in a variety of operating conditions. The SDA incorporates two techniques for identifying slips. The first is an examination of content of the received data stream s relation to the transmitted data content and the second is a direct examination of the receiver s recovered clock signals relative to a reference. Both techniques provide benefits in different ways and allow the communication engineer evaluating test results increased confidence and understanding of receiver performance. Direct examination of data contents is performed by two different data techniques, power correlation or a modified Massey correlation, and can be applied to soft decision data widths 1 to 12 bits wide over a correlation depth ranging from 16 to 512 samples. The SDA detects receiver bit slips within a 4 bits window and can handle systems with up to four quadrants (QPSK, SQPSK, and BPSK systems). The SDA continuously monitors correlation results to characterize slips and quadrant change and is capable of performing analysis even when the receiver under test is subjected to conditions where its performance degrades to high error rates (30 percent or beyond). The design incorporates a number of features, such as watchdog triggers that permit the SDA system to recover from large receiver upsets automatically and continue accumulating performance analysis unaided by operator intervention. This accommodates tests that can last in the order of days in order to gain statistical confidence in results and is also useful for capturing snapshots of rare events.

  13. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations.

    PubMed

    Wang, Bo; Li, Liwei; Hurley, Thomas D; Meroueh, Samy O

    2013-10-28

    End-point free energy calculations using MM-GBSA and MM-PBSA provide a detailed understanding of molecular recognition in protein-ligand interactions. The binding free energy can be used to rank-order protein-ligand structures in virtual screening for compound or target identification. Here, we carry out free energy calculations for a diverse set of 11 proteins bound to 14 small molecules using extensive explicit-solvent MD simulations. The structure of these complexes was previously solved by crystallography and their binding studied with isothermal titration calorimetry (ITC) data enabling direct comparison to the MM-GBSA and MM-PBSA calculations. Four MM-GBSA and three MM-PBSA calculations reproduced the ITC free energy within 1 kcal·mol(-1) highlighting the challenges in reproducing the absolute free energy from end-point free energy calculations. MM-GBSA exhibited better rank-ordering with a Spearman ρ of 0.68 compared to 0.40 for MM-PBSA with dielectric constant (ε = 1). An increase in ε resulted in significantly better rank-ordering for MM-PBSA (ρ = 0.91 for ε = 10), but larger ε significantly reduced the contributions of electrostatics, suggesting that the improvement is due to the nonpolar and entropy components, rather than a better representation of the electrostatics. The SVRKB scoring function applied to MD snapshots resulted in excellent rank-ordering (ρ = 0.81). Calculations of the configurational entropy using normal-mode analysis led to free energies that correlated significantly better to the ITC free energy than the MD-based quasi-harmonic approach, but the computed entropies showed no correlation with the ITC entropy. When the adaptation energy is taken into consideration by running separate simulations for complex, apo, and ligand (MM-PBSAADAPT), there is less agreement with the ITC data for the individual free energies, but remarkably good rank-ordering is observed (ρ = 0.89). Interestingly, filtering MD snapshots by prescoring protein-ligand complexes with a machine learning-based approach (SVMSP) resulted in a significant improvement in the MM-PBSA results (ε = 1) from ρ = 0.40 to ρ = 0.81. Finally, the nonpolar components of MM-GBSA and MM-PBSA, but not the electrostatic components, showed strong correlation to the ITC free energy; the computed entropies did not correlate with the ITC entropy.

  14. Molecular Recognition in a Diverse Set of Protein-Ligand Interactions Studied with Molecular Dynamics Simulations and End-Point Free Energy Calculations

    PubMed Central

    Wang, Bo; Li, Liwei; Hurley, Thomas D.; Meroueh, Samy O.

    2014-01-01

    End-point free energy calculations using MM-GBSA and MM-PBSA provide a detailed understanding of molecular recognition in protein-ligand interactions. The binding free energy can be used to rank-order protein-ligand structures in virtual screening for compound or target identification. Here, we carry out free energy calculations for a diverse set of 11 proteins bound to 14 small molecules using extensive explicit-solvent MD simulations. The structure of these complexes was previously solved by crystallography and their binding studied with isothermal titration calorimetry (ITC) data enabling direct comparison to the MM-GBSA and MM-PBSA calculations. Four MM-GBSA and three MM-PBSA calculations reproduced the ITC free energy within 1 kcal•mol−1 highlighting the challenges in reproducing the absolute free energy from end-point free energy calculations. MM-GBSA exhibited better rank-ordering with a Spearman ρ of 0.68 compared to 0.40 for MM-PBSA with dielectric constant (ε = 1). An increase in ε resulted in significantly better rank-ordering for MM-PBSA (ρ = 0.91 for ε = 10). But larger ε significantly reduced the contributions of electrostatics, suggesting that the improvement is due to the non-polar and entropy components, rather than a better representation of the electrostatics. SVRKB scoring function applied to MD snapshots resulted in excellent rank-ordering (ρ = 0.81). Calculations of the configurational entropy using normal mode analysis led to free energies that correlated significantly better to the ITC free energy than the MD-based quasi-harmonic approach, but the computed entropies showed no correlation with the ITC entropy. When the adaptation energy is taken into consideration by running separate simulations for complex, apo and ligand (MM-PBSAADAPT), there is less agreement with the ITC data for the individual free energies, but remarkably good rank-ordering is observed (ρ = 0.89). Interestingly, filtering MD snapshots by pre-scoring protein-ligand complexes with a machine learning-based approach (SVMSP) resulted in a significant improvement in the MM-PBSA results (ε = 1) from ρ = 0.40 to ρ = 0.81. Finally, the non-polar components of MM-GBSA and MM-PBSA, but not the electrostatic components, showed strong correlation to the ITC free energy; the computed entropies did not correlate with the ITC entropy. PMID:24032517

  15. 75 FR 16891 - Self-Regulatory Organizations; NASDAQ OMX BX, Inc.; Order Approving Proposed Rule Change, as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... the Directed Order to the PIP \\7\\ or send the Directed Order to the BOX Book. When the EP sends the Directed Order to the BOX Book and the EP's quotation on the opposite side of the market from the Directed... the Directed Order is being exposed on the BOX Book. \\7\\ See Chapter V, Section 18 of the BOX Rules...

  16. Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central d + Au collisions at s N N = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Aidala, C.; Ajitanand, N. N.

    2015-05-12

    In this study, we present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d+Au and aluminum bias p+p collisions at √s NN = 200 GeV. The charged hadron is measured at midrapidity lηl < 0.35, and the energy us measured at large rapidity (–3.7 < η < –3.1, Au-going direction). An enhanced near-side angular correlation across lΔηl > 2.75 is observed in d+Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v₂ for inclusive charged hadrons at midrapidity up to p T = 4.5 GeV/c.more » We also present the measurement of v₂ for identified π ± and (anti)protons in central d+Au collisions, and observe a mass-ordering pattern similar to that seen in heavy ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from p+Pb at √s NN = 5.02 TeV. The magnitude of the mass-ordering in d+Au is found to be smaller than that in p+Pb collisions, which may indicate smaller radial flow in lower energy d+Au collisions.« less

  17. An automated method for tracking clouds in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Luz, D.; Berry, D. L.; Roos-Serote, M.

    2008-05-01

    We present an automated method for cloud tracking which can be applied to planetary images. The method is based on a digital correlator which compares two or more consecutive images and identifies patterns by maximizing correlations between image blocks. This approach bypasses the problem of feature detection. Four variations of the algorithm are tested on real cloud images of Jupiter's white ovals from the Galileo mission, previously analyzed in Vasavada et al. [Vasavada, A.R., Ingersoll, A.P., Banfield, D., Bell, M., Gierasch, P.J., Belton, M.J.S., Orton, G.S., Klaasen, K.P., Dejong, E., Breneman, H.H., Jones, T.J., Kaufman, J.M., Magee, K.P., Senske, D.A. 1998. Galileo imaging of Jupiter's atmosphere: the great red spot, equatorial region, and white ovals. Icarus, 135, 265, doi:10.1006/icar.1998.5984]. Direct correlation, using the sum of squared differences between image radiances as a distance estimator (baseline case), yields displacement vectors very similar to this previous analysis. Combining this distance estimator with the method of order ranks results in a technique which is more robust in the presence of outliers and noise and of better quality. Finally, we introduce a distance metric which, combined with order ranks, provides results of similar quality to the baseline case and is faster. The new approach can be applied to data from a number of space-based imaging instruments with a non-negligible gain in computing time.

  18. Effects of long memory in the order submission process on the properties of recurrence intervals of large price fluctuations

    NASA Astrophysics Data System (ADS)

    Meng, Hao; Ren, Fei; Gu, Gao-Feng; Xiong, Xiong; Zhang, Yong-Jie; Zhou, Wei-Xing; Zhang, Wei

    2012-05-01

    Understanding the statistical properties of recurrence intervals (also termed return intervals in econophysics literature) of extreme events is crucial to risk assessment and management of complex systems. The probability distributions and correlations of recurrence intervals for many systems have been extensively investigated. However, the impacts of microscopic rules of a complex system on the macroscopic properties of its recurrence intervals are less studied. In this letter, we adopt an order-driven stock model to address this issue for stock returns. We find that the distributions of the scaled recurrence intervals of simulated returns have a power-law scaling with stretched exponential cutoff and the intervals possess multifractal nature, which are consistent with empirical results. We further investigate the effects of long memory in the directions (or signs) and relative prices of the order flow on the characteristic quantities of these properties. It is found that the long memory in the order directions (Hurst index Hs) has a negligible effect on the interval distributions and the multifractal nature. In contrast, the power-law exponent of the interval distribution increases linearly with respect to the Hurst index Hx of the relative prices, and the singularity width of the multifractal nature fluctuates around a constant value when Hx<0.7 and then increases with Hx. No evident effects of Hs and Hx are found on the long memory of the recurrence intervals. Our results indicate that the nontrivial properties of the recurrence intervals of returns are mainly caused by traders' behaviors of persistently placing new orders around the best bid and ask prices.

  19. Two-dimensional hybrid simulations of kinetic plasma turbulence: Current and vorticity vs proton temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franci, Luca; INFN-Sezione di Firenze, Via G. Sansone 1, I-50019 Sesto F.no; Hellinger, Petr, E-mail: petr.hellinger@asu.cas.cz

    2016-03-25

    Proton temperature anisotropies between the directions parallel and perpendicular to the mean magnetic field are usually observed in the solar wind plasma. Here, we employ a high-resolution hybrid particle-in-cell simulation in order to investigate the relation between spatial properties of the proton temperature and the peaks in the current density and in the flow vorticity. Our results indicate that, although regions where the proton temperature is enhanced and temperature anisotropies are larger correspond approximately to regions where many thin current sheets form, no firm quantitative evidence supports the idea of a direct causality between the two phenomena. On the othermore » hand, quite a clear correlation between the behavior of the proton temperature and the out-of-plane vorticity is obtained.« less

  20. Coupling-parameter expansion in thermodynamic perturbation theory.

    PubMed

    Ramana, A Sai Venkata; Menon, S V G

    2013-02-01

    An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method also gives the radial distribution function and the direct correlation function of the perturbed system. The theory is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of perturbation series and the overall performance of the theory is good, improvements are needed for potentials with shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.

  1. [Correlation coefficient-based classification method of hydrological dependence variability: With auto-regression model as example].

    PubMed

    Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi

    2018-04-01

    Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.

  2. Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories

    PubMed Central

    Noreen, Saima; O’Connor, Akira R.; MacLeod, Malcolm D.

    2016-01-01

    Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one’s attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC) and the mid-ventrolateral prefrontal cortex (VLPFC) regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think) or to suppress (no-think) the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution). Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex, there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory. PMID:27047412

  3. Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories.

    PubMed

    Noreen, Saima; O'Connor, Akira R; MacLeod, Malcolm D

    2016-01-01

    Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one's attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC) and the mid-ventrolateral prefrontal cortex (VLPFC) regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think) or to suppress (no-think) the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution). Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex, there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory.

  4. Quantum correlations with no causal order

    PubMed Central

    Oreshkov, Ognyan; Costa, Fabio; Brukner, Časlav

    2012-01-01

    The idea that events obey a definite causal order is deeply rooted in our understanding of the world and at the basis of the very notion of time. But where does causal order come from, and is it a necessary property of nature? Here, we address these questions from the standpoint of quantum mechanics in a new framework for multipartite correlations that does not assume a pre-defined global causal structure but only the validity of quantum mechanics locally. All known situations that respect causal order, including space-like and time-like separated experiments, are captured by this framework in a unified way. Surprisingly, we find correlations that cannot be understood in terms of definite causal order. These correlations violate a 'causal inequality' that is satisfied by all space-like and time-like correlations. We further show that in a classical limit causal order always arises, which suggests that space-time may emerge from a more fundamental structure in a quantum-to-classical transition. PMID:23033068

  5. Temperature uniformity of the bulk medium produced in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ray, Lanny

    2006-10-01

    The success of hydrodynamic models of elliptic flow in relativistic heavy ion collisions is often touted as evidence for rapid thermal equilibration. However, large momentum scale two-particle correlations indicate that a significant fraction of the final-state hadrons retain jet-like correlation structure associated with early stage, non-equilibrated low-Q^2 partons [1]. In addition, correlations on transverse momentum (pt1xpt2) suggest that low-Q^2 parton momentum is partially dissipated causing fluctuations in the effective temperature (thermal and/or collective motion) of the bulk medium[2]. We first show that both global and local temperature fluctuation models describe the available (pt1xpt2) correlation data equally well. Results of an analytical model are then presented which tests the sensitivity of (pt1xpt2) correlations to the first few lower-order cumulants of the two-point temperature distribution for the event ensemble. Unique signatures in the predicted (pt1xpt2) correlations are observed for each cumulant term studied. The prospects for direct measurement of the absolute temperature distribution in the bulk medium produced in relativistic heavy-ion collisions using (pt1xpt2) and other correlation measures are discussed. [1] J. Adams et al., Phys. Rev. C 73, 064907 (2006); J. Phys.G. 32, L37 (2006). [2]J. Adams et al., nucl-ex/0408012.

  6. Regional lung ventilation and perfusion by electrical impedance tomography compared to single-photon emission computed tomography.

    PubMed

    Hentze, Benjamin; Muders, Thomas; Luepschen, Henning; Maripuu, Enn; Hedenstierna, Göran; Putensen, Christian; Walter, Marian; Leonhardt, Steffen

    2018-06-20

    Electrical impedance tomography (EIT) is a noninvasive imaging modality that allows real-time monitoring of regional lung ventilation ([Formula: see text]) in intensive care patients at bedside. However, for improved guidance of ventilation therapy it would be beneficial to obtain regional ventilation-to-perfusion ratio ([Formula: see text]) by EIT. In order to further explore the feasibility, we first evaluate a model-based approach, based on semi-negative matrix factorization and a gamma-variate model, to extract regional lung perfusion ([Formula: see text]) from EIT measurements. Subsequently, a combined validation of both [Formula: see text] and [Formula: see text] measured by EIT against single-photon emission computed tomography (SPECT) is performed on data acquired as part of a porcine animal trial. Four pigs were ventilated at two different levels of positive end-expiratory pressure (PEEP 0 and 15 cm H 2 O, respectively) in randomized order. Repeated injections of an EIT contrast agent (NaCl 10%) and simultaneous SPECT measurements of [Formula: see text] (81 m Kr gas) and [Formula: see text] (99 m Tc-labeled albumin) were performed. Both [Formula: see text] and [Formula: see text] from EIT and SPECT were compared by correlation analysis. Very strong (r 2   =  0.94 to 0.95) correlations were found for [Formula: see text] and [Formula: see text] in the dorsal-ventral direction at both PEEP levels. Moderate (r 2   =  0.36 to 0.46) and moderate to strong (r 2   =  0.61 to 0.82) correlations resulted for [Formula: see text] and [Formula: see text] in the right-left direction, respectively. The results of combined validation indicate that monitoring of [Formula: see text] and [Formula: see text] by EIT is possible. However, care should be taken when trying to quantify [Formula: see text] by EIT, as imaging artefacts and model bias may void necessary spatial matching.

  7. Nonradial and radial period changes of the δ Scuti star 4 CVn. II. Systematic behavior over 40 years

    NASA Astrophysics Data System (ADS)

    Breger, M.; Montgomery, M. H.; Lenz, P.; Pamyatnykh, A. A.

    2017-03-01

    Aims: Radial and nonradial pulsators on and near the main sequence show period and amplitude changes that are too large to be the product of stellar evolution. The multiperiodic δ Sct stars are well suited to study this, as the period changes of different modes excited in the same star can be compared. This requires a very large amount of photometric data covering years and decades as well as mode identifications. Methods: We have examined over 800 nights of high-precision photometry of the multiperiodic pulsator 4 CVn obtained from 1966 through 2012. Because most of the data were obtained in adjacent observing seasons, it is possible to derive very accurate period values for a number of the excited pulsation modes and to study their systematic changes from 1974 to 2012. Results: Most pulsation modes show systematic significant period and amplitude changes on a timescale of decades. For the well-studied modes, around 1986 a general reversal of the directions of both the positive and negative period changes occurred. Furthermore, the period changes between the different modes are strongly correlated, although they differ in size and sign. For the modes with known values of the spherical degree and azimuthal order, we find a correlation between the direction of the period changes and the identified azimuthal order, m. The associated amplitude changes generally have similar timescales of years or decades, but show little systematic or correlated behavior from mode to mode. Conclusions: A natural explanation for the opposite behavior of the prograde and retrograde modes is that their period changes are driven by a changing rotation profile. The changes in the rotation profile could in turn be driven by processes, perhaps the pulsations themselves, that redistribute angular momentum within the star. In general, different modes have different rotation kernels, so this will produce period shifts of varying magnitude for different modes.

  8. High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking

    PubMed Central

    Lorenzana, J.; Seibold, G.; Peng, Y. Y.; Amorese, A.; Yakhou-Harris, F.; Kummer, K.; Brookes, N. B.; Konik, R. M.; Thampy, V.; Gu, G. D.; Ghiringhelli, G.; Braicovich, L.

    2017-01-01

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates. PMID:29114049

  9. Effects of isoflurane anesthesia on ensemble patterns of Ca2+ activity in mouse v1: reduced direction selectivity independent of increased correlations in cellular activity.

    PubMed

    Goltstein, Pieter M; Montijn, Jorrit S; Pennartz, Cyriel M A

    2015-01-01

    Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to 'break' the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity.

  10. Effects of Isoflurane Anesthesia on Ensemble Patterns of Ca2+ Activity in Mouse V1: Reduced Direction Selectivity Independent of Increased Correlations in Cellular Activity

    PubMed Central

    Goltstein, Pieter M.; Montijn, Jorrit S.; Pennartz, Cyriel M. A.

    2015-01-01

    Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to ‘break’ the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity. PMID:25706867

  11. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana.

    PubMed

    Silva, Anderson Tadeu; Ligterink, Wilco; Hilhorst, Henk W M

    2017-11-01

    Metabolic and transcriptomic correlation analysis identified two distinctive profiles involved in the metabolic preparation for seed germination and seedling establishment, respectively. Transcripts were identified that may control metabolic fluxes. The transition from a quiescent metabolic state (dry seed) to the active state of a vigorous seedling is crucial in the plant's life cycle. We analysed this complex physiological trait by measuring the changes in primary metabolism that occur during the transition in order to determine which metabolic networks are operational. The transition involves several developmental stages from seed germination to seedling establishment, i.e. between imbibition of the mature dry seed and opening of the cotyledons, the final stage of seedling establishment. We hypothesized that the advancement of growth is associated with certain signature metabolite profiles. Metabolite-metabolite correlation analysis underlined two specific profiles which appear to be involved in the metabolic preparation for seed germination and efficient seedling establishment, respectively. Metabolite profiles were also compared to transcript profiles and although transcriptional changes did not always equate to a proportional metabolic response, in depth correlation analysis identified several transcripts that may directly influence the flux through metabolic pathways during the seed-to-seedling transition. This correlation analysis also pinpointed metabolic pathways which are significant for the seed-to-seedling transition, and metabolite contents that appeared to be controlled directly by transcript abundance. This global view of the transcriptional and metabolic changes during the seed-to-seedling transition in Arabidopsis opens up new perspectives for understanding the complex regulatory mechanism underlying this transition.

  12. Idiopathic normal pressure hydrocephalus: analysis of factors related to cerebrospinal fluid dynamics determining functional prognosis.

    PubMed

    Bárcena, A; Mestre, C; Cañizal, J M; Rivero, B; Lobato, R D

    1997-01-01

    This investigation has been undertaken to analyze the findings with both the cerebrospinal fluid (CSF) pressure (Pcsf) and CSF pulse pressure (PP) in order to predict the outcome of patients with the syndrome of idiopathic normal pressure hydrocephalus (NPH). Accordingly, a prospective clinical study was planned in which two groups of patients with NPH, having analogous prevalence of several matched clinical and radiological parameters, were separated on the basis of their positive or negative response to shunting. Both the resting Pcsf and CSF PP profiles were compared in these two groups, and between them and normal controls. CSF PP amplitude and CSF PP latency correlated directly in conditions associated with either normal or high compliance (controls and patients with Alzheimer-like disorders), whereas this correlation was inverse in states of low compliance (NPH). On the other hand, shunt-responders showed a resting Pcsf significantly higher than both non-responders and controls. The following conclusions were obtained: 1) CSF PP is a high-amplitude and relative low-latency wave in NPH when compared with controls: 2) CSF PP amplitude and latency correlate directly in normal subjects and in those with primary cerebral atrophy; 3) a non-reversible stage of NPH could be conceived in contradistinction to the reversible one, in both of which an inverse correlation between the amplitude and the latency takes place, the main difference between them being the resting Pcsf, which is significantly lower in the former than in the latter, depending on the degree of atrophic changes developed.

  13. Quantum Correlation Properties in Two Qubits One-axis Spin Squeezing Model

    NASA Astrophysics Data System (ADS)

    Guo-Hui, Yang

    2017-02-01

    Using the concurrence (C) and quantum discord (QD) criterions, the quantum correlation properties in two qubits one-axis spin squeezing model with an external magnetic field are investigated. It is found that one obvious difference in the limit case T → 0 (ground state) is the sudden disappearance phenomenon (SDP) occured in the behavior of C, while not in QD. In order to further explain the SDP, we obtain the analytic expressions of ground state C and QD which reveal that the SDP is not really "entanglement sudden disappeared", it is decayed to zero very quickly. Proper tuning the parameters μ(the spin squeezing interaction in x direction) and Ω(the external magnetic field in z direction) not only can obviously broaden the scope of ground state C exists but also can enhance the value of ground state QD. For the finite temperature case, one evident difference is that the sudden birth phenomenon (SBP) is appeared in the evolution of C, while not in QD, and decreasing the coupling parameters μ or Ω can obviously prolong the time interval before entanglement sudden birth. The value of C and QD are both enhanced by increasing the parameters μ or Ω in finite temperature case. In addition, through investigating the effects of temperature T on the quantum correlation properties with the variation of Ω and μ, one can find that the temperature scope of C and QD exists are broadened with increasing the parameters μ or Ω, and one can obtain the quantum correlation at higher temperature through changing these parameters.

  14. A second-order closure analysis of turbulent diffusion flames. [combustion physics

    NASA Technical Reports Server (NTRS)

    Varma, A. K.; Fishburne, E. S.; Beddini, R. A.

    1977-01-01

    A complete second-order closure computer program for the investigation of compressible, turbulent, reacting shear layers was developed. The equations for the means and the second order correlations were derived from the time-averaged Navier-Stokes equations and contain third order and higher order correlations, which have to be modeled in terms of the lower-order correlations to close the system of equations. In addition to fluid mechanical turbulence models and parameters used in previous studies of a variety of incompressible and compressible shear flows, a number of additional scalar correlations were modeled for chemically reacting flows, and a typical eddy model developed for the joint probability density function for all the scalars. The program which is capable of handling multi-species, multistep chemical reactions, was used to calculate nonreacting and reacting flows in a hydrogen-air diffusion flame.

  15. A fast-initializing digital equalizer with on-line tracking for data communications

    NASA Technical Reports Server (NTRS)

    Houts, R. C.; Barksdale, W. J.

    1974-01-01

    A theory is developed for a digital equalizer for use in reducing intersymbol interference (ISI) on high speed data communications channels. The equalizer is initialized with a single isolated transmitter pulse, provided the signal-to-noise ratio (SNR) is not unusually low, then switches to a decision directed, on-line mode of operation that allows tracking of channel variations. Conditions for optimal tap-gain settings are obtained first for a transversal equalizer structure by using a mean squared error (MSE) criterion, a first order gradient algorithm to determine the adjustable equalizer tap-gains, and a sequence of isolated initializing pulses. Since the rate of tap-gain convergence depends on the eigenvalues of a channel output correlation matrix, convergence can be improved by making a linear transformation on to obtain a new correlation matrix.

  16. Validation of the Maslach Burnout Inventory-General Survey on a Representative Sample of Dominican Teachers: Normative Data.

    PubMed

    Tomás, José M; de Los Santos, Saturnino; Alonso-Andres, Alicia; Fernández, Irene

    2016-11-22

    Burnout is characterized by emotional exhaustion, depersonalization and lack of personal accomplishment (Bakke, Demerouti, & Sanz-Vergel, 2014). Several instruments for its measurement exist, but the most widely used scale for measuring its dimensions, by far, is the Maslach Burnout Inventory (MBI) in its different versions. Among the available versions of the scale, the MBI-General Survey was developed to measure three dimensions of burnout (cynicism, personal accomplishment, and emotional exhaustion) regardless of the type of work. The aim of this research is to offer evidence on the psychometric properties of the MBI-GS for its use in the Dominican Republic and other Caribbean Spanish-speaking countries, using representative sample of Dominican teachers. The factorial validity was studied through confirmatory factor analysis. Several competing models were proved in order to test the dimensionality of the scale. The confirmatory analyses shown that the original three-factor structure had a superior fit, but item eleven was removed in order to get an excellent fit χ2(87) = 211.19, p < .001, CFI = .98, RMSEA = .038 90% CI [.032-.045]. Regarding internal consistency, the CRI´s are well above the cut-off criteria of .7 (CRI's ranged from .74 to .86). Concerning criterion-related validity, the three factors were correlated in the expected direction. Professional efficacy, a dimension of burnout measured in the opposite direction, was positively correlated with the three factors of work engagement, also as expected. This version was found to be a psychometrically sound measure of the three core dimensions of burnout.

  17. Optical pulling and pushing forces exerted on silicon nanospheres with strong coherent interaction between electric and magnetic resonances.

    PubMed

    Liu, Hongfeng; Panmai, Mingcheng; Peng, Yuanyuan; Lan, Sheng

    2017-05-29

    We investigated theoretically and numerically the optical pulling and pushing forces acting on silicon (Si) nanospheres (NSs) with strong coherent interaction between electric and magnetic resonances. We examined the optical pulling and pushing forces exerted on Si NSs by two interfering waves and revealed the underlying physical mechanism from the viewpoint of electric- and magnetic-dipole manipulation. As compared with a polystyrene (PS) NS, it was found that the optical pulling force for a Si NS with the same size is enlarged by nearly two orders of magnitude. In addition to the optical pulling force appearing at the long-wavelength side of the magnetic dipole resonance, very large optical pushing force is observed at the magnetic quadrupole resonance. The correlation between the optical pulling/pushing force and the directional scattering characterized by the ratio of the forward to backward scattering was revealed. More interestingly, it was found that the high-order electric and magnetic resonances in large Si NSs play an important role in producing optical pulling force which can be generated by not only s-polarized wave but also p-polarized one. Our finding indicates that the strong coherent interaction between the electric and magnetic resonances existing in nanoparticles with large refractive indices can be exploited to manipulate the optical force acting on them and the correlation between the optical force and the directional scattering can be used as guidance. The engineering and manipulation of optical forces will find potential applications in the trapping, transport and sorting of nanoparticles.

  18. Correlation set analysis: detecting active regulators in disease populations using prior causal knowledge

    PubMed Central

    2012-01-01

    Background Identification of active causal regulators is a crucial problem in understanding mechanism of diseases or finding drug targets. Methods that infer causal regulators directly from primary data have been proposed and successfully validated in some cases. These methods necessarily require very large sample sizes or a mix of different data types. Recent studies have shown that prior biological knowledge can successfully boost a method's ability to find regulators. Results We present a simple data-driven method, Correlation Set Analysis (CSA), for comprehensively detecting active regulators in disease populations by integrating co-expression analysis and a specific type of literature-derived causal relationships. Instead of investigating the co-expression level between regulators and their regulatees, we focus on coherence of regulatees of a regulator. Using simulated datasets we show that our method performs very well at recovering even weak regulatory relationships with a low false discovery rate. Using three separate real biological datasets we were able to recover well known and as yet undescribed, active regulators for each disease population. The results are represented as a rank-ordered list of regulators, and reveals both single and higher-order regulatory relationships. Conclusions CSA is an intuitive data-driven way of selecting directed perturbation experiments that are relevant to a disease population of interest and represent a starting point for further investigation. Our findings demonstrate that combining co-expression analysis on regulatee sets with a literature-derived network can successfully identify causal regulators and help develop possible hypothesis to explain disease progression. PMID:22443377

  19. Convergence of third order correlation energy in atoms and molecules.

    PubMed

    Kahn, Kalju; Granovsky, Alex A; Noga, Jozef

    2007-01-30

    We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.

  20. Revisiting the ground state of CoAl 2 O 4 : Comparison to the conventional antiferromagnet MnAl 2 O 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, Gregory J.; Aczel, Adam A.; Su, Yixi

    The A-site spinel material CoAl 2O 4 is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which unique incommensurate or “spin-spiral-liquid” ground states are predicted. Our previous single-crystal neutron scattering study instead classified it as a “kinetically inhibited” antiferromagnet, where the long-ranged correlations of a collinear Néel ground state are blocked by the freezing of domain-wall motion below a first-order phase transition at T*=6.5 K. This study provides new data sets from a number of experiments, which support and expand this work in several important ways. We show that the phenomenology leading to the kinetically inhibited ordermore » is unaffected by sample measured and instrument resolution, while new low-temperature measurements reveal spin correlations are unchanging between T=2 K and 250 mK, consistent with a frozen state. Polarized diffuse neutron measurements show several interesting magnetic features, which can be entirely explained by the existence of short-ranged Néel order. Finally, and crucially, this paper presents some neutron scattering studies of single crystalline MnAl 2O 4, which acts as an unfrustrated analog to CoAl 2O 4 and shows all the hallmarks of a classical antiferromagnet with a continuous phase transition to Néel order at T N=39 K. Direct comparison between the two compounds indicates that CoAl 2O 4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. Finally, the higher level of cation inversion in the MnAl 2O 4 sample indicates that this behavior is primarily an effect of greater next-nearest-neighbor exchange.« less

  1. Revisiting the ground state of CoAl 2 O 4 : Comparison to the conventional antiferromagnet MnAl 2 O 4

    DOE PAGES

    MacDougall, Gregory J.; Aczel, Adam A.; Su, Yixi; ...

    2016-11-17

    The A-site spinel material CoAl 2O 4 is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which unique incommensurate or “spin-spiral-liquid” ground states are predicted. Our previous single-crystal neutron scattering study instead classified it as a “kinetically inhibited” antiferromagnet, where the long-ranged correlations of a collinear Néel ground state are blocked by the freezing of domain-wall motion below a first-order phase transition at T*=6.5 K. This study provides new data sets from a number of experiments, which support and expand this work in several important ways. We show that the phenomenology leading to the kinetically inhibited ordermore » is unaffected by sample measured and instrument resolution, while new low-temperature measurements reveal spin correlations are unchanging between T=2 K and 250 mK, consistent with a frozen state. Polarized diffuse neutron measurements show several interesting magnetic features, which can be entirely explained by the existence of short-ranged Néel order. Finally, and crucially, this paper presents some neutron scattering studies of single crystalline MnAl 2O 4, which acts as an unfrustrated analog to CoAl 2O 4 and shows all the hallmarks of a classical antiferromagnet with a continuous phase transition to Néel order at T N=39 K. Direct comparison between the two compounds indicates that CoAl 2O 4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. Finally, the higher level of cation inversion in the MnAl 2O 4 sample indicates that this behavior is primarily an effect of greater next-nearest-neighbor exchange.« less

  2. U (1 ) -symmetric infinite projected entangled-pair states study of the spin-1/2 square J1-J2 Heisenberg model

    NASA Astrophysics Data System (ADS)

    Haghshenas, R.; Sheng, D. N.

    2018-05-01

    We develop an improved variant of U (1 ) -symmetric infinite projected entangled-pair states (iPEPS) ansatz to investigate the ground-state phase diagram of the spin-1 /2 square J1-J2 Heisenberg model. In order to improve the accuracy of the ansatz, we discuss a simple strategy to select automatically relevant symmetric sectors and also introduce an optimization method to treat second-neighbor interactions more efficiently. We show that variational ground-state energies of the model obtained by the U (1 ) -symmetric iPEPS ansatz (for a fixed bond dimension D ) set a better upper bound, improving previous tensor-network-based results. By studying the finite-D scaling of the magnetically order parameter, we find a Néel phase for J2/J1<0.53 . For 0.53

  3. Multiaxial constitutive behavior of an interstitial-free steel: Measurements through X-ray and digital image correlation

    PubMed Central

    Jeong, Y.; Iadicola, M.A.; Gnäupel-Herold, T.; Creuziger, A.

    2017-01-01

    Constitutive behaviors of an interstitial-free steel sample were measured using an augmented Marciniak experiment. In these tests, multiaxial strain field data of the flat specimens were measured by the digital image correlation technique. In addition, the flow stress was measured using an X-ray diffractometer. The flat specimens in three different geometries were tested in order to achieve 1) balanced biaxial strain, and plane strain tests with zero strain in either 2) rolling direction or 3) transverse direction. The multiaxial stress and strain data were processed to obtain plastic work contours with reference to a uniaxial tension test along the rolling direction. The experimental results show that the mechanical behavior of the subjected specimen deviates significantly from isotropic behavior predicted by the von Mises yield criterion. The initial yield loci measured by a Marciniak tester is in good agreement with what is predicted by Hill's yield criterion. However, as deformation increases beyond the vonMises strain of 0.05, the shape of the work contour significantly deviates from that of Hill's yield locus. A prediction made by a viscoplastic self-consistent model is in better agreement with the experimental observation than the Hill yield locus with the isotropic work-hardening rule. However, none of the studied models matched the initial or evolving anisotropic behaviors of the interstitial-free steel measured by the augmented Marciniak experiment. PMID:28690400

  4. Multiaxial constitutive behavior of an interstitial-free steel: Measurements through X-ray and digital image correlation.

    PubMed

    Jeong, Y; Iadicola, M A; Gnäupel-Herold, T; Creuziger, A

    2016-06-15

    Constitutive behaviors of an interstitial-free steel sample were measured using an augmented Marciniak experiment. In these tests, multiaxial strain field data of the flat specimens were measured by the digital image correlation technique. In addition, the flow stress was measured using an X-ray diffractometer. The flat specimens in three different geometries were tested in order to achieve 1) balanced biaxial strain, and plane strain tests with zero strain in either 2) rolling direction or 3) transverse direction. The multiaxial stress and strain data were processed to obtain plastic work contours with reference to a uniaxial tension test along the rolling direction. The experimental results show that the mechanical behavior of the subjected specimen deviates significantly from isotropic behavior predicted by the von Mises yield criterion. The initial yield loci measured by a Marciniak tester is in good agreement with what is predicted by Hill's yield criterion. However, as deformation increases beyond the vonMises strain of 0.05, the shape of the work contour significantly deviates from that of Hill's yield locus. A prediction made by a viscoplastic self-consistent model is in better agreement with the experimental observation than the Hill yield locus with the isotropic work-hardening rule. However, none of the studied models matched the initial or evolving anisotropic behaviors of the interstitial-free steel measured by the augmented Marciniak experiment.

  5. Sum Rules of Charm CP Asymmetries beyond the SU(3)_{F} Limit.

    PubMed

    Müller, Sarah; Nierste, Ulrich; Schacht, Stefan

    2015-12-18

    We find new sum rules between direct CP asymmetries in D meson decays with coefficients that can be determined from a global fit to branching ratio data. Our sum rules eliminate the penguin topologies P and PA, which cannot be determined from branching ratios. In this way, we can make predictions about direct CP asymmetries in the standard model without ad hoc assumptions on the sizes of penguin diagrams. We consistently include first-order SU(3)_{F} breaking in the topological amplitudes extracted from the branching ratios. By confronting our sum rules with future precise data from LHCb and Belle II, one will identify or constrain new-physics contributions to P or PA. The first sum rule correlates the CP asymmetries a_{CP}^{dir} in D^{0}→K^{+}K^{-}, D^{0}→π^{+}π^{-}, and D^{0}→π^{0}π^{0}. We study the region of the a_{CP}^{dir}(D^{0}→π^{+}π^{-})-a_{CP}^{dir}(D^{0}→π^{0}π^{0}) plane allowed by current data and find that our sum rule excludes more than half of the allowed region at 95% C.L. Our second sum rule correlates the direct CP asymmetries in D^{+}→K[over ¯]^{0}K^{+}, D_{s}^{+}→K^{0}π^{+}, and D_{s}^{+}→K^{+}π^{0}.

  6. Pulse transmission receiver with higher-order time derivative pulse correlator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-16

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  7. The interplay between pH sensitivity and label-free protein detection in immunologically modified nano-scaled field-effect transistor.

    PubMed

    Shalev, Gil; Rosenwaks, Yossi; Levy, Ilan

    2012-01-15

    We present experimental results in order to establish a correlation between pH sensitivity of immunologically modified nano-scaled field-effect transistor (NS-ImmunoFET) with their sensing capacity for label-free detection. The NS-ImmunoFETs are fabricated from silicon-on-insulator (SOI) wafers and are fully-depleted with thickness of ~20 nm. The data shows that higher sensitivity to pH entails enhanced sensitivity to analyte detection. This suggests that the mechanism of analyte detection as pure electrostatic perturbation induced by antibody-analyte interaction is over simplified. The fundamental assumption, in existing models for field-effect sensing mechanism assumes that the analyte molecules do not directly interact with the surface but rather stand 'deep' in the solution and away from the dielectric surface. Recent studies clearly provide contradicting evidence demonstrating that antibodies lie down flat on the surface. These observations led us to propose that the proteins that cover the gate area intimately interact with active sites on the surface thus forming a network of interacting sites. Since sensitivity to pH is directly correlated with the amount of amphoteric sites, we witness a direct correlation between sensitivity to pH and analyte detection. The highest and lowest threshold voltage shift for a label-free and specific detection of 6.5 nM IgG were 40 mV and 2.3 mV for NS-ImmunoFETs with pH sensitivity of 35 mV/decade and 15 mV/decade, respectively. Finally, physical modeling of the NS-ImmunoFET is presented and charge of a single IgG protein at pH 6 is calculated. The obtained value is consistent with charge of IgG protein cited in literature. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Direct and correlated responses to artificial selection on male mating frequency in the stalk-eyed fly Cyrtodiopsis dalmanni.

    PubMed

    Rogers, D W; Baker, R H; Chapman, T; Denniff, M; Pomiankowski, A; Fowler, K

    2005-05-01

    Traditionally it was thought that fitness-related traits such as male mating frequency, with a history of strong directional selection, should have little additive genetic variance and thus respond asymmetrically to bidirectional artificial selection. However, recent findings and theory suggest that a balance between selection for increased male mating frequency and opposing selection pressures on physiologically linked traits will cause male mating frequency to have high additive genetic variation and hence respond symmetrically to selection. We tested these hypotheses in the stalk-eyed fly, Cyrtodiopsis dalmanni, in which males hold harems comprising many females and so have the opportunity to mate at extremely high frequencies. We subjected male stalk-eyed flies to artificial selection for increased ('high') and decreased ('low') mating frequency in the presence of ecologically realistic, high numbers of females. High line males mated significantly more often than control or low line males. The direct response to selection was approximately symmetric in the high and low lines, revealing high additive genetic variation for, and no significant genetic constraints on, increased male mating frequency in C. dalmanni. In order to investigate trade-offs that might constrain male mating frequency under natural conditions we examined correlated responses to artificial selection. We measured accessory gland length, testis length and eyespan after 7 and 14 generations of selection. High line males had significantly larger accessory glands than low line males. No consistent correlated responses to selection were found in testis length or eyespan. Our results suggest that costs associated with the production and maintenance of large accessory glands, although yet to be identified, are likely to be a major constraint on mating frequency in natural populations of C. dalmanni.

  9. [The Intentions Affecting the Medical Decision-Making Behavior of Surrogate Decision Makers of Critically Ill Patients and Related Factors].

    PubMed

    Su, Szu-Huei; Wu, Li-Min

    2018-04-01

    The severity of diseases and high mortality rates that typify the intensive care unit often make it difficult for surrogate decision makers to make decisions for critically ill patients regarding whether to continue medical treatments or to accept palliative care. To explore the behavioral intentions that underlie the medical decisions of surrogate decision makers of critically ill patients and the related factors. A cross-sectional, correlation study design was used. A total of 193 surrogate decision makers from six ICUs in a medical center in southern Taiwan were enrolled as participants. Three structured questionnaires were used, including a demographic datasheet, the Family Relationship Scale, and the Behavioral Intention of Medical Decisions Scale. Significantly positive correlations were found between the behavioral intentions underlying medical decisions and the following variables: the relationship of the participant to the patient (Eta = .343, p = .020), the age of the patient (r = .295, p < .01), and whether the patient had signed a currently valid advance healthcare directive (Eta = .223, p = .002). Furthermore, a significantly negative correlation was found between these intentions and length of stay in the ICU (r = -.263, p < .01). Patient age, whether the patient had signed a currently valid advance healthcare directive, and length of stay in the ICU were all predictive factors for the behavioral intentions underlying the medical decisions of the surrogate decision makers, explaining 13.9% of the total variance. In assessing the behavioral intentions underlying the medical decisions of surrogate decision makers, health providers should consider the relationship between critical patients and their surrogate decision makers, patient age, the length of ICU stay, and whether the patient has a pre-signed advance healthcare directive in order to maximize the effectiveness of medical care provided to critically ill patients.

  10. Surface morphology and dislocation characteristics near the surface of 4H-SiC wafer using multi-directional scanning transmission electron microscopy.

    PubMed

    Sato, Takahiro; Orai, Yoshihisa; Suzuki, Yuya; Ito, Hiroyuki; Isshiki, Toshiyuki; Fukui, Munetoshi; Nakamura, Kuniyasu; Schamp, C T

    2017-10-01

    To improve the reliability of silicon carbide (SiC) electronic power devices, the characteristics of various kinds of crystal defects should be precisely understood. Of particular importance is understanding the correlation between the surface morphology and the near surface dislocations. In order to analyze the dislocations near the surface of 4H-SiC wafers, a dislocation analysis protocol has been developed. This protocol consists of the following process: (1) inspection of surface defects using low energy scanning electron microscopy (LESEM), (2) identification of small and shallow etch pits using KOH low temperature etching, (3) classification of etch pits using LESEM, (4) specimen preparation of several hundred nanometer thick sample using the in-situ focused ion beam micro-sampling® technique, (5) crystallographic analysis using the selected diffraction mode of the scanning transmission electron microscope (STEM), and (6) determination of the Burgers vector using multi-directional STEM (MD-STEM). The results show a correlation between the triangular terrace shaped surface defects and an hexagonal etch pit arising from threading dislocations, linear shaped surface defects and elliptical shaped etch pits arising from basal plane dislocations. Through the observation of the sample from two orthogonal directions via the MD-STEM technique, a basal plane dislocation is found to dissociate into an extended dislocation bound by two partial dislocations. A protocol developed and presented in this paper enables one to correlate near surface defects of a 4H-SiC wafer with the root cause dislocations giving rise to those surface defects. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Shrinkage of Dental Composite in Simulated Cavity Measured with Digital Image Correlation

    PubMed Central

    Li, Jianying; Thakur, Preetanjali; Fok, Alex S. L.

    2014-01-01

    Polymerization shrinkage of dental resin composites can lead to restoration debonding or cracked tooth tissues in composite-restored teeth. In order to understand where and how shrinkage strain and stress develop in such restored teeth, Digital Image Correlation (DIC) was used to provide a comprehensive view of the displacement and strain distributions within model restorations that had undergone polymerization shrinkage. Specimens with model cavities were made of cylindrical glass rods with both diameter and length being 10 mm. The dimensions of the mesial-occlusal-distal (MOD) cavity prepared in each specimen measured 3 mm and 2 mm in width and depth, respectively. After filling the cavity with resin composite, the surface under observation was sprayed with first a thin layer of white paint and then fine black charcoal powder to create high-contrast speckles. Pictures of that surface were then taken before curing and 5 min after. Finally, the two pictures were correlated using DIC software to calculate the displacement and strain distributions. The resin composite shrunk vertically towards the bottom of the cavity, with the top center portion of the restoration having the largest downward displacement. At the same time, it shrunk horizontally towards its vertical midline. Shrinkage of the composite stretched the material in the vicinity of the “tooth-restoration” interface, resulting in cuspal deflections and high tensile strains around the restoration. Material close to the cavity walls or floor had direct strains mostly in the directions perpendicular to the interfaces. Summation of the two direct strain components showed a relatively uniform distribution around the restoration and its magnitude equaled approximately to the volumetric shrinkage strain of the material. PMID:25079865

  12. Theory of Magnetic Ordering in the Heavy Rare Earths: Ab Initio Electronic Origin of Pair- and Four-Spin Interactions

    NASA Astrophysics Data System (ADS)

    Mendive-Tapia, Eduardo; Staunton, Julie B.

    2017-05-01

    We describe a disordered local moment theory for long-period magnetic phases and investigate the temperature and magnetic field dependence of the magnetic states in the heavy rare earth elements (HREs), namely, paramagnetic, conical and helical antiferromagnetic (HAFM), fan, and ferromagnetic (FM) states. We obtain a generic HRE magnetic phase diagram which is consequent on the response of the common HRE valence electronic structure to f -electron magnetic moment ordering. The theory directly links the first-order HAFM-FM transition to the loss of Fermi surface nesting, induced by this magnetic ordering, as well as provides a template for analyzing the other phases and exposing where f -electron correlation effects are particularly intricate. Gadolinium, for a range of hexagonal, close-packed lattice constants c and a , is the prototype, described ab initio, and applications to other HREs are made straightforwardly by scaling the effective pair and quartic local moment interactions that emerge naturally from the theory with de Gennes factors and choosing appropriate lanthanide-contracted c and a values.

  13. Degenerate operators and the 1/c expansion: Lorentzian resummations, high order computations, and super-Virasoro blocks

    DOE PAGES

    Chen, Hongbin; Fitzpatrick, A. Liam; Kaplan, Jared; ...

    2017-03-30

    Here, one can obtain exact information about Virasoro conformal blocks by analytically continuing the correlators of degenerate operators. We argued in recent work that this technique can be used to explicitly resolve information loss problems in AdS 3/CFT 2. In this paper we use the technique to perform calculations in the small 1/c ∝ GN expansion: (1) we prove the all-orders resummation of logarithmic factors ∝1/clog z in the Lorentzian regime, demonstrating that 1/c corrections directly shift Lyapunov exponents associated with chaos, as claimed in prior work, (2) we perform another all-orders resummation in the limit of large c withmore » fixed cz, interpolating between the early onset of chaos and late time behavior, (3) we explicitly compute the Virasoro vacuum block to order 1/c 2 and 1/c 3 with external dimensions fixed, corresponding to 2 and 3 loop calculations in AdS 3, and (4) we derive the heavy-light vacuum blocks in theories with N = 1, 2 superconformal symmetry.« less

  14. Degenerate operators and the 1/c expansion: Lorentzian resummations, high order computations, and super-Virasoro blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hongbin; Fitzpatrick, A. Liam; Kaplan, Jared

    Here, one can obtain exact information about Virasoro conformal blocks by analytically continuing the correlators of degenerate operators. We argued in recent work that this technique can be used to explicitly resolve information loss problems in AdS 3/CFT 2. In this paper we use the technique to perform calculations in the small 1/c ∝ GN expansion: (1) we prove the all-orders resummation of logarithmic factors ∝1/clog z in the Lorentzian regime, demonstrating that 1/c corrections directly shift Lyapunov exponents associated with chaos, as claimed in prior work, (2) we perform another all-orders resummation in the limit of large c withmore » fixed cz, interpolating between the early onset of chaos and late time behavior, (3) we explicitly compute the Virasoro vacuum block to order 1/c 2 and 1/c 3 with external dimensions fixed, corresponding to 2 and 3 loop calculations in AdS 3, and (4) we derive the heavy-light vacuum blocks in theories with N = 1, 2 superconformal symmetry.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seljak, Uroš; McDonald, Patrick, E-mail: useljak@berkeley.edu, E-mail: pvmcdonald@lbl.gov

    We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if kμu/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and μ = cos θ, with θ being the angle between the Fourier mode and the line of sight. We perform an expansionmore » of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum. We show that the dominant term of μ{sup 2} dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to μ{sup 2} and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term comes with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to μ{sup 4} dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter, highlighting the issue of scale dependent bias of velocity moments correlators.« less

  16. Submacropulse electron-beam dynamics correlated with higher-order modes in Tesla-type superconducting rf cavities

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; Ruan, J.; Eddy, N.; Prieto, P.; Napoly, O.; Carlsten, B. E.; Bishofberger, K.

    2018-06-01

    We report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ˜100 kHz in the vertical plane and ˜380 kHz in the horizontal plane with up to 600 -μ m amplitudes were observed in a 3-MHz micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC /b . However, the effects were much reduced at 100 pC /b . The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.

  17. NMR Study of the New Magnetic Superconductor CaK(Fe 0:951Ni0:049) 4As 4: Microscopic Coexistence of Hedgehog Spin-vortex Crystal and Superconductivity

    DOE PAGES

    Ding, Q. P.; Meier, W. R.; Bohmer, A. E.; ...

    2017-12-29

    Coexistence of a new-type antiferromagnetic (AFM) state, the so-called hedgehog spin-vortex crystal (SVC), and superconductivity (SC) is evidenced by 75As nuclear magnetic resonance study on single-crystalline CaK(Fe 0:951Ni0:049) 4As 4. The hedgehog SVC order is clearly demonstrated by the direct observation of the internal magnetic induction along the c axis at the As1 site (close to K) and a zero net internal magnetic induction at the As2 site (close to Ca) below an AFM ordering temperature T N ~ 52 K. The nuclear spin-lattice relaxation rate 1/T 1 shows a distinct decrease below T c ~ 10 K, providing alsomore » unambiguous evidence for the microscopic coexistence. Furthermore, based on the analysis of the 1/T 1 data, the hedgehog SVC-type spin correlations are found to be enhanced below T ~ 150 K in the paramagnetic state. Furthermore, these results indicate the hedgehog SVC-type spin correlations play an important role for the appearance of SC in the new magnetic superconductor.« less

  18. Submacropulse electron-beam dynamics correlated with higher-order modes in Tesla-type superconducting rf cavities

    DOE PAGES

    Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; ...

    2018-06-04

    Here, we report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ~100 kHz in the vertical plane and ~380 kHz in the horizontal plane with up to 600-μm amplitudes were observed in a 3-MHzmore » micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC/b. However, the effects were much reduced at 100 pC/b. The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.« less

  19. A Spalart-Allmaras local correlation-based transition model for Thermo-fuid dynamics

    NASA Astrophysics Data System (ADS)

    D'Alessandro, V.; Garbuglia, F.; Montelpare, S.; Zoppi, A.

    2017-11-01

    The study of innovative energy systems often involves complex fluid flows problems and the Computational Fluid-Dynamics (CFD) is one of the main tools of analysis. It is important to put in evidence that in several energy systems the flow field experiences the laminar-to-turbulent transition. Direct Numerical Simulations (DNS) or Large Eddy Simulation (LES) are able to predict the flow transition but they are still inapplicable to the study of real problems due to the significant computational resources requirements. Differently standard Reynolds Averaged Navier Stokes (RANS) approaches are not always reliable since they assume a fully turbulent regime. In order to overcome this drawback in the recent years some locally formulated transition RANS models have been developed. In this work, we present a local correlation-based transition approach adding two equations that control the laminar-toturbulent transition process -γ and \\[\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] - to the well-known Spalart-Allmaras (SA) turbulence model. The new model was implemented within OpenFOAM code. The energy equation is also implemented in order to evaluate the model performance in thermal-fluid dynamics applications. In all the considered cases a very good agreement between numerical and experimental data was observed.

  20. Electronic Asymmetry by Compositionally Braking Inversion Symmetry

    NASA Astrophysics Data System (ADS)

    Warusawithana, Maitri

    2005-03-01

    By stacking molecular layers of 3 different perovskite titanate phases, BaTiO3, SrTiO3 and CaTiO3 with atomic layer control, we construct nanostructures where global inversion symmetry is broken. With the structures clamped to the substrate, the stacking order gives rise to asymmetric strain fields. The dielectric response show asymmetric field tuning consistent with the symmetry of the stacking order. By analyzing the temperature and frequency dependence of the complex dielectric constant, we show that the response comes from activated switching of dipoles between two asymmetric states separated by an energy barrier. We find the size of average dipole units from the temperature dependence of the linewidth of field tuning curves to be around 10 unit cells in all the different nanostructures we investigate. At low temperatures we observe a deviation from the kinetic response suggesting a further growth in correlations. Pyrocurrent measurements confirm this observation indicating a phase transition to a ferro-like state. We explain the high temperature dipoles as single unit cell cross sectional columns correlated via the strain fields in the stacking direction, with the height somewhat short of the film thickness possibly due to some form of weak disorder.

  1. Charged fixed point in the Ginzburg-Landau superconductor and the role of the Ginzburg parameter /κ

    NASA Astrophysics Data System (ADS)

    Kleinert, Hagen; Nogueira, Flavio S.

    2003-02-01

    We present a semi-perturbative approach which yields an infrared-stable fixed point in the Ginzburg-Landau for N=2, where N/2 is the number of complex components. The calculations are done in d=3 dimensions and below Tc, where the renormalization group functions can be expressed directly as functions of the Ginzburg parameter κ which is the ratio between the two fundamental scales of the problem, the penetration depth λ and the correlation length ξ. We find a charged fixed point for κ>1/ 2, that is, in the type II regime, where Δκ≡κ-1/ 2 is shown to be a natural expansion parameter. This parameter controls a momentum space instability in the two-point correlation function of the order field. This instability appears at a non-zero wave-vector p0 whose magnitude scales like ˜ Δκ β¯, with a critical exponent β¯=1/2 in the one-loop approximation, a behavior known from magnetic systems with a Lifshitz point in the phase diagram. This momentum space instability is argued to be the origin of the negative η-exponent of the order field.

  2. NMR Study of the New Magnetic Superconductor CaK(Fe 0:951Ni0:049) 4As 4: Microscopic Coexistence of Hedgehog Spin-vortex Crystal and Superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Q. P.; Meier, W. R.; Bohmer, A. E.

    Coexistence of a new-type antiferromagnetic (AFM) state, the so-called hedgehog spin-vortex crystal (SVC), and superconductivity (SC) is evidenced by 75As nuclear magnetic resonance study on single-crystalline CaK(Fe 0:951Ni0:049) 4As 4. The hedgehog SVC order is clearly demonstrated by the direct observation of the internal magnetic induction along the c axis at the As1 site (close to K) and a zero net internal magnetic induction at the As2 site (close to Ca) below an AFM ordering temperature T N ~ 52 K. The nuclear spin-lattice relaxation rate 1/T 1 shows a distinct decrease below T c ~ 10 K, providing alsomore » unambiguous evidence for the microscopic coexistence. Furthermore, based on the analysis of the 1/T 1 data, the hedgehog SVC-type spin correlations are found to be enhanced below T ~ 150 K in the paramagnetic state. Furthermore, these results indicate the hedgehog SVC-type spin correlations play an important role for the appearance of SC in the new magnetic superconductor.« less

  3. Experimental cross-correlation nitrogen Q-branch CARS thermometry in a spark ignition engine

    NASA Astrophysics Data System (ADS)

    Lockett, R. D.; Ball, D.; Robertson, G. N.

    2013-07-01

    A purely experimental technique was employed to derive temperatures from nitrogen Q-branch Coherent Anti-Stokes Raman Scattering (CARS) spectra, obtained in a high pressure, high temperature environment (spark ignition Otto engine). This was in order to obviate any errors arising from deficiencies in the spectral scaling laws which are commonly used to represent nitrogen Q-branch CARS spectra at high pressure. The spectra obtained in the engine were compared with spectra obtained in a calibrated high pressure, high temperature cell, using direct cross-correlation in place of the minimisation of sums of squares of residuals. The technique is demonstrated through the measurement of air temperature as a function of crankshaft angle inside the cylinder of a motored single-cylinder Ricardo E6 research engine, followed by the measurement of fuel-air mixture temperatures obtained during the compression stroke in a knocking Ricardo E6 engine. A standard CARS programme (SANDIA's CARSFIT) was employed to calibrate the altered non-resonant background contribution to the CARS spectra that was caused by the alteration to the mole fraction of nitrogen in the unburned fuel-air mixture. The compression temperature profiles were extrapolated in order to predict the auto-ignition temperatures.

  4. Direct-normal solar irradiance measurements and turbidity coefficient evaluation in central Spain.

    NASA Astrophysics Data System (ADS)

    Bllbao, Julia; Román, Roberto; Miguel, Argimiro

    2013-04-01

    In order to study the characteristics of solar direct radiation and the atmospheric turbidity in Valladolid, Spain, global, diffuse and direct irradiance data were recorded from May 2010 to December 2011, with a frequency of 10 minute. Measurements used were taken by the Energy and Atmosphere Group (http://www3.uva.es/renova), University of Valladolid, Spain at the Solar Radiometric Station (41,81°N 4.93°W, 840m a.s.l.) located on the Atmosphere Researcher Centre, Villalba de los Alcores, Valladolid, Spain. Sensors were installed in a Sun tracker (Solys 2, Kipp & Zonen) that blocks direct solar radiation using a shadow ball. The system consists of two pyranometers CMP-21 and one pyrheliometer CHP-1 (Kipp & Zonen), respectively. Based on these measurements, the characteristics of direct solar irradiance data were evaluated in order to know the main statistical parameters of the distribution. Angström turbidity coefficient values, beta, were estimated from direct solar irradiance and clear sky conditions. The beta coefficient values were obtained from MODIS satellite instrument, and the aerosol optical depth values, AOD(550nm), were evaluated. The turbidity coefficient beta shows seasonal variation, with higher values in summer (< 0.15) and lower in winter (< 0.05). It could be due to high temperatures in summer and less rainy days which would induce more atmospheric turbidity, increasing vertical convection and particles enhancement. The scattered graph of aerosol optical depth from satellite and the obtained from Angström expression has been plotted. The slope presents a value around the unity, 0.96, and the correlation coefficient shows a value of 0.6 . It was observed that turbidity coefficients increased in April 2011, and in order to now the origin the change, air masses trajectories, deduced from HYSPLIT model (http://ready.arl.noaa.gov/HYSPLIT.php) were studied. From the results it has been obtained that a situation of low pressures in the Atlantic Portuguese coast and high pressure in the North of Spain induced the movement of dust from Sahara desert into the Iberian Peninsula.

  5. Versatile Gaussian probes for squeezing estimation

    NASA Astrophysics Data System (ADS)

    Rigovacca, Luca; Farace, Alessandro; Souza, Leonardo A. M.; De Pasquale, Antonella; Giovannetti, Vittorio; Adesso, Gerardo

    2017-05-01

    We consider an instance of "black-box" quantum metrology in the Gaussian framework, where we aim to estimate the amount of squeezing applied on an input probe, without previous knowledge on the phase of the applied squeezing. By taking the quantum Fisher information (QFI) as the figure of merit, we evaluate its average and variance with respect to this phase in order to identify probe states that yield good precision for many different squeezing directions. We first consider the case of single-mode Gaussian probes with the same energy, and find that pure squeezed states maximize the average quantum Fisher information (AvQFI) at the cost of a performance that oscillates strongly as the squeezing direction is changed. Although the variance can be brought to zero by correlating the probing system with a reference mode, the maximum AvQFI cannot be increased in the same way. A different scenario opens if one takes into account the effects of photon losses: coherent states represent the optimal single-mode choice when losses exceed a certain threshold and, moreover, correlated probes can now yield larger AvQFI values than all single-mode states, on top of having zero variance.

  6. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-Lun; Onuki, Akira

    1996-01-01

    The study of the interface in a charge-free, nonpolar, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In zero gravity, the interface is unstable at all long wavelengths in the presence of a field applied across it. It is conjectured that this will cause the binary fluid to break up into domains small enough to be outside the instability condition. The resulting pattern formation, and the effects on the critical properties as the domains approach the correlation length are of acute interest. With direct observation, laser light scattering, and interferometry, the phenomena can be probed to gain further understanding of interfacial instabilities and the pattern formation which results, and dimensional crossover in critical systems as the critical fluctuations in a particular direction are suppressed by external forces.

  7. Confirming Time-reversal Symmetry of a Directed Percolation Phase Transition in a Model of Neutral Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Ordway, Stephen; King, Dawn; Bahar, Sonya

    Reaction-diffusion processes, such as branching-coalescing random walks, can be used to describe the underlying dynamics of nonequilibrium phase transitions. In an agent-based, neutral model of evolutionary dynamics, we have previously shown that our system undergoes a continuous, nonequilibrium phase transition, from extinction to survival, as various system parameters were tuned. This model was shown to belong to the directed percolation (DP) universality class, by measuring the critical exponents corresponding to correlation length ξ⊥, correlation time ξ| |, and particle density β. The fourth critical exponent that defines the DP universality class is β', which measures the survival probability of growth from a single seed organism. Since DP universality is theorized to have time-reversal symmetry, it is assumed that β = β '. In order to confirm the existence of time-reversal symmetry in our model, we evaluate the system growth from a single asexually reproducing organism. Importantly, the critical exponent β' could be useful for comparison to experimental studies of phase transitions in biological systems, since observing growth of microbial populations is significantly easier than observing death. This research was supported by funding from the James S. McDonnell Foundation.

  8. Alcohol action on a neuronal membrane receptor: evidence for a direct interaction with the receptor protein.

    PubMed Central

    Li, C; Peoples, R W; Weight, F F

    1994-01-01

    For almost a century, alcohols have been thought to produce their effects by actions on the membrane lipids of central nervous system neurons--the well known "lipid theory" of alcohol action. The rationale for this theory is the correlation of potency with oil/water or membrane/buffer partition coefficient. Although a number of recent studies have shown that alcohols can affect the function of certain neuronal neurotransmitter receptors, there is no evidence that the alcohols interact directly with these membrane proteins. In the present study, we report that inhibition of a neuronal neurotransmitter receptor, an ATP-gated ion channel, by a series of alcohols exhibits a distinct cutoff effect. For alcohols with a molecular volume of < or = 42.2 ml/mol, potency for inhibiting ATP-activated current was correlated with lipid solubility (order of potency: 1-propanol = trifluoroethanol > monochloroethanol > ethanol > methanol). However, despite increased lipid solubility, alcohols with a molecular volume of > or = 46.1 ml/mol (1-butanol, 1-pentanol, trichloroethanol, and dichloroethanol) were without effect on the ATP-activated current. The results suggest that alcohols inhibit the function of this neurotransmitter receptor by interacting with a small hydrophobic pocket on the receptor protein. PMID:8058780

  9. Direct numerical simulation of cellular-scale blood flow in microvascular networks

    NASA Astrophysics Data System (ADS)

    Balogh, Peter; Bagchi, Prosenjit

    2017-11-01

    A direct numerical simulation method is developed to study cellular-scale blood flow in physiologically realistic microvascular networks that are constructed in silico following published in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. The model resolves large deformation of individual red blood cells (RBC) flowing in such complex networks. The vascular walls and deformable interfaces of the RBCs are modeled using the immersed-boundary methods. Time-averaged hemodynamic quantities obtained from the simulations agree quite well with published in vivo data. Our simulations reveal that in several vessels the flow rates and pressure drops could be negatively correlated. The flow resistance and hematocrit are also found to be negatively correlated in some vessels. These observations suggest a deviation from the classical Poiseuille's law in such vessels. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that RBC jamming results in several orders of magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. Funded by NSF CBET 1604308.

  10. INFLUENCE OF THE IN-PLANE ARTEFACT IN CHEST TOMOSYNTHESIS ON PULMONARY NODULE SIZE MEASUREMENTS.

    PubMed

    Söderman, Christina; Johnsson, Åse Allansdotter; Vikgren, Jenny; Norrlund, Rauni Rossi; Molnar, David; Svalkvist, Angelica; Månsson, Lars Gunnar; Båth, Magnus

    2016-06-01

    The aim of the present study was to investigate how the in-plane artefact present in the scan direction around structures in tomosynthesis images should be managed when measuring the size of nodules in chest tomosynthesis images in order to achieve acceptable measurement accuracy. Data from measurements, performed by radiologists, of the longest diameter of artificial nodules inserted in chest tomosynthesis images were used. The association between the measurement error and the direction of the longest nodule diameter, relative to the scan direction, was evaluated using the Kendall rank correlation coefficient. All of the radiologists had chosen to not include the artefact in the measurements. Significant association between measurement error and the direction of the longest diameter was found for nodules larger than 12 mm, which indicates that, for these nodules, there is a risk of underestimating the nodule size if the in-plane artefact is omitted from manual diameter measurements. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. The evolution of trade-offs under directional and correlational selection.

    PubMed

    Roff, Derek A; Fairbairn, Daphne J

    2012-08-01

    Using quantitative genetic theory, we develop predictions for the evolution of trade-offs in response to directional and correlational selection. We predict that directional selection favoring an increase in one trait in a trade-off will result in change in the intercept but not the slope of the trade-off function, with the mean value of the selected trait increasing and that of the correlated trait decreasing. Natural selection will generally favor an increase in some combination of trait values, which can be represented as directional selection on an index value. Such selection induces both directional and correlational selection on the component traits. Theory predicts that selection on an index value will also change the intercept but not the slope of the trade-off function but because of correlational selection, the direction of change in component traits may be in the same or opposite directions. We test these predictions using artificial selection on the well-established trade-off between fecundity and flight capability in the cricket, Gryllus firmus and compare the empirical results with a priori predictions made using genetic parameters from a separate half-sibling experiment. Our results support the predictions and illustrate the complexity of trade-off evolution when component traits are subject to both directional and correlational selection. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  12. On SYM theory and all order bulk singularity structures of BPS strings in type II theory

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2018-06-01

    The complete forms of the S-matrix elements of a transverse scalar field, two world volume gauge fields, and a Potential Cn-1 Ramond-Ramond (RR) form field are investigated. In order to find an infinite number of t , s , (t + s + u)-channel bulk singularity structures of this particular mixed open-closed amplitude, we employ all the conformal field theory techniques to , exploring all the entire correlation functions and all order α‧ contact interactions to these supersymmetric Yang-Mills (SYM) couplings. Singularity and contact term comparisons with the other symmetric analysis, and are also carried out in detail. Various couplings from pull-Back of branes, Myers terms and several generalized Bianchi identities should be taken into account to be able to reconstruct all order α‧ bulk singularities of type IIB (IIA) superstring theory. Finally, we make a comment on how to derive without any ambiguity all order α‧ contact terms of this S-matrix which carry momentum of RR in transverse directions.

  13. Correlation of higher order aberrations in the anterior corneal surface and degree of keratoconus measured with a Scheimpflug camera.

    PubMed

    Delgado, S; Velazco, J; Delgado Pelayo, R M; Ruiz-Quintero, N

    2016-07-01

    To determine the correlation of higher order aberrations in anterior corneal surface and degree of keratoconus measured with a Scheimpflug camera. A descriptive, cross-sectional study was conducted on 152 eyes (both eyes of each patient) of patients with keratoconus, from January 2009 to April 2014. An examination was performed on the corneal aberrometry in the anterior corneal surface, and topographic mapping (by Amsler and Muckenhirn classification) was used to determine the degree of keratoconus. The correlation between high-order aberrations in anterior corneal surface and the degree of keratoconus was determined. Coma aberration significantly correlated with keratoconus severity (r=.60, P<.01), as well as with the high order aberration (r=.61, P<.01). Trefoil and keratoconus were weakly correlated (r=.34, P<.01). Higher order aberrations in anterior corneal surface were positively correlated with the degree of keratoconus in a similar way to the entire optical system. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Microscopic modulation of mechanical properties in transparent insect wings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Ashima; Kumar, Pramod; Bhagavathi, Jithin

    We report on the measurement of local friction and adhesion of transparent insect wings using an atomic force microscope cantilever down to nanometre length scales. We observe that the wing-surface is decorated with 10 μm long and 2 μm wide islands that have higher topographic height. The friction on the islands is two orders of magnitude higher than the back-ground while the adhesion on the islands is smaller. Furthermore, the high islands are decorated with ordered nano-wire-like structures while the background is full of randomly distributed granular nano-particles. Coherent optical diffraction through the wings produce a stable diffraction pattern revealing a quasi-periodicmore » organization of the high islands over the entire wing. This suggests a long-range order in the modulation of friction and adhesion which is directly correlated with the topography. The measurements unravel novel functional design of complex wing surface and could find application in miniature biomimetic devices.« less

  15. Nonequilibrium Phase Precursors during a Photoexcited Insulator-to-Metal Transition in V2O3

    NASA Astrophysics Data System (ADS)

    Singer, Andrej; Ramirez, Juan Gabriel; Valmianski, Ilya; Cela, Devin; Hua, Nelson; Kukreja, Roopali; Wingert, James; Kovalchuk, Olesya; Glownia, James M.; Sikorski, Marcin; Chollet, Matthieu; Holt, Martin; Schuller, Ivan K.; Shpyrko, Oleg G.

    2018-05-01

    Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V2O3 . Despite the ultrafast increase in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium. X-ray nanoscopy reveals that acoustic phonons trapped in nanoscale twin domains govern the dynamics of the ultrafast transition into the precursor phase, while nucleation and growth of metallic domains dictate the duration of the slower transition into the metallic phase. The enhancement of the long-range order before completion of the electronic transition demonstrates the critical role the nonequilibrium structural phases play during electronic phase transitions in correlated electrons systems.

  16. Factor Structure and Convergent Validity of the Stress Index for Parents of Adolescents (SIPA) in Adolescents With ADHD.

    PubMed

    Eadeh, Hana-May; Langberg, Joshua M; Molitor, Stephen J; Behrhorst, Katie; Smith, Zoe R; Evans, Steven W

    2018-02-01

    Parenting stress is common in families with an adolescent with attention-deficit/hyperactivity disorder (ADHD). The Stress Index for Parents of Adolescents (SIPA) was developed to assess parenting stress but has not been validated outside of the original development work. This study examined the factor structure and sources of convergent validity of the SIPA in a sample of adolescents diagnosed with ADHD ( M age = 12.3, N = 327) and their caregivers. Three first-order models, two bifactor models, and one higher order model were evaluated; none met overall model fit criteria but the first-order nine-factor model displayed the best fit. Convergent validity was also assessed and the SIPA adolescent domain was moderately correlated with measures of family impairment and conflict after accounting for ADHD symptom severity. Implications of these findings for use of the SIPA in ADHD samples are discussed along with directions for future research focused on parent stress and ADHD.

  17. Global and critical test of the perturbation density-functional theory based on extensive simulation of Lennard-Jones fluid near an interface and in confined systems.

    PubMed

    Zhou, Shiqi; Jamnik, Andrej

    2005-09-22

    The structure of a Lennard-Jones (LJ) fluid subjected to diverse external fields maintaining the equilibrium with the bulk LJ fluid is studied on the basis of the third-order+second-order perturbation density-functional approximation (DFA). The chosen density and potential parameters for the bulk fluid correspond to the conditions situated at "dangerous" regions of the phase diagram, i.e., near the critical temperature or close to the gas-liquid coexistence curve. The accuracy of DFA predictions is tested against the results of a grand canonical ensemble Monte Carlo simulation. It is found that the DFA theory presented in this work performs successfully for the nonuniform LJ fluid only on the condition of high accuracy of the required bulk second-order direct correlation function. The present report further indicates that the proposed perturbation DFA is efficient and suitable for both supercritical and subcritical temperatures.

  18. Practical considerations for a second-order directional hearing aid microphone system

    NASA Astrophysics Data System (ADS)

    Thompson, Stephen C.

    2003-04-01

    First-order directional microphone systems for hearing aids have been available for several years. Such a system uses two microphones and has a theoretical maximum free-field directivity index (DI) of 6.0 dB. A second-order microphone system using three microphones could provide a theoretical increase in free-field DI to 9.5 dB. These theoretical maximum DI values assume that the microphones have exactly matched sensitivities at all frequencies of interest. In practice, the individual microphones in the hearing aid always have slightly different sensitivities. For the small microphone separation necessary to fit in a hearing aid, these sensitivity matching errors degrade the directivity from the theoretical values, especially at low frequencies. This paper shows that, for first-order systems the directivity degradation due to sensitivity errors is relatively small. However, for second-order systems with practical microphone sensitivity matching specifications, the directivity degradation below 1 kHz is not tolerable. A hybrid order directive system is proposed that uses first-order processing at low frequencies and second-order directive processing at higher frequencies. This hybrid system is suggested as an alternative that could provide improved directivity index in the frequency regions that are important to speech intelligibility.

  19. Deciphering chemical order/disorder and material properties at the single-atom level.

    PubMed

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.

  20. Study on the mapping of dark matter clustering from real space to redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown inmore » this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.« less

  1. Multipoint correlators in the Abelian sandpile model

    NASA Astrophysics Data System (ADS)

    Poncelet, Adrien; Ruelle, Philippe

    2017-12-01

    We revisit the calculation of height correlations in the two-dimensional Abelian sandpile model by taking advantage of a technique developed recently by Kenyon and Wilson. The formalism requires to equip the usual graph Laplacian, ubiquitous in the context of cycle-rooted spanning forests, with a complex connection. In the case at hand, the connection is constant and localized along a semi-infinite defect line (zipper). In the appropriate limit of a trivial connection, it allows one to count spanning forests whose components contain prescribed sites, which are of direct relevance for height correlations in the sandpile model. Using this technique, we first rederive known 1- and 2-site lattice correlators on the plane and upper half-plane, more efficiently than what has been done so far. We also compute explicitly the (new) next-to-leading order in the distances (r-4 for 1-site on the upper half-plane, r-6 for 2-site on the plane). We extend these results by computing new correlators involving one arbitrary height and a few heights 1 on the plane and upper half-plane, for the open and closed boundary conditions. We examine our lattice results from the conformal point of view, and confirm the full consistency with the specific features currently conjectured to be present in the associated logarithmic conformal field theory.

  2. Summary of directional divergence characteristics of several high performance aircraft configurations

    NASA Technical Reports Server (NTRS)

    Greer, H. D.

    1972-01-01

    The present paper summarizes the high-angle-of-attack characteristics of a number of high-performance aircraft as determined from model force tests and free-flight model tests and correlates these characteristics with the dynamic directional-stability parameter. This correlation shows that the dynamic directional-stability parameter correlates fairly well with directional divergence. Data are also presented to show the effect of some airframe modifications on the directional divergence potential of the configuration. These results show that leading-edge slates seem to be the most effective airframe modification for reducing or eliminating the directional divergence potential of aircraft with moderately swept wings.

  3. Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion

    PubMed Central

    Dunn, Timothy W; Mu, Yu; Narayan, Sujatha; Randlett, Owen; Naumann, Eva A; Yang, Chao-Tsung; Schier, Alexander F

    2016-01-01

    In the absence of salient sensory cues to guide behavior, animals must still execute sequences of motor actions in order to forage and explore. How such successive motor actions are coordinated to form global locomotion trajectories is unknown. We mapped the structure of larval zebrafish swim trajectories in homogeneous environments and found that trajectories were characterized by alternating sequences of repeated turns to the left and to the right. Using whole-brain light-sheet imaging, we identified activity relating to the behavior in specific neural populations that we termed the anterior rhombencephalic turning region (ARTR). ARTR perturbations biased swim direction and reduced the dependence of turn direction on turn history, indicating that the ARTR is part of a network generating the temporal correlations in turn direction. We also find suggestive evidence for ARTR mutual inhibition and ARTR projections to premotor neurons. Finally, simulations suggest the observed turn sequences may underlie efficient exploration of local environments. DOI: http://dx.doi.org/10.7554/eLife.12741.001 PMID:27003593

  4. Face Preferences for Infant- and Adult-Directed Speakers in Infants of Depressed and Nondepressed Mothers: Association with Infant Cognitive Development.

    PubMed

    Kaplan, Peter S; Asherin, Ryan M; Vogeli, Jo M; Fekri, Shiva M; Scheyer, Kathryn E; Everhart, Kevin D

    2018-01-01

    Face preferences for speakers of infant-directed and adult-directed speech (IDS and ADS) were investigated in 4- to 13.5-month-old infants of depressed and non-depressed mothers. Following 1-min of exposure to an ID or AD speaker (order counterbalanced), infants had an immediate paired-comparison test with a still, silent image of the familiarized versus a novel face. In the test phase, ID face preference ratios were significantly lower in infants of depressed than non-depressed mothers. Infants' ID face preference ratios, but not AD face preference ratios, correlated with their percentile scores on the cognitive ( Cog ) scale of the Bayley Scales of Infant & Toddler Development (3 rd Edition; BSID III), assessed concurrently. Regression analyses revealed that infant ID face preferences significantly predicted infant Cog percentiles even after demographic risk factors and maternal depression had been controlled. Infants may use IDS to select social partners who are likely to support and facilitate cognitive development.

  5. Direct comparison of the pharmacodynamics of four antifungal drugs in a mouse model of disseminated candidiasis using microbiological assays of serum drug concentrations.

    PubMed

    Maki, Katsuyuki; Holmes, Ann R; Watabe, Etsuko; Iguchi, Yumi; Matsumoto, Satoru; Ikeda, Fumiaki; Tawara, Shuichi; Mutoh, Seitaro

    2007-01-01

    The aim of this study was to compare the pharmacodynamics of the azole antifungal drugs fluconazole, itraconazole and ketoconazole, and the polyene antifungal amphotericin B, in a mouse model of disseminated Candida albicans infection. In order to directly compare effective serum concentrations of these antifungals, drug concentrations were assayed microbiologically by measuring inhibition of C. albicans mycelial growth (mMIC) in a mouse serum-based assay (serum antifungal titer). Efficacy in the mouse infection model was determined using an organ-based (kidney burden) endpoint. For all four drugs, the serum antifungal titers, 8 hr after administration of single doses of drugs at a range of drug concentrations, correlated closely with C. albicans kidney fungal burden in the mouse model. The results showed that determining serum antifungal titer may be used to accurately represent kidney fungal burden in a mouse model of disseminated candidiasis and allowed direct comparison of the pharmacodynamics of differing classes of antifungal drugs.

  6. The influence of texture on the reversible elastocaloric effect of a polycrystalline Ni50Mn32In16Cr2 alloy

    NASA Astrophysics Data System (ADS)

    Hernández-Navarro, Fernando; Camarillo-Garcia, Juan-Pablo; Aguilar-Ortiz, Christian-Omar; Flores-Zúñiga, Horacio; Ríos, David; González, José-Gonzalo; Álvarez-Alonso, Pablo

    2018-04-01

    We have studied the correlation between the elastocaloric effect and the crystallographic direction where a uniaxial stress is applied in a textured polycrystalline Ni-Mn-In-Cr ferromagnetic shape memory alloy; this alloy displays martensitic transformation around room temperature and presents an L21 cubic structure in the austenite phase. The texture in the material was induced by simple arc melting synthesis; using inverse pole figures, a favored grain growth was shown in the direction [001] perpendicular to the cooled surface. The elastocaloric effect was determined by direct measurements of the adiabatic temperature change (ΔTadme), while compressive stress was applied and released; hereby, it has been shown that it is possible to exploit the columnar growth texture in order to obtain a large and reversible elastocaloric effect. The reversible elastocaloric response was measured between 280 and 310 K by applying moderate stresses of 50, 75, and 100 MPa in the [001], [111], and [011] directions. A strong interrelation was found in the cyclic ΔTadme values of -3.9, -2.0, and -1.3 K after unloading a compressive stress of 100 MPa applied mainly in the [001], [111], and [011] directions, respectively.

  7. Influence of foreign direct investment on indicators of environmental degradation.

    PubMed

    Solarin, Sakiru Adebola; Al-Mulali, Usama

    2018-06-21

    This study aims to contribute to the existing literature by looking at the influence of foreign direct investment on carbon dioxide emissions, carbon footprint, and ecological footprint. In order to realize the aim of this study, we have utilized the augmented mean group estimator, which is supported by common correlated effect mean group estimator in the analysis for 20 countries. The panel results reveal that foreign direct investment has no effect on environmental degradation indicators. The panel results further reveal that gross domestic product, energy consumption, and urbanization are the main contributors to environmental degradation. The results at country level show that foreign direct investment and urbanization increase pollution in the developing countries while they mitigate pollution in the developed countries. Moreover, gross domestic product and energy consumption increase pollution for both developed and developing countries, which includes China and the USA. The negative impact of foreign direct investment on environmental degradation in the developed countries can be explained on the basis that these countries have strong environmental regulations, which makes it almost impossible for dirty foreign industries to invest therein. From the output of this research, several policy recommendations are enumerated for the investigated countries.

  8. Direction-selective circuits shape noise to ensure a precise population code

    PubMed Central

    Zylberberg, Joel; Cafaro, Jon; Turner, Maxwell H

    2016-01-01

    Summary Neural responses are noisy, and circuit structure can correlate this noise across neurons. Theoretical studies show that noise correlations can have diverse effects on population coding, but these studies rarely explore stimulus dependence of noise correlations. Here, we show that noise correlations in responses of ON-OFF direction-selective retinal ganglion cells are strongly stimulus dependent and we uncover the circuit mechanisms producing this stimulus dependence. A population model based on these mechanistic studies shows that stimulus-dependent noise correlations improve the encoding of motion direction two-fold compared to independent noise. This work demonstrates a mechanism by which a neural circuit effectively shapes its signal and noise in concert, minimizing corruption of signal by noise. Finally, we generalize our findings beyond direction coding in the retina and show that stimulus-dependent correlations will generally enhance information coding in populations of diversely tuned neurons. PMID:26796691

  9. The Relationship between Self-Direction and Wellness among Graduate Students.

    ERIC Educational Resources Information Center

    Owen, T. Ross

    1999-01-01

    Self Directed Learning Readiness Scale and a wellness measure were completed by 185 graduate students. Creativity significantly correlated with wellness; intellectual wellness and spirituality/values correlated with self-directed learning. Self-directed learners appear to feel strongly about creative expression, and creative pursuits have the…

  10. Correlations between the resonant frequency shifts and the thermodynamic quantities for the α-β transition in quartz

    NASA Astrophysics Data System (ADS)

    Lider, M. C.; Yurtseven, H.

    2018-05-01

    The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.

  11. Correlates of healthcare and financial decision making among older adults without dementia.

    PubMed

    Stewart, Christopher C; Yu, Lei; Wilson, Robert S; Bennett, David A; Boyle, Patricia A

    2018-03-22

    Healthcare and financial decision making among older persons has been previously associated with cognition, health and financial literacy, and risk aversion; however, the manner by which these resources support decision making remains unclear, as past studies have not systematically investigated the pathways linking these resources with decision making. In the current study, we use path analysis to examine the direct and indirect pathways linking age, education, cognition, literacy, and risk aversion with decision making. We also decomposed literacy into its subcomponents, conceptual knowledge and numeracy, in order to examine their associations with decision making. Participants were 937 community-based older adults without dementia from the Rush Memory and Aging Project who completed a battery of cognitive tests and assessments of healthcare and financial decision making, health and financial literacy, and risk aversion. Age and education exerted effects on decision making, but nearly two thirds of their effects were indirect, working mostly through cognition and literacy. Cognition exerted a strong direct effect on decision making and a robust indirect effect working primarily through literacy. Literacy also exerted a powerful direct effect on decision making, as did its subcomponents, conceptual knowledge and numeracy. The direct effect of risk aversion was comparatively weak. In addition to cognition, health and financial literacy emerged as independent and primary correlates of healthcare and financial decision making. These findings suggest specific actions that might be taken to optimize healthcare and financial decision making and, by extension, improve health and well-being in advanced age. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Subjective fear, interference by threat, and fear associations independently predict fear-related behavior in children.

    PubMed

    Klein, Anke M; Kleinherenbrink, Annelies V; Simons, Carlijn; de Gier, Erwin; Klein, Steven; Allart, Esther; Bögels, Susan M; Becker, Eni S; Rinck, Mike

    2012-09-01

    Several information-processing models highlight the independent roles of controlled and automatic processes in explaining fearful behavior. Therefore, we investigated whether direct measures of controlled processes and indirect measures of automatic processes predict unique variance components of children's spider fear-related behavior. Seventy-seven children between 8 and 13 years performed an Affective Priming Task (APT) measuring associative bias, a pictorial version of the Emotional Stroop Task (EST) measuring attentional bias, filled out the Spider Anxiety and Disgust Screening for Children (SADS-C) in order to assess self-perceived fear, and took part in a Behavioral Assessment Test (BAT) to measure avoidance of spiders. The SADS-C, EST, and APT did not correlate with each other. Spider fear-related behavior was best explained by SADS-C, APT, and EST together; they explained 51% of the variance in BAT behavior. No children with clinical levels of spider phobia were tested. The direct and the different indirect measures did no correlate with each other. These results indicate that both direct and indirect measures are useful for predicting unique variance components of fear-related behavior in children. The lack of relations between direct and indirect measures may explain why some earlier studies did not find stronger color-naming interference or stronger fear associations in children with high levels of self-reported fear. It also suggests that children with high levels of spider-fearful behavior have different fear-related associations and display higher interference by spider stimuli than children with non-fearful behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities

    NASA Astrophysics Data System (ADS)

    Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca

    2018-06-01

    We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.

  14. Exotic quantum order in low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Girvin, S. M.

    1998-08-01

    Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.

  15. A computer model of molecular arrangement in a n-paraffinic liquid

    NASA Astrophysics Data System (ADS)

    Vacatello, Michele; Avitabile, Gustavo; Corradini, Paolo; Tuzi, Angela

    1980-07-01

    A computer model of a bulk liquid polymer was built to investigate the problem of local order. The model is made of C30 n-alkane molecules; it is not a lattice model, but it allows for a continuous variability of torsion angles and interchain distances, subject to realistic intra- and intermolecular potentials. Experimental x-ray scattering curves and radial distribution functions are well reproduced. Calculated properties like end-to-end distances, distribution of torsion angles, radial distribution functions, and chain direction correlation parameters, all indicate a random coil conformation and no tendency to form bundles of parallel chains.

  16. Measurement and control of the frequency chirp rate of high-order harmonic pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauritsson, J.; Johnsson, P.; Lopez-Martens, R.

    2004-08-01

    We measure the chirp rate of harmonics 13 to 23 in argon by cross correlation with a 12 femtosecond probe pulse. Under low ionization conditions, we directly measure the negative chirp due to the atomic dipole phase, and show that an additional chirp on the pump pulse is transferred to the qth harmonic as q times the fundamental chirp. Our results are in accord with simulations using the experimentally measured 815 nm pump and probe pulses. The ability to measure and manipulate the harmonic chirp rate is essential for the characterization and optimization of attosecond pulse trains.

  17. Second-order nonlinear optical microscopy of spider silk

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.

    2017-06-01

    Asymmetric β-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein β-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the β-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the β-sheet takes in spider silk.

  18. Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.

    PubMed

    Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R

    2004-06-07

    This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction. Copyright 2004 Lippincott Williams and Wilkins

  19. Mott Electrons in an Artificial Graphenelike Crystal of Rare-Earth Nickelate S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middey, Srimanta; Meyers, Derek J.; Doennig, D.

    2016-02-05

    Deterministic control over the periodic geometrical arrangement of the constituent atoms is the backbone of the material properties, which, along with the interactions, define the electronic and magnetic ground state. Following this notion, a bilayer of a prototypical rare-earth nickelate, NdNiO3, combined with a dielectric spacer, LaAlO3, has been layered along the pseudocubic [111] direction. The resulting artificial graphenelike Mott crystal with magnetic 3d electrons has antiferromagnetic correlations. In addition, a combination of resonant X-ray linear dichroism measurements and ab initio calculations reveal the presence of an ordered orbital pattern, which is unattainable in either bulk nickelates or nickelate basedmore » heterostructures grown along the [001] direction. These findings highlight another promising venue towards designing new quantum many-body states by virtue of geometrical engineering.« less

  20. High-temperature charge density wave correlations in La 1.875Ba 0.125CuO 4 without spin–charge locking

    DOE PAGES

    Miao, H.; Lorenzana, J.; Seibold, G.; ...

    2017-11-07

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less

  1. High-temperature charge density wave correlations in La 1.875Ba 0.125CuO 4 without spin–charge locking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, H.; Lorenzana, J.; Seibold, G.

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less

  2. Correlates of tuberculosis risk: predictive biomarkers for progression to active tuberculosis

    PubMed Central

    Petruccioli, Elisa; Scriba, Thomas J.; Petrone, Linda; Hatherill, Mark; Cirillo, Daniela M.; Joosten, Simone A.; Ottenhoff, Tom H.; Denkinger, Claudia M.; Goletti, Delia

    2016-01-01

    New approaches to control the spread of tuberculosis (TB) are needed, including tools to predict development of active TB from latent TB infection (LTBI). Recent studies have described potential correlates of risk, in order to inform the development of prognostic tests for TB disease progression. These efforts have included unbiased approaches employing “omics” technologies, as well as more directed, hypothesis-driven approaches assessing a small set or even individual selected markers as candidate correlates of TB risk. Unbiased high-throughput screening of blood RNAseq profiles identified signatures of active TB risk in individuals with LTBI, ≥1 year before diagnosis. A recent infant vaccination study identified enhanced expression of T-cell activation markers as a correlate of risk prior to developing TB; conversely, high levels of Ag85A antibodies and high frequencies of interferon (IFN)-γ specific T-cells were associated with reduced risk of disease. Others have described CD27−IFN-γ+CD4+ T-cells as possibly predictive markers of TB disease. T-cell responses to TB latency antigens, including heparin-binding haemagglutinin and DosR-regulon-encoded antigens have also been correlated with protection. Further studies are needed to determine whether correlates of risk can be used to prevent active TB through targeted prophylactic treatment, or to allow targeted enrolment into efficacy trials of new TB vaccines and therapeutic drugs. PMID:27836953

  3. An Efficient Local Correlation Matrix Decomposition Approach for the Localization Implementation of Ensemble-Based Assimilation Methods

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqin; Tian, Xiangjun

    2018-04-01

    Ensemble-based data assimilation methods often use the so-called localization scheme to improve the representation of the ensemble background error covariance (Be). Extensive research has been undertaken to reduce the computational cost of these methods by using the localized ensemble samples to localize Be by means of a direct decomposition of the local correlation matrix C. However, the computational costs of the direct decomposition of the local correlation matrix C are still extremely high due to its high dimension. In this paper, we propose an efficient local correlation matrix decomposition approach based on the concept of alternating directions. This approach is intended to avoid direct decomposition of the correlation matrix. Instead, we first decompose the correlation matrix into 1-D correlation matrices in the three coordinate directions, then construct their empirical orthogonal function decomposition at low resolution. This procedure is followed by the 1-D spline interpolation process to transform the above decompositions to the high-resolution grid. Finally, an efficient correlation matrix decomposition is achieved by computing the very similar Kronecker product. We conducted a series of comparison experiments to illustrate the validity and accuracy of the proposed local correlation matrix decomposition approach. The effectiveness of the proposed correlation matrix decomposition approach and its efficient localization implementation of the nonlinear least-squares four-dimensional variational assimilation are further demonstrated by several groups of numerical experiments based on the Advanced Research Weather Research and Forecasting model.

  4. Development of a second order closure model for computation of turbulent diffusion flames

    NASA Technical Reports Server (NTRS)

    Varma, A. K.; Donaldson, C. D.

    1974-01-01

    A typical eddy box model for the second-order closure of turbulent, multispecies, reacting flows developed. The model structure was quite general and was valid for an arbitrary number of species. For the case of a reaction involving three species, the nine model parameters were determined from equations for nine independent first- and second-order correlations. The model enabled calculation of any higher-order correlation involving mass fractions, temperatures, and reaction rates in terms of first- and second-order correlations. Model predictions for the reaction rate were in very good agreement with exact solutions of the reaction rate equations for a number of assumed flow distributions.

  5. Direct connections assist neurons to detect correlation in small amplitude noises

    PubMed Central

    Bolhasani, E.; Azizi, Y.; Valizadeh, A.

    2013-01-01

    We address a question on the effect of common stochastic inputs on the correlation of the spike trains of two neurons when they are coupled through direct connections. We show that the change in the correlation of small amplitude stochastic inputs can be better detected when the neurons are connected by direct excitatory couplings. Depending on whether intrinsic firing rate of the neurons is identical or slightly different, symmetric or asymmetric connections can increase the sensitivity of the system to the input correlation by changing the mean slope of the correlation transfer function over a given range of input correlation. In either case, there is also an optimum value for synaptic strength which maximizes the sensitivity of the system to the changes in input correlation. PMID:23966940

  6. A second-order modelling of a stably stratified sheared turbulence submitted to a non-vertical shear

    NASA Astrophysics Data System (ADS)

    Bouzaiane, Mounir; Ben Abdallah, Hichem; Lili, Taieb

    2004-09-01

    In this work, the evolution of homogeneous stably stratified turbulence submitted to a non-vertical shear is studied using second-order closure models. Two cases of turbulent flows are considered. Firstly, the case of a purely horizontal shear is considered. In this case, the evolution of the turbulence is studied according to the Richardson number Ri which is varied from 0.2 to 2.0 when other parameters are kept constant. In the second case, two components of shear are present. The turbulence is submitted to a vertical component Sv = partU1/partx3 = S cos(thgr) and a horizontal component Sh = partU1/partx2 = S sin(thgr). In this case, we study the influence of shear inclination angle thgr on the evolution of turbulence. In both cases, we are referred respectively to the recent direct numerical simulations of Jacobitz (2002 J. Turbulence 3 055) and Jacobitz and Sarkar (1998 Phys. Fluids 10 1158-68) which are, to our knowledge, the most recent results of the above-mentioned flows. Transport equations of second-order moments \\overline{u_{i} u_{j}} , \\overline{u_{i} \\rho } , \\overline{\\rho^{2}} are derived. The Shih-Lumley (SL) (Shih T H 1996 Turbulence Transition and Modeling ed H D S Henningson, A V Johansson and P H Alfredsson (Dordrecht: Kluwer); Shih and Lumley J L 1989 27th Aerospace Meeting 9-12 January, Center of Turbulent Research, Nevada) and the Craft-Launder (CL) (Craft T J and Launder B E 1989 Turbulent Shear Flow Stanford University, USA, pp 12-1-12-6 Launder B E 1996 Turbulence Transition and Modeling ed H D S Henningson, A V Johansson and P H Alfredsson (Dordrecht: Kluwer)) second-order models are retained for the pressure-strain correlation phgrij and the pressure-scalar gradient correlation phgrirgr. The corresponding models are also retained for the dissipation egr of the turbulent kinetic energy and an algebraic model is retained for the dissipation egrrgrrgr of the variance of the scalar. A fourth-order Runge-Kutta method is used for the numerical integration of the closed systems of non-linear dimensionless differential equations. A good agreement between the predictions of second-order models and values of direct numerical simulation of Jacobitz has been generally observed for the principal component of anisotropy b12. A qualitative agreement has been observed for the ratios K/E and Krgr/E of the kinetic and potential energies to the total energy E.

  7. Experimental characterization of turbulent inflow noise on a full-scale wind turbine

    NASA Astrophysics Data System (ADS)

    Buck, Steven; Oerlemans, Stefan; Palo, Scott

    2016-12-01

    An extensive experimental campaign was conducted on a 108-m diameter 2.3-MW wind turbine in order to assess the effect of inflow turbulence conditions on wind turbine acoustics. Over 50 h of continuous acoustic data was acquired at power-generating wind speeds. Twelve precision microphones were used, arranged in a one rotor radius ring about the turbine tower in order to assess the directivity of the noise emission. Turbine operational and atmospheric conditions were gathered simultaneously with acoustics measurements. The testing and analysis constitute perhaps the most thorough experimental characterization of turbulent inflow noise from a wind turbine to date. Turbulence intensities typically varied between 10 percent and 35 percent, and wind speeds covered most of the operational range of the wind turbine, from cut-on to well above its rated power. A method was developed for using blade-mounted accelerometers for determining the turbulence conditions in the immediate vicinity of the blades, which are the primary turbulence noise generating bodies. The method uses the blades' vibrational energy within a specified frequency range to estimate the overall turbulence conditions by assuming a von Kármán turbulence spectrum. Using this method, a clear positive correlation is shown between turbulence intensity and noise levels. The turbulence noise is dominant at low frequencies and is primarily observed in the upwind and downwind directions. Low frequency noise increases by as much as 6 dB for the range of turbulence conditions measured. Comparisons are made between the measured turbine noise directivity and theory using a simple acoustic model of the turbine as three point-sources. Strong agreement is found between the theoretical leading edge noise directivity model and the measured low frequency noise directivity.

  8. Event plane dependence of the flow modulated background in dihadron and jet-hadron correlations in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Nattrass, Christine; Todoroki, Takahito

    2018-05-01

    Dihadron and jet-hadron correlationsare commonly used in relativistic heavy ion collisions to study the soft component of jets in a quark gluon plasma. There is a large correlated background which is described by the Fourier decomposition of the azimuthal anisotropy where vn is the n th order coefficient. The path length dependence of partonic energy loss can be studied by varying the angle of the high momentum trigger particle or jet relative to a reconstructed event plane. This modifies the shape of the background correlated with that event plane. The original derivation of the shape of this background only considered correlations relative to the second-order event plane, which is correlated to the initial participant plane. We derive the shape of this background for an event plane at an arbitrary order. There is a phase shift in the case of jets restricted to asymmetric regions relative to the event plane. For realistic correlations between event planes, the correlation between the second- and fourth-order event planes leads to a much smaller effect than the finite event plane resolution at each order. Finally, we assess the status of the rapidity even v1 term due to flow, which has been measured to be comparable to v2 and v3 terms.

  9. Consistent simulation of direct-photon production in hadron collisions including associated two-jet production

    NASA Astrophysics Data System (ADS)

    Odaka, Shigeru; Kurihara, Yoshimasa

    2016-05-01

    We have developed an event generator for direct-photon production in hadron collisions, including associated 2-jet production in the framework of the GR@PPA event generator. The event generator consistently combines γ + 2-jet production processes with the lowest-order γ + jet and photon-radiation (fragmentation) processes from quantum chromodynamics (QCD) 2-jet production using a subtraction method. The generated events can be fed to general-purpose event generators to facilitate the addition of hadronization and decay simulations. Using the obtained event information, we can simulate photon isolation and hadron-jet reconstruction at the particle (hadron) level. The simulation reasonably reproduces measurement data obtained at the large hadron collider (LHC) concerning not only the inclusive photon spectrum, but also the correlation between the photon and jet. The simulation implies that the contribution of the γ + 2-jet is very large, especially in low photon-pT ( ≲ 50 GeV) regions. Discrepancies observed at low pT, although marginal, may indicate the necessity for the consideration of further higher-order processes. Unambiguous particle-level definition of the photon-isolation condition for the signal events is desired to be given explicitly in future measurements.

  10. Correlation between polymer architecture, mesoscale structure and photovoltaic performance in side-chain-modified PAE-PAV:fullerene bulk-heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Rathgeber, S.; Kuehnlenz, F.; Hoppe, H.; Egbe, D. A. M.; Tuerk, S.; Perlich, J.; Gehrke, R.

    2012-02-01

    A poly(arylene-ethynylene)-alt-poly(arylene-vinylene) statistical copolymer carrying linear and branched alkoxy side chains along the conjugated backbone in a random manner, yields, compared to its regular substituted counterparts, an improved performance in polymer:fullerene bulk-heterojunction solar cells. Results obtained from GiWAXS experiments show that the improved performance of the statistical copolymer may be attributed to the following structural characteristics: 1) Well, ordered stacked domains that promote backbone planarization and thus improve the ππ-overlap. 2) Partly face-on alignment of domains relative to the electrodes for an improved active layer electrode charge transfer. Branched side chains seem to promote face-on domain orientation. Most likely they can minimize their unfavorable contact with the interface by just bringing the CH3 groups of the branches into direct contact with the surface so that favorable phenylene-substrate interaction can promote face-on orientation. 3) A more isotropic domain orientation throughout the active layer to ensure that the backbone alignment direction has components perpendicular and parallel to the electrodes in order to compromise between light absorption and efficient intra-chain charge transport.

  11. Seasonal and Regional Variability in North Pacific Upper-Ocean Turbulence

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Creedon, R.; Cronin, M. F.

    2016-02-01

    Turbulent diffusion at marine mixed layer base (MLB) plays a fundamental role in the transport of energy between the upper and abyssal ocean. Recent investigations of North Pacific mooring data at Ocean Climate Stations (OCS) Papa (50.1N,144.9W) and KEO (32.3N,144.6E) suggest seasonal and regional variability in thermal diffusivity (κT). In this investigation, it is hypothesized that these observed differences in κT are directly associated with synoptic variability in net surface heat flux (Q0), surface wind stress (τ), mixed layer depth (h), and density stratification at MLB (∂zσ|-h). To test this hypothesis, daily-averaged time series of κT are regressed against those of Q0, τ, h, and ∂zσ|-h at both Papa and KEO over a six year time period (2007-2013). Seasonality of each time series is removed before regression to capture synoptic variability of each variable. Preliminary results of the regression analysis suggest statistically significant correlations between κT and all forcing parameters at both mooring sites. These correlations have well-determined orders of magnitude and signs consistent with the hypothesis. As a result, differences in κT between Papa and KEO may be recast in terms of differences in their correlation coefficients. In order to continue investigation of these parameters and their effects on mean seasonal differences between the two regions, these results will be compared with turbulence predicted by the K-Profile Parameterization ocean turbulence model.

  12. ERP Energy and Cognitive Activity Correlates

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael Jay; Vendemia, Jennifer M. C.

    2014-03-01

    We propose a novel analysis approach for high-density event related scalp potential (ERP) data where the integrated channel-power is used to attain an energy density functional state for channel-clusters of neurophysiological significance. The method is applied to data recorded during a two-stimulus, directed lie paradigm and shows that deceptive responses emit between 8% and 10% less power. A time course analysis of these cognitive activity measures over posterior and anterior regions of the cortex suggests that neocortical interactions, reflecting the differing workload demands during executive and semantic processes, take about 50% longer for the case of deception. These results suggest that the proposed method may provide a useful tool for the analysis of ERP correlates of high-order cognitive functioning. We also report on a possible equivalence between the energy functional distribution and near-infrared signatures that have been measured with other modalities.

  13. A versatile atomic force microscope integrated with a scanning electron microscope.

    PubMed

    Kreith, J; Strunz, T; Fantner, E J; Fantner, G E; Cordill, M J

    2017-05-01

    A versatile atomic force microscope (AFM), which can be installed in a scanning electron microscope (SEM), is introduced. The flexible design of the instrument enables correlated analysis for different experimental configurations, such as AFM imaging directly after nanoindentation in vacuum. In order to demonstrate the capabilities of the specially designed AFM installed inside a SEM, slip steps emanating around nanoindents in single crystalline brass were examined. This example showcases how the combination of AFM and SEM imaging can be utilized for quantitative dislocation analysis through the measurement of the slip step heights without the hindrance of oxide formation. Finally, an in situ nanoindentation technique is introduced, illustrating the use of AFM imaging during indentation experiments to examine plastic deformation occurring under the indenter tip. The mechanical indentation data are correlated to the SEM and AFM images to estimate the number of dislocations emitted to the surface.

  14. Dynamics of a molecular glass former: Energy landscapes for diffusion in ortho-terphenyl

    NASA Astrophysics Data System (ADS)

    Niblett, S. P.; de Souza, V. K.; Stevenson, J. D.; Wales, D. J.

    2016-07-01

    Relaxation times and transport processes of many glass-forming supercooled liquids exhibit a super-Arrhenius temperature dependence. We examine this phenomenon by computer simulation of the Lewis-Wahnström model for ortho-terphenyl. We propose a microscopic definition for a single-molecule cage-breaking transition and show that, when correlation behaviour is taken into account, these rearrangements are sufficient to reproduce the correct translational diffusion constants over an intermediate temperature range in the supercooled regime. We show that super-Arrhenius behaviour can be attributed to increasing negative correlation in particle movement at lower temperatures and relate this to the cage-breaking description. Finally, we sample the potential energy landscape of the model and show that it displays hierarchical ordering. Substructures in the landscape, which may correspond to metabasins, have boundaries defined by cage-breaking transitions. The cage-breaking formulation provides a direct link between the potential energy landscape and macroscopic diffusion behaviour.

  15. The development of neural correlates for memory formation

    PubMed Central

    Ofen, Noa

    2012-01-01

    A growing body of literature considers the development of episodic memory systems in the brain; the majority are neuroimaging studies conducted during memory encoding in order to explore developmental trajectories in memory formation. This review considers evidence from behavioral studies of memory development, neural correlates of memory formation in adults, and structural brain development, all of which form the foundation of a developmental cognitive neuroscience approach to memory development. I then aim to integrate the current evidence from developmental functional neuroimaging studies of memory formation with respect to three hypotheses. First, memory development reflects the development in the use of memory strategies, linked to prefrontal cortex. Second, developmental effects within the medial temporal lobes are more complex, and correspond to current notions about the nature in which the MTL support the formation of memory. Third, neurocognitive changes in content representation influence memory. Open issues and current directions are discussed. PMID:22414608

  16. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    NASA Astrophysics Data System (ADS)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  17. Reynolds number invariance of the structure inclination angle in wall turbulence.

    PubMed

    Marusic, Ivan; Heuer, Weston D C

    2007-09-14

    Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.

  18. Lung Cancer Mortality and Radon Concentration in a Chronically Exposed Neighborhood in Chihuahua, Mexico: A Geospatial Analysis

    PubMed Central

    Hinojosa de la Garza, Octavio R.; Sanín, Luz H.; Montero Cabrera, María Elena; Serrano Ramirez, Korina Ivette; Martínez Meyer, Enrique; Reyes Cortés, Manuel

    2014-01-01

    This study correlated lung cancer (LC) mortality with statistical data obtained from government public databases. In order to asses a relationship between LC deaths and radon accumulation in dwellings, indoor radon concentrations were measured with passive detectors randomly distributed in Chihuahua City. Kriging (K) and Inverse-Distance Weighting (IDW) spatial interpolations were carried out. Deaths were georeferenced and Moran's I correlation coefficients were calculated. The mean values (over n = 171) of the interpolation of radon concentrations of deceased's dwellings were 247.8 and 217.1 Bq/m3, for K and IDW, respectively. Through the Moran's I values obtained, correspondingly equal to 0.56 and 0.61, it was evident that LC mortality was directly associated with locations with high levels of radon, considering a stable population for more than 25 years, suggesting spatial clustering of LC deaths due to indoor radon concentrations. PMID:25165752

  19. CFD Assessment of Aerodynamic Degradation of a Subsonic Transport Due to Airframe Damage

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar Z.; Atkins, Harold L.; Viken, Sally A.; Morrison, Joseph H.

    2010-01-01

    A computational study is presented to assess the utility of two NASA unstructured Navier-Stokes flow solvers for capturing the degradation in static stability and aerodynamic performance of a NASA General Transport Model (GTM) due to airframe damage. The approach is to correlate computational results with a substantial subset of experimental data for the GTM undergoing progressive losses to the wing, vertical tail, and horizontal tail components. The ultimate goal is to advance the probability of inserting computational data into the creation of advanced flight simulation models of damaged subsonic aircraft in order to improve pilot training. Results presented in this paper demonstrate good correlations with slope-derived quantities, such as pitch static margin and static directional stability, and incremental rolling moment due to wing damage. This study further demonstrates that high fidelity Navier-Stokes flow solvers could augment flight simulation models with additional aerodynamic data for various airframe damage scenarios.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakh, Dmitry I

    While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locallymore » supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).« less

  1. An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications.

    PubMed

    Duncan, Candice M; Brusseau, Mark L

    2018-03-01

    The majority of prior phytoscreening applications have employed the method as a tool to qualitatively determine the presence of contamination in the subsurface. Although qualitative data is quite useful, this study explores the potential for using phytoscreening quantitatively. The existence of site-specific and non-site-specific (master) correlations between VOC concentrations in tree tissue and groundwater is investigated using data collected from several phytoscreening studies. The aggregated data comprise 100 measurements collected from 12 sites that span a wide range of site conditions. Significant site-specific correlations are observed between tetrachloroethene (PCE) and trichloroethene (TCE) concentrations measured for tree tissue and those measured in groundwater for three sites. A moderately significant correlation (r 2 =0.56) exists for the entire aggregate data set. Parsing the data by groundwater depth produced a highly significant correlation (r 2 =0.88) for sites with shallow (<4m) groundwater. Such a significant correlation for data collected by different investigators from multiple sites with a wide range of tree species and subsurface conditions indicates that groundwater concentration is the predominant factor mediating tree-tissue concentrations for these sites. This may be a result of trees likely directly tapping groundwater for these shallow groundwater conditions. This master correlation may provide reasonable order-of-magnitude estimates of VOC concentrations in groundwater for such sites, thereby allowing the use of phytoscreening in a more quantitative mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Direct Estimation of Correlation as a Measure of Association Strength Using Multidimensional Item Response Models

    ERIC Educational Resources Information Center

    Wang, Wen-Chung

    2004-01-01

    The Pearson correlation is used to depict effect sizes in the context of item response theory. Amultidimensional Rasch model is used to directly estimate the correlation between latent traits. Monte Carlo simulations were conducted to investigate whether the population correlation could be accurately estimated and whether the bootstrap method…

  3. Chemiomics: network reconstruction and kinetics of port wine aging.

    PubMed

    Monforte, Ana Rita; Jacobson, Dan; Silva Ferreira, A C

    2015-03-11

    Network reconstruction (NR) has proven to be useful in the detection and visualization of relationships among the compounds present in a Port wine aging data set. This view of the data provides a considerable amount of information with which to understand the kinetic contexts of the molecules represented by peaks in each chromatogram. The aim of this study was to use NR together with the determination of kinetic parameters to extract more information about the mechanisms involved in Port wine aging. The volatile compounds present in samples of Port wines spanning 128 years in age were measured with the use of GC-MS. After chromatogram alignment, a peak matrix was created, and all peak vectors were compared to one another to determine their Pearson correlations over time. A correlation network was created and filtered on the basis of the resulting correlation values. Some nodes in the network were further studied in experiments on Port wines stored under different conditions of oxygen and temperature in order to determine their kinetic parameters. The resulting network can be divided into three main branches. The first branch is related to compounds that do not directly correlate to age, the second branch contains compounds affected by temperature, and the third branch contains compounds associated with oxygen. Compounds clustered in the same branch of the network have similar expression patterns over time as well as the same kinetic order, thus are likely to be dependent on the same technological parameters. Network construction and visualization provides more information with which to understand the probable kinetic contexts of the molecules represented by peaks in each chromatogram. The approach described here is a powerful tool for the study of mechanisms and kinetics in complex systems and should aid in the understanding and monitoring of wine quality.

  4. Fast Electron Correlation Methods for Molecular Clusters without Basis Set Superposition Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Muneaki; Hirata, So; Valiev, Marat

    2008-02-19

    Two critical extensions to our fast, accurate, and easy-to-implement binary or ternary interaction method for weakly-interacting molecular clusters [Hirata et al. Mol. Phys. 103, 2255 (2005)] have been proposed, implemented, and applied to water hexamers, hydrogen fluoride chains and rings, and neutral and zwitterionic glycine–water clusters with an excellent result for an initial performance assessment. Our original method included up to two- or three-body Coulomb, exchange, and correlation energies exactly and higher-order Coulomb energies in the dipole–dipole approximation. In this work, the dipole moments are replaced by atom-centered point charges determined so that they reproduce the electrostatic potentials of themore » cluster subunits as closely as possible and also self-consistently with one another in the cluster environment. They have been shown to lead to dramatic improvement in the description of short-range electrostatic potentials not only of large, charge-separated subunits like zwitterionic glycine but also of small subunits. Furthermore, basis set superposition errors (BSSE) known to plague direct evaluation of weak interactions have been eliminated by com-bining the Valiron–Mayer function counterpoise (VMFC) correction with our binary or ternary interaction method in an economical fashion (quadratic scaling n2 with respect to the number of subunits n when n is small and linear scaling when n is large). A new variant of VMFC has also been proposed in which three-body and all higher-order Coulomb effects on BSSE are estimated approximately. The BSSE-corrected ternary interaction method with atom-centered point charges reproduces the VMFC-corrected results of conventional electron correlation calculations within 0.1 kcal/mol. The proposed method is significantly more accurate and also efficient than conventional correlation methods uncorrected of BSSE.« less

  5. Sample support and resistivity imaging interpretation

    NASA Astrophysics Data System (ADS)

    Bentley, L. R.; Gharibi, M.

    2003-04-01

    Three-D Electrical Resistivity Imaging (ERI) is a powerful technique that can be used to improve site characterization. In order to integrate ERI with other site characterization measurements such as soil and water chemistry, it is necessary to understand the sample support of various data. We have studied a decommissioned sour gas processing plant which has experienced releases of glycol and amine. Ammonium and acetic acid are degradation products that cause elevated electrical conductivity (EC) in groundwater and soils.The site is underlain by glacial till that is fractured and has thin sand lenses. 3-D ERI inversion results, direct push tool EC and core EC from the same location are well correlated. However, groundwater EC from piezometer installations are poorly correlated with ERI EC. We hypothesize that the ERI, direct push and core EC are mainly meausuring relatively immobile pore water EC in the fine grain matrix. Piezometer water is derived from mobile groundwater that travels in preferred flow paths such as fractures and higher permeability sand lenses. Due to dewatering and other remediation efforts, the mobile groundwater can have a different chemistry, concentration and EC than the immobile pore water. Consequently, the sample support is different for the groundwater samples and the difference explains the poor correlation between ERI EC and groundwater sample EC. In this particular case, we have the potential to monitor the chemical evolution of the source areas, but cannot use ERI to monitor the chemical evolution of mobile groundwater.

  6. Self-Organized Lattices of Nonlinear Optochemical Waves in Photopolymerizable Fluids: The Spontaneous Emergence of 3-D Order in a Weakly Correlated System.

    PubMed

    Ponte, Matthew R; Hudson, Alexander D; Saravanamuttu, Kalaichelvi

    2018-03-01

    Many of the extraordinary three-dimensional architectures that pattern our physical world emerge from complex nonlinear systems or dynamic populations whose individual constituents are only weakly correlated to each other. Shoals of fish, murmuration behaviors in birds, congestion patterns in traffic, and even networks of social conventions are examples of spontaneous pattern formation, which cannot be predicted from the properties of individual elements alone. Pattern formation at a different scale has been observed or predicted in weakly correlated systems including superconductors, atomic gases near Bose Einstein condensation, and incoherent optical fields. Understanding pattern formation in nonlinear weakly correlated systems, which are often unified through mathematical expression, could pave intelligent self-organizing pathways to functional materials, architectures, and computing technologies. However, it is experimentally difficult to directly visualize the nonlinear dynamics of pattern formation in most populations-especially in three dimensions. Here, we describe the collective behavior of large populations of nonlinear optochemical waves, which are poorly correlated in both space and time. The optochemical waves-microscopic filaments of white light entrapped within polymer channels-originate from the modulation instability of incandescent light traveling in photopolymerizable fluids. By tracing the three-dimensional distribution of optical intensity in the nascent polymerizing system, we find that populations of randomly distributed, optochemical waves synergistically and collectively shift in space to form highly ordered lattices of specific symmetries. These, to our knowledge, are the first three-dimensionally periodic structures to emerge from a system of weakly correlated waves. Their spontaneous formation in an incoherent and effectively chaotic field is counterintuitive, but the apparent contradiction of known behaviors of light including the laws of optical interference can be explained through the soliton-like interactions of optochemical waves with nearest neighbors. Critically, this work casts fundamentally new insight into the collective behaviors of poorly correlated nonlinear waves in higher dimensions and provides a rare, accessible platform for further experimental studies of these previously unexplored behaviors. Furthermore, it defines a self-organization paradigm that, unlike conventional counterparts, could generate polymer microstructures with symmetries spanning all the Bravais lattices.

  7. Elastic collapse in disordered isostatic networks

    NASA Astrophysics Data System (ADS)

    Moukarzel, C. F.

    2012-02-01

    Isostatic networks are minimally rigid and therefore have, generically, nonzero elastic moduli. Regular isostatic networks have finite moduli in the limit of large sizes. However, numerical simulations show that all elastic moduli of geometrically disordered isostatic networks go to zero with system size. This holds true for positional as well as for topological disorder. In most cases, elastic moduli decrease as inverse power laws of system size. On directed isostatic networks, however, of which the square and cubic lattices are particular cases, the decrease of the moduli is exponential with size. For these, the observed elastic weakening can be quantitatively described in terms of the multiplicative growth of stresses with system size, giving rise to bulk and shear moduli of order e-bL. The case of sphere packings, which only accept compressive contact forces, is considered separately. It is argued that these have a finite bulk modulus because of specific correlations in contact disorder, introduced by the constraint of compressivity. We discuss why their shear modulus, nevertheless, is again zero for large sizes. A quantitative model is proposed that describes the numerically measured shear modulus, both as a function of the loading angle and system size. In all cases, if a density p>0 of overconstraints is present, as when a packing is deformed by compression or when a glass is outside its isostatic composition window, all asymptotic moduli become finite. For square networks with periodic boundary conditions, these are of order \\sqrt{p} . For directed networks, elastic moduli are of order e-c/p, indicating the existence of an "isostatic length scale" of order 1/p.

  8. Correlation of visual performance with quality of life and intraocular aberrometric profile in patients implanted with rotationally asymmetric multifocal IOLs.

    PubMed

    Ramón, María L; Piñero, David P; Pérez-Cambrodí, Rafael J

    2012-02-01

    To examine the visual performance of a rotationally asymmetric multifocal intraocular lens (IOL) by correlating the defocus curve of the IOL-implanted eye with the intraocular aberrometric profile and impact on the quality of life. A prospective, consecutive, case series study including 26 eyes from 13 patients aged between 50 and 83 years (mean: 65.54±7.59 years) was conducted. All patients underwent bilateral cataract surgery with implantation of a rotationally asymmetric multifocal IOL (Lentis Mplus LS-312 MF30, Oculentis GmbH). Distance and near visual acuity outcomes, intraocular aberrations, defocus curve, and quality of life (assessed using the National Eye Institute Visual Functioning Questionnaire-25) were evaluated postoperatively (mean follow-up: 6.42±2.24 months). A significant improvement in distance visual acuity was found postoperatively (P<.01). Mean postoperative logMAR distance-corrected near visual acuity was 0.19±0.12 (∼20/30). Corrected distance visual acuity and near visual acuity of 20/20 or better were achieved by 30.8% and 7.7% of eyes, respectively. Of all eyes, 96.2% had a postoperative addition between 0 and 1.00 diopter (D). The defocus curve showed two peaks of maximum visual acuity (0 and 3.00 D of defocus), with an acceptable range of intermediate vision. LogMAR visual acuity corresponding to near defocus was directly correlated with some higher order intraocular aberrations (r⩾0.44, P⩽.04). Some difficulties evaluated with the quality of life test correlated directly with near and intermediate visual acuity (r⩾0.50, P⩽.01). The Lentis Mplus multifocal IOL provides good distance, intermediate, and near visual outcomes; however, the induced intraocular aberrometric profile may limit the potential visual benefit. Copyright 2012, SLACK Incorporated.

  9. Ensemble and single particle fluorimetric techniques in concerted action to study the diffusion and aggregation of the glycine receptor α3 isoforms in the cell plasma membrane.

    PubMed

    Notelaers, Kristof; Smisdom, Nick; Rocha, Susana; Janssen, Daniel; Meier, Jochen C; Rigo, Jean-Michel; Hofkens, Johan; Ameloot, Marcel

    2012-12-01

    The spatio-temporal membrane behavior of glycine receptors (GlyRs) is known to be of influence on receptor homeostasis and functionality. In this work, an elaborate fluorimetric strategy was applied to study the GlyR α3K and L isoforms. Previously established differential clustering, desensitization and synaptic localization of these isoforms imply that membrane behavior is crucial in determining GlyR α3 physiology. Therefore diffusion and aggregation of homomeric α3 isoform-containing GlyRs were studied in HEK 293 cells. A unique combination of multiple diffraction-limited ensemble average methods and subdiffraction single particle techniques was used in order to achieve an integrated view of receptor properties. Static measurements of aggregation were performed with image correlation spectroscopy (ICS) and, single particle based, direct stochastic optical reconstruction microscopy (dSTORM). Receptor diffusion was measured by means of raster image correlation spectroscopy (RICS), temporal image correlation spectroscopy (TICS), fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT). The results show a significant difference in diffusion coefficient and cluster size between the isoforms. This reveals a positive correlation between desensitization and diffusion and disproves the notion that receptor aggregation is a universal mechanism for accelerated desensitization. The difference in diffusion coefficient between the clustering GlyR α3L and the non-clustering GlyR α3K cannot be explained by normal diffusion. SPT measurements indicate that the α3L receptors undergo transient trapping and directed motion, while the GlyR α3K displays mild hindered diffusion. These findings are suggestive of differential molecular interaction of the isoforms after incorporation in the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Polyakov loop correlator in perturbation theory

    DOE PAGES

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter; ...

    2017-07-25

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  11. Polyakov loop correlator in perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  12. Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland)

    NASA Astrophysics Data System (ADS)

    Puc, Małgorzata

    2012-03-01

    Birch pollen is one of the main causes of allergy during spring and early summer in northern and central Europe. The aim of this study was to create a forecast model that can accurately predict daily average concentrations of Betula sp. pollen grains in the atmosphere of Szczecin, Poland. In order to achieve this, a novel data analysis technique—artificial neural networks (ANN)—was used. Sampling was carried out using a volumetric spore trap of the Hirst design in Szczecin during 2003-2009. Spearman's rank correlation analysis revealed that humidity had a strong negative correlation with Betula pollen concentrations. Significant positive correlations were observed for maximum temperature, average temperature, minimum temperature and precipitation. The ANN resulted in multilayer perceptrons 366 8: 2928-7-1:1, time series prediction was of quite high accuracy (SD Ratio between 0.3 and 0.5, R > 0.85). Direct comparison of the observed and calculated values confirmed good performance of the model and its ability to recreate most of the variation.

  13. Application of the minimum correlation technique to the correction of the magnetic field measured by magnetometers on spacecraft

    NASA Technical Reports Server (NTRS)

    Mariani, F.

    1979-01-01

    Some aspects of the problem of obtaining precise, absolute determination of the vector of low magnetic fields existing in the interplanetary medium are addressed. In the case of a real S/C, there is always the possibility of a spurious field which includes the spacecraft residual field and/or possible field from the sensors, due to both electronic drifts or changes of the magnetic properties of the sensor core. These latter effects may occur during storage of the sensors prior to launching and/or in-flight. The reliability is demonstrated for a method which postulates that there should be no correlation between changes in measured field magnitude and changes in the measured inclination of the field with respect to any one of three fixed Cartesian component directions. Application of this minimum correlation technique to data from IMP-8 and Helios 1-2 shows it is appropriate for determination of the zero offset corrections of triaxial magnetometers. In general, a number of the order of 1000 consecutive data points is sufficient for a good determination.

  14. Relation of trihalomethane-formation potential to water-quality and physical characteristics of small water-supply lakes, eastern Kansas

    USGS Publications Warehouse

    Pope, L.M.; Arruda, J.A.; Fromm, C.H.

    1988-01-01

    The formation of carcinogenic trihalomethanes during the treatment of public surface water supplies has become a potentially serious problem. The U. S. Geological Survey, in cooperation with the Kansas Department of Health and Environment , investigated the potential for trihalomethane formation in water from 15 small, public water supply lakes in eastern Kansas from April 1984 through April 1986 in order to define the principal factors that affect or control the potential for trihalomethane formation during the water treatment process. Relations of mean concentrations of trihalomethane-formation potential to selected water quality and lake and watershed physical characteristics were investigated using correlation and regression analysis. Statistically significant, direct relations were developed between trihalomethanes produced in unfiltered and filtered lake water and mean concentrations of total and dissolved organic carbon. Correlation coefficients for these relations ranged from 0.86 to 0.93. Mean values of maximum depth of lake were shown to have statistically significant inverse relations to mean concentrations of trihalomethane-formation potential and total and dissolved organic carbon. Correlation coefficients for these relations ranged from -0.76 to -0.81. (USGS)

  15. Relation between perception of vertical axis rotation and vestibulo-ocular reflex symmetry

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Benolken, Martha S.

    1991-01-01

    Subjects seated in a vertical axis rotation chair controlled their rotational velocity by adjusting a potentiometer. Their goal was to null out pseudorandom rotational perturbations in order to remain perceptually stationary. Most subjects showed a slow linear drift of velocity (a constant acceleration) to one side when they were deprived of an earth-fixed visual reference. The amplitude and direction of this drift can be considered a measure of a static bias in the subject's perception of rotation. The presence of a perceptual bias is consistent with a small, constant imbalance of vestibular function which could be of either central or peripheral origin. Deviations from perfect vestibulocular reflex (VOR) symmetry are also assumed to be related to imbalances in either peripheral or central vestibular function. Researchers looked for correlations between perceptual bias and various measures of vestibular reflex symmetry that might suggest a common source for both reflective and perceptual imbalances. No correlations were found. Measurement errors could not account for these results since repeated tests on the same subjects of both perceptual bias and VOR symmetry were well correlated.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benic, Sanjin; Fukushima, Kenji; Garcia-Montero, Oscar

    Here, we compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations inmore » the gluon saturation regime of QCD. We demonstrate that k ⊥ and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small x. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges.« less

  17. Modeling the chemistry of the dense interstellar clouds. I - Observational constraints for the chemistry

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Huntress, W. T., Jr.; Prasad, S. S.

    1990-01-01

    A search for correlations arising from molecular line data is made in order to place constraints on the chemical models of interstellar clouds. At 10 to the 21st H2/sq cm, N(CO) for dark clouds is a factor of six greater than the value for diffuse clouds. This implies that the strength of the UV radiation field where CO shields itself from dissociation is about one-half the strength of the average Galactic field. The dark cloud data indicate that the abundance of CO continues to increase with A(V) for directions with A(V) of 4 mag or less, although less steeply with N(H2) than for diffuse clouds. For H2CO, a quadratic relationship is obtained in plots versus H2 column density. The data suggest a possible turnover at the highest values for A(V). NH3 shows no correlation with H2, C(O-18), HC3N, or HC5N; a strong correlation is found between HC5N and HC3N, indicating a chemical link between the cyanopolyynes.

  18. Measurement of the correlation between the polar angles of leptons from top quark decays in the helicity basis at √s=7 TeV using the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-01-13

    A measurement of the correlations between the polar angles of leptons from the decay of pair-produced t andmore » $$\\bar{t}$$ quarks in the helicity basis is reported, using proton-proton collision data collected by the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 4.6 fb -1 at a center-of-mass energy of √s=7 TeV collected during 2011. Candidate events are selected in the dilepton topology with large missing transverse momentum and at least two jets. The angles θ1 and θ2 between the charged leptons and the direction of motion of the parent quarks in the t$$\\bar{t}$$ rest frame are sensitive to the spin information, and the distribution of cosθ 1•cosθ 2 is sensitive to the spin correlation between the t and $$\\bar{t}$$ quarks. The distribution is unfolded to parton level and compared to the next-to-leading order prediction. A good agreement is observed.« less

  19. Useful surface parameters for biomaterial discrimination.

    PubMed

    Etxeberria, Marina; Escuin, Tomas; Vinas, Miquel; Ascaso, Carlos

    2015-01-01

    Topographical features of biomaterials' surfaces are determinant when addressing their application site. Unfortunately up to date there has not been an agreement regarding which surface parameters are more representative in discriminating between materials. Discs (n = 16) of different currently used materials for implant prostheses fabrication, such as cast cobalt-chrome, direct laser metal soldered (DLMS) cobalt-chrome, titanium grade V, zirconia (Y-TZP), E-glass fiber-reinforced composite and polyetheretherketone (PEEK) were manufactured. Nanoscale topographical surface roughness parameters generated by atomic force microscopy (AFM), microscale surface roughness parameters obtained by white light interferometry (WLI) and water angle values obtained by the sessile-water-drop method were analyzed in order to assess which parameter provides the best optimum surface characterization method. Correlations between nanoroughness, microroughness, and hydrophobicity data were performed to achieve the best parameters giving the highest discriminatory power. A subset of six parameters for surface characterization were proposed. AFM and WLI techniques gave complementary information. Wettability did not correlate with any of the nanoroughness parameters while it however showed a weak correlation with microroughness parameters. © Wiley Periodicals, Inc.

  20. Effect of stimuli presentation method on perception of room size using only acoustic cues

    NASA Astrophysics Data System (ADS)

    Hunt, Jeffrey Barnabas

    People listen to music and speech in a large variety of rooms and many room parameters, including the size of the room, can drastically affect how well the speech is understood or the music enjoyed. While multi-modal (typically hearing and sight) tests may be more realistic, in order to isolate what acoustic cues listeners use to determine the size of a room, a listening-only tests is conducted here. Nearly all of the studies to-date on the perception of room volume using acoustic cues have presented the stimuli only over headphones and these studies have reported that, in most cases, the perceived room volume is more highly correlated with the perceived reverberation (reverberance) than with actual room volume. While reverberance may be a salient acoustic cue used for the determination or room size, the actual sound field in a room is not accurately reproduced when presented over headphones and it is thought that some of the complexities of the sound field that relate to perception of geometric volume, specifically directional information of reflections, may be lost. It is possible that the importance of reverberance may be overemphasized when using only headphones to present stimuli so a comparison of room-size perception is proposed where the sound field (from modeled and recorded impulse responses) is presented both over headphones and also over a surround system using higher order ambisonics to more accurately produce directional sound information. Major results are that, in this study, no difference could be seen between the two presentation methods and that reverberation time is highly correlated to room-size perception while real room size is not.

  1. High dimensional model representation method for fuzzy structural dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Chowdhury, R.; Friswell, M. I.

    2011-03-01

    Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.

  2. Correlations between trans-membrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR).

    PubMed

    Hasan, Shadi W; Elektorowicz, Maria; Oleszkiewicz, Jan A

    2012-09-01

    The influence of sludge properties in SMEBR and conventional MBR pilot systems on membrane fouling was investigated. Generated data were analyzed using statistical analysis Pearson's product momentum correlation coefficient (r(p)). Analysis showed that TMP had strong direct (r(p)=0.9182) and inverse (r(p)=-0.9205) correlations to mean particle size diameter in MBR and SMEBR, respectively. TMP in SMEBR had a strong direct correlation to the sludge mixed liquor suspended solids concentration (MLSS) (r(p)=0.7757) while a weak direct correlation (r(p)=0.1940) was observed in MBR. SMEBR showed a moderate inverse correlation (r(p)=-0.6118) between TMP and soluble carbohydrates (EPS(c)) and a very weak direct correlation (r(p)=0.3448) to soluble proteins (EPS(p)). Conversely, EPS(p) in MBR had more significant impact (r(p)=0.4856) on membrane fouling than EPS(c) (r(p)=0.3051). The results provide insight into optimization of operational conditions in SMEBR system to overcome membrane fouling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A high-order time-accurate interrogation method for time-resolved PIV

    NASA Astrophysics Data System (ADS)

    Lynch, Kyle; Scarano, Fulvio

    2013-03-01

    A novel method is introduced for increasing the accuracy and extending the dynamic range of time-resolved particle image velocimetry (PIV). The approach extends the concept of particle tracking velocimetry by multiple frames to the pattern tracking by cross-correlation analysis as employed in PIV. The working principle is based on tracking the patterned fluid element, within a chosen interrogation window, along its individual trajectory throughout an image sequence. In contrast to image-pair interrogation methods, the fluid trajectory correlation concept deals with variable velocity along curved trajectories and non-zero tangential acceleration during the observed time interval. As a result, the velocity magnitude and its direction are allowed to evolve in a nonlinear fashion along the fluid element trajectory. The continuum deformation (namely spatial derivatives of the velocity vector) is accounted for by adopting local image deformation. The principle offers important reductions of the measurement error based on three main points: by enlarging the temporal measurement interval, the relative error becomes reduced; secondly, the random and peak-locking errors are reduced by the use of least-squares polynomial fits to individual trajectories; finally, the introduction of high-order (nonlinear) fitting functions provides the basis for reducing the truncation error. Lastly, the instantaneous velocity is evaluated as the temporal derivative of the polynomial representation of the fluid parcel position in time. The principal features of this algorithm are compared with a single-pair iterative image deformation method. Synthetic image sequences are considered with steady flow (translation, shear and rotation) illustrating the increase of measurement precision. An experimental data set obtained by time-resolved PIV measurements of a circular jet is used to verify the robustness of the method on image sequences affected by camera noise and three-dimensional motions. In both cases, it is demonstrated that the measurement time interval can be significantly extended without compromising the correlation signal-to-noise ratio and with no increase of the truncation error. The increase of velocity dynamic range scales more than linearly with the number of frames included for the analysis, which supersedes by one order of magnitude the pair correlation by window deformation. The main factors influencing the performance of the method are discussed, namely the number of images composing the sequence and the polynomial order chosen to represent the motion throughout the trajectory.

  4. Stabilization of Helivcal Order in the Thick Filaments by Blebbistatin: Further Evidence of Coexisting Multiple Conformations of Myosin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S.; White, H; Offer, G

    2009-01-01

    The degree of helical order of the thick filament of mammalian skeletal muscle is highly dependent on temperature and the nature of the ligand. Previously, we showed that there was a close correlation between the conformation of the myosin heads on the surface of the thick filaments and the extent of their helical order. Helical order required the heads to be in the closed conformation. In addition, we showed that, with the same ligand bound at the active site, three conformations of myosin coexisted in equilibrium. Hitherto, however, there was no detectable helical order as measured by x-ray diffraction undermore » the temperatures studied for myosin with MgADP and the nucleotide-free myosin, raising the possibility that the concept of multiple conformations has limited validity. In this study, blebbistatin was used to stabilize the closed conformation of myosin. The degree of helical order is substantially improved with MgATP at low temperature or with MgADP or in the absence of nucleotide. The thermodynamic parameters of the disorder?order transition and the characteristics of the ordered array were not significantly altered by binding blebbistatin. The simplest explanation is that the binding of blebbistatin increases the proportion of myosin in the closed conformation from being negligible to substantial. These results provide further evidence for the coexistence of multiple conformations of myosin under a wide range of conditions and for the closed conformation being directly coupled to helical order.« less

  5. Correlation between centrality metrics and their application to the opinion model

    NASA Astrophysics Data System (ADS)

    Li, Cong; Li, Qian; Van Mieghem, Piet; Stanley, H. Eugene; Wang, Huijuan

    2015-03-01

    In recent decades, a number of centrality metrics describing network properties of nodes have been proposed to rank the importance of nodes. In order to understand the correlations between centrality metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity metric, we first study the correlation between centrality metrics in terms of their Pearson correlation coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality metrics, we introduce a new centrality measure, the degree mass. The mth-order degree mass of a node is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find that the betweenness, the closeness, and the components of the principal eigenvector of the adjacency matrix are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in both network models and real-world networks. We then theoretically prove that the Pearson correlation coefficient between the principal eigenvector and the 2nd-order degree mass is larger than that between the principal eigenvector and a lower order degree mass. Finally, we investigate the effect of the inflexible contrarians selected based on different centrality metrics in helping one opinion to compete with another in the inflexible contrarian opinion (ICO) model. Interestingly, we find that selecting the inflexible contrarians based on the leverage, the betweenness, or the degree is more effective in opinion-competition than using other centrality metrics in all types of networks. This observation is supported by our previous observations, i.e., that there is a strong linear correlation between the degree and the betweenness, as well as a high centrality similarity between the leverage and the degree.

  6. Bacterial genomes lacking long-range correlations may not be modeled by low-order Markov chains: the role of mixing statistics and frame shift of neighboring genes.

    PubMed

    Cocho, Germinal; Miramontes, Pedro; Mansilla, Ricardo; Li, Wentian

    2014-12-01

    We examine the relationship between exponential correlation functions and Markov models in a bacterial genome in detail. Despite the well known fact that Markov models generate sequences with correlation function that decays exponentially, simply constructed Markov models based on nearest-neighbor dimer (first-order), trimer (second-order), up to hexamer (fifth-order), and treating the DNA sequence as being homogeneous all fail to predict the value of exponential decay rate. Even reading-frame-specific Markov models (both first- and fifth-order) could not explain the fact that the exponential decay is very slow. Starting with the in-phase coding-DNA-sequence (CDS), we investigated correlation within a fixed-codon-position subsequence, and in artificially constructed sequences by packing CDSs with out-of-phase spacers, as well as altering CDS length distribution by imposing an upper limit. From these targeted analyses, we conclude that the correlation in the bacterial genomic sequence is mainly due to a mixing of heterogeneous statistics at different codon positions, and the decay of correlation is due to the possible out-of-phase between neighboring CDSs. There are also small contributions to the correlation from bases at the same codon position, as well as by non-coding sequences. These show that the seemingly simple exponential correlation functions in bacterial genome hide a complexity in correlation structure which is not suitable for a modeling by Markov chain in a homogeneous sequence. Other results include: use of the (absolute value) second largest eigenvalue to represent the 16 correlation functions and the prediction of a 10-11 base periodicity from the hexamer frequencies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Colour-induced relationship between affect and reaching kinematics during a goal-directed aiming task.

    PubMed

    Williams, Camille K; Grierson, Lawrence E M; Carnahan, Heather

    2011-08-01

    A link between affect and action has been supported by the discovery that threat information is prioritized through an action-centred pathway--the dorsal visual stream. Magnocellular afferents, which originate from the retina and project to dorsal stream structures, are suppressed by exposure to diffuse red light, which diminishes humans' perception of threat-based images. In order to explore the role of colour in the relationship between affect and action, participants donned different pairs of coloured glasses (red, yellow, green, blue and clear) and completed Positive and Negative Affect Scale questionnaires as well as a series of target-directed aiming movements. Analyses of affect scores revealed a significant main effect for affect valence and a significant interaction between colour and valence: perceived positive affect was significantly smaller for the red condition. Kinematic analyses of variable error in the primary movement direction and Pearson correlation analyses between the displacements travelled prior to and following peak velocity indicated reduced accuracy and application of online control processes while wearing red glasses. Variable error of aiming was also positively and significantly correlated with negative affect scores under the red condition. These results suggest that only red light modulates the affect-action link by suppressing magnocellular activity, which disrupts visual processing for movement control. Furthermore, previous research examining the effect of the colour red on psychomotor tasks and perceptual acceleration of threat-based imagery suggest that stimulus-driven motor performance tasks requiring online control may be particularly susceptible to this effect.

  8. Tunneling measurement of quantum spin oscillations

    NASA Astrophysics Data System (ADS)

    Bulaevskii, L. N.; Hruška, M.; Ortiz, G.

    2003-09-01

    We consider the problem of tunneling between two leads via a localized spin 1/2 or any other microscopic system (e.g., a quantum dot) which can be modeled by a two-level Hamiltonian. We assume that a constant magnetic field B0 acts on the spin, that electrons in the leads are in a voltage driven thermal equilibrium, and that the tunneling electrons are coupled to the spin through exchange and spin-orbit interactions. Using the nonequilibrium Keldysh formalism we find the dependence of the spin-spin and current-current correlation functions on the applied voltage between leads V, temperature T, B0, and on the degree and orientation mα of spin polarization of the electrons in the right (α=R) and left (α=L) leads. We show the following (a) The spin-spin correlation function exhibits a peak at the Larmor frequency, ωL, corresponding to the effective magnetic field B acting upon the spin as determined by B0 and the exchange field induced by tunneling of spin-polarized electrons. (b) If the mα’s are not parallel to B the second-order derivative of the average tunneling current I(V) with respect to V is proportional to the spectral density of the spin-spin correlation function, i.e., exhibits a peak at the voltage V=ħωL/e. (c) In the same situation when V>B the current-current correlation function exhibits a peak at the same frequency. (d) The signal-to-noise (shot-noise) ratio R for this peak reaches a maximum value of order unity, R⩽4, at large V when the spin is decoupled from the environment and the electrons in both leads are fully polarized in the direction perpendicular to B. (e) R≪1 if the electrons are weakly polarized, or if they are polarized in a direction close to B0, or if the spin interacts with the environment stronger than with the tunneling electrons. Our results of a full quantum-mechanical treatment of the tunneling-via-spin model when V≫B are in agreement with those previously obtained in the quasiclassical approach. We discuss also the experimental results observed using scanning tunneling microscopy dynamic probes of the localized spin.

  9. Static charge-density-wave order in the superconducting state of La 2 - x Ba x CuO 4

    DOE PAGES

    Thampy, V.; Chen, X. M.; Cao, Y.; ...

    2017-06-15

    Charge-density-wave (CDW) correlations feature prominently in the phase diagram of the cuprates, motivating competing theories of whether fluctuating CDW correlations aid superconductivity or whether static CDW order coexists with superconductivity in inhomogeneous or spatially modulated states. Here we report Cu L-edge resonant x-ray photon correlation spectroscopy measurements of CDW correlations in superconducting La 2–xBa xCuO 4, x = 0.11. Static CDW order is shown to exist in the superconducting state at low temperatures and to persist up to at least 85% of the CDW transition temperature. As a result, we discuss the implications of our observations for how nominally competingmore » order parameters can coexist in the cuprates.« less

  10. Expression of ERβ and its co-regulators p300 and NCoR in human transitional cell bladder cancer.

    PubMed

    Kontos, Stylianos; Papatsoris, Athanasios; Kominea, Athina; Melachrinou, Maria; Tanoglidi, Anna; Kachrilas, Stefanos; Karavitakis, Markos; Balampani, Eleni; Sotiropoulou-Bonikou, Georgia

    2011-01-01

    Several data support a possible role of estrogens in bladder carcinogenesis, mediated mainly through estrogen receptor-β (ERβ). We study the expression of ERβ and its co-regulators p300 and nuclear co-repressor (NCoR) in patients with bladder cancer. One hundred and eleven consecutive patients (74 males and 37 females), aged 23-90 years (mean 70 ± 10) diagnosed with transitional cell bladder cancer were included in this study. The control group consisted of 29 patients that underwent transurethral prostatectomy and consented to simultaneous bladder biopsies. Immunohistochemical studies took place on formalin-fixed, paraffin-embedded sections from the TUR (transurethral resection) specimens. We studied the expression of ERβ, p300 and NCoR.χ(2) test was used to evaluate the relationship between the histological grade and ERβ expression, grade and co-regulators expression and grade and gender. Spearman rank correlation coefficient (r) was used in order to estimate the direction and strength of correlations between histological grade and ERβ-p300-NCoR expressions. The Cochran-Armitage test for trend was applied in order to examine possible trends across the ordered levels of histological grade. ERβ was more frequently expressed in the nucleus of normal bladder epithelium compared to malignant bladder epithelium with statistical significant association (r = -0.25, p = 0.003). The p300 was expressed only in the nucleus of bladder cancer cells and a positive correlation between molecular expression and cancer progression was demonstrated (r = 0.55, p < 0.001). NCoR immunostaining was demonstrated in the nuclei of bladder cells. Nuclear staining was significantly higher in normal tissue than in cancer cells (r = -0.33, p < 0.001), with negative correlation. Furthermore, its expression in grade I tumors was significantly higher than in grade II (r = -0.46, p < 0.001) and grade III tumors (r = -0.51, p < 0.001). Thus, like ERβ, NCoR expression in bladder epithelium decreased during cancer progression and loss of cell differentiation. There was no correlation between the levels of expression of the three proteins in normal bladder epithelium, but there was an inverse correlation between the nuclear expression of ERβ and p300 in carcinomas (r = -3.88, p = 0.042). Statistical significant association was established when correlating ERβ expression with NCoR expression (r = 0.273, p = 0.005), while co-regulators' nuclear expression did not correlate with each other (p > 0.05). In bladder carcinogenesis, we demonstrated inhibition in the expression of ERβ and its co-repressor NCoR as well as increased expression of the co-activator p300. Copyright © 2011 S. Karger AG, Basel.

  11. Double perovskites with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Cook, Ashley M.

    We first present theoretical analysis of powder inelastic neutron scattering experiments in Ba2FeReO6 performed by our experimental collaborators. Ba2FeReO6, a member of the double perovskite family of materials, exhibits half-metallic behavior and high Curie temperatures Tc, making it of interest for spintronics applications. To interpret the experimental data, we develop a local moment model, which incorporates the interaction of Fe spins with spin-orbital locked magnetic moments on Re, and show that it captures the experimental observations. We then develop a tight-binding model of the double perovskite Ba 2FeReO6, a room temperature ferrimagnet with correlated and spin-orbit coupled Re t2g electrons moving in the background of Fe moments stabilized by Hund's coupling. We show that for such 3d/5d double perovskites, strong correlations on the 5d-element (Re) are essential in driving a half-metallic ground state. Incorporating both strong spin-orbit coupling and the Hubbard repulsion on Re leads to a band structure consistent with ab initio calculations. The uncovered interplay of strong correlations and spin-orbit coupling lends partial support to our previous work, which used a local moment description to capture the spin wave dispersion found in neutron scattering measurements. We then adapt this tight-binding model to study {111}-grown bilayers of half-metallic double perovskites such as Sr2FeMoO6. The combination of spin-orbit coupling, inter-orbital hybridization and symmetry-allowed trigonal distortion leads to a rich phase diagram with tunable ferromagnetic order, topological C= +/-1, +/-2 Chern bands, and a C = +/-2 quantum anomalous Hall insulator regime. We have also performed theoretical analysis of inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO 6 and La2MgIrO6. Models with dominant Kitaev exchange seem to most naturally account for the neutron data as well as the measured frustration parameters of these materials, while the uniaxial Ising anisotropy does not. Our findings highlight how even seemingly conventional magnetic orders in oxide materials containing heavy transition metal ions may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling. Motivated by experiments on the double perovskites La2ZnIrO 6 and La2MgIrO6, we lastly study the magnetism of spin-orbit coupled jeff =1/2 iridium moments on the three-dimensional, geometrically frustrated, facecentered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. A Luttinger-Tisza analysis shows a rich variety of orders, including collinear AII type antiferromagnetism, stripe order with moments along the {111}-direction, and incommensurate non-coplanar spirals, and we use Monte Carlo simulations to determine their magnetic ordering temperatures.

  12. Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at $$ \\sqrt{s}=8 $$ TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2017-04-05

    Cross sections for the production of a Z boson in association with jets in proton-proton collisions at a centre-of-mass energy of √s = 8 TeV are measured using a data sample collected by the CMS experiment at the LHC corresponding to 19.6 fb -1. Furthermore, differential cross sections are presented as functions of up to three observables that describe the jet kinematics and the jet activity. Correlations between the azimuthal directions and the rapidities of the jets and the Z boson are studied in detail. The predictions of a number of multileg generators with leading or next-to-leading order accuracy aremore » compared with the measurements. Our comparison shows the importance of including multi-parton contributions in the matrix elements and the improvement in the predictions when next-to-leading order terms are included.« less

  13. Memorizing: a test of untrained mildly mentally retarded children's problem-solving.

    PubMed

    Belmont, J M; Ferretti, R P; Mitchell, D W

    1982-09-01

    Forty untrained mildly mentally retarded and 32 untrained nonretarded junior high school students were given eight trails of practice on a self-paced memory problem with lists of letters or words. For each trail a new list was presented, requiring ordered recall of terminal list items followed by ordered recall of initial items. Subgroups of solvers and nonsolvers were identified at each IQ level by a criterion of strict recall accuracy. Direct measures of mnemonic activity showed that over trails, solvers at both IQ levels increasingly fit a theoretically ideal memorization method. At neither IQ level did nonsolvers show similar inventions. On early trials, for both IQ levels, fit to the ideal method was uncorrelated with recall accuracy. On late trials fit and recall were highly correlated at each IQ level and across levels. The results support a problem-solving theory of individual differences in retarded and nonretarded children's memory performances.

  14. Hemodynamics of a Patient-Specific Aneurysm Model with Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Han, Suyue; Chang, Gary Han; Modarres-Sadeghi, Yahya

    2017-11-01

    Wall shear stress (WSS) and oscillatory shear index (OSI) are two of the most-widely studied hemodynamic quantities in cardiovascular systems that have been shown to have the ability to elicit biological responses of the arterial wall, which could be used to predict the aneurysm development and rupture. In this study, a reduced-order model (ROM) of the hemodynamics of a patient-specific cerebral aneurysm is studied. The snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases of the flow using a CFD training set with known inflow parameters. It was shown that the area of low WSS and high OSI is correlated to higher POD modes. The resulting ROM can reproduce both WSS and OSI computationally for future parametric studies with significantly less computational cost. Agreement was observed between the WSS and OSI values obtained using direct CFD results and ROM results.

  15. In Situ Probing of Ion Ordering at an Electrified Ionic Liquid/Au Interface

    DOE PAGES

    Sitaputra, Wattaka; Stacchiola, Dario; Wishart, James F.; ...

    2017-05-12

    Charge transport at the interface of electrodes and ionic liquids is critical for the use of the latter as electrolytes. In this study, a room-temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (EMMIM TFSI), is investigated in situ under applied bias voltage with a novel method using low-energy electron and photoemission electron microscopy. Changes in photoelectron yield as a function of bias applied to electrodes provide a direct measure of the dynamics of ion reconfiguration and electrostatic responses of the EMMIM TFSI. Finally, long-range and correlated ionic reconfigurations that occur near the electrodes are found to be a function of temperature and thickness,more » which, in turn, relate to ionic mobility and different configurations for out-of-plane ordering near the electrode interfaces, with a critical transition in ion mobility for films thicker than three monolayers.« less

  16. Benzoquinones and terphenyl compounds as phosphodiesterase-4B inhibitors from a fungus of the order Chaetothyriales (MSX 47445).

    PubMed

    El-Elimat, Tamam; Figueroa, Mario; Raja, Huzefa A; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Day, Cynthia S; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2013-03-22

    Three bioactive compounds were isolated from an organic extract of an ascomycete fungus of the order Chaetothyriales (MSX 47445) using bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Of these, two were benzoquinones [betulinan A (1) and betulinan C (3)], and the third was a terphenyl compound, BTH-II0204-207:A (2). The structures were elucidated using a set of spectroscopic and spectrometric techniques; the structure of the new compound (3) was confirmed via single-crystal X-ray diffraction. Compounds 1-3 were evaluated for cytotoxicity against a human cancer cell panel, for antimicrobial activity against Staphylococcus aureus and Candida albicans, and for phosphodiesterase (PDE4B2) inhibitory activities. The putative binding mode of 1-3 with PDE4B2 was examined using a validated docking protocol, and the binding and enzyme inhibitory activities were correlated.

  17. Deterministic Placement of Quantum-Size Controlled Quantum Dots for Seamless Top-Down Integration

    DOE PAGES

    Fischer, Arthur J.; Anderson, P. Duke; Koleske, Daniel D.; ...

    2017-08-18

    We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individualmore » QDs directly confirm nonclassical, antibunching behavior. Lastly, our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.« less

  18. Deterministic Placement of Quantum-Size Controlled Quantum Dots for Seamless Top-Down Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Arthur J.; Anderson, P. Duke; Koleske, Daniel D.

    We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individualmore » QDs directly confirm nonclassical, antibunching behavior. Lastly, our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.« less

  19. Fluctuations and All-In-All-Out Ordering in Dipole-Octupole Nd2Zr2O7

    NASA Astrophysics Data System (ADS)

    Lhotel, E.; Petit, S.; Guitteny, S.; Florea, O.; Ciomaga Hatnean, M.; Colin, C.; Ressouche, E.; Lees, M. R.; Balakrishnan, G.

    2015-11-01

    By means of neutron scattering and magnetization measurements down to 90 mK, we determine the magnetic ground state of the spin-ice candidate Nd2Zr2O7. We show that, despite ferromagnetic interactions, Nd2Zr2O7 undergoes a transition around 285 mK towards an all-in-all-out antiferromagnetic state, with a strongly reduced ordered magnetic moment. We establish the (H ,T ) phase diagram in the three directions of the applied field and reveal a metamagnetic transition around 0.1 T, associated with an unexpected shape of the magnetization curves. We propose that this behavior results from the peculiar nature of the Nd3 + doublet, a dipolar-octupolar doublet, different from the standard Kramers doublet studied to date, thus revealing the importance of multipolar correlations in the properties of pyrochlore oxides.

  20. Composition susceptibility and the role of one, two, and three-body interactions in glass forming alloys: Cu50Zr50 vs Ni50Al50

    NASA Astrophysics Data System (ADS)

    Tang, Chunguang; Harrowell, Peter

    2018-06-01

    In this paper, we compare the composition fluctuations and interaction potentials of a good metallic glass former, Cu50Zr50, and a poor glass former, Ni50Al50. The Bhatia-Thornton correlation functions are calculated. Motivated by the observation of chemical ordering at the NiAl surface, we derive a new property, R^ c n(q ) , corresponding to the linear susceptibility of concentration to a perturbation in density. We present a direct comparison of the potentials for the two model alloys using a 2nd order density expansion, and establish that the one-body energy plays a crucial role in stabilizing the crystal relative to the liquid in both alloys but that the three-body contribution to the heat of fusion is significantly larger in NiAl than CuZr.

  1. Correlating cation ordering and voltage fade in a lithium–manganese-rich lithium-ion battery cathode oxide: a joint magnetic susceptibility and TEM study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Debasish; Sefat, Athena S.; Li, Jianlin

    Structure–electrochemical property correlation is presented for lithium–manganese-rich layered–layered nickel manganese cobalt oxide (LMR–NMC) having composition Li1.2Co0.1Mn0.55Ni0.15O2 (TODA HE5050) in order to examine the possible reasons for voltage fade during short-to-mid-term electrochemical cycling. The Li1.2Co0.1Mn0.55Ni0.15O2 based cathodes were cycled at two different upper cutoff voltages (UCV), 4.2 V and 4.8 V, for 1, 10, and 125 cycles; voltage fade was observed after 10 and 125 cycles only when the UCV was 4.8 V. Magnetic susceptibility and selected-area electron diffraction data showed the presence of cation ordering in the pristine material, which remained after 125 cycles when the UCV was 4.2 V.more » When cycled at 4.8 V, the magnetic susceptibility results showed the suppression of cation ordering after one cycle; the cation ordering diminished upon further cycling and was not observed after 125 cycles. Selected-area electron diffraction data from oxides oriented towards the [0001] zone axis revealed a decrease in the intensity of cation-ordering reflections after one cycle and an introduction of spinel-type reflections after 10 cycles at 4.8 V; after 125 cycles, only the spinel-type reflections and the fundamental O3 layered oxide reflections were observed. A significant decrease in the effective magnetic moment of the compound after one cycle at 4.8 V indicated the presence of lithium and/or oxygen vacancies; analysis showed a reduction of Mn4+ (high spin/low spin) in the pristine oxide to Mn3+ (low spin) after one cycle. The effective magnetic moment was higher after 10 and 125 cycles at 4.8 V, suggesting the presence of Mn3+ in a high spin state, which is believed to originate from distorted spinel (Li2Mn2O4) and/or spinel (LiMn2O4) compounds. The increase in effective magnetic moments was not observed when the oxide was cycled at 4.2 V, indicating the stability of the structure under these conditions. This study shows that structural rearrangements in the LMR–NMC oxide happen only at higher potentials (4.8 V, for example) and provides evidence of a direct correlation between cation ordering and voltage fade.« less

  2. The Correlation Between Solar Energetic Particle Events and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Karelitz, A. M.; Pulkkinen, A.

    2012-12-01

    Solar energetic particle (SEP) events are a wide scale phenomena that are not only an issue for the 2,000+ costly satellites in the sky but also have negative implications on aviation, and even ground based communication. Forecasting the magnitude and duration of strong SEP events based on preceding events that are often associated with them, such as coronal mass ejections (CMEs) and solar flares, is an important step in future operational space weather as well as research. In order to provide a model connecting SEP and CME characteristics, six specific CMEs between 8/14/2010 and 5/17/12 that met specific qualifications (i.e. earth directed), were chosen and several parameters characterizing the connections were derived. From the derived data, correlations between many of the different parameters were tested. One of the more meaningful correlations that was found is between the peak flux of >10 MeV GOES protons and the speed of the CME. A logarithmic correlation between these two entities is clearly seen with a R^2 value of 0.78 and a fit of y=2.74e.^(003x). For forecasting purposes, the times of the arrival of the SEP event with respect to the evolution of the CME was also recorded. Another possibly meaningful correlation was found between SEP duration and CME speed with R^2 value of 0.56. The identified connections were verified by adding an event that occurred on July 12, 2012. Using the model connecting SEP peak flux and CME speed as produced in this study, space weather forecasters can better predict the magnitude of the SEP event that is a result of an earth directed CME. Doing so will enable precautions to be taken on spacecraft as well as ground based entities that are vulnerable to the high-energy protons. In future work, we plan to perform

  3. Deciphering chemical order/disorder and material properties at the single-atom level

    DOE PAGES

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less

  4. Structural ordering and interface morphology in symmetrically strained(GaIn)As/Ga(PAs) superlattices grown on off-oriented GaAs(100)

    NASA Astrophysics Data System (ADS)

    Giannini, C.; Tapfer, L.; Zhuang, Y.; de Caro, L.; Marschner, T.; Stolz, W.

    1997-02-01

    In this work we investigate the structural properties of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of x-ray diffraction, reciprocal-space mapping, and x-ray reflectivity. The multilayers were grown by metalorganic vapor-phase epitaxy on (001) GaAs substrates intentionally off-oriented towards one of the nearest <110> directions. High-resolution triple-crystal reciprocal-space maps recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction clearly show a double periodicity of the x-ray peak intensity that can be ascribed to a lateral and a vertical periodicity occurring parallel and perpendicular to the growth surface. Moreover, from the intensity modulation of the satellite peaks, a lateral-strain gradient within the epilayer unit cell is found, varying from a tensile to a compressive strain. Thus, the substrate off-orientation promotes a lateral modulation of the layer thickness (ordered interface roughness) and of the lattice strain, giving rise to laterally ordered macrosteps. In this respect, contour maps of the specular reflected beam in the vicinity of the (000) reciprocal lattice point were recorded in order to inspect the vertical and lateral interface roughness correlation. A semiquantitative analysis of our results shows that the interface morphology and roughness is greatly influenced by the off-orientation angle and the lateral strain distribution. Two mean spatial wavelengths can be determined, one corresponding exactly to the macrostep periodicity and the other indicating a further interface waviness along the macrosteps. The same spatial periodicities were found on the surface by atomic-force-microscopy images confirming the x-ray results and revealing a strong vertical correlation of the interfaces up to the outer surface.

  5. Anisotropy of the monomer random walk in a polymer melt: local-order and connectivity effects

    NASA Astrophysics Data System (ADS)

    Bernini, S.; Leporini, D.

    2016-05-01

    The random walk of a bonded monomer in a polymer melt is anisotropic due to local order and bond connectivity. We investigate both effects by molecular-dynamics simulations on melts of fully-flexible linear chains ranging from dimers (M  =  2) up to entangled polymers (M  =  200). The corresponding atomic liquid is also considered a reference system. To disentangle the influence of the local geometry and the bond arrangements, and to reveal their interplay, we define suitable measures of the anisotropy emphasising either the former or the latter aspect. Connectivity anisotropy, as measured by the correlation between the initial bond orientation and the direction of the subsequent monomer displacement, shows a slight enhancement due to the local order at times shorter than the structural relaxation time. At intermediate times—when the monomer displacement is comparable to the bond length—a pronounced peak and then decays slowly as t -1/2, becoming negligible when the displacement is as large as about five bond lengths, i.e. about four monomer diameters or three Kuhn lengths. Local-geometry anisotropy, as measured by the correlation between the initial orientation of a characteristic axis of the Voronoi cell and the subsequent monomer dynamics, is affected at shorter times than the structural relaxation time by the cage shape with antagonistic disturbance by the connectivity. Differently, at longer times, the connectivity favours the persistence of the local-geometry anisotropy, which vanishes when the monomer displacement exceeds the bond length. Our results strongly suggest that the sole consideration of the local order is not enough to understand the microscopic origin of the rattling amplitude of the trapped monomer in the cage of the neighbours.

  6. Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors

    PubMed Central

    2017-01-01

    Fiber Bragg Grating (FBG) sensors are among the most popular elements for fiber optic sensor networks used for the direct measurement of temperature and strain. Modern FBG interrogation setups measure the FBG spectrum in real-time, and determine the shift of the Bragg wavelength of the FBG in order to estimate the physical parameters. The problem of determining the peak wavelength of the FBG from a spectral measurement limited in resolution and noise, is referred as the peak-tracking problem. In this work, the several peak-tracking approaches are reviewed and classified, outlining their algorithmic implementations: the methods based on direct estimation, interpolation, correlation, resampling, transforms, and optimization are discussed in all their proposed implementations. Then, a simulation based on coupled-mode theory compares the performance of the main peak-tracking methods, in terms of accuracy and signal to noise ratio resilience. PMID:29039804

  7. Relating Fresh Concrete Viscosity Measurements from Different Rheometers

    PubMed Central

    Ferraris, Chiara F.; Martys, Nicos S.

    2003-01-01

    Concrete rheological properties need to be properly measured and predicted in order to characterize the workability of fresh concrete, including special concretes such as self-consolidating concrete (SCC). It was shown by a round-robin test held in 2000 [1,2] that different rheometer designs gave different values of viscosity for the same concrete. While empirical correlation between different rheometers was possible, for a procedure that is supposed to “scientifically” improve on the empirical slump tests, this situation is unsatisfactory. To remedy this situation, a new interpretation of the data was developed. In this paper, it is shown that all instruments tested could be directly and quantitatively compared in terms of relative plastic viscosity instead of the plastic viscosity alone. This should eventually allow the measurements from various rheometer designs to be directly calibrated against known standards of plastic viscosity, putting concrete rheometry and concrete workability on a sounder materials science basis. PMID:27413607

  8. [Spatial orientation of the facies patellaris femoris].

    PubMed

    Hassenpflug, J; Hiss, E; Blauth, W

    1987-01-01

    The present article reports on the geometrical conditions of the physiological movement of the patella. The geometrical shape of 18 femoral condyles and patella sliding areas was investigated in order to describe basic data for the design of endoprostheses. Surface and direction of the facies patellaris femoris were determined by means of radiographic, mechanical and optical measurements. The curvature of the deepest patella sliding groove proves a constant correlation with the dorsal condylar curvature. In the frontal plane the lowest points of the sliding area run with a dispersion of +/- 4 degrees to the vertical line related to the transverse tangent on the dorsal condylar surface. Considering deviations of leg alignment the measures come close to an angle of about 0 degrees. So the direction of the patella sliding groove differs from the normal valgus position of the distal femur. Therefore in artificial knee replacement a lateral tilt of the patella sliding groove should not be propagated as 'physiological'.

  9. Superconducting spin valves controlled by spiral re-orientation in B20-family magnets

    NASA Astrophysics Data System (ADS)

    Pugach, N. G.; Safonchik, M.; Champel, T.; Zhitomirsky, M. E.; Lähderanta, E.; Eschrig, M.; Lacroix, C.

    2017-10-01

    We propose a superconducting spin-triplet valve, which consists of a superconductor and an itinerant magnetic material, with the magnet showing an intrinsic non-collinear order characterized by a wave vector that may be aligned in a few equivalent preferred directions under the control of a weak external magnetic field. Re-orienting the spiral direction allows one to controllably modify long-range spin-triplet superconducting correlations, leading to spin-valve switching behavior. Our results indicate that the spin-valve effect may be noticeable. This bilayer may be used as a magnetic memory element for cryogenic nanoelectronics. It has the following advantages in comparison to superconducting spin valves proposed previously: (i) it contains only one magnetic layer, which may be more easily fabricated and controlled; (ii) its ground states are separated by a potential barrier, which solves the "half-select" problem of the addressed switch of memory elements.

  10. Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength

    PubMed Central

    Wakui, Kentaro; Eto, Yujiro; Benichi, Hugo; Izumi, Shuro; Yanagida, Tetsufumi; Ema, Kazuhiro; Numata, Takayuki; Fukuda, Daiji; Takeoka, Masahiro; Sasaki, Masahide

    2014-01-01

    Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology. PMID:24694515

  11. Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength.

    PubMed

    Wakui, Kentaro; Eto, Yujiro; Benichi, Hugo; Izumi, Shuro; Yanagida, Tetsufumi; Ema, Kazuhiro; Numata, Takayuki; Fukuda, Daiji; Takeoka, Masahiro; Sasaki, Masahide

    2014-04-03

    Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology.

  12. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    PubMed

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  13. Reliability of self-reported weight and height among state bank employees.

    PubMed

    Chor, D; Coutinho, E da S; Laurenti, R

    1999-02-01

    Self-reported weight and height were compared with direct measurements in order to evaluate the agreement between the two sources. Data were obtained from a cross-sectional study on health status from a probabilistic sample of 1,183 employees of a bank, in Rio de Janeiro State, Brazil. Direct measurements were made of 322 employees. Differences between the two sources were evaluated using mean differences, limits of agreement and intraclass correlation coefficient (ICC). Men and women tended to underestimate their weight while differences between self-reported and measured height were insignificant. Body mass index (BMI) mean differences were smaller than those observed for weight. ICC was over 0.98 for weight and 0.95 for BMI, expressing close agreement. Combining a graphical method with ICC may be useful in pilot studies to detect populational groups capable of providing reliable information on weight and height, thus minimizing resources needed for field work.

  14. Heisenberg spin-1/2 XXZ chain in the presence of electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Thakur, Pradeep; Durganandini, P.

    2018-02-01

    We study the interplay of electric and magnetic order in the one-dimensional Heisenberg spin-1/2 XXZ chain with large Ising anisotropy in the presence of the Dzyaloshinskii-Moriya (DM) interaction and with longitudinal and transverse magnetic fields, interpreting the DM interaction as a coupling between the local electric polarization and an external electric field. We obtain the ground state phase diagram using the density matrix renormalization group method and compute various ground state quantities like the magnetization, staggered magnetization, electric polarization and spin correlation functions, etc. In the presence of both longitudinal and transverse magnetic fields, there are three different phases corresponding to a gapped Néel phase with antiferromagnetic (AF) order, gapped saturated phase, and a critical incommensurate gapless phase. The external electric field modifies the phase boundaries but does not lead to any new phases. Both external magnetic fields and electric fields can be used to tune between the phases. We also show that the transverse magnetic field induces a vector chiral order in the Néel phase (even in the absence of an electric field) which can be interpreted as an electric polarization in a direction parallel to the AF order.

  15. Spatial inhomogeneities in ionic liquids, charged proteins, and charge stabilized colloids from collective variables theory.

    PubMed

    Patsahan, O; Ciach, A

    2012-09-01

    Effects of size and charge asymmetry between oppositely charged ions or particles on spatial inhomogeneities are studied for a large range of charge and size ratios. We perform a stability analysis of the primitive model of ionic systems with respect to periodic ordering using the collective variables-based theory. We extend previous studies [Ciach et al., Phys. Rev. E 75, 051505 (2007)] in several ways. First, we employ a nonlocal approximation for the reference hard-sphere fluid which leads to the Percus-Yevick pair direct correlation functions for the uniform case. Second, we use the Weeks-Chandler-Anderson regularization scheme for the Coulomb potential inside the hard core. We determine the relevant order parameter connected with the periodic ordering and analyze the character of the dominant fluctuations along the λ lines. We show that the above-mentioned modifications produce large quantitative and partly qualitative changes in the phase diagrams obtained previously. We discuss possible scenarios of the periodic ordering for the whole range of size and charge ratios of the two ionic species, covering electrolytes, ionic liquids, charged globular proteins or nanoparticles in aqueous solutions, and charge-stabilized colloids.

  16. Characterizing hydrophobicity at the nanoscale: a molecular dynamics simulation study.

    PubMed

    Bandyopadhyay, Dibyendu; Choudhury, Niharendu

    2012-06-14

    We use molecular dynamics (MD) simulations of water near nanoscopic surfaces to characterize hydrophobic solute-water interfaces. By using nanoscopic paraffin like plates as model solutes, MD simulations in isothermal-isobaric ensemble have been employed to identify characteristic features of such an interface. Enhanced water correlation, density fluctuations, and position dependent compressibility apart from surface specific hydrogen bond distribution and molecular orientations have been identified as characteristic features of such interfaces. Tetrahedral order parameter that quantifies the degree of tetrahedrality in the water structure and an orientational order parameter, which quantifies the orientational preferences of the second solvation shell water around a central water molecule, have also been calculated as a function of distance from the plate surface. In the vicinity of the surface these two order parameters too show considerable sensitivity to the surface hydrophobicity. The potential of mean force (PMF) between water and the surface as a function of the distance from the surface has also been analyzed in terms of direct interaction and induced contribution, which shows unusual effect of plate hydrophobicity on the solvent induced PMF. In order to investigate hydrophobic nature of these plates, we have also investigated interplate dewetting when two such plates are immersed in water.

  17. Spontaneous symmetry breaking and electronic and dielectric properties in commensurate La7 /4Sr1 /4CuO4 and La5 /3Sr1 /3NiO4

    NASA Astrophysics Data System (ADS)

    Petersen, J.; Bechstedt, F.; Furthmüller, J.; Scolfaro, L. M.

    2018-05-01

    Complex ordered phases involving spin and charge degrees of freedom in condensed matter, such as layered cuprates and nickelates, are exciting but not well understood solid-state phenomena. The rich underlying physics of the overdoped high-temperature superconductor L a7 /4S r1 /4Cu O4 and colossal dielectric constant insulator L a5 /3S r1 /3Ni O4 is studied from first principles within density functional (perturbation) theory, including an effective Hubbard potential U for the exchange and correlation of d orbitals. Charge density wave (CDW) and spin density wave (SDW) orders are found in both materials, where the stripes are commensurate with the lattice. The SDWs are accompanied by complex antiferromagnetic spin arrangements along the stripes. The first series of conduction bands related to the pseudogap observed in the cuprate are found to be directly related to CDW order, while the colossal dielectric constant in the nickelate is demonstrated to be a result of vibronic coupling with CDW order. Differences between the two oxides are related to how the stripes fill with carriers.

  18. Repetitive transcranial magnetic stimulation and transcranial direct-current stimulation in neuropathic pain due to radiculopathy: a randomized sham-controlled comparative study.

    PubMed

    Attal, Nadine; Ayache, Samar S; Ciampi De Andrade, Daniel; Mhalla, Alaa; Baudic, Sophie; Jazat, Frédérique; Ahdab, Rechdi; Neves, Danusa O; Sorel, Marc; Lefaucheur, Jean-Pascal; Bouhassira, Didier

    2016-06-01

    No study has directly compared the effectiveness of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS) in neuropathic pain (NP). In this 2-centre randomised double-blind sham-controlled study, we compared the efficacy of 10-Hz rTMS and anodal 2-mA tDCS of the motor cortex and sham stimulation contralateral to the painful area (3 daily sessions) in patients with NP due to lumbosacral radiculopathy. Average pain intensity (primary outcome) was evaluated after each session and 5 days later. Secondary outcomes included neuropathic symptoms and thermal pain thresholds for the upper limbs. We used an innovative design that minimised bias by randomly assigning patients to 1 of 2 groups: active rTMS and tDCS or sham rTMS and tDCS. For each treatment group (active or sham), the order of the sessions was again randomised according to a crossover design. In total, 51 patients were screened and 35 (51% women) were randomized. Active rTMS was superior to tDCS and sham in pain intensity (F = 2.89 and P = 0.023). Transcranial direct-current stimulation was not superior to sham, but its analgesic effects were correlated to that of rTMS (P = 0.046), suggesting common mechanisms of action. Repetitive transcranial magnetic stimulation lowered cold pain thresholds (P = 0.04) and its effect on cold pain was correlated with its analgesic efficacy (P = 0.006). However, rTMS had no impact on individual neuropathic symptoms. Thus, rTMS is more effective than tDCS and sham in patients with NP due to lumbosacral radiculopathy and may modulate the sensory and affective dimensions of pain.

  19. Evaluation of Interpolation Effects on Upsampling and Accuracy of Cost Functions-Based Optimized Automatic Image Registration

    PubMed Central

    Mahmoudzadeh, Amir Pasha; Kashou, Nasser H.

    2013-01-01

    Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method. PMID:24000283

  20. Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration.

    PubMed

    Mahmoudzadeh, Amir Pasha; Kashou, Nasser H

    2013-01-01

    Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.

Top