Science.gov

Sample records for order finite elements

  1. Second order tensor finite element

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.

    1990-01-01

    The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.

  2. Visualization of higher order finite elements.

    SciTech Connect

    Thompson, David C.; Pebay, Philippe Pierre; Crawford, Richard H.; Khardekar, Rahul Vinay

    2004-04-01

    Finite element meshes are used to approximate the solution to some differential equation when no exact solution exists. A finite element mesh consists of many small (but finite, not infinitesimal or differential) regions of space that partition the problem domain, {Omega}. Each region, or element, or cell has an associated polynomial map, {Phi}, that converts the coordinates of any point, x = ( x y z ), in the element into another value, f(x), that is an approximate solution to the differential equation, as in Figure 1(a). This representation works quite well for axis-aligned regions of space, but when there are curved boundaries on the problem domain, {Omega}, it becomes algorithmically much more difficult to define {Phi} in terms of x. Rather, we define an archetypal element in a new coordinate space, r = ( r s t ), which has a simple, axis-aligned boundary (see Figure 1(b)) and place two maps onto our archetypal element:

  3. Application of Mass Lumped Higher Order Finite Elements

    SciTech Connect

    Chen, J.; Strauss, H. R.; Jardin, S. C.; Park, W.; Sugiyama, L. E.; G. Fu; Breslau, J.

    2005-11-01

    There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied.

  4. High-order Finite Element Analysis of Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Alvin; Sahni, Onkar

    2014-11-01

    Numerical analysis of boundary layer flows requires careful approximations, specifically the use of a mesh with layered and graded elements near the (viscous) walls. This is referred to as a boundary layer mesh, which for complex geometries is composed of triangular elements on the walls that are inflated or extruded into the volume along the wall-normal direction up to a desired height while the rest of the domain is filled with unstructured tetrahedral elements. Linear elements with C0 inter-element continuity are employed and in some situations higher order C0 elements are also used. However, these elements only enforce continuity whereas high-order smoothness is not attained as will be the case with C1 inter-element continuity and higher. As a result, C0 elements result in a poor approximation of the high-order boundary layer behavior. To achieve greater inter-element continuity in boundary layer region, we employ B-spline basis functions along the wall-normal direction (i.e., only in the layered portion of the mesh). In the rest of the fully unstructured mesh, linear or higher order C0 elements are used as appropriate. In this study we demonstrate the benefits of finite-element analysis based on such higher order and continuity basis functions for boundary layer flows.

  5. Higher Order Lagrange Finite Elements In M3D

    SciTech Connect

    J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau

    2004-12-17

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.

  6. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

    SciTech Connect

    Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.

    2012-09-20

    The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

  7. Visualizing Higher Order Finite Elements: FY05 Yearly Report.

    SciTech Connect

    Thompson, David; Pebay, Philippe Pierre

    2005-11-01

    This report contains an algorithm for decomposing higher-order finite elementsinto regions appropriate for isosurfacing and proves the conditions under which thealgorithm will terminate. Finite elements are used to create piecewise polynomialapproximants to the solution of partial differential equations for which no analyticalsolution exists. These polynomials represent fields such as pressure, stress, and mo-mentim. In the past, these polynomials have been linear in each parametric coordinate.Each polynomial coefficient must be uniquely determined by a simulation, and thesecoefficients are called degrees of freedom. When there are not enough degrees of free-dom, simulations will typically fail to produce a valid approximation to the solution.Recent work has shown that increasing the number of degrees of freedom by increas-ing the order of the polynomial approximation (instead of increasing the number offinite elements, each of which has its own set of coefficients) can allow some typesof simulations to produce a valid approximation with many fewer degrees of freedomthan increasing the number of finite elements alone. However, once the simulation hasdetermined the values of all the coefficients in a higher-order approximant, tools donot exist for visual inspection of the solution.This report focuses on a technique for the visual inspection of higher-order finiteelement simulation results based on decomposing each finite element into simplicialregions where existing visualization algorithms such as isosurfacing will work. Therequirements of the isosurfacing algorithm are enumerated and related to the placeswhere the partial derivatives of the polynomial become zero. The original isosurfacingalgorithm is then applied to each of these regions in turn.3 AcknowledgementThe authors would like to thank David Day and Louis Romero for their insight into poly-nomial system solvers and the LDRD Senior Council for the opportunity to pursue thisresearch. The authors were

  8. High-order finite element methods for cardiac monodomain simulations.

    PubMed

    Vincent, Kevin P; Gonzales, Matthew J; Gillette, Andrew K; Villongco, Christopher T; Pezzuto, Simone; Omens, Jeffrey H; Holst, Michael J; McCulloch, Andrew D

    2015-01-01

    Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori. PMID:26300783

  9. High-order finite element methods for cardiac monodomain simulations

    PubMed Central

    Vincent, Kevin P.; Gonzales, Matthew J.; Gillette, Andrew K.; Villongco, Christopher T.; Pezzuto, Simone; Omens, Jeffrey H.; Holst, Michael J.; McCulloch, Andrew D.

    2015-01-01

    Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori. PMID:26300783

  10. Higher order finite element analysis of thick composite laminates

    NASA Technical Reports Server (NTRS)

    Goering, J.; Kim, H. J.

    1992-01-01

    A higher order, sub-parametric, laminated, 3D solid finite element was used for the analysis of very thick laminated composite plates. The geometry of this element is defined by four nodes in the X-Y plane which define a prism of material through the thickness of the laminate. There are twenty-four degrees of freedom at each node; translations at the upper and lower surfaces of the laminate in each of the three coordinate directions, and the derivatives of these translations with respect to each coordinate. This choice of degrees of freedom leads to displacement and strain compatibility at the corners. Stacking sequence effects are accounted for by explicitly integrating the strain energy density through the thickness of the element. The laminated solid element was combined with a gap-contact element to analyze thick laminated composite lugs loaded through flexible pins. The resulting model accounts for pin bending effects that produce non-uniform bearing stresses through the thickness of the lug. A thick composite lug experimental test program was performed, and provided data that was used to validate the analytical model. Two lug geometries and three stacking sequences were tested.

  11. Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2000-01-01

    This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.

  12. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory

    SciTech Connect

    Motamarri, P.; Nowak, M.R.; Leiter, K.; Knap, J.; Gavini, V.

    2013-11-15

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688

  13. Higher order temporal finite element methods through mixed formalisms.

    PubMed

    Kim, Jinkyu

    2014-01-01

    The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics. PMID:25210664

  14. Higher order temporal finite element methods through mixed formalisms.

    PubMed

    Kim, Jinkyu

    2014-01-01

    The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.

  15. Higher-order adaptive finite-element methods for orbital-free density functional theory

    SciTech Connect

    Motamarri, Phani; Iyer, Mrinal; Knap, Jaroslaw; Gavini, Vikram

    2012-08-15

    In the present work, we study various numerical aspects of higher-order finite-element discretizations of the non-linear saddle-point formulation of orbital-free density-functional theory. We first investigate the robustness of viable solution schemes by analyzing the solvability conditions of the discrete problem. We find that a staggered solution procedure where the potential fields are computed consistently for every trial electron-density is a robust solution procedure for higher-order finite-element discretizations. We next study the convergence properties of higher-order finite-element discretizations of orbital-free density functional theory by considering benchmark problems that include calculations involving both pseudopotential as well as Coulomb singular potential fields. Our numerical studies suggest close to optimal rates of convergence on all benchmark problems for various orders of finite-element approximations considered in the present study. We finally investigate the computational efficiency afforded by various higher-order finite-element discretizations, which constitutes the main aspect of the present work, by measuring the CPU time for the solution of discrete equations on benchmark problems that include large Aluminum clusters. In these studies, we use mesh coarse-graining rates that are derived from error estimates and an a priori knowledge of the asymptotic solution of the far-field electronic fields. Our studies reveal a significant 100-1000 fold computational savings afforded by the use of higher-order finite-element discretization, alongside providing the desired chemical accuracy. We consider this study as a step towards developing a robust and computationally efficient discretization of electronic structure calculations using the finite-element basis.

  16. Higher order representation of the beam cross section deformation in large displacement finite element analysis

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Gantoi, Florentina M.; Shabana, Ahmed A.

    2011-12-01

    Most existing beam formulations assume that the cross section of the beam remains rigid regardless of the amplitude of the displacement. The absolute nodal coordinate formulation (ANCF); however, allows for the deformation of the cross section and leads to a more general beam models that capture the coupling between different modes of displacement. This paper examines the effect of the order of interpolation on the modes of deformation of the beam cross section using ANCF finite elements. To this end, a new two-dimensional shear deformable ANCF beam element is developed. The new finite element employs a higher order of interpolation, and allows for new cross section deformation modes that cannot be captured using previously developed shear deformable ANCF beam elements. The element developed in this study relaxes the assumption of planar cross section; thereby allowing for including the effect of warping as well as for different stretch values at different points on the element cross section. The displacement field of the new element is assumed to be cubic in the axial direction and quadratic in the transverse direction. Using this displacement field, more expressions for the element extension, shear and the cross section stretch can be systematically defined. The change in the cross section area is measured using Nanson's formula. Measures of the shear angle, extension, and cross section stretch can also be systematically defined using coordinate systems defined at the element material points. Using these local coordinate systems, expressions for a nominal shear angle are obtained. The differences between the cross section deformation modes obtained using the new higher order element and those obtained using the previously developed lower order elements are highlighted. Numerical examples are presented in order to compare the results obtained using the new finite element and the results obtained using previously developed ANCF finite elements.

  17. POD-Galerkin reduced-order modeling with adaptive finite element snapshots

    NASA Astrophysics Data System (ADS)

    Ullmann, Sebastian; Rotkvic, Marko; Lang, Jens

    2016-11-01

    We consider model order reduction by proper orthogonal decomposition (POD) for parametrized partial differential equations, where the underlying snapshots are computed with adaptive finite elements. We address computational and theoretical issues arising from the fact that the snapshots are members of different finite element spaces. We propose a method to create a POD-Galerkin model without interpolating the snapshots onto their common finite element mesh. The error of the reduced-order solution is not necessarily Galerkin orthogonal to the reduced space created from space-adapted snapshot. We analyze how this influences the error assessment for POD-Galerkin models of linear elliptic boundary value problems. As a numerical example we consider a two-dimensional convection-diffusion equation with a parametrized convective direction. To illustrate the applicability of our techniques to non-linear time-dependent problems, we present a test case of a two-dimensional viscous Burgers equation with parametrized initial data.

  18. High order curvilinear finite elements for elastic–plastic Lagrangian dynamics

    SciTech Connect

    Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.

    2014-01-15

    This paper presents a high-order finite element method for calculating elastic–plastic flow on moving curvilinear meshes and is an extension of our general high-order curvilinear finite element approach for solving the Euler equations of gas dynamics in a Lagrangian frame [1,2]. In order to handle transition to plastic flow, we formulate the stress–strain relation in rate (or incremental) form and augment our semi-discrete equations for Lagrangian hydrodynamics with an additional evolution equation for the deviatoric stress which is valid for arbitrary order spatial discretizations of the kinematic and thermodynamic variables. The semi-discrete equation for the deviatoric stress rate is developed for 2D planar, 2D axisymmetric and full 3D geometries. For each case, the strain rate is approximated via a collocation method at zone quadrature points while the deviatoric stress is approximated using an L{sub 2} projection onto the thermodynamic basis. We apply high order, energy conserving, explicit time stepping methods to the semi-discrete equations to develop the fully discrete method. We conclude with numerical results from an extensive series of verification tests that demonstrate several practical advantages of using high-order finite elements for elastic–plastic flow.

  19. A suitable low-order, eight-node tetrahedral finite element for solids

    SciTech Connect

    Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.

    1998-03-01

    To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping, and the element`s performance in applications are presented. In particular they examine the eight-node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties.

  20. Modeling fragmentation with new high order finite element technology and node splitting

    NASA Astrophysics Data System (ADS)

    Olovsson, Lars; Limido, Jérôme; Lacome, Jean-Luc; Grønsund Hanssen, Arve; Petit, Jacques

    2015-09-01

    The modeling of fragmentation has historically been linked to the weapons industry where the main goal is to optimize a bomb or to design effective blast shields. Numerical modeling of fragmentation from dynamic loading has traditionally been modeled by legacy finite element solvers that rely on element erosion to model material failure. However this method results in the removal of too much material. This is not realistic as retaining the mass of the structure is critical to modeling the event correctly. We propose a new approach implemented in the IMPETUS AFEA SOLVER® based on the following: New High Order Finite Elements that can easily deal with very large deformations; Stochastic distribution of initial damage that allows for a non homogeneous distribution of fragments; and a Node Splitting Algorithm that allows for material fracture without element erosion that is mesh independent. The approach is evaluated for various materials and scenarios: -Titanium ring electromagnetic compression; Hard steel Taylor bar impact, Fused silica Taylor bar impact, Steel cylinder explosion, The results obtained from the simulations are representative of the failure mechanisms observed experimentally. The main benefit of this approach is good energy conservation (no loss of mass) and numerical robustness even in complex situations.

  1. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGES

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy alsomore » eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  2. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    NASA Astrophysics Data System (ADS)

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.

  3. Application of High Order Acoustic Finite Elements to Transmission Losses and Enclosure Problems

    NASA Technical Reports Server (NTRS)

    Craggs, A.; Stevenson, G.

    1985-01-01

    A family of acoustic finite elements was developed based on C continuity (acoustic pressure being the nodal variable) and the no-flow condition. The family include triangular, quadrilateral and hexahedral isoparametric elements with linear quadratic and cubic variation in modelling and distortion. Of greatest use in problems with irregular boundaries are the cubic isoparametric elements: the 32 node hexahedral element for three-dimensional systems; and the twelve node quadrilateral and ten node triangular elements for two-dimensional/axisymmetric applications. These elements were applied to problems involving cavity resonances, transmission loss in silencers and the study of end effects, using a Floating Point Systems 164 attached array processor accessed through an Amdahl 5860 mainframe. The elements are presently being used to study the end effects associated with duct terminations within finite enclosures. The transmission losses with various silencers and sidebranches in ducts is also being studied using the same elements.

  4. A parallel high-order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments

    SciTech Connect

    Leng, Wei; Ju, Lili; Gunzburger, Max; Price, Stephen; Ringler, Todd

    2012-01-01

    The numerical modeling of glacier and ice sheet evolution is a subject of growing interest, in part because of the potential for models to inform estimates of global sea level change. This paper focuses on the development of a numerical model that determines the velocity and pressure fields within an ice sheet. Our numerical model features a high-fidelity mathematical model involving the nonlinear Stokes system and combinations of no-sliding and sliding basal boundary conditions, high-order accurate finite element discretizations based on variable resolution grids, and highly scalable parallel solution strategies, all of which contribute to a numerical model that can achieve accurate velocity and pressure approximations in a highly efficient manner. We demonstrate the accuracy and efficiency of our model by analytical solution tests, established ice sheet benchmark experiments, and comparisons with other well-established ice sheet models.

  5. A High-order Eulerian-Lagrangian Finite Element Method for Coupled Electro-mechanical Systems

    NASA Astrophysics Data System (ADS)

    Brandstetter, Gerd

    The main focus of this work is on the development of a high-order Eulerian-Lagrangian finite element method for the simulation of electro-mechanical systems. The coupled problem is solved by a staggered scheme, where the mechanical motion is discretized by standard Lagrangian finite elements, and the electrical field is solved on a fixed Eulerian grid with embedded boundary conditions. Traditional Lagrangian-Lagrangian or arbitrary Lagrangian-Eulerian (ALE) methods encounter deficiencies, for example, when dealing with mesh distortion due to large deformations, or topology changes due to contacting bodies. The presented Eulerian-Lagrangian approach addresses these issues in a natural way. Within this context we develop a high-order immersed boundary discontinuous-Galerkin (IB-DG) method, which is shown to be necessary for (i) the accurate representation of the electrical gradient along nonlinear boundary features such as singular corners, and (ii) to achieve full convergence during the iterative global solution. We develop an implicit scheme based on the mid-point rule, as well as an explicit scheme based on the centered-difference method, with the incorporation of energy conserving, frictionless contact algorithms for an elastic-to-rigid-surface contact. The performance of the proposed method is assessed for several benchmark tests: the electro-static force vector around a singular corner, the quasi-static pull-in of an electro-mechanically actuated switch, the excitation of a carbon nanotube at resonance, and the cyclic impact simulation of a micro-electro-mechanical resonant-switch. We report improved accuracy for the high-order method as compared to low-order methods, and linear convergence in the iterative solution of the staggered scheme. Additionally, we investigate a Newton-Krylov shooting scheme in order to directly find cyclic steady states of electro-mechanical devices excited at resonance-- as opposed to a naive time-stepping from zero initial

  6. Simple formulas for strain-energy release rates with higher order and singular finite elements

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1986-01-01

    A general finite element procedure for obtaining strain-energy release rates for crack growth in isotropic materials is presented. The procedure is applicable to two-dimensional finite element analyses and uses the virtual crack-closure method. The procedure was applied to non-singular 4-noded (linear), 8-noded (parabolic), and 12-noded (cubic) elements and to quarter-point and cubic singularity elements. Simple formulas for strain-energy release rates were obtained with this procedure for both non-singular and singularity elements. The formulas were evaluated by applying them to two mode I and two mixed mode problems. Comparisons with results from the literature for these problems showed that the formulas give accurate strain-energy release rates.

  7. Calculation of strain-energy release rates with higher order and singular finite elements

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1987-01-01

    A general finite element procedure for obtaining strain-energy release rates for crack growth in isotropic materials is presented. The procedure is applicable to two-dimensional finite element analyses and uses the virtual crack-closure method. The procedure was applied to nonsingular 4-noded (linear), 8-noded (parabolic), and 12-noded (cubic) elements and to quarter-point and cubic singularity elements. Simple formulas for strain-energy release rates were obtained with this procedure for both nonsingular and singularity elements. The formulas were evaluated by applying them to two mode I and two mixed mode problems. Comparisons with results from the literature for these problems showed that the formulas give accurate strain-energy release rates.

  8. Characterization of high order spatial discretizations and lumping techniques for discontinuous finite element SN transport

    SciTech Connect

    Maginot, P. G.; Ragusa, J. C.; Morel, J. E.

    2013-07-01

    We examine several possible methods of mass matrix lumping for discontinuous finite element discrete ordinates transport using a Lagrange interpolatory polynomial trial space. Though positive outflow angular flux is guaranteed with traditional mass matrix lumping in a purely absorbing 1-D slab cell for the linear discontinuous approximation, we show that when used with higher degree interpolatory polynomial trial spaces, traditional lumping does yield strictly positive outflows and does not increase in accuracy with an increase in trial space polynomial degree. As an alternative, we examine methods which are 'self-lumping'. Self-lumping methods yield diagonal mass matrices by using numerical quadrature restricted to the Lagrange interpolatory points. Using equally-spaced interpolatory points, self-lumping is achieved through the use of closed Newton-Cotes formulas, resulting in strictly positive outflows in pure absorbers for odd power polynomials in 1-D slab geometry. By changing interpolatory points from the traditional equally-spaced points to the quadrature points of the Gauss-Legendre or Lobatto-Gauss-Legendre quadratures, it is possible to generate solution representations with a diagonal mass matrix and a strictly positive outflow for any degree polynomial solution representation in a pure absorber medium in 1-D slab geometry. Further, there is no inherent limit to local truncation error order of accuracy when using interpolatory points that correspond to the quadrature points of high order accuracy numerical quadrature schemes. (authors)

  9. A unidirectional approach for d-dimensional finite element methods for higher order on sparse grids

    SciTech Connect

    Bungartz, H.J.

    1996-12-31

    In the last years, sparse grids have turned out to be a very interesting approach for the efficient iterative numerical solution of elliptic boundary value problems. In comparison to standard (full grid) discretization schemes, the number of grid points can be reduced significantly from O(N{sup d}) to O(N(log{sub 2}(N)){sup d-1}) in the d-dimensional case, whereas the accuracy of the approximation to the finite element solution is only slightly deteriorated: For piecewise d-linear basis functions, e. g., an accuracy of the order O(N{sup - 2}(log{sub 2}(N)){sup d-1}) with respect to the L{sub 2}-norm and of the order O(N{sup -1}) with respect to the energy norm has been shown. Furthermore, regular sparse grids can be extended in a very simple and natural manner to adaptive ones, which makes the hierarchical sparse grid concept applicable to problems that require adaptive grid refinement, too. An approach is presented for the Laplacian on a uinit domain in this paper.

  10. Parallel Higher-order Finite Element Method for Accurate Field Computations in Wakefield and PIC Simulations

    SciTech Connect

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC

    2009-06-19

    Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.

  11. Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2006-01-01

    A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.

  12. Finite element analysis of low-cost membrane deformable mirrors for high-order adaptive optics

    NASA Astrophysics Data System (ADS)

    Winsor, Robert S.; Sivaramakrishnan, Anand; Makidon, Russell B.

    1999-10-01

    We demonstrate the feasibility of glass membrane deformable mirror (DM) support structures intended for very high order low-stroke adaptive optics systems. We investigated commercially available piezoelectric ceramics. Piezoelectric tubes were determined to offer the largest amount of stroke for a given amount of space on the mirror surface that each actuator controls. We estimated the minimum spacing and the maximum expected stroke of such actuators. We developed a quantitative understanding of the response of a membrane mirror surface by performing a Finite Element Analysis (FEA) study. The results of the FEA analysis were used to develop a design and fabrication process for membrane deformable mirrors of 200 - 500 micron thicknesses. Several different values for glass thickness and actuator spacing were analyzed to determine the best combination of actuator stoke and surface deformation quality. We considered two deformable mirror configurations. The first configuration uses a vacuum membrane attachment system where the actuator tubes' central holes connect to an evacuated plenum, and atmospheric pressure holds the membrane against the actuators. This configuration allows the membrane to be removed from the actuators, facilitating easy replacement of the glass. The other configuration uses precision bearing balls epoxied to the ends of the actuator tubes, with the glass membrane epoxied to the ends of the ball bearings. While this kind of DM is not serviceable, it allows actuator spacings of 4 mm, in addition to large stroke. Fabrication of a prototype of the latter kind of DM was started.

  13. Structural damage detection using higher-order finite elements and a scanning laser vibrometer

    NASA Astrophysics Data System (ADS)

    Jin, Si

    In contrast to conventional non-destructive evaluation methods, dynamics-based damage detection methods are capable of rapid integrity evaluation of large structures and have received considerable attention from aerospace, mechanical, and civil engineering communities in recent years. However, the identifiable damage size using dynamics-based methods is determined by the number of sensors used, level of measurement noise, accuracy of structural models, and signal processing techniques. In this thesis we study dynamics of structures with damage and then derive and experimentally verify new model-independent structural damage detection methods that can locate small damage to structures. To find sensitive damage detection parameters we develop a higher-order beam element that enforces the continuity of displacements, slopes, bending moments, and shear forces at all nodes, and a higher-order rectangular plate element that enforces the continuity of displacements, slopes, and bending and twisting moments at all nodes. These two elements are used to study the dynamics of beams and plates. Results show that high-order spatial derivatives of high-frequency modes are important sensitive parameters that can locate small structural damage. Unfortunately the most powerful and popular structural modeling technique, the finite element method, is not accurate in predicting high-frequency responses. Hence, a model-independent method using dynamic responses obtained from high density measurements is concluded to be the best approach. To increase measurement density and reduce noise a Polytec PI PSV-200 scanning laser vibrometer is used to provide non-contact, dense, and accurate measurements of structural vibration velocities. To avoid the use of structural models and to extract sensitive detection parameters from experimental data, a brand-new structural damage detection method named BED (Boundary-Effect Detection) is developed for pinpointing damage locations using Operational

  14. A parallel mixed finite element implementation for approximation of eigenvalues and eigenvectors of fourth-order eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, Kshitij; Nataraj, Neela

    2005-08-01

    The paper deals with a parallel implementation of a mixed finite element method of approximation of eigenvalues and eigenvectors of fourth order eigenvalue problems with variable/constant coefficients. The implementation has been done in Silicon Graphics Origin 3800, a four processor Intel Xeon Symmetric Multiprocessor and a beowulf cluster of four Intel Pentium III PCs. The generalised eigenvalue problem obtained after discretization using the mixed finite element method is solved using the package LANSO. The numerical results obtained are compared with existing results (if available). The time, speedup comparisons in different environments for some examples of practical and research interest and importance are also given.

  15. Application of Novel High Order Time Domain Vector Finite Element Method to Photonic Band-Gap Waveguides

    SciTech Connect

    Rieben, R; White, D; Rodrigue, G

    2004-01-13

    In this paper we motivate the use of a novel high order time domain vector finite element method that is of arbitrary order accuracy in space and up to 5th order accurate in time; and in particular, we apply it to the case of photonic band-gap (PBG) structures. Such structures have been extensively studied in the literature with several practical applications; in particular, for the low loss transmission of electromagnetic energy around sharp 90 degree bends [1]. Typically, such structures are simulated via a numerical solution of Maxwell's equations either in the frequency domain or directly in the time domain over a computational grid. The majority of numerical simulations performed for such structures make use of the widely popular finite difference time domain (FDTD) method [2], where the time dependent electric and magnetic fields are discretized over a ''dual'' grid to second order accuracy in space and time. However, such methods do not generalize to unstructured, non-orthogonal grids or to higher order spatial discretization schemes. To simulate more complicated structures with curved boundaries, such as the structure of [3], a cell based finite element method with curvilinear elements is preferred over standard stair-stepped Cartesian meshes; and to more efficiently reduce the effects of numerical dispersion, a higher order method is highly desirable. In this paper, the high order basis functions of [5] are used in conjunction with the high order energy conserving symplectic time integration algorithms of [6] resulting in a high order, fully mimetic, mixed vector finite element method.

  16. Study on high order perturbation-based nonlinear stochastic finite element method for dynamic problems

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Yao, Jing-Zheng

    2010-12-01

    Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.

  17. Finite element computational fluid mechanics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1983-01-01

    Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.

  18. A first-order system least-squares finite element method for the Poisson-Boltzmann equation.

    PubMed

    Bond, Stephen D; Chaudhry, Jehanzeb Hameed; Cyr, Eric C; Olson, Luke N

    2010-06-01

    The Poisson-Boltzmann equation is an important tool in modeling solvent in biomolecular systems. In this article, we focus on numerical approximations to the electrostatic potential expressed in the regularized linear Poisson-Boltzmann equation. We expose the flux directly through a first-order system form of the equation. Using this formulation, we propose a system that yields a tractable least-squares finite element formulation and establish theory to support this approach. The least-squares finite element approximation naturally provides an a posteriori error estimator and we present numerical evidence in support of the method. The computational results highlight optimality in the case of adaptive mesh refinement for a variety of molecular configurations. In particular, we show promising performance for the Born ion, Fasciculin 1, methanol, and a dipole, which highlights robustness of our approach.

  19. Finite element modelling approaches for well-ordered porous metallic materials for orthopaedic applications: cost effectiveness and geometrical considerations.

    PubMed

    Quevedo González, Fernando José; Nuño, Natalia

    2016-01-01

    The mechanical properties of well-ordered porous materials are related to their geometrical parameters at the mesoscale. Finite element (FE) analysis is a powerful tool to design well-ordered porous materials by analysing the mechanical behaviour. However, FE models are often computationally expensive. This article aims to develop a cost-effective FE model to simulate well-ordered porous metallic materials for orthopaedic applications. Solid and beam FE modelling approaches are compared, using finite size and infinite media models considering cubic unit cell geometry. The model is then applied to compare two unit cell geometries: cubic and diamond. Models having finite size provide similar results than the infinite media model approach for large sample sizes. In addition, these finite size models also capture the influence of the boundary conditions on the mechanical response for small sample sizes. The beam FE modelling approach showed little computational cost and similar results to the solid FE modelling approach. Diamond unit cell geometry appeared to be more suitable for orthopaedic applications than the cubic unit cell geometry.

  20. Diffusion Synthetic Acceleration for High-Order Discontinuous Finite Element SN Transport Schemes and Application to Locally Refined Unstructured Meshes

    SciTech Connect

    Yaqi Wang; Jean C. Ragusa

    2011-10-01

    Diffusion synthetic acceleration (DSA) schemes compatible with adaptive mesh refinement (AMR) grids are derived for the SN transport equations discretized using high-order discontinuous finite elements. These schemes are directly obtained from the discretized transport equations by assuming a linear dependence in angle of the angular flux along with an exact Fick's law and, therefore, are categorized as partially consistent. These schemes are akin to the symmetric interior penalty technique applied to elliptic problems and are all based on a second-order discontinuous finite element discretization of a diffusion equation (as opposed to a mixed or P1 formulation). Therefore, they only have the scalar flux as unknowns. A Fourier analysis has been carried out to determine the convergence properties of the three proposed DSA schemes for various cell optical thicknesses and aspect ratios. Out of the three DSA schemes derived, the modified interior penalty (MIP) scheme is stable and effective for realistic problems, even with distorted elements, but loses effectiveness for some highly heterogeneous configurations. The MIP scheme is also symmetric positive definite and can be solved efficiently with a preconditioned conjugate gradient method. Its implementation in an AMR SN transport code has been performed for both source iteration and GMRes-based transport solves, with polynomial orders up to 4. Numerical results are provided and show good agreement with the Fourier analysis results. Results on AMR grids demonstrate that the cost of DSA can be kept low on locally refined meshes.

  1. Automatic finite element generators

    NASA Technical Reports Server (NTRS)

    Wang, P. S.

    1984-01-01

    The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.

  2. Modeling Three-Phase Compositional Flow on Complex 3D Unstructured Grids with Higher-Order Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Moortgat, J.; Firoozabadi, A.

    2013-12-01

    Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.

  3. Second-order two-scale finite element algorithm for dynamic thermo-mechanical coupling problem in symmetric structure

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Hui; Ma, Qiang; Cui, Junzhi

    2016-06-01

    The new second-order two-scale (SOTS) finite element algorithm is developed for the dynamic thermo-mechanical coupling problems in axisymmetric and spherical symmetric structures made of composite materials. The axisymmetric structure considered is periodic in both radial and axial directions and homogeneous in circumferential direction. The spherical symmetric structure is only periodic in radial direction. The dynamic thermo-mechanical coupling model is presented and the equivalent compact form is derived. Then, the cell problems, effective material coefficients and the homogenized thermo-mechanical coupling problem are obtained successively by the second-order asymptotic expansion of the temperature increment and displacement. The homogenized material obtained is manifested with the anisotropic property in the circumferential direction. The explicit expressions of the homogenized coefficients in the plane axisymmetric and spherical symmetric cases are given and both the derivation of the analytical solutions of the cell functions and the quasi-static thermoelasticity problems are discussed. Based on the SOTS method, the corresponding finite-element procedure is presented and the unconditionally stable implicit algorithm is established. Some numerical examples are solved and the mutual interaction between the temperature and displacement field is studied under the condition of structural vibration. The computational results demonstrate that the second-order asymptotic analysis finite-element algorithm is feasible and effective in simulating and predicting the dynamic thermo-mechanical behaviors of the composite materials with small periodic configurations in axisymmetric and spherical symmetric structures. This may provide a vital computational tool for analyzing composite material internal temperature distribution and structural deformation induced by the dynamic thermo-mechanical coupling response under strong aerothermodynamic environment.

  4. High-order mimetic finite elements for the hydrostatic primitive equations on a cubed-sphere grid using Hamiltonian methods

    NASA Astrophysics Data System (ADS)

    Eldred, Christopher; Dubos, Thomas; Kritsikis, Evaggelos

    2016-04-01

    There has been a great deal of work in the past decade on the development of mimetic and conservative numerical schemes for atmospheric dynamical cores using Hamiltonian methods, such as Dynamico (Dubos et. al 2015). This model conserves mass, potential vorticity and total energy; and posses properties such as a curl-free pressure gradient that does not produce spurious vorticity. Unfortunately, the underlying finite-difference discretization scheme used in Dynamico has been shown to be inconsistent on general grids. An alternative scheme based on mimetic finite elements has been developed for the rotating shallow water equations that solves these accuracy issues but retains the desirable mimetic and conservation properties. Preliminary results on the extension of this scheme to the hydrostatic primitive equations are shown. The compatible 2D finite elements spaces are extended to compatible 3D spaces using tensor products, in a way that preserves their properties. It is shown that use of the same prognostic variables as Dynamico combined with a Lorenz staggering leads to a relatively simple formulation that allows conservation of total energy along with high-order accuracy.

  5. A High Order Mixed Vector Finite Element Method for Solving the Time Dependent Maxwell Equations on Unstructured Grids

    SciTech Connect

    Rieben, R N; Rodrigue, G H; White, D A

    2004-03-09

    We present a mixed vector finite element method for solving the time dependent coupled Ampere and Faraday laws of Maxwell's equations on unstructured hexahedral grids that employs high order discretization in both space and time. The method is of arbitrary order accuracy in space and up to 5th order accurate in time, making it well suited for electrically large problems where grid anisotropy and numerical dispersion have plagued other methods. In addition, the method correctly models both the jump discontinuities and the divergence-free properties of the electric and magnetic fields, is charge and energy conserving, conditionally stable, and free of spurious modes. Several computational experiments are performed to demonstrate the accuracy, efficiency and benefits of the method.

  6. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster

    SciTech Connect

    Komatitsch, Dimitri; Erlebacher, Gordon; Goeddeke, Dominik; Michea, David

    2010-10-01

    We implement a high-order finite-element application, which performs the numerical simulation of seismic wave propagation resulting for instance from earthquakes at the scale of a continent or from active seismic acquisition experiments in the oil industry, on a large cluster of NVIDIA Tesla graphics cards using the CUDA programming environment and non-blocking message passing based on MPI. Contrary to many finite-element implementations, ours is implemented successfully in single precision, maximizing the performance of current generation GPUs. We discuss the implementation and optimization of the code and compare it to an existing very optimized implementation in C language and MPI on a classical cluster of CPU nodes. We use mesh coloring to efficiently handle summation operations over degrees of freedom on an unstructured mesh, and non-blocking MPI messages in order to overlap the communications across the network and the data transfer to and from the device via PCIe with calculations on the GPU. We perform a number of numerical tests to validate the single-precision CUDA and MPI implementation and assess its accuracy. We then analyze performance measurements and depending on how the problem is mapped to the reference CPU cluster, we obtain a speedup of 20x or 12x.

  7. Finite order variational bicomplexes

    NASA Astrophysics Data System (ADS)

    Vitolo, Raffaele

    1999-01-01

    The theory of variational bicomplexes was established at the end of the seventies by several authors [2, 17, 23, 26, 29-32]. The idea is that the operations which take a Lagrangian into its Euler-Lagrange morphism [9, 10, 12, 24] and an Euler-Lagrange morphism into its Helmholtz' conditions of local variationality [1-3, 7, 11, 13, 18, 27] are morphisms of a (long) exact sheaf sequence. This viewpoint overcomes several problems of Lagrangian formulations in mechanics and field theories [21, 28]. To avoid technical difficulties variational bicomplexes were formulated over the space of infinite jets of a fibred manifold. But in this formalism the information relative to the order of the jet where objects are defined is lost.We refer to the recent formulation of variational bicomplexes on finite order jet spaces [13]. Here, a finite order variational sequence is obtained by quotienting the de Rham sequence on a finite order jet space with an intrinsically defined sub-sequence, whose choice is inspired by the calculus of variations. It is important to find an isomorphism of the quotient sequence with a sequence of sheaves of ‘concrete’ sections of some vector bundle. This task has already been faced locally [22, 25] and intrinsically [33] in the case of one independent variable.In this paper, we give an intrinsic isomorphism of the variational sequence (in the general case of n independent variables) with a sequence which is made by sheaves of forms on a jet space of minimal order. This yields new natural solutions to problems like the minimal order Lagrangian corresponding to a locally variational Euler-Lagrange morphism and the search of variationally trivial Lagrangians. Moreover, we give a new intrinsic formulation of Helmholtz' local variationality conditions, proving the existence of a new intrinsic geometric object which, for an Euler-Lagrange morphism, plays a role analogous to that of the momentum of a Lagrangian.

  8. A Novel High Order Time Domain Vector Finite Element Method for the Simulation of Electromagnetic Devices

    SciTech Connect

    Rieben, Robert N.

    2004-01-01

    The goal of this dissertation is two-fold. The first part concerns the development of a numerical method for solving Maxwell's equations on unstructured hexahedral grids that employs both high order spatial and high order temporal discretizations. The second part involves the use of this method as a computational tool to perform high fidelity simulations of various electromagnetic devices such as optical transmission lines and photonic crystal structures to yield a level of accuracy that has previously been computationally cost prohibitive. This work is based on the initial research of Daniel White who developed a provably stable, charge and energy conserving method for solving Maxwell's equations in the time domain that is second order accurate in both space and time. The research presented here has involved the generalization of this procedure to higher order methods. High order methods are capable of yielding far more accurate numerical results for certain problems when compared to corresponding h-refined first order methods , and often times at a significant reduction in total computational cost. The first half of this dissertation presents the method as well as the necessary mathematics required for its derivation. The second half addresses the implementation of the method in a parallel computational environment, its validation using benchmark problems, and finally its use in large scale numerical simulations of electromagnetic transmission devices.

  9. Finite Element Analysis Code

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore » of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less

  10. Finite Element Analysis Code

    SciTech Connect

    Sjaardema, G.; Wellman, G.; Gartling, D.

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operation of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.

  11. Finite Element Analysis Code

    SciTech Connect

    Forsythe, C.; Smith, M.; Sjaardema, G.

    2005-06-26

    Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or to another format.

  12. First- and Second-Order Sensitivity Analysis of a P-Version Finite Element Equation Via Automatic Differentiation

    NASA Technical Reports Server (NTRS)

    Hou, Gene

    1998-01-01

    Sensitivity analysis is a technique for determining derivatives of system responses with respect to design parameters. Among many methods available for sensitivity analysis, automatic differentiation has been proven through many applications in fluid dynamics and structural mechanics to be an accurate and easy method for obtaining derivatives. Nevertheless, the method can be computational expensive and can require a high memory space. This project will apply an automatic differentiation tool, ADIFOR, to a p-version finite element code to obtain first- and second- order then-nal derivatives, respectively. The focus of the study is on the implementation process and the performance of the ADIFOR-enhanced codes for sensitivity analysis in terms of memory requirement, computational efficiency, and accuracy.

  13. Finite Element Analysis Code

    2005-06-26

    Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or tomore » another format.« less

  14. Finite Element Analysis Code

    SciTech Connect

    Sjaardema, G.; Forsythe, C.

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases into a single database which makes it easier to postprocess the results data.

  15. Finite Element Analysis Code

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore » a single database which makes it easier to postprocess the results data.« less

  16. 3D finite element analysis of a metallic sphere scatterer comparison of first and second order vector absorbing boundary conditions

    NASA Astrophysics Data System (ADS)

    Kanellopoulos, V. N.; Webb, J. P.

    1993-03-01

    A 3D vector analysis of plane wave scattering by a metallic sphere using finite elements and Absorbing Boundary Conditions (ABCs) is presented. The ABCs are applied on the outer surface that truncates the infinitely extending domain. Mixed order curvilinear covariantprojection elements are used to avoid spurious corruptions. The second order ABC is superior to the first at no extra computational cost. The errors due to incomplete absorption decrease as the outer surface is moved further away from the scatterer. An error of about 1% in near-field values was obtained with the second order ABC, when the outer surface was less than half a wavelength from the scatterer. Une analyse tridimensionnelle vectorielle de la diffusion d'onde plane sur une sphère métallique utilisant des éléments finis et des Conditions aux Limites Absorbantes (CLA) est présentée. Les CLA sont appliquées sur la surface exteme tronquant le domaine s'étendant à l'infini. Des éléments curvilignes mixtes utilisant des projections covariantes sont utilisés pour éviter des solutions parasites. La CLA de second ordre est supérieure à celle de premier ordre sans effort de calcul additionnel. Les erreurs dues à l'absorption incomplète décroissent à mesure que l'on déplace la surface externe à une distance croissante du diffuseur. Un taux d'erreur d'environ 1 % dans les valeurs du champ proche a été obtenu avec les CLA de second ordre lorsque la surface externe était placée à une distance inférieure à une demi-longueur de la source de diffusion.

  17. Utilizing Emerging Hardware for Multiphysics Simulation Through Implicit High-Order Finite Element Methods With Tensor Product Structure

    NASA Astrophysics Data System (ADS)

    Brown, J.; Ahmadia, A.; Knepley, M. G.; Smith, B.

    2011-12-01

    The cost of memory, especially memory bandwidth, is becoming increasingly expensive on modern high performance computing architectures including GPUs and multi-core systems. In contrast, floating point operations are relatively inexpensive when they can be vectorized (e.g. thread blocks on a GPU or vector registers on a CPU). This relative cost of memory to flops will continue to become even more pronounced due to fundamental issues of power utilization, therefore it is important to rethink algorithms to effectively utilize hardware. Commonly used methods for implicit solves with finite element methods involve assembly of a sparse matrix. Unfortunately, sparse matrix kernels have an arithmetic intensity (ratio of flops to bytes of memory movement) that is orders of magnitude less than that delivered by modern hardware, causing the floating point units to be massively under-utilized. The ``free flops'' can be effectively utilized by higher order methods which deliver improved accuracy for the same number of degrees of freedom. Effective use of high order methods require eschewing assembled data structures for matrix storage in exchange for unassembled representations. The resulting computation reduces to small dense tensor-product operations and indepedent ``physics'' kernels at each quadrature point, both of which are amenable to vectorization and capable of delivering a high fraction of peak performance. To reduce the effort required to implement new physics (e.g. constitutive relations and additional fields), retain code verifiability, and experiment with different vectorization strategies and solver algorithms, we express the continuum equations in Python and use automatic differentiation, symbolic methods, and code generation techniques to create vectorized kernels for residual evaluation, Jacobian storage, Jacobian application, and adjoints for each block of the system. The performance and effectiveness of these methods is demonstrated for free-surface Stokes

  18. Element-topology-independent preconditioners for parallel finite element computations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, Scott

    1992-01-01

    A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.

  19. Toward automatic finite element analysis

    NASA Technical Reports Server (NTRS)

    Kela, Ajay; Perucchio, Renato; Voelcker, Herbert

    1987-01-01

    Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.

  20. An error analysis of higher-order finite-element methods: effect of degenerate coupling on simulation of elastic wave propagation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kei; Geller, Robert J.; Hirabayashi, Nobuyasu

    2016-06-01

    We present a theoretical analysis of the error of synthetic seismograms computed by higher-order finite-element methods (ho-FEMs). We show the existence of a previously unrecognized type of error due to degenerate coupling between waves with the same frequency but different wavenumbers. These results are confirmed by simple numerical experiments using the spectral element method as an example of ho-FEMs. Errors of the type found by this study may occur generally in applications of ho-FEMs.

  1. Finite element shell instability analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Formulation procedures and the associated computer program for finite element thin shell instability analysis are discussed. Data cover: (1) formulation of basic element relationships, (2) construction of solution algorithms on both the conceptual and algorithmic levels, and (3) conduction of numerical analyses to verify the accuracy and efficiency of the theory and related programs therein are described.

  2. Certified dual-corrected radiation patterns of phased antenna arrays by offline–online order reduction of finite-element models

    SciTech Connect

    Sommer, A. Farle, O. Dyczij-Edlinger, R.

    2015-10-15

    This paper presents a fast numerical method for computing certified far-field patterns of phased antenna arrays over broad frequency bands as well as wide ranges of steering and look angles. The proposed scheme combines finite-element analysis, dual-corrected model-order reduction, and empirical interpolation. To assure the reliability of the results, improved a posteriori error bounds for the radiated power and directive gain are derived. Both the reduced-order model and the error-bounds algorithm feature offline–online decomposition. A real-world example is provided to demonstrate the efficiency and accuracy of the suggested approach.

  3. Certified dual-corrected radiation patterns of phased antenna arrays by offline-online order reduction of finite-element models

    NASA Astrophysics Data System (ADS)

    Sommer, A.; Farle, O.; Dyczij-Edlinger, R.

    2015-10-01

    This paper presents a fast numerical method for computing certified far-field patterns of phased antenna arrays over broad frequency bands as well as wide ranges of steering and look angles. The proposed scheme combines finite-element analysis, dual-corrected model-order reduction, and empirical interpolation. To assure the reliability of the results, improved a posteriori error bounds for the radiated power and directive gain are derived. Both the reduced-order model and the error-bounds algorithm feature offline-online decomposition. A real-world example is provided to demonstrate the efficiency and accuracy of the suggested approach.

  4. Full Wave Analysis of RF Signal Attenuation in a Lossy Cave using a High Order Time Domain Vector Finite Element Method

    SciTech Connect

    Pingenot, J; Rieben, R; White, D

    2004-12-06

    We present a computational study of signal propagation and attenuation of a 200 MHz dipole antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The simulation is performed for a series of random meshes in order to generate statistical data for the propagation and attenuation properties of the cave environment. Results for the power spectral density and phase of the electric field vector components are presented and discussed.

  5. Parallelization of the Red-Black Algorithm on Solving the Second-Order PN Transport Equation with the Hybrid Finite Element Method

    SciTech Connect

    Yaqi Wang; Cristian Rabiti; Giuseppe Palmiotti

    2011-06-01

    The Red-Black algorithm has been successfully applied on solving the second-order parity transport equation with the PN approximation in angle and the Hybrid Finite Element Method (HFEM) in space, i.e., the Variational Nodal Method (VNM) [1,2,3,4,5]. Any transport solving techniques, including the Red-Black algorithm, need to be parallelized in order to take the advantage of the development of supercomputers with multiple processors for the advanced modeling and simulation. To our knowledge, an attempt [6] was done to parallelize it, but it was devoted only to the z axis plans in three-dimensional calculations. General parallelization of the Red-Black algorithm with the spatial domain decomposition has not been reported in the literature. In this summary, we present our implementation of the parallelization of the Red-Black algorithm and its efficiency results.

  6. Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave using a High Order Time Domain Vector Finite Element Method

    SciTech Connect

    Pingenot, J; Rieben, R; White, D; Dudley, D

    2005-10-31

    We present a computational study of signal propagation and attenuation of a 200 MHz planar loop antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The numerical technique is first verified against theoretical results for a planar loop antenna in a smooth lossy cave. The simulation is then performed for a series of random rough surface meshes in order to generate statistical data for the propagation and attenuation properties of the antenna in a cave environment. Results for the mean and variance of the power spectral density of the electric field are presented and discussed.

  7. Nonlinear, finite deformation, finite element analysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhung; Waas, Anthony M.

    2016-06-01

    The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated

  8. Infinite Possibilities for the Finite Element.

    ERIC Educational Resources Information Center

    Finlayson, Bruce A.

    1981-01-01

    Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)

  9. SUPG Finite Element Simulations of Compressible Flows

    NASA Technical Reports Server (NTRS)

    Kirk, Brnjamin, S.

    2006-01-01

    The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.

  10. A multigrid solution method for mixed hybrid finite elements

    SciTech Connect

    Schmid, W.

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  11. Peridynamic Multiscale Finite Element Methods

    SciTech Connect

    Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald

    2015-12-01

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the

  12. Three-phase compositional modeling of CO2 injection by higher-order finite element methods with CPA equation of state for aqueous phase

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Li, Zhidong; Firoozabadi, Abbas

    2012-12-01

    Most simulators for subsurface flow of water, gas, and oil phases use empirical correlations, such as Henry's law, for the CO2 composition in the aqueous phase, and equations of state (EOS) that do not represent the polar interactions between CO2and water. Widely used simulators are also based on lowest-order finite difference methods and suffer from numerical dispersion and grid sensitivity. They may not capture the viscous and gravitational fingering that can negatively affect hydrocarbon (HC) recovery, or aid carbon sequestration in aquifers. We present a three-phase compositional model based on higher-order finite element methods and incorporate rigorous and efficient three-phase-split computations for either three HC phases or water-oil-gas systems. For HC phases, we use the Peng-Robinson EOS. We allow solubility of CO2in water and adopt a new cubic-plus-association (CPA) EOS, which accounts for cross association between H2O and CO2 molecules, and association between H2O molecules. The CPA-EOS is highly accurate over a broad range of pressures and temperatures. The main novelty of this work is the formulation of a reservoir simulator with new EOS-based unique three-phase-split computations, which satisfy both the equalities of fugacities in all three phases and the global minimum of Gibbs free energy. We provide five examples that demonstrate twice the convergence rate of our method compared with a finite difference approach, and compare with experimental data and other simulators. The examples consider gravitational fingering during CO2sequestration in aquifers, viscous fingering in water-alternating-gas injection, and full compositional modeling of three HC phases.

  13. Improving the accuracy of mass-lumped finite-elements in the first-order formulation of the wave equation by defect correction

    NASA Astrophysics Data System (ADS)

    Shamasundar, R.; Mulder, W. A.

    2016-10-01

    Finite-element discretizations of the acoustic wave equation in the time domain often employ mass lumping to avoid the cost of inverting a large sparse mass matrix. For the second-order formulation of the wave equation, mass lumping on Legendre-Gauss-Lobatto points does not harm the accuracy. Here, we consider a first-order formulation of the wave equation. In that case, the numerical dispersion for odd-degree polynomials exhibits super-convergence with a consistent mass matrix but mass lumping destroys that property. We consider defect correction as a means to restore the accuracy, in which the consistent mass matrix is approximately inverted using the lumped one as preconditioner. For the lowest-degree element on a uniform mesh, fourth-order accuracy in 1D can be obtained with just a single iteration of defect correction. The numerical dispersion curve describes the error in the eigenvalues of the discrete set of equations. However, the error in the eigenvectors also play a role, in two ways. For polynomial degrees above one and when considering a 1-D mesh with constant element size and constant material properties, a number of modes, equal to the maximum polynomial degree, are coupled. One of these is the correct physical mode that should approximate the true eigenfunction of the operator, the other are spurious and should have a small amplitude when the true eigenfunction is projected onto them. We analyze the behaviour of this error as a function of the normalized wavenumber in the form of the leading terms in its series expansion and find that this error exceeds the dispersion error, except for the lowest degree where the eigenvector error is zero. Numerical 1-D tests confirm this behaviour. We briefly analyze the 2-D case, where the lowest-degree polynomial also appears to provide fourth-order accuracy with defect correction, if the grid of squares or triangles is highly regular and material properties are constant.

  14. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  15. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  16. Revolution in Orthodontics: Finite element analysis

    PubMed Central

    Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush

    2016-01-01

    Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948

  17. Probabilistic finite element analysis of a craniofacial finite element model.

    PubMed

    Berthaume, Michael A; Dechow, Paul C; Iriarte-Diaz, Jose; Ross, Callum F; Strait, David S; Wang, Qian; Grosse, Ian R

    2012-05-01

    We employed a probabilistic finite element analysis (FEA) method to determine how variability in material property values affects stress and strain values in a finite model of a Macaca fascicularis cranium. The material behavior of cortical bone varied in three ways: isotropic homogeneous, isotropic non-homogeneous, and orthotropic non-homogeneous. The material behavior of the trabecular bone and teeth was always treated as isotropic and homogeneous. All material property values for the cranium were randomized with a Gaussian distribution with either coefficients of variation (CVs) of 0.2 or with CVs calculated from empirical data. Latin hypercube sampling was used to determine the values of the material properties used in the finite element models. In total, four hundred and twenty six separate deterministic FE simulations were executed. We tested four hypotheses in this study: (1) uncertainty in material property values will have an insignificant effect on high stresses and a significant effect on high strains for homogeneous isotropic models; (2) the effect of variability in material property values on the stress state will increase as non-homogeneity and anisotropy increase; (3) variation in the in vivo shear strain values reported by Strait et al. (2005) and Ross et al. (2011) is not only due to variations in muscle forces and cranial morphology, but also due to variation in material property values; (4) the assumption of a uniform coefficient of variation for the material property values will result in the same trend in how moderate-to-high stresses and moderate-to-high strains vary with respect to the degree of non-homogeneity and anisotropy as the trend found when the coefficients of variation for material property values are calculated from empirical data. Our results supported the first three hypotheses and falsified the fourth. When material properties were varied with a constant CV, as non-homogeneity and anisotropy increased the level of variability in

  18. Domain decomposition methods for mortar finite elements

    SciTech Connect

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  19. A 3D finite element-based model order reduction method for parametric resonance and whirling analysis of anisotropic rotor-bearing systems

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Wang, Yu; Zi, Yanyang; He, Zhengjia

    2015-12-01

    A generalized and efficient model for rotating anisotropic rotor-bearing systems is presented in this paper with full considerations of the system's anisotropy in stiffness, inertia and damping. Based on the 3D finite element model and the model order reduction method, the effects of anisotropy in shaft and bearings on the forced response and whirling of anisotropic rotor-bearing systems are systematically investigated. First, the coefficients of journal bearings are transformed from the fixed frame to the rotating one. Due to the anisotropy in shaft and bearings, the motion is governed by differential equations with periodically time-variant coefficients. Then, a free-interface complex component mode synthesis (CMS) method is employed to generate efficient reduced-order models (ROM) for the periodically time-variant systems. In order to solve the obtained equations, a variant of Hill's method for systems with multiple harmonic excitations is developed. Four dimensionless parameters are defined to quantify the types and levels of anisotropy of bearings. Finally, the effects of the four types of anisotropy on the forced response and whirl orbits are studied. Numerical results show that the anisotropy of bearings in stiffness splits the sole resonant peak into two isolated ones, but the anisotropy of bearings in damping coefficients mainly affect the response amplitudes. Moreover, the whirl orbits become much more complex when the shaft and bearings are both anisotropic. In addition, the cross-coupling stiffness coefficients of bearings significantly affect the dynamic behaviors of the systems and cannot be neglected, though they are often much smaller than the principle stiffness terms.

  20. First-Order Systems Least-Squares Finite Element Methods and Nested Iteration for Electromagnetic Two-Fluid Kinetic-Based Plasma Models

    NASA Astrophysics Data System (ADS)

    Leibs, Christopher A.

    Efforts are currently being directed towards a fully implicit, electromagnetic, JFNK-based solver, motivating the necessity of developing a fluid-based, electromag- netic, preconditioning strategy. The two-fluid plasma (TFP) model is an ideal approximation to the kinetic Jacobian. The TFP model couples both an ion and an electron fluid with Maxwell's equations. The fluid equations consist of the conservation of momentum and number density. A Darwin approximation of Maxwell is used to eliminate light waves from the model in order to facilitate coupling to non-relativistic particle models. We analyze the TFP-Darwin system in the context of a stand-alone solver with consideration of preconditioning a kinetic-JFNK approach. The TFP-Darwin system is addressed numerically by use of nested iteration (NI) and a First-Order Systems Least Squares (FOSLS) discretization. An important goal of NI is to produce an approximation that is within the basis of attraction for Newton's method on a relatively coarse mesh and, thus, on all subsequent meshes. After scaling and modification, the TFP-Darwin model yields a nonlinear, first-order system of equa- tions whose Frechet derivative is shown to be uniformly H1-elliptic in a neighborhood of the exact solution. H1 ellipticity yields optimal finite element performance and lin- ear systems amenable to solution with Algebraic Multigrid (AMG). To efficiently focus computational resources, an adaptive mesh refinement scheme, based on the accuracy per computational cost, is leveraged. Numerical tests demonstrate the efficacy of the approach, yielding an approximate solution within discretization error in a relatively small number of computational work units.

  1. Albany/FELIX: A parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    DOE PAGES

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-27

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, alongmore » with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.« less

  2. Albany/FELIX: a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    NASA Astrophysics Data System (ADS)

    Kalashnikova, I.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2014-11-01

    This paper describes a new parallel, scalable and robust finite-element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and Template-Based Generic Programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using: (1) new test cases derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution is then studied on problems involving a realistic Greenland ice sheet geometry discretized using structured and unstructured meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.

  3. Albany/FELIX: a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    NASA Astrophysics Data System (ADS)

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-01

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.

  4. Albany/FELIX: A parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    SciTech Connect

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-27

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.

  5. An efficient finite element solution for gear dynamics

    NASA Astrophysics Data System (ADS)

    Cooley, C. G.; Parker, R. G.; Vijayakar, S. M.

    2010-06-01

    A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.

  6. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  7. Optimal least-squares finite element method for elliptic problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1991-01-01

    An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.

  8. Finite-Element Composite-Analysis Program

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1990-01-01

    Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.

  9. 3-D Finite Element Code Postprocessor

    1996-07-15

    TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.

  10. Books and monographs on finite element technology

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1985-01-01

    The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.

  11. Overcoming element erosion limitations within Lagrangian finite element codes

    NASA Astrophysics Data System (ADS)

    Vignjevic, Rade; Hughes, Kevin; Walker, Andrew; Taylor, Emma A.

    2001-10-01

    Lagrangian finite element methods have been used extensively in the past to study the non-linear transient behaviour of materials, ranging from crash test of cars to simulating bird strikes on planes.... However, as this type of space discretization does not allow for motion of the material through the mesh when modelling extremely large deformations, the mesh becomes highly distorted. This paper describes some limitations and applicability of this type of analysis for high velocity impacts. A method for dealing with this problem is by the erosion of elements is proposed where the main issue is the deformation of element failure strains. Results were compared with empirical perforation results and were found to be in good agreement. The results were then used to simulate high velocity impacts upon a multi-layered aluminium target, in order to predict a ballistic limit curve. LS-DYNA3D was used as the FE solver for all simulations. Meshes were generated with Truegrid.

  12. Will Finite Elements Replace Structural Mechanics?

    NASA Astrophysics Data System (ADS)

    Ojalvo, I. U.

    1984-01-01

    This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.

  13. Assignment Of Finite Elements To Parallel Processors

    NASA Technical Reports Server (NTRS)

    Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.

    1990-01-01

    Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.

  14. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  15. A survey of mixed finite element methods

    NASA Technical Reports Server (NTRS)

    Brezzi, F.

    1987-01-01

    This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.

  16. Finite element modeling of the human pelvis

    SciTech Connect

    Carlson, B.

    1995-11-01

    A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.

  17. Finite Element Vibration Analysis of Rectangular Membrane

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Lin, W. J.; Leung, A. Y. T.

    2010-05-01

    Some pre-tensioned 4-node rectangular elements and 8-node triangular elements are constructed for the free vibration analysis of membranes by finite element. The shape functions are given to derive the element stiffness and mass matrices in accordance with the minimum potential energy principle. Two typical examples show that the calculation by the 4-node rectangular element is very close to the theoretical solution, and 8-node rectangular element has higher accuracy than the 4-node rectangular element. For dense grid, the result is almost consistent with the theoretical solution.

  18. Finite element analysis of flexible, rotating blades

    NASA Technical Reports Server (NTRS)

    Mcgee, Oliver G.

    1987-01-01

    A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.

  19. Finite Element Interface to Linear Solvers

    SciTech Connect

    Williams, Alan

    2005-03-18

    Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.

  20. Least-squares finite element methods for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Carey, G. F.

    1990-01-01

    A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.

  1. Finite-element models of continental extension

    NASA Technical Reports Server (NTRS)

    Lynch, H. David; Morgan, Paul

    1990-01-01

    Numerical models of the initial deformation of extending continental lithosphere, computed to investigate the control of preexisting thermal and mechanical heterogeneities on the style of deformation, are presented. The finite element method is used to calculate deformation with a viscoelastic-plastic model for the lithosphere. Comparisons of the results of analytic models and finite-element models using this method show that good results may be obtained by the numerical technique, even with elements containing both brittle and viscoelastic sampling points. It is shown that the gross style of initial extensional deformation is controlled by the depth and width of the initial heterogeneity which localizes deformation.

  2. Quadrilateral finite element mesh coarsening

    DOEpatents

    Staten, Matthew L; Dewey, Mark W; Benzley, Steven E

    2012-10-16

    Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.

  3. Finite element formulations for compressible flows

    NASA Technical Reports Server (NTRS)

    Tezduyar, Tayfun E.

    1989-01-01

    Researchers started their studies on the development and application of computational methods for compressible flows. Particular attention was given to proper numerical treatment of sharp layers occurring in such problems and to general mesh generation capabilities for intricate computational geometries. Mainly finite element methods enhanced with several state-of-the art techniques (such as the streamline-upwind/Petrov-Galerkin, discontinuity capturing, adaptive implicit-explicit, and trouped element-by-element approximate factorization schemes) were employed.

  4. Finite element analyses of CCAT preliminary design

    NASA Astrophysics Data System (ADS)

    Sarawit, Andrew T.; Kan, Frank W.

    2014-07-01

    This paper describes the development of the CCAT telescope finite element model (FEM) and the analyses performed to support the preliminary design work. CCAT will be a 25 m diameter telescope operating in the 0.2 to 2 mm wavelength range. It will be located at an elevation of 5600 m on Cerro Chajnantor in Northern Chile, near ALMA. The telescope will be equipped with wide-field cameras and spectrometers mounted at the two Nasmyth foci. The telescope will be inside an enclosure to protect it from wind buffeting, direct solar heating, and bad weather. The main structures of the telescope include a steel Mount and a carbon-fiber-reinforced-plastic (CFRP) primary truss. The finite element model developed in this study was used to perform modal, frequency response, seismic response spectrum, stress, and deflection analyses of telescope. Modal analyses of telescope were performed to compute the structure natural frequencies and mode shapes and to obtain reduced order modal output at selected locations in the telescope structure to support the design of the Mount control system. Modal frequency response analyses were also performed to compute transfer functions at these selected locations. Seismic response spectrum analyses of the telescope subject to the Maximum Likely Earthquake were performed to compute peak accelerations and seismic demand stresses. Stress analyses were performed for gravity load to obtain gravity demand stresses. Deflection analyses for gravity load, thermal load, and differential elevation drive torque were performed so that the CCAT Observatory can verify that the structures meet the stringent telescope surface and pointing error requirements.

  5. Solving finite element equations on concurrent computers

    NASA Technical Reports Server (NTRS)

    Nour-Omid, B.; Raefsky, A.; Lyzenga, G.

    1987-01-01

    This paper discusses the development of a concurrent algorithm for the solution of systems of equations arising in finite element applications. The approach is based on a hybrid of direct elimination method and preconditioned conjugate iteration. Two different preconditioners are used; diagonal scaling and a concurrent implementation of incomplete LU factorization. First, an automatic procedure is used to partition the finite element mesh into sub-structures. The particular mesh partition is chosen to minimize an estimate of the cost for evaluating the solution using this algorithm on a concurrent computer. These procedures are implemented in a finite element program on the JPL/CalTech MARK III hypercube computer. An overview of the structure of this program is presented. The performance of the solution method is demonstrated with the aid of a number of numerical test runs, and its advantages for concurrent implementations are discussed. Efficiency and speed-up factors over sequential machines for the numerical examples are highlighted.

  6. Parallel processing in finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1987-01-01

    A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).

  7. Derivation of a Tappered p-Version Beam Finite Element

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.

    1989-01-01

    A tapered p-version beam finite element suitable for dynamic applications is derived. The taper in the element is represented by allowing the area moments of inertia to vary as quartic polynomials along the length of the beam, and the cross-sectional area to vary as a quadratic polynomial. The p-version finite-element characteristics are implemented through a set of polynomial shape functions. The lower-order shape functions are identical to the classical cubic and linear shape functions normally associated with a beam element. The higher-order shape functions are a hierarchical set of polynomials that are integrals of orthogonal polynomials. Explicit expressions for the mass and stiffness matrices are presented for an arbitrary value of p. The element has been verified to be numerically stable using shape functions through 22nd order.

  8. Finite element radiation transport in one dimension

    SciTech Connect

    Painter, J.F.

    1997-05-09

    A new physics package solves radiation transport equations in one space dimension, multiple energy groups and directions. A discontinuous finite element method discretizes radiation intensity with respect to space and angle, and a continuous finite element method discretizes electron temperature `in space. A splitting method solves the resulting linear equations. This is a one-dimensional analog of Kershaw and Harte`s two-dimensional package. This package has been installed in a two-dimensional inertial confinement fusion code, and has given excellent results for both thermal waves and highly directional radiation. In contrast, the traditional discrete ordinate and spherical harmonic methods show less accurate results in both cases.

  9. Finite element methods for enhanced oil recovery Simulation

    SciTech Connect

    Cohen, M.F.

    1985-02-01

    A general, finite element procedure for reservoir simulation is presented. This effort is directed toward improving the numerical behavior of standard upstream, or upwind, finite difference techniques, without significantly increasing the computational costs. Two methods from previous authors' work are modified and developed: upwind finite elements and the Petrov-Galerkin method. These techniques are applied in a one- and two-dimensional, surfactant/ polymer simulator. The paper sets forth the mathematical formulation and several details concerning the implementation. The results indicate that the PetrovGalerkin method does significantly reduce numericaldiffusion errors, while it retains the stability of the first-order, upwind methods. It is also relatively simple to implement. Both the upwind, and PetrovGalerkin, finite element methods demonstrate little sensitivity to grid orientation.

  10. Deformation modes in the finite element absolute nodal coordinate formulation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Hiroyuki; Gerstmayr, Johannes; Shabana, Ahmed A.

    2006-12-01

    The objective of this study is to provide interpretation of the deformation modes in the finite element absolute nodal coordinate formulation using several strain definitions. In this finite element formulation, the nodal coordinates consist of absolute position coordinates and gradients that can be used to define a unique rotation and deformation fields within the element as well as at the nodal points. The results obtained in this study clearly show cross-section deformation modes eliminated when the number of the finite element nodal coordinates is systematically and consistently reduced. Using the procedure discussed in this paper one can obtain a reduced order dynamic model, eliminate position vector gradients that introduce high frequencies to the solution of some problems, achieve the continuity of the remaining gradients at the nodal points, and obtain a formulation that automatically satisfies the principle of work and energy. Furthermore, the resulting dynamic model, unlike large rotation finite element formulations, leads to a unique rotation field, and as a consequence, the obtained formulation does not suffer from the problem of coordinate redundancy that characterizes existing large deformation finite element formulations. In order to accurately define strain components that can have easy physical interpretation, a material coordinate system is introduced to define the material element rotation and deformation. Using the material coordinate system, the Timoshenko-Reissner and Euler -Bernoulli beam models can be systematically obtained as special cases of the absolute nodal coordinate formulation beam models. While a constraint approach is used in this study to eliminate the cross-section deformation modes, it is important to point out as mentioned in this paper that lower-order finite elements, some of which already presented in previous investigations, can be efficiently used in thin and stiff structure applications.

  11. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  12. Slave finite elements: The temporal element approach to nonlinear analysis

    NASA Technical Reports Server (NTRS)

    Gellin, S.

    1984-01-01

    A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.

  13. Adaptive finite element strategies for shell structures

    NASA Technical Reports Server (NTRS)

    Stanley, G.; Levit, I.; Stehlin, B.; Hurlbut, B.

    1992-01-01

    The present paper extends existing finite element adaptive refinement (AR) techniques to shell structures, which have heretofore been neglected in the AR literature. Specific challenges in applying AR to shell structures include: (1) physical discontinuities (e.g., stiffener intersections); (2) boundary layers; (3) sensitivity to geometric imperfections; (4) the sensitivity of most shell elements to mesh distortion, constraint definition and/or thinness; and (5) intrinsic geometric nonlinearity. All of these challenges but (5) are addressed here.

  14. A multidimensional finite element method for CFD

    NASA Technical Reports Server (NTRS)

    Pepper, Darrell W.; Humphrey, Joseph W.

    1991-01-01

    A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.

  15. Quadrilateral/hexahedral finite element mesh coarsening

    DOEpatents

    Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E

    2012-10-16

    A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.

  16. Finite element modeling of nonisothermal polymer flows

    NASA Technical Reports Server (NTRS)

    Roylance, D.

    1981-01-01

    A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.

  17. Animation of finite element models and results

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1992-01-01

    This is not intended as a complete review of computer hardware and software that can be used for animation of finite element models and results, but is instead a demonstration of the benefits of visualization using selected hardware and software. The role of raw computational power, graphics speed, and the use of videotape are discussed.

  18. Finite element displacement analysis of a lung.

    NASA Technical Reports Server (NTRS)

    Matthews, F. L.; West, J. B.

    1972-01-01

    A method is given based on the technique of finite elements which determines theoretically the mechanical behavior of a lung-shaped body loaded by its own weight. The results of this theoretical analysis have been compared with actual measurements of alveolar size and pleural pressures in animal lungs.

  19. Finite element analysis of a meniscus mirror

    NASA Astrophysics Data System (ADS)

    Yamashita, Y.

    1989-10-01

    Finite element analyses were carried out for a 7.5 m meniscus mirror of 20 cm thickness. Calculations were made for deformations of the mirror surface due to the gravity and the effect of a hole through which a lateral supporting mechanism would be installed. Vibrational eigenmodes were also calculated when the mirror is fixed by three axial and three lateral hard points.

  20. Direct finite element equation solving algorithms

    NASA Technical Reports Server (NTRS)

    Melosh, R. J.; Utku, S.; Salama, M.

    1985-01-01

    This paper presents and examines direct solution algorithms for the linear simultaneous equations that arise when finite element models represent an engineering system. It identifies the mathematical processing of four solution methods and assesses their data processing implications using concurrent processing.

  1. On Hybrid and mixed finite element methods

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1981-01-01

    Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.

  2. Finite element computation with parallel VLSI

    NASA Technical Reports Server (NTRS)

    Mcgregor, J.; Salama, M.

    1983-01-01

    This paper describes a parallel processing computer consisting of a 16-bit microcomputer as a master processor which controls and coordinates the activities of 8086/8087 VLSI chip set slave processors working in parallel. The hardware is inexpensive and can be flexibly configured and programmed to perform various functions. This makes it a useful research tool for the development of, and experimentation with parallel mathematical algorithms. Application of the hardware to computational tasks involved in the finite element analysis method is demonstrated by the generation and assembly of beam finite element stiffness matrices. A number of possible schemes for the implementation of N-elements on N- or n-processors (N is greater than n) are described, and the speedup factors of their time consumption are determined as a function of the number of available parallel processors.

  3. Finite Element Interface to Linear Solvers

    2005-03-18

    Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on themore » problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.« less

  4. Finite Element Heat & Mass Transfer Code

    1996-10-10

    FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; andmore » double porosity and double porosity/double permeability capabilities.« less

  5. Finite element modeling of retinal prosthesis mechanics

    NASA Astrophysics Data System (ADS)

    Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.

    2009-10-01

    Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.

  6. Experiences in interfacing NASTRAN with another finite element program

    NASA Technical Reports Server (NTRS)

    Schwerzler, D. D.; Leverenz, R. K.

    1972-01-01

    The coupling of NASTRAN to another finite element program developed for the static analysis of automotive structures is discussed. The two programs were coupled together to use the substructuring capability of the in-house program and the normal mode analysis capability of NASTRAN. Modifications were made to the NASTRAN program in order to make the coupling feasible.

  7. Substructure System Identification for Finite Element Model Updating

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Blades, Eric L.

    1997-01-01

    This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.

  8. A weak Galerkin generalized multiscale finite element method

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-03-31

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  9. Flow Applications of the Least Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  10. An Object Oriented, Finite Element Framework for Linear Wave Equations

    SciTech Connect

    Koning, Joseph M.

    2004-03-01

    This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.

  11. Adaptive finite-element ballooning analysis of bipolar ionized fields

    SciTech Connect

    Al-Hamouz, Z.M.

    1995-12-31

    This paper presents an adaptive finite-element iterative method for the analysis of the ionized field around high-voltage bipolar direct-current (HVDC) transmission line conductors without resort to Deutsch`s assumption. A new iterative finite-element ballooning technique is proposed to solve Poisson`s equation wherein the commonly used artificial boundary around the transmission line conductors is simulated at infinity. Unlike all attempts reported in the literature for the solution of ionized field, the constancy of the conductors` surface field at the corona onset value is directly implemented in the finite-element formulation. In order to investigate the effectiveness of the proposed method, a laboratory model was built. It has been found that the calculated V-I characteristics and the ground-plane current density agreed well with those measured experimentally. The simplicity in computer programming in addition to the low number of iterations required to achieve convergence characterize this method of analysis.

  12. A finite element code for electric motor design

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1994-01-01

    FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.

  13. Finite element analysis of human joints

    SciTech Connect

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.

  14. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  15. Finite Element Analysis of Honeycomb Impact Attenuator

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Yong; Choi, Seung-Kyu; Kim, Nohyu

    To participate in Student Formula Society of Automotive Engineers (SAE) competitions, it is necessary to build an impact attenuator that would give an average deceleration not to exceed 20g when it runs into a rigid wall. Students can use numerical simulations or experimental test data to show that their car satisfies this safety requirement. A student group to study formula cars at the Korea University of Technology and Education has designed a vehicle to take part in a SAE competition, and a honeycomb structure was adopted as the impact attenuator. In this paper, finite element calculations were carried out to investigate the dynamic behavior of the honeycomb attenuator. Deceleration and deformation behaviors were studied. Effect of the yield strength was checked by comparing the numerical results. ABAQUS/Explicit finite element code was used.

  16. Finite Element Analysis of Reverberation Chambers

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.; Nguyen, Duc T.

    2000-01-01

    The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.

  17. Finite element based electric motor design optimization

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  18. Finite element methods in fracture mechanics

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.; Moyer, E. T., Jr.

    1989-01-01

    Finite-element methodology specific to the analysis of fracture mechanics problems is reviewed. Primary emphasis is on the important algorithmic developments which have enhanced the numerical modeling of fracture processes. Methodologies to address elastostatic problems in two and three dimensions, elastodynamic problems, elastoplastic problems, special considerations for three-dimensional nonlinear problems, and the modeling of stable crack growth are reviewed. In addition, the future needs of the fracture community are discussed and open questions are identified.

  19. Finite element based electric motor design optimization

    NASA Astrophysics Data System (ADS)

    Campbell, C. Warren

    1993-11-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  20. Finite Element Results Visualization for Unstructured Grids

    SciTech Connect

    Speck, Douglas E.; Dovey, Donald J.

    1996-07-15

    GRIZ is a general-purpose post-processing application supporting interactive visualization of finite element analysis results on unstructured grids. In addition to basic pseudocolor renderings of state variables over the mesh surface, GRIZ provides modern visualization techniques such as isocontours and isosurfaces, cutting planes, vector field display, and particle traces. GRIZ accepts both command-line and mouse-driven input, and is portable to virtually any UNIX platform which provides Motif and OpenGl libraries.

  1. ExodusII Finite Element Data Model

    SciTech Connect

    2005-05-14

    EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface. (exodus II is based on netcdf)

  2. EXODUS II: A finite element data model

    SciTech Connect

    Schoof, L.A.; Yarberry, V.R.

    1994-09-01

    EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).

  3. Finite element analysis of wrinkling membranes

    NASA Technical Reports Server (NTRS)

    Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.

    1984-01-01

    The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.

  4. Variational approach to probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1991-01-01

    Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  5. FESDIF -- Finite Element Scalar Diffraction theory code

    SciTech Connect

    Kraus, H.G.

    1992-09-01

    This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.

  6. Finite Element Method for Capturing Ultra-relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.

    2003-01-01

    While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.

  7. Transient finite element method using edge elements for moving conductor

    SciTech Connect

    Tani, Koji; Nishio, Takayuki; Yamada, Takashi ); Kawase, Yoshihiro . Dept. of Information Science)

    1999-05-01

    For the next generation of high speed railway systems and automobiles new braking systems are currently under development. These braking systems take into account the eddy currents, which are produced by the movement of the conductor in the magnetic field. For their optimum design, it is necessary to know the distribution of eddy currents in the moving conductor. The finite element method (FEM) is often used to simulate them. Here, transient finite element method using edge elements for moving conductor is presented. Here the magnetic vector potential is interpolated at the upwind position and the time derivative term is discretized by the backward difference method. As a result, the system matrix becomes symmetric and the ICCG method is applicable to solve the matrix. This method is used to solve an eddy current rail brake system. The results demonstrate that this approach is suitable to solve transient problems involving movement.

  8. Finite element dynamic analysis on CDC STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lambiotte, J. J., Jr.

    1978-01-01

    Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.

  9. Implicit extrapolation methods for multilevel finite element computations

    SciTech Connect

    Jung, M.; Ruede, U.

    1994-12-31

    The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.

  10. Modal Substructuring of Geometrically Nonlinear Finite-Element Models

    DOE PAGES

    Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.

    2016-02-01

    The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less

  11. The strain-based beam finite elements in multibody dynamics

    NASA Astrophysics Data System (ADS)

    Gams, M.; Planinc, I.; Saje, M.

    2007-08-01

    We present a strain-based finite-element formulation for the dynamic analysis of flexible elastic planar multibody systems, composed of planar beams. We consider finite displacements, rotations and strains. The discrete dynamic equations of motion are obtained by the collocation method. The strains are the basic interpolated variables, which makes the formulation different from other formulations. The further speciality of the formulation is the strong satisfaction of the cross-sectional constitutive conditions at collocation points. In order to avoid the nested integrations, a special algorithm for the numerical integration over the length of the finite element is proposed. The midpoint scheme is used for the time integration. The performance of the formulation is illustrated via numerical examples, including a stiff multibody system.

  12. Modelling bucket excavation by finite element

    NASA Astrophysics Data System (ADS)

    Pecingina, O. M.

    2015-11-01

    Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the

  13. Modelling the arterial wall by finite elements.

    PubMed

    Mosora, F; Harmant, A; Bernard, C; Fossion, A; Pochet, T; Juchmes, J; Cescotto, S

    1993-01-01

    The mechanical behaviour of the arterial wall was determined theoretically utilizing some parameters of blood flow measured in vivo. Continuous experimental measurements of pressure and diameter were recorded in anesthetized dogs on the thoracic ascending and midabdominal aorta. The pressure was measured by using a catheter, and the diameter firstly, at the same site, by a plethysmograph with mercury gauge and secondly, by a sonomicrometer with ferroelectric ceramic transducers. The unstressed radius and thickness were measured at the end of each experiment in situ. Considering that the viscous component is not important relatively to the nonlinear component of the elasticity and utilizing several equations for Young modulus calculation (thick and thin wall circular cylindrical tube formulas and Bergel's equation) the following values were obtained for this parameter: 0.6 MPa-2 MPa in midabdominal aorta and 2 MPa-6.5 MPa in thoracic ascending aorta. The behaviour of the aorta wall was modelled considering an elastic law and using the finite element program "Lagamine" working in large deformations. The discretized equilibrium equations are non-linear and a unique axi-symmetric, iso-parametric element of 1 cm in length with 8 knots was used for this bi-dimensional problem. The theoretical estimation of radius vessel, utilizing a constant 5 MPa Young modulus and also a variable one, are in good agreement with the experimental results, showing that this finite element model can be applied to study mechanical properties of the arteries in physiological and pathological conditions.

  14. Discontinuous dual-primal mixed finite elements for elliptic problems

    NASA Technical Reports Server (NTRS)

    Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo

    2000-01-01

    We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.

  15. Adaptive mesh generation for edge-element finite element method

    NASA Astrophysics Data System (ADS)

    Tsuboi, Hajime; Gyimothy, Szabolcs

    2001-06-01

    An adaptive mesh generation method for two- and three-dimensional finite element methods using edge elements is proposed. Since the tangential component continuity is preserved when using edge elements, the strategy of creating new nodes is based on evaluation of the normal component of the magnetic vector potential across element interfaces. The evaluation is performed at the middle point of edge of a triangular element for two-dimensional problems or at the gravity center of triangular surface of a tetrahedral element for three-dimensional problems. At the boundary of two elements, the error estimator is the ratio of the normal component discontinuity to the maximum value of the potential in the same material. One or more nodes are set at the middle points of the edges according to the value of the estimator as well as the subdivision of elements where new nodes have been created. A final mesh will be obtained after several iterations. Some computation results of two- and three-dimensional problems using the proposed method are shown.

  16. 2-D Finite Element Heat Conduction

    1989-10-30

    AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less

  17. Chemorheology of reactive systems: Finite element analysis

    NASA Technical Reports Server (NTRS)

    Douglas, C.; Roylance, D.

    1982-01-01

    The equations which govern the nonisothermal flow of reactive fluids are outlined, and the means by which finite element analysis is used to solve these equations for the sort of arbitrary boundary conditions encountered in industrial practice are described. The performance of the computer code is illustrated by several trial problems, selected more for their value in providing insight to polymer processing flows than as practical production problems. Although a good deal remains to be learned as to the performance and proper use of this numerical technique, it is undeniably useful in providing better understanding of today's complicated polymer processing problems.

  18. A finite element model of ultrasonic extrusion

    NASA Astrophysics Data System (ADS)

    Lucas, M.; Daud, Y.

    2009-08-01

    Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.

  19. Algebraic surface design and finite element meshes

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.

    1992-01-01

    Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.

  20. Moving finite elements in 2-D

    NASA Technical Reports Server (NTRS)

    Gelinas, R. J.; Doss, S. K.; Vajk, J. P.; Djomehri, J.; Miller, K.

    1983-01-01

    The mathematical background regarding the moving finite element (MFE) method of Miller and Miller (1981) is discussed, taking into account a general system of partial differential equations (PDE) and the amenability of the MFE method in two dimensions to code modularization and to semiautomatic user-construction of numerous PDE systems for both Dirichlet and zero-Neumann boundary conditions. A description of test problem results is presented, giving attention to aspects of single square wave propagation, and a solution of the heat equation.

  1. Advance finite element modeling of rotor blade aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Sangha, K. B.; Panda, B.

    1994-01-01

    An advanced beam finite element has been developed for modeling rotor blade dynamics and aeroelasticity. This element is part of the Element Library of the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The element allows modeling of arbitrary rotor systems, including bearingless rotors. It accounts for moderately large elastic deflections, anisotropic properties, large frame motion for maneuver simulation, and allows for variable order shape functions. The effects of gravity, mechanically applied and aerodynamic loads are included. All kinematic quantities required to compute airloads are provided. In this paper, the fundamental assumptions and derivation of the element matrices are presented. Numerical results are shown to verify the formulation and illustrate several features of the element.

  2. Finite-Element Analysis of Multiphase Immiscible Flow Through Soils

    NASA Astrophysics Data System (ADS)

    Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.

    1987-04-01

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.

  3. Impeller deflection and modal finite element analysis.

    SciTech Connect

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  4. Finite element analysis of bolted flange connections

    NASA Astrophysics Data System (ADS)

    Hwang, D. Y.; Stallings, J. M.

    1994-06-01

    A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.

  5. Finite element analysis of multilayer coextrusion.

    SciTech Connect

    Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A.; Mrozek, Randy A.; Lenhart, Joseph Ludlow; Rao, Rekha Ranjana; Collins, Robert; Mondy, Lisa Ann

    2011-09-01

    Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

  6. A Family of Uniform Strain Tetrahedral Elements and a Method for Connecting Dissimilar Finite Element Meshes

    SciTech Connect

    Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.

    1999-01-01

    This report documents a collection of papers on a family of uniform strain tetrahedral finite elements and their connection to different element types. Also included in the report are two papers which address the general problem of connecting dissimilar meshes in two and three dimensions. Much of the work presented here was motivated by the development of the tetrahedral element described in the report "A Suitable Low-Order, Eight-Node Tetrahedral Finite Element For Solids," by S. W. Key {ital et al.}, SAND98-0756, March 1998. Two basic issues addressed by the papers are: (1) the performance of alternative tetrahedral elements with uniform strain and enhanced uniform strain formulations, and (2) the proper connection of tetrahedral and other element types when two meshes are "tied" together to represent a single continuous domain.

  7. Finite element calculation of residual stress in dental restorative material

    NASA Astrophysics Data System (ADS)

    Grassia, Luigi; D'Amore, Alberto

    2012-07-01

    A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.

  8. An Efficient Vector Finite Element Method for Nonlinear Electromagnetic Modeling

    SciTech Connect

    Fisher, A C; White, D A; Rodrigue, G H

    2006-06-27

    We have developed a mixed Vector Finite Element Method (VFEM) for Maxwell's equations with a nonlinear polarization term. The method allows for discretization of complicated geometries with arbitrary order representations of the B and E fields. In this paper we will describe the method and a series of optimizations that significantly reduce the computational cost. Additionally, a series of test simulations will be presented to validate the method. Finally, a nonlinear waveguide mode mixing example is presented and discussed.

  9. Least-squares finite element method for fluid dynamics

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1989-01-01

    An overview is given of new developments of the least squares finite element method (LSFEM) in fluid dynamics. Special emphasis is placed on the universality of LSFEM; the symmetry and positiveness of the algebraic systems obtained from LSFEM; the accommodation of LSFEM to equal order interpolations for incompressible viscous flows; and the natural numerical dissipation of LSFEM for convective transport problems and high speed compressible flows. The performance of LSFEM is illustrated by numerical examples.

  10. Domain decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation

    NASA Astrophysics Data System (ADS)

    Beilina, Larisa

    2016-08-01

    We present domain decomposition finite element/finite difference method for the solution of hyperbolic equation. The domain decomposition is performed such that finite elements and finite differences are used in different subdomains of the computational domain: finite difference method is used on the structured part of the computational domain and finite elements on the unstructured part of the domain. Explicit discretizations for both methods are constructed such that the finite element and the finite difference schemes coincide on the common structured overlapping layer between computational subdomains. Then the resulting approach can be considered as a pure finite element scheme which avoids instabilities at the interfaces. We derive an energy estimate for the underlying hyperbolic equation with absorbing boundary conditions and illustrate efficiency of the domain decomposition method on the reconstruction of the conductivity function in three dimensions.

  11. Thermal Radiation Transport on Unstructured Finite Element Meshes

    SciTech Connect

    R. P. Smedley-Stevenson

    2000-11-12

    This paper describes investigations on the use of finite element methods to solve the time-dependent thermal radiation transport equations on unstructured meshes. The solution of this equation will be incorporated in AWE's two-dimensional (2-D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic code CORVUS in order to solve complex radiation hydrodynamic problems. A 2-D discretization of the grey transport equation has been studied based on the use of lumped linear DFEs for the spatial variation and piecewise constant finite elements for the angular variation. The use of an adaptive angular approximation has been explored in order to improve the computational efficiency, together with a technique for mitigating the ray effect when it is impractical to converge the angular discretization. A revised spatial discretization is required for the diffusion synthetic acceleration (DSA) equations used to accelerate the solution of the first-order transport equation for quadrilateral elements. So far, this appears to be unconditionally efficient at accelerating the solution of the grey first-order transport equation, n the presence of large aspect ratio and/or distorted elements. The solution of the multigroup equations using the linear multi-frequency grey (LMFG) method is currently under investigation. The pseudoscattering term arising from the LMFG treatment has the same form as the fission source in neutron transport problems. The discretization of the DSA equations described in this paper will be employed for both the within-group coherent scattering contribution and the separate grey acceleration equation used to accelerate the pseudoscattering term.

  12. Integrated transient thermal-structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Wieting, A. R.; Tamma, K. K.

    1981-01-01

    An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses.

  13. Asymmetric quadrilateral shell elements for finite strains

    NASA Astrophysics Data System (ADS)

    Areias, P.; Dias-da-Costa, D.; Pires, E. B.; Van Goethem, N.

    2013-07-01

    Very good results in infinitesimal and finite strain analysis of shells are achieved by combining either the enhanced-metric technique or the selective-reduced integration for the in-plane shear energy and an assumed natural strain technique (ANS) in a non-symmetric Petrov-Galerkin arrangement which complies with the patch-test. A recovery of the original Wilson incompatible mode element is shown for the trial functions in the in-plane components. As a beneficial side-effect, Newton-Raphson convergence behavior for non-linear problems is improved with respect to symmetric formulations. Transverse-shear and in-plane patch tests are satisfied while distorted-mesh accuracy is higher than with symmetric formulations. Classical test functions with assumed-metric components are required for compatibility reasons. Verification tests are performed with advantageous comparisons being observed in all of them. Applications to large displacement elasticity and finite strain plasticity are shown with both low sensitivity to mesh distortion and (relatively) high accuracy. A equilibrium-consistent (and consistently linearized) updated-Lagrangian algorithm is proposed and tested. Concerning the time-step dependency, it was found that the consistent updated-Lagrangian algorithm is nearly time-step independent and can replace the multiplicative plasticity approach if only moderate elastic strains are present, as is the case of most metals.

  14. Global-Local Finite Element Analysis of Bonded Single-Lap Joints

    NASA Technical Reports Server (NTRS)

    Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.

    2004-01-01

    Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.

  15. A finite element model with nonviscous damping

    NASA Technical Reports Server (NTRS)

    Roussos, L. A.; Hyer, M. W.; Thornton, E. A.

    1981-01-01

    A constitutive law by which structural damping is modeled as a relationship between stress, strain, and strain rate in a material is used in conjunction with the finite element method to develop general integral expressions for viscous and nonviscous damping matrices. To solve the set of nonlinear equations resulting from the presence of nonviscous damping, a solution technique is developed by modifying the Newmark method to accommodate an iterative solution and treat the nonviscous damping as a pseudo-force. The technique is then checked for accuracy and convergence in single- and multi-degree-of-freedom problems, and is found to be accurate and efficient for initial-condition problems with small nonviscous damping.

  16. Finite-element solutions for geothermal systems

    NASA Technical Reports Server (NTRS)

    Chen, J. C.; Conel, J. E.

    1977-01-01

    Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.

  17. Finite-element modeling of nanoindentation

    SciTech Connect

    Knapp, J.A.; Follstaedt, D.M.; Myers, S.M.; Barbour, J.C.; Friedmann, T.A.

    1999-02-01

    Procedures have been developed based on finite-element modeling of nanoindentation data to obtain the mechanical properties of thin films and ion-beam-modified layers independently of the properties of the underlying substrates. These procedures accurately deduce the yield strength, Young{close_quote}s elastic modulus, and layer hardness from indentations as deep as 50{percent} of the layer thickness or more. We have used these procedures to evaluate materials ranging from ion implanted metals to deposited, diamond-like carbon layers. The technique increases the applicability of indentation testing to very thin layers, composite layers, and modulated compositions. This article presents an overview of the procedures involved and illustrates them with selected examples. {copyright} {ital 1999 American Institute of Physics.}

  18. Finite element simulation of pipe dynamic response

    SciTech Connect

    Slagis, G.C.; Litton, R.W.

    1996-12-01

    Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.

  19. 3-D Finite Element Heat Transfer

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  20. Immersed molecular electrokinetic finite element method

    NASA Astrophysics Data System (ADS)

    Kopacz, Adrian M.; Liu, Wing K.

    2013-07-01

    A unique simulation technique has been developed capable of modeling electric field induced detection of biomolecules such as viruses, at room temperatures where thermal fluctuations must be considered. The proposed immersed molecular electrokinetic finite element method couples electrokinetics with fluctuating hydrodynamics to study the motion and deformation of flexible objects immersed in a suspending medium under an applied electric field. The force induced on an arbitrary object due to an electric field is calculated based on the continuum electromechanics and the Maxwell stress tensor. The thermal fluctuations are included in the Navier-Stokes fluid equations via the stochastic stress tensor. Dielectrophoretic and fluctuating forces acting on the particle are coupled through the fluid-structure interaction force calculated within the surrounding environment. This method was used to perform concentration and retention efficacy analysis of nanoscale biosensors using gold particles of various sizes. The analysis was also applied to a human papillomavirus.

  1. Control volume finite element method with multidimensional edge element Scharfetter-Gummel upwinding. Part 1, formulation.

    SciTech Connect

    Bochev, Pavel Blagoveston

    2011-06-01

    We develop a new formulation of the Control Volume Finite Element Method (CVFEM) with a multidimensional Scharfetter-Gummel (SG) upwinding for the drift-diffusion equations. The formulation uses standard nodal elements for the concentrations and expands the flux in terms of the lowest-order Nedelec H(curl; {Omega})-compatible finite element basis. The SG formula is applied to the edges of the elements to express the Nedelec element degree of freedom on this edge in terms of the nodal degrees of freedom associated with the endpoints of the edge. The resulting upwind flux incorporates the upwind effects from all edges and is defined at the interior of the element. This allows for accurate evaluation of integrals on the boundaries of the control volumes for arbitrary quadrilateral elements. The new formulation admits efficient implementation through a standard loop over the elements in the mesh followed by loops over the element nodes (associated with control volume fractions in the element) and element edges (associated with flux degrees of freedom). The quantities required for the SG formula can be precomputed and stored for each edge in the mesh for additional efficiency gains. For clarity the details are presented for two-dimensional quadrilateral grids. Extension to other element shapes and three dimensions is straightforward.

  2. Nonlinear probabilistic finite element models of laminated composite shells

    NASA Technical Reports Server (NTRS)

    Engelstad, S. P.; Reddy, J. N.

    1993-01-01

    A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.

  3. Finite element model of magnetoconvection of a ferrofluid

    NASA Astrophysics Data System (ADS)

    Snyder, Suzanne M.; Cader, Tahir; Finlayson, Bruce A.

    2003-06-01

    Combined natural and magnetic convective heat transfer through a ferrofluid in a cubic enclosure is simulated numerically. The momentum equation includes a magnetic term that arises when a magnetic fluid is in the presence of a magnetic field gradient and a temperature gradient. In order to validate the theory, the wall temperature isotherms and Nusselt numbers are compared to experimental work of Sawada et al. (Int. J. Appl. Electromagn. Mater. 4 (1994) 329). Results are obtained using standard computational fluid dynamics codes, with modifications to account for the Langevin factor when needed. The CFD code FIDAP uses the finite element method, sometimes with a user-defined subroutine. The CFD code FEMLAB uses the finite element method with a user-supplied body force.

  4. Parallel, adaptive finite element methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.

    1994-01-01

    We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.

  5. Finite-element time evolution operator for the anharmonic oscillator

    NASA Technical Reports Server (NTRS)

    Milton, Kimball A.

    1995-01-01

    The finite-element approach to lattice field theory is both highly accurate (relative errors approximately 1/N(exp 2), where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation relations are exactly preserved at the lattice sites). In this talk I construct matrix elements for dynamical variables and for the time evolution operator for the anharmonic oscillator, for which the continuum Hamiltonian is H = p(exp 2)/2 + lambda q(exp 4)/4. Construction of such matrix elements does not require solving the implicit equations of motion. Low order approximations turn out to be extremely accurate. For example, the matrix element of the time evolution operator in the harmonic oscillator ground state gives a results for the anharmonic oscillator ground state energy accurate to better than 1 percent, while a two-state approximation reduces the error to less than 0.1 percent.

  6. A hybrid-stress finite element for linear anisotropic elasticity

    NASA Technical Reports Server (NTRS)

    Fly, Gerald W.; Oden, J. Tinsley; Pearson, Mark L.

    1988-01-01

    Standard assumed displacement finite elements with anisotropic material properties perform poorly in complex stress fields such as combined bending and shear and combined bending and torsion. A set of three dimensional hybrid-stress brick elements were developed with fully anisotropic material properties. Both eight-node and twenty-node bricks were developed based on the symmetry group theory of Punch and Atluri. An eight-node brick was also developed using complete polynomials and stress basis functions and reducing the order of the resulting stress parameter matrix by applying equilibrium constraints and stress compatibility constraints. Here the stress compatibility constraints must be formulated assuming anisotropic material properties. The performance of these elements was examined in numerical examples covering a broad range of stress distributions. The stress predictions show significant improvement over the assumed displacement elements but the calculation time is increased.

  7. Effect of grid system on finite element calculation

    NASA Technical Reports Server (NTRS)

    Lee, K. D.; Yen, S. M.

    1980-01-01

    Detailed parametric studies of the effect of grid system on finite element calculation for potential flows were made. These studies led to the formulation of a design criteria for optimum mesh system and the development of two methods to generate the optimum mesh system. The guidelines for optimum mesh system are: (1) the mesh structure should be regular; (2) the element should be as regular and equilateral as possible; (3) the distribution of size of element should be consistent with that of flow variables to insure maximum uniformity in error distribution; (4) for non-Dirichlet boundary conditions, smaller boundary elements or higher order interpolation functions should be used; and (5) the mesh should accommodate the boundary geometry as accurately as possible. The results of the parametric studies are presented.

  8. An atomic finite element model for biodegradable polymers. Part 1. Formulation of the finite elements.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David

    2015-11-01

    Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide).

  9. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    NASA Technical Reports Server (NTRS)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  10. Survey and development of finite elements for nonlinear structural analysis. Volume 2: Nonlinear shell finite elements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of two new shell finite elements for applications to large deflection problems is considered. The elements in question are doubly curved and of triangular and quadrilateral planform. They are restricted to small strains of elastic materials, and can accommodate large rotations. The elements described, which are based on relatively simple linear elements, make use of a new displacement function approach specifically designed for strongly nonlinear problems. The displacement function development for nonlinear applications is based on certain beam element formulations, and the strain-displacement equations are of a shallow shell type. Additional terms were included in these equations in an attempt to avoid the large errors characteristic of shallow shell elements in certain types of problems. An incremental nonlinear solution procedure specifically adopted to the element formulation was developed. The solution procedure is of combined incremental and total Lagrangian type, and uses a new updating scheme. A computer program was written to evaluate the developed formulations. This program can accommodate small element groups in arbitrary arrangements. Two simple programs were successfully solved. The results indicate that this new type of element has definite promise and should be a fruitful area for further research.

  11. A finite element simulation of sound attenuation in a finite duct with a peripherally variable liner

    NASA Technical Reports Server (NTRS)

    Watson, W. R.

    1977-01-01

    Using multimodal analysis, a variational finite element method is presented for analyzing sound attenuation in a three-dimensional finite duct with a peripherally variable liner in the absence of flow. A rectangular element, with cubic shaped functions, is employed. Once a small portion of a peripheral liner is removed, the attenuation rate near the frequency where maximum attenuation occurs drops significantly. The positioning of the liner segments affects the attenuation characteristics of the liner. Effects of the duct termination are important in the low frequency ranges. The main effect of peripheral variation of the liner is a broadening of the attenuation characteristics in the midfrequency range. Because of matrix size limitations of the presently available computer program, the eigenvalue equations should be solved out of core in order to handle realistic sources.

  12. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  13. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    SciTech Connect

    Kim, S.

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  14. A phenomenological finite element model of stereolithography processing

    SciTech Connect

    Chambers, R.S.; Guess, T.R.; Hinnerichs, T.D.

    1996-03-01

    In the stereolithography process, three dimensional parts are built layer by layer using a laser to selectively cure slices of a photocurable resin, one on top of another. As the laser spot passes over the surface of the resin, the ensuing chemical reaction causes the resin to shrink and stiffen during solidification. When laser paths cross or when new layers are cured on top of existing layers, residual stresses are generated as the cure shrinkage of the freshly gelled resin is constrained by the adjoining previously-cured material. These internal stresses can cause curling in the compliant material. A capability for performing finite element analyses of the stereolithography process has been developed. Although no attempt has been made to incorporate all the physics of the process, a numerical platform suitable for such development has been established. A methodology and code architecture have been structured to allow finite elements to be birthed (activated) according to a prescribed order mimicking the procedure by which a laser is used to cure and build-up surface layers of resin to construct a three dimensional geometry. In its present form, the finite element code incorporates a simple phenomenological viscoelastic material model of solidification that is based on the shrinkage and relaxation observed following isolated, uncoupled laser exposures. The phenomenological material model has been used to analyze the curl in a simple cantilever beam and to make qualitative distinctions between two contrived build styles.

  15. Numerical algorithms for finite element computations on arrays of microprocessors

    NASA Technical Reports Server (NTRS)

    Ortega, J. M.

    1981-01-01

    The development of a multicolored successive over relaxation (SOR) program for the finite element machine is discussed. The multicolored SOR method uses a generalization of the classical Red/Black grid point ordering for the SOR method. These multicolored orderings have the advantage of allowing the SOR method to be implemented as a Jacobi method, which is ideal for arrays of processors, but still enjoy the greater rate of convergence of the SOR method. The program solves a general second order self adjoint elliptic problem on a square region with Dirichlet boundary conditions, discretized by quadratic elements on triangular regions. For this general problem and discretization, six colors are necessary for the multicolored method to operate efficiently. The specific problem that was solved using the six color program was Poisson's equation; for Poisson's equation, three colors are necessary but six may be used. In general, the number of colors needed is a function of the differential equation, the region and boundary conditions, and the particular finite element used for the discretization.

  16. TACO: a finite element heat transfer code

    SciTech Connect

    Mason, W.E. Jr.

    1980-02-01

    TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code.

  17. An iterative algorithm for finite element analysis

    NASA Astrophysics Data System (ADS)

    Laouafa, F.; Royis, P.

    2004-03-01

    In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.

  18. Finite element treatment of soft elastohydrodynamic lubrication problems in the finite deformation regime

    NASA Astrophysics Data System (ADS)

    Stupkiewicz, Stanisław

    2009-10-01

    Soft elastohydrodynamic lubrication (EHL) problem is studied for a reciprocating elastomeric seal with full account of finite configuration changes. The fluid part is described by the Reynolds equation which is formulated on the deformed boundary of the seal treated as a hyperelastic body. The paper is concerned with the finite element (FE) treatment of this soft EHL problem. Displacement-based FE discretization is applied for the solid part. The Reynolds equation is discretized using the FE method or, alternatively, the discontinuous Galerkin method, both employing higher-order interpolation of pressure. The performance of both methods is assessed by studying convergence and stability of the solution for a benchmark problem of an O-ring seal. It is shown that the solution may exhibit spurious oscillations which occur in severe lubrication conditions. Mesh refinement results in reduction of these oscillations, while increasing the pressure interpolation order or application of the discontinuous Galerkin method does not help significantly.

  19. Finite Element Analysis (FEA) in Design and Production.

    ERIC Educational Resources Information Center

    Waggoner, Todd C.; And Others

    1995-01-01

    Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)

  20. Integrated transient thermal-structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Decahaumphai, P.; Tamma, K. K.; Wieting, A. R.

    1981-01-01

    An integrated thermal-structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. New integrated thermal-structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal-structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction-elasticity solutions and conventional finite element thermal-finite element structural analyses. Results indicate that the approach offers significant potential for further development with other elements.

  1. A finite element model for sound transmission through panels

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, J. V.; Koval, L. R.

    1983-01-01

    A finite element method (FEM) is applied to predicting coupled frequencies and pressures within an acoustic cavity in order to characterize sound transmission through a panel. Structural equations of motion are defined and the FEM model is configured with four-noded plate elements, the lateral displacement and two slopes being the unknowns at every node. Each element then has 12 degrees of freedom (DOF) and the displacement variation is expressed by a 12-term nonconforming polynomial. A consistent mass matrix is used to represent the panel mass matrix and a wave equation governs the acoustic volume. Analysis of pressure and displacement over the panel yields a square coupling matrix, and an eigenanalysis leads to a solution of the forced vibration problem.

  2. Reflections of AE Waves in Finite Plates: Finite Element Modeling and Experimental Measurements

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.

    1999-01-01

    The capability of a three-dimensional dynamic finite element method for predicting far-field acoustic emission signals in thin plates of finite lateral extent, including their reflections from the plate edges, was investigated. A lead break (Hsu-Neilsen) source to simulate AE was modeled and used in the experimental measurements. For the thin plate studied, the signals were primarily composed of the lowest order symmetric (S0) and antisymmetric (A0) Lamb modes. Experimental waveforms were detected with an absolutely calibrated, wideband, conical element transducer. The conditions of lead fractures both on the surface of the plate as well as on the edge of the plate were investigated. Surface lead breaks preferentially generate the A0 mode while edge lead breaks generate the S0 mode. Reflections of developed plate waves from both normal and oblique incidence angles were evaluated. Particularly interesting for the case of the lead break on the plate edge were S0 waves produced by the interaction of a Rayleigh wave with the plate corner and by a bulk shear wave mode converting at the side edge. The Rayleigh wave, in this case, propagated along the specimen edge. For all cases considered, the experimental measurements were in good agreement with the predictions of the finite element model.

  3. Finite Element Model of Cardiac Electrical Conduction.

    NASA Astrophysics Data System (ADS)

    Yin, John Zhihao

    1994-01-01

    In this thesis, we develop mathematical models to study electrical conduction of the heart. One important pattern of wave propagation of electrical excitation in the heart is reentry which is believed to be the underlying mechanism of some dangerous cardiac arhythmias such as ventricular tachycardia and ventricular fibrillation. We present in this thesis a new ionic channel model of the ventricular cardiac cell membrane to study the microscopic electrical properties of myocardium. We base our model on recent single channel experiment data and a simple physical diffusion model of the calcium channel. Our ionic channel model of myocardium has simpler differential equations and fewer parameters than previous models. Further more, our ionic channel model achieves better results in simulating the strength-interval curve when we connect the membrane patch model to form a one dimensional cardiac muscle strand. We go on to study a finite element model which uses multiple states and non-nearest neighbor interactions to include curvature and dispersion effects. We create a generalized lattice randomization to overcome the artifacts generated by the interaction between the local dynamics and the regularities of the square lattice. We show that the homogeneous model does not display spontaneous wavefront breakup in a reentrant wave propagation once the lattice artifacts have been smoothed out by lattice randomization with a randomization scale larger than the characteristic length of the interaction. We further develop a finite 3-D 3-state heart model which employs a probability interaction rule. This model is applied to the simulation of Body Surface Laplacian Mapping (BSLM) using a cylindrical volume conductor as the torso model. We show that BSLM has a higher spatial resolution than conventional mapping methods in revealing the underlying electrical activities of the heart. The results of these studies demonstrate that mathematical modeling and computer simulation are very

  4. Automation Tools for Finite Element Analysis of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad; Brodeur, Stephen J. (Technical Monitor)

    2002-01-01

    This article presents two new automation creation tools that obtain stresses and strains (Shear and peel) in adhesively bonded joints. For a given adhesively bonded joint Finite Element model, in which the adhesive is characterised using springs, these automation tools read the corresponding input and output files, use the spring forces and deformations to obtain the adhesive stresses and strains, sort the stresses and strains in descending order, and generate plot files for 3D visualisation of the stress and strain fields. Grids (nodes) and elements can be numbered in any order that is convenient for the user. Using the automation tools, trade-off studies, which are needed for design of adhesively bonded joints, can be performed very quickly.

  5. Binary tree eigen solver in finite element analysis

    NASA Technical Reports Server (NTRS)

    Akl, F. A.; Janetzke, D. C.; Kiraly, L. J.

    1993-01-01

    This paper presents a transputer-based binary tree eigensolver for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on the method of recursive doubling, which parallel implementation of a number of associative operations on an arbitrary set having N elements is of the order of o(log2N), compared to (N-1) steps if implemented sequentially. The hardware used in the implementation of the binary tree consists of 32 transputers. The algorithm is written in OCCAM which is a high-level language developed with the transputers to address parallel programming constructs and to provide the communications between processors. The algorithm can be replicated to match the size of the binary tree transputer network. Parallel and sequential finite element analysis programs have been developed to solve for the set of the least-order eigenpairs using the modified subspace method. The speed-up obtained for a typical analysis problem indicates close agreement with the theoretical prediction given by the method of recursive doubling.

  6. Binary tree eigen solver in finite element analysis

    SciTech Connect

    Akl, F.A.; Janetzke, D.C.; Kiraly, L.J.

    1993-01-01

    This paper presents a transputer-based binary tree eigensolver for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on the method of recursive doubling, which parallel implementation of a number of associative operations on an arbitrary set having N elements is of the order of o(log2N), compared to (N-1) steps if implemented sequentially. The hardware used in the implementation of the binary tree consists of 32 transputers. The algorithm is written in OCCAM which is a high-level language developed with the transputers to address parallel programming constructs and to provide the communications between processors. The algorithm can be replicated to match the size of the binary tree transputer network. Parallel and sequential finite element analysis programs have been developed to solve for the set of the least-order eigenpairs using the modified subspace method. The speed-up obtained for a typical analysis problem indicates close agreement with the theoretical prediction given by the method of recursive doubling. 5 refs.

  7. Solution-adaptive finite element method in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1993-01-01

    Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.

  8. Modular Finite Element Methods Library Version: 1.0

    2010-06-22

    MFEM is a general, modular library for finite element methods. It provides a variety of finite element spaces and bilinear/linear forms in 2D and 3D. MFEM also includes classes for dealing with various types of meshes and their refinement.

  9. Finite Element Analysis of Brain Injury due to Head Impact

    NASA Astrophysics Data System (ADS)

    Suh, Chang Min; Kim, Sung Ho; Goldsmith, Werner

    Traumatic Brain Injury (TBI) due to head impact by external impactor was analyzed using Finite Element Method (FEM). Two-dimensiona modeling was performed according to Magnetic Resonance Imaging (MRI) data of Mongolian subject. Pressure variation in a cranium due to external impact was analyzed in order to simulate Nahum et al.'s cadaver test.6 And, analyzed results were compared with Nahum et al.'s experimental data.6 As results, stress and strain behaviors of the brain during impact were accorded with experimental data qualitatively even though there were some differences in quantitative values. In addition, they were accorded with other references about brain injury as well.

  10. Finite Element analyses of soil bioengineered slopes

    NASA Astrophysics Data System (ADS)

    Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar

    2014-05-01

    Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio

  11. Nondestructive Evaluation Correlated with Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Azid, Ali; Baaklini, George Y.

    1999-01-01

    Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.

  12. A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.

    1993-01-01

    Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).

  13. Finite-dimensional approximation for optimal fixed-order compensation of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Rosen, I. G.

    1988-01-01

    In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.

  14. Thermal Analysis of Thin Plates Using the Finite Element Method

    NASA Astrophysics Data System (ADS)

    Er, G. K.; Iu, V. P.; Liu, X. L.

    2010-05-01

    The isotropic thermal plate is analyzed with finite element method. The solution procedure is presented. The elementary stiffness matrix and loading vector are derived rigorously with variation principle and the principle of minimum potential energy. Numerical results are obtained based on the derived equations and tested with available exact solutions. The problems in the finite element analysis are figured out. It is found that the finite element solutions can not converge as the number of elements increases around the corners of the plate. The derived equations presented in this paper are fundamental for our further study on more complicated thermal plate analysis.

  15. An approach to directional drilling simulation: finite element and finite segment methods with contact

    NASA Astrophysics Data System (ADS)

    Arbatani, Siamak; Callejo, Alfonso; Kövecses, József; Kalantari, Masoud; Marchand, Nick R.; Dargahi, Javad

    2016-06-01

    Directional drilling is a popular technique for oil well drilling. Accurate prediction of the directional performance is critical in order to achieve the desired well profile. Simplified geometry methods are, to date, the industry standard for predicting directional performance. A comprehensive, high-fidelity method for the simulation of directional drilling is presented here. It consists of a detailed discretization of the actual geometry and a rigorous application of two modeling techniques: the finite element and the finite segment methods. By doing so, the dynamic problem is addressed from two different yet complementary perspectives: structural mechanics and rigid-body motion. Collision detection and contact dynamics algorithms are also presented. Results show that both methods agree in terms of the dynamic response, and that the build rate estimations are consistent with available experimental data. Owing to the framework efficiency and physics-based nature, the presented tools are very well-suited for design engineering and real-time simulation.

  16. Finite element-finite difference thermal/structural analysis of large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Eskew, William F.; Rogers, Karen M.

    1992-01-01

    A technique of automated and efficient thermal-structural processing of truss structures that interfaces the finite element and finite difference method was developed. The thermal-structural analysis tasks include development of the thermal and structural math models, thermal analysis, development of an interface and data transfer between the models, and finally an evaluation of the thermal stresses and displacements in the structure. Consequently, the objective of the developed technique was to minimize the model development time, in order to assure an automatic transfer of data between the thermal and structural models as well as to minimize the computer resources needed for the analysis itself. The method and techniques described are illustrated on the thermal/structural analysis of the Space Station Freedom main truss.

  17. Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint

    SciTech Connect

    Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.

    2014-01-01

    This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context of LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.

  18. Finite element analysis of heat transport in a hydrothermal zone

    SciTech Connect

    Bixler, N.E.; Carrigan, C.R.

    1987-01-01

    Two-phase heat transport in the vicinity of a heated, subsurface zone is important for evaluation of nuclear waste repository design and estimation of geothermal energy recovery, as well as prediction of magma solidification rates. Finite element analyses of steady, two-phase, heat and mass transport have been performed to determine the relative importance of conduction and convection in a permeable medium adjacent to a hot, impermeable, vertical surface. The model includes the effects of liquid flow due to capillarity and buoyancy and vapor flow due to pressure gradients. Change of phase, with its associated latent heat effects, is also modeled. The mechanism of capillarity allows for the presence of two-phase zones, where both liquid and vapor can coexist, which has not been considered in previous investigations. The numerical method employs the standard Galerkin/finite element method, using eight-node, subparametric or isoparametric quadrilateral elements. In order to handle the extreme nonlinearities inherent in two-phase, nonisothermal, porous-flow problems, steady-state results are computed by integrating transients out to a long time (a method that is highly robust).

  19. Sandia Higher Order Elements (SHOE) v 0.5 alpha

    SciTech Connect

    2013-09-24

    SHOE is research code for characterizing and visualizing higher-order finite elements; it contains a framework for defining classes of interpolation techniques and element shapes; methods for interpolating triangular, quadrilateral, tetrahedral, and hexahedral cells using Lagrange and Legendre polynomial bases of arbitrary order; methods to decompose each element into domains of constant gradient flow (using a polynomial solver to identify critical points); and an isocontouring technique that uses this decomposition to guarantee topological correctness. Please note that this is an alpha release of research software and that some time has passed since it was actively developed; build- and run-time issues likely exist.

  20. Sandia Higher Order Elements (SHOE) v 0.5 alpha

    2013-09-24

    SHOE is research code for characterizing and visualizing higher-order finite elements; it contains a framework for defining classes of interpolation techniques and element shapes; methods for interpolating triangular, quadrilateral, tetrahedral, and hexahedral cells using Lagrange and Legendre polynomial bases of arbitrary order; methods to decompose each element into domains of constant gradient flow (using a polynomial solver to identify critical points); and an isocontouring technique that uses this decomposition to guarantee topological correctness. Please notemore » that this is an alpha release of research software and that some time has passed since it was actively developed; build- and run-time issues likely exist.« less

  1. A Spectral Finite Element Approach to Modeling Soft Solids Excited with High-Frequency Harmonic Loads

    PubMed Central

    Brigham, John C.; Aquino, Wilkins; Aguilo, Miguel A.; Diamessis, Peter J.

    2010-01-01

    An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number. PMID:21461402

  2. Geometric Nonlinear Finite Element Analysis of Active Fibre Composite Bimorphs

    NASA Astrophysics Data System (ADS)

    Kernaghan, Robert

    Active fibre composite-actuated bimorphic actuators were studied in order to measure deflection performance. The deflection of the actuators was a function of the actuating electric potential applied to the active material as well as the magnitude of the axial preload applied to the bimorphic structure. This problem required the use of geometric nonlinear modeling techniques. Geometric nonlinear finite element analysis was undertaken to determine the deflection performance of Macro Fibre Composite (MFC)- and Hollow Active Fibre (HAFC)-actuated bimorphic structures. A physical prototype MFC-actuated bimorphic structure was manufactured in order to verify the results obtained by the finite element analysis. Theses analyses determined that the bimorphic actuators were capable of significant deflection. The analyses determined that the axial preload of the bimorphic actuators significantly amplified the deflection performance of the bimorphic actuators. The deflection performance of the bimorphic actuators suggest that they could be candidates to act as actuators for the morphing wing of a micro unmanned air vehicle.

  3. 3D unstructured mesh discontinuous finite element hydro

    SciTech Connect

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    1995-07-01

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.

  4. Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models

    NASA Astrophysics Data System (ADS)

    Ruiz-Baier, Ricardo; Lunati, Ivan

    2016-10-01

    We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation

  5. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  6. Massively parallel computation of RCS with finite elements

    NASA Technical Reports Server (NTRS)

    Parker, Jay

    1993-01-01

    One of the promising combinations of finite element approaches for scattering problems uses Whitney edge elements, spherical vector wave-absorbing boundary conditions, and bi-conjugate gradient solution for the frequency-domain near field. Each of these approaches may be criticized. Low-order elements require high mesh density, but also result in fast, reliable iterative convergence. Spherical wave-absorbing boundary conditions require additional space to be meshed beyond the most minimal near-space region, but result in fully sparse, symmetric matrices which keep storage and solution times low. Iterative solution is somewhat unpredictable and unfriendly to multiple right-hand sides, yet we find it to be uniformly fast on large problems to date, given the other two approaches. Implementation of these approaches on a distributed memory, message passing machine yields huge dividends, as full scalability to the largest machines appears assured and iterative solution times are well-behaved for large problems. We present times and solutions for computed RCS for a conducting cube and composite permeability/conducting sphere on the Intel ipsc860 with up to 16 processors solving over 200,000 unknowns. We estimate problems of approximately 10 million unknowns, encompassing 1000 cubic wavelengths, may be attempted on a currently available 512 processor machine, but would be exceedingly tedious to prepare. The most severe bottlenecks are due to the slow rate of mesh generation on non-parallel machines and the large transfer time from such a machine to the parallel processor. One solution, in progress, is to create and then distribute a coarse mesh among the processors, followed by systematic refinement within each processor. Elimination of redundant node definitions at the mesh-partition surfaces, snap-to-surface post processing of the resulting mesh for good modelling of curved surfaces, and load-balancing redistribution of new elements after the refinement are auxiliary

  7. A finite element conjugate gradient FFT method for scattering

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.

    1991-01-01

    Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.

  8. Nonlinear finite element modeling of THUNDER piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-06-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (Thin Layer Unimorph Ferroelectric Driver) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  9. Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-01-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  10. Analytical finite element matrix elements and global matrix assembly for hierarchical 3-D vector basis functions within the hybrid finite element boundary integral method

    NASA Astrophysics Data System (ADS)

    Li, L.; Wang, K.; Li, H.; Eibert, T. F.

    2014-11-01

    A hybrid higher-order finite element boundary integral (FE-BI) technique is discussed where the higher-order FE matrix elements are computed by a fully analytical procedure and where the gobal matrix assembly is organized by a self-identifying procedure of the local to global transformation. This assembly procedure applys to both, the FE part as well as the BI part of the algorithm. The geometry is meshed into three-dimensional tetrahedra as finite elements and nearly orthogonal hierarchical basis functions are employed. The boundary conditions are implemented in a strong sense such that the boundary values of the volume basis functions are directly utilized within the BI, either for the tangential electric and magnetic fields or for the asssociated equivalent surface current densities by applying a cross product with the unit surface normals. The self-identified method for the global matrix assembly automatically discerns the global order of the basis functions for generating the matrix elements. Higher order basis functions do need more unknowns for each single FE, however, fewer FEs are needed to achieve the same satisfiable accuracy. This improvement provides a lot more flexibility for meshing and allows the mesh size to raise up to λ/3. The performance of the implemented system is evaluated in terms of computation time, accuracy and memory occupation, where excellent results with respect to precision and computation times of large scale simulations are found.

  11. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  12. Finite-element modeling and analysis in nanomedicine and dentistry.

    PubMed

    Choi, Andy H; Conway, Richard C; Ben-Nissan, Besim

    2014-08-01

    This article aims to provide a brief background to the current applications of finite-element analysis (FEA) in nanomedicine and dentistry. FEA was introduced in orthopedic biomechanics in the 1970s in order to assess the stresses and deformation in human bones during functional loadings and in the design and analysis of implants. Since then, it has been applied with great frequency in orthopedics and dentistry in order to analyze issues such as implant design, bone remodeling and fracture healing, the mechanical properties of biomedical coatings on implants and the interactions at the bone-implant interface. More recently, FEA has been used in nanomedicine to study the mechanics of a single cell and to gain fundamental insights into how the particulate nature of blood influences nanoparticle delivery. PMID:25321169

  13. Finite element analysis of the SDC barrel and endcap calorimeters

    SciTech Connect

    Guarino, V.; Hill, N.; Nasiakta, J.

    1992-03-11

    In designing the SCD barrel and endcap calorimeters, the inter-module connecting forces must be known in order to determine the required size and number of connecting links between modules, and in order to understand how individual modules will be affected by these forces when assembled to form a full barrel and endcap. The connecting forces were found by analyzing three-dimensional Finite Element Models of both the barrel and endcap. This paper is divided into two parts, the first part will describe in detail the results of the barrel analysis and the second part will describe the results obtained from the endcap analysis. A similar approach was used in constructing the models for both analysis.

  14. Domain decomposition methods for nonconforming finite element spaces of Lagrange-type

    NASA Technical Reports Server (NTRS)

    Cowsar, Lawrence C.

    1993-01-01

    In this article, we consider the application of three popular domain decomposition methods to Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of Smith, and the balancing method of Mandel applied to nonconforming elements are shown to converge at a rate no worse than their applications to the standard conforming piecewise linear Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the existing theory for the conforming elements with only modest modification by constructing an isomorphism between the nonconforming finite element space and a space of continuous piecewise linear functions.

  15. A Method for Connecting Dissimilar Finite Element Meshes in Three Dimensions

    SciTech Connect

    Dohrmann, C.R.; Heinstein, M.W.; Key, S.W.

    1998-11-12

    A method is presented for connecting dissimilar finite element meshes in three dimensions. The method combines the concept of master and slave surfaces with the uniform strain approach for surface, corrections finite elements- By modifyhg the are made to element formulations boundaries of elements on the slave such that first-order patch tests are passed. The method can be used to connect meshes which use different element types. In addition, master and slave surfaces can be designated independently of relative mesh resolutions. Example problems in three-dimensional linear elasticity are presented.

  16. Effect of mesh element type of Finite Element Model (FEM) on unimorph cantilever vibration

    NASA Astrophysics Data System (ADS)

    Aris, H.; Fitrio, D.; Singh, J.

    2013-12-01

    This paper discusses mesh refinement methods used to perform Finite Element Analysis (FEA) for vibration based MEMS Energy Harvester. The three types of meshing elements, 1) Linear Hexahedral, 2) Parabolic Hexahedral and 3) Parabolic Tetrahedral, were used in this study. The meshing methods are used to ensure accurate simulation result particularly in stress, and strain analysis obtained, since they are determined by the displacement of each node in the physical structure. The study of the accuracy of an mesh analysis is also known as mesh convergence study which element aspect ratios must be refined consistently. In this paper the dimensions of each elements were also varied in order to investigate the significant of this methods in achieving better ratios of simulation to theoretical results.

  17. Finite element analysis of an inflatable torus considering air mass structural element

    NASA Astrophysics Data System (ADS)

    Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.

    2014-01-01

    Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.

  18. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  19. Validation of high displacement piezoelectric actuator finite element models

    NASA Astrophysics Data System (ADS)

    Taleghani, Barmac K.

    2000-08-01

    The paper presents the results obtained by using NASTRAN and ANSYS finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness and important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN and ANSYS used different methods for modeling piezoelectric effects. In NASTRAN, a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  20. Comparison of different precondtioners for nonsymmtric finite volume element methods

    SciTech Connect

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  1. Validation of High Displacement Piezoelectric Actuator Finite Element Models

    NASA Technical Reports Server (NTRS)

    Taleghani, B. K.

    2000-01-01

    The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  2. Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation

    NASA Technical Reports Server (NTRS)

    Cwik, T.; Lou, J.; Katz, D.

    1997-01-01

    In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.

  3. Distributed Finite Element Analysis Using a Transputer Network

    NASA Technical Reports Server (NTRS)

    Watson, James; Favenesi, James; Danial, Albert; Tombrello, Joseph; Yang, Dabby; Reynolds, Brian; Turrentine, Ronald; Shephard, Mark; Baehmann, Peggy

    1989-01-01

    The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the $80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the $15,000,000 Cray X-MP24 system.

  4. Finite element visualization in the cave virtual reality environment

    SciTech Connect

    Plaskacz, E.J.; Kuhn, M.A.

    1996-03-01

    Through the use of the post-processing software, Virtual Reality visualization (VRviz), and the Cave Automatic Virtual Environment (CAVE), finite element representations can be viewed as they would be in real life. VRviz is a program written in ANSI C to translate the mathematical results generated by finite element analysis programs into a virtual representation. This virtual representation is projected into the CAVE environment and the results are animated. The animation is fully controllable. A user is able to translate the image, rotate about any axis and scale the image at any time. The user is also able to freeze the animation at any time step and control the image update rate. This allows the user to navigate around, or even inside, the image in order to effectively analyze possible failure points and redesign as necessary. Through the use of the CAVE and the real life image that is being produced by VRviz, engineers are able to save considerable time, money, and effort in the design process.

  5. Adaptive Finite Element Methods for Continuum Damage Modeling

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  6. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  7. Accelerated finite element elastodynamic simulations using the GPU

    SciTech Connect

    Huthwaite, Peter

    2014-01-15

    An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from (http://www.pogo-fea.com/) to benefit the community. -- Highlights: •A novel memory arrangement approach is discussed for finite elements on the GPU. •The mesh is partitioned then nodes are arranged efficiently within each partition. •Models from ultrasonics, vibrations and geophysics are run. •The code is significantly faster than an equivalent commercial CPU package. •Pogo, the new software package, is released open source.

  8. Synthesis of higher order nonlinear circuit elements

    NASA Astrophysics Data System (ADS)

    Chua, L. O.; Szeto, E. W.

    1984-02-01

    Higher and mixed-order n-port circuit elements were introduced recently to provide a logically complete formulation for nonlinear circuit theory. In this paper, higher order mutators are defined and used to synthesize these elements. The class of all higher order mutators is shown to form a group under cascade interconnections. Each mutator is realized using only linear capacitors, linear inductors and linear controlled sources. An upper bound on each type of element needed to realize a mutator is also given. Each higher or mixed-order n-port element is realized by cascading approprimate mutators across each port of a nonlinear n-port resistor. The main theorem shows that any higher or mixed-order nonlinear n-port element with a constitutive relation defined on a compact set can be realized using linear capacitors, inductors, and controlled sources, and 2-terminal nonlinear resistors.

  9. Using a multifrontal sparse solver in a high performance, finite element code

    NASA Technical Reports Server (NTRS)

    King, Scott D.; Lucas, Robert; Raefsky, Arthur

    1990-01-01

    We consider the performance of the finite element method on a vector supercomputer. The computationally intensive parts of the finite element method are typically the individual element forms and the solution of the global stiffness matrix both of which are vectorized in high performance codes. To further increase throughput, new algorithms are needed. We compare a multifrontal sparse solver to a traditional skyline solver in a finite element code on a vector supercomputer. The multifrontal solver uses the Multiple-Minimum Degree reordering heuristic to reduce the number of operations required to factor a sparse matrix and full matrix computational kernels (e.g., BLAS3) to enhance vector performance. The net result in an order-of-magnitude reduction in run time for a finite element application on one processor of a Cray X-MP.

  10. Periodic trim solutions with hp-version finite elements in time

    NASA Technical Reports Server (NTRS)

    Peters, David A.; Hou, Lin-Jun

    1990-01-01

    Finite elements in time as an alternative strategy for rotorcraft trim problems are studied. The research treats linear flap and linearized flap-lag response both for quasi-trim and trim cases. The connection between Fourier series analysis and hp-finite elements for periodic a problem is also examined. It is proved that Fourier series is a special case of space-time finite elements in which one element is used with a strong displacement formulation. Comparisons are made with respect to accuracy among Fourier analysis, displacement methods, and mixed methods over a variety parameters. The hp trade-off is studied for the periodic trim problem to provide an optimum step size and order of polynomial for a given error criteria. It is found that finite elements in time can outperform Fourier analysis for periodic problems, and for some given error criteria. The mixed method provides better results than does the displacement method.

  11. Examples of finite element mesh generation using SDRC IDEAS

    NASA Technical Reports Server (NTRS)

    Zapp, John; Volakis, John L.

    1990-01-01

    IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.

  12. Finite Element Analysis for Pseudo Hyperbolic Integral-Differential Equations

    NASA Astrophysics Data System (ADS)

    Cui, Xia

    The finite element method and its analysis for pseudo-hyperbolic integral-differential equations with nonlinear boundary conditions is considered. A new projection is introduced to obtain optimal L2 convergence estimates. The present techniques can be applied to treat elastic wave problems with absorbing boundary conditions in porous media. Keywords: pseudo-hyperbolic integral-differential equation, finite element, Sobolev-Volterra projection, convergence analysis

  13. Simulation of two-dimensional waterflooding using mixed finite elements

    SciTech Connect

    Chavent, G.; Jaffre, J.; Cohen, G.; Dupuy, M.; Dieste, I.

    1982-01-01

    A new method for the simulation of incompressible diphasic flows in two dimensions is presented, the distinctive features of which are: (1) reformation of the basic equation and specific choices of the finite element approximation of the same; (11) use of a mixed finite elements method, approximating both scalar and vector functions. Several test examples are shown, including gravity and capillary effects. The use of discontinuous basis functions proved successful for an accurate representation of sharp fronts. 16 refs.

  14. Integration of geometric modeling and advanced finite element preprocessing

    NASA Technical Reports Server (NTRS)

    Shephard, Mark S.; Finnigan, Peter M.

    1987-01-01

    The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.

  15. Finite element analysis of vibration and damping of laminated composites

    NASA Astrophysics Data System (ADS)

    Rikards, Rolands

    Simple finite elements are used to form a special laminated beam and plate superelements excluding all degrees of freedom in the nodes of the middle layer, and the finite element analysis of this structure is performed. To estimate damping of structures, modal loss factors are calculated, using two methods: the 'exact' method of complex eigenvalues and the approximate energy method. It was found that both methods give satisfactory results. However, the energy method needs less computer time than the exact method.

  16. Finite element analysis of a composite wheelchair wheel design

    NASA Technical Reports Server (NTRS)

    Ortega, Rene

    1994-01-01

    The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.

  17. Mathematical aspects of finite element methods for incompressible viscous flows

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.

    1986-01-01

    Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.

  18. A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Hu, Changqing; Shu, Chi-Wang

    1998-01-01

    In this paper, we present a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method.

  19. Finite Element Solution of 1D Boundary Value Linear and Nonlinear Problems with Nonlocal Jump Conditions

    NASA Astrophysics Data System (ADS)

    Koleva, M. N.

    2007-10-01

    We consider stationary linear and nonlinear problems on non-connected layers with distinct material properties. A version of the finite element method (FEM) is used for discretization of the continuous problems. We formulate sufficient conditions under which we prove the discrete maximum principle and convergence of the numerical higher-order finite elements solution. Efficient algorithm for solution of the FEM algebraic equations is proposed. Numerical experiments are also discussed.

  20. Error estimates of triangular finite elements under a weak angle condition

    NASA Astrophysics Data System (ADS)

    Mao, Shipeng; Shi, Zhongci

    2009-08-01

    In this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin,1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble-Hilbert lemma.

  1. Finite element prediction of fatigue damage growth in cancellous bone.

    PubMed

    Hambli, Ridha; Frikha, Sana; Toumi, Hechmi; Tavares, João Manuel R S

    2016-01-01

    Cyclic stresses applied to bones generate fatigue damage that affects the bone stiffness and its elastic modulus. This paper proposes a finite element model for the prediction of fatigue damage accumulation and failure in cancellous bone at continuum scale. The model is based on continuum damage mechanics and incorporates crack closure effects in compression. The propagation of the cracks is completely simulated throughout the damaged area. In this case, the stiffness of the broken element is reduced by 98% to ensure no stress-carrying capacities of completely damaged elements. Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. The proposed model suggests that damage evolves over a real physical time variable (cycles). In order to reduce the computation time, the integration of the damage growth rate is based on the cycle blocks approach. In this approach, the real number of cycles is reduced (divided) into equivalent blocks of cycles. Damage accumulation is computed over the cycle blocks and then extrapolated over the corresponding real cycles. The results show a clear difference between local tensile and compressive stresses on damage accumulation. Incorporating stiffness reduction also produces a redistribution of the peak stresses in the damaged region, which results in a delay in damage fracture.

  2. Finite element analysis of (SA) mechanoreceptors in tactile sensing application

    NASA Astrophysics Data System (ADS)

    N, Syamimi; Yahud, S.

    2015-05-01

    This paper addresses the structural design of a fingertip model in order to analyse the sensory function of slow adapting (SA) mechanoreceptors by using the finite element analysis (FEA) method. A biologically inspired tactile sensor was designed to mimic a similar response of the human mechanoreceptors in the human glabrous skin. The simulation work was done by using COMSOL Multiphysics. The artificial skin was modelled as a solid square block of silicone elastomer with a semi cylinder protrusion on top. It was modelled as a nearly incompressible and linear hyperelastic material defined by Neo Hookean constitutive law. The sensing element on the other hand was modelled by using constantan alloy mimicking the SA1 receptor. Boundary loads of 1 N/m² to 4 N/m² with the increment of 1 N/m² were applied to the top surface of the protrusion in z and x-direction for normal and shear stress, respectively. The epidermal model base was constrained to maintain the same boundary conditions throughout all simulations. The changes of length experienced by the sensing element were calculated. The simulations result in terms of strain was identified. The simulated result was plotted in terms of sensing element strain against the boundary load and the graph should produce a linear response.

  3. High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains

    NASA Astrophysics Data System (ADS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-11-01

    Nonlinear entropy stability is used to derive provably stable high-order finite difference operators including boundary closure stencils, for the compressible Navier-Stokes equations. A comparison technique is used to derive a new Entropy Stable Weighted Essentially Non-Oscillatory (SSWENO) finite difference method, appropriate for simulations of problems with shocks. Viscous terms are approximated using conservative, entropy stable, narrow-stencil finite difference operators. The efficacy of the new discrete operators is demonstrated using both smooth and discontinuous test cases.

  4. Least-squares streamline diffusion finite element approximations to singularly perturbed convection-diffusion problems

    SciTech Connect

    Lazarov, R D; Vassilevski, P S

    1999-05-06

    In this paper we introduce and study a least-squares finite element approximation for singularly perturbed convection-diffusion equations of second order. By introducing the flux (diffusive plus convective) as a new unknown, the problem is written in a mixed form as a first order system. Further, the flux is augmented by adding the lower order terms with a small parameter. The new first order system is approximated by the least-squares finite element method using the minus one norm approach of Bramble, Lazarov, and Pasciak [2]. Further, we estimate the error of the method and discuss its implementation and the numerical solution of some test problems.

  5. Dynamical observer for a flexible beam via finite element approximations

    NASA Technical Reports Server (NTRS)

    Manitius, Andre; Xia, Hong-Xing

    1994-01-01

    The purpose of this view-graph presentation is a computational investigation of the closed-loop output feedback control of a Euler-Bernoulli beam based on finite element approximation. The observer is part of the classical observer plus state feedback control, but it is finite-dimensional. In the theoretical work on the subject it is assumed (and sometimes proved) that increasing the number of finite elements will improve accuracy of the control. In applications, this may be difficult to achieve because of numerical problems. The main difficulty in computing the observer and simulating its work is the presence of high frequency eigenvalues in the finite-element model and poor numerical conditioning of some of the system matrices (e.g. poor observability properties) when the dimension of the approximating system increases. This work dealt with some of these difficulties.

  6. Finite element implementation of state variable-based viscoplasticity models

    NASA Technical Reports Server (NTRS)

    Iskovitz, I.; Chang, T. Y. P.; Saleeb, A. F.

    1991-01-01

    The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested.

  7. Thermal buoyancy on Venus: Preliminary results of finite element modeling

    NASA Technical Reports Server (NTRS)

    Burt, J. D.; Head, James W., III

    1992-01-01

    Enhanced surface temperatures and a thinner lithosphere on Venus relative to Earth have been cited as leading to increased lithospheric buoyancy. This would limit or prevent subduction on Venus and favor the construction of thickened crust through underthrusting. In order to evaluate the conditions distinguishing between underthrusting and subduction, we have modeled the thermal and buoyancy consequences of the subduction end member. This study considers the fate of a slab from the time it starts to subduct, but bypasses the question of subduction initiation. Thermal changes in slabs subducting into a mantle having a range of initial geotherms are used to predict density changes and thus their overall buoyancy. Finite element modeling is then applied in a first approximation of the assessment of the relative rates of subduction as compared to the buoyant rise of the slab through a viscous mantle.

  8. Incorporating finite element analysis into component life and reliability

    NASA Technical Reports Server (NTRS)

    August, Richard; Zaretsky, Erwin V.

    1991-01-01

    A method for calculating a component's design survivability by incorporating finite element analysis and probabilistic material properties was developed. The method evaluates design parameters through direct comparisons of component survivability expressed in terms of Weibull parameters. The analysis was applied to a rotating disk with mounting bolt holes. The highest probability of failure occurred at, or near, the maximum shear stress region of the bolt holes. Distribution of failure as a function of Weibull slope affects the probability of survival. Where Weibull parameters are unknown for a rotating disk, it may be permissible to assume Weibull parameters, as well as the stress-life exponent, in order to determine the disk speed where the probability of survival is highest.

  9. Finite element solution of low bond number sloshing

    NASA Technical Reports Server (NTRS)

    Wohlen, R. L.; Park, A. C.; Warner, D. M.

    1975-01-01

    The dynamics of liquid propellant in a low Bond number environment which are critical to the design of spacecraft systems with respect to orbital propellant transfer and attitude control system were investigated. Digital computer programs were developed for the determination of liquid free surface equilibrium shape, lateral slosh natural vibration mode shapes, and frequencies for a liquid in a container of arbitrary axisymmetric shape with surface tension forces the same order of magnitude as acceleration forces. A finite volume element representation of the liquid was used for the vibration analysis. The liquid free surface equilibrium shapes were computed for several tanks at various contact angles and ullage volumes. A configuration was selected for vibration analysis and lateral slosh mode shapes and natural frequencies were obtained. Results are documented.

  10. Two-dimensional finite element model of the pultrusion process

    NASA Technical Reports Server (NTRS)

    Hackett, Robert M.; Zhu, Si-Ze

    1992-01-01

    Composite materials used in the fabrication of industrial products/components are under constant development. Applications vary widely from consumer products to high-performance aerospace components. The pultrusion process is one of the important methods of production of composite materials. In order to develop a fundamental understanding of this process, a computational model employing the finite element method is developed which enables a prediction of the material temperature and degree-of-cure at any time during the process. The model is comprehensive; it can readily be employed to perform parametric studies of the process and to aid in the development of efficient design procedures for this type of material system. Comparisons are made between model predictions and experimental results and good agreement is observed.

  11. Finite element modeling of seismic wave propagation in earthen embankments

    NASA Astrophysics Data System (ADS)

    Tadese, Binyam Darsema

    The detection of internal seepage zones in embankments (dams and levees) by geophysical seismic techniques such as seismic refraction is limited by a number of factors. Some factors are associated with inversion and smoothing problems during processing, while others are associated with the natural characteristics of embankments and seepage anomalies. In this research, changes in the seismic response associated with: embankment soil compositions and moisture, characteristics of the seepage zone, presence of water in the reservoir, and shape of embankment was studied via 2D and 3D finite element (FE) embankment models. Artificial reflections from external boundaries and numerical dispersion were first examined in the frame work of COMSOL. A combination of an absorbing layer and dashpot elements produced minimal reflections. The numerical dispersion study suggested a mesh composed of 5 quartic (4th order) elements per wavelength and a time step of 1/4 of 1/20 of the minimum period to be optimal. COMSOL models were verified by comparing to the analytic solutions for a transient point source in an unbounded media. The agreement of arrival times from a point source and a line source were also ascertained for an elastic half space model. The seismic response of dry and wet seepage zones in an embankment were evaluated for 2D longitudinal and transverse models. The zones considered in this study do not cause substantial deviations on the first arrival times but behave as scatters and their signatures were, predominantly, wavelet distortion. Wet (high impedance) zone produces a higher amplitude wavelet that is delayed in time, whereas a dry (low impedance) zone produces an earlier arriving lower amplitude, first arriving wavelet. Processing algorithms such as tomography that can incorporate such finite frequency effects may improve the detection of internal seepage in earthen embankments. The results from preliminary 3D models suggest that the water in the reservoir and the

  12. An alternative Laplacian electrostatic field finite element formulation

    SciTech Connect

    Barber, P.F.; Lauber, T.S.

    1987-01-01

    An alternative finite element method for calculating three-dimensional electrostatic fields is described. The matrix equation is assembled using linear tetrahedral elements and an electrical network solution techniques known as impedance matrix building with axis discarding. The solutions of sample problems are described.

  13. Grid generation for two-dimensional finite element flowfield computation

    NASA Technical Reports Server (NTRS)

    Tatum, K. E.

    1980-01-01

    The finite element method for fluid dynamics was used to develop a two dimensional mesh generation scheme. The method consists of shearing and conformal maps with upper and lower surfaces handled independently to allow sharp leading edges. The method also generates meshes of triangular or quadrilateral elements.

  14. On using moving windows in finite element time domain simulation for long accelerator structures

    SciTech Connect

    Lee, L.-Q.; Candel, Arno; Ng, Cho; Ko, Kwok

    2010-12-10

    A finite element moving window technique is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the keys to implementing a moving window in a finite element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal finite element time domain (FETD) method and the advantages of using the moving window technique are discussed.

  15. Adaptive grid finite element model of the tokamak scrapeoff layer

    SciTech Connect

    Kuprat, A.P.; Glasser, A.H.

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  16. Finite element analysis of two disk rotor system

    NASA Astrophysics Data System (ADS)

    Dixit, Harsh Kumar

    2016-05-01

    A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.

  17. Preconditioned CG-solvers and finite element grids

    SciTech Connect

    Bauer, R.; Selberherr, S.

    1994-12-31

    To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.

  18. Structural optimization of thin shells using finite element method

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.

    1992-01-01

    The objective of the present work was the structural optimization of thin shell structures that are subjected to stress and displacement constraints. In order to accomplish this, the structural optimization computer program DESAP1 was modified and improved. In the static analysis part of the DESAP1 computer program the torsional spring elements, which are used to analyze thin, shallow shell structures, were eliminated by modifying the membrane stiffness matrix of the triangular elements in the local coordinate system and adding a fictitious rotational stiffness matrix. This simplified the DESAP1 program input, improved the accuracy of the analysis, and saved computation time. In the optimization part of the DESAP1 program the stress ratio formula, which redesigns the thickness of each finite element of the structure, was solved by an analytical method. This scheme replaced the iterative solution that was previously used in the DESAP1 program, thus increasing the accuracy and speed of the design. The modified program was used to design a thin, cylindrical shell structure with optimum weight, and the results are reported in this paper.

  19. Exponential convergence through linear finite element discretization of stratified subdomains

    NASA Astrophysics Data System (ADS)

    Guddati, Murthy N.; Druskin, Vladimir; Vaziri Astaneh, Ali

    2016-10-01

    Motivated by problems where the response is needed at select localized regions in a large computational domain, we devise a novel finite element discretization that results in exponential convergence at pre-selected points. The key features of the discretization are (a) use of midpoint integration to evaluate the contribution matrices, and (b) an unconventional mapping of the mesh into complex space. Named complex-length finite element method (CFEM), the technique is linked to Padé approximants that provide exponential convergence of the Dirichlet-to-Neumann maps and thus the solution at specified points in the domain. Exponential convergence facilitates drastic reduction in the number of elements. This, combined with sparse computation associated with linear finite elements, results in significant reduction in the computational cost. The paper presents the basic ideas of the method as well as illustration of its effectiveness for a variety of problems involving Laplace, Helmholtz and elastodynamics equations.

  20. User's Guide for ENSAERO_FE Parallel Finite Element Solver

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Guruswamy, Guru P.

    1999-01-01

    A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.

  1. Design and finite element analysis of oval man way

    SciTech Connect

    Hari, Y.; Gryder, B.

    1996-12-01

    This paper presents the design of an oval man way in the side wall of a cylindrical pressure vessel. ASME Code Section 8 is used to obtain the design parameters of the oval man way, man way cover and bolts. The code calculations require some assumptions which may not be valid. A typical design example is taken. STAAD III finite element code with plate elements is used to model the oval man way, man way cover and bolts. The stresses calculated using ASME Code Section 8 and other analytical formulas for plate and shells are compared with the stresses obtained by Finite Element Modeling. This paper gives the designer of oval man way the ability to perform a finite element analysis and compare it with the analytical calculations and assumptions made. This gives added confidence to the designer as to the validity of his calculations and assumptions.

  2. A finite element implementation for biphasic contact of hydrated porous media under finite deformation and sliding

    PubMed Central

    Guo, Hongqiang; Shah, Mitul; Spilker, Robert L.

    2014-01-01

    The study of biphasic soft tissues contact is fundamental to understanding the biomechanical behavior of human diarthrodial joints. However, to date, few biphasic finite element contact analysis for 3D physiological geometries under finite deformation has been developed. The objective of this paper is to develop a hyperelastic biphasic contact implementation for finite deformation and sliding problem. An augmented Lagrangian method was used to enforce the continuity of contact traction and fluid pressure across the contact interface. The finite element implementation was based on a general purpose software, COMSOL Multiphysics. The accuracy of the implementation is verified using example problems, for which solutions are available by alternative analyses. The implementation was proven to be robust and able to handle finite deformation and sliding. PMID:24496915

  3. New triangular and quadrilateral plate-bending finite elements

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.

    1974-01-01

    A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.

  4. Variational formulation of high performance finite elements: Parametrized variational principles

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Militello, Carmello

    1991-01-01

    High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.

  5. Computationally efficient finite element evaluation of natural patellofemoral mechanics.

    PubMed

    Fitzpatrick, Clare K; Baldwin, Mark A; Rullkoetter, Paul J

    2010-12-01

    Finite element methods have been applied to evaluate in vivo joint behavior, new devices, and surgical techniques but have typically been applied to a small or single subject cohort. Anatomic variability necessitates the use of many subject-specific models or probabilistic methods in order to adequately evaluate a device or procedure for a population. However, a fully deformable finite element model can be computationally expensive, prohibiting large multisubject or probabilistic analyses. The aim of this study was to develop a group of subject-specific models of the patellofemoral joint and evaluate trade-offs in analysis time and accuracy with fully deformable and rigid body articular cartilage representations. Finite element models of eight subjects were used to tune a pressure-overclosure relationship during a simulated deep flexion cycle. Patellofemoral kinematics and contact mechanics were evaluated and compared between a fully deformable and a rigid body analysis. Additional eight subjects were used to determine the validity of the rigid body pressure-overclosure relationship as a subject-independent parameter. There was good agreement in predicted kinematics and contact mechanics between deformable and rigid analyses for both the tuned and test groups. Root mean square differences in kinematics were less than 0.5 deg and 0.2 mm for both groups throughout flexion. Differences in contact area and peak and average contact pressures averaged 5.4%, 9.6%, and 3.8%, respectively, for the tuned group and 6.9%, 13.1%, and 6.4%, respectively, for the test group, with no significant differences between the two groups. There was a 95% reduction in computational time with the rigid body analysis as compared with the deformable analysis. The tuned pressure-overclosure relationship derived from the patellofemoral analysis was also applied to tibiofemoral (TF) articular cartilage in a group of eight subjects. Differences in contact area and peak and average contact

  6. Spectral finite-element methods for parametric constrained optimization problems.

    SciTech Connect

    Anitescu, M.; Mathematics and Computer Science

    2009-01-01

    We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem is solvable because it is feasible for a sufficiently large degree of the polynomial approximation and has an objective function with bounded level sets. In addition, the solutions of the finite-dimensional problems converge for an increasing degree of the polynomials considered, provided that the solutions exhibit a sufficiently large and uniform degree of smoothness. Our approach solves, in the case of optimization problems with uncertain parameters, the most computationally intensive part of stochastic finite-element approaches. We demonstrate that our framework is applicable to parametric eigenvalue problems.

  7. Finite element analysis of osteoporosis models based on synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Xu, W.; Xu, J.; Zhao, J.; Sun, J.

    2016-04-01

    With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m-1 to 697.41 Fμ m-1, the bending and torsion stiffness were from 1390.80 Fμ m-1 to 566.11 Fμ m-1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.

  8. Finite element analysis of osteoporosis models based on synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Xu, W.; Xu, J.; Zhao, J.; Sun, J.

    2016-04-01

    With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m‑1 to 697.41 Fμ m‑1, the bending and torsion stiffness were from 1390.80 Fμ m‑1 to 566.11 Fμ m‑1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.

  9. Hybrid finite element-finite difference method for thermal analysis of blood vessels.

    PubMed

    Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B

    2000-01-01

    A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems.

  10. Finite element method for eigenvalue problems in electromagnetics

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, Fred B.

    1994-01-01

    Finite element method (FEM) has been a very powerful tool to solve many complex problems in electromagnetics. The goal of the current research at the Langley Research Center is to develop a combined FEM/method of moments approach to three-dimensional scattering/radiation problem for objects with arbitrary shape and filled with complex materials. As a first step toward that goal, an exercise is taken to establish the power of FEM, through closed boundary problems. This paper demonstrates the developed of FEM tools for two- and three-dimensional eigenvalue problems in electromagnetics. In section 2, both the scalar and vector finite elements have been used for various waveguide problems to demonstrate the flexibility of FEM. In section 3, vector finite element method has been extended to three-dimensional eigenvalue problems.

  11. Electrical and Joule heating relationship investigation using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Thangaraju, S. K.; Munisamy, K. M.

    2015-09-01

    The finite element method is vastly used in material strength analysis. The nature of the finite element solver, which solves the Fourier equation of stress and strain analysis, made it possible to apply for conduction heat transfer Fourier Equation. Similarly the Current and voltage equation is also liner Fourier equation. The nature of the governing equation makes it possible to numerical investigate the electrical joule heating phenomena in electronic component. This paper highlights the Finite Element Method (FEM) application onto semiconductor interconnects to determine the specific contact resistance (SCR). Metal and semiconductor interconnects is used as model. The result confirms the possibility and validity of FEM utilization to investigate the Joule heating due electrical resistance.

  12. Optimal mapping of irregular finite element domains to parallel processors

    NASA Technical Reports Server (NTRS)

    Flower, J.; Otto, S.; Salama, M.

    1987-01-01

    Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.

  13. Finite element methods for nonlinear elastostatic problems in rubber elasticity

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Becker, E. B.; Miller, T. H.; Endo, T.; Pires, E. B.

    1983-01-01

    A number of finite element methods for the analysis of nonlinear problems in rubber elasticity are outlined. Several different finite element schemes are discussed. These include the augmented Lagrangian method, continuation or incremental loading methods, and associated Riks-type methods which have the capability of incorporating limit point behavior and bifurcations. Algorithms for the analysis of limit point behavior and bifurcations are described and the results of several numerical experiments are presented. In addition, a brief survey of some recent work on modelling contact and friction in elasticity problems is given. These results pertain to the use of new nonlocal and nonlinear friction laws.

  14. Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Chung, Eric; Efendiev, Yalchin; Hou, Thomas Y.

    2016-09-01

    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation.

  15. Correlation of composite material test results with finite element analysis

    NASA Astrophysics Data System (ADS)

    Guƫu, M.

    2016-08-01

    In this paper are presented some aspects regarding the method of simulation of composite materials testing with finite element analysis software. There were simulated tensile and shear tests of specimens manufactured from glass fiber reinforced polyester. For specimens manufacturing two types of fabrics were used: unidirectional and bidirectional. Experimentally determined elastic properties of composite material were used as input data. Modeling of composite architecture of the specimens was performed with ANSYS Composite PrepPost software. Finite element analysis stresses and strains on strain gauges bonding area were considered and compared with the real values in a diagram. After results comparison, potential causes of deviations were identified.

  16. Fourier analysis of finite element preconditioned collocation schemes

    NASA Technical Reports Server (NTRS)

    Deville, Michel O.; Mund, Ernest H.

    1990-01-01

    The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.

  17. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    SciTech Connect

    Smith, N. A. S. E-mail: maciej.rokosz@npl.co.uk Correia, T. M. E-mail: maciej.rokosz@npl.co.uk; Rokosz, M. K. E-mail: maciej.rokosz@npl.co.uk

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  18. Development of non-linear finite element computer code

    NASA Technical Reports Server (NTRS)

    Becker, E. B.; Miller, T.

    1985-01-01

    Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.

  19. Finite element models of the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Muller, G. R.

    1980-01-01

    Finite element models were developed as input to dynamic simulations of the high pressure fuel turbopump (HPFTP), the high pressure oxidizer turbopump (HPOTP), and the space shuttle main engine (SSME). Descriptions are provided for the five basic finite element models: HPFTP rotor, HPFTP case, HPOTP rotor, HPOTP case, and SSME (excluding turbopumps). Modal results are presented for the HPFTP rotor, HPFTP case, HPOTP rotor, coupled HPFTP rotor and case, HPOTP case, coupled HPOTP rotor and case, SSME (excluding turbopumps), and SSME (including turbopumps). Results for the SSME (including turbopumps) model are compared to data from a SSME HPOTP modal survey.

  20. Diffusive mesh relaxation in ALE finite element numerical simulations

    SciTech Connect

    Dube, E.I.

    1996-06-01

    The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.

  1. Discontinuous Galerkin finite element methods for gradient plasticity.

    SciTech Connect

    Garikipati, Krishna.; Ostien, Jakob T.

    2010-10-01

    In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.

  2. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  3. Two-dimensional finite-element temperature variance analysis

    NASA Technical Reports Server (NTRS)

    Heuser, J. S.

    1972-01-01

    The finite element method is extended to thermal analysis by forming a variance analysis of temperature results so that the sensitivity of predicted temperatures to uncertainties in input variables is determined. The temperature fields within a finite number of elements are described in terms of the temperatures of vertices and the variational principle is used to minimize the integral equation describing thermal potential energy. A computer calculation yields the desired solution matrix of predicted temperatures and provides information about initial thermal parameters and their associated errors. Sample calculations show that all predicted temperatures are most effected by temperature values along fixed boundaries; more accurate specifications of these temperatures reduce errors in thermal calculations.

  4. Finite element microscopic stress analysis of cracked composite systems

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1978-01-01

    This paper considers the stress concentration problems of two types of cracked composite systems: (1) a composite system with a broken fiber (a penny-shaped crack problem), and (2) a composite system with a cracked matrix (an annular crack problem). The cracked composite systems are modeled with triangular and trapezoidal ring finite elements. Using NASTRAN (NASA Structural Analysis) finite element computer program, the stress and deformation fields in the cracked composite systems are calculated. The effect of fiber-matrix material combination on the stress concentrations and on the crack opening displacements is studied.

  5. Finite element analysis of skin effect resistance in submillimeter wave Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Campbell, J. S.; Wrixon, G. T.

    1982-05-01

    The skin effect resistance of GaAs Schottky barrier diodes, operating at high frequency, has been obtained using a specially developed finite element computer program. The devices were analyzed as multiplane finite element models entailing curved high-order numerically integrated isoparametric elements. These models coped easily with complexity of shape and with the near singularity associated with the geometry of the anode. A parametric study entailing twenty-six analyses was carried out, from which it was concluded that the skin effect resistance can be minimized by the correct choice of topographical features such as the extent of the ohmic contact and the anode shape.

  6. A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries

    SciTech Connect

    Bramble, J.H.; King, J.T.

    1994-07-01

    In this paper the authors consider a simple finite element method on an approximately polygonal domain using linear elements. The Dirichlet data are transferred in a natural way and the resulting linear system can be solved using multigrid techniques. Their analysis takes into account the change in domain and data transfer, and optimal-error estimates are obtained that are robust in the regularity of the boundary data provided they are at least square integrable. It is proved that the natural extension of this finite element approximation to the original domain is optimal-order accurate.

  7. Convergence rates for finite element problems with singularities. Part 1: Antiplane shear. [crack

    NASA Technical Reports Server (NTRS)

    Plunkett, R.

    1980-01-01

    The problem of a finite crack in an infinite medium under antiplane shear load is considered. It is shown that the nodal forces at the tip of the crack accurately gives the order of singularity, that n energy release methods can give the strength to better than 1 percent with element size 1/10 the crack length, and that nodal forces give a much better estimate of the stress field than do the elements themselves. The finite element formulation and the factoring of tridiagonal matrices are discussed.

  8. Supercomputer implementation of finite element algorithms for high speed compressible flows

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Ramakrishnan, R.

    1986-01-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.

  9. Overview of adaptive finite element analysis in computational geodynamics

    NASA Astrophysics Data System (ADS)

    May, D. A.; Schellart, W. P.; Moresi, L.

    2013-10-01

    The use of numerical models to develop insight and intuition into the dynamics of the Earth over geological time scales is a firmly established practice in the geodynamics community. As our depth of understanding grows, and hand-in-hand with improvements in analytical techniques and higher resolution remote sensing of the physical structure and state of the Earth, there is a continual need to develop more efficient, accurate and reliable numerical techniques. This is necessary to ensure that we can meet the challenge of generating robust conclusions, interpretations and predictions from improved observations. In adaptive numerical methods, the desire is generally to maximise the quality of the numerical solution for a given amount of computational effort. Neither of these terms has a unique, universal definition, but typically there is a trade off between the number of unknowns we can calculate to obtain a more accurate representation of the Earth, and the resources (time and computational memory) required to compute them. In the engineering community, this topic has been extensively examined using the adaptive finite element (AFE) method. Recently, the applicability of this technique to geodynamic processes has started to be explored. In this review we report on the current status and usage of spatially adaptive finite element analysis in the field of geodynamics. The objective of this review is to provide a brief introduction to the area of spatially adaptive finite analysis, including a summary of different techniques to define spatial adaptation and of different approaches to guide the adaptive process in order to control the discretisation error inherent within the numerical solution. An overview of the current state of the art in adaptive modelling in geodynamics is provided, together with a discussion pertaining to the issues related to using adaptive analysis techniques and perspectives for future research in this area. Additionally, we also provide a

  10. Finite Element Model Development and Validation for Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.

  11. Numerical techniques in linear duct acoustics. [finite difference and finite element analyses

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1980-01-01

    Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.

  12. New hybrid quadrilateral finite element for Mindlin plate

    NASA Astrophysics Data System (ADS)

    Chin, Yi; Zhang, Jingyu

    1994-02-01

    A new quadrilateral plate element concerning the effect of transverse shear strain was presented. It was derived from the hybrid finite element model based on the principles of virtual work. The outstanding advantage of this element was to use more rational trial functions of the displacements. For this reason, every variety of plate deformation can be simulated really while the least degrees of freedom was employed. A wide range of numerical tests was conducted and the results illustrate that this element has a very wide application scope to the thickness of plates and satisfactory accuracy can be obtained by coarse mesh for all kinds of examples.

  13. The Use of Direct Solver in Vector Finite Element Modeling for Calculating 3-D Magnetotelluric Responses

    NASA Astrophysics Data System (ADS)

    Prihantoro, Rudy; Sutarno, Doddy; Nurhasan

    2016-08-01

    In this work, we seek numerical solution of 3-D Magnetotelluric (MT) using edge- based finite element method. This approach is a variant of standard finite element method and commonly referred as vector finite-element (VFE) method. Nonphysical solutions usually occurred when the solution is sought using standard finite element which is a node based element. Vector finite element attempt to overcome those nonphysical solutions by using the edges of the element as vector basis. The proposed approach on solving second order Maxwell differential equation of 3-D MT is using direct solver rather than iterative method. Therefore, divergence correction to accelerate the rate of convergence for its iterative solution is no longer needed. The utilization of direct solver has been verified previously for correctness by comparing the resulting solution to those given by analytical solution, as well as the solution come from the other numerical methods, for earth layered model, 2-D models and COMMEMI 3D-2 model. In this work, further verification resulted from recent comparison model of Dublin Test Model 1 (DTM1) is presented.

  14. Finite Elements Modeling in Diagnostics of Small Closed Pneumothorax.

    PubMed

    Lorkowski, J; Mrzygłód, M; Grzegorowska, O

    2015-01-01

    Posttraumatic pneumothorax still remains to be a serious clinical problem and requires a comprehensive diagnostic and monitoring during treatment. The aim of this paper is to present a computer method of modeling of small closed pneumothorax. Radiological images of 34 patients of both sexes with small closed pneumothorax were taken into consideration. The control group consisted of X-rays of 22 patients treated because of tension pneumothorax. In every single case the model was correlated with the clinical manifestations. The procedure of computational rapid analysis (CRA) for in silico analysis of surgical intervention was introduced. It included implementation of computerize tomography images and their automatic conversion into 3D finite elements model (FEM). In order to segmentize the 3D model, an intelligent procedure of domain recognition was used. In the final step, a computer simulation project of fluid-structure interaction was built, using the ANSYS\\Workbench environment of multi-physics analysis. The FEM model and computer simulation project were employed in the analysis in order to optimize surgical intervention. The model worked out well and was compatible with the clinical manifestations of pneumothorax. We conclude that the created FEM model is a promising tool for facilitation of diagnostic procedures and prognosis of treatment in the case of small closed pneumothorax.

  15. Highly accurate adaptive finite element schemes for nonlinear hyperbolic problems

    NASA Astrophysics Data System (ADS)

    Oden, J. T.

    1992-08-01

    This document is a final report of research activities supported under General Contract DAAL03-89-K-0120 between the Army Research Office and the University of Texas at Austin from July 1, 1989 through June 30, 1992. The project supported several Ph.D. students over the contract period, two of which are scheduled to complete dissertations during the 1992-93 academic year. Research results produced during the course of this effort led to 6 journal articles, 5 research reports, 4 conference papers and presentations, 1 book chapter, and two dissertations (nearing completion). It is felt that several significant advances were made during the course of this project that should have an impact on the field of numerical analysis of wave phenomena. These include the development of high-order, adaptive, hp-finite element methods for elastodynamic calculations and high-order schemes for linear and nonlinear hyperbolic systems. Also, a theory of multi-stage Taylor-Galerkin schemes was developed and implemented in the analysis of several wave propagation problems, and was configured within a general hp-adaptive strategy for these types of problems. Further details on research results and on areas requiring additional study are given in the Appendix.

  16. FINITE ELEMENT IMPLEMENTATION OF MECHANO-CHEMICAL PHENOMENA IN NEUTRAL DEFORMABLE POROUS MEDIA UNDER FINITE DEFORMATION

    PubMed Central

    ATESHIAN, GERARD A.; ALBRO, MICHAEL B.; MAAS, STEVE; WEISS, JEFFREY A.

    2012-01-01

    Biological soft tissues and cells may be subjected to mechanical as well as chemical (osmotic) loading under their natural physiological environment or various experimental conditions. The interaction of mechanical and chemical effects may be very significant under some of these conditions, yet the highly nonlinear nature of the set of governing equations describing these mechanisms poses a challenge for the modeling of such phenomena. This study formulated and implemented a finite element algorithm for analyzing mechano-chemical events in neutral deformable porous media under finite deformation. The algorithm employed the framework of mixture theory to model the porous permeable solid matrix and interstitial fluid, where the fluid consists of a mixture of solvent and solute. A special emphasis was placed on solute-solid matrix interactions, such as solute exclusion from a fraction of the matrix pore space (solubility) and frictional momentum exchange that produces solute hindrance and pumping under certain dynamic loading conditions. The finite element formulation implemented full coupling of mechanical and chemical effects, providing a framework where material properties and response functions may depend on solid matrix strain as well as solute concentration. The implementation was validated using selected canonical problems for which analytical or alternative numerical solutions exist. This finite element code includes a number of unique features that enhance the modeling of mechano-chemical phenomena in biological tissues. The code is available in the public domain, open source finite element program FEBio (http://mrl.sci.utah.edu/software). PMID:21950898

  17. A General-Purpose Mesh Generator for Finite Element Codes.

    1984-02-28

    Version 00 INGEN is a general-purpose mesh generator for use in conjunction with two and three dimensional finite element programs. The basic components of INGEN are surface and three-dimensional region generators that use linear-blending interpolation formulae. These generators are based on an i, j, k index scheme, which is used to number nodal points, construct elements, and develop displacement and traction boundary conditions.

  18. HEAT2. Two-Dimensional Heat Transfer Finite Element Code

    SciTech Connect

    Charman, C.

    1993-08-01

    HEAT2 is a finite element program for the transient and steady-state, thermal analysis of two-dimensional solids. Calculates detailed temperature distributions in MHTGR prismatic fuel elements side reflector and core support blocks. Non-linear effects of time and temperature dependent boundary conditions, and heat source generation and material properties are included with user supplied subroutines NPBC, QAREA, SOURCE, and MPROP.

  19. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  20. BOOK REVIEW: Nonlinear Continuum Mechanics for Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Bialek, James M.

    1998-05-01

    Nonlinear continuum mechanics of solids is a fascinating subject. All the assumptions inherited from an overexposure to linear behaviour and analysis must be re-examined. The standard definitions of strain designed for small deformation linear problems may be totally misleading when finite motion or large deformations are considered. Nonlinear behaviour includes phenomena like `snap-through', where bifurcation theory is applied to engineering design. Capabilities in this field are growing at a fantastic speed; for example, modern automobiles are presently being designed to crumple in the most energy absorbing manner in order to protect the occupants. The combination of nonlinear mechanics and the finite element method is a very important field. Most engineering designs encountered in the fusion effort are strictly limited to small deformation linear theory. In fact, fusion devices are usually kept in the low stress, long life regime that avoids large deformations, nonlinearity and any plastic behaviour. The only aspect of nonlinear continuum solid mechanics about which the fusion community now worries is that rare case where details of the metal forming process must be considered. This text is divided into nine sections: introduction, mathematical preliminaries, kinematics, stress and equilibrium, hyperelasticity, linearized equilibrium equations, discretization and solution, computer implementation and an appendix covering an introduction to large inelastic deformations. The authors have decided to use vector and tensor notation almost exclusively. This means that the usual maze of indicial equations is avoided, but most readers will therefore be stretched considerably to follow the presentation, which quickly proceeds to the heart of nonlinear behaviour in solids. With great speed the reader is led through the material (Lagrangian) and spatial (Eulerian) co-ordinates, the deformation gradient tensor (an example of a two point tensor), the right and left Cauchy

  1. A new weak Galerkin finite element method for elliptic interface problems

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu; Zhao, Shan

    2016-08-26

    We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less

  2. Finite element forced vibration analysis of rotating cyclic structures

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.

    1981-01-01

    A capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axes of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical development of this capability is presented.

  3. Spanwise variation of potential form drag. [finite element method

    NASA Technical Reports Server (NTRS)

    Clever, W. C.

    1977-01-01

    The finite element method is used to calculate the spanwise variation of potential form drag of a wing at subsonic and supersonic speeds using linearly varying panels. The wing may be of arbitrary planform and nonplanar provided the wing panels are parallel to the aircraft axis.

  4. Finite-element analysis of end-notch flexure specimens

    NASA Technical Reports Server (NTRS)

    Mall, S.; Kochhar, N. K.

    1986-01-01

    A finite-element analysis of the end-notch flexure specimen for Mode II interlaminar fracture toughness measurement was conducted. The effects of friction between the crack faces and large deflection on the evaluation of G(IIc) from this specimen were investigated. Results of this study are presented in this paper.

  5. Finite element analysis of end notch flexure specimen

    NASA Technical Reports Server (NTRS)

    Mall, S.; Kochhar, N. K.

    1986-01-01

    A finite element analysis of the end notch flexure specimen for mode II interlaminar fracture toughness measurement was conducted. The effect of friction between the crack faces and large deflection on the evaluation of G sub IIc from this specimen were investigated. Results of this study are presented in this paper.

  6. SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications

    NASA Technical Reports Server (NTRS)

    Kirk, Benjamin S.

    2007-01-01

    This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.

  7. Boundary control of parabolic systems - Finite-element approximation

    NASA Technical Reports Server (NTRS)

    Lasiecka, I.

    1980-01-01

    The finite element approximation of a Dirichlet type boundary control problem for parabolic systems is considered. An approach based on the direct approximation of an input-output semigroup formula is applied. Error estimates are derived for optimal state and optimal control, and it is noted that these estimates are actually optimal with respect to the approximation theoretic properties.

  8. Finite Element Studies Of Tangent Mounted Conical Optics

    NASA Astrophysics Data System (ADS)

    Stoneking, J.; Casstevens, J.; Stillman, D.

    1982-12-01

    This paper presents experimental and analytical results from a study investigating the effect of centrifugal force and gravity on two candidate mirror fixture designs to be used on a diamond-turning ma-chine. The authors illustrate and discuss the use of the finite element method as an aid in the design and fabrication of high precision metallic optical components.

  9. A finite element approach for prediction of aerothermal loads

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Vemaganti, G.

    1986-01-01

    A Taylor-Galerkin finite element approach is presented for analysis of high speed viscous flows with an emphasis on predicting heating rates. Five computational issues relevant to the computation of steady flows are examined. Numerical results for supersonic and hypersonic problems address the computational issues and demonstrate the validity for the approach for analysis of high speed flows.

  10. Development of an Equivalent Composite Honeycomb Model: A Finite Element Study

    NASA Astrophysics Data System (ADS)

    Steenackers, G.; Peeters, J.; Ribbens, B.; Vuye, C.

    2016-07-01

    Finite element analysis of complex geometries such as honeycomb composites, brings forth several difficulties. These problems are expressed primarily as high calculation times but also memory issues when solving these models. In order to bypass these issues, the main goal of this research paper is to define an appropriate equivalent model in order to minimize the complexity of the finite element model and thus minimize computation times. A finite element study is conducted on the design and analysis of equivalent layered models, substituting the honeycomb core in sandwich structures. A comparison is made between available equivalent models. An equivalent model with the right set of material property values is defined and benchmarked, consisting of one continuous layer with orthotropic elastic properties based on different available approximate formulas. This way the complex geometry does not need to be created while the model yields sufficiently accurate results.

  11. Development of an hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1993-01-01

    The purpose of this research effort is to develop a means to use, and to ultimately implement, hp-version finite elements in the numerical solution of optimal control problems. The hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element.

  12. Probabilistic Finite Element Analysis & Design Optimization for Structural Designs

    NASA Astrophysics Data System (ADS)

    Deivanayagam, Arumugam

    This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that

  13. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  14. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    PubMed

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials. PMID:21428686

  15. A new weak Galerkin finite element method for elliptic interface problems

    NASA Astrophysics Data System (ADS)

    Mu, Lin; Wang, Junping; Ye, Xiu; Zhao, Shan

    2016-11-01

    A new weak Galerkin (WG) finite element method is introduced and analyzed in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. Extensive numerical experiments have been conducted to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.

  16. Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.

    2002-01-01

    The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.

  17. PWSCC Assessment by Using Extended Finite Element Method

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Jun; Lee, Sang-Hwan; Chang, Yoon-Suk

    2015-12-01

    The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.

  18. Finite Element Modelling of Fluid Coupling in the Coiled Cochlea

    NASA Astrophysics Data System (ADS)

    Ni, Guangjian; Elliott, S. J.; Lineton, B.; Saba, R.

    2011-11-01

    A finite element model is first used to calculate the modal pressure difference for a box model of the cochlea, which shows that the number of fluid elements across the width of the cochlea determines the accuracy with which the near field, or short wavenumber, component of the fluid coupling is reproduced. Then results are compared with the analytic results to validate the accuracy of the FE model. It is, however, the far field, or long wavelength, component of the fluid coupling that is most affected by the geometry. A finite element model of the coiled cochlea is then used to calculate fluid coupling in this case, which has similar characteristics to the uncoiled model.

  19. EXODUS: A finite element file format for pre- and postprocessing

    SciTech Connect

    Mills-Curran, W.C.; Gilkey, A.P.; Flanagan, D.P.

    1988-09-01

    The EXODUS format defines a binary file which is used for finite element analysis pre- and postprocessing. It includes data to define the finite element mesh and label both boundary condition and load application points. EXODUS accommodates multiple element types and is sufficiently general format for analysis results. A benefit of combining the mesh definition data and the results data in the same file is that the user is assured that the results data are consistent with the model. EXODUS is currently in use by the entire range of Department 1520 codes (including preprocessors, translators, linear and nonlinear analyses, and postprocessors) and is finding applications in codes outside Department 1520. 2 refs., 2 figs., 1 tab.

  20. Multiphase control volume finite element simulations of fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Fu, Yao

    With rapid evolution of hardware and software techniques in energy sector, reservoir simulation has become a powerful tool for field development planning and reservoir management. Many of the widely used commercial simulators were originally designed for structured grids and implemented with finite difference method (FDM). In recent years, technical advances in griding, fluid modeling, linear solver, reservoir and geological modeling, etc. have created new opportunities. At the same time, new reservoir simulation technology is required for solving large-scale heterogeneous problems. A three-dimensional, three-phase black-oil reservoir simulator has been developed using the control volume finite element (CVFE) formulation. Flux-based upstream weighting is employed to ensure flux continuity. The CVFE method is embedded in a fully-implicit formulation. State-of-the-art parallel, linear solvers are used. The implementation takes the advantages of object-oriented programming capabilities of C++ to provide maximum reuse and extensibility for future students. The results from the simulator have excellent agreement with those from commercial simulators. The convergence properties of the new simulator are verified using the method of manufactured solutions. The pressure and saturation solutions are verified to be first-order convergent as expected. The efficiency of the simulators and their capability to handle real large-scale field models are improved by implementing the models in parallel. Another aspect of the work dealt with multiphase flow of fractured reservoirs was performed. The discrete-fracture model is implemented in the simulator. Fractures and faults are represented by lines and planes in two- and three-dimensional spaces, respectively. The difficult task of generating an unstructured mesh for complex domains with fractures and faults is accomplished in this study. Applications of this model for two-phase and three-phase simulations in a variety of fractured

  1. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    NASA Technical Reports Server (NTRS)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  2. A variational formulation with rigid-body constraints for finite elasticity: theory, finite element implementation, and applications

    NASA Astrophysics Data System (ADS)

    Chi, Heng; Lopez-Pamies, Oscar; Paulino, Glaucio H.

    2016-02-01

    This paper presents a new variational principle in finite elastostatics applicable to arbitrary elastic solids that may contain constitutively rigid spatial domains (e.g., rigid inclusions). The basic idea consists in describing the constitutive rigid behavior of a given spatial domain as a set of kinematic constraints over the boundary of the domain. From a computational perspective, the proposed formulation is shown to reduce to a set of algebraic constraints that can be implemented efficiently in terms of both single-field and mixed finite elements of arbitrary order. For demonstration purposes, applications of the proposed rigid-body-constraint formulation are illustrated within the context of elastomers, reinforced with periodic and random distributions of rigid filler particles, undergoing finite deformations.

  3. An Annotated Reference Guide to the Finite-Element Interface Specification Version 1.0

    SciTech Connect

    Alan B. Williams; Ivan J. Otero; Kyran D. Mish; Lee M. Tayor; Robert L. Clay

    1999-04-01

    The Finite-Element Interface (FEI) specification provides a layered abstraction that permits finite-element analysis codes to utilize various linear-algebra solution packages with minimal concern for the internal details of the solver modules. Alternatively, this interface can be viewed as a way for solver developers to provide solution services to finite-element clients without having to embed finite-element abstractions within their solver libraries. The purpose of this document is to provide some level of documentation between the bare interface specification itself, which consists only of C/C++ header files, and the full documentation suite that supports the interface definition by providing considerable detail as to its design and implementation. This document primarily provides the ''how'' of calling the interface member functions, so that programmers can readily learn how to utilize the interface implementation without having to consider all the details contained in the interface's definition, design, and motivation. The interface specification is presented three times in this document, each time with an increasing level of detail. The first presentation provides a general overview of the calling sequence, in order to acquaint the programmer with a basic introduction to how the interface is used to ''train'' the underlying solver software on the particular finite-element problem that is to be solved. The second pass through the interface definition provides considerable detail on each method, including specific considerations as to the structure of the underlying data, and an exposition of potential pitfalls that may occur as a byproduct of either the finite-element modeling process, or of the use of the associated interface implementation. Finally, a third description of the interface is given implicitly via the discussion of sample problems that provide concrete examples of the use of the finite-element interface.

  4. Finite element analysis of inviscid subsonic boattail flow

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Gerhart, P. M.

    1981-01-01

    A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.

  5. Hierarchicalp-version finite elements for radiation heat transfer

    NASA Astrophysics Data System (ADS)

    Gould, Dana Craig

    Methods to compute surface-to-surface radiation heat transfer between diffuse-gray surfaces using hierarchical p-version finite elements have been developed and applied to the analysis of a high-speed aircraft wing. A review of traditional methods for surface-to-surface radiation exchange is given. Traditional methods rely on the assumption of isothermal surfaces with incoming and outgoing radiation heat flux assumed constant over the surface. These assumptions are not appropriate for p-version finite elements, so new methods for evaluating the incoming and outgoing radiation flux over a finite element surface were required. Two methods for computing the surface-to-surface radiation heat transfer that do not rely on the above assumptions are developed and validated. The first approach uses traditional methods to compute the radiation exchange on an element sub-mesh, then transfers this data back to the parent element for the computation of the radiation heat flux. The second method requires the numerical integration of the net radiation exchange equation for each element. The methods are validated and evaluated using simple problems with analytical solutions. The radiation sub-element method is less costly than the direct integration method, but it is also less accurate. Both methods are computationally more expensive than traditional methods for a given number of degrees of freedom; however, for a given accuracy, they are less expensive. The new methods are used to analyze the wing of a High Speed Civil Transport vehicle. The p-elements were effective in capturing significant temperature variations over large sections of the wing and reduced the mesh complexity and associated modeling time while maintaining accuracy.

  6. Finite Elements in Ab Initio Electronic-Structure Calulations

    NASA Astrophysics Data System (ADS)

    Pask, J. E.; Sterne, P. A.

    Over the course of the past two decades, the density functional theory (DFT) (see e.g., [1]) of Hohenberg, Kohn, and Sham has proven to be an accurate and reliable basis for the understanding and prediction of a wide range of materials properties from first principles (ab initio), with no experimental input or empirical parameters. However, the solution of the Kohn-Sham equations of DFT is a formidable task and this has limited the range of physical systems which can be investigated by such rigorous, quantum mechanical means. In order to extend the interpretive and predictive power of such quantum mechanical theories further into the domain of "real materials", involving nonstoichiometric deviations, defects, grain boundaries, surfaces, interfaces, and the like; robust and efficient methods for the solution of the associated quantum mechanical equations are critical. The finite-element (FE) method (see e.g., [2]) is a general method for the solution of partial differential and integral equations which has found wide application in diverse fields ranging from particle physics to civil engineering. Here, we discuss its application to large-scale ab initio electronic-structure calculations.

  7. Finite element based simulation of dry sliding wear

    NASA Astrophysics Data System (ADS)

    Hegadekatte, V.; Huber, N.; Kraft, O.

    2005-01-01

    In order to predict wear and eventually the life-span of complex mechanical systems, several hundred thousand operating cycles have to be simulated. Therefore, a finite element (FE) post-processor is the optimum choice, considering the computational expense. A wear simulation approach based on Archard's wear law is implemented in an FE post-processor that works in association with a commercial FE package, ABAQUS, for solving the general deformable-deformable contact problem. Local wear is computed and then integrated over the sliding distance using the Euler integration scheme. The wear simulation tool works in a loop and performs a series of static FE-simulations with updated surface geometries to get a realistic contact pressure distribution on the contacting surfaces. It will be demonstrated that this efficient approach can simulate wear on both two-dimensional and three-dimensional surface topologies. The wear on both the interacting surfaces is computed using the contact pressure distribution from a two-dimensional or three-dimensional simulation, depending on the case. After every wear step the geometry is re-meshed to correct the deformed mesh due to wear, thus ensuring a fairly uniform mesh for further processing. The importance and suitability of such a wear simulation tool will be enunciated in this paper.

  8. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  9. Finite element based damage assessment of composite tidal turbine blades

    NASA Astrophysics Data System (ADS)

    Fagan, Edward M.; Leen, Sean B.; Kennedy, Ciaran R.; Goggins, Jamie

    2015-07-01

    With significant interest growing in the ocean renewables sector, horizontal axis tidal current turbines are in a position to dominate the marketplace. The test devices that have been placed in operation so far have suffered from premature failures, caused by difficulties with structural strength prediction. The goal of this work is to develop methods of predicting the damage level in tidal turbines under their maximum operating tidal velocity. The analysis was conducted using the finite element software package Abaqus; shell models of three representative tidal turbine blades are produced. Different construction methods will affect the damage level in the blade and for this study models were developed with varying hydrofoil profiles. In order to determine the risk of failure, a user material subroutine (UMAT) was created. The UMAT uses the failure criteria designed by Alfred Puck to calculate the risk of fibre and inter-fibre failure in the blades. The results show that degradation of the stiffness is predicted for the operating conditions, having an effect on the overall tip deflection. The failure criteria applied via the UMAT form a useful tool for analysis of high risk regions within the blade designs investigated.

  10. Finite element analysis simulations for ultrasonic array NDE inspections

    NASA Astrophysics Data System (ADS)

    Dobson, Jeff; Tweedie, Andrew; Harvey, Gerald; O'Leary, Richard; Mulholland, Anthony; Tant, Katherine; Gachagan, Anthony

    2016-02-01

    Advances in manufacturing techniques and materials have led to an increase in the demand for reliable and robust inspection techniques to maintain safety critical features. The application of modelling methods to develop and evaluate inspections is becoming an essential tool for the NDE community. Current analytical methods are inadequate for simulation of arbitrary components and heterogeneous materials, such as anisotropic welds or composite structures. Finite element analysis software (FEA), such as PZFlex, can provide the ability to simulate the inspection of these arrangements, providing the ability to economically prototype and evaluate improved NDE methods. FEA is often seen as computationally expensive for ultrasound problems however, advances in computing power have made it a more viable tool. This paper aims to illustrate the capability of appropriate FEA to produce accurate simulations of ultrasonic array inspections - minimizing the requirement for expensive test-piece fabrication. Validation is afforded via corroboration of the FE derived and experimentally generated data sets for a test-block comprising 1D and 2D defects. The modelling approach is extended to consider the more troublesome aspects of heterogeneous materials where defect dimensions can be of the same length scale as the grain structure. The model is used to facilitate the implementation of new ultrasonic array inspection methods for such materials. This is exemplified by considering the simulation of ultrasonic NDE in a weld structure in order to assess new approaches to imaging such structures.

  11. Accelerated finite element elastodynamic simulations using the GPU

    NASA Astrophysics Data System (ADS)

    Huthwaite, Peter

    2014-01-01

    An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy' partitioner and a new, more efficient ‘aligned' partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from http://www.pogo-fea.com/ to benefit the community.

  12. Finite element modeling of superelastic nickel-titanium orthodontic wires.

    PubMed

    Naceur, Ines Ben; Charfi, Amin; Bouraoui, Tarak; Elleuch, Khaled

    2014-11-28

    Thanks to its good corrosion resistance and biocompatibility, superelastic Ni–Ti wire alloys have been successfully used in orthodontic treatment. Therefore, it is important to quantify and evaluate the level of orthodontic force applied to the bracket and teeth in order to achieve tooth movement. In this study, three dimensional finite element models with a Gibbs-potential-based-formulation and thermodynamic principles were used. The aim was to evaluate the influence of possible intraoral temperature differences on the forces exerted by NiTi orthodontic arch wires with different cross sectional shapes and sizes. The prediction made by this phenomenological model, for superelastic tensile and bending tests, shows good agreement with the experimental data. A bending test is simulated to study the force variation of an orthodontic NiTi arch wire when it loaded up to the deflection of 3 mm, for this task one half of the arch wire and the 3 adjacent brackets were modeled. The results showed that the stress required for the martensite transformation increases with the increase of cross-sectional dimensions and temperature. Associated with this increase in stress, the plateau of this transformation becomes steeper. In addition, the area of the mechanical hysteresis, measured as the difference between the forces of the upper and lower plateau, increases.

  13. A finite element simulation of biological conversion processes in landfills

    SciTech Connect

    Robeck, M.; Ricken, T.

    2011-04-15

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

  14. Solar Electric Generating System II finite element analysis

    SciTech Connect

    Dohner, J.L.; Anderson, J.R.

    1994-04-01

    On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

  15. FLASH: A finite element computer code for variably saturated flow

    SciTech Connect

    Baca, R.G.; Magnuson, S.O.

    1992-05-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A.

  16. Finite Element Models for Electron Beam Freeform Fabrication Process

    NASA Technical Reports Server (NTRS)

    Chandra, Umesh

    2012-01-01

    Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the

  17. Stabilized tetrahedral elements for crystal plasticity finite element analysis overcoming volumetric locking

    NASA Astrophysics Data System (ADS)

    Cheng, Jiahao; Shahba, Ahmad; Ghosh, Somnath

    2016-05-01

    Image-based CPFE modeling involves computer generation of virtual polycrystalline microstructures from experimental data, followed by discretization into finite element meshes. Discretization is commonly accomplished using three-dimensional four-node tetrahedral or TET4 elements, which conform to the complex geometries. It has been commonly observed that TET4 elements suffer from severe volumetric locking when simulating deformation of incompressible or nearly incompressible materials. This paper develops and examines three locking-free stabilized finite element formulations in the context of crystal plasticity finite element analysis. They include a node-based uniform strain (NUS) element, a locally integrated B-bar (LIB) based element and a F-bar patch (FP) based element. All three formulations are based on the partitioning of TET4 element meshes and integrating over patches to obtain favorable incompressibility constraint ratios without adding large degrees of freedom. The results show that NUS formulation introduces unstable spurious energy modes, while the LIB and FP elements stabilize the solutions and are preferred for reliable CPFE analysis. The FP element is found to be computationally efficient over the LIB element.

  18. Automated volumetric grid generation for finite element modeling of human hand joints

    SciTech Connect

    Hollerbach, K.; Underhill, K.; Rainsberger, R.

    1995-02-01

    We are developing techniques for finite element analysis of human joints. These techniques need to provide high quality results rapidly in order to be useful to a physician. The research presented here increases model quality and decreases user input time by automating the volumetric mesh generation step.

  19. Finite element evaluation of erosion/corrosion affected reducing elbow

    SciTech Connect

    Basavaraju, C.

    1996-12-01

    Erosion/corrosion is a primary source for wall thinning or degradation of carbon steel piping systems in service. A number of piping failures in the power industry have been attributed to erosion/corrosion. Piping elbow is one of such susceptible components for erosion/corrosion because of increased flow turbulence due to its geometry. In this paper, the acceptability of a 12 in. x 8 in. reducing elbow in RHR service water pump discharge piping, which experienced significant degradation due to wall thinning in localized areas, was evaluated using finite element analysis methodology. Since the simplified methods showed very small margin and recommended replacement of the elbow, a detailed 3-D finite element model was built using shell elements and analyzed for internal pressure and moment loadings. The finite element analysis incorporated the U.T. measured wall thickness data at various spots that experienced wall thinning. The results showed that the elbow is acceptable as-is until the next fuel cycle. FEA, though cumbersome, and time consuming is a valuable analytical tool in making critical decisions with regard to component replacement of border line situation cases, eliminating some conservatism while not compromising the safety.

  20. A variational method for finite element stress recovery and error estimation

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Riggs, H. R.; Macy, S. C.

    1993-01-01

    A variational method for obtaining smoothed stresses from a finite element derived nonsmooth stress field is presented. The method is based on minimizing a functional involving discrete least-squares error plus a penalty constraint that ensures smoothness of the stress field. An equivalent accuracy criterion is developed for the smoothing analysis which results in a C sup 1-continuous smoothed stress field possessing the same order of accuracy as that found at the superconvergent optimal stress points of the original finite element analysis. Application of the smoothing analysis to residual error estimation is also demonstrated.

  1. Heat transfer monitoring by means of the hot wire technique and finite element analysis software.

    PubMed

    Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E

    2014-01-01

    It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances.

  2. Finite-element analysis and multibody dynamics issues in rotorcraft dynamic analysis

    NASA Technical Reports Server (NTRS)

    Ruzicka, Gene C.; Ormiston, Robert A.

    1991-01-01

    There is general agreement that the development of effective rotorcraft analysis software will require the use of modern computational mechanics methodologies, especially finite element analysis and multibody dynamics. This paper examines the analysis of rotorcraft dynamics from the perspective of these methodologies. First, a general discussion of rotorcraft analysis and modeling is presented. Then, a hierarchy of rotorcraft analyses is presented, ranging from simple to complex kinematics, where it is shown that in comprehensive rotorcraft software, finite element analysis must be augmented by multibody dynamics in order to properly analyze large motions of rotorcraft components. Finally, a review of multibody dynamics is presented to further familiarize the rotorcraft community with this technology.

  3. FECAP - FINITE ELEMENT COMPOSITE ANALYSIS PROGRAM FOR A MICROCOMPUTER

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.

    1994-01-01

    Advanced composite materials have gained use in the aerospace industry over the last 20 years because of their high specific strength and stiffness, and low coefficient of thermal expansion. Design of composite structures requires the analysis of composite material behavior. The Finite Element Composite Analysis Program, FECAP, is a special purpose finite element analysis program for analyzing composite material behavior with a microcomputer. Composite materials, in regard to this program, are defined as the combination of at least two distinct materials to form one nonhomogeneous anisotropic material. FECAP assumes a state of generalized plane strain exists in a material consisting of two or more orthotropic phases, subjected to mechanical and/or thermal loading. The finite element formulation used in FECAP is displacement based and requires the minimization of the total potential energy for each element with respect to the unknown variables. This procedure leads to a set of linear simultaneous equations relating the unknown nodal displacements to the applied loads. The equations for each element are assembled into a global system, the boundary conditions are applied, and the system is solved for the nodal displacements. The analysis may be performed using either 4-mode linear or 8-mode quadratic isoparametric elements. Output includes the nodal displacements, and the element stresses and strains. FECAP was written for a Hewlett Packard HP9000 Series 200 Microcomputer with the HP Basic operating system. It was written in HP BASIC 3.0 and requires approximately 0.5 Mbytes of RAM in addition to what is required for the operating system. A math coprocessor card is highly recommended. FECAP was developed in 1988.

  4. Finite element structural redesign by large admissible perturbations

    NASA Technical Reports Server (NTRS)

    Bernitsas, Michael M.; Beyko, E.; Rim, C. W.; Alzahabi, B.

    1991-01-01

    In structural redesign, two structural states are involved; the baseline (known) State S1 with unacceptable performance, and the objective (unknown) State S2 with given performance specifications. The difference between the two states in performance and design variables may be as high as 100 percent or more depending on the scale of the structure. A Perturbation Approach to Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the same finite element model and represented by different values of the design variables. General perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes, static deflections, static stresses, Euler buckling loads, and buckling modes of the objective S2 in terms of its performance specifications, and S1 data and Finite Element Analysis (FEA) results. Large Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the objective S2 incrementally without trial and error by postprocessing FEA results of S1 with no additional FEAs. Systematic numerical applications in redesign of a 10 element 48 degree of freedom (dof) beam, a 104 element 192 dof offshore tower, a 64 element 216 dof plate, and a 144 element 896 dof cylindrical shell show the accuracy, efficiency, and potential of PAR to find an objective state that may differ 100 percent from the baseline design.

  5. A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation

    SciTech Connect

    Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; /SLAC

    2010-06-07

    A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.

  6. Utility of a finite element solution algorithm for initial-value problems

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Soliman, M. O.

    1979-01-01

    The Galerkin criterion within a finite element Weighted Residuals formulation is employed to establish an implicit solution algorithm for an initial-value partial differential equation. Numerical solutions of a transient parabolic and a hyperbolic equation, obtained using linear, quadratic and two cubic finite element basis functions, are employed to quantize accuracy and confirm and refine theoretical convergence rate estimates. The linear basis algorithm for the hyperbolic equation displays excellent accuracy on a coarse computational grid and a high-order convergence rate with discretization refinement. Good accuracy and a strong convergence rate in surface flux are determined for a nonhomogeneous Neumann boundary constraint applied to a parabolic equation. The results amply demonstrate the impact of the nondiagonal finite element initial-value matrix structure on solution accuracy and/or convergence rate.

  7. A finite element study of the EIDI system. [Electro-Impulse De-Icing System

    NASA Technical Reports Server (NTRS)

    Khatkhate, A. A.; Scavuzzo, R. J.; Chu, M. L.

    1988-01-01

    This paper presents a method for modeling the structural dynamics of an Electro-Impulse De-Icing System, using finite element analyses procedures. A guideline for building a representative finite element model is discussed. Modeling was done initially using four noded cubic elements, four noded isoparametric plate elements and eight noded isoparametric shell elements. Due to the size of the problem and due to the underestimation of shear stress results when compared to previous analytical work an approximate model was created to predict possible areas of shedding of ice. There appears to be good agreement with the test data provided by The Boeing Commercial Airplane Company. Thus these initial results of this method were found to be encouraging. Additional analytical work and comparison with experiment is needed in order to completely evaluate this approach.

  8. Finite Element Modelling of the Apollo Heat Flow Experiments

    NASA Astrophysics Data System (ADS)

    Platt, J.; Siegler, M. A.; Williams, J.

    2013-12-01

    The heat flow experiments sent on Apollo missions 15 and 17 were designed to measure the temperature gradient of the lunar regolith in order to determine the heat flux of the moon. Major problems in these experiments arose from the fact that the astronauts were not able to insert the probes below the thermal skin depth. Compounding the problem, anomalies in the data have prevented scientists from conclusively determining the temperature dependent conductivity of the soil, which enters as a linear function into the heat flow calculation, thus stymieing them in their primary goal of constraining the global heat production of the Moon. Different methods of determining the thermal conductivity have yielded vastly different results resulting in downward corrections of up to 50% in some cases from the original calculations. Along with problems determining the conductivity, the data was inconsistent with theoretical predictions of the temperature variation over time, leading some to suspect that the Apollo experiment itself changed the thermal properties of the localised area surrounding the probe. The average temperature of the regolith, according to the data, increased over time, a phenomenon that makes calculating the thermal conductivity of the soil and heat flux impossible without knowing the source of error and accounting for it. The changes, possibly resulting from as varied sources as the imprint of the Astronauts boots on the lunar surface, compacted soil around the bore stem of the probe or even heat radiating down the inside of the tube, have convinced many people that the recorded data is unusable. In order to shed some light on the possible causes of this temperature rise, we implemented a finite element model of the probe using the program COMSOL Multi-physics as well as Matlab. Once the cause of the temperature rise is known then steps can be taken to account for the failings of the experiment and increase the data's utility.

  9. Structural health monitoring system design using finite element analysis

    SciTech Connect

    Stinemates, D. W.; Bennett, J. G.

    2002-01-01

    The project described in this report was performed to couple experimental and analytical techniques in the field of structural health monitoring and damage identification. To do this, a finite element model was constructed of a simulated three-story building used for damage identification experiments. The model was used in conjunction with data from the physical structure to research damage identification algorithms. Of particular interest was modeling slip in joints as a function of bolt torque and predicting the smallest change of torque that could be detected experimentally. After being validated with results from the physical structure, the model was used to produce data to test the capabilities of damage identification algorithms. This report describes the finite element model constructed, the results obtained, and proposed future use of the model.

  10. A fast hidden line algorithm for plotting finite element models

    NASA Technical Reports Server (NTRS)

    Jones, G. K.

    1982-01-01

    Effective plotting of finite element models requires the use of fast hidden line plot techniques that provide interactive response. A high speed hidden line technique was developed to facilitate the plotting of NASTRAN finite element models. Based on testing using 14 different models, the new hidden line algorithm (JONES-D) appears to be very fast: its speed equals that for normal (all lines visible) plotting and when compared to other existing methods it appears to be substantially faster. It also appears to be very reliable: no plot errors were observed using the new method to plot NASTRAN models. The new algorithm was made part of the NPLOT NASTRAN plot package and was used by structural analysts for normal production tasks.

  11. Finite element thermo-viscoplastic analysis of aerospace structures

    NASA Technical Reports Server (NTRS)

    Pandey, Ajay K.; Dechaumphai, Pramote; Thornton, Earl A.

    1990-01-01

    The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.

  12. Weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1991-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  13. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1990-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  14. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1989-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  15. Finite element solution of transient fluid-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.

    1991-01-01

    A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.

  16. Sensitive analysis of a finite element model of orthogonal cutting

    NASA Astrophysics Data System (ADS)

    Brocail, J.; Watremez, M.; Dubar, L.

    2011-01-01

    This paper presents a two-dimensional finite element model of orthogonal cutting. The proposed model has been developed with Abaqus/explicit software. An Arbitrary Lagrangian-Eulerian (ALE) formulation is used to predict chip formation, temperature, chip-tool contact length, chip thickness, and cutting forces. This numerical model of orthogonal cutting will be validated by comparing these process variables to experimental and numerical results obtained by Filice et al. [1]. This model can be considered to be reliable enough to make qualitative analysis of entry parameters related to cutting process and frictional models. A sensitivity analysis is conducted on the main entry parameters (coefficients of the Johnson-Cook law, and contact parameters) with the finite element model. This analysis is performed with two levels for each factor. The sensitivity analysis realised with the numerical model on the entry parameters has allowed the identification of significant parameters and the margin identification of parameters.

  17. A finite element model of ferroelectric/ferroelastic polycrystals

    SciTech Connect

    HWANG,STEPHEN C.; MCMEEKING,ROBERT M.

    2000-02-17

    A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.

  18. Finite element modelling of the 1969 Portuguese tsunami

    NASA Astrophysics Data System (ADS)

    Guesmia, M.; Heinrich, Ph.; Mariotti, C.

    1996-03-01

    On the 28 th February 1969, the coasts of Portugal, Spain and Morocco were affected by water waves generated by a submarine earthquake (Ms=7.3) with epicenter located off Portugal. The propagation of this tsunami has been simulated by a finite element numerical model solving the Boussinesq equations. These equations have been discretized using the finite element Galerkin method and a Crank-Nicholson scheme in time. The 2-D simulation of the 1969 tsunami is carried out using the hydraulic source calculated from the geophysical model of Okada and seismic parameters of Fukao. The modeled waves are compared with the recorded waves with respect to the travel times, the maximum amplitudes, the periods of the signal. Good agreement is found for most of the studied gauges. The comparison between Boussinesq and shallow-water models shows that the effects of frequency dispersion are minor using Fukao's seismic parameters.

  19. Exemplifying Quantum Systems in a Finite Element Basis

    SciTech Connect

    Young, Toby D.

    2009-08-13

    This paper presents a description of the abstractions required for the expression and solution of the linear single-particle Schroedinger equation in a finite element basis. This paper consists of two disparate themes: First, to layout and establish the foundations of finite element analysis as an approximate numerical solution to extendable quantum mechanical systems; and second, to promote a high-performance open-source computational model for the approximate numerical solution to quantum mechanical systems. The structural foundation of the one-and two-dimensional time-independent Schroedinger equation describing an infinite potential well is explored and a brief overview of the hierarchal design of the computational library written in C++ is given.

  20. An emulator for minimizing computer resources for finite element analysis

    NASA Technical Reports Server (NTRS)

    Melosh, R.; Utku, S.; Islam, M.; Salama, M.

    1984-01-01

    A computer code, SCOPE, has been developed for predicting the computer resources required for a given analysis code, computer hardware, and structural problem. The cost of running the code is a small fraction (about 3 percent) of the cost of performing the actual analysis. However, its accuracy in predicting the CPU and I/O resources depends intrinsically on the accuracy of calibration data that must be developed once for the computer hardware and the finite element analysis code of interest. Testing of the SCOPE code on the AMDAHL 470 V/8 computer and the ELAS finite element analysis program indicated small I/O errors (3.2 percent), larger CPU errors (17.8 percent), and negligible total errors (1.5 percent).

  1. An emulator for minimizing finite element analysis implementation resources

    NASA Technical Reports Server (NTRS)

    Melosh, R. J.; Utku, S.; Salama, M.; Islam, M.

    1982-01-01

    A finite element analysis emulator providing a basis for efficiently establishing an optimum computer implementation strategy when many calculations are involved is described. The SCOPE emulator determines computer resources required as a function of the structural model, structural load-deflection equation characteristics, the storage allocation plan, and computer hardware capabilities. Thereby, it provides data for trading analysis implementation options to arrive at a best strategy. The models contained in SCOPE lead to micro-operation computer counts of each finite element operation as well as overall computer resource cost estimates. Application of SCOPE to the Memphis-Arkansas bridge analysis provides measures of the accuracy of resource assessments. Data indicate that predictions are within 17.3 percent for calculation times and within 3.2 percent for peripheral storage resources for the ELAS code.

  2. A finite element analysis of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1974-01-01

    Experiments have shown that fatigue cracks close at positive loads during constant-amplitude load cycling. The crack-closure phenomenon is caused by residual plastic deformations remaining in the wake of an advancing crack tip. The present paper is concerned with the application of a two-dimensional, nonlinear, finite-element analysis for predicting crack-closure and crack-opening stresses during cyclic loading. A two-dimensional finite-element computer program, which accounts for both elastic-plastic material behavior and changing boundary conditions associated with crack extension and intermittent contact of the crack surfaces under cyclic loading, has been developed. An efficient technique to account for changing boundary conditions was also incorporated into the nonlinear analysis program. This program was subsequently used to study crack extension and crack closure under constant-amplitude and two-level block loading. The calculated crack-closure and crack-opening stresses were qualitatively consistent with experimental observations.

  3. Finite element analyses of two antirotational designs of implant fixtures.

    PubMed

    Akour, Salih N; Fayyad, Mohammed A; Nayfeh, Jamal F

    2005-03-01

    The purpose of this study was to compare the effect of cyclic compressive forces on loosening of the abutment retaining screw of dental implant fixtures with two different antirotational designs using the finite element analysis. A three-dimensional model of externally hexed and trichannel dental implant fixtures with their corresponding abutments and retaining screws was developed. Comparison between the two designs was carried out using finite element analysis. The results revealed that the externally hexed design has significantly higher overall stress, contact stress, and deflection compared with the trichannel design. The trichannel antirotational design has the least potential for fracture of the implant/abutment assembly in addition to its capability for preventing rotation of the prosthesis and loosening of the screw.

  4. Finite Element Analysis Applied to Dentoalveolar Trauma: Methodology Description

    PubMed Central

    da Silva, B. R.; Moreira Neto, J. J. S.; da Silva, F. I.; de Aguiar, A. S. W.

    2011-01-01

    Dentoalveolar traumatic injuries are among the clinical conditions most frequently treated in dental practice. However, few studies so far have addressed the biomechanical aspects of these events, probably as a result of difficulties in carrying out satisfactory experimental and clinical studies as well as the unavailability of truly scientific methodologies. The aim of this paper was to describe the use of finite element analysis applied to the biomechanical evaluation of dentoalveolar trauma. For didactic purposes, the methodological process was divided into steps that go from the creation of a geometric model to the evaluation of final results, always with a focus on methodological characteristics, advantages, and disadvantages, so as to allow the reader to customize the methodology according to specific needs. Our description shows that the finite element method can faithfully reproduce dentoalveolar trauma, provided the methodology is closely followed and thoroughly evaluated. PMID:21991463

  5. A finite element model for residual stress in repair welds

    SciTech Connect

    Feng, Z.; Wang, X.L.; Spooner, S.; Goodwin, G.M.; Maziasz, P.J.; Hubbard, C.R.; Zacharia, T.

    1996-03-28

    This paper describes a three-dimensional finite element model for calculation of the residual stress distribution caused by repair welding. Special user subroutines were developed to simulate the continuous deposition of filler metal during welding. The model was then tested by simulating the residual stress/strain field of a FeAl weld overlay clad on a 2{1/4}Cr-1 Mo steel plate, for which neutron diffraction measurement data of the residual strain field were available. It is shown that the calculated residual stress distribution was consistent with that determined with neutron diffraction. High tensile residual stresses in both the longitudinal and transverse directions were observed around the weld toe at the end of the weld. The strong spatial dependency of the residual stresses in the region around the weld demonstrates that the common two-dimensional cross-section finite element models should not be used for repair welding analysis.

  6. Tube Bulge Process : Theoretical Analysis And Finite Element Simulations

    SciTech Connect

    Velasco, Raphaeel; Boudeau, Nathalie

    2007-04-07

    This paper is focused on the determination of mechanics characteristics for tubular materials, using tube bulge process. A comparative study is made between two different models: theoretical model and finite element analysis. The theoretical model is completely developed, based first on a geometrical analysis of the tube profile during bulging, which is assumed to strain in arc of circles. Strain and stress analysis complete the theoretical model, which allows to evaluate tube thickness and state of stress, at any point of the free bulge region. Free bulging of a 304L stainless steel is simulated using Ls-Dyna 970. To validate FE simulations approach, a comparison between theoretical and finite elements models is led on several parameters such as: thickness variation at the free bulge region pole with bulge height, tube thickness variation with z axial coordinate, and von Mises stress variation with plastic strain.

  7. Finite element modeling of an electrically variable inductor

    SciTech Connect

    Bi, Y.; Jiles, D.C.

    1999-09-01

    A new type of electrically variable inductor has been investigated. This uses an ac excitation field with an orthogonal dc bias field to control the properties of the device. Measurements showed that the effective inductance can be decreased by increasing the orthogonal dc bias field. With an appropriate current in the orthogonal bias coils, an inductance plateau can be reached in which the inductance remains stable over a range of excitation currents. The inductance value can be adjusted by controlling the orthogonal current. Based on an existing anhysteretic magnetization model, nonlinear 3D finite element modeling was successfully used to model the distribution of flux density and to identify the region of saturation which is believed to result in the decrease in effective inductance of the inductor. The effective inductance of the device was also modeled using numerical finite element calculations. The modeled inductance showed broad agreement with experimental results and predicted the observed trend in inductance.

  8. Finite Element Modeling of Micromachined MEMS Photon Devices

    SciTech Connect

    Datskos, P.G.; Evans, B.M.; Schonberger, D.

    1999-09-20

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.

  9. A finite-element analysis of bipolar ionized field

    SciTech Connect

    Abdel-Salam, M.; Al-Hamouz, Z.

    1995-05-01

    This paper describes a new iterative method for the analysis of the bipolar ionized field in HVDC transmission lines without resorting to Deutsch`s assumption. The finite-element technique (FET) is used to solve Poisson`s equation where the constancy of the conductors` surface field at the corona inception value is directly implemented in the finite-element formulation. The proposed method has been tested on laboratory and full-scale models. The calculated V-I characteristics agreed well with those calculated and measured previously. The dependence of the corona current as well as its monopolar and bipolar components on the conductor height is discussed. The simplicity in computer programming in addition to the low number of iterations required to achieve convergence characterize the proposed method of analysis.

  10. Design Optimization of Coronary Stent Based on Finite Element Models

    PubMed Central

    Qiu, Tianshuang; Zhu, Bao; Wu, Jinying

    2013-01-01

    This paper presents an effective optimization method using the Kriging surrogate model combing with modified rectangular grid sampling to reduce the stent dogboning effect in the expansion process. An infilling sampling criterion named expected improvement (EI) is used to balance local and global searches in the optimization iteration. Four commonly used finite element models of stent dilation were used to investigate stent dogboning rate. Thrombosis models of three typical shapes are built to test the effectiveness of optimization results. Numerical results show that two finite element models dilated by pressure applied inside the balloon are available, one of which with the artery and plaque can give an optimal stent with better expansion behavior, while the artery and plaque unincluded model is more efficient and takes a smaller amount of computation. PMID:24222743

  11. Finite element analysis of fiber-reinforced fixed partial dentures.

    PubMed

    Nakamura, Takashi; Ohyama, Tatsuo; Waki, Tomonori; Kinuta, Soichiro; Wakabayashi, Kazumichi; Takano, Naoki; Yatani, Hirofumi

    2005-06-01

    Two-dimensional finite element models were created for a three-unit posterior fixed partial denture. An experimental resin-impregnated glass fiber was used as the fiber-reinforced composite (FRC) for the framework. The FRC was evaluated using varying combinations of position and thickness, alongside with two types of veneering composite. A load of 50 N simulating bite force was applied at the pontic in a vertical direction. Tensile stress was examined using a finite element analysis program. Model without FRC showed tensile stress concentrations within the veneering composite on the cervical side of the pontic--from the connector area to the bottom of the pontic. Model with FRC at the top of the pontic had almost the same stress distribution as the model without FRC. Models with 0.4-0.8 mm thick FRC positioned at the bottom of the pontic showed maximum tensile stresses reduced by 4-19% within the veneering composite. PMID:16022451

  12. Surface subsidence prediction by nonlinear finite-element analysis

    SciTech Connect

    Najjar, Y. . Dept. of Civil Engineering); Zaman, M. . School of Civil Engineering and Environmental Science)

    1993-11-01

    An improved two-dimensional plane-strain numerical procedure based on the incremental-iterative nonlinear finite-element is developed to predict ground subsidence caused by underground mining. The procedure emphasizes the use of the following features: (1) an appropriate constitutive model that can accurately describe the nonlinear behavior of geological strata; and (2) an accurate algorithm for simulation of excavation sequences consistent with the actual underground mining process. The computer code is used to analyze a collapse that occurred in the Blue Goose Lease [number sign]1 Mine in northeastern Oklahoma. A parametric study is conducted to investigate the effects of some selected factors on the shape and extent of subsidence profiles. Analyses of the numerical results indicate that the nonlinear finite-element technique can be employed to meaningfully predict and characterize the potential for ground subsidence due to underground mining.

  13. Finite element analysis of electrically excited quartz tuning fork devices.

    PubMed

    Oria, Roger; Otero, Jorge; González, Laura; Botaya, Luis; Carmona, Manuel; Puig-Vidal, Manel

    2013-05-30

    Quartz Tuning Fork (QTF)-based Scanning Probe Microscopy (SPM) is an important field of research. A suitable model for the QTF is important to obtain quantitative measurements with these devices. Analytical models have the limitation of being based on the double cantilever configuration. In this paper, we present an electromechanical finite element model of the QTF electrically excited with two free prongs. The model goes beyond the state-of-the-art of numerical simulations currently found in the literature for this QTF configuration. We present the first numerical analysis of both the electrical and mechanical behavior of QTF devices. Experimental measurements obtained with 10 units of the same model of QTF validate the finite element model with a good agreement.

  14. Finite-element thermo-viscoplastic analysis of aerospace structures

    NASA Technical Reports Server (NTRS)

    Pandey, Ajay; Dechaumphai, Pramote; Thornton, Earl A.

    1990-01-01

    The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.

  15. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  16. Study of the available finite element software packages at KSC

    NASA Technical Reports Server (NTRS)

    Lu, Chu-Ho

    1990-01-01

    The interaction among the three finite element software packages, SDRCI/I-DEAS, MSC/NASTRAN, and I/FEM, used at NASA, Kennedy Space Center is addressed. The procedures for using more than one of these application software packages to model and analyze a structure design are discussed. Design and stress analysis of a solid rocket booster fixture is illustrated by using four different combinations of the three software packages. Their results are compared and show small yet acceptable differences.

  17. Finite Element Composite Analysis Program (FECAP) for a microcomputer

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1988-01-01

    A special purpose finite element composite analysis program for analyzing composite material behavior with a microcomputer is described. The formulation assumes a state of generalized plane strain in a material consisting of two or more orthotropic phases. Loading can be mechanical and/or thermal. The theoretical background, computer implementation, and program users guide are described in detail. A sample program is solved showing the required user input and computer generated output.

  18. [Whiplash injury analysis of cervical vertebra by finite element method].

    PubMed

    Wang, Tao; Li, Zheng-Dong; Shao, Yu; Chen, Yi-Jiu

    2015-02-01

    Finite element method (FEM) is an effective mathematical method for stress analysis, and has been gradually applied in the study of biomechanics of human body structures. This paper reviews the construction, development, materials assignment and verification of FEM model of cervical vertebra, and it also states the research results of injury mechanism of whiplash injury and biomechanical response analysis of the cervical vertebra using FEM by researchers at home and abroad. PMID:26058135

  19. Parallel finite element simulation of large ram-air parachutes

    NASA Astrophysics Data System (ADS)

    Kalro, V.; Aliabadi, S.; Garrard, W.; Tezduyar, T.; Mittal, S.; Stein, K.

    1997-06-01

    In the near future, large ram-air parachutes are expected to provide the capability of delivering 21 ton payloads from altitudes as high as 25,000 ft. In development and test and evaluation of these parachutes the size of the parachute needed and the deployment stages involved make high-performance computing (HPC) simulations a desirable alternative to costly airdrop tests. Although computational simulations based on realistic, 3D, time-dependent models will continue to be a major computational challenge, advanced finite element simulation techniques recently developed for this purpose and the execution of these techniques on HPC platforms are significant steps in the direction to meet this challenge. In this paper, two approaches for analysis of the inflation and gliding of ram-air parachutes are presented. In one of the approaches the point mass flight mechanics equations are solved with the time-varying drag and lift areas obtained from empirical data. This approach is limited to parachutes with similar configurations to those for which data are available. The other approach is 3D finite element computations based on the Navier-Stokes equations governing the airflow around the parachute canopy and Newtons law of motion governing the 3D dynamics of the canopy, with the forces acting on the canopy calculated from the simulated flow field. At the earlier stages of canopy inflation the parachute is modelled as an expanding box, whereas at the later stages, as it expands, the box transforms to a parafoil and glides. These finite element computations are carried out on the massively parallel supercomputers CRAY T3D and Thinking Machines CM-5, typically with millions of coupled, non-linear finite element equations solved simultaneously at every time step or pseudo-time step of the simulation.

  20. An interactive virtual environment for finite element analysis

    SciTech Connect

    Bradshaw, S.; Canfield, T.; Kokinis, J.; Disz, T.

    1995-06-01

    Virtual environments (VE) provide a powerful human-computer interface that opens the door to exciting new methods of interaction with high-performance computing applications in several areas of research. The authors are interested in the use of virtual environments as a user interface to real-time simulations used in rapid prototyping procedures. Consequently, the authors are developing methods for coupling finite element models of complex mechanical systems with a VE interface for real-time interaction.

  1. Application of Finite Element Method to Analyze Inflatable Waveguide Structures

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.

    1998-01-01

    A Finite Element Method (FEM) is presented to determine propagation characteristics of deformed inflatable rectangular waveguide. Various deformations that might be present in an inflatable waveguide are analyzed using the FEM. The FEM procedure and the code developed here are so general that they can be used for any other deformations that are not considered in this report. The code is validated by applying the present code to rectangular waveguide without any deformations and comparing the numerical results with earlier published results.

  2. A Decoupled Finite Element Heterogeneous Coarse Mesh Transport Method.

    SciTech Connect

    Mosher, S. W.; Rahnema, Farzad

    2005-01-01

    In a recent paper, an original finite element (FE) method was presented for solving eigenvalue transport problems on a coarse spatial mesh. The method employed a surface Green's function expansion of the angular flux trial functions, so that heterogeneous coarse-meshes could be treated with relative ease. Numerical problems were solved using the multigroup discrete ordinates approximation in one-dimensional (1-D) slab geometry. Unfortunately, difficulties were encountered in finding solutions to the algebraic finite element equations, which led to sizeable angular flux discontinuities at coarse-mesh interfaces and significant errors. For this reason, a nonvariational iterative technique was ultimately favored for converging the angular flux distribution, and was used in conjunction with a Rayleigh quotient for converging the eigenvalue. In this paper, a new derivation of finite element equations is presented, which seems to offer a remedy for at least some of the numerical ills that plagued the previous work. First, the equations are derived in terms of a generalized response function expansion. This allows a more efficient response basis to be employed and vastly reduces the overall computational effort without a substantial loss of accuracy. Second, the tight coupling between coarse-meshes in the original equations is effectively broken by assuming that an accurate estimate of the flux distribution entering a given coarse-mesh is known. With an additional assumption that an accurate eigenvalue estimate is known, an iterative approach to solving these decoupled finite element (DFE) equations is developed. The DFE method has been applied to both 1- and 2-D heterogeneous coarse-mesh problems with a far greater degree of success than the original FE method. However, some numerical difficulties remain to be overcome before the new approach can be considered robust.

  3. Piezoelectric theory for finite element analysis of ultrasonic motors

    SciTech Connect

    Emery, J.D.; Mentesana, C.P.

    1997-06-01

    The authors present the fundamental equations of piezoelectricity and references. They show how a second form of the equations and a second set of coefficients can be found, through inversions involving the elasticity tensor. They show how to compute the clamped permittivity matrix from the unclamped matrix. The authors list the program pzansys.ftn and present examples of its use. This program does the conversions and calculations needed by the finite element program ANSYS.

  4. Discontinuous Galerkin Finite Element Method for Parabolic Problems

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.

    2004-01-01

    In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of parallel ut(t) parallel Lz(omega) = parallel ut parallel2, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also included.

  5. Three-dimensional finite element modeling of liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Vanbrabant, Pieter J. M.; James, Richard; Beeckman, Jeroen; Neyts, Kristiaan; Willman, Eero; Fernandez, F. Anibal

    2011-03-01

    A finite element framework is presented to combine advanced three-dimensional liquid crystal director calculations with a full-vector beam propagation analysis. This approach becomes especially valuable to analyze and design structures in which disclinations or diffraction effects play an important role. The wide applicability of the approach is illustrated in our overview from several examples including small pixel LCOS microdisplays with homeotropic alignment.

  6. Stability and Convergence of Underintegrated Finite Element Approximations

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1984-01-01

    The effects of underintegration on the numerical stability and convergence characteristics of certain classes of finite element approximations were analyzed. Particular attention is given to hourglassing instabilities that arise from underintegrating the stiffness matrix entries and checkerboard instabilities that arise from underintegrating constrain terms such as those arising from incompressibility conditions. A fundamental result reported here is the proof that the fully integrated stiffness is restored in some cases through a post-processing operation.

  7. Finite element methods for non-Newtonian flows

    SciTech Connect

    Gartling, D.K.

    1986-01-01

    The application of the finite element method to problems in non-Newtonian fluid mechanics is described. The formulation of the basic equations is presented for both inelastic and viscoelastic constitutive models. Solution algorithms for treating the material nonlinearities associated with inealstic fluids are described; typical solution procedures for the implicit stress-rate equations of viscoelastic fluids are also presented. Simple example analyses are included for both types of fluid models. 65 refs., 21 figs.

  8. A verification procedure for MSC/NASTRAN Finite Element Models

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.

    1995-01-01

    Finite Element Models (FEM's) are used in the design and analysis of aircraft to mathematically describe the airframe structure for such diverse tasks as flutter analysis and actively controlled landing gear design. FEM's are used to model the entire airplane as well as airframe components. The purpose of this document is to describe recommended methods for verifying the quality of the FEM's and to specify a step-by-step procedure for implementing the methods.

  9. Finite Element Method Applied to Fuse Protection Design

    NASA Astrophysics Data System (ADS)

    Li, Sen; Song, Zhiquan; Zhang, Ming; Xu, Liuwei; Li, Jinchao; Fu, Peng; Wang, Min; Dong, Lin

    2014-03-01

    In a poloidal field (PF) converter module, fuse protection is of great importance to ensure the safety of the thyristors. The fuse is pre-selected in a traditional way and then verified by finite element analysis. A 3D physical model is built by ANSYS software to solve the thermal-electric coupled problem of transient process in case of external fault. The result shows that this method is feasible.

  10. Enhanced finite element scheme for vibrational and flow induced sound

    NASA Astrophysics Data System (ADS)

    Kaltenbacher, M.; Triebenbacher, S.; Wohlmuth, B.; Zörnre, S.

    2010-06-01

    The paper presents Finite Element (FE) methods for classical vibroacoustics as well as computational aeroacoustics. Therewith, we can handle different grid sizes in different regions and ensure a correct coupling at the interfaces by applying the Mortar FE method. Furthermore, we can fully take into account free radiation by a new Perfectly Matched Layer (PML) technique, which is stable even for long term computations. The applicability of our developed numerical methods will be demonstrated by simulation results of the human phonation.

  11. Transient Finite Element Computations on a Variable Transputer System

    NASA Technical Reports Server (NTRS)

    Smolinski, Patrick J.; Lapczyk, Ireneusz

    1993-01-01

    A parallel program to analyze transient finite element problems was written and implemented on a system of transputer processors. The program uses the explicit time integration algorithm which eliminates the need for equation solving, making it more suitable for parallel computations. An interprocessor communication scheme was developed for arbitrary two dimensional grid processor configurations. Several 3-D problems were analyzed on a system with a small number of processors.

  12. High speed inviscid compressible flow by the finite element method

    NASA Technical Reports Server (NTRS)

    Zienkiewicz, O. C.; Loehner, R.; Morgan, K.

    1984-01-01

    The finite element method and an explicit time stepping algorithm which is based on Taylor-Galerkin schemes with an appropriate artificial viscosity is combined with an automatic mesh refinement process which is designed to produce accurate steady state solutions to problems of inviscid compressible flow in two dimensions. The results of two test problems are included which demonstrate the excellent performance characteristics of the proposed procedures.

  13. Finite element model for brittle fracture and fragmentation

    DOE PAGES

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; Samulyak, Roman; Lu, Cao

    2016-06-01

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  14. Periodic Boundary Conditions in the ALEGRA Finite Element Code

    SciTech Connect

    AIDUN,JOHN B.; ROBINSON,ALLEN C.; WEATHERBY,JOE R.

    1999-11-01

    This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given.

  15. Interactive Finite Elements for General Engine Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Padovan, J.; Fertis, D. G.

    1984-01-01

    General nonlinear finite element codes were adapted for the purpose of analyzing the dynamics of gas turbine engines. In particular, this adaptation required the development of a squeeze-film damper element software package and its implantation into a representative current generation code. The ADINA code was selected because of prior use of it and familiarity with its internal structure and logic. This objective was met and the results indicate that such use of general purpose codes is viable alternative to specialized codes for general dynamics analysis of engines.

  16. GPU accelerated spectral finite elements on all-hex meshes

    NASA Astrophysics Data System (ADS)

    Remacle, J.-F.; Gandham, R.; Warburton, T.

    2016-11-01

    This paper presents a spectral element finite element scheme that efficiently solves elliptic problems on unstructured hexahedral meshes. The discrete equations are solved using a matrix-free preconditioned conjugate gradient algorithm. An additive Schwartz two-scale preconditioner is employed that allows h-independence convergence. An extensible multi-threading programming API is used as a common kernel language that allows runtime selection of different computing devices (GPU and CPU) and different threading interfaces (CUDA, OpenCL and OpenMP). Performance tests demonstrate that problems with over 50 million degrees of freedom can be solved in a few seconds on an off-the-shelf GPU.

  17. Finite Element Method for Thermal Analysis. [with computer program

    NASA Technical Reports Server (NTRS)

    Heuser, J.

    1973-01-01

    A two- and three-dimensional, finite-element thermal-analysis program which handles conduction with internal heat generation, convection, radiation, specified flux, and specified temperature boundary conditions is presented. Elements used in the program are the triangle and tetrahedron for two- and three-dimensional analysis, respectively. The theory used in the program is developed, and several sample problems demonstrating the capability and reliability of the program are presented. A guide to using the program, description of the input cards, and program listing are included.

  18. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart

    PubMed Central

    Hopenfeld, Bruce

    2006-01-01

    Background In some cases, it may be necessary to combine distinct finite element meshes into a single system. The present work describes a scheme for coupling a finite element mesh, which may have curvilinear elements, to a voxel based finite element mesh. Methods The method is described with reference to a sample problem that involves combining a heart, which is defined by a curvilinear mesh, with a voxel based torso mesh. The method involves the creation of a temporary (scaffolding) mesh that couples the outer surface of the heart mesh to a voxel based torso mesh. The inner surface of the scaffolding mesh is the outer heart surface, and the outer surface of the scaffolding mesh is defined by the nodes in the torso mesh that are nearest (but outside of) the heart. The finite element stiffness matrix for the scaffolding mesh is then computed. This stiffness matrix includes extraneous nodes that are then removed, leaving a coupling matrix that couples the original outer heart surface nodes to adjacent nodes in the torso voxel mesh. Finally, a complete system matrix is assembled from the pre-existing heart stiffness matrix, the heart/torso coupling matrix, and the torso stiffness matrix. Results Realistic body surface electrocardiograms were generated. In a test involving a dipole embedded in a spherical shell, relative error of the scheme rapidly converged to slightly over 4%, although convergence thereafter was relatively slow. Conclusion The described method produces reasonably accurate results and may be best suited for problems where computational speed and convenience have a higher priority than very high levels of accuracy. PMID:17112373

  19. Nonlinear vibration of axially moving membrane by finite element method

    NASA Astrophysics Data System (ADS)

    Koivurova, H.; Pramila, A.

    A theoretical and numerical formulation for nonlinear axially moving membrane is presented. The model is based on a Lagrangian description of the continuum problem in the context of dynamics of initially stressed solids. Membrane elasticity is included via a finite strain model and the membrane transport speed is included by using conservation of the membrane mass. Hamilton's principle provides nonlinear equations, which describe the three-dimensional motion of the membrane. The incremental equations of Hamilton's principle are discretized by the finite element method. The formulation includes geometrically nonlinear effects: large displacements, variation of membrane tension and variations in axial velocity due to deformation. Implementation of this novel numerical model was done by adding an axially moving membrane element into a FEM program, which contains acoustic fluid elements and contact algorithms. Hence, analysis of problems containing interaction with the surrounding air field and contact between supporting structures was possible. The model was tested by comparing previous linear and present nonlinear dynamic behaviour of an axially moving web. The effects of contact between finite rolls and the membrane and interaction between the surrounding air and the membrane were included in the model. The results show, that nonlinearities and coupling phenomena have a considerable effect on the dynamic behaviour of the system.

  20. Finite element analysis of the cyclic indentation of bilayer enamel

    NASA Astrophysics Data System (ADS)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  1. Finite element solver for 3-D compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Reddy, K. C.; Reddy, J. N.

    1986-01-01

    The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous, and turbulent with large gradients in flow quantities and regions of recirculations. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modeling of the particular zone of the SSME being studied. Accessing the geometry definition, digitalizing it, and developing surface interpolations suitable for an interior grid generator require considerable amount of manual labor. There are several types of grid generators available with some general-purpose finite element programs. An efficient and robust computational scheme for solving 3D Navier-Stokes equations has to be implemented. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. The progress made in a project to develop software for the analysis of the flow is discussed. The technical approach to the development of the finite element scheme and the relaxation procedure are discussed. The three dimensional finite element code for the compressible Navier-Stokes equations is listed.

  2. Interpreting finite element results for brittle materials in endodontic restorations

    PubMed Central

    2011-01-01

    Background Finite element simulation has been used in last years for analysing the biomechanical performance of post-core restorations in endodontics, but results of these simulations have been interpreted in most of the works using von Mises stress criterion. However, the validity of this failure criterion for brittle materials, which are present in these restorations, is questionable. The objective of the paper is to analyse how finite element results for brittle materials of endodontic restorations should be interpreted to obtain correct conclusions about the possible failure in the restoration. Methods Different failure criteria (Von Mises, Rankine, Coulomb-Mohr, Modified Mohr and Christensen) and material strength data (diametral tensile strength and flexural strength) were considered in the study. Three finite element models (FEM) were developed to simulate an endodontic restoration and two typical material tests: diametral tensile test and flexural test. Results Results showed that the Christensen criterion predicts similar results as the Von Mises criterion for ductile components, while it predicts similar results to all other criteria for brittle components. The different criteria predict different failure points for the diametral tensile test, all of them under multi-axial stress states. All criteria except Von Mises predict failure for flexural test at the same point of the specimen, with this point under uniaxial tensile stress. Conclusions From the results it is concluded that the Christensen criterion is recommended for FEM result interpretation in endodontic restorations and that the flexural test is recommended to estimate tensile strength instead of the diametral tensile test. PMID:21635759

  3. Nonlinear explicit transient finite element analysis on the Intel Delta

    SciTech Connect

    Plaskacz, E.J. ); Ramirez, M.R.; Gupta, S. . Dept. of Civil Engineering)

    1993-01-01

    Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.

  4. Nonlinear explicit transient finite element analysis on the Intel Delta

    SciTech Connect

    Plaskacz, E.J.; Ramirez, M.R.; Gupta, S.

    1993-03-01

    Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.

  5. Crystal level simulations using Eulerian finite element methods

    SciTech Connect

    Becker, R; Barton, N R; Benson, D J

    2004-02-06

    Over the last several years, significant progress has been made in the use of crystal level material models in simulations of forming operations. However, in Lagrangian finite element approaches simulation capabilities are limited in many cases by mesh distortion associated with deformation heterogeneity. Contexts in which such large distortions arise include: bulk deformation to strains approaching or exceeding unity, especially in highly anisotropic or multiphase materials; shear band formation and intersection of shear bands; and indentation with sharp indenters. Investigators have in the past used Eulerian finite element methods with material response determined from crystal aggregates to study steady state forming processes. However, Eulerian and Arbitrary Lagrangian-Eulerian (ALE) finite element methods have not been widely utilized for simulation of transient deformation processes at the crystal level. The advection schemes used in Eulerian and ALE codes control mesh distortion and allow for simulation of much larger total deformations. We will discuss material state representation issues related to advection and will present results from ALE simulations.

  6. Automated Finite Element Modeling of Wing Structures for Shape Optimization

    NASA Technical Reports Server (NTRS)

    Harvey, Michael Stephen

    1993-01-01

    The displacement formulation of the finite element method is the most general and most widely used technique for structural analysis of airplane configurations. Modem structural synthesis techniques based on the finite element method have reached a certain maturity in recent years, and large airplane structures can now be optimized with respect to sizing type design variables for many load cases subject to a rich variety of constraints including stress, buckling, frequency, stiffness and aeroelastic constraints (Refs. 1-3). These structural synthesis capabilities use gradient based nonlinear programming techniques to search for improved designs. For these techniques to be practical a major improvement was required in computational cost of finite element analyses (needed repeatedly in the optimization process). Thus, associated with the progress in structural optimization, a new perspective of structural analysis has emerged, namely, structural analysis specialized for design optimization application, or.what is known as "design oriented structural analysis" (Ref. 4). This discipline includes approximation concepts and methods for obtaining behavior sensitivity information (Ref. 1), all needed to make the optimization of large structural systems (modeled by thousands of degrees of freedom and thousands of design variables) practical and cost effective.

  7. HYDRA, A finite element computational fluid dynamics code: User manual

    SciTech Connect

    Christon, M.A.

    1995-06-01

    HYDRA is a finite element code which has been developed specifically to attack the class of transient, incompressible, viscous, computational fluid dynamics problems which are predominant in the world which surrounds us. The goal for HYDRA has been to achieve high performance across a spectrum of supercomputer architectures without sacrificing any of the aspects of the finite element method which make it so flexible and permit application to a broad class of problems. As supercomputer algorithms evolve, the continuing development of HYDRA will strive to achieve optimal mappings of the most advanced flow solution algorithms onto supercomputer architectures. HYDRA has drawn upon the many years of finite element expertise constituted by DYNA3D and NIKE3D Certain key architectural ideas from both DYNA3D and NIKE3D have been adopted and further improved to fit the advanced dynamic memory management and data structures implemented in HYDRA. The philosophy for HYDRA is to focus on mapping flow algorithms to computer architectures to try and achieve a high level of performance, rather than just performing a port.

  8. Analysis of random structure-acoustic interaction problems using coupled boundary element and finite element methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Pates, Carl S., III

    1994-01-01

    A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.

  9. Comparison of boundary element and finite element methods in spur gear root stress analysis

    NASA Technical Reports Server (NTRS)

    Sun, H.; Mavriplis, D.; Huston, R. L.; Oswald, F. B.

    1989-01-01

    The boundary element method (BEM) is used to compute fillet stress concentration in spur gear teeth. The results are shown to compare favorably with analogous results obtained using the finite element method (FEM). A partially supported thin rim gear is studied. The loading is applied at the pitch point. A three-dimensional analysis is conducted using both the BEM and FEM (NASTRAN). The results are also compared with those of a two-dimensional finite element model. An advantage of the BEM over the FEM is that fewer elements are needed with the BEM. Indeed, in the current study the BEM used 92 elements and 270 nodes whereas the FEM used 320 elements and 2037 nodes. Moreover, since the BEM is especially useful in problems with high stress gradients it is potentially a very useful tool for fillet stress analyses.

  10. Experience with automatic, dynamic load balancing and adaptive finite element computation

    SciTech Connect

    Wheat, S.R.; Devine, K.D.; Maccabe, A.B.

    1993-10-01

    Distributed memory, Massively Parallel (MP), MIMD technology has enabled the development of applications requiring computational resources previously unobtainable. Structural mechanics and fluid dynamics applications, for example, are often solved by finite element methods (FEMs) requiring, millions of degrees of freedom to accurately simulate physical phenomenon. Adaptive methods, which automatically refine or coarsen meshes and vary the order of accuracy of the numerical solution, offer greater robustness and computational efficiency than traditional FEMs by reducing the amount of computation required away from physical structures such as shock waves and boundary layers. On MP computers, FEMs frequently result in distributed processor load imbalances. To overcome load imbalance, many MP FEMs use static load balancing as a preprocessor to the finite element calculation. Adaptive methods complicate the load imbalance problem since the work per element is not uniform across the solution domain and changes as the computation proceeds. Therefore, dynamic load balancing is required to maintain global load balance. We describe a dynamic, fine-grained, element-based data migration system that maintains global load balance and is effective in the presence of changing work loads. Global load balance is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method utilizes an automatic element management system library to which a programmer integrates the application`s computational description. The library`s flexibility supports a large class of finite element and finite difference based applications.

  11. An implementation analysis of the linear discontinuous finite element method

    SciTech Connect

    Becker, T. L.

    2013-07-01

    This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory constraints against any

  12. Finite volume and finite element methods applied to 3D laminar and turbulent channel flows

    SciTech Connect

    Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel

    2014-12-10

    The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.

  13. A Posteriori Error Estimation for Finite Volume and Finite Element Approximations Using Broken Space Approximation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Larson, Mats G.

    2000-01-01

    We consider a posteriori error estimates for finite volume and finite element methods on arbitrary meshes subject to prescribed error functionals. Error estimates of this type are useful in a number of computational settings: (1) quantitative prediction of the numerical solution error, (2) adaptive meshing, and (3) load balancing of work on parallel computing architectures. Our analysis recasts the class of Godunov finite volumes schemes as a particular form of discontinuous Galerkin method utilizing broken space approximation obtained via reconstruction of cell-averaged data. In this general framework, weighted residual error bounds are readily obtained using duality arguments and Galerkin orthogonality. Additional consideration is given to issues such as nonlinearity, efficiency, and the relationship to other existing methods. Numerical examples are given throughout the talk to demonstrate the sharpness of the estimates and efficiency of the techniques. Additional information is contained in the original.

  14. Beam and Truss Finite Element Verification for DYNA3D

    SciTech Connect

    Rathbun, H J

    2007-07-16

    The explicit finite element (FE) software program DYNA3D has been developed at Lawrence Livermore National Laboratory (LLNL) to simulate the dynamic behavior of structures, systems, and components. This report focuses on verification of beam and truss element formulations in DYNA3D. An efficient protocol has been developed to verify the accuracy of these structural elements by generating a set of representative problems for which closed-form quasi-static steady-state analytical reference solutions exist. To provide as complete coverage as practically achievable, problem sets are developed for each beam and truss element formulation (and their variants) in all modes of loading and physical orientation. Analyses with loading in the elastic and elastic-plastic regimes are performed. For elastic loading, the FE results are within 1% of the reference solutions for all cases. For beam element bending and torsion loading in the plastic regime, the response is heavily dependent on the numerical integration rule chosen, with higher refinement yielding greater accuracy (agreement to within 1%). Axial loading in the plastic regime produces accurate results (agreement to within 0.01%) for all integration rules and element formulations. Truss elements are also verified to provide accurate results (within 0.01%) for elastic and elastic-plastic loading. A sample problem to verify beam element response in ParaDyn, the parallel version DYNA3D, is also presented.

  15. A finite element boundary integral formulation for radiation and scattering by cavity antennas using tetrahedral elements

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, J. L.; Chatterjee, A.; Jin, J. M.

    1992-01-01

    A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration.

  16. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    NASA Astrophysics Data System (ADS)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  17. Key Parameters Evaluation for Hip Prosthesis with Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Guo, Hongqiang; Li, Dichen; Lian, Qin; Li, Xiang; Jin, Zhongmin

    2007-09-01

    Stem length and cross section are two key parameters that influence the stability and longevity of metallic hip prosthesis in the total hip arthroplasty (THA). In order to assess their influence to the stress and fatigue behavior of hip prosthesis, a series model of hip prosthesis with round-shaped or drum-shaped cross section, and with different stem lengths were created. These models were analyzed under both static and dynamic loading conditions with finite element analysis, and dynamic loading represents normal walking was used in the dynamic analysis. The stress on the metallic stem, cement, and adjacent bone were got, micromotion on the cement-metal interface were got too. Safety factors for fatigue life of the hip prothesis were calculated based on data obtained from dynamic analysis. Static analysis shows that drum-shaped cross section can decrease the displacement of the stem, that stress on drum-shaped stem focus on the corner of the femoral neck and the distal part of hip prosthesis, whereas the stress on the round-shaped stem distributes evenly over most part of the stem, and maximum stress on stem prosthesis fluctuates with stem length bottoming out at stem length range from 80 mm to 110 mm, that drum-shaped stems with drum height 8 mm generate more stress at the distal part of stem than drum-shaped stems with drum height 10 mm and round stems do. Dynamic and fatigue analysis shows that drum-shaped stem with drum height 10 mm and stem length 90 mm has the greatest safety factor therefore long fatigue life.

  18. Finite element simulation of arcuates for astigmatism correction.

    PubMed

    Lanchares, Elena; Calvo, Begoña; Cristóbal, José A; Doblaré, Manuel

    2008-01-01

    In order to simulate the corneal incisions used to correct astigmatism, a three-dimensional finite element model was generated from a simplified geometry of the anterior half of the ocular globe. A hyperelastic constitutive behavior was assumed for cornea, limbus and sclera, which are collagenous materials with a fiber structure. Due to the preferred orientations of the collagen fibrils, corneal and limbal tissues were considered anisotropic, whereas the sclera was simplified to an isotropic one assuming that fibrils are randomly disposed. The reference configuration, which includes the initial strain distribution that balances the intraocular pressure, is obtained by an iterative process. Then the incisions are simulated. The final positions of the nodes belonging to the incised meridian and to the perpendicular one are fitted by both radii of curvature, which are used to calculate the optical power. The simulated incisions were those specified by Lindstrom's nomogram [Chu, Y., Hardten, D., Lindquist, T., Lindstrom, R., 2005. Astigmatic keratotomy. Duane's Ophthalmology. Lippincott Williams and Wilkins, Philadelphia] to achieve 1.5, 2.25, 3.0, 4.5 and 6.0D of astigmatic change, using the next values for the parameters: length of 45 degrees , 60 degrees and 90 degrees , an optical zone of 6mm, single or paired incisions. The model gives results similar to those in Lindstrom's nomogram [Chu et al., 2005] and can be considered a useful tool to plan and simulate refractive surgery by predicting the outcomes of different sorts of incisions and to optimize the values for the parameters involved: depth, length, position. PMID:18177656

  19. Residual-driven online generalized multiscale finite element methods

    NASA Astrophysics Data System (ADS)

    Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat

    2015-12-01

    The construction of local reduced-order models via multiscale basis functions has been an area of active research. In this paper, we propose online multiscale basis functions which are constructed using the offline space and the current residual. Online multiscale basis functions are constructed adaptively in some selected regions based on our error indicators. We derive an error estimator which shows that one needs to have an offline space with certain properties to guarantee that additional online multiscale basis function will decrease the error. This error decrease is independent of physical parameters, such as the contrast and multiple scales in the problem. The offline spaces are constructed using Generalized Multiscale Finite Element Methods (GMsFEM). We show that if one chooses a sufficient number of offline basis functions, one can guarantee that additional online multiscale basis functions will reduce the error independent of contrast. We note that the construction of online basis functions is motivated by the fact that the offline space construction does not take into account distant effects. Using the residual information, we can incorporate the distant information provided the offline approximation satisfies certain properties. In the paper, theoretical and numerical results are presented. Our numerical results show that if the offline space is sufficiently large (in terms of the dimension) such that the coarse space contains all multiscale spectral basis functions that correspond to small eigenvalues, then the error reduction by adding online multiscale basis function is independent of the contrast. We discuss various ways computing online multiscale basis functions which include a use of small dimensional offline spaces.

  20. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  1. Finite Element Analysis of the LOLA Receiver Telescope Lens

    NASA Technical Reports Server (NTRS)

    Matzinger, Elizabeth

    2007-01-01

    This paper presents the finite element stress and distortion analysis completed on the Receiver Telescope lens of the Lunar Orbiter Laser Altimeter (LOLA). LOLA is one of six instruments on the Lunar Reconnaissance Orbiter (LRO), scheduled to launch in 2008. LOLA's main objective is to produce a high-resolution global lunar topographic model to aid in safe landings and enhance surface mobility in future exploration missions. The Receiver Telescope captures the laser pulses transmitted through a diffractive optical element (DOE) and reflected off the lunar surface. The largest lens of the Receiver Telescope, Lens 1, is a 150 mm diameter aspheric lens originally designed to be made of BK7 glass. The finite element model of the Receiver Telescope Lens 1 is comprised of solid elements and constrained in a manner consistent with the behavior of the mounting configuration of the Receiver Telescope tube. Twenty-one temperature load cases were mapped to the nodes based on thermal analysis completed by LOLA's lead thermal analyst, and loads were applied to simulate the preload applied from the ring flexure. The thermal environment of the baseline design (uncoated BK7 lens with no baffle) produces large radial and axial gradients in the lens. These large gradients create internal stresses that may lead to part failure, as well as significant bending that degrades optical performance. The high stresses and large distortions shown in the analysis precipitated a design change from BK7 glass to sapphire.

  2. Development of an hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1993-01-01

    The purpose of this research effort was to begin the study of the application of hp-version finite elements to the numerical solution of optimal control problems. Under NAG-939, the hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element. One possible drawback is the increased computational effort within each element required in implementing hp-version finite elements. We are trying to determine whether this computational effort is sufficiently offset by the reduction in the number of time elements used and improved Newton-Raphson convergence so as to be useful in solving optimal control problems in real time. Because certain of the element interior unknowns can be eliminated at the element level by solving a small set of nonlinear algebraic equations in which the nodal values are taken as given, the scheme may turn out to be especially powerful in a parallel computing environment. A different processor could be assigned to each element. The number of processors, strictly speaking, is not required to be any larger than the number of sub-regions which are free of discontinuities of any kind.

  3. IFEMS, an Interactive Finite Element Modeling System Using a CAD/CAM System

    NASA Technical Reports Server (NTRS)

    Mckellip, S.; Schuman, T.; Lauer, S.

    1980-01-01

    A method of coupling a CAD/CAM system with a general purpose finite element mesh generator is described. The three computer programs which make up the interactive finite element graphics system are discussed.

  4. Fuzzy logic to improve efficiency of finite element and finite difference schemes

    SciTech Connect

    Garcia, M.D.; Heger, A.S.

    1994-05-01

    This paper explores possible applications of logic in the areas of finite element and finite difference methods applied to engineering design problems. The application of fuzzy logic to both front-end selection of computational options and within the numerical computation itself are proposed. Further, possible methods of overcoming these limitations through the application of methods are explored. Decision strategy is a fundamental limitation in performing finite element calculations, such as selecting the optimum coarseness of the grid, numerical integration algorithm, element type, implicit versus explicit schemes, and the like. This is particularly true of novice analysts who are confronted with a myriad of choices in performing a calculation. The advantage of having the myriad of options available to the analyst is, however, that it improves and optimizes the design process if the appropriate ones are selected. Unfortunately, the optimum choices are not always apparent and only through the process of elimination or prior extensive experience can the optimum choices or combination of choices be selected. The knowledge of expert analysts could be integrated into a fuzzy ``front-end`` rule-based package to optimize the design process. The use of logic to capture the heuristic and human knowledge for selecting optimum solution strategies sets the framework for these proposed strategies.

  5. Galerkin finite element scheme for magnetostrictive structures and composites

    NASA Astrophysics Data System (ADS)

    Kannan, Kidambi Srinivasan

    The ever increasing-role of magnetostrictives in actuation and sensing applications is an indication of their importance in the emerging field of smart structures technology. As newer, and more complex, applications are developed, there is a growing need for a reliable computational tool that can effectively address the magneto-mechanical interactions and other nonlinearities in these materials and in structures incorporating them. This thesis presents a continuum level quasi-static, three-dimensional finite element computational scheme for modeling the nonlinear behavior of bulk magnetostrictive materials and particulate magnetostrictive composites. Models for magnetostriction must deal with two sources of nonlinearities-nonlinear body forces/moments in equilibrium equations governing magneto-mechanical interactions in deformable and magnetized bodies; and nonlinear coupled magneto-mechanical constitutive models for the material of interest. In the present work, classical differential formulations for nonlinear magneto-mechanical interactions are recast in integral form using the weighted-residual method. A discretized finite element form is obtained by applying the Galerkin technique. The finite element formulation is based upon three dimensional eight-noded (isoparametric) brick element interpolation functions and magnetostatic infinite elements at the boundary. Two alternative possibilities are explored for establishing the nonlinear incremental constitutive model-characterization in terms of magnetic field or in terms of magnetization. The former methodology is the one most commonly used in the literature. In this work, a detailed comparative study of both methodologies is carried out. The computational scheme is validated, qualitatively and quantitatively, against experimental measurements published in the literature on structures incorporating the magnetostrictive material Terfenol-D. The influence of nonlinear body forces and body moments of magnetic origin

  6. Anisotropic constitutive model for nickel base single crystal alloys: Development and finite element implementation

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.

    1986-01-01

    A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.

  7. Least-squares finite element solution of 3D incompressible Navier-Stokes problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, Tsung-Liang; Povinelli, Louis A.

    1992-01-01

    Although significant progress has been made in the finite element solution of incompressible viscous flow problems. Development of more efficient methods is still needed before large-scale computation of 3D problems becomes feasible. This paper presents such a development. The most popular finite element method for the solution of incompressible Navier-Stokes equations is the classic Galerkin mixed method based on the velocity-pressure formulation. The mixed method requires the use of different elements to interpolate the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the existence of the solution. On the other hand, due to the lack of symmetry and positive definiteness of the linear equations arising from the mixed method, iterative methods for the solution of linear systems have been hard to come by. Therefore, direct Gaussian elimination has been considered the only viable method for solving the systems. But, for three-dimensional problems, the computer resources required by a direct method become prohibitively large. In order to overcome these difficulties, a least-squares finite element method (LSFEM) has been developed. This method is based on the first-order velocity-pressure-vorticity formulation. In this paper the LSFEM is extended for the solution of three-dimensional incompressible Navier-Stokes equations written in the following first-order quasi-linear velocity-pressure-vorticity formulation.

  8. Experimental and three-dimensional finite element investigation of fatigue

    NASA Astrophysics Data System (ADS)

    Bomidi, John A. R.

    Materials often fail at cyclic loads that are lower than their ultimate strength or even their yield strength due to progressive internal material degradation; commonly known as fatigue. Moreover, there is a wide scatter in observed fatigue lives of mechanical components operating under identical loading conditions. The randomness of fatigue failure is considered to be linked to basic microstructural effects such as random microstructure topology and the initiation/growth of cracks along inter/transgranular planes. Several modeling approaches have been previously presented ranging from 2D discrete element to 3D Finite Element methods with explicit representation of microstructure topology and continuum damage mechanics to capture dispersion in rolling contact fatigue life and fatigue spalling. There is, however, a need to compare the modeling approach with experimental fatigue test conditions in order to verify and as required enhance the modeling approach to capture observed fatigue failure. This dissertation presents experimental test results and three-dimensional modeling approach that capture fatigue failure. The three-dimensional modeling approach is enhanced according to the experimental observations to consider inter/trans granular failure, different modes of fatigue initiation and propagation and finally for considering effect of plasticity in fatigue of rolling contacts. The following phenomena have been investigated: (1) Fatigue of microbeams: (a )Results of fatigue life and failure from 3D modeling of intergranular fatigue in microbeams are compared with experimental observations reported in literature (2) Tensile fatigue of thin sheets: (a) A test rig with a new grip and alignment system is developed to address the challenges associated with thin sheet testing and conduct fatigue experiments. (b) The 3D fatigue model is enhanced to capture the dominant transgranular fatigue observed in the experiments. The observed and modeled fatigue life and failure

  9. Progress on hybrid finite element methods for scattering by bodies of revolution

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Volakis, John L.

    1992-01-01

    Progress on the development and implementation of hybrid finite element methods for scattering by bodies of revolution are described. It was found that earlier finite element-boundary integral formulations suffered from convergence difficulties when applied to large and thin bodies of revolution. An alternative implementation is described where the finite element method is terminated with an absorbing termination boundary. In addition, an alternative finite element-boundary integral implementation is discussed for improving the convergence of the original code.

  10. Finite element modeling for validation of structural damage identification experimentation.

    SciTech Connect

    Stinemates, D. W.; Bennett, J. G.

    2001-01-01

    The project described in this report was performed to couple experimental and analytical techniques in the field of structural health monitoring and darnage identification. To do this, a finite dement model was Constructed of a simulated three-story building used for damage identification experiments. The model was used in conjunction with data from thie physical structure to research damage identification algorithms. Of particular interest was modeling slip in joints as a function of bolt torque and predicting the smallest change of torque that could be detected experimentally. After being validated with results from the physical structure, the model was used to produce data to test the capabilities of damage identification algorithms. This report describes the finite element model constructed, the results obtained, and proposed future use of the model.

  11. Least-squares finite element methods for quantum chromodynamics

    SciTech Connect

    Ketelsen, Christian; Brannick, J; Manteuffel, T; Mccormick, S

    2008-01-01

    A significant amount of the computational time in large Monte Carlo simulations of lattice quantum chromodynamics (QCD) is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant finite difference discretizations of the Dirac operator present serious challenges for standard iterative methods. For interesting physical parameters, the discretized operator is large and ill-conditioned, and has random coefficients. More recently, adaptive algebraic multigrid (AMG) methods have been shown to be effective preconditioners for Wilson's discretization of the Dirac equation. This paper presents an alternate discretization of the Dirac operator based on least-squares finite elements. The discretization is systematically developed and physical properties of the resulting matrix system are discussed. Finally, numerical experiments are presented that demonstrate the effectiveness of adaptive smoothed aggregation ({alpha}SA ) multigrid as a preconditioner for the discrete field equations resulting from applying the proposed least-squares FE formulation to a simplified test problem, the 2d Schwinger model of quantum electrodynamics.

  12. Large-eddy simulation using the finite element method

    SciTech Connect

    McCallen, R.C.; Gresho, P.M.; Leone, J.M. Jr.; Kollmann, W.

    1993-10-01

    In a large-eddy simulation (LES) of turbulent flows, the large-scale motion is calculated explicitly (i.e., approximated with semi-empirical relations). Typically, finite difference or spectral numerical schemes are used to generate an LES; the use of finite element methods (FEM) has been far less prominent. In this study, we demonstrate that FEM in combination with LES provides a viable tool for the study of turbulent, separating channel flows, specifically the flow over a two-dimensional backward-facing step. The combination of these methodologies brings together the advantages of each: LES provides a high degree of accuracy with a minimum of empiricism for turbulence modeling and FEM provides a robust way to simulate flow in very complex domains of practical interest. Such a combination should prove very valuable to the engineering community.

  13. Improved inhomogeneous finite elements for fabric reinforced composite mechanics analysis

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1992-01-01

    There is a need to do routine stress/failure analysis of fabric reinforced composite microstructures to provide additional confidence in critical applications and guide materials development. Conventional methods of 3-D stress analysis are time consuming to set up, run and interpret. A need exists for simpler methods of modeling these structures and analyzing the models. The principal difficulty is the discrete element mesh generation problem. Inhomogeneous finite elements are worth investigating for application to these problems because they eliminate the mesh generation problem. However, there are penalties associated with these elements. Their convergence rates can be slow compared to homogeneous elements. Also, there is no accepted method for obtaining detailed stresses in the constituent materials of each element. This paper shows that the convergence rate can be significantly improved by a simple device which substitutes homogeneous elements for the inhomogeneous ones. The device is shown to work well in simple one and two dimensional problems. However, demonstration of the application to more complex two and three dimensional problems remains to be done. Work is also progressing toward more realistic fabric microstructural geometries.

  14. Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.

    1998-01-01

    A comparison was made between two approaches to predict acoustic emission waveforms in thin plates. A normal mode solution method for Mindlin plate theory was used to predict the response of the flexural plate mode to a point source, step-function load, applied on the plate surface. The second approach used a dynamic finite element method to model the problem using equations of motion based on exact linear elasticity. Calculations were made using properties for both isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy composite) materials. For simulations of anisotropic plates, propagation along multiple directions was evaluated. In general, agreement between the two theoretical approaches was good. Discrepancies in the waveforms at longer times were caused by differences in reflections from the lateral plate boundaries. These differences resulted from the fact that the two methods used different boundary conditions. At shorter times in the signals, before reflections, the slight discrepancies in the waveforms were attributed to limitations of Mindlin plate theory, which is an approximate plate theory. The advantages of the finite element method are that it used the exact linear elasticity solutions, and that it can be used to model real source conditions and complicated, finite specimen geometries as well as thick plates. These advantages come at a cost of increased computational difficulty, requiring lengthy calculations on workstations or supercomputers. The Mindlin plate theory solutions, meanwhile, can be quickly generated on personal computers. Specimens with finite geometry can also be modeled. However, only limited simple geometries such as circular or rectangular plates can easily be accommodated with the normal mode solution technique. Likewise, very limited source configurations can be modeled and plate theory is applicable only to thin plates.

  15. Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear.

    PubMed

    Tadepalli, Srinivas C; Erdemir, Ahmet; Cavanagh, Peter R

    2011-08-11

    Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation.

  16. Optimum element density studies for finite-element thermal analysis of hypersonic aircraft structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Olona, Timothy; Muramoto, Kyle M.

    1990-01-01

    Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.

  17. Merging of intersecting triangulations for finite element modeling.

    PubMed

    Cebral, J R; Löhner, R; Choyke, P L; Yim, P J

    2001-06-01

    Surface mesh generation over intersecting triangulations is a problem common to many branches of biomechanics. A new strategy for merging intersecting triangulations is described. The basis of the method is that object surfaces are represented as the zero-level iso-surface of the distance-to-surface function defined on a background grid. Thus, the triangulation of intersecting objects reduces to the extraction of an iso-surface from an unstructured grid. In a first step, a regular background mesh is constructed. For each point of the background grid, the closest distance to the surface of each object is computed. Background points are then classified as external or internal by checking the direction of the surface normal at the closest location and assigned a positive or negative distance, respectively. Finally, the zero-level iso-surface is constructed. This is the final triangulation of the intersecting objects. The overall accuracy is enhanced by adaptive refinement of the background grid elements. The resulting surface models are used as support surfaces to generate three-dimensional grids for finite element analysis. The algorithms are demonstrated by merging arterial branches independently reconstructed from contrast-enhanced magnetic resonance images and by adding extra features such as vascular stents. Although the methodology is presented in the context of finite element analysis of blood flow, the algorithms are general and can be applied in other areas as well. PMID:11470121

  18. Elliptic interface problem solved using the mixed finite element method

    NASA Astrophysics Data System (ADS)

    Wang, Shuqiang

    2007-05-01

    The elliptic boundary value/interface problem is very important in many applications, for example, in incompressible flow and MHD. Many methods are used to solve these problems in a complex domain, including the finite volume method, the finite element method and the boundary element method. For a complex computational domain, the better choice of the partition of the computational domain is to use an unstructured grid. However, it is not a straight forward task to implement a mesh generation program. Such a program requires extra computing time and resources (such as computer memory). Thus people like to use a structured mesh if possible, especially a cartesian mesh. Popular methods using structured cartesian grids for the elliptic boundary value/interface problem include the immersed boundary method, the immersed interface method, the ghost fluid method, and the embedded boundary method. This thesis solves the elliptic problem using several versions of the mixed nite element method on an unstructured mesh. The results are compared for speed and accuracy to the embedded boundary method. A ghost fluid method for elliptic boundary value/interface problems is also investigated. Finally, a simple test of the 2D Rayleigh-Taylor instability is performed using the FronTier-Lite package. Key Words. Elliptic Boundary Value, Interface, Mesh Generation, Quadtree, Octree, Front Tracking.

  19. Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    2000-01-01

    "Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).

  20. Automated Finite Element Analysis of Elastically-Tailored Plates

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C. (Technical Monitor); Tatting, Brian F.; Guerdal, Zafer

    2003-01-01

    A procedure for analyzing and designing elastically tailored composite laminates using the STAGS finite element solver has been presented. The methodology used to produce the elastic tailoring, namely computer-controlled steering of unidirectionally reinforced composite material tows, has been reduced to a handful of design parameters along with a selection of construction methods. The generality of the tow-steered ply definition provides the user a wide variety of options for laminate design, which can be automatically incorporated with any finite element model that is composed of STAGS shell elements. Furthermore, the variable stiffness parameterization is formulated so that manufacturability can be assessed during the design process, plus new ideas using tow steering concepts can be easily integrated within the general framework of the elastic tailoring definitions. Details for the necessary implementation of the tow-steering definitions within the STAGS hierarchy is provided, and the format of the ply definitions is discussed in detail to provide easy access to the elastic tailoring choices. Integration of the automated STAGS solver with laminate design software has been demonstrated, so that the large design space generated by the tow-steering options can be traversed effectively. Several design problems are presented which confirm the usefulness of the design tool as well as further establish the potential of tow-steered plies for laminate design.

  1. Power flows and Mechanical Intensities in structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.

    1989-01-01

    The identification of power flow paths in dynamically loaded structures is an important, but currently unavailable, capability for the finite element analyst. For this reason, methods for calculating power flows and mechanical intensities in finite element models are developed here. Formulations for calculating input and output powers, power flows, mechanical intensities, and power dissipations for beam, plate, and solid element types are derived. NASTRAN is used to calculate the required velocity, force, and stress results of an analysis, which a post-processor then uses to calculate power flow quantities. The SDRC I-deas Supertab module is used to view the final results. Test models include a simple truss and a beam-stiffened cantilever plate. Both test cases showed reasonable power flow fields over low to medium frequencies, with accurate power balances. Future work will include testing with more complex models, developing an interactive graphics program to view easily and efficiently the analysis results, applying shape optimization methods to the problem with power flow variables as design constraints, and adding the power flow capability to NASTRAN.

  2. Evaluation of a Kinematically-Driven Finite Element Footstrike Model.

    PubMed

    Hannah, Iain; Harland, Andy; Price, Dan; Schlarb, Heiko; Lucas, Tim

    2016-06-01

    A dynamic finite element model of a shod running footstrike was developed and driven with 6 degree of freedom foot segment kinematics determined from a motion capture running trial. Quadratic tetrahedral elements were used to mesh the footwear components with material models determined from appropriate mechanical tests. Model outputs were compared with experimental high-speed video (HSV) footage, vertical ground reaction force (GRF), and center of pressure (COP) excursion to determine whether such an approach is appropriate for the development of athletic footwear. Although unquantified, good visual agreement to the HSV footage was observed but significant discrepancies were found between the model and experimental GRF and COP readings (9% and 61% of model readings outside of the mean experimental reading ± 2 standard deviations, respectively). Model output was also found to be highly sensitive to input kinematics with a 120% increase in maximum GRF observed when translating the force platform 2 mm vertically. While representing an alternative approach to existing dynamic finite element footstrike models, loading highly representative of an experimental trial was not found to be achievable when employing exclusively kinematic boundary conditions. This significantly limits the usefulness of employing such an approach in the footwear development process.

  3. Finite-element impact response of debonded composite turbine blades

    NASA Astrophysics Data System (ADS)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper investigates on the transient behavior of debonded composite pretwisted rotating shallow conical shells which could be idealized as turbine blades subjected to low velocity normal impact using finite-element method. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and the moderate rotational speeds are considered neglecting the Coriolis effect. An eight-noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the impact parameters. The time-dependent equations are solved by using Newmark's time integration scheme. Parametric studies are performed to investigate the effects of triggering parameters like angle of twist, rotational speed, laminate configuration and location of debonding considering low velocity normal impact at the center of eight-layered graphite-epoxy composite cantilevered conical shells with bending stiff ([0o2/{±} 30o]s), torsion stiff ([45°/-45°/-45°/45°]s) and cross-ply ([0°/90°/0°/90°]s) laminate configurations.

  4. Development of a Specific Finite Element for Timber Joint Modeling

    NASA Astrophysics Data System (ADS)

    Descamps, Thierry; Van Parys, Laurent; Datoussaïd, Sélim

    2011-01-01

    Widely used for light frame structures or for heavy laminated wood structures, dowel-type fasteners are the most commonly used kind of connectors in timber construction. The purpose of this work is to develop a tool for the semi-rigid analysis and design of such joints. Firstly, interests and approaches described in literature for the semi-rigid modeling of timber plane frames are summarized. Secondly, for a better understanding of the problem, the main characteristics of wood used as a structural material are presented. Finally, a method for an efficient study of joints built with dowel-type fasteners is proposed and developed. This method consists of the introduction of a specific finite element called "Finite Semi-Rigid Element (FSRE)" between the ends of the jointed members. This joint element consists of two nodes, each with three degrees of freedom. These nodes will be tied with common beamelements during the FE analysis. The stiffness of the FSRE is computed from the geometry of the joints and embedding stiffness of all fasteners, along and perpendicular to the grain. The embedding characteristics of fasteners are defined with help of their experimental load-slip curves (fitted with Foschi's models) leading finally to the resolution of a FE non-linear problem.

  5. Simplified Finite Element Modelling of Acoustically Treated Structures

    NASA Astrophysics Data System (ADS)

    Carfagni, M.; Citti, P.; Pierini, M.

    1997-07-01

    The application of non-optimized damping and phono-absorbent materials to automotive systems has not proved fully satisfactory in abating noise and vibration. The objective of this work was to develop a simple finite element modelling procedure that would allow optimizing structures such as a car body-in-white in terms of vibroacoustic behavior from the design stage. A procedure was developed to determine the modifications to be made in the mass, stiffness and damping characteristics in the finite element (FE) modelling of a metal structure meshed with shell elements so that the model would describe the behavior of the acoustically treated structure. To validate the modifications, a numerical-experimental comparison of the velocities on the vibrating surface was carried out, followed by a numerical-experimental comparison of the sound pressures generated by the vibrating plate. In the comparison a simple monopole model was used, in which each area of vibrating surface could be likened to a point source. The simulation and experimental procedures, previously validated for the metal structure, were then applied to multi-layered panels. Good agreement between the experimental and simulated velocities and sound pressures resulted for all the multi-layered panel configurations examined.

  6. Adaptation of a program for nonlinear finite element analysis to the CDC STAR 100 computer

    NASA Technical Reports Server (NTRS)

    Pifko, A. B.; Ogilvie, P. L.

    1978-01-01

    The conversion of a nonlinear finite element program to the CDC STAR 100 pipeline computer is discussed. The program called DYCAST was developed for the crash simulation of structures. Initial results with the STAR 100 computer indicated that significant gains in computation time are possible for operations on gloval arrays. However, for element level computations that do not lend themselves easily to long vector processing, the STAR 100 was slower than comparable scalar computers. On this basis it is concluded that in order for pipeline computers to impact the economic feasibility of large nonlinear analyses it is absolutely essential that algorithms be devised to improve the efficiency of element level computations.

  7. ANISAP: A three-dimensional finite element program for laminated composites subjected to mechanical loading

    NASA Technical Reports Server (NTRS)

    Burns, S. W.; Mathison, S.; Herakovich, C. T.

    1986-01-01

    ANISAP is a 3-D finite element FORTRAN 77 computer code for linear elastic, small strain, analysis of laminated composites with arbitrary geometry including free edges and holes. Individual layers may be isotropic or transversely isotropic in material principal coordinates; individual layers may be rotated off-axis about a global z-axis. The laminate may be a hybrid. Three different isoparametric elements, variable order of gaussian integration, calculation of stresses at element boundaries, and loading by either nodal displacement of forces are included in the program capability. Post processing capability includes failure analysis using the tensor polynominal failure criterion.

  8. Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Sawamiphakdi, K.

    1984-01-01

    A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.

  9. FINITE ELEMENT MODEL FOR TIDAL AND RESIDUAL CIRCULATION.

    USGS Publications Warehouse

    Walters, Roy A.

    1986-01-01

    Harmonic decomposition is applied to the shallow water equations, thereby creating a system of equations for the amplitude of the various tidal constituents and for the residual motions. The resulting equations are elliptic in nature, are well posed and in practice are shown to be numerically well-behaved. There are a number of strategies for choosing elements: the two extremes are to use a few high-order elements with continuous derivatives, or to use a large number of simpler linear elements. In this paper simple linear elements are used and prove effective.

  10. p-version finite element modeling for NDE

    NASA Astrophysics Data System (ADS)

    Issa, Camille A.; Balasubramaniam, Krishnan

    The formulation for the quadrilateral element of a p-version FEM for NDE is presented. Nodal shape, side shape, and internal shape functions are derived. The problem of wave propagation in solids is investigated using a Newmark direct integration scheme applied to p-version FEM meshes. It is found that numerical noise prevails for all the time steps and along the whole structure, and that there is no apparent wave propagation phenomenon in the displacement time-history. The numerical noise suggests that the abrupt change in the element material properties between the different layers of composite material and glue resin is a fatal modeling defect. The negative effect of using higher order p-version elements and the abrupt change of the element material properties should be countered by using a greater number of elements to model each layer and higher order mapping functions in the mapping process.

  11. Finite element analysis of thumb carpometacarpal joint implants

    SciTech Connect

    Nielsen, C.

    1995-11-01

    The thumb carpometacarpal joint is frequently replaced in women who have developed severe osteoarthritis of the hand. A new, privately developed implant design consists of two components, trapezial and metacarpal, each with a saddle-shaped articulating surface. A three dimensional finite element model of this implant has been developed to analyze stresses on the device. The first simulations using the model involve loading the implant with forces normal to the trapezial component. Preliminary results show contact stress distributions at the particulating surfaces of the implant.

  12. Finite Element Modeling of Transient Thermography Inspection of Composite Materials

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1998-01-01

    Several finite element models of defects such as debond and void have been developed for composite panels subjected to transient thermography inspection. Since the exact nature of the heat generated from the flash lamps is unknown, direct comparison between FEA and experimental results is not possible. However, some similarity of the results has been observed. The shape of the time curve that simulates the heat flux from the flash lamps has minimal effect on the temperature profiles. Double the number of flash lamps could increase the contrast of thermal image and define the shape of defect better.

  13. Assessing performance and validating finite element simulations using probabilistic knowledge

    SciTech Connect

    Dolin, Ronald M.; Rodriguez, E. A.

    2002-01-01

    Two probabilistic approaches for assessing performance are presented. The first approach assesses probability of failure by simultaneously modeling all likely events. The probability each event causes failure along with the event's likelihood of occurrence contribute to the overall probability of failure. The second assessment method is based on stochastic sampling using an influence diagram. Latin-hypercube sampling is used to stochastically assess events. The overall probability of failure is taken as the maximum probability of failure of all the events. The Likelihood of Occurrence simulation suggests failure does not occur while the Stochastic Sampling approach predicts failure. The Likelihood of Occurrence results are used to validate finite element predictions.

  14. Seakeeping with the semi-Lagrangian particle finite element method

    NASA Astrophysics Data System (ADS)

    Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio

    2016-07-01

    The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.

  15. Analysis of Waveguide Junction Discontinuities Using Finite Element Method

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.

    1997-01-01

    A Finite Element Method (FEM) is presented to determine reflection and transmission coefficients of rectangular waveguide junction discontinuities. An H-plane discontinuity, an E-plane ridge discontinuity, and a step discontinuity in a concentric rectangular waveguide junction are analyzed using the FEM procedure. Also, reflection and transmission coefficients due to presence of a gap between two sections of a rectangular waveguide are determined using the FEM. The numerical results obtained by the present method are in excellent agreement with the earlier published results. The numerical results obtained by the FEM are compared with the numerical results obtained using the Mode Matching Method (MMM) and also with the measured data.

  16. Finite element analysis of laminated plates and shells, volume 1

    NASA Technical Reports Server (NTRS)

    Seide, P.; Chang, P. N. H.

    1978-01-01

    The finite element method is used to investigate the static behavior of laminated composite flat plates and cylindrical shells. The analysis incorporates the effects of transverse shear deformation in each layer through the assumption that the normals to the undeformed layer midsurface remain straight but need not be normal to the mid-surface after deformation. A digital computer program was developed to perform the required computations. The program includes a very efficient equation solution code which permits the analysis of large size problems. The method is applied to the problem of stretching and bending of a perforated curved plate.

  17. Modelling the viscoelasticity of ceramic tiles by finite element

    NASA Astrophysics Data System (ADS)

    Pavlovic, Ana; Fragassa, Cristiano

    2016-05-01

    This research details a numerical method aiming at investigating the viscoelastic behaviour of a specific family of ceramic material, the Grès Porcelain, during an uncommon transformation, known as pyroplasticity, which occurs when a ceramic tile bends under a combination of thermal stress and own weight. In general, the theory of viscoelasticity can be considered extremely large and precise, but its application on real cases is particularly delicate. A time-depending problem, as viscoelasticity naturally is, has to be merged with a temperature-depending situation. This paper investigates how the viscoelastic response of bending ceramic materials can be modelled by commercial Finite Elements codes.

  18. Vector algorithms for geometrically nonlinear 3D finite element analysis

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.

    1989-01-01

    Algorithms for geometrically nonlinear finite element analysis are presented which exploit the vector processing capability of the VPS-32, which is closely related to the CYBER 205. By manipulating vectors (which are long lists of numbers) rather than individual numbers, very high processing speeds are obtained. Long vector lengths are obtained without extensive replication or reordering by storage of intermediate results in strategic patterns at all stages of the computations. Comparisons of execution times with those from programs using either scalar or other vector programming techniques indicate that the algorithms presented are quite efficient.

  19. Finite-element simulation of myocardial electrical excitation

    NASA Astrophysics Data System (ADS)

    Vasserman, I. N.; Matveenko, V. P.; Shardakov, I. N.; Shestakov, A. P.

    2014-01-01

    Based on a single-domain model of myocardial conduction, isotropic and anisotropic finite element models of the myocardium are developed allowing excitation wave propagation to be studied. The Aliev-Panfilov phenomenological equations were used as the relations between the transmembrane current and the transmembrane potential. Interaction of an additional source of initial excitation with an excitation wave that passed and the spread of the excitation wave are studied using heart tomograms. A numerical solution is obtained using a splitting algorithm that allows the nonlinear boundary-value problem to be reduced to a sequence of simpler problems: ordinary differential equations and linear boundary-value problems in partial derivatives.

  20. Finite element model of thermal processes in retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    Short duration (< 20 ms) pulses are desirable in patterned scanning laser photocoagulation to confine thermal damage to the photoreceptor layer, decrease overall treatment time and reduce pain. However, short exposures have a smaller therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation). We have constructed a finite-element computational model of retinal photocoagulation to predict spatial damage and improve the therapeutic window. Model parameters were inferred from experimentally measured absorption characteristics of ocular tissues, as well as the thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Calculated lesion diameters showed good agreement with histological measurements over a wide range of pulse durations and powers.

  1. Finite element modelling of a rotating piezoelectric ultrasonic motor.

    PubMed

    Frangi, A; Corigliano, A; Binci, M; Faure, P

    2005-10-01

    The evaluation of the performance of ultrasonic motors as a function of input parameters such as the driving frequency, voltage input and pre-load on the rotor is of key importance to their development and is here addressed by means of a finite element three-dimensional model. First the stator is simulated as a fully deformable elastic body and the travelling wave dynamics is accurately reproduced; secondly the interaction through contact between the stator and the rotor is accounted for by assuming that the rotor behaves as a rigid surface. Numerical results for the whole motor are finally compared to available experimental data.

  2. Finite element analysis of the stiffness of fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1992-01-01

    The objective of this work is the prediction of all three dimensional elastic moduli of textile fabric reinforced composites. The analysis is general enough for use with complex reinforcing geometries and capable of subsequent improvements. It places no restrictions on fabric microgeometry except that the unit cell be determinate and rectangular. The unit cell is divided into rectangular subcells in which the reinforcing geometries are easier to define and analyze. The analysis, based on inhomogeneous finite elements, is applied to a variety of weave, braid, and knit reinforced composites. Some of these predictions are correlated to test data.

  3. Finite-element approach to Brownian dynamics of polymers.

    PubMed

    Cyron, Christian J; Wall, Wolfgang A

    2009-12-01

    In the last decades simulation tools for Brownian dynamics of polymers have attracted more and more interest. Such simulation tools have been applied to a large variety of problems and accelerated the scientific progress significantly. However, the currently most frequently used explicit bead models exhibit severe limitations, especially with respect to time step size, the necessity of artificial constraints and the lack of a sound mathematical foundation. Here we present a framework for simulations of Brownian polymer dynamics based on the finite-element method. This approach allows simulating a wide range of physical phenomena at a highly attractive computational cost on the basis of a far-developed mathematical background.

  4. Plane-wave fluorescence tomography with adaptive finite elements.

    PubMed

    Joshi, Amit; Bangerth, Wolfgang; Hwang, Kildong; Rasmussen, John; Sevick-Muraca, Eva M

    2006-01-15

    We present three-dimensional fluorescence yield tomography of a tissue phantom in a noncontact reflectance imaging setup. The method employs planar illumination with modulated light and frequency domain fluorescence measurements made on the illumination plane. An adaptive finite-element algorithm is used to handle the ill-posed and computationally demanding inverse image reconstruction problem. Tomographic images of fluorescent targets buried at 1-2 cm depths from the illumination surface demonstrate the feasibility of fluorescence tomography from reflectance tomography in clinically relevant tissue volumes.

  5. Finite element methods for non-Newtonian flows

    SciTech Connect

    Gartling, D.K.

    1992-10-01

    The application of the finite element method to problems in non-Newtonian fluid mechanics is described. The formulation of the basic equations is presented for both inelastic and viscoelastic constitutive models. Solution algorithms for treating the material nonlinearities associated with inelastic fluids are described; typical solution procedures for the implicit stress-rate equations of viscoelastic fluids are also presented. Methods for the simulation of various types of free-surface flows are also outlined. Simple example analyses are included for both types of fluid models.

  6. Finite Element Modeling Techniques for Analysis of VIIP

    NASA Technical Reports Server (NTRS)

    Feola, Andrew J.; Raykin, J.; Gleason, R.; Mulugeta, Lealem; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.; Ethier, C. Ross

    2015-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a major health concern for long-duration space missions. Currently, it is thought that a cephalad fluid shift in microgravity causes elevated intracranial pressure (ICP) that is transmitted along the optic nerve sheath (ONS). We hypothesize that this in turn leads to alteration and remodeling of connective tissue in the posterior eye which impacts vision. Finite element (FE) analysis is a powerful tool for examining the effects of mechanical loads in complex geometries. Our goal is to build a FE analysis framework to understand the response of the lamina cribrosa and optic nerve head to elevations in ICP in VIIP.

  7. Dual Formulations of Mixed Finite Element Methods with Applications.

    PubMed

    Gillette, Andrew; Bajaj, Chandrajit

    2011-10-01

    Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail.

  8. SPAR data set contents. [finite element structural analysis system

    NASA Technical Reports Server (NTRS)

    Cunningham, S. W.

    1981-01-01

    The contents of the stored data sets of the SPAR (space processing applications rocket) finite element structural analysis system are documented. The data generated by each of the system's processors are stored in a data file organized as a library. Each data set, containing a two-dimensional table or matrix, is identified by a four-word name listed in a table of contents. The creating SPAR processor, number of rows and columns, and definitions of each of the data items are listed for each data set. An example SPAR problem using these data sets is also presented.

  9. Galerkin finite-element simulation of a geothermal reservoir

    USGS Publications Warehouse

    Mercer, J.W.; Pinder, G.F.

    1973-01-01

    The equations describing fluid flow and energy transport in a porous medium can be used to formulate a mathematical model capable of simulating the transient response of a hot-water geothermal reservoir. The resulting equations can be solved accurately and efficiently using a numerical scheme which combines the finite element approach with the Galerkin method of approximation. Application of this numerical model to the Wairakei geothermal field demonstrates that hot-water geothermal fields can be simulated using numerical techniques currently available and under development. ?? 1973.

  10. Finite Element Analysis of 2-D Elastic Contacts Involving FGMs

    NASA Astrophysics Data System (ADS)

    Abhilash, M. N.; Murthy, H.

    2014-05-01

    The response of elastic indenters in contact with Functionally Graded Material (FGM) coated homogeneous elastic half space has been presented in the current paper. Finite element analysis has been used due to its ability to handle complex geometry, material, and boundary conditions. Indenters of different typical surface profiles have been considered and the problem has been idealized as a two-dimensional (2D) plane strain problem considering only normal loads. Initially, indenters were considered to be rigid and the results were validated with the solutions presented in the literature. The analysis has then been extended to the case of elastic indenters on FGM-coated half spaces and the results are discussed.

  11. Finite element prediction of vibro-acoustic environments

    NASA Astrophysics Data System (ADS)

    Hipol, Philip J.

    1989-09-01

    An efficient analytical methodology has been developed with the finite element method which may be used to predict the low frequency vibro-acoustic environment within an aerospace flight vehicle. This methodology includes general purpose capabilities for solving problems involving the effects of structure/acoustic interaction and random excitation pressure fields. Computational efficiency is enhanced by decoupling the structure from the acoustic volume, and taking advantage of reciprocity in the random vibration and vibro-acoustic formulations. The application of the analytical methodology to an example problem found good agreement with previous research, demonstrating the feasibility of the methodology described herein.

  12. Finite Element Algorithm for Frictionless Contact of Porous Permeable Media Under Finite Deformation and Sliding

    PubMed Central

    Ateshian, Gerard A.; Maas, Steve; Weiss, Jeffrey A.

    2010-01-01

    Background This study formulates and implements a finite element contact algorithm for solid-fluid (biphasic) mixtures, accommodating both finite deformation and sliding. The finite element source code is made available to the general public. Methods The algorithm uses a penalty method regularized with an augmented Lagrangian method to enforce the continuity of contact traction and normal component of fluid flux across the contact interface. The formulation addresses the need to automatically enforce free-draining conditions outside of the contact interface. The formulation addresses the need to automatically enforce free-draining conditions outside of the contact interface. Results The accuracy of the implementation is verified using contact problems for which exact solutions are obtained by alternative analyses. Illustrations are also provided that demonstrate large deformations and sliding under configurations relevant to biomechanical applications such as articular contact. Conclusions This study addresses an important computational need in the biomechanics of porous-permeable soft tissues. Placing the source code in the public domain provides a useful resource to the biomechanics community. PMID:20887031

  13. A finite element-boundary element method for advection-diffusion problems with variable advective fields and infinite domains

    SciTech Connect

    Driessen, B.J.; Dohner, J.L.

    1998-08-01

    In this paper a hybrid, finite element--boundary element method which can be used to solve for particle advection-diffusion in infinite domains with variable advective fields is presented. In previous work either boundary element, finite element, or difference methods have been used to solve for particle motion in advective-diffusive domains. These methods have a number of limitations. Due to the complexity of computing spatially dependent Green`s functions, the boundary element method is limited to domains containing only constant advective fields, and due to their inherent formulation, finite element and finite difference methods are limited to only domains of finite spatial extent. Thus, finite element and finite difference methods are limited to finite space problems for which the boundary element method is not, and the boundary element method is limited to constant advection field problems for which finite element and finite difference methods are not. In this paper it is proposed to split a domain into two sub-domains, and for each of these sub domains, apply the appropriate solution method; thereby, producing a method for the total infinite space, variable advective field domain.

  14. Non-uniform FFT for the finite element computation of the micromagnetic scalar potential

    NASA Astrophysics Data System (ADS)

    Exl, L.; Schrefl, T.

    2014-08-01

    We present a quasi-linearly scaling, first order polynomial finite element method for the solution of the magnetostatic open boundary problem by splitting the magnetic scalar potential. The potential is determined by solving a Dirichlet problem and evaluation of the single layer potential by a fast approximation technique based on Fourier approximation of the kernel function. The latter approximation leads to a generalization of the well-known convolution theorem used in finite difference methods. We address it by a non-uniform FFT approach. Overall, our method scales O(M+N+Nlog N) for N nodes and M surface triangles. We confirm our approach by several numerical tests.

  15. An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations

    SciTech Connect

    Key, S.W.; Heinstein, M.W.; Stone, C.M.

    1997-12-31

    Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.

  16. All-electron Kohn–Sham density functional theory on hierarchic finite element spaces

    SciTech Connect

    Schauer, Volker; Linder, Christian

    2013-10-01

    In this work, a real space formulation of the Kohn–Sham equations is developed, making use of the hierarchy of finite element spaces from different polynomial order. The focus is laid on all-electron calculations, having the highest requirement onto the basis set, which must be able to represent the orthogonal eigenfunctions as well as the electrostatic potential. A careful numerical analysis is performed, which points out the numerical intricacies originating from the singularity of the nuclei and the necessity for approximations in the numerical setting, with the ambition to enable solutions within a predefined accuracy. In this context the influence of counter-charges in the Poisson equation, the requirement of a finite domain size, numerical quadratures and the mesh refinement are examined as well as the representation of the electrostatic potential in a high order finite element space. The performance and accuracy of the method is demonstrated in computations on noble gases. In addition the finite element basis proves its flexibility in the calculation of the bond-length as well as the dipole moment of the carbon monoxide molecule.

  17. Subject specific finite element modeling of periprosthetic femoral fracture using element deactivation to simulate bone failure.

    PubMed

    Miles, Brad; Kolos, Elizabeth; Walter, William L; Appleyard, Richard; Shi, Angela; Li, Qing; Ruys, Andrew J

    2015-06-01

    Subject-specific finite element (FE) modeling methodology could predict peri-prosthetic femoral fracture (PFF) for cementless hip arthoplasty in the early postoperative period. This study develops methodology for subject-specific finite element modeling by using the element deactivation technique to simulate bone failure and validate with experimental testing, thereby predicting peri-prosthetic femoral fracture in the early postoperative period. Material assignments for biphasic and triphasic models were undertaken. Failure modeling with the element deactivation feature available in ABAQUS 6.9 was used to simulate a crack initiation and propagation in the bony tissue based upon a threshold of fracture strain. The crack mode for the biphasic models was very similar to the experimental testing crack mode, with a similar shape and path of the crack. The fracture load is sensitive to the friction coefficient at the implant-bony interface. The development of a novel technique to simulate bone failure by element deactivation of subject-specific finite element models could aid prediction of fracture load in addition to fracture risk characterization for PFF. PMID:25937546

  18. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  19. Finite element dependence of stress evaluation for human trabecular bone.

    PubMed

    Depalle, B; Chapurlat, R; Walter-Le-Berre, H; Bou-Saïd, B; Follet, H

    2013-02-01

    Numerical simulation using finite element models (FEM) has become more and more suitable to estimate the mechanical properties of trabecular bone. The size and kind of elements involved in the models, however, may influence the results. The purpose of this study is to analyze the influence of hexahedral elements formulation on the evaluation of mechanical stress applied to trabeculae bone during a compression test simulation. Trabecular bone cores were extracted from 18 L2 vertebrae (12 women and 6 men, mean age: 76 ± 11, BV/TV=7.5 ± 1.9%). Samples were micro-CT scanned at 20 μm isotropic voxel size. Micro-CT images have been sub-sampled (20, 40 and 80 μm) to create 5.6 mm cubic FEM. For each sample, a compression test FEM has been created, using either 8-nodes linear hexahedral elements with full or reduced integration or 20-nodes quadratic hexahedral elements fully integrated, resulting in nine models per samples. Bone mechanical properties have been assumed isotropic, homogenous and to follow a linear elastic behavior law (Young modulus: 8 GPa, Poisson ratio: 0.3). Despite micro-architecture modifications (loss of connectivity, trabeculae thickening) due to voxel size increase, apparent mechanical properties calculated with low resolution models are significantly correlated with high resolution results, no matter the element formulation. However, stress distributions are more sensitive to both resolution and element formulation modifications. With linear elements, increasing voxel size leads to an alteration of stress concentration areas due to stiffening errors. On the opposite, the use of reduced integration induces severe smoothing and underestimation of stress fields resulting in stress raisers loss. Notwithstanding their high computational cost, quadratic elements are most appropriate for stress prediction in low resolution trabecular bone FEM. These observations are dependent on trabecular bone micro-architecture, and are more significant for low

  20. Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments

    NASA Astrophysics Data System (ADS)

    Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak

    2015-10-01

    The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.