Second order tensor finite element
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Visualizing higher order finite elements. Final report
Thompson, David C; Pebay, Philippe Pierre
2005-11-01
This report contains an algorithm for decomposing higher-order finite elements into regions appropriate for isosurfacing and proves the conditions under which the algorithm will terminate. Finite elements are used to create piecewise polynomial approximants to the solution of partial differential equations for which no analytical solution exists. These polynomials represent fields such as pressure, stress, and momentum. In the past, these polynomials have been linear in each parametric coordinate. Each polynomial coefficient must be uniquely determined by a simulation, and these coefficients are called degrees of freedom. When there are not enough degrees of freedom, simulations will typically fail to produce a valid approximation to the solution. Recent work has shown that increasing the number of degrees of freedom by increasing the order of the polynomial approximation (instead of increasing the number of finite elements, each of which has its own set of coefficients) can allow some types of simulations to produce a valid approximation with many fewer degrees of freedom than increasing the number of finite elements alone. However, once the simulation has determined the values of all the coefficients in a higher-order approximant, tools do not exist for visual inspection of the solution. This report focuses on a technique for the visual inspection of higher-order finite element simulation results based on decomposing each finite element into simplicial regions where existing visualization algorithms such as isosurfacing will work. The requirements of the isosurfacing algorithm are enumerated and related to the places where the partial derivatives of the polynomial become zero. The original isosurfacing algorithm is then applied to each of these regions in turn.
Visualization of higher order finite elements.
Thompson, David C.; Pebay, Philippe Pierre; Crawford, Richard H.; Khardekar, Rahul Vinay
2004-04-01
Finite element meshes are used to approximate the solution to some differential equation when no exact solution exists. A finite element mesh consists of many small (but finite, not infinitesimal or differential) regions of space that partition the problem domain, {Omega}. Each region, or element, or cell has an associated polynomial map, {Phi}, that converts the coordinates of any point, x = ( x y z ), in the element into another value, f(x), that is an approximate solution to the differential equation, as in Figure 1(a). This representation works quite well for axis-aligned regions of space, but when there are curved boundaries on the problem domain, {Omega}, it becomes algorithmically much more difficult to define {Phi} in terms of x. Rather, we define an archetypal element in a new coordinate space, r = ( r s t ), which has a simple, axis-aligned boundary (see Figure 1(b)) and place two maps onto our archetypal element:
Application of Mass Lumped Higher Order Finite Elements
Chen, J.; Strauss, H. R.; Jardin, S. C.; Park, W.; Sugiyama, L. E.; G. Fu; Breslau, J.
2005-11-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied.
Higher-Order Finite Elements for Computing Thermal Radiation
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2004-01-01
Two variants of the finite-element method have been developed for use in computational simulations of radiative transfers of heat among diffuse gray surfaces. Both variants involve the use of higher-order finite elements, across which temperatures and radiative quantities are assumed to vary according to certain approximations. In this and other applications, higher-order finite elements are used to increase (relative to classical finite elements, which are assumed to be isothermal) the accuracies of final numerical results without having to refine computational meshes excessively and thereby incur excessive computation times. One of the variants is termed the radiation sub-element (RSE) method, which, itself, is subject to a number of variations. This is the simplest and most straightforward approach to representation of spatially variable surface radiation. Any computer code that, heretofore, could model surface-to-surface radiation can incorporate the RSE method without major modifications. In the basic form of the RSE method, each finite element selected for use in computing radiative heat transfer is considered to be a parent element and is divided into sub-elements for the purpose of solving the surface-to-surface radiation-exchange problem. The sub-elements are then treated as classical finite elements; that is, they are assumed to be isothermal, and their view factors and absorbed heat fluxes are calculated accordingly. The heat fluxes absorbed by the sub-elements are then transferred back to the parent element to obtain a radiative heat flux that varies spatially across the parent element. Variants of the RSE method involve the use of polynomials to interpolate and/or extrapolate to approximate spatial variations of physical quantities. The other variant of the finite-element method is termed the integration method (IM). Unlike in the RSE methods, the parent finite elements are not subdivided into smaller elements, and neither isothermality nor other
High-order Finite Element Analysis of Boundary Layer Flows
NASA Astrophysics Data System (ADS)
Zhang, Alvin; Sahni, Onkar
2014-11-01
Numerical analysis of boundary layer flows requires careful approximations, specifically the use of a mesh with layered and graded elements near the (viscous) walls. This is referred to as a boundary layer mesh, which for complex geometries is composed of triangular elements on the walls that are inflated or extruded into the volume along the wall-normal direction up to a desired height while the rest of the domain is filled with unstructured tetrahedral elements. Linear elements with C0 inter-element continuity are employed and in some situations higher order C0 elements are also used. However, these elements only enforce continuity whereas high-order smoothness is not attained as will be the case with C1 inter-element continuity and higher. As a result, C0 elements result in a poor approximation of the high-order boundary layer behavior. To achieve greater inter-element continuity in boundary layer region, we employ B-spline basis functions along the wall-normal direction (i.e., only in the layered portion of the mesh). In the rest of the fully unstructured mesh, linear or higher order C0 elements are used as appropriate. In this study we demonstrate the benefits of finite-element analysis based on such higher order and continuity basis functions for boundary layer flows.
Higher Order Lagrange Finite Elements In M3D
J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau
2004-12-17
The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.
Acceleration of low order finite element computation with GPUs (Invited)
NASA Astrophysics Data System (ADS)
Knepley, M. G.
2010-12-01
Considerable effort has been focused on the acceleration using GPUs of high order spectral element methods and discontinuous Galerkin finite element methods. However, these methods are not universally applicable, and much of the existing FEM software base employs low order methods. In this talk, we present a formulation of FEM, using the PETSc framework from ANL, which is amenable to GPU acceleration even at very low order. In addition, using the FEniCS system for FEM, we show that the relevant kernels can be automatically generated and optimized using a symbolic manipulation system.
Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.
2012-09-20
The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered
Methods and framework for visualizing higher-order finite elements.
Schroeder, William J; Bertel, François; Malaterre, Mathieu; Thompson, David; Pébay, Philippe P; O'Bara, Robert; Tendulkar, Saurabh
2006-01-01
The finite element method is an important, widely used numerical technique for solving partial differential equations. This technique utilizes basis functions for approximating the geometry and the variation of the solution field over finite regions, or elements, of the domain. These basis functions are generally formed by combinations of polynomials. In the past, the polynomial order of the basis has been low-typically of linear and quadratic order. However, in recent years so-called p and hp methods have been developed, which may elevate the order of the basis to arbitrary levels with the aim of accelerating the convergence of the numerical solution. The increasing complexity of numerical basis functions poses a significant challenge to visualization systems. In the past, such systems have been loosely coupled to simulation packages, exchanging data via file transfer, and internally reimplementing the basis functions in order to perform interpolation and implement visualization algorithms. However, as the basis functions become more complex and, in some cases, proprietary in nature, it becomes increasingly difficult if not impossible to reimplement them within the visualization system. Further, most visualization systems typically process linear primitives, in part to take advantage of graphics hardware and, in part, due to the inherent simplicity of the resulting algorithms. Thus, visualization of higher-order finite elements requires tessellating the basis to produce data compatible with existing visualization systems. In this paper, we describe adaptive methods that automatically tessellate complex finite element basis functions using a flexible and extensible software framework. These methods employ a recursive, edge-based subdivision algorithm driven by a set of error metrics including geometric error, solution error, and error in image space. Further, we describe advanced pretessellation techniques that guarantees capture of the critical points of the
Visualizing Higher Order Finite Elements: FY05 Yearly Report.
Thompson, David; Pebay, Philippe Pierre
2005-11-01
This report contains an algorithm for decomposing higher-order finite elementsinto regions appropriate for isosurfacing and proves the conditions under which thealgorithm will terminate. Finite elements are used to create piecewise polynomialapproximants to the solution of partial differential equations for which no analyticalsolution exists. These polynomials represent fields such as pressure, stress, and mo-mentim. In the past, these polynomials have been linear in each parametric coordinate.Each polynomial coefficient must be uniquely determined by a simulation, and thesecoefficients are called degrees of freedom. When there are not enough degrees of free-dom, simulations will typically fail to produce a valid approximation to the solution.Recent work has shown that increasing the number of degrees of freedom by increas-ing the order of the polynomial approximation (instead of increasing the number offinite elements, each of which has its own set of coefficients) can allow some typesof simulations to produce a valid approximation with many fewer degrees of freedomthan increasing the number of finite elements alone. However, once the simulation hasdetermined the values of all the coefficients in a higher-order approximant, tools donot exist for visual inspection of the solution.This report focuses on a technique for the visual inspection of higher-order finiteelement simulation results based on decomposing each finite element into simplicialregions where existing visualization algorithms such as isosurfacing will work. Therequirements of the isosurfacing algorithm are enumerated and related to the placeswhere the partial derivatives of the polynomial become zero. The original isosurfacingalgorithm is then applied to each of these regions in turn.3 AcknowledgementThe authors would like to thank David Day and Louis Romero for their insight into poly-nomial system solvers and the LDRD Senior Council for the opportunity to pursue thisresearch. The authors were
A viscoelastic higher-order beam finite element
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tressler, Alexander
1996-01-01
A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.
High-order finite element methods for cardiac monodomain simulations
Vincent, Kevin P.; Gonzales, Matthew J.; Gillette, Andrew K.; Villongco, Christopher T.; Pezzuto, Simone; Omens, Jeffrey H.; Holst, Michael J.; McCulloch, Andrew D.
2015-01-01
Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori. PMID:26300783
High-order finite element methods for cardiac monodomain simulations.
Vincent, Kevin P; Gonzales, Matthew J; Gillette, Andrew K; Villongco, Christopher T; Pezzuto, Simone; Omens, Jeffrey H; Holst, Michael J; McCulloch, Andrew D
2015-01-01
Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori.
Radiosity algorithms using higher order finite element methods
Troutman, R.; Max, N.
1993-08-01
Many of the current radiosity algorithms create a piecewise constant approximation to the actual radiosity. Through interpolation and extrapolation, a continuous solution is obtained. An accurate solution is found by increasing the number of patches which describe the scene. This has the effect of increasing the computation time as well as the memory requirements. By using techniques found in the finite element method, we can incorporate an interpolation function directly into our form factor computation. We can then use less elements to achieve a more accurate solution. Two algorithms, derived from the finite element method, are described and analyzed.
Beyond first-order finite element schemes in micromagnetics
Kritsikis, E.; Vaysset, A.; Buda-Prejbeanu, L.D.; Toussaint, J.-C.
2014-01-01
Magnetization dynamics in ferromagnetic materials is ruled by the Landau–Lifshitz–Gilbert equation (LLG). Reliable schemes must conserve the magnetization norm, which is a nonconvex constraint, and be energy-decreasing unless there is pumping. Some of the authors previously devised a convergent finite element scheme that, by choice of an appropriate test space – the tangent plane to the magnetization – reduces to a linear problem at each time step. The scheme was however first-order in time. We claim it is not an intrinsic limitation, and the same approach can lead to efficient micromagnetic simulation. We show how the scheme order can be increased, and the nonlocal (magnetostatic) interactions be tackled in logarithmic time, by the fast multipole method or the non-uniform fast Fourier transform. Our implementation is called feeLLGood. A test-case of the National Institute of Standards and Technology is presented, then another one relevant to spin-transfer effects (the spin-torque oscillator)
Beyond first-order finite element schemes in micromagnetics
NASA Astrophysics Data System (ADS)
Kritsikis, E.; Vaysset, A.; Buda-Prejbeanu, L. D.; Alouges, F.; Toussaint, J.-C.
2014-01-01
Magnetization dynamics in ferromagnetic materials is ruled by the Landau-Lifshitz-Gilbert equation (LLG). Reliable schemes must conserve the magnetization norm, which is a nonconvex constraint, and be energy-decreasing unless there is pumping. Some of the authors previously devised a convergent finite element scheme that, by choice of an appropriate test space - the tangent plane to the magnetization - reduces to a linear problem at each time step. The scheme was however first-order in time. We claim it is not an intrinsic limitation, and the same approach can lead to efficient micromagnetic simulation. We show how the scheme order can be increased, and the nonlocal (magnetostatic) interactions be tackled in logarithmic time, by the fast multipole method or the non-uniform fast Fourier transform. Our implementation is called feeLLGood. A test-case of the National Institute of Standards and Technology is presented, then another one relevant to spin-transfer effects (the spin-torque oscillator).
High-order finite element methods for seismic wave propagation
NASA Astrophysics Data System (ADS)
de Basabe Delgado, Jonas De Dios
Purely numerical methods based on the Finite Element Method (FEM) are becoming increasingly popular in seismic modeling for the propagation of acoustic and elastic waves in geophysical models. These methods offer a better control on the accuracy and more geometrical flexibility than the Finite Difference methods that have been traditionally used for the generation of synthetic seismograms. However, the success of these methods has outpaced their analytic validation. The accuracy of the FEMs used for seismic wave propagation is unknown in most cases and therefore the simulation parameters in numerical experiments are determined by empirical rules. I focus on two methods that are particularly suited for seismic modeling: the Spectral Element Method (SEM) and the Interior-Penalty Discontinuous Galerkin Method (IP-DGM). The goals of this research are to investigate the grid dispersion and stability of SEM and IP-DGM, to implement these methods and to apply them to subsurface models to obtain synthetic seismograms. In order to analyze the grid dispersion and stability, I use the von Neumann method (plane wave analysis) to obtain a generalized eigenvalue problem. I show that the eigenvalues are related to the grid dispersion and that, with certain assumptions, the size of the eigenvalue problem can be reduced from the total number of degrees of freedom to one proportional to the number of degrees of freedom inside one element. The grid dispersion results indicate that SEM of degree greater than 4 is isotropic and has a very low dispersion. Similar dispersion properties are observed for the symmetric formulation of IP-DGM of degree greater than 4 using nodal basis functions. The low dispersion of these methods allows for a sampling ratio of 4 nodes per wavelength to be used. On the other hand, the stability analysis shows that, in the elastic case, the size of the time step required in IP-DGM is approximately 6 times smaller than that of SEM. The results from the analysis
Three Dimensional Eddy Current Analysis by Multi-Order Vector Finite Elements
NASA Astrophysics Data System (ADS)
Hano, Mitsuo; Hotta, Masashi
In this paper, we propose new method based on multi-order vector finite elements in three dimensional eddy current analysis. Edges, faces, and volume of the multi-order element have orders of shape functions, respectively. In order to realize high efficiency of numerical calculation, high-order elements are assigned in the important area of the eddy current model, and low-order elements in the surrounding area, and multi-order elements in the middle area to bond two areas, respectively. The results obtained by multi-order elements are compared with those by full high-order elements and by full low-order elements.
Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2000-01-01
This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.
Higher-order adaptive finite-element methods for Kohn–Sham density functional theory
Motamarri, P.; Nowak, M.R.; Leiter, K.; Knap, J.; Gavini, V.
2013-11-15
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688
Higher-order adaptive finite-element methods for Kohn-Sham density functional theory
NASA Astrophysics Data System (ADS)
Motamarri, P.; Nowak, M. R.; Leiter, K.; Knap, J.; Gavini, V.
2013-11-01
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn-Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100-200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings-of the order of 1000-fold-relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn-Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using
Visualization of High-Order Finite Element Methods
2013-03-27
Peters , Valerio Pascucci, Robert M. Kirby and Claudio T. Silva, "Topology Verification for Isosurface Extraction", IEEE Transactions on Visualization...Visualization of High-Order Methods Professor Robert M. Kirby , Mr. Robert Haimes University of Utah Office of Sponsored Programs University of Utah Salt Lake...ORGANIZATION REPORT NUMBER 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Robert Kirby 801-585-3421 3. DATES COVERED (From - To) 26-Sep-2008
Higher order temporal finite element methods through mixed formalisms.
Kim, Jinkyu
2014-01-01
The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.
POD-Galerkin reduced-order modeling with adaptive finite element snapshots
NASA Astrophysics Data System (ADS)
Ullmann, Sebastian; Rotkvic, Marko; Lang, Jens
2016-11-01
We consider model order reduction by proper orthogonal decomposition (POD) for parametrized partial differential equations, where the underlying snapshots are computed with adaptive finite elements. We address computational and theoretical issues arising from the fact that the snapshots are members of different finite element spaces. We propose a method to create a POD-Galerkin model without interpolating the snapshots onto their common finite element mesh. The error of the reduced-order solution is not necessarily Galerkin orthogonal to the reduced space created from space-adapted snapshot. We analyze how this influences the error assessment for POD-Galerkin models of linear elliptic boundary value problems. As a numerical example we consider a two-dimensional convection-diffusion equation with a parametrized convective direction. To illustrate the applicability of our techniques to non-linear time-dependent problems, we present a test case of a two-dimensional viscous Burgers equation with parametrized initial data.
NASA Technical Reports Server (NTRS)
Narayanaswami, R.
1973-01-01
A new higher order triangular plate-bending finite element is presented which possesses high accuracy for practical mesh subdivisions and which uses only translations and rotations as grid point degrees of freedom. The element has 18 degrees of freedom, the transverse displacement and two rotations at the vertices and mid-side grid points of the triangle. The transverse displacement within the element is approximated by a quintic polynomial; the bending strains thus vary cubically within the element. Transverse shear flexibility is taken into account in the stiffness formulation. Two examples of static and dynamic analysis are included to show the behavior of the element.
NASA Astrophysics Data System (ADS)
Carrera, E.; Miglioretti, F.; Petrolo, M.
2011-11-01
This paper compares and evaluates various plate finite elements to analyse the static response of thick and thin plates subjected to different loading and boundary conditions. Plate elements are based on different assumptions for the displacement distribution along the thickness direction. Classical (Kirchhoff and Reissner-Mindlin), refined (Reddy and Kant), and other higher-order displacement fields are implemented up to fourth-order expansion. The Unified Formulation UF by the first author is used to derive finite element matrices in terms of fundamental nuclei which consist of 3×3 arrays. The MITC4 shear-locking free type formulation is used for the FE approximation. Accuracy of a given plate element is established in terms of the error vs. thickness-to-length parameter. A significant number of finite elements for plates are implemented and compared using displacement and stress variables for various plate problems. Reduced models that are able to detect the 3D solution are built and a Best Plate Diagram (BPD) is introduced to give guidelines for the construction of plate theories based on a given accuracy and number of terms. It is concluded that the UF is a valuable tool to establish, for a given plate problem, the most accurate FE able to furnish results within a certain accuracy range. This allows us to obtain guidelines and recommendations in building refined elements in the bending analysis of plates for various geometries, loadings, and boundary conditions.
NASA Astrophysics Data System (ADS)
Shahraeeni, E.; Firoozabadi, A.
2012-12-01
We present a 3D model for fully compositional multi-phase multi-component flow in porous media with species transfer between the phases. Phase properties are modeled with the Peng-Robinson equation of state. Because phase properties may exhibit strong discontinuities, we approximate the mass transport update by the means of discontinuous Galerkin method. Pressure and velocity fields are continuous across the whole domain of solution, which is guaranteed by using the mixed hybrid finite element method. Complexity of the flow necessitates the use of either very fine mesh or higher-order schemes. The use of higher-order finite element methods significantly reduces numerical dispersion and grid orientation effects that plague traditional finite difference methods. We have shown that in 3D the convergence rate of our scheme is twice as first order method and the CPU time may improve up to three orders of magnitude for the same level of accuracy. Our numerical model facilitates accurate simulation of delicate feature of compositional flow like fingering and CO2 injection in complex reservoirs for a broad range of applications, including CO2 sequestration in finite aquifer and water flooded reservoirs with transfer of all species between the phases.
Efficient simulation of cardiac electrical propagation using high order finite elements.
Arthurs, Christopher J; Bishop, Martin J; Kay, David
2012-05-20
We present an application of high order hierarchical finite elements for the efficient approximation of solutions to the cardiac monodomain problem. We detail the hurdles which must be overcome in order to achieve theoretically-optimal errors in the approximations generated, including the choice of method for approximating the solution to the cardiac cell model component. We place our work on a solid theoretical foundation and show that it can greatly improve the accuracy in the approximation which can be achieved in a given amount of processor time. Our results demonstrate superior accuracy over linear finite elements at a cheaper computational cost and thus indicate the potential indispensability of our approach for large-scale cardiac simulation.
Efficient simulation of cardiac electrical propagation using high order finite elements
Arthurs, Christopher J.; Bishop, Martin J.; Kay, David
2012-01-01
We present an application of high order hierarchical finite elements for the efficient approximation of solutions to the cardiac monodomain problem. We detail the hurdles which must be overcome in order to achieve theoretically-optimal errors in the approximations generated, including the choice of method for approximating the solution to the cardiac cell model component. We place our work on a solid theoretical foundation and show that it can greatly improve the accuracy in the approximation which can be achieved in a given amount of processor time. Our results demonstrate superior accuracy over linear finite elements at a cheaper computational cost and thus indicate the potential indispensability of our approach for large-scale cardiac simulation. PMID:24976644
GPU-based volume visualization from high-order finite element fields.
Nelson, Blake; Kirby, Robert M; Haimes, Robert
2014-01-01
This paper describes a new volume rendering system for spectral/hp finite-element methods that has as its goal to be both accurate and interactive. Even though high-order finite element methods are commonly used by scientists and engineers, there are few visualization methods designed to display this data directly. Consequently, visualizations of high-order data are generally created by first sampling the high-order field onto a regular grid and then generating the visualization via traditional methods based on linear interpolation. This approach, however, introduces error into the visualization pipeline and requires the user to balance image quality, interactivity, and resource consumption. We first show that evaluation of the volume rendering integral, when applied to the composition of piecewise-smooth transfer functions with the high-order scalar field, typically exhibits second-order convergence for a wide range of high-order quadrature schemes, and has worst case first-order convergence. This result provides bounds on the ability to achieve high-order convergence to the volume rendering integral. We then develop an algorithm for optimized evaluation of the volume rendering integral, based on the categorization of each ray according to the local behavior of the field and transfer function. We demonstrate the effectiveness of our system by running performance benchmarks on several high-order fluid-flow simulations.
Discontinuous deformation analysis with second-order finite element meshed block
NASA Astrophysics Data System (ADS)
Grayeli, Roozbeh; Mortazavi, Ali
2006-12-01
The discontinuous deformation analysis (DDA) with second-order displacement functions was derived based on six-node triangular mesh in order to satisfy the requirement for the accurate calculations in practical applications. The matrices of equilibrium equations for the second-order DDA were given in detail for program coding. By close comparison with widely used finite element method and closed form solutions, the advantages of the modified DDA were illustrated. The program coding was carried out in C++ environment and the new code applied to three examples with known analytical solutions. A very good agreement was achieved between the analytical and numerical results produced by the modified DDA code. Copyright
Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods
NASA Astrophysics Data System (ADS)
Ainsworth, Mark
2004-07-01
The dispersive and dissipative properties of hp version discontinuous Galerkin finite element approximation are studied in three different limits. For the small wave-number limit hk→0, we show the discontinuous Galerkin gives a higher order of accuracy than the standard Galerkin procedure, thereby confirming the conjectures of Hu and Atkins [J. Comput. Phys. 182 (2) (2002) 516]. If the mesh is fixed and the order p is increased, it is shown that the dissipation and dispersion errors decay at a super-exponential rate when the order p is much larger than hk. Finally, if the order is chosen so that 2 p+1≈ κhk for some fixed constant κ>1, then it is shown that an exponential rate of decay is obtained.
A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models
Guerra, Jorge E.; Ullrich, Paul A.
2016-06-01
Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy alsomore » eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less
NASA Astrophysics Data System (ADS)
De Basabe, Jonás D.; Sen, Mrinal K.
2010-04-01
We investigate the stability of some high-order finite element methods, namely the spectral element method and the interior-penalty discontinuous Galerkin method (IP-DGM), for acoustic or elastic wave propagation that have become increasingly popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM allows for a time step 73 per cent larger than that of the leap-frog method; the computational cost is approximately double per time step, but the larger time step partially compensates for this additional cost. Necessary, but not sufficient, stability conditions are given for the mentioned methods for orders up to 10 in space and time. The stability conditions for IP-DGM are approximately 20 and 60 per cent more restrictive than those for SEM in the acoustic and elastic cases, respectively.
MGGHAT: Elliptic PDE software with adaptive refinement, multigrid and high order finite elements
NASA Technical Reports Server (NTRS)
Mitchell, William F.
1993-01-01
MGGHAT (MultiGrid Galerkin Hierarchical Adaptive Triangles) is a program for the solution of linear second order elliptic partial differential equations in two dimensional polygonal domains. This program is now available for public use. It is a finite element method with linear, quadratic or cubic elements over triangles. The adaptive refinement via newest vertex bisection and the multigrid iteration are both based on a hierarchical basis formulation. Visualization is available at run time through an X Window display, and a posteriori through output files that can be used as GNUPLOT input. In this paper, we describe the methods used by MGGHAT, define the problem domain for which it is appropriate, illustrate use of the program, show numerical and graphical examples, and explain how to obtain the software.
Mohammadi, Hadi; Bahramian, Fereshteh; Wan, Wankei
2009-11-01
Modeling soft tissue using the finite element method is one of the most challenging areas in the field of biomechanical engineering. To date, many models have been developed to describe heart valve leaflet tissue mechanics, which are accurate to some extent. Nevertheless, there is no comprehensive method to modeling soft tissue mechanics, This is because (1) the degree of anisotropy in the heart valve leaflet changes layer by layer due to a variety of collagen fiber densities and orientations that cannot be taken into account in the model and also (2) a constitutive material model fully describing the mechanical properties of the leaflet structure is not available in the literature. In this framework, we develop a new high-order element using p-type finite element formulation to create anisotropic material properties similar to those of the heart valve leaflet tissue in only one single element. This element also takes the nonlinearity of the leaflet tissue into consideration using a bilinear material model. This new element is composed a two-dimensional finite element in the principal directions of leaflet tissue and a p-type finite element in the direction of thickness. The proposed element is easy to implement, much more efficient than standard elements available in commercial finite element packages. This study is one step towards the modeling of soft tissue mechanics using a meshless finite element approach to be applied in real-time haptic feedback of soft-tissue models in virtual reality simulation.
GPU-based interactive cut-surface extraction from high-order finite element fields.
Nelson, Blake; Haimes, Robert; Kirby, Robert M
2011-12-01
We present a GPU-based ray-tracing system for the accurate and interactive visualization of cut-surfaces through 3D simulations of physical processes created from spectral/hp high-order finite element methods. When used by the numerical analyst to debug the solver, the ability for the imagery to precisely reflect the data is critical. In practice, the investigator interactively selects from a palette of visualization tools to construct a scene that can answer a query of the data. This is effective as long as the implicit contract of image quality between the individual and the visualization system is upheld. OpenGL rendering of scientific visualizations has worked remarkably well for exploratory visualization for most solver results. This is due to the consistency between the use of first-order representations in the simulation and the linear assumptions inherent in OpenGL (planar fragments and color-space interpolation). Unfortunately, the contract is broken when the solver discretization is of higher-order. There have been attempts to mitigate this through the use of spatial adaptation and/or texture mapping. These methods do a better job of approximating what the imagery should be but are not exact and tend to be view-dependent. This paper introduces new rendering mechanisms that specifically deal with the kinds of native data generated by high-order finite element solvers. The exploratory visualization tools are reassessed and cast in this system with the focus on image accuracy. This is accomplished in a GPU setting to ensure interactivity.
A high order accurate finite element algorithm for high Reynolds number flow prediction
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.
NASA Astrophysics Data System (ADS)
Bause, Markus
2008-02-01
In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is
Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2006-01-01
A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.
Maginot, P. G.; Ragusa, J. C.; Morel, J. E.
2013-07-01
We examine several possible methods of mass matrix lumping for discontinuous finite element discrete ordinates transport using a Lagrange interpolatory polynomial trial space. Though positive outflow angular flux is guaranteed with traditional mass matrix lumping in a purely absorbing 1-D slab cell for the linear discontinuous approximation, we show that when used with higher degree interpolatory polynomial trial spaces, traditional lumping does yield strictly positive outflows and does not increase in accuracy with an increase in trial space polynomial degree. As an alternative, we examine methods which are 'self-lumping'. Self-lumping methods yield diagonal mass matrices by using numerical quadrature restricted to the Lagrange interpolatory points. Using equally-spaced interpolatory points, self-lumping is achieved through the use of closed Newton-Cotes formulas, resulting in strictly positive outflows in pure absorbers for odd power polynomials in 1-D slab geometry. By changing interpolatory points from the traditional equally-spaced points to the quadrature points of the Gauss-Legendre or Lobatto-Gauss-Legendre quadratures, it is possible to generate solution representations with a diagonal mass matrix and a strictly positive outflow for any degree polynomial solution representation in a pure absorber medium in 1-D slab geometry. Further, there is no inherent limit to local truncation error order of accuracy when using interpolatory points that correspond to the quadrature points of high order accuracy numerical quadrature schemes. (authors)
Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics
Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.; ...
2016-04-27
We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less
Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics
Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.; Tomov, V. Z.
2016-04-27
We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved by both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
A unidirectional approach for d-dimensional finite element methods for higher order on sparse grids
Bungartz, H.J.
1996-12-31
In the last years, sparse grids have turned out to be a very interesting approach for the efficient iterative numerical solution of elliptic boundary value problems. In comparison to standard (full grid) discretization schemes, the number of grid points can be reduced significantly from O(N{sup d}) to O(N(log{sub 2}(N)){sup d-1}) in the d-dimensional case, whereas the accuracy of the approximation to the finite element solution is only slightly deteriorated: For piecewise d-linear basis functions, e. g., an accuracy of the order O(N{sup - 2}(log{sub 2}(N)){sup d-1}) with respect to the L{sub 2}-norm and of the order O(N{sup -1}) with respect to the energy norm has been shown. Furthermore, regular sparse grids can be extended in a very simple and natural manner to adaptive ones, which makes the hierarchical sparse grid concept applicable to problems that require adaptive grid refinement, too. An approach is presented for the Laplacian on a uinit domain in this paper.
Finite element analysis of low-cost membrane deformable mirrors for high-order adaptive optics
NASA Astrophysics Data System (ADS)
Winsor, Robert S.; Sivaramakrishnan, Anand; Makidon, Russell B.
1999-10-01
We demonstrate the feasibility of glass membrane deformable mirror (DM) support structures intended for very high order low-stroke adaptive optics systems. We investigated commercially available piezoelectric ceramics. Piezoelectric tubes were determined to offer the largest amount of stroke for a given amount of space on the mirror surface that each actuator controls. We estimated the minimum spacing and the maximum expected stroke of such actuators. We developed a quantitative understanding of the response of a membrane mirror surface by performing a Finite Element Analysis (FEA) study. The results of the FEA analysis were used to develop a design and fabrication process for membrane deformable mirrors of 200 - 500 micron thicknesses. Several different values for glass thickness and actuator spacing were analyzed to determine the best combination of actuator stoke and surface deformation quality. We considered two deformable mirror configurations. The first configuration uses a vacuum membrane attachment system where the actuator tubes' central holes connect to an evacuated plenum, and atmospheric pressure holds the membrane against the actuators. This configuration allows the membrane to be removed from the actuators, facilitating easy replacement of the glass. The other configuration uses precision bearing balls epoxied to the ends of the actuator tubes, with the glass membrane epoxied to the ends of the ball bearings. While this kind of DM is not serviceable, it allows actuator spacings of 4 mm, in addition to large stroke. Fabrication of a prototype of the latter kind of DM was started.
An assessment of four-noded plate finite elements based on a generalized third-order theory
NASA Astrophysics Data System (ADS)
Averill, R. C.; Reddy, J. N.
1992-06-01
Plate finite elements based on the generalized third-order theory of Reddy and the first-order shear deformation theory are analyzed and compared on the basis of thick and thin plate modeling behavior, distortion sensitivity, overall accuracy, reliability, and efficiency. In particular, several four-noded Reddy-type elements and the nine-noded Lagrangian and heterosis (Mindlin-type) plate elements are analyzed to assess their behavior in bending, vibration, and stability of isotropic and laminated composite plates. A four-noded Reddy-type element is identified which is free of all spurious stiffness and zero energy modes, computationally efficient, and suitable for use in any general-purpose finite element program.
An assessment of four-noded plate finite elements based on a generalized third-order theory
NASA Technical Reports Server (NTRS)
Averill, R. C.; Reddy, J. N.
1992-01-01
Plate finite elements based on the generalized third-order theory of Reddy and the first-order shear deformation theory are analyzed and compared on the basis of thick and thin plate modeling behavior, distortion sensitivity, overall accuracy, reliability, and efficiency. In particular, several four-noded Reddy-type elements and the nine-noded Lagrangian and heterosis (Mindlin-type) plate elements are analyzed to assess their behavior in bending, vibration, and stability of isotropic and laminated composite plates. A four-noded Reddy-type element is identified which is free of all spurious stiffness and zero energy modes, computationally efficient, and suitable for use in any general-purpose finite element program.
Higher-Order Adaptive Finite-Element Methods for Kohn-Sham Density Functional Theory
2012-07-03
employ the finite-temperature Fermi- Dirac smearing [3] to suppress the charge sloshing associated with degenerate or close to degenerate eigenstates...elements up to degree eight (HEX27, HEX125SPECT, HEX343SPECT, HEX729SPECT). The numbers following the words ‘TET’ and ‘HEX’ denote the number of nodes in...work are constructed as Lagrange polynomials interpolated through an optimal distribution of nodes corre- sponding to the roots of derivatives of
NASA Astrophysics Data System (ADS)
Wang, Morten M. T.; Sheu, Tony W. H.
1997-09-01
Our work is an extension of the previously proposed multivariant element. We assign this refined element as a compact mixed-order element in the sense that use of this element offers a much smaller bandwidth. The analysis is implemented on quadratic hexahedral elements with a view to analysing a three-dimensional incompressible viscous flow problem using a method formulated within the mixed finite element context. The idea of constructing such a stable element is to bring the marker-and-cell (MAC) grid lay-out to the finite element context. This multivariant element can thus be classified as a discontinuous pressure element. We have several reasons for advocating the proposed multivariant element. The primary advantage gained is its ability to reduce the bandwidth of the matrix equation, as compared with its univariant counterparts, so that it can be effectively stored in a compressed row storage (CRS) format. The resulting matrix equation can be solved efficiently by a multifrontal solver owing to its reduced bandwidth. The coding is, however, complicated by the appearance of restricted degrees of freedom at mid-face nodes. Through analytic study this compact multivariant element has a marked advantage over the multivariant element of Gupta et al. in that both bandwidth and computation time have been drastically reduced.
NASA Astrophysics Data System (ADS)
Kulshreshtha, Kshitij; Nataraj, Neela
2005-08-01
The paper deals with a parallel implementation of a mixed finite element method of approximation of eigenvalues and eigenvectors of fourth order eigenvalue problems with variable/constant coefficients. The implementation has been done in Silicon Graphics Origin 3800, a four processor Intel Xeon Symmetric Multiprocessor and a beowulf cluster of four Intel Pentium III PCs. The generalised eigenvalue problem obtained after discretization using the mixed finite element method is solved using the package LANSO. The numerical results obtained are compared with existing results (if available). The time, speedup comparisons in different environments for some examples of practical and research interest and importance are also given.
Nelson, B; Liu, E; Kirby, R M; Haimes, R
2012-12-01
This paper presents the Element Visualizer (ElVis), a new, open-source scientific visualization system for use with high-order finite element solutions to PDEs in three dimensions. This system is designed to minimize visualization errors of these types of fields by querying the underlying finite element basis functions (e.g., high-order polynomials) directly, leading to pixel-exact representations of solutions and geometry. The system interacts with simulation data through runtime plugins, which only require users to implement a handful of operations fundamental to finite element solvers. The data in turn can be visualized through the use of cut surfaces, contours, isosurfaces, and volume rendering. These visualization algorithms are implemented using NVIDIA's OptiX GPU-based ray-tracing engine, which provides accelerated ray traversal of the high-order geometry, and CUDA, which allows for effective parallel evaluation of the visualization algorithms. The direct interface between ElVis and the underlying data differentiates it from existing visualization tools. Current tools assume the underlying data is composed of linear primitives; high-order data must be interpolated with linear functions as a result. In this work, examples drawn from aerodynamic simulations-high-order discontinuous Galerkin finite element solutions of aerodynamic flows in particular-will demonstrate the superiority of ElVis' pixel-exact approach when compared with traditional linear-interpolation methods. Such methods can introduce a number of inaccuracies in the resulting visualization, making it unclear if visual artifacts are genuine to the solution data or if these artifacts are the result of interpolation errors. Linear methods additionally cannot properly visualize curved geometries (elements or boundaries) which can greatly inhibit developers' debugging efforts. As we will show, pixel-exact visualization exhibits none of these issues, removing the visualization scheme as a source of
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
NASA Astrophysics Data System (ADS)
Anderson, R.; Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Quezada de Luna, M.; Rieben, R.; Tomov, V.
2017-04-01
In this work we present a FCT-like Maximum-Principle Preserving (MPP) method to solve the transport equation. We use high-order polynomial spaces; in particular, we consider up to 5th order spaces in two and three dimensions and 23rd order spaces in one dimension. The method combines the concepts of positive basis functions for discontinuous Galerkin finite element spatial discretization, locally defined solution bounds, element-based flux correction, and non-linear local mass redistribution. We consider a simple 1D problem with non-smooth initial data to explain and understand the behavior of different parts of the method. Convergence tests in space indicate that high-order accuracy is achieved. Numerical results from several benchmarks in two and three dimensions are also reported.
NASA Astrophysics Data System (ADS)
Floch, O.; Sommer, A.; Farle, O.; Dyczij-Edlinger, R.
2015-11-01
Model-order reduction provides an efficient way of computing frequency sweeps for finite-element models, because the dimension of the reduced-order system depends on the complexity of the frequency response rather than the size of the original model. For electrically large domains, however, the applicability of such methods is unclear because the system response may be very complicated. This paper provides a numerical study of the effects of bandwidth, electrical size, and scan angle on the size and convergence of the ROM, by considering linear antenna arrays. A mathematical model is proposed and validated against numerical experiments.
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
NASA Astrophysics Data System (ADS)
Moortgat, J.; Firoozabadi, A.
2013-12-01
Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.
Rieben, R N; Rodrigue, G H; White, D A
2004-03-09
We present a mixed vector finite element method for solving the time dependent coupled Ampere and Faraday laws of Maxwell's equations on unstructured hexahedral grids that employs high order discretization in both space and time. The method is of arbitrary order accuracy in space and up to 5th order accurate in time, making it well suited for electrically large problems where grid anisotropy and numerical dispersion have plagued other methods. In addition, the method correctly models both the jump discontinuities and the divergence-free properties of the electric and magnetic fields, is charge and energy conserving, conditionally stable, and free of spurious modes. Several computational experiments are performed to demonstrate the accuracy, efficiency and benefits of the method.
Rieben, Robert N.
2004-01-01
The goal of this dissertation is two-fold. The first part concerns the development of a numerical method for solving Maxwell's equations on unstructured hexahedral grids that employs both high order spatial and high order temporal discretizations. The second part involves the use of this method as a computational tool to perform high fidelity simulations of various electromagnetic devices such as optical transmission lines and photonic crystal structures to yield a level of accuracy that has previously been computationally cost prohibitive. This work is based on the initial research of Daniel White who developed a provably stable, charge and energy conserving method for solving Maxwell's equations in the time domain that is second order accurate in both space and time. The research presented here has involved the generalization of this procedure to higher order methods. High order methods are capable of yielding far more accurate numerical results for certain problems when compared to corresponding h-refined first order methods , and often times at a significant reduction in total computational cost. The first half of this dissertation presents the method as well as the necessary mathematics required for its derivation. The second half addresses the implementation of the method in a parallel computational environment, its validation using benchmark problems, and finally its use in large scale numerical simulations of electromagnetic transmission devices.
NASA Astrophysics Data System (ADS)
Rieben, Robert N.
The goal of this dissertation is twofold. The first part concerns the development of a numerical method for solving Maxwell's equations on unstructured hexahedral grids that employs both high order spatial and high order temporal discretizations. The second part involves the use of this method as a computational tool to perform high fidelity simulations of various electromagnetic devices such as optical transmission lines and photonic crystal structures to yield a level of accuracy that has previously been computationally cost prohibitive. This work is based on the initial research of Daniel White who developed a provably stable, charge and energy conserving method for solving Maxwell's equations in the time domain that is second order accurate in both space and time. The research presented here has involved the generalization of this procedure to higher order methods. High order methods are capable of yielding far more accurate numerical results for certain problems when compared to corresponding h-refined first order methods, and often times at a significant reduction in total computational cost. The first half of this dissertation presents the method as well as the necessary mathematics required for its derivation. The second half addresses the implementation of the method in a parallel computational environment, its validation using benchmark problems, and finally its use in large scale numerical simulations of electromagnetic transmission devices.
S.C. Jardin; J.A. Breslau
2004-12-17
Here we describe a technique for solving the four-field extended-magnetohydrodynamic (MHD) equations in two dimensions. The introduction of triangular high-order finite elements with continuous first derivatives (C{sup 1} continuity) leads to a compact representation compatible with direct inversion of the associated sparse matrices. The split semi-implicit method is introduced and used to integrate the equations in time, yielding unconditional stability for arbitrary time step. The method is applied to the cylindrical tilt mode problem with the result that a non-zero value of the collisionless ion skin depth will increase the growth rate of that mode. The effect of this parameter on the reconnection rate and geometry of a Harris equilibrium and on the Taylor reconnection problem is also demonstrated. This method forms the basis for a generalization to a full extended-MHD description of the plasma with six, eight, or more scalar fields.
Banks, H T; Birch, Malcolm J; Brewin, Mark P; Greenwald, Stephen E; Hu, Shuhua; Kenz, Zackary R; Kruse, Carola; Maischak, Matthias; Shaw, Simon; Whiteman, John R
2014-04-13
We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685-6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (r + 1)D and is usually regarded as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonalizable over [Formula: see text] for r ⩽100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvin-Voigt and Maxwell-Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.
Banks, H T; Birch, Malcolm J; Brewin, Mark P; Greenwald, Stephen E; Hu, Shuhua; Kenz, Zackary R; Kruse, Carola; Maischak, Matthias; Shaw, Simon; Whiteman, John R
2014-01-01
We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685–6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (r + 1)D and is usually regarded as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonalizable over for r ⩽100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvin–Voigt and Maxwell–Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd. PMID:25834284
NASA Astrophysics Data System (ADS)
Wang, Shuai; Wang, Yu; Zi, Yanyang; Li, Bing; He, Zhengjia
2015-10-01
A novel reduced-order modeling method is presented in this paper for dynamics analysis of rotating impeller-shaft-bearing assembly with cracked impellers. Based on three-dimensional finite element model, the complex component mode synthesis (CMS) method is employed to generate an efficient reduced-order model (ROM) for studying the effects of crack on the global vibration of the rotating assembly. First, a modeling framework for impeller-shaft-bearing systems in rotating frame is presented. Rotational effects, including Coriolis matrix and centrifugal softening, have been taken into account. Then, the governing equation of motion of the damped gyroscopic system is reduced by the complex CMS method. Finally, the obtained ROM is employed to study the effects of crack on assembly's vibration. During the steady-state response analysis, external excitations on the impeller due to rotor-stator interactions have been taken into account, which was however neglected in previous investigations on rotordynamics. Numerical results show that the lower-order eigenvalues and the unbalance response of the assembly are not sensitive to the local crack on impeller. Nevertheless, the flexible coupling between impeller and shaft becomes more complex when the air flow-induced excitations are considered. Under EO1 traveling wave excitations, a crack leads to slight changes in the assembly's response. In contrast, the effect of crack becomes significant when the assembly is excited by EO2 and higher EO excitations. Moreover, the nonlinear crack breathing effects affect the assembly's response obviously. Finally, a potential technique for detecting the crack on impeller during operation is discussed.
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
NASA Astrophysics Data System (ADS)
Lowrie, Weston B.
An engineering design tool is developed to streamline the process of creating, verifying, and using complex computational meshes for use with numerical simulations. A fully three-dimensional high order finite element code is developed and verified with several different types of physics equations including anisotropic thermal conduction, and magnetohydrodynamcis (MHD). A multi-block framework and CAD/mesh generator interface is developed such that complex, non-axisymmetric, and non-simply connected topologies are possible with minimal complexity for the user. An a priori error estimation technique is developed using mesh quality metrics and is included as a step in the engineering design tool. One can assess a mesh's quality prior to numerical simulation and determine if it will yield acceptable results. It is found that the mesh quality analysis can predict the global error norms in the solution and therefore can be used as an a priori guide to improving computational meshes. The multi-block framework is verified by solving a m = 1 kink mode in a Z-pinch and comparing to a linear stability analysis, yielding a positive agreement. Further studies of the Z-pinch include wall stabilization in a cylindrical geometry, and subsequently, a study of wall stabilization in a non-axisymmetric geometry made possible by the multi-block framework. The mesh deformation analysis is applied to the Z-pinch meshes and previous results are confirmed. A non-axisymmetric and non-simply connected geometry representing the HIT-SI experiment is created using the CAD and mesh generator interface and multi-block framework. A mesh deformation analysis is applied to identify degenerate and poor mesh regions during mesh creation. Methods for repairing the mesh from degeneracies and further improvement for more accurate simulations is demonstrated. A spheromak MHD solution is computed on the HIT-SI mesh as a demonstration of the practicality of using the developments in this dissertation as an
Model Reduction of Viscoelastic Finite Element Models
NASA Astrophysics Data System (ADS)
Park, C. H.; Inman, D. J.; Lam, M. J.
1999-01-01
This paper examines a method of adding viscoelastic properties to finite element models by using additional co-ordinates to account for the frequency dependence usually associated with such damping materials. Several such methods exist and all suffer from an increase in order of the final finite model which is undesirable in many applications. Here we propose to combine one of these methods, the GHM (Golla-Hughes-McTavish) method, with model reduction techniques to remove the objection of increased model order. The result of combining several methods is an ability to add the effects of visoelastic components to finite element or other analytical models without increasing the order of the system. The procedure is illustrated by a numerical example. The method proposed here results in a viscoelastic finite element of a structure without increasing the order of the original model.
Finite elements of nonlinear continua.
NASA Technical Reports Server (NTRS)
Oden, J. T.
1972-01-01
The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.
Quadratic finite elements and incompressible viscous flows.
Dohrmann, Clark R.; Gartling, David K.
2005-01-01
Pressure stabilization methods are applied to higher-order velocity finite elements for application to viscous incompressible flows. Both a standard pressure stabilizing Petrov-Galerkin (PSPG) method and a new polynomial pressure projection stabilization (PPPS) method have been implemented and tested for various quadratic elements in two dimensions. A preconditioner based on relaxing the incompressibility constraint is also tested for the iterative solution of saddle point problems arising from mixed Galerkin finite element approximations to the Navier-Stokes equations. The preconditioner is demonstrated for BB stable elements with discontinuous pressure approximations in two and three dimensions.
Finite element shell instability analysis
NASA Technical Reports Server (NTRS)
1975-01-01
Formulation procedures and the associated computer program for finite element thin shell instability analysis are discussed. Data cover: (1) formulation of basic element relationships, (2) construction of solution algorithms on both the conceptual and algorithmic levels, and (3) conduction of numerical analyses to verify the accuracy and efficiency of the theory and related programs therein are described.
Sommer, A. Farle, O. Dyczij-Edlinger, R.
2015-10-15
This paper presents a fast numerical method for computing certified far-field patterns of phased antenna arrays over broad frequency bands as well as wide ranges of steering and look angles. The proposed scheme combines finite-element analysis, dual-corrected model-order reduction, and empirical interpolation. To assure the reliability of the results, improved a posteriori error bounds for the radiated power and directive gain are derived. Both the reduced-order model and the error-bounds algorithm feature offline–online decomposition. A real-world example is provided to demonstrate the efficiency and accuracy of the suggested approach.
Pingenot, J; Rieben, R; White, D
2004-12-06
We present a computational study of signal propagation and attenuation of a 200 MHz dipole antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The simulation is performed for a series of random meshes in order to generate statistical data for the propagation and attenuation properties of the cave environment. Results for the power spectral density and phase of the electric field vector components are presented and discussed.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
On numerically accurate finite element
NASA Technical Reports Server (NTRS)
Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.
1974-01-01
A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.
NASA Astrophysics Data System (ADS)
Soudah, Eduardo; Rossi, Riccardo; Idelsohn, Sergio; Oñate, Eugenio
2014-10-01
A reduced-order model for an efficient analysis of cardiovascular hemodynamics problems using multiscale approach is presented in this work. Starting from a patient-specific computational mesh obtained by medical imaging techniques, an analysis methodology based on a two-step automatic procedure is proposed. First a coupled 1D-3D Finite Element Simulation is performed and the results are used to adjust a reduced-order model of the 3D patient-specific area of interest. Then, this reduced-order model is coupled with the 1D model. In this way, three-dimensional effects are accounted for in the 1D model in a cost effective manner, allowing fast computation under different scenarios. The methodology proposed is validated using a patient-specific aortic coarctation model under rest and non-rest conditions.
Yaqi Wang; Cristian Rabiti; Giuseppe Palmiotti
2011-06-01
The Red-Black algorithm has been successfully applied on solving the second-order parity transport equation with the PN approximation in angle and the Hybrid Finite Element Method (HFEM) in space, i.e., the Variational Nodal Method (VNM) [1,2,3,4,5]. Any transport solving techniques, including the Red-Black algorithm, need to be parallelized in order to take the advantage of the development of supercomputers with multiple processors for the advanced modeling and simulation. To our knowledge, an attempt [6] was done to parallelize it, but it was devoted only to the z axis plans in three-dimensional calculations. General parallelization of the Red-Black algorithm with the spatial domain decomposition has not been reported in the literature. In this summary, we present our implementation of the parallelization of the Red-Black algorithm and its efficiency results.
Pingenot, J; Rieben, R; White, D; Dudley, D
2005-10-31
We present a computational study of signal propagation and attenuation of a 200 MHz planar loop antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The numerical technique is first verified against theoretical results for a planar loop antenna in a smooth lossy cave. The simulation is then performed for a series of random rough surface meshes in order to generate statistical data for the propagation and attenuation properties of the antenna in a cave environment. Results for the mean and variance of the power spectral density of the electric field are presented and discussed.
Nonlinear, finite deformation, finite element analysis
NASA Astrophysics Data System (ADS)
Nguyen, Nhung; Waas, Anthony M.
2016-06-01
The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated
ANSYS duplicate finite-element checker routine
NASA Technical Reports Server (NTRS)
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
Finite element wavelets with improved quantitative properties
NASA Astrophysics Data System (ADS)
Nguyen, Hoang; Stevenson, Rob
2009-08-01
In [W. Dahmen, R. Stevenson, Element-by-element construction of wavelets satisfying stability and moment conditions, SIAM J. Numer. Anal. 37 (1) (1999) 319-352 (electronic)], finite element wavelets were constructed on polygonal domains or Lipschitz manifolds that are piecewise parametrized by mappings with constant Jacobian determinants. The wavelets could be arranged to have any desired order of cancellation properties, and they generated stable bases for the Sobolev spaces Hs for (or s<=1 on manifolds). Unfortunately, it appears that the quantitative properties of these wavelets are rather disappointing. In this paper, we modify the construction from the above-mentioned work to obtain finite element wavelets which are much better conditioned.
SUPG Finite Element Simulations of Compressible Flows
NASA Technical Reports Server (NTRS)
Kirk, Brnjamin, S.
2006-01-01
The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.
Infinite Possibilities for the Finite Element.
ERIC Educational Resources Information Center
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
A multigrid solution method for mixed hybrid finite elements
Schmid, W.
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
2008-06-01
Jaime Peraire Professor of Aeronautics and Astronautics Certified...faults are my own. In addition to my advisor, the other members of my thesis committee, Prof. Jaime Peraire and Prof. Mark Drela, also deserve considerable...er ro r p = 1 p = 2 p = 3 p = 4 (a) NS, Resolution switch × p = 40 80 160 320 10 −3 10 −2 10 −1 10 0 Elements L 1 er ro r p = 1 p = 2 p = 3
Peridynamic Multiscale Finite Element Methods
Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
NASA Astrophysics Data System (ADS)
Moortgat, Joachim; Li, Zhidong; Firoozabadi, Abbas
2012-12-01
Most simulators for subsurface flow of water, gas, and oil phases use empirical correlations, such as Henry's law, for the CO2 composition in the aqueous phase, and equations of state (EOS) that do not represent the polar interactions between CO2and water. Widely used simulators are also based on lowest-order finite difference methods and suffer from numerical dispersion and grid sensitivity. They may not capture the viscous and gravitational fingering that can negatively affect hydrocarbon (HC) recovery, or aid carbon sequestration in aquifers. We present a three-phase compositional model based on higher-order finite element methods and incorporate rigorous and efficient three-phase-split computations for either three HC phases or water-oil-gas systems. For HC phases, we use the Peng-Robinson EOS. We allow solubility of CO2in water and adopt a new cubic-plus-association (CPA) EOS, which accounts for cross association between H2O and CO2 molecules, and association between H2O molecules. The CPA-EOS is highly accurate over a broad range of pressures and temperatures. The main novelty of this work is the formulation of a reservoir simulator with new EOS-based unique three-phase-split computations, which satisfy both the equalities of fugacities in all three phases and the global minimum of Gibbs free energy. We provide five examples that demonstrate twice the convergence rate of our method compared with a finite difference approach, and compare with experimental data and other simulators. The examples consider gravitational fingering during CO2sequestration in aquifers, viscous fingering in water-alternating-gas injection, and full compositional modeling of three HC phases.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Leng, Wei; Ju, Lili; Gunzburger, Max; Price, Stephen; Ringler, Todd
2012-01-04
The numerical modeling of glacier and ice sheet evolution is a subject of growing interest, in part because of the potential for models to inform estimates of global sea level change. This paper focuses on the development of a numerical model that determines the velocity and pressure fields within an ice sheet. Our numerical model features a high-fidelity mathematical model involving the nonlinear Stokes system and combinations of no-sliding and sliding basal boundary conditions, high-order accurate finite element discretizations based on variable resolution grids, and highly scalable parallel solution strategies, all of which contribute to a numerical model that can achieve accurate velocity and pressure approximations in a highly efficient manner. We demonstrate the accuracy and efficiency of our model by analytical solution tests, established ice sheet benchmark experiments, and comparisons with other well-established ice sheet models.
NASA Astrophysics Data System (ADS)
Shamasundar, R.; Mulder, W. A.
2016-10-01
Finite-element discretizations of the acoustic wave equation in the time domain often employ mass lumping to avoid the cost of inverting a large sparse mass matrix. For the second-order formulation of the wave equation, mass lumping on Legendre-Gauss-Lobatto points does not harm the accuracy. Here, we consider a first-order formulation of the wave equation. In that case, the numerical dispersion for odd-degree polynomials exhibits super-convergence with a consistent mass matrix but mass lumping destroys that property. We consider defect correction as a means to restore the accuracy, in which the consistent mass matrix is approximately inverted using the lumped one as preconditioner. For the lowest-degree element on a uniform mesh, fourth-order accuracy in 1D can be obtained with just a single iteration of defect correction. The numerical dispersion curve describes the error in the eigenvalues of the discrete set of equations. However, the error in the eigenvectors also play a role, in two ways. For polynomial degrees above one and when considering a 1-D mesh with constant element size and constant material properties, a number of modes, equal to the maximum polynomial degree, are coupled. One of these is the correct physical mode that should approximate the true eigenfunction of the operator, the other are spurious and should have a small amplitude when the true eigenfunction is projected onto them. We analyze the behaviour of this error as a function of the normalized wavenumber in the form of the leading terms in its series expansion and find that this error exceeds the dispersion error, except for the lowest degree where the eigenvector error is zero. Numerical 1-D tests confirm this behaviour. We briefly analyze the 2-D case, where the lowest-degree polynomial also appears to provide fourth-order accuracy with defect correction, if the grid of squares or triangles is highly regular and material properties are constant.
Leapfrog/Finite Element Method for Fractional Diffusion Equation
Zhao, Zhengang; Zheng, Yunying
2014-01-01
We analyze a fully discrete leapfrog/Galerkin finite element method for the numerical solution of the space fractional order (fractional for simplicity) diffusion equation. The generalized fractional derivative spaces are defined in a bounded interval. And some related properties are further discussed for the following finite element analysis. Then the fractional diffusion equation is discretized in space by the finite element method and in time by the explicit leapfrog scheme. For the resulting fully discrete, conditionally stable scheme, we prove an L 2-error bound of finite element accuracy and of second order in time. Numerical examples are included to confirm our theoretical analysis. PMID:24955431
2012-06-09
employed theories are the Euler-Bernoulli beam theory (EBT) and the Timoshenko beam theory ( TBT ). The major deficiency associated with the EBT is failure to...account for defor- mations associated with shearing. The TBT relaxes the normality assumption of the EBT and admits a constant state of shear strain...on a given cross-section. As a result, the TBT necessitates the use of shear correction coefficients in order to accurately predict transverse
Revolution in Orthodontics: Finite element analysis
Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush
2016-01-01
Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948
Gauge finite element method for incompressible flows
NASA Astrophysics Data System (ADS)
E, Weinan; Liu, Jian-Guo
2000-12-01
A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J-G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that arises from decomposing a compressible velocity field. It has the advantage that an additional boundary condition can be assigned to the gauge variable, thus eliminating the issue of a pressure boundary condition associated with the original primitive variable formulation. The computational task is then reduced to solving standard heat and Poisson equations, which are approximated by straightforward, piecewise linear (or higher-order) finite elements. This method can achieve high-order accuracy at a cost comparable with that of solving standard heat and Poisson equations. It is naturally adapted to complex geometry and it is much simpler than traditional finite element methods for incompressible flows. Several numerical examples on both structured and unstructured grids are presented. Copyright
Domain decomposition methods for mortar finite elements
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
NASA Astrophysics Data System (ADS)
Leibs, Christopher A.
Efforts are currently being directed towards a fully implicit, electromagnetic, JFNK-based solver, motivating the necessity of developing a fluid-based, electromag- netic, preconditioning strategy. The two-fluid plasma (TFP) model is an ideal approximation to the kinetic Jacobian. The TFP model couples both an ion and an electron fluid with Maxwell's equations. The fluid equations consist of the conservation of momentum and number density. A Darwin approximation of Maxwell is used to eliminate light waves from the model in order to facilitate coupling to non-relativistic particle models. We analyze the TFP-Darwin system in the context of a stand-alone solver with consideration of preconditioning a kinetic-JFNK approach. The TFP-Darwin system is addressed numerically by use of nested iteration (NI) and a First-Order Systems Least Squares (FOSLS) discretization. An important goal of NI is to produce an approximation that is within the basis of attraction for Newton's method on a relatively coarse mesh and, thus, on all subsequent meshes. After scaling and modification, the TFP-Darwin model yields a nonlinear, first-order system of equa- tions whose Frechet derivative is shown to be uniformly H1-elliptic in a neighborhood of the exact solution. H1 ellipticity yields optimal finite element performance and lin- ear systems amenable to solution with Algebraic Multigrid (AMG). To efficiently focus computational resources, an adaptive mesh refinement scheme, based on the accuracy per computational cost, is leveraged. Numerical tests demonstrate the efficacy of the approach, yielding an approximate solution within discretization error in a relatively small number of computational work units.
He, Jingjing; Yang, Jinsong; Wang, Yongxiang; Waisman, Haim; Zhang, Weifang
2016-01-01
This paper presents a novel framework for probabilistic crack size quantification using fiber Bragg grating (FBG) sensors. The key idea is to use a high-order extended finite element method (XFEM) together with a transfer (T)-matrix method to analyze the reflection intensity spectra of FBG sensors, for various crack sizes. Compared with the standard FEM, the XFEM offers two superior capabilities: (i) a more accurate representation of fields in the vicinity of the crack tip singularity and (ii) alleviation of the need for costly re-meshing as the crack size changes. Apart from the classical four-term asymptotic enrichment functions in XFEM, we also propose to incorporate higher-order functions, aiming to further improve the accuracy of strain fields upon which the reflection intensity spectra are based. The wavelength of the reflection intensity spectra is extracted as a damage sensitive quantity, and a baseline model with five parameters is established to quantify its correlation with the crack size. In order to test the feasibility of the predictive model, we design FBG sensor-based experiments to detect fatigue crack growth in structures. Furthermore, a Bayesian method is proposed to update the parameters of the baseline model using only a few available experimental data points (wavelength versus crack size) measured by one of the FBG sensors and an optical microscope, respectively. Given the remaining data points of wavelengths, even measured by FBG sensors at different positions, the updated model is shown to give crack size predictions that match well with the experimental observations. PMID:27879649
NASA Astrophysics Data System (ADS)
Wang, Shuai; Wang, Yu; Zi, Yanyang; He, Zhengjia
2015-12-01
A generalized and efficient model for rotating anisotropic rotor-bearing systems is presented in this paper with full considerations of the system's anisotropy in stiffness, inertia and damping. Based on the 3D finite element model and the model order reduction method, the effects of anisotropy in shaft and bearings on the forced response and whirling of anisotropic rotor-bearing systems are systematically investigated. First, the coefficients of journal bearings are transformed from the fixed frame to the rotating one. Due to the anisotropy in shaft and bearings, the motion is governed by differential equations with periodically time-variant coefficients. Then, a free-interface complex component mode synthesis (CMS) method is employed to generate efficient reduced-order models (ROM) for the periodically time-variant systems. In order to solve the obtained equations, a variant of Hill's method for systems with multiple harmonic excitations is developed. Four dimensionless parameters are defined to quantify the types and levels of anisotropy of bearings. Finally, the effects of the four types of anisotropy on the forced response and whirl orbits are studied. Numerical results show that the anisotropy of bearings in stiffness splits the sole resonant peak into two isolated ones, but the anisotropy of bearings in damping coefficients mainly affect the response amplitudes. Moreover, the whirl orbits become much more complex when the shaft and bearings are both anisotropic. In addition, the cross-coupling stiffness coefficients of bearings significantly affect the dynamic behaviors of the systems and cannot be neglected, though they are often much smaller than the principle stiffness terms.
NASA Astrophysics Data System (ADS)
Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.
2015-04-01
This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.
Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.
2015-04-27
This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.
Tezaur, I. K.; Perego, M.; Salinger, A. G.; ...
2015-04-27
This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, alongmore » with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.« less
Optimal least-squares finite element method for elliptic problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1991-01-01
An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.
Finite element coiled cochlea model
NASA Astrophysics Data System (ADS)
Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad
2015-12-01
Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Finite-Element Composite-Analysis Program
NASA Technical Reports Server (NTRS)
Bowles, David E.
1990-01-01
Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.
Finite element analysis of helicopter structures
NASA Technical Reports Server (NTRS)
Rich, M. J.
1978-01-01
Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.
3-D Finite Element Code Postprocessor
1996-07-15
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
NASA Astrophysics Data System (ADS)
Laboure, Vincent Matthieu
In this dissertation, we focus on solving the linear Boltzmann equation -- or transport equation -- using spherical harmonics (PN) expansions with fully-implicit time-integration schemes and Galerkin Finite Element spatial discretizations within the Multiphysics Object Oriented Simulation Environment (MOOSE) framework. The presentation is composed of two main ensembles. On one hand, we study the first-order form of the transport equation in the context of Thermal Radiation Transport (TRT). This nonlinear application physically necessitates to maintain a positive material temperature while the PN approximation tends to create oscillations and negativity in the solution. To mitigate these flaws, we provide a fully-implicit implementation of the Filtered PN (FPN) method and investigate local filtering strategies. After analyzing its effect on the conditioning of the system and showing that it improves the convergence properties of the iterative solver, we numerically investigate the error estimates derived in the linear setting and observe that they hold in the non-linear case. Then, we illustrate the benefits of the method on a standard test problem and compare it with implicit Monte Carlo (IMC) simulations. On the other hand, we focus on second-order forms of the transport equation for neutronics applications. We mostly consider the Self-Adjoint Angular Flux (SAAF) and Least-Squares (LS) formulations, the former being globally conservative but void incompatible and the latter having -- in all generality -- the opposite properties. We study the relationship between these two methods based on the weakly-imposed LS boundary conditions. Equivalences between various parity-based PN methods are also established, in particular showing that second-order filters are not an appropriate fix to retrieve void compatibility. The importance of global conservation is highlighted on a heterogeneous multigroup k-eigenvalue test problem. Based on these considerations, we propose a new
Books and monographs on finite element technology
NASA Technical Reports Server (NTRS)
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
Mixed Finite Element Method for Melt Migration
NASA Astrophysics Data System (ADS)
Taicher, A. L.; Hesse, M. A.; Arbogast, T.
2012-12-01
Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium. Therefore, a numerical method must also carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. The finite element framework provides support for additional analysis of error and convergence. Moreover, both mesh refinement and anisotropy are naturally incorporated into finite elements. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. Mixed methods also produce discretely conservative fluxes that are required for the transport problem to remains stable without violating conservation of mass. Based preliminary investigations in 1D and derived energy estimates, we present a mixed formulation for the Darcy-Stokes system. Next, using novel elements of lowest order and
Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Sharpley, Robert C.
1999-01-01
This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
Optimizing header strength utilizing finite element analyses
NASA Astrophysics Data System (ADS)
Burchett, S. N.
Finite element techniques have been successfully applied as a design tool in the optimization of high strength headers for pyrotechnic-driven actuators. These techniques have been applied to three aspects of the design process of a high strength header. The design process was a joint effort of experts from several disciplines including design engineers, material scientists, test engineers, manufacturing engineers, and structural analysts. Following material selection, finite element techniques were applied to evaluate the residual stresses due to manufacturing which were developed in the high strength glass ceramic-to-metal seal headers. Results from these finite element analyses were used to identify header designs which were manufacturable and had a minimum residual stress state. Finite element techniques were than applied to obtain the response of the header due to pyrotechnic burn. The results provided realistic upper bounds on the pressure containment ability of various preliminary header designs and provided a quick and inexpensive method of strengthening and refining the designs. Since testing of the headers was difficult and sometimes destructive, results of the analyses were also used to interpret test results and identify failure modes. In this paper, details of the finite element element techniques including the models used, material properties, material failure models, and loading will be presented. Results from the analyses showing the header failure process will also be presented. This paper will show that significant gains in capability and understanding can result when finite element techniques are included as an integral part of the design process of complicated high strength headers.
A survey of mixed finite element methods
NASA Technical Reports Server (NTRS)
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Finite element modeling of the human pelvis
Carlson, B.
1995-11-01
A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.
Evaluation of a hybrid, anisotropic, multilayered, quadrilateral finite element
NASA Technical Reports Server (NTRS)
Robinson, J. C.; Blackburn, C. L.
1978-01-01
A multilayered finite element with bending-extensional coupling is evaluated for: (1) buckling of general laminated plates; (2) thermal stresses of laminated plates cured at elevated temperatures; (3) displacements of a bimetallic beam; and (4) displacement and stresses of a single-cell box beam with warped cover panels. Also, displacements and stresses for flat and spherical orthotropic and anisotropic segments are compared with results from higher order plate and shell finite-element analyses.
Finite element analysis of flexible, rotating blades
NASA Technical Reports Server (NTRS)
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
Stabilized Finite Elements in FUN3D
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Newman, James C.; Karman, Steve L.
2017-01-01
A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.
Least-squares finite element methods for compressible Euler equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Carey, G. F.
1990-01-01
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.
Finite Element Interface to Linear Solvers
Williams, Alan
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.
Mixed Finite Element Methods for Melt Migration
NASA Astrophysics Data System (ADS)
Taicher, A. L.
2013-12-01
Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium so must carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. We present a mixed formulation for the Darcy-Stokes system. Next, we present novel elements of lowest order and compatible with both Darcy and Stokes flow Finally, we present our 2D mixed FEM code result for solving Stokes and Darcy flow as well as the coupled Darcy-Stokes system the mid-ocean ridge or corner flow problem.
Finite element analysis enhancement of cryogenic testing
NASA Astrophysics Data System (ADS)
Thiem, Clare D.; Norton, Douglas A.
1991-12-01
Finite element analysis (FEA) of large space optics enhances cryogenic testing by providing an analytical method by which to ensure that a test article survives proposed testing. The analyses presented in this paper were concerned with determining the reliability of a half meter mirror in an environment where the exact environmental profile was unknown. FEA allows the interaction between the test object and the environment to be simulated to detect potential problems prior to actual testing. These analyses examined worse case scenerios related to cooling the mirror, its structural integrity for the proposed test environment, and deformation of the reflective surface. The FEA was conducted in-house on the System's Reliability Division's VAX 11-750 and Decstation 3100 using Engineering Mechanics Research Corporation's numerically integrated elements for systems analysis finite element software. The results of the analyses showed that it would take at least 48 hours to cool the mirror to its desired testing temperature. It was also determined that the proposed mirror mount would not cause critical concentrated thermal stresses that would fracture the mirror. FEA and actual measurements of the front reflective face were compared and good agreement between computer simulation and physical tests were seen. Space deployment of large optics requires lightweight mirrors which can perform under the harsh conditions of space. The physical characteristics of these mirrors must be well understood in order that their deployment and operation are successful. Evaluating design approaches by analytical simulation, like FEA, verifies the reliability and structural integrity of a space optic during design prior to prototyping and testing. Eliminating an optic's poor design early in its life saves money, materials, and human resources while ensuring performance.
St Aubin, J.; Keyvanloo, A.; Fallone, B. G.
2016-01-15
Purpose: The advent of magnetic resonance imaging (MRI) guided radiotherapy systems demands the incorporation of the magnetic field into dose calculation algorithms of treatment planning systems. This is due to the fact that the Lorentz force of the magnetic field perturbs the path of the relativistic electrons, hence altering the dose deposited by them. Building on the previous work, the authors have developed a discontinuous finite element space-angle treatment of the linear Boltzmann transport equation to accurately account for the effects of magnetic fields on radiotherapy doses. Methods: The authors present a detailed description of their new formalism and compare its accuracy to GEANT4 Monte Carlo calculations for magnetic fields parallel and perpendicular to the radiation beam at field strengths of 0.5 and 3 T for an inhomogeneous 3D slab geometry phantom comprising water, bone, and air or lung. The accuracy of the authors’ new formalism was determined using a gamma analysis with a 2%/2 mm criterion. Results: Greater than 98.9% of all points analyzed passed the 2%/2 mm gamma criterion for the field strengths and orientations tested. The authors have benchmarked their new formalism against Monte Carlo in a challenging radiation transport problem with a high density material (bone) directly adjacent to a very low density material (dry air at STP) where the effects of the magnetic field dominate collisions. Conclusions: A discontinuous finite element space-angle approach has been proven to be an accurate method for solving the linear Boltzmann transport equation with magnetic fields for cases relevant to MRI guided radiotherapy. The authors have validated the accuracy of this novel technique against GEANT4, even in cases of strong magnetic field strengths and low density air.
Finite-element models of continental extension
NASA Technical Reports Server (NTRS)
Lynch, H. David; Morgan, Paul
1990-01-01
Numerical models of the initial deformation of extending continental lithosphere, computed to investigate the control of preexisting thermal and mechanical heterogeneities on the style of deformation, are presented. The finite element method is used to calculate deformation with a viscoelastic-plastic model for the lithosphere. Comparisons of the results of analytic models and finite-element models using this method show that good results may be obtained by the numerical technique, even with elements containing both brittle and viscoelastic sampling points. It is shown that the gross style of initial extensional deformation is controlled by the depth and width of the initial heterogeneity which localizes deformation.
The GPRIME approach to finite element modeling
NASA Technical Reports Server (NTRS)
Wallace, D. R.; Mckee, J. H.; Hurwitz, M. M.
1983-01-01
GPRIME, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX 11/780 minicomputer. This system includes three components: (1) GPRIME, a user friendly geometric language and a processor to translate that language into geometric entities, (2) GGEN, an interactive data generator for 2-D models; and (3) SOLIDGEN, a 3-D solid modeling program. Each component has a computer user interface of an extensive command set. All of these programs make use of a comprehensive B-spline mathematics subroutine library, which can be used for a wide variety of interpolation problems and other geometric calculations. Many other user aids, such as automatic saving of the geometric and finite element data bases and hidden line removal, are available. This interactive finite element modeling capability can produce a complete finite element model, producing an output file of grid and element data.
Quadrilateral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Benzley, Steven E
2012-10-16
Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.
Waveguide finite elements for curved structures
NASA Astrophysics Data System (ADS)
Finnveden, Svante; Fraggstedt, Martin
2008-05-01
A waveguide finite element formulation for the analysis of curved structures is introduced. The formulation is valid for structures that along one axis have constant properties. It is based on a modified Hamilton's principle valid for general linear viscoelastic motion, which is derived here. Using this principle, material properties such as losses may be distributed in the system and may vary with frequency. Element formulations for isoparametric solid elements and deep shell elements are presented for curved waveguides as well as for straight waveguides. In earlier works, the curved elements have successfully been used to model a passenger car tyre. Here a simple validation example and convergence study is presented, which considers a finite length circular cylinder and all four elements presented are used, in turn, to model this structure. Calculated results compare favourably to those in the literature.
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.
Stabilized plane and axisymmetric Lobatto finite element models
NASA Astrophysics Data System (ADS)
Hu, Y. C.; Sze, K. Y.; Zhou, Y. X.
2015-11-01
High order elements are renowned for their high accuracy and convergence. Among them, Lobatto spectral finite elements are commonly used in explicit dynamic analyses as their mass matrices when evaluated by the Lobatto integration rule are diagonal. While there are numerous advanced first and second order elements, advanced high order elements are rarely seen. In this paper, generic stabilization schemes are devised for the reduced integrated plane and axisymmetric elements. Static and explicit dynamic tests are considered for evaluating the relatively merits of the stabilized and conventional elements. The displacement errors of the stabilized elements are less than those of the conventional Lobatto elements. When the material is nearly incompressible, the stabilized elements are also more accurate in terms of the energy error norm. This advantage is of practical importance for bio-tissue and hydrated soil analyses.
Footbridge between finite volumes and finite elements with applications to CFD
NASA Astrophysics Data System (ADS)
Pascal, Frédéric; Ghidaglia, Jean-Michel
2001-12-01
The aim of this paper is to introduce a new algorithm for the discretization of second-order elliptic operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compressible Navier-Stokes equations. Our technique consists of matching up a finite volume discretization based on a given mesh with a finite element representation on the same mesh. An inverse operator is also built, which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume solution. Numerical results are also provided. Copyright
Finite element modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, A. K.; Andersen, C. M.
1983-01-01
Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included.
Derivation of a Tappered p-Version Beam Finite Element
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.
1989-01-01
A tapered p-version beam finite element suitable for dynamic applications is derived. The taper in the element is represented by allowing the area moments of inertia to vary as quartic polynomials along the length of the beam, and the cross-sectional area to vary as a quadratic polynomial. The p-version finite-element characteristics are implemented through a set of polynomial shape functions. The lower-order shape functions are identical to the classical cubic and linear shape functions normally associated with a beam element. The higher-order shape functions are a hierarchical set of polynomials that are integrals of orthogonal polynomials. Explicit expressions for the mass and stiffness matrices are presented for an arbitrary value of p. The element has been verified to be numerically stable using shape functions through 22nd order.
Time domain finite element analysis of multimode microwave applicators
Dibben, D.C.; Metaxas, R.
1996-05-01
Analysis of multimode applicators in the frequency domain via the finite element technique produces a set of very ill-conditioned equations. This paper outlines a time domain finite element method (TDFE) for analyzing three dimensional microwave applicators where this ill-conditioning is avoided. Edge elements are used in order to handle sharp metal edges and to avoid spurious solutions. Analysis in the time domain allows field distributions at a range of different frequencies to be obtained with a single calculation. Lumping is investigated as a means of reducing the time taken for the calculation. The reflection coefficient is also obtained.
Finite Element Analysis of Pipe Elbows.
1980-02-01
AD-AO81 077 DAVD TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/B 13/11 FINITE ELEMENT ANALYSIS OF PIPE ELBOWS .(U) FE SO M S MARCUS, B C...TAYLOR NAVAL SHIP i RESEARCH AND DEVELOPMENT CENTER Bethesda, Md. 20084 4 FINITE ELEMENT ANALYSIS OF PIPE ELBOWS by 0 Melvyn S. Marcus and Gordon C...a 90-degree pipe elbow to determine principal stresses due to internal pressure, inplane bending, out-of-plane bending, and torsion moment loadings
Finite Elements and Localized Failure
1985-12-31
Progresst.re Damage Continuum Model for Granular Materials ,- Comp. Meth. AppI. Mecti. Eng. Vol. 42. 1984, pp. 1-18. 1161 Rudnicki, J.W., and Rice, J.R...the uniqueness of rate-sensitive material formulations (23, the advantages of viscoelastic and/or viscoplastic strain softening models [3), and...necessity for rate sensitive constitutive formulations such as viscoelasticity or viscoplasticity in order to assure positive definiteness of the
Finite Element Model to Reduce Fire and Blast Vulnerability
2013-01-01
Finite Element Analysis FEM Finite Element Model NAVAIR...and probabilistic analysis are need to address these challenges. The objective of this effort is to develop a finite element model of a soldier to...UNCLASSIFIED FINITE ELEMENT MODEL TO REDUCE FIRE AND BLAST VULNERABILITY INTERIM REPORT TFLRF No. 439 by W. Loren Francis
Studies of finite element analysis of composite material structures
NASA Technical Reports Server (NTRS)
Douglas, D. O.; Holzmacher, D. E.; Lane, Z. C.; Thornton, E. A.
1975-01-01
Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens.
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Adaptive finite element strategies for shell structures
NASA Technical Reports Server (NTRS)
Stanley, G.; Levit, I.; Stehlin, B.; Hurlbut, B.
1992-01-01
The present paper extends existing finite element adaptive refinement (AR) techniques to shell structures, which have heretofore been neglected in the AR literature. Specific challenges in applying AR to shell structures include: (1) physical discontinuities (e.g., stiffener intersections); (2) boundary layers; (3) sensitivity to geometric imperfections; (4) the sensitivity of most shell elements to mesh distortion, constraint definition and/or thinness; and (5) intrinsic geometric nonlinearity. All of these challenges but (5) are addressed here.
Quadrilateral/hexahedral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E
2012-10-16
A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.
A multidimensional finite element method for CFD
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.
1991-01-01
A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.
Finite element modeling of nonisothermal polymer flows
NASA Technical Reports Server (NTRS)
Roylance, D.
1981-01-01
A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.
Finite element displacement analysis of a lung.
NASA Technical Reports Server (NTRS)
Matthews, F. L.; West, J. B.
1972-01-01
A method is given based on the technique of finite elements which determines theoretically the mechanical behavior of a lung-shaped body loaded by its own weight. The results of this theoretical analysis have been compared with actual measurements of alveolar size and pleural pressures in animal lungs.
On Hybrid and mixed finite element methods
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Finite Element Heat & Mass Transfer Code
Trease, Lynn
1996-10-10
FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities.
Finite Element Analysis of Piping Tees.
1980-06-01
Combustion Engineering, Inc., performed an experimental stress analysis3 on an ANSI B16.9 carbon steelt tee designated T-12. Pipe extensions were welded to...AD-ASS? 353 DAVID If TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/S 13/11 FINITE ELEENT ANALYSIS OF PIPING TEES.(U) JUN 8 A J QUEZON. S C...DAVID W. TAYLOR NAVAL SHIP SRESEARCH AND DEVELOPMENT CENTER Bethesa Md. 20084 FINITE ELEMENT ANALYSIS OF PIPING TEES by Antonio J. Quezon, Gordon C
A composite nodal finite element for hexagons
Hennart, J.P.; Mund, E.H. |; Valle, E. Del
1997-10-01
A nodal algorithm for the solution of the multigroup diffusion equations in hexagonal arrays is analyzed. Basically, the method consists of dividing each hexagon into four quarters and mapping the hexagon quarters onto squares. The resulting boundary value problem on a quadrangular domain is solved in primal weak formulation. Nodal finite element methods like the Raviart-Thomas RTk schemes provide accurate analytical expansions of the solution in the hexagons. Transverse integration cannot be performed on the equations in the quadrangular domain as simply as it is usually done on squares because these equations have essentially variable coefficients. However, by considering an auxiliary problem with constant coefficients (on the same quadrangular domain) and by using a preconditioning approach, transverse integration can be performed as for rectangular geometry. A description of the algorithm is given for a one-group diffusion equation. Numerical results are presented for a simple model problem with a known analytical solution and for k{sub eff} evaluations of some benchmark problems proposed in the literature. For the analytical problem, the results indicate that the theoretical convergence orders of RTk schemes (k = 0,1) are obtained, yielding accurate solutions at the expense of a few preconditioning iterations.
Intra Plate Stresses Using Finite Element Modelling
NASA Astrophysics Data System (ADS)
Jayalakshmi, S.; Raghukanth, S. T. G.
2016-10-01
One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo- Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma).
Substructure System Identification for Finite Element Model Updating
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
A weak Galerkin generalized multiscale finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-03-31
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
An Object Oriented, Finite Element Framework for Linear Wave Equations
Koning, Joseph M.
2004-03-01
This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
A finite element code for electric motor design
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1994-01-01
FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.
Finite element simulation of thick sheet thermoforming
NASA Astrophysics Data System (ADS)
Mercier, Daniel
This PhD was organized as collaboration between Lehigh University and the Ecole des Mines d'Albi on the subject: "Numerical simulation of thick sheet thermoforming". The research applications cover a wide range of products from thermoforming, e.g., packaging, automobile parts, appliance parts, large-scale panels and covers. Due to the special nature of this PhD, and the requirements of each hosting institutes, the research was split accordingly into two parts: At Lehigh University, under the supervision of Prof. Herman F. Nied, a full three-dimensional finite element program was developed in order to simulate the mechanical deformation during the process of thermoforming. The material behavior is considered hyperelastic with the property of incompressibility. The deformed structure may exhibit symmetries and may use a large choice of boundary conditions. A contact procedure for molds and/or displacements caused by a plug was implemented to complete the similarity with the thermoforming process. The research focused on simulating the observed nonlinear behaviors and their instabilities. The author emphasized the impact of large deformation on the numerical results and demonstrated the need for a remeshing capability. At the Ecole des Mines d'Albi, under the supervision of Prof. Fabrice Schmidt, an equi-biaxial rheometer was developed and built in order to determine the material properties during the process of thermoforming. Thermoplastic materials consist of long macromolecular chains that when stretched, during the process of sheet extrusion, exhibit a transversal isotropic behavior. The rheometer technique is the inflation of a circular membrane made of extruded thermoplastics. The resulting strain is identified by video analysis during the membrane inflation. This dissertation focused on technical issues related to heating with the goal of overcoming the difficulty of producing a homogeneous temperature distribution.
Finite element modelling of SAW correlator
NASA Astrophysics Data System (ADS)
Tikka, Ajay C.; Al-Sarawi, Said F.; Abbott, Derek
2007-12-01
Numerical simulations of SAW correlators so far are limited to delta function and equivalent circuit models. These models are not accurate as they do not replicate the actual behaviour of the device. Manufacturing a correlator to specifically realise a different configuration is both expensive and time consuming. With the continuous improvement in computing capacity, switching to finite element modelling would be more appropriate. In this paper a novel way of modelling a SAW correlator using finite element analysis is presented. This modelling approach allows the consideration of different code implementation and device structures. This is demonstrated through simulation results for a 5×2-bit Barker sequence encoded SAW correlator. These results show the effect of both bulk and leaky modes on the device performance at various operating frequencies. Moreover, the ways in which the gain of the correlator can be optimised though variation of design parameters will also be outlined.
Finite element modeling of permanent magnet devices
NASA Astrophysics Data System (ADS)
Brauer, J. R.; Larkin, L. A.; Overbye, V. D.
1984-03-01
New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.
EC Vacuum Vessel Finite Element Analysis
Rudland, D.; Luther, R.; /Fermilab
1992-02-04
This Note contains a summary of the results of the finite element analysis of the EC Cryostat vacuum vessel performed by Dave Rudland in 1987. The results are used in the structural evaluation of the EC cryostats presented in Engineering Note 194. It should also be noted that the adequacy of the design of the vacuum vessels was reviewed and verified by the Battelle Memorial Institute. Battelle used a shell of revolution program to essentially duplicate the FEA analysis with similar results. It should be noted that no plots of the finite element mesh were retained from the analysis, and these can not be easily reproduced due to a change in the version of the ANSYS computer program shortly after the analysis was completed.
Finite element analysis of human joints
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
2-d Finite Element Code Postprocessor
Sanford, L. A.; Hallquist, J. O.
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
Finite element concepts in computational aerodynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations. Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.
Finite element based electric motor design optimization
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1993-01-01
The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.
Finite Element Methods: Principles for Their Selection.
1983-02-01
the finite element methods. 39 Various statements in the literature that certain mixed methods work well inspite of the fact that the LBB (BB...method, displacement and mixed methods , various adaptive approaches, etc. The examples discussed in Sections 2 and 3 show that the same computational...performance and their relation to mixed methods , SIAM J. Num. Anal., to appear. 5. F. Brezzi, On the existence uniqueness and approximation of saddle-point
Finite Element Output Bounds for Hyperbolic Problems
Machiels, L.
2000-03-27
We propose a Neumann-subproblem a posteriori finite element error bound technique for linear stationary scalar advection problems. The method is similar in many respects to the previous output bound technique developed for elliptic problems. In the new approach, however, the primal residual is enhanced with a streamline diffusion term. We first formulate the bound algorithm, with particular emphasis on the proof of the bounding properties; then, we provide numerical results for an illustrative example.
Finite element analysis of wrinkling membranes
NASA Technical Reports Server (NTRS)
Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.
1984-01-01
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
Finite Element Analysis of Reverberation Chambers
NASA Technical Reports Server (NTRS)
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
Finite Element Results Visualization for Unstructured Grids
Speck, Douglas E.; Dovey, Donald J.
1996-07-15
GRIZ is a general-purpose post-processing application supporting interactive visualization of finite element analysis results on unstructured grids. In addition to basic pseudocolor renderings of state variables over the mesh surface, GRIZ provides modern visualization techniques such as isocontours and isosurfaces, cutting planes, vector field display, and particle traces. GRIZ accepts both command-line and mouse-driven input, and is portable to virtually any UNIX platform which provides Motif and OpenGl libraries.
Transient finite element method using edge elements for moving conductor
Tani, Koji; Nishio, Takayuki; Yamada, Takashi ); Kawase, Yoshihiro . Dept. of Information Science)
1999-05-01
For the next generation of high speed railway systems and automobiles new braking systems are currently under development. These braking systems take into account the eddy currents, which are produced by the movement of the conductor in the magnetic field. For their optimum design, it is necessary to know the distribution of eddy currents in the moving conductor. The finite element method (FEM) is often used to simulate them. Here, transient finite element method using edge elements for moving conductor is presented. Here the magnetic vector potential is interpolated at the upwind position and the time derivative term is discretized by the backward difference method. As a result, the system matrix becomes symmetric and the ICCG method is applicable to solve the matrix. This method is used to solve an eddy current rail brake system. The results demonstrate that this approach is suitable to solve transient problems involving movement.
Solution Techniques in Finite Element Analysis.
1983-05-01
CR 83.027 NAVAL CIVIL ENGINEERING LABORATORY Port Hueneme, California Sponsored by NAVAL FACILITIES ENGINEERING COMMAND ___ SOLUTION TECHNIQUES IN...CATALOG NUMBER CR 83.027 A bA/Z3 SZ *4 TITLE fori SoobIt, S TYPE F REP RT II PERIOD COVERED SOLUTION TECHNIQUES IN FINITE ELEMENT Not 192in Jna98 ANALYSIS...elements; nonlinear algebraic equations; numierical solution methods 20 ABSTRACT (Contlinue mI e.se mde It nc..Ac.. Wd ordonhifI, by block .- abe,) ,A
Finite Element Method for Capturing Ultra-relativistic Shocks
NASA Technical Reports Server (NTRS)
Richardson, G. A.; Chung, T. J.
2003-01-01
While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.
Finite element modeling of lipid bilayer membranes
NASA Astrophysics Data System (ADS)
Feng, Feng; Klug, William S.
2006-12-01
A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1987-01-01
Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
FESDIF -- Finite Element Scalar Diffraction theory code
Kraus, H.G.
1992-09-01
This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.
Finite element dynamic analysis on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
Implicit extrapolation methods for multilevel finite element computations
Jung, M.; Ruede, U.
1994-12-31
The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2015-12-21
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying a series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2015-12-21
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less
Finite element modeling of the deformation of magnetoelastic film
Barham, Matthew I.; White, Daniel A.; Steigmann, David J.
2010-09-01
Recently a new class of biocompatible elastic polymers loaded with small ferrous particles, a magnetoelastic polymer, has been developed. This engineered material is formed into a thin film using spin casting. An applied magnetic field will deform the film. The magnetic deformation of this film has many possible applications, particularly in microfluidic pumps and pressure regulators. In this paper a finite element method suitable for the transient simulation of arbitrarily shaped three-dimensional magnetoelastic polymers subjected to time-varying magnetic fields is developed. The approach is similar to that employed in finite elment magnetohydrodynamic simulations, the key difference is a more complex hyperelastic material model. In order to confirm the validity of the approach, finite element solutions for an axially symmetric thin film are compared to an analytical solution based on the membrane (infinitely thin) approximation. For this particular problem the two approaches give qualitatively similar results and converge as the film thickness approaches zero.
Modelling bucket excavation by finite element
NASA Astrophysics Data System (ADS)
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the
NASA Technical Reports Server (NTRS)
Aberson, J. A.; Anderson, J. M.
1973-01-01
The recent introduction of special crack-tip singularity elements, usually referred to as cracked elements, has brought the power and flexibility of the finite-element method to bear much more effectively on fracture mechanics problems. This paper recalls the development of two cracked elements and presents the results of some applications proving their accuracy and economy. Judging from the available literature on numerical methods in fracture mechanics, it seems clear that the elements described have been used more extensively than any others in practical fracture mechanics applications.
Visualization of transient finite element analyses on large unstructured grids
Dovey, D.
1995-03-22
Three-dimensional transient finite element analysis is performed on unstructured grids. A trend toward running larger analysis problems, combined with a desire for interactive animation of analysis results, demands efficient visualization techniques. This paper discusses a set of data structures and algorithms for visualizing transient analysis results on unstructured grids and introduces some modifications in order to better support large grids. In particular, an element grouping approach is used to reduce the amount of memory needed for external surface determination and to speed up ``point in element`` tests. The techniques described lend themselves to visualization of analyses carried out in parallel on a massively parallel computer (MPC).
Discontinuous dual-primal mixed finite elements for elliptic problems
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
System software for the finite element machine
NASA Technical Reports Server (NTRS)
Crockett, T. W.; Knott, J. D.
1985-01-01
The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested.
Algebraic surface design and finite element meshes
NASA Technical Reports Server (NTRS)
Bajaj, Chandrajit L.
1992-01-01
Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.
Chemorheology of reactive systems: Finite element analysis
NASA Technical Reports Server (NTRS)
Douglas, C.; Roylance, D.
1982-01-01
The equations which govern the nonisothermal flow of reactive fluids are outlined, and the means by which finite element analysis is used to solve these equations for the sort of arbitrary boundary conditions encountered in industrial practice are described. The performance of the computer code is illustrated by several trial problems, selected more for their value in providing insight to polymer processing flows than as practical production problems. Although a good deal remains to be learned as to the performance and proper use of this numerical technique, it is undeniably useful in providing better understanding of today's complicated polymer processing problems.
Finite-Element Analysis of Multiphase Immiscible Flow Through Soils
NASA Astrophysics Data System (ADS)
Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.
1987-04-01
A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.
Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.
1999-01-01
This report documents a collection of papers on a family of uniform strain tetrahedral finite elements and their connection to different element types. Also included in the report are two papers which address the general problem of connecting dissimilar meshes in two and three dimensions. Much of the work presented here was motivated by the development of the tetrahedral element described in the report "A Suitable Low-Order, Eight-Node Tetrahedral Finite Element For Solids," by S. W. Key {ital et al.}, SAND98-0756, March 1998. Two basic issues addressed by the papers are: (1) the performance of alternative tetrahedral elements with uniform strain and enhanced uniform strain formulations, and (2) the proper connection of tetrahedral and other element types when two meshes are "tied" together to represent a single continuous domain.
Finite element calculation of residual stress in dental restorative material
NASA Astrophysics Data System (ADS)
Grassia, Luigi; D'Amore, Alberto
2012-07-01
A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.
Finite element analysis of multilayer coextrusion.
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A.; Mrozek, Randy A.; Lenhart, Joseph Ludlow; Rao, Rekha Ranjana; Collins, Robert; Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Impeller deflection and modal finite element analysis.
Spencer, Nathan A.
2013-10-01
Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.
Least-squares finite element method for fluid dynamics
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1989-01-01
An overview is given of new developments of the least squares finite element method (LSFEM) in fluid dynamics. Special emphasis is placed on the universality of LSFEM; the symmetry and positiveness of the algebraic systems obtained from LSFEM; the accommodation of LSFEM to equal order interpolations for incompressible viscous flows; and the natural numerical dissipation of LSFEM for convective transport problems and high speed compressible flows. The performance of LSFEM is illustrated by numerical examples.
An Efficient Vector Finite Element Method for Nonlinear Electromagnetic Modeling
Fisher, A C; White, D A; Rodrigue, G H
2006-06-27
We have developed a mixed Vector Finite Element Method (VFEM) for Maxwell's equations with a nonlinear polarization term. The method allows for discretization of complicated geometries with arbitrary order representations of the B and E fields. In this paper we will describe the method and a series of optimizations that significantly reduce the computational cost. Additionally, a series of test simulations will be presented to validate the method. Finally, a nonlinear waveguide mode mixing example is presented and discussed.
NASA Technical Reports Server (NTRS)
Tsai, C.; Szabo, B. A.
1973-01-01
An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.
Global-Local Finite Element Analysis of Bonded Single-Lap Joints
NASA Technical Reports Server (NTRS)
Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.
2004-01-01
Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.
Patient-specific finite element modeling of bones.
Poelert, Sander; Valstar, Edward; Weinans, Harrie; Zadpoor, Amir A
2013-04-01
Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.
Bochev, Pavel Blagoveston
2011-06-01
We develop a new formulation of the Control Volume Finite Element Method (CVFEM) with a multidimensional Scharfetter-Gummel (SG) upwinding for the drift-diffusion equations. The formulation uses standard nodal elements for the concentrations and expands the flux in terms of the lowest-order Nedelec H(curl; {Omega})-compatible finite element basis. The SG formula is applied to the edges of the elements to express the Nedelec element degree of freedom on this edge in terms of the nodal degrees of freedom associated with the endpoints of the edge. The resulting upwind flux incorporates the upwind effects from all edges and is defined at the interior of the element. This allows for accurate evaluation of integrals on the boundaries of the control volumes for arbitrary quadrilateral elements. The new formulation admits efficient implementation through a standard loop over the elements in the mesh followed by loops over the element nodes (associated with control volume fractions in the element) and element edges (associated with flux degrees of freedom). The quantities required for the SG formula can be precomputed and stored for each edge in the mesh for additional efficiency gains. For clarity the details are presented for two-dimensional quadrilateral grids. Extension to other element shapes and three dimensions is straightforward.
Efficient finite element modeling of elastodynamic scattering
NASA Astrophysics Data System (ADS)
Wilcox, Paul D.; Velichko, Alexander
2009-03-01
The scattering of elastic waves by defects is the physical basis of ultrasonic NDE. Although analytical models exist for some canonical problems, the general case of scattering from an arbitrarily-shaped defect requires numerical methods such as finite elements (FE). In this paper, a robust and efficient FE technique is presented that is based on the premise of meshing a relatively small domain sufficient to enclose the scatterer. Plane waves are then excited from a particular direction by a numerical implementation of the Helmholtz-Kirchhoff integral that uses an encircling array of uni-modal point sources. The scattered field displacements are recorded at the same points and the field decomposed into plane waves of different modes at different angles. By repeating this procedure for different incident angles it is possible to generate the scattering- or S-matrix for the scatterer. For a given size of scatterer, all the information in an S-matrix can be represented in the Fourier domain by a limited number of complex coefficients. Thus the complete scattering behavior of an arbitrary-shaped scatterer can be characterized by a finite number of complex coefficients, that can be obtained from a relatively small number of FE model executions.
Finite-element solutions for geothermal systems
NASA Technical Reports Server (NTRS)
Chen, J. C.; Conel, J. E.
1977-01-01
Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.
Quality management of finite element analysis
NASA Astrophysics Data System (ADS)
Barlow, John
1991-09-01
A quality management system covering the use of finite element analysis is described. The main topics are as follows: acquisition, development and verification of software (including the software suppliers software quality control system), support, documentation, error control, internal software, software acceptance and release; development and qualification of analysis methods, including software evaluation, analysis procedure qualification and documentation, procedure quality checks, control of analysis procedure errors; product design and integrity analysis, including project quality assurance and analysis planning, task specification and allocation, analysis, execution, results checking and analysis records. Other issues include the commercial and business advantages of quality systems, project and technical management and the training and experience of personnel. The items are correlated with the requirements of International Standard Organization 9001.
Adaptive finite element methods in electrochemistry.
Gavaghan, David J; Gillow, Kathryn; Süli, Endre
2006-12-05
In this article, we review some of our previous work that considers the general problem of numerical simulation of the currents at microelectrodes using an adaptive finite element approach. Microelectrodes typically consist of an electrode embedded (or recessed) in an insulating material. For all such electrodes, numerical simulation is made difficult by the presence of a boundary singularity at the electrode edge (where the electrode meets the insulator), manifested by the large increase in the current density at this point, often referred to as the edge effect. Our approach to overcoming this problem has involved the derivation of an a posteriori bound on the error in the numerical approximation for the current that can be used to drive an adaptive mesh-generation algorithm, allowing calculation of the quantity of interest (the current) to within a prescribed tolerance. We illustrate the generic applicability of the approach by considering a broad range of steady-state applications of the technique.
Nonlinear probabilistic finite element models of laminated composite shells
NASA Technical Reports Server (NTRS)
Engelstad, S. P.; Reddy, J. N.
1993-01-01
A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.
Parallel, adaptive finite element methods for conservation laws
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.
1994-01-01
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.
A hybrid-stress finite element for linear anisotropic elasticity
NASA Technical Reports Server (NTRS)
Fly, Gerald W.; Oden, J. Tinsley; Pearson, Mark L.
1988-01-01
Standard assumed displacement finite elements with anisotropic material properties perform poorly in complex stress fields such as combined bending and shear and combined bending and torsion. A set of three dimensional hybrid-stress brick elements were developed with fully anisotropic material properties. Both eight-node and twenty-node bricks were developed based on the symmetry group theory of Punch and Atluri. An eight-node brick was also developed using complete polynomials and stress basis functions and reducing the order of the resulting stress parameter matrix by applying equilibrium constraints and stress compatibility constraints. Here the stress compatibility constraints must be formulated assuming anisotropic material properties. The performance of these elements was examined in numerical examples covering a broad range of stress distributions. The stress predictions show significant improvement over the assumed displacement elements but the calculation time is increased.
Finite-element time evolution operator for the anharmonic oscillator
NASA Technical Reports Server (NTRS)
Milton, Kimball A.
1995-01-01
The finite-element approach to lattice field theory is both highly accurate (relative errors approximately 1/N(exp 2), where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation relations are exactly preserved at the lattice sites). In this talk I construct matrix elements for dynamical variables and for the time evolution operator for the anharmonic oscillator, for which the continuum Hamiltonian is H = p(exp 2)/2 + lambda q(exp 4)/4. Construction of such matrix elements does not require solving the implicit equations of motion. Low order approximations turn out to be extremely accurate. For example, the matrix element of the time evolution operator in the harmonic oscillator ground state gives a results for the anharmonic oscillator ground state energy accurate to better than 1 percent, while a two-state approximation reduces the error to less than 0.1 percent.
Impact of new computing systems on finite element computations
NASA Technical Reports Server (NTRS)
Noor, A. K.; Storassili, O. O.; Fulton, R. E.
1983-01-01
Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified.
Improved finite-element methods for rotorcraft structures
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.
1991-01-01
An overview of the research directed at improving finite-element methods for rotorcraft airframes is presented. The development of a modification to the finite element method which eliminates interelement discontinuities is covered. The following subject areas are discussed: geometric entities, interelement continuity, dependent rotational degrees of freedom, and adaptive numerical integration. This new methodology is being implemented as an anisotropic, curvilinear, p-version, beam, shell, and brick finite element program.
NASA Technical Reports Server (NTRS)
1976-01-01
The development of two new shell finite elements for applications to large deflection problems is considered. The elements in question are doubly curved and of triangular and quadrilateral planform. They are restricted to small strains of elastic materials, and can accommodate large rotations. The elements described, which are based on relatively simple linear elements, make use of a new displacement function approach specifically designed for strongly nonlinear problems. The displacement function development for nonlinear applications is based on certain beam element formulations, and the strain-displacement equations are of a shallow shell type. Additional terms were included in these equations in an attempt to avoid the large errors characteristic of shallow shell elements in certain types of problems. An incremental nonlinear solution procedure specifically adopted to the element formulation was developed. The solution procedure is of combined incremental and total Lagrangian type, and uses a new updating scheme. A computer program was written to evaluate the developed formulations. This program can accommodate small element groups in arbitrary arrangements. Two simple programs were successfully solved. The results indicate that this new type of element has definite promise and should be a fruitful area for further research.
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide).
NASA Technical Reports Server (NTRS)
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
A finite element simulation of sound attenuation in a finite duct with a peripherally variable liner
NASA Technical Reports Server (NTRS)
Watson, W. R.
1977-01-01
Using multimodal analysis, a variational finite element method is presented for analyzing sound attenuation in a three-dimensional finite duct with a peripherally variable liner in the absence of flow. A rectangular element, with cubic shaped functions, is employed. Once a small portion of a peripheral liner is removed, the attenuation rate near the frequency where maximum attenuation occurs drops significantly. The positioning of the liner segments affects the attenuation characteristics of the liner. Effects of the duct termination are important in the low frequency ranges. The main effect of peripheral variation of the liner is a broadening of the attenuation characteristics in the midfrequency range. Because of matrix size limitations of the presently available computer program, the eigenvalue equations should be solved out of core in order to handle realistic sources.
Shear deformable finite beam elements for composite box beams
NASA Astrophysics Data System (ADS)
Kim, Nam-Il; Choi, Dong-Ho
2014-04-01
The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study, numerical solutions are presented and compared with the results obtained by other researchers and the detailed three-dimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress-strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated. [Figure not available: see fulltext.
Kim, S.
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
VALIDATION OF ANSYS FINITE ELEMENT ANALYSIS SOFTWARE
HAMM, E.R.
2003-06-27
This document provides a record of the verification and Validation of the ANSYS Version 7.0 software that is installed on selected CH2M HILL computers. The issues addressed include: Software verification, installation, validation, configuration management and error reporting. The ANSYS{reg_sign} computer program is a large scale multi-purpose finite element program which may be used for solving several classes of engineering analysis. The analysis capabilities of ANSYS Full Mechanical Version 7.0 installed on selected CH2M Hill Hanford Group (CH2M HILL) Intel processor based computers include the ability to solve static and dynamic structural analyses, steady-state and transient heat transfer problems, mode-frequency and buckling eigenvalue problems, static or time-varying magnetic analyses and various types of field and coupled-field applications. The program contains many special features which allow nonlinearities or secondary effects to be included in the solution, such as plasticity, large strain, hyperelasticity, creep, swelling, large deflections, contact, stress stiffening, temperature dependency, material anisotropy, and thermal radiation. The ANSYS program has been in commercial use since 1970, and has been used extensively in the aerospace, automotive, construction, electronic, energy services, manufacturing, nuclear, plastics, oil and steel industries.
An iterative algorithm for finite element analysis
NASA Astrophysics Data System (ADS)
Laouafa, F.; Royis, P.
2004-03-01
In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.
Finite element modelling of fabric shear
NASA Astrophysics Data System (ADS)
Lin, Hua; Clifford, Mike J.; Long, Andrew C.; Sherburn, Martin
2009-01-01
In this study, a finite element model to predict shear force versus shear angle for woven fabrics is developed. The model is based on the TexGen geometric modelling schema, developed at the University of Nottingham and orthotropic constitutive models for yarn behaviour, coupled with a unified displacement-difference periodic boundary condition. A major distinction from prior modelling of fabric shear is that the details of picture frame kinematics are included in the model, which allows the mechanisms of fabric shear to be represented more accurately. Meso- and micro-mechanisms of deformation are modelled to determine their contributions to energy dissipation during shear. The model is evaluated using results obtained for a glass fibre plain woven fabric, and the importance of boundary conditions in the analysis of deformation mechanisms is highlighted. The simulation results show that the simple rotation boundary condition is adequate for predicting shear force at large deformations, with most of the energy being dissipated at higher shear angles due to yarn compaction. For small deformations, a detailed kinematic analysis is needed, enabling the yarn shear and rotation deformation mechanisms to be modelled accurately.
Finite element analysis of arc welding
Friedman, E.
1980-01-01
Analytical models of the gas tungsten-arc welding process into finite element computer programs provides a valuable tool for determining the welding thermal cycle, weld bead shape, and penetration characteristics, as well as for evaluating the stresses and distortions generated as a result of the temperature transients. The analysis procedures are applicable to planar or axisymmetric welds with arbitrary cross-sectional geometries, under quasistationary conditions. The method used for determining temperatures features an iteration procedure to accurately account for the latent heat absorbed during melting and liberated during solidification of the weld. By simulating the heat input from the arc to the workpiece by a normal distribution function, temperature transients, weld bead dimensions, and cooling rates are evaluated as functions of both the magnitude and distribution of heat input, weldment geometry, and weld speed (or duration of heating for stationary arcs). Modeling of the welding thermal cycle is a prerequisite to analytical treatments of metallurgical changes in weld metal and heat-affected zone material, residual stresses and distortions, and weld defects. A quasistationary formulation for moving welds enables temperatures to be calculated using a two-dimensional heat conduction computer program. The present limitation of high welding speed can, however, be relaxed without altering the two-dimensional framework of the procedure.
Finite Element Analysis (FEA) in Design and Production.
ERIC Educational Resources Information Center
Waggoner, Todd C.; And Others
1995-01-01
Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)
Finite element model calibration of a nonlinear perforated plate
NASA Astrophysics Data System (ADS)
Ehrhardt, David A.; Allen, Matthew S.; Beberniss, Timothy J.; Neild, Simon A.
2017-03-01
This paper presents a case study in which the finite element model for a curved circular plate is calibrated to reproduce both the linear and nonlinear dynamic response measured from two nominally identical samples. The linear dynamic response is described with the linear natural frequencies and mode shapes identified with a roving hammer test. Due to the uncertainty in the stiffness characteristics from the manufactured perforations, the linear natural frequencies are used to update the effective modulus of elasticity of the full order finite element model (FEM). The nonlinear dynamic response is described with nonlinear normal modes (NNMs) measured using force appropriation and high speed 3D digital image correlation (3D-DIC). The measured NNMs are used to update the boundary conditions of the full order FEM through comparison with NNMs calculated from a nonlinear reduced order model (NLROM). This comparison revealed that the nonlinear behavior could not be captured without accounting for the small curvature of the plate from manufacturing as confirmed in literature. So, 3D-DIC was also used to identify the initial static curvature of each plate and the resulting curvature was included in the full order FEM. The updated models are then used to understand how the stress distribution changes at large response amplitudes providing a possible explanation of failures observed during testing.
Finite element based inversion for time-harmonic electromagnetic problems
NASA Astrophysics Data System (ADS)
Schwarzbach, Christoph; Haber, Eldad
2013-05-01
In this paper we address the inverse problem and present some recent advances in numerical methods to recover the subsurface electrical conductivity from time-harmonic electromagnetic data. We rigorously formulate and discretize both the forward and the inverse problem in the finite element framework. To solve the forward problem, we derive a finite element discretization of the first-order system of Maxwell's equations in terms of the electric field and the magnetic induction. We show that our approach is equivalent to the standard discretization of the vector Helmholtz equation in terms of the electric field and that the discretization of magnetic induction of the same approximation order is hidden in the standard discretization. We implement the forward solver on unstructured tetrahedral meshes using edge elements. Unstructured meshes are not only capable of representing complex geometry. They can also reduce the overall problem size and, thus, the size of the system of linear equations arising from the forward problem such that direct methods for its solution using a sparse matrix factorization become feasible. The inverse problem is formulated as a regularized output least squares problem. We consider two regularization functions. First, we derive a smoothness regularizer using a primal-dual mixed finite element formulation which generalizes the standard Laplacian operator for a piecewise constant conductivity model on unstructured meshes. Secondly, we derive a total variation regularizer for the same class of models. For the choice of the regularization parameter we revisit the so-called dynamic regularization and compare it to a standard regularization scheme with fixed regularization parameter. The optimization problem is solved by the Gauss-Newton method which can be efficiently implemented using sparse matrix-vector operations and exploiting the sparse matrix factorization of the forward problem system matrix. A synthetic data example from marine
Thermal-structural finite element analysis using linear flux formulation
NASA Technical Reports Server (NTRS)
Pandey, Ajay K.; Dechaumphai, Pramote; Wieting, Allan R.
1990-01-01
A linear flux approach is developed for a finite element thermal-structural analysis of steady state thermal and structural problems. The element fluxes are assumed to vary linearly in the same form as the element unknown variables, and the finite element matrices are evaluated in closed form. Since numerical integration is avoided, significant computational time saving is achieved. Solution accuracy and computational speed improvements are demonstrated by solving several two and three dimensional thermal-structural examples.
Lamb mode conversion at edges. A hybrid boundary element-finite-element solution.
Galán, José M; Abascal, Ramón
2005-04-01
Two general and flexible numerical techniques based on the finite-element and boundary element methods developed by the authors in a previous paper are applied to study Lamb wave propagation in multilayered plates and Lamb mode conversion at free edges for frequencies beyond the first cutoff frequency. Both techniques are supported by a meshing criterion which guarantees the accuracy of the results when a condition is fulfilled. A finite-element formulation is directly applicable to study Lamb wave propagation and reflection by simple obstacles such as a flat edge. In order to tackle Lamb wave diffraction problems by defects with more complex geometries, a hybrid boundary element-finite-element formulation is used. This technique provides a major improvement with respect to the only previous boundary element application on Lamb waves: the connecting boundary might be placed as close to the reflector as desired, reducing greatly the requirement on mesh size. Two main application problems on practical metallic plates are studied and compared with reported numerical, theoretical, and experimental results: (1) Lamb wave propagation in degraded titanium diffusion bonds, and (2) Lamb mode conversion at inclined or perpendicular free edges of steel plates for frequencies beyond the first cutoff frequency.
Automation Tools for Finite Element Analysis of Adhesively Bonded Joints
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad; Brodeur, Stephen J. (Technical Monitor)
2002-01-01
This article presents two new automation creation tools that obtain stresses and strains (Shear and peel) in adhesively bonded joints. For a given adhesively bonded joint Finite Element model, in which the adhesive is characterised using springs, these automation tools read the corresponding input and output files, use the spring forces and deformations to obtain the adhesive stresses and strains, sort the stresses and strains in descending order, and generate plot files for 3D visualisation of the stress and strain fields. Grids (nodes) and elements can be numbered in any order that is convenient for the user. Using the automation tools, trade-off studies, which are needed for design of adhesively bonded joints, can be performed very quickly.
Finite element meshing of ANSYS (trademark) solid models
NASA Technical Reports Server (NTRS)
Kelley, F. S.
1987-01-01
A large scale, general purpose finite element computer program, ANSYS, developed and marketed by Swanson Analysis Systems, Inc. is discussed. ANSYS was perhaps the first commercially available program to offer truly interactive finite element model generation. ANSYS's purpose is for solid modeling. This application is briefly discussed and illustrated.
Generating Finite-Element Models Of Composite Materials
NASA Technical Reports Server (NTRS)
Melis, M. E.
1993-01-01
Program starts at micromechanical level, from simple inputs supplied by user. COMGEN, COmposite Model GENerator, is interactive FORTRAN program used to create wide variety of finite-element models of continuous-fiber composite materials at micromechanical level. Quickly generates batch or "session files" to be submitted to finite-element preprocessor and postprocessor program, PATRAN. COMGEN requires PATRAN to complete model.
A computer graphics program for general finite element analyses
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Sawyer, L. M.
1978-01-01
Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program.
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Finite-element analysis of a weld-penetration problem
NASA Technical Reports Server (NTRS)
Rogge, T. R.
1977-01-01
The stress concentration factor for a weld penetration defect is calculated by the finite-element method. A stress intensity factor is computed by use of the finite-element solution and the J-integral. The results are compared with experimental results.
TAURUS96. 3-D Finite Element Code Postprocessor
Brown, B.; Hallquist, J.O.; Spelce, T.E.
1993-11-30
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
Practical Application of Finite Element Analysis to Aircraft Structural Design
1986-08-01
t] Cook, Robert D., "Concepts and Applications of Finite element Analysis," John Wiley & Sons, Inc., New York, 1981. [5] Rao, S. S., "The Finite...generation large-scale computer programs is discussed. V.P. Analysis of aircraft structure using applied fracture mechanics (AA) WILHEM , D. P. Northrop...Analytical, finite element for surface flaws, holes (AA) WILHEM , D. P. Northrop Corp., Hawthorne, Calif. (N5631231) Aircraft Group. In AGARD Fracture
Modeling of coal stockpiles using a finite elements method
Ozdeniz, A.H.; Sensogut, C.
2008-07-01
In the case of coal stockpiles finding suitable environmental conditions, spontaneous combustion phenomenon will be unavoidable. In this study, an industrial-sized stockpile having a shape of triangle prism was constituted in a coal stockyard of Western Lignite Corporation (WLC), Turkey. The parameters of time, humidity and temperature of air, atmospheric pressure, velocity and direction of wind values that are effective on coal stockpile were measured in a continuous manner. These experimental works were transferred into a computer media in order to obtain similar outcomes by carrying out 2-dimensional analysis of the stockpile with Finite Elements Method (FEM). The performed experimental studies and obtained results were then compared.
Multiphase poroelastic finite element models for soft tissue structures
Simon, B.R.
1992-12-01
During the last two decades, biological structures with soft tissue components have been modeled using poroelastic or mixture-based constitutive laws, i.e., the material is viewed as a deformable (porous) solid matrix that is saturated by mobile tissue fluid. These structures exhibit a highly nonlinear, history-dependent material behavior; undergo finite strains; and may swell or shrink when tissue ionic concentrations are altered. Give the geometric and material complexity of soft tissue structures and that they are subjected to complicated initial and boundary conditions, finite element models (FEMs) have been very useful for quantitative structural analyses. This paper surveys recent applications of poroelastic and mixture-based theories and the associated FEMs for the study of the biomechanics of soft tissues, and indicates future directions for research in this area. Equivalent finite-strain poroelastic and mixture continuum biomechanical models are presented. Special attention is given to the identification of material properties using a porohyperelastic constitutive law ans a total Lagrangian view for the formulation. The associated FEMs are then formulated to include this porohyperelastic material response and finite strains. Extensions of the theory are suggested in order to include inherent viscoelasticity, transport phenomena, and swelling in soft tissue structures. A number of biomechanical research areas are identified, and possible applications of the porohyperelastic and mixture-based FEMs are suggested. 62 refs., 11 figs., 3 tabs.
Multiphase poroelastic finite element models for soft tissue structure
Simon, B.R.
1992-06-01
During the last two decades. biological structures with soft tissue components have been modeled using poroelastic or mixture-based constitutive laws, i.e., the material is viewed as a deformable (porous) solid matrix that is saturated by mobile tissue fluid. These structures exhibit a highly nonlinear, history-dependent material behavior; undergo finite strains-, and may swell or shrink when tissue ionic concentrations are altered. Given the geometric and material complexity of soft tissue structures and that they are subjected to complicated initial and boundary conditions, finite element models (FEMs) have been very useful for quantitative structural analyses. This paper surveys recent applications of poroelastic and mixture-based theories and the associated FEMs for the study of the biomechanics of soft tissues, and indicates future directions for research in this area. Equivalent finite-strain poroelastic and mixture continuum biomechanical models are presented. Special attention is given to the identification of material properties using a porohyperelastic constitutive law and a total Lagrangian view for the formulation. The associated FEMS are then formulated to include this porohyperelastic material response and finite strains. Extensions of the theory are suggested in order to include inherent viscoelasticity, transport phenomena, and swelling in soft tissue structures. A number of biomechanical research areas are identified, and possible applications of the porohyperelastic and mixture-based FEMs are suggested.
A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.
1993-01-01
Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).
NASA Astrophysics Data System (ADS)
Watanabe, Ikumu; Terada, Kenjiro; Neto, Eduardo Alberto de Souza; Perić, Djordje
The objective of this contribution is to develop an elastic-plastic-damage constitutive model for crystal grain and to incorporate it with two-scale finite element analyses based on mathematical homogenization method, in order to characterize the macroscopic tensile strength of polycrystalline metals. More specifically, the constitutive model for single crystal is obtained by combining hyperelasticity, a rate-independent single crystal plasticity and a continuum damage model. The evolution equations, stress update algorithm and consistent tangent are derived within the framework of standard elastoplasticity at finite strain. By employing two-scale finite element analysis, the ductile behaviour of polycrystalline metals and corresponding tensile strength are evaluated. The importance of finite element formulation is examined by comparing performance of several finite elements and their convergence behaviour is assessed with mesh refinement. Finally, the grain size effect on yield and tensile strength is analysed in order to illustrate the versatility of the proposed two-scale model.
Finite Element analyses of soil bioengineered slopes
NASA Astrophysics Data System (ADS)
Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar
2014-05-01
Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio
Nondestructive Evaluation Correlated with Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Azid, Ali; Baaklini, George Y.
1999-01-01
Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.
Generalized Potential Energy Finite Elements for Modeling Molecular Nanostructures.
Chatzieleftheriou, Stavros; Adendorff, Matthew R; Lagaros, Nikos D
2016-10-24
The potential energy of molecules and nanostructures is commonly calculated in the molecular mechanics formalism by superimposing bonded and nonbonded atomic energy terms, i.e. bonds between two atoms, bond angles involving three atoms, dihedral angles involving four atoms, nonbonded terms expressing the Coulomb and Lennard-Jones interactions, etc. In this work a new, generalized numerical simulation is presented for studying the mechanical behavior of three-dimensional nanostructures at the atomic scale. The energy gradient and Hessian matrix of such assemblies are usually computed numerically; a potential energy finite element model is proposed herein where these two components are expressed analytically. In particular, generalized finite elements are developed that express the interactions among atoms in a manner equivalent to that invoked in simulations performed based on the molecular dynamics method. Thus, the global tangent stiffness matrix for any nanostructure is formed as an assembly of the generalized finite elements and is directly equivalent to the Hessian matrix of the potential energy. The advantages of the proposed model are identified in terms of both accuracy and computational efficiency. In the case of popular force fields (e.g., CHARMM), the computation of the Hessian matrix by implementing the proposed method is of the same order as that of the gradient. This analysis can be used to minimize the potential energy of molecular systems under nodal loads in order to derive constitutive laws for molecular systems where the entropy and solvent effects are neglected and can be approximated as solids, such as double stranded DNA nanostructures. In this context, the sequence dependent stretch modulus for some typical base pairs step is calculated.
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Rosen, I. G.
1988-01-01
In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.
Sandia Higher Order Elements (SHOE) v 0.5 alpha
2013-09-24
SHOE is research code for characterizing and visualizing higher-order finite elements; it contains a framework for defining classes of interpolation techniques and element shapes; methods for interpolating triangular, quadrilateral, tetrahedral, and hexahedral cells using Lagrange and Legendre polynomial bases of arbitrary order; methods to decompose each element into domains of constant gradient flow (using a polynomial solver to identify critical points); and an isocontouring technique that uses this decomposition to guarantee topological correctness. Please note that this is an alpha release of research software and that some time has passed since it was actively developed; build- and run-time issues likely exist.
Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint
Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.
2014-01-01
This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context of LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.
Second Order Accurate Finite Difference Methods
1984-08-20
a study of the idealized material has direct applications to some polymer structures (4, 5). Wave propagation studies in hyperelastic materials have...34Acceleration Wave Propagation in Hyperelastic Rods of Variable Cross- section. Wave Motion, V4, pp. 173-180, 1982. 9. M. Hirao and N. Sugimoto...Waves in Hyperelastic Road," Quart. Appl. Math., V37, pp. 377-399, 1979. 11. G. A. Sod. "A Survey of Several Finite Difference Methods for Systems of
Brigham, John C; Aquino, Wilkins; Aguilo, Miguel A; Diamessis, Peter J
2011-01-15
An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number.
Brigham, John C.; Aquino, Wilkins; Aguilo, Miguel A.; Diamessis, Peter J.
2010-01-01
An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number. PMID:21461402
NASA Astrophysics Data System (ADS)
Arbatani, Siamak; Callejo, Alfonso; Kövecses, József; Kalantari, Masoud; Marchand, Nick R.; Dargahi, Javad
2016-06-01
Directional drilling is a popular technique for oil well drilling. Accurate prediction of the directional performance is critical in order to achieve the desired well profile. Simplified geometry methods are, to date, the industry standard for predicting directional performance. A comprehensive, high-fidelity method for the simulation of directional drilling is presented here. It consists of a detailed discretization of the actual geometry and a rigorous application of two modeling techniques: the finite element and the finite segment methods. By doing so, the dynamic problem is addressed from two different yet complementary perspectives: structural mechanics and rigid-body motion. Collision detection and contact dynamics algorithms are also presented. Results show that both methods agree in terms of the dynamic response, and that the build rate estimations are consistent with available experimental data. Owing to the framework efficiency and physics-based nature, the presented tools are very well-suited for design engineering and real-time simulation.
Finite element analysis of heat transport in a hydrothermal zone
Bixler, N.E.; Carrigan, C.R.
1987-01-01
Two-phase heat transport in the vicinity of a heated, subsurface zone is important for evaluation of nuclear waste repository design and estimation of geothermal energy recovery, as well as prediction of magma solidification rates. Finite element analyses of steady, two-phase, heat and mass transport have been performed to determine the relative importance of conduction and convection in a permeable medium adjacent to a hot, impermeable, vertical surface. The model includes the effects of liquid flow due to capillarity and buoyancy and vapor flow due to pressure gradients. Change of phase, with its associated latent heat effects, is also modeled. The mechanism of capillarity allows for the presence of two-phase zones, where both liquid and vapor can coexist, which has not been considered in previous investigations. The numerical method employs the standard Galerkin/finite element method, using eight-node, subparametric or isoparametric quadrilateral elements. In order to handle the extreme nonlinearities inherent in two-phase, nonisothermal, porous-flow problems, steady-state results are computed by integrating transients out to a long time (a method that is highly robust).
Discontinuous Galerkin finite element solution for poromechanics
NASA Astrophysics Data System (ADS)
Liu, Ruijie
This dissertation focuses on applying discontinuous Galerkin (DG) methods to poromechanics problems. A few challenges have been presented in traditional and popular continuous Galerkin (CG) finite element methods for solving complex coupled thermal, flow and solid mechanics. For example, nonphysical pore pressure oscillations often occur in CG solutions for poroelasticity problems with low permeability. A robust and practical numerical scheme for removing or alleviating the oscillation is not available. In modeling thermoporoelastoplasticity, CG methods require the use of very small time steps to obtain a convergent solution. The temperature profile predicted by CG methods in the fine mesh zones is often seriously polluted by large errors produced in coarse mesh zones in the case where the convection dominates the thermal process. The nonphysical oscillations in pore pressure and temperature solutions induced by CG methods at very early time stages seriously corrupt the solutions at longer time. We propose DG methods to handle these challenges because they are physics driven, provide local conservation of mass and momentum, have high stability and robustness, are locking-free, and because of their meshing and implementation capabilities. We first apply a family of DG methods, including Oden-Babuska-Baumann (OBB), Nonsymmetric Interior Penalty Galerkin (NIPG), Symmetric Interior Penalty Galerkin (SIPG) and Incomplete Interior Penalty Galerkin (IIPG), to 3D linear elasticity problems. This family of DG methods is tested and evaluated by using a cantilever beam problem with nearly incompressible materials. It is shown that DG methods are simple, robust and locking-free in dealing with nearly incompressible materials. Based on the success of DG methods in elasticity, we extend the DG theory into plasticity problems. A DG formulation has been implemented for solving 3D poroelasticity problems with low permeability. Numerical examples solved by DG methods demonstrate
3D unstructured mesh discontinuous finite element hydro
Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.
1995-07-01
The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
Application of the Finite Element Method to Rotary Wing Aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Friedmann, P. P.
1982-01-01
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.
Massively parallel computation of RCS with finite elements
NASA Technical Reports Server (NTRS)
Parker, Jay
1993-01-01
One of the promising combinations of finite element approaches for scattering problems uses Whitney edge elements, spherical vector wave-absorbing boundary conditions, and bi-conjugate gradient solution for the frequency-domain near field. Each of these approaches may be criticized. Low-order elements require high mesh density, but also result in fast, reliable iterative convergence. Spherical wave-absorbing boundary conditions require additional space to be meshed beyond the most minimal near-space region, but result in fully sparse, symmetric matrices which keep storage and solution times low. Iterative solution is somewhat unpredictable and unfriendly to multiple right-hand sides, yet we find it to be uniformly fast on large problems to date, given the other two approaches. Implementation of these approaches on a distributed memory, message passing machine yields huge dividends, as full scalability to the largest machines appears assured and iterative solution times are well-behaved for large problems. We present times and solutions for computed RCS for a conducting cube and composite permeability/conducting sphere on the Intel ipsc860 with up to 16 processors solving over 200,000 unknowns. We estimate problems of approximately 10 million unknowns, encompassing 1000 cubic wavelengths, may be attempted on a currently available 512 processor machine, but would be exceedingly tedious to prepare. The most severe bottlenecks are due to the slow rate of mesh generation on non-parallel machines and the large transfer time from such a machine to the parallel processor. One solution, in progress, is to create and then distribute a coarse mesh among the processors, followed by systematic refinement within each processor. Elimination of redundant node definitions at the mesh-partition surfaces, snap-to-surface post processing of the resulting mesh for good modelling of curved surfaces, and load-balancing redistribution of new elements after the refinement are auxiliary
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.
Quality assessment and control of finite element solutions
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Babuska, Ivo
1987-01-01
Status and some recent developments in the techniques for assessing the reliability of finite element solutions are summarized. Discussion focuses on a number of aspects including: the major types of errors in the finite element solutions; techniques used for a posteriori error estimation and the reliability of these estimators; the feedback and adaptive strategies for improving the finite element solutions; and postprocessing approaches used for improving the accuracy of stresses and other important engineering data. Also, future directions for research needed to make error estimation and adaptive movement practical are identified.
A finite element musculoskeletal model of the shoulder mechanism.
van der Helm, F C
1994-05-01
The finite element method described in this study provides an easy method to simulate the kinetics of multibody mechanisms. It is used in order to develop a musculoskeletal model of the shoulder mechanism. Each relevant morphological structure has been represented by an appropriate element. For the shoulder mechanism two special-purpose elements have been developed: a SURFACE element representing the scapulothoracic gliding plane and a CURVED-TRUSS element to represent muscles which are wrapped around bony contours. The model contains four bones, three joints, three extracapsular ligaments, the scapulothoracic gliding plane and 20 muscles and muscle parts. In the model, input variables are the positions of the shoulder girdle and humerus and the external load on the humerus. Output variables are muscles forces subject to an optimization procedure in which the mechanical stability of the glenohumeral joint is one of the constraints. Four different optimization criteria are compared. For 12 muscles, surface EMG is used to verify the model. Since the optimum muscle length and force-length relationship are unknown, and since maximal EMG amplitude is length dependent, verification is only possible in a qualitative sense. Nevertheless, it is concluded that a detailed model of the shoulder mechanism has been developed which provides good insight into the function of morphological structures.
Finite Element Anlaysis of Laminated Composite Plates
1988-09-01
4.2, results depicting maximum displacement obtained using 2 x 2 integration points, 3 x 3 integration points and ’ heterosis ’ [Ref. 4] elements are...thick and thin plates. This element gives better predictions for thick plates than heterosis ele- ment, however, for thin plates, heterosis element...results showing the normalized maximum displacements are shown in Figure 4.8. The heterosis element results in about ten percent error while the
Shear-flexible finite-element models of laminated composite plates and shells
NASA Technical Reports Server (NTRS)
Noor, A. K.; Mathers, M. D.
1975-01-01
Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.
Singularity-free finite element model of bone through automated voxel-based reconstruction.
Esposito, L; Bifulco, P; Gargiulo, P; Fraldi, M
2016-02-01
Computed tomography (CT) provides both anatomical and density information about tissues. Bone is segmented by raw images and Finite Element Method (FEM) voxel-based meshing technique is achieved by matching each CT voxel to a single finite element (FE). As a consequence of the automated model reconstruction, unstable elements - i.e. elements insufficiently anchored to the whole model and thus potentially involved in partial rigid body motion - can be generated, a crucial problem in obtaining consistent FE models, hindering mechanical analyses. Through the classification of instabilities on topological connections between elements, a numerical procedure is proposed in order to avoid unconstrained models.
Domain decomposition methods for nonconforming finite element spaces of Lagrange-type
NASA Technical Reports Server (NTRS)
Cowsar, Lawrence C.
1993-01-01
In this article, we consider the application of three popular domain decomposition methods to Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of Smith, and the balancing method of Mandel applied to nonconforming elements are shown to converge at a rate no worse than their applications to the standard conforming piecewise linear Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the existing theory for the conforming elements with only modest modification by constructing an isomorphism between the nonconforming finite element space and a space of continuous piecewise linear functions.
A Method for Connecting Dissimilar Finite Element Meshes in Three Dimensions
Dohrmann, C.R.; Heinstein, M.W.; Key, S.W.
1998-11-12
A method is presented for connecting dissimilar finite element meshes in three dimensions. The method combines the concept of master and slave surfaces with the uniform strain approach for surface, corrections finite elements- By modifyhg the are made to element formulations boundaries of elements on the slave such that first-order patch tests are passed. The method can be used to connect meshes which use different element types. In addition, master and slave surfaces can be designated independently of relative mesh resolutions. Example problems in three-dimensional linear elasticity are presented.
Finite-element modeling and analysis in nanomedicine and dentistry.
Choi, Andy H; Conway, Richard C; Ben-Nissan, Besim
2014-08-01
This article aims to provide a brief background to the current applications of finite-element analysis (FEA) in nanomedicine and dentistry. FEA was introduced in orthopedic biomechanics in the 1970s in order to assess the stresses and deformation in human bones during functional loadings and in the design and analysis of implants. Since then, it has been applied with great frequency in orthopedics and dentistry in order to analyze issues such as implant design, bone remodeling and fracture healing, the mechanical properties of biomedical coatings on implants and the interactions at the bone-implant interface. More recently, FEA has been used in nanomedicine to study the mechanics of a single cell and to gain fundamental insights into how the particulate nature of blood influences nanoparticle delivery.
Finite element analysis of the SDC barrel and endcap calorimeters
Guarino, V.; Hill, N.; Nasiakta, J.
1992-03-11
In designing the SCD barrel and endcap calorimeters, the inter-module connecting forces must be known in order to determine the required size and number of connecting links between modules, and in order to understand how individual modules will be affected by these forces when assembled to form a full barrel and endcap. The connecting forces were found by analyzing three-dimensional Finite Element Models of both the barrel and endcap. This paper is divided into two parts, the first part will describe in detail the results of the barrel analysis and the second part will describe the results obtained from the endcap analysis. A similar approach was used in constructing the models for both analysis.
North Atlantic Finite Element Ocean Modeling
NASA Astrophysics Data System (ADS)
Veluthedathekuzhiyil, Praveen
This thesis presents a modified version of the Finite Element Ocean Model (FEOM) developed at Alfred Wegener Institute for Polar and Marine Research (AWI) for the North Atlantic Ocean. A reasonable North Atlantic Ocean simulation is obtained against the observational data sets in a Control simulation (CS) where the surface boundary conditions are relaxed to a climatology. The vertical mixing in the model was tuned to represent convection in the model, also the horizontal mixing and diffusion coefficients to represent the changes in the resolution of the model’s unstructured grid. In addition, the open boundaries in the model are treated with a sponge layer where tracers are relaxed to climatology. The model is then further modified to accept the atmospheric flux forcing at the surface boundary with an added net heat flux correction and freshwater forcing from major rivers that are flowing into the North Atlantic Ocean. The impact of this boundary condition on the simulation results is then analyzed and shows many improvements albeit the drift in tracer properties around the Gulf Stream region remains as that of the CS case. However a comparison of the vertical sections at Cape Desolation and Cape Farewell with the available observational data sets shows many improvements in this simulation compared to that of the CS case. But the freshwater content in the Labrador Sea interior shows a continued drift as that of the CS case with an improvement towards the 10th model year. A detailed analysis of the boundary currents around the Labrador Sea shows the weak offshore transport of freshwater from the West Greenland Current (WGC) as one of the causes. To further improve the model and reasonably represent the boundary currents and associated sub-grid scale eddies in the model, a modified sub-grid scale parameterization based on Gent and McWilliams, (1990) is adopted. The sensitivity of using various approaches in the thickness diffusion parameter ( Kgm) for this
Superconvergence in the Generalized Finite Element Method
2005-01-01
Galerkin method for elliptic equations based on tensor products of piecewise polynomials. RAIRO Anal. Numer., 8:61– 66, 1974. [19] M. Kř́ıžek...London, 1986. [22] P. Lesaint and M. Zlámal. Superconvergence of the gradient of finite ele- ment solutions. RAIRO Anal. Numer., 13:139–166, 1979. [23] Q
NASA Astrophysics Data System (ADS)
Kanber, Bahattin; Bozkurt, O. Yavuz
2006-08-01
In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.
Validation of high displacement piezoelectric actuator finite element models
NASA Astrophysics Data System (ADS)
Taleghani, Barmac K.
2000-08-01
The paper presents the results obtained by using NASTRAN and ANSYS finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness and important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN and ANSYS used different methods for modeling piezoelectric effects. In NASTRAN, a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
NASA Technical Reports Server (NTRS)
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
NASA Technical Reports Server (NTRS)
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
Finite element analysis to evaluate optical mirror deformations
NASA Astrophysics Data System (ADS)
Izazaga-Pérez, R.; Aguirre-Aguirre, D.; Villalobos-Mendoza, B.
2015-10-01
In this work we describe the use of Finite Element Analysis software to simulate the deformations of an optical mirror. We use Finite Element Method software as a tool to simulate the mirror deformations assuming that it is a thin plate that can be mechanically tensed or compressed; the Finite Element Analysis give us information about the displacements of the mirror from an initial position and the tensions that remains in the surface. The information obtained by means of Finite Element Analysis can be easily exported to a coordinate system and processed in a simulation environment. Finally, a ray-tracing subroutine is used in the obtained data giving us information in terms of aberration coefficients. We present some results of the simulations describing the followed procedure.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
The finite element machine: An experiment in parallel processing
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Peebles, S. W.; Crockett, T. W.; Knott, J. D.; Adams, L.
1982-01-01
The finite element machine is a prototype computer designed to support parallel solutions to structural analysis problems. The hardware architecture and support software for the machine, initial solution algorithms and test applications, and preliminary results are described.
Adaptive Finite-Element Computation In Fracture Mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1995-01-01
Report discusses recent progress in use of solution-adaptive finite-element computational methods to solve two-dimensional problems in linear elastic fracture mechanics. Method also shown extensible to three-dimensional problems.
Adaptive Finite Element Methods for Continuum Damage Modeling
NASA Technical Reports Server (NTRS)
Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.
1995-01-01
The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
Finite element visualization in the cave virtual reality environment
Plaskacz, E.J.; Kuhn, M.A.
1996-03-01
Through the use of the post-processing software, Virtual Reality visualization (VRviz), and the Cave Automatic Virtual Environment (CAVE), finite element representations can be viewed as they would be in real life. VRviz is a program written in ANSI C to translate the mathematical results generated by finite element analysis programs into a virtual representation. This virtual representation is projected into the CAVE environment and the results are animated. The animation is fully controllable. A user is able to translate the image, rotate about any axis and scale the image at any time. The user is also able to freeze the animation at any time step and control the image update rate. This allows the user to navigate around, or even inside, the image in order to effectively analyze possible failure points and redesign as necessary. Through the use of the CAVE and the real life image that is being produced by VRviz, engineers are able to save considerable time, money, and effort in the design process.
Accelerated finite element elastodynamic simulations using the GPU
Huthwaite, Peter
2014-01-15
An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from (http://www.pogo-fea.com/) to benefit the community. -- Highlights: •A novel memory arrangement approach is discussed for finite elements on the GPU. •The mesh is partitioned then nodes are arranged efficiently within each partition. •Models from ultrasonics, vibrations and geophysics are run. •The code is significantly faster than an equivalent commercial CPU package. •Pogo, the new software package, is released open source.
A 2D finite element wave equation solver based on triangular base elements
Van Eester, D.; Lerche, E.; Evrard, M.
2009-11-26
A finite element method based on the subdivision of the physical domain in triangular sub-domains in which simple local 'areale' coordinates are adopted is explored. The advantage of the method is that it straightforwardly allows grid refinement in regions where higher precision is required. The plasma model was kept simple for this 'proof-of-principle' exercise. Rather than accounting for the actual differential or integro-differential dielectric tensor, its locally uniform plasma equivalent was adopted for 3 possible choices: the cold plasma response, the full hot Stix/Swanson plasma tensor retaining all orders in finite Larmor radius (FLR) and the more common hot tensor, truncated at terms of second order in the Larmor radius.
Periodic trim solutions with hp-version finite elements in time
NASA Technical Reports Server (NTRS)
Peters, David A.; Hou, Lin-Jun
1990-01-01
Finite elements in time as an alternative strategy for rotorcraft trim problems are studied. The research treats linear flap and linearized flap-lag response both for quasi-trim and trim cases. The connection between Fourier series analysis and hp-finite elements for periodic a problem is also examined. It is proved that Fourier series is a special case of space-time finite elements in which one element is used with a strong displacement formulation. Comparisons are made with respect to accuracy among Fourier analysis, displacement methods, and mixed methods over a variety parameters. The hp trade-off is studied for the periodic trim problem to provide an optimum step size and order of polynomial for a given error criteria. It is found that finite elements in time can outperform Fourier analysis for periodic problems, and for some given error criteria. The mixed method provides better results than does the displacement method.
The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method.
Gravenkamp, Hauke; Prager, Jens; Saputra, Albert A; Song, Chongmin
2012-09-01
The scaled boundary finite element method is applied to the simulation of Lamb waves for ultrasonic testing applications. With this method, the general elastodynamic problem is solved, while only the boundary of the domain under consideration has to be discretized. The reflection of the fundamental Lamb wave modes from cracks of different geometry in a steel plate is modeled. A test problem is compared with commercial finite element software, showing the efficiency and convergence of the scaled boundary finite element method. A special formulation of this method is utilized to calculate dispersion relations for plate structures. For the discretization of the boundary, higher-order elements are employed to improve the efficiency of the simulations. The simplicity of mesh generation of a cracked plate for a scaled boundary finite element analysis is illustrated.
Periodic trim solutions with hp-version finite elements in time
NASA Technical Reports Server (NTRS)
Hou, Lin-Jun; Peters, David A.
1991-01-01
Finite elements in time as an alternative strategy for rotorcraft trim problems are studied. The research treats linear flap and linearized flap-lag response both for quasi-trim and trim cases. The connection between Fourier series analysis and hp-finite elements for periodic a problem is also examined. It is proved that Fourier series is a special case of space-time finite elements in which one element is used with a strong displacement formulation. Comparisons are made with respect to accuracy among Fourier analysis, displacement methods, and mixed methods over a variety parameters. The hp trade-off is studied for the periodic trim problem to provide an optimum step size and order of polynomial for a given error criteria. It is found that finite elements in time can outperform Fourier analysis for periodic problems, and for some given error criteria. The mixed method provides better results than does the displacement method.
Finite element analysis of a composite wheelchair wheel design
NASA Technical Reports Server (NTRS)
Ortega, Rene
1994-01-01
The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.
Examples of finite element mesh generation using SDRC IDEAS
NASA Technical Reports Server (NTRS)
Zapp, John; Volakis, John L.
1990-01-01
IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.
Simple bounds on limit loads by elastic finite element analysis
Mackenzie, D.; Nadarajah, C.; Shi, J.; Boyle, J.T. . Dept. of Mechanical Engineering)
1993-02-01
A method for bounding limit loads by an iterative elastic continuum finite element analysis procedure, referred to as the elastic compensation method, is proposed. A number of sample problems are considered, based on both exact solutions and finite element analysis, and it is concluded that the method may be used to obtain limit-load bounds for pressure vessel design by analysis applications with useful accuracy.
Finite element analysis to model complex mitral valve repair.
Labrosse, Michel; Mesana, Thierry; Baxter, Ian; Chan, Vincent
2016-01-01
Although finite element analysis has been used to model simple mitral repair, it has not been used to model complex repair. A virtual mitral valve model was successful in simulating normal and abnormal valve function. Models were then developed to simulate an edge-to-edge repair and repair employing quadrangular resection. Stress contour plots demonstrated increased stresses along the mitral annulus, corresponding to the annuloplasty. The role of finite element analysis in guiding clinical practice remains undetermined.
A new approach in cascade flow analysis using the finite element method
NASA Technical Reports Server (NTRS)
Baskharone, E.; Hamed, A.
1980-01-01
A new approach in analyzing the potential flow past cascades and single airfoils using the finite element method is developed. In this analysis the circulation around the airfoil is not externally imposed but is directly computed in the numerical solution. Different finite element discretization patterns, orders of piecewise approximation, and grid sizes are used in the solution. The results obtained are compared with existing experimental measurements and exact solutions in cascades and single airfoils.
A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Hu, Changqing; Shu, Chi-Wang
1998-01-01
In this paper, we present a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method.
Error estimates of triangular finite elements under a weak angle condition
NASA Astrophysics Data System (ADS)
Mao, Shipeng; Shi, Zhongci
2009-08-01
In this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin,1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble-Hilbert lemma.
Finite element prediction of fatigue damage growth in cancellous bone.
Hambli, Ridha; Frikha, Sana; Toumi, Hechmi; Tavares, João Manuel R S
2016-01-01
Cyclic stresses applied to bones generate fatigue damage that affects the bone stiffness and its elastic modulus. This paper proposes a finite element model for the prediction of fatigue damage accumulation and failure in cancellous bone at continuum scale. The model is based on continuum damage mechanics and incorporates crack closure effects in compression. The propagation of the cracks is completely simulated throughout the damaged area. In this case, the stiffness of the broken element is reduced by 98% to ensure no stress-carrying capacities of completely damaged elements. Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. The proposed model suggests that damage evolves over a real physical time variable (cycles). In order to reduce the computation time, the integration of the damage growth rate is based on the cycle blocks approach. In this approach, the real number of cycles is reduced (divided) into equivalent blocks of cycles. Damage accumulation is computed over the cycle blocks and then extrapolated over the corresponding real cycles. The results show a clear difference between local tensile and compressive stresses on damage accumulation. Incorporating stiffness reduction also produces a redistribution of the peak stresses in the damaged region, which results in a delay in damage fracture.
Finite element analysis of (SA) mechanoreceptors in tactile sensing application
NASA Astrophysics Data System (ADS)
N, Syamimi; Yahud, S.
2015-05-01
This paper addresses the structural design of a fingertip model in order to analyse the sensory function of slow adapting (SA) mechanoreceptors by using the finite element analysis (FEA) method. A biologically inspired tactile sensor was designed to mimic a similar response of the human mechanoreceptors in the human glabrous skin. The simulation work was done by using COMSOL Multiphysics. The artificial skin was modelled as a solid square block of silicone elastomer with a semi cylinder protrusion on top. It was modelled as a nearly incompressible and linear hyperelastic material defined by Neo Hookean constitutive law. The sensing element on the other hand was modelled by using constantan alloy mimicking the SA1 receptor. Boundary loads of 1 N/m² to 4 N/m² with the increment of 1 N/m² were applied to the top surface of the protrusion in z and x-direction for normal and shear stress, respectively. The epidermal model base was constrained to maintain the same boundary conditions throughout all simulations. The changes of length experienced by the sensing element were calculated. The simulations result in terms of strain was identified. The simulated result was plotted in terms of sensing element strain against the boundary load and the graph should produce a linear response.
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
NASA Technical Reports Server (NTRS)
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
Lazarov, R D; Vassilevski, P S
1999-05-06
In this paper we introduce and study a least-squares finite element approximation for singularly perturbed convection-diffusion equations of second order. By introducing the flux (diffusive plus convective) as a new unknown, the problem is written in a mixed form as a first order system. Further, the flux is augmented by adding the lower order terms with a small parameter. The new first order system is approximated by the least-squares finite element method using the minus one norm approach of Bramble, Lazarov, and Pasciak [2]. Further, we estimate the error of the method and discuss its implementation and the numerical solution of some test problems.
Nonlinear finite element analysis: An alternative formulation
NASA Technical Reports Server (NTRS)
Merazzi, S.; Stehlin, P.
1980-01-01
A geometrical nonlinear analysis based on an alternative definition of strain is presented. Expressions for strain are obtained by computing the change in length of the base vectors in the curvilinear element coordinate system. The isoparametric element formulation is assumed in the global Cartesian coordinate system. The approach is based on the minimization of the strain energy, and the resulting nonlinear equations are solved by the modified Newton method. Integration of the first and second variation of the strain energy is performed numerically in the case of two and three dimensional elements. Application is made to a simple long cantilever beam.
Evaluation of the use of a singularity element in finite element analysis of center-cracked plates
NASA Technical Reports Server (NTRS)
Mendelson, A.; Gross, B.; Srawley, J., E.
1972-01-01
Two different methods are applied to the analyses of finite width linear elastic plates with central cracks. Both methods give displacements as a primary part of the solution. One method makes use of Fourier transforms. The second method employs a coarse mesh of triangular second-order finite elements in conjunction with a single singularity element subjected to appropriate additional constraints. The displacements obtained by these two methods are in very good agreement. The results suggest considerable potential for the use of a cracked element for related crack problems, particularly in connection with the extension to nonlinear material behavior.
Nonlinear Finite Element Analysis of Sandwich Composites.
1981-03-01
to the element midsurface z - z(x,y) at all points. An additional coordinate r is used to describe the distance away from the midsurface at any point...It is assumed that on the element level, the shell is shallow, so that z2 2 (56) ,y everywhere. The unit vector normal to the shell midsurface at a...relations above do not involve the orientation of the displaced midsurface normal, and, therefore, apply to arbitrarily large displacements and rotations
Recent developments in finite element analysis for transonic airfoils
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.
1979-01-01
The prediction of aerodynamic forces in the transonic regime generally requires a flow field calculation to solve the governing non-linear mixed elliptic-hyperbolic partial differential equations. Finite difference techniques were developed to the point that design and analysis application are routine, and continual improvements are being made by various research groups. The principal limitation in extending finite difference methods to complex three-dimensional geometries is the construction of a suitable mesh system. Finite element techniques are attractive since their application to other problems have permitted irregular mesh elements to be employed. The purpose of this paper is to review the recent developments in the application of finite element methods to transonic flow problems and to report some recent results.
Dynamical observer for a flexible beam via finite element approximations
NASA Technical Reports Server (NTRS)
Manitius, Andre; Xia, Hong-Xing
1994-01-01
The purpose of this view-graph presentation is a computational investigation of the closed-loop output feedback control of a Euler-Bernoulli beam based on finite element approximation. The observer is part of the classical observer plus state feedback control, but it is finite-dimensional. In the theoretical work on the subject it is assumed (and sometimes proved) that increasing the number of finite elements will improve accuracy of the control. In applications, this may be difficult to achieve because of numerical problems. The main difficulty in computing the observer and simulating its work is the presence of high frequency eigenvalues in the finite-element model and poor numerical conditioning of some of the system matrices (e.g. poor observability properties) when the dimension of the approximating system increases. This work dealt with some of these difficulties.
Error analysis of finite element method for Poisson–Nernst–Planck equations
Sun, Yuzhou; Sun, Pengtao; Zheng, Bin; Lin, Guang
2016-08-01
A priori error estimates of finite element method for time-dependent Poisson-Nernst-Planck equations are studied in this work. We obtain the optimal error estimates in L∞(H1) and L2(H1) norms, and suboptimal error estimates in L∞(L2) norm, with linear element, and optimal error estimates in L∞(L2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results.
Finite element solution of low bond number sloshing
NASA Technical Reports Server (NTRS)
Wohlen, R. L.; Park, A. C.; Warner, D. M.
1975-01-01
The dynamics of liquid propellant in a low Bond number environment which are critical to the design of spacecraft systems with respect to orbital propellant transfer and attitude control system were investigated. Digital computer programs were developed for the determination of liquid free surface equilibrium shape, lateral slosh natural vibration mode shapes, and frequencies for a liquid in a container of arbitrary axisymmetric shape with surface tension forces the same order of magnitude as acceleration forces. A finite volume element representation of the liquid was used for the vibration analysis. The liquid free surface equilibrium shapes were computed for several tanks at various contact angles and ullage volumes. A configuration was selected for vibration analysis and lateral slosh mode shapes and natural frequencies were obtained. Results are documented.
Finite element implementation of state variable-based viscoplasticity models
NASA Technical Reports Server (NTRS)
Iskovitz, I.; Chang, T. Y. P.; Saleeb, A. F.
1991-01-01
The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested.
Thermal buoyancy on Venus: Preliminary results of finite element modeling
NASA Technical Reports Server (NTRS)
Burt, J. D.; Head, James W., III
1992-01-01
Enhanced surface temperatures and a thinner lithosphere on Venus relative to Earth have been cited as leading to increased lithospheric buoyancy. This would limit or prevent subduction on Venus and favor the construction of thickened crust through underthrusting. In order to evaluate the conditions distinguishing between underthrusting and subduction, we have modeled the thermal and buoyancy consequences of the subduction end member. This study considers the fate of a slab from the time it starts to subduct, but bypasses the question of subduction initiation. Thermal changes in slabs subducting into a mantle having a range of initial geotherms are used to predict density changes and thus their overall buoyancy. Finite element modeling is then applied in a first approximation of the assessment of the relative rates of subduction as compared to the buoyant rise of the slab through a viscous mantle.
Incorporating finite element analysis into component life and reliability
NASA Technical Reports Server (NTRS)
August, Richard; Zaretsky, Erwin V.
1991-01-01
A method for calculating a component's design survivability by incorporating finite element analysis and probabilistic material properties was developed. The method evaluates design parameters through direct comparisons of component survivability expressed in terms of Weibull parameters. The analysis was applied to a rotating disk with mounting bolt holes. The highest probability of failure occurred at, or near, the maximum shear stress region of the bolt holes. Distribution of failure as a function of Weibull slope affects the probability of survival. Where Weibull parameters are unknown for a rotating disk, it may be permissible to assume Weibull parameters, as well as the stress-life exponent, in order to determine the disk speed where the probability of survival is highest.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1990-01-01
The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.
Probabilistic finite elements for fatigue and fracture analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Liu, Wing Kam
1992-01-01
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Finite element analysis of two disk rotor system
NASA Astrophysics Data System (ADS)
Dixit, Harsh Kumar
2016-05-01
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.
Adaptive grid finite element model of the tokamak scrapeoff layer
Kuprat, A.P.; Glasser, A.H.
1995-07-01
The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.
Finite Element Model Development For Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.
Preconditioned CG-solvers and finite element grids
Bauer, R.; Selberherr, S.
1994-12-31
To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.
Structural optimization of thin shells using finite element method
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.
1992-01-01
The objective of the present work was the structural optimization of thin shell structures that are subjected to stress and displacement constraints. In order to accomplish this, the structural optimization computer program DESAP1 was modified and improved. In the static analysis part of the DESAP1 computer program the torsional spring elements, which are used to analyze thin, shallow shell structures, were eliminated by modifying the membrane stiffness matrix of the triangular elements in the local coordinate system and adding a fictitious rotational stiffness matrix. This simplified the DESAP1 program input, improved the accuracy of the analysis, and saved computation time. In the optimization part of the DESAP1 program the stress ratio formula, which redesigns the thickness of each finite element of the structure, was solved by an analytical method. This scheme replaced the iterative solution that was previously used in the DESAP1 program, thus increasing the accuracy and speed of the design. The modified program was used to design a thin, cylindrical shell structure with optimum weight, and the results are reported in this paper.
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
Design and finite element analysis of oval man way
Hari, Y.; Gryder, B.
1996-12-01
This paper presents the design of an oval man way in the side wall of a cylindrical pressure vessel. ASME Code Section 8 is used to obtain the design parameters of the oval man way, man way cover and bolts. The code calculations require some assumptions which may not be valid. A typical design example is taken. STAAD III finite element code with plate elements is used to model the oval man way, man way cover and bolts. The stresses calculated using ASME Code Section 8 and other analytical formulas for plate and shells are compared with the stresses obtained by Finite Element Modeling. This paper gives the designer of oval man way the ability to perform a finite element analysis and compare it with the analytical calculations and assumptions made. This gives added confidence to the designer as to the validity of his calculations and assumptions.
Finite element analysis for acoustic characteristics of a magnetostrictive transducer
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Jung, Eunmi
2005-12-01
This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.
A software framework for solving bioelectrical field problems based on finite elements.
Sachse, F B; Cole, M J; Stinstra, J G
2006-01-01
Computational modeling and simulation can provide important insights into the electrical and electrophysiological properties of cells, tissues, and organs. Commonly, the modeling is based on Maxwell's and Poisson's equations for electromagnetic and electric fields, respectively, and numerical techniques are applied for field calculation such as the finite element and finite differences methods. Focus of this work are finite element methods, which are based on an element-wise discretization of the spatial domain. These methods can be classified on the element's geometry, e.g. triangles, tetrahedrons and hexahedrons, and the underlying interpolation functions, e.g. polynomials of various order. Aim of this work is to describe finite element-based approaches and their application to extend the problem-solving environment SCIRun/BioPSE. Finite elements of various types were integrated and methods for interpolation and integration were implemented. General methods for creation of finite element system matrices and boundary conditions were incorporated. The extension provides flexible means for geometric modeling, physical simulation, and visualization with particular application in solving bioelectric field problems.
Variational formulation of high performance finite elements: Parametrized variational principles
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
New triangular and quadrilateral plate-bending finite elements
NASA Technical Reports Server (NTRS)
Narayanaswami, R.
1974-01-01
A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.
Effective Finite Elements for Shell Analysis.
1984-02-20
important mode of deformation , and when an element is not capable of representing inextensional bending, parasitic membrane energy is generated in many modes...of deformation . In the same manner that parasitic shear causes shear locking, this spurious membrane energy causes membrane locking. Membrane locking...dominant mode of deformation . (cont.) 20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIEO/UNLIMITEO X SAME AS
The Mathematics of Finite Elements and Applications
1993-04-30
suitable geometrical mapping between the parametric u,v-plane and the physical xy- plane. In the u,v-plane the geometry of the elements is linear. In...the plate. For thin plates there may be a boundary layer, the existence and structure of which depends on the boundary conditions, the plate geometry ...exhibits a boundary layer except for very special data or plate geometry . The bending moment tensor and shear force vector have more pronounced boundary
The Constraint Method for Solid Finite Elements.
1982-11-30
Sciences 13 . NUMBER S Bolling Air Force Base, DC 20332 - -Jfi’ 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CVASS...1- 4)Q2 (n) (’+C) Higher degree elements add edge modes, face modes and internal modes. More details are given in [12, 13 ]. triangular prism A...23) N2 (L2 , L3)(l-z) edge u (31) N2 (L3 ’ L)(1-z) nodes s u s (45). N2 (L1, L2 )z uso (56) N2 (L2, L3 )z K - 13 - nodal variable shape function u
Finite element analysis of osteoporosis models based on synchrotron radiation
NASA Astrophysics Data System (ADS)
Xu, W.; Xu, J.; Zhao, J.; Sun, J.
2016-04-01
With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m-1 to 697.41 Fμ m-1, the bending and torsion stiffness were from 1390.80 Fμ m-1 to 566.11 Fμ m-1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.
Numerical approximation of head and flux covariances in three dimensions using mixed finite elements
NASA Astrophysics Data System (ADS)
James, Andrew I.; Graham, Wendy D.
A numerical method is developed for accurately approximating head and flux covariances and cross-covariances in finite two- and three-dimensional domains using the mixed finite element method. The method is useful for determining head and flux covariances for non-stationary flow fields, for example those induced by injection or extraction wells, impermeable subsurface barriers, or non-stationary hydraulic conductivity fields. Because the numerical approximations to the flux covariances are obtained directly from the solution to the coupled problem rather than having to differentiate head covariances, the approximations are in general more accurate than those obtained from conventional finite difference or finite element methods. Results for uniform flow example problems are consistent with results from previously published finite domain analyses and demonstrate that head variances and covariances are quite sensitive to boundary conditions and the size of the bounded domain. Flux variances and covariances are less sensitive to boundary conditions and domain size. Results comparing approximations from lower-order Raviart-Thomas-Nedelec and higher order Brezzi-Douglas-Marini [9] finite element spaces indicate that higher order element space improve the estimate of the flux covariances, but do not significantly affect the estimate of the head covariances.
NASA Astrophysics Data System (ADS)
Fisher, Aaron C.
We have developed a mixed Vector Finite Element Method (VFEM) for Maxwell's equations with third order polarization terms. The method allows for discretization of complicated device geometries with arbitrary order representations of the B and E fields, and up to 4th order accurate time discretization. Additionally we have implemented a series of computational optimizations that significantly increase the scale of simulations that can be performed with this method. Among these optimizations is a new generalized mass lumping method that we developed which reduces the computational cost of the finite element system solve by a factor of 10x. In this dissertation we will present the Vector Finite Element Method, and the computational optimizations that we employed. Additionally, we will present a series of analyses and simulations that were performed to validate the method. Finally, we will present some production runs using this method, including nonlinear mode mixing in waveguides and supercontinuum generation in a photonic crystal fiber.
Finite element methods on supercomputers - The scatter-problem
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.
1985-01-01
Certain problems arise in connection with the use of supercomputers for the implementation of finite-element methods. These problems are related to the desirability of utilizing the power of the supercomputer as fully as possible for the rapid execution of the required computations, taking into account the gain in speed possible with the aid of pipelining operations. For the finite-element method, the time-consuming operations may be divided into three categories. The first two present no problems, while the third type of operation can be a reason for the inefficient performance of finite-element programs. Two possibilities for overcoming certain difficulties are proposed, giving attention to a scatter-process.
Probabilistic finite elements for transient analysis in nonlinear continua
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
Optimal mapping of irregular finite element domains to parallel processors
NASA Technical Reports Server (NTRS)
Flower, J.; Otto, S.; Salama, M.
1987-01-01
Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.
Finite element method for eigenvalue problems in electromagnetics
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, Fred B.
1994-01-01
Finite element method (FEM) has been a very powerful tool to solve many complex problems in electromagnetics. The goal of the current research at the Langley Research Center is to develop a combined FEM/method of moments approach to three-dimensional scattering/radiation problem for objects with arbitrary shape and filled with complex materials. As a first step toward that goal, an exercise is taken to establish the power of FEM, through closed boundary problems. This paper demonstrates the developed of FEM tools for two- and three-dimensional eigenvalue problems in electromagnetics. In section 2, both the scalar and vector finite elements have been used for various waveguide problems to demonstrate the flexibility of FEM. In section 3, vector finite element method has been extended to three-dimensional eigenvalue problems.
Hybrid finite element-finite difference method for thermal analysis of blood vessels.
Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B
2000-01-01
A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems.
Yoshida, Hiroaki; Tada, Mitsunori; Mochimaru, Masaaki
2011-03-01
Since the tactile perception detects skin deformation due to the contact of an object, it is important to understand contact mechanics, especially, frictional behavior of the human fingertip. The coefficient of friction is recently modeled as a function of the applied normal load in which case the traditional Coulomb's law does not provide a description for the skin surface. When a surface is a rubber-like material, the frictional behavior follows the frictional law of the rubber-like material. Therefore, we developed a three-dimensional Finite Element model of the fingertip and analyzed frictional behavior based on the frictional law of rubber-like material. We proposed a combined technique using both experimental and Finite Element analyses in order to investigate the frictional property of the fingertip. A three-dimensional Finite Element model of the fingertip was developed using MRI images. We hypothesized a frictional equation of the critical shear stress. Squared differences between equivalent coefficient of friction of the FE analysis and the coefficient of kinetic friction of the experiment while sliding was decreased and the Finite Element analysis iterated until the error was minimized, and thus the frictional equation was determined. We obtained the equation of the critical shear stress and simulated kinetic friction of the fingertip while sliding under arbitrary normal loading condition by using the Finite Element analysis. We think this study is an appropriate method for understanding the frictional property of the human fingertip using the Finite Element analysis.
Life assessment of structural components using inelastic finite element analyses
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.
Life assessment of structural components using inelastic finite element analyses
NASA Astrophysics Data System (ADS)
Arya, Vinod K.; Halford, Gary R.
1993-10-01
The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.
Bramble, J.H.; King, J.T.
1994-07-01
In this paper the authors consider a simple finite element method on an approximately polygonal domain using linear elements. The Dirichlet data are transferred in a natural way and the resulting linear system can be solved using multigrid techniques. Their analysis takes into account the change in domain and data transfer, and optimal-error estimates are obtained that are robust in the regularity of the boundary data provided they are at least square integrable. It is proved that the natural extension of this finite element approximation to the original domain is optimal-order accurate.
Convergence rates for finite element problems with singularities. Part 1: Antiplane shear. [crack
NASA Technical Reports Server (NTRS)
Plunkett, R.
1980-01-01
The problem of a finite crack in an infinite medium under antiplane shear load is considered. It is shown that the nodal forces at the tip of the crack accurately gives the order of singularity, that n energy release methods can give the strength to better than 1 percent with element size 1/10 the crack length, and that nodal forces give a much better estimate of the stress field than do the elements themselves. The finite element formulation and the factoring of tridiagonal matrices are discussed.
A simple finite element method for non-divergence form elliptic equation
Mu, Lin; Ye, Xiu
2017-03-01
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Fourier analysis of finite element preconditioned collocation schemes
NASA Technical Reports Server (NTRS)
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
Convergence of finite element approximations of large eddy motion.
Iliescu, T.; John, V.; Layton, W. J.; Mathematics and Computer Science; Otto-von-Guericke Univ.; Univ. of Pittsburgh
2002-11-01
This report considers 'numerical errors' in LES. Specifically, for one family of space filtered flow models, we show convergence of the finite element approximation of the model and give an estimate of the error. Keywords: Navier Stokes equations, large eddy simulation, finite element method I. INTRODUCTION Consider the (turbulent) flow of an incompressible fluid. One promising and common approach to the simulation of the motion of the large fluid structures is Large Eddy Simulation (LES). Various models are used in LES; a common one is to find (w, q), where w : {Omega}
Discontinuous Galerkin finite element methods for gradient plasticity.
Garikipati, Krishna.; Ostien, Jakob T.
2010-10-01
In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.
Development of non-linear finite element computer code
NASA Technical Reports Server (NTRS)
Becker, E. B.; Miller, T.
1985-01-01
Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.
Analysis of the Performance of Mixed Finite Element Methods.
1986-10-01
October 1986 SUMMARY The initial goal of this project is to analyze various mixed methods based on the p- and h-p versions of the finite element methods...The convergence of mixed methods depends on two factors: (1) Approximability of polynomial spaces used (2) Stability. In the past year, the question...significant portion of the research is geared towards the investigation of mixed methods based on the ’p’ and ’h-p’ versions of the finite element method
Finite element methods for nonlinear elastostatic problems in rubber elasticity
NASA Technical Reports Server (NTRS)
Oden, J. T.; Becker, E. B.; Miller, T. H.; Endo, T.; Pires, E. B.
1983-01-01
A number of finite element methods for the analysis of nonlinear problems in rubber elasticity are outlined. Several different finite element schemes are discussed. These include the augmented Lagrangian method, continuation or incremental loading methods, and associated Riks-type methods which have the capability of incorporating limit point behavior and bifurcations. Algorithms for the analysis of limit point behavior and bifurcations are described and the results of several numerical experiments are presented. In addition, a brief survey of some recent work on modelling contact and friction in elasticity problems is given. These results pertain to the use of new nonlocal and nonlinear friction laws.
Predicting Rediated Noise With Power Flow Finite Element Analysis
2007-02-01
Defence R&D Canada – Atlantic DEFENCE DÉFENSE & Predicting Rediated Noise With Power Flow Finite Element Analysis D. Brennan T.S. Koko L. Jiang J...PREDICTING RADIATED NOISE WITH POWER FLOW FINITE ELEMENT ANALYSIS D.P. Brennan T.S. Koko L. Jiang J.C. Wallace Martec Limited Martec Limited...model- or full-scale data before it is available for general use. Brennan, D.P., Koko , T.S., Jiang, L., Wallace, J.C. 2007. Predicting Radiated
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
Differentiating a Finite Element Biodegradation Simulation Model for Optimal Control
NASA Astrophysics Data System (ADS)
Minsker, Barbara S.; Shoemaker, Christine A.
1996-01-01
An optimal control model for improving the design of in situ bioremediation of groundwater has been developed. The model uses a finite element biodegradation simulation model called Bio2D to find optimal pumping strategies. Analytical derivatives of the bioremediation finite element model are derived; these derivatives must be computed for the optimal control algorithm. The derivatives are complex and nonlinear; the bulk of the computational effort in solving the optimal control problem is required to calculate the derivatives. An overview of the optimal control and simulation model formulations is also given.
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
Smith, N. A. S. E-mail: maciej.rokosz@npl.co.uk Correia, T. M. E-mail: maciej.rokosz@npl.co.uk; Rokosz, M. K. E-mail: maciej.rokosz@npl.co.uk
2014-07-28
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Engineering and Design: Geotechnical Analysis by the Finite Element Method
2007-11-02
used it to determine stresses and movements in embank- ments, and Reyes and Deer described its application to analysis of underground openings in rock...36 Hughes, T. J. R. (1987). The Finite Element Reyes , S. F., and Deene, D. K. (1966). “Elastic Method, Linear Static and Dynamic Finite Element...SM4), 1,435-1,457. Fernando Dams During the Earthquakes of February Davis, E. H., and Poulos, H. G. (1972). “Rate of Report EERC-73-2, Berkeley, CA
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
NASA Astrophysics Data System (ADS)
Smith, N. A. S.; Rokosz, M. K.; Correia, T. M.
2014-07-01
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Finite Element Modelling and Analysis of Conventional Pultrusion Processes
NASA Astrophysics Data System (ADS)
Akishin, P.; Barkanov, E.; Bondarchuk, A.
2015-11-01
Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.
Correlation of composite material test results with finite element analysis
NASA Astrophysics Data System (ADS)
Guƫu, M.
2016-08-01
In this paper are presented some aspects regarding the method of simulation of composite materials testing with finite element analysis software. There were simulated tensile and shear tests of specimens manufactured from glass fiber reinforced polyester. For specimens manufacturing two types of fabrics were used: unidirectional and bidirectional. Experimentally determined elastic properties of composite material were used as input data. Modeling of composite architecture of the specimens was performed with ANSYS Composite PrepPost software. Finite element analysis stresses and strains on strain gauges bonding area were considered and compared with the real values in a diagram. After results comparison, potential causes of deviations were identified.
Using Finite-Element Analysis In Estimating Reliability
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; August, Richard
1994-01-01
Method of estimating design survivability of structural component incorporates finite-element and probabilistic properties of materials. Involves evaluation of design parameters through direct comparisons of survivability of component expressed in terms of percentages of like components that survive at various lifetimes. Probabilistic properties of materials, given in terms of Weibull parameters, coupled with stress field computed by finite-element analysis to determine fatigue life based on initiation of cracks. Method applied to rotating disk containing bolt holes, representative of disks used in aerospace propulsion turbines. Also used in early stages of design process to optimize life-based designs, reducing testing of full-sized components needed to validate designs.
Crystallographic effects during micromachining — A finite-element model
NASA Astrophysics Data System (ADS)
Song, Shin-Hyung; Choi, Woo Chun
2015-07-01
Mechanical micromachining is a powerful and effective way for manufacturing small sized machine parts. Even though the micromachining process is similar to the traditional machining, the material behavior during the process is much different. In particular, many researchers report that the basic mechanics of the work material is affected by microstructures and their crystallographic orientations. For example, crystallographic orientations of the work material have significant influence on force response, chip formation and surface finish. In order to thoroughly understand the effect of crystallographic orientations on the micromachining process, finite-element model (FEM) simulating orthogonal cutting process of single crystallographic material was presented. For modeling the work material, rate sensitive single crystal plasticity of face-centered cubic (FCC) crystal was implemented. For the chip formation during the simulation, element deletion technique was used. The simulation model is developed using ABAQUS/explicit with user material subroutine via user material subroutine (VUMAT). Simulations showed that variation of the specific cutting energy at different crystallographic orientations of work material shows significant anisotropy. The developed FEM model can be a useful prediction tool of micromachining of crystalline materials.
NASA Technical Reports Server (NTRS)
1976-01-01
A survey of research efforts in the area of geometrically nonlinear finite elements is presented. The survey is intended to serve as a guide in the choice of nonlinear elements for specific problems, and as background to provide directions for new element developments. The elements are presented in a handbook format and are separated by type as beams, plates (or shallow shells), shells, and other elements. Within a given type, the elements are identified by the assumed displacement shapes and the forms of the nonlinear strain equations. Solution procedures are not discussed except when a particular element formulation poses special problems or capabilities in this regard. The main goal of the format is to provide quick access to a wide variety of element types, in a consistent presentation format, and to facilitate comparison and evaluation of different elements with regard to features, probable accuracy, and complexity.
Finite Element Model Development and Validation for Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.
A new formulation of hybrid/mixed finite element
NASA Technical Reports Server (NTRS)
Pian, T. H. H.; Kang, D.; Chen, D.-P.
1983-01-01
A new formulation of finite element method is accomplished by the Hellinger-Reissner principle for which the stress equilibrium conditions are not introduced initially but are brought-in through the use of additional internal displacement parameters. The method can lead to the same result as the assumed stress hybrid model. However, it is more general and more flexible. The use of natural coordinates for stress assumptions leads to elements which are less sensitive to the choice of reference coordinates. Numerical solutions by 3-D solid element indicate that more efficient elements can be constructed by assumed stresses which only partially satisfy the equilibrium conditions.
Finite element approach for transient analysis of multibody systems
NASA Technical Reports Server (NTRS)
Wu, Shih-Chin; Chang, Che-Wei; Housner, Jerrold M.
1992-01-01
A three-dimensional, finite element based formulation for the transient dynamics of constrained multibody systems with trusslike configurations is presented. A convected coordinate system is used to define the rigid-body motion of individual elements in the system. Deformation of each element is defined relative to its convected coordinate system. The formulation is oriented toward joint-dominated structures. Through a series of sequential transformations, the joint degree of freedom is built into the equations of motion of the element to reduce geometric constraints. Based on the derivation, a general-purpose code has been developed. Two examples are presented to illustrate the application of the code.
Numerical techniques in linear duct acoustics. [finite difference and finite element analyses
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1980-01-01
Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.
A simple triangular finite element for nonlinear thin shells: statics, dynamics and anisotropy
NASA Astrophysics Data System (ADS)
Viebahn, Nils; Pimenta, Paulo M.; Schröder, Jörg
2016-11-01
This work presents a simple finite element implementation of a geometrically exact and fully nonlinear Kirchhoff-Love shell model. Thus, the kinematics are based on a deformation gradient written in terms of the first- and second-order derivatives of the displacements. The resulting finite element formulation provides C^1 -continuity using a penalty approach, which penalizes the kinking at the edges of neighboring elements. This approach enables the application of well-known C^0 -continuous interpolations for the displacements, which leads to a simple finite element formulation, where the only unknowns are the nodal displacements. On the basis of polyconvex strain energy functions, the numerical framework for the simulation of isotropic and anisotropic thin shells is presented. A consistent plane stress condition is incorporated at the constitutive level of the model. A triangular finite element, with a quadratic interpolation for the displacements and a one-point integration for the enforcement of the C^1 -continuity at the element interfaces leads to a robust shell element. Due to the simple nature of the element, even complex geometries can be meshed easily, which include folded and branched shells. The reliability and flexibility of the element formulation is shown in a couple of numerical examples, including also time dependent boundary value problems. A plane reference configuration is assumed for the shell mid-surface, but initially curved shells can be accomplished if one regards the initial configuration as a stress-free deformed state from the plane position, as done in previous works.
A simple triangular finite element for nonlinear thin shells: statics, dynamics and anisotropy
NASA Astrophysics Data System (ADS)
Viebahn, Nils; Pimenta, Paulo M.; Schröder, Jörg
2017-02-01
This work presents a simple finite element implementation of a geometrically exact and fully nonlinear Kirchhoff-Love shell model. Thus, the kinematics are based on a deformation gradient written in terms of the first- and second-order derivatives of the displacements. The resulting finite element formulation provides C^1-continuity using a penalty approach, which penalizes the kinking at the edges of neighboring elements. This approach enables the application of well-known C^0-continuous interpolations for the displacements, which leads to a simple finite element formulation, where the only unknowns are the nodal displacements. On the basis of polyconvex strain energy functions, the numerical framework for the simulation of isotropic and anisotropic thin shells is presented. A consistent plane stress condition is incorporated at the constitutive level of the model. A triangular finite element, with a quadratic interpolation for the displacements and a one-point integration for the enforcement of the C^1-continuity at the element interfaces leads to a robust shell element. Due to the simple nature of the element, even complex geometries can be meshed easily, which include folded and branched shells. The reliability and flexibility of the element formulation is shown in a couple of numerical examples, including also time dependent boundary value problems. A plane reference configuration is assumed for the shell mid-surface, but initially curved shells can be accomplished if one regards the initial configuration as a stress-free deformed state from the plane position, as done in previous works.
Finite Elements Modeling in Diagnostics of Small Closed Pneumothorax.
Lorkowski, J; Mrzygłód, M; Grzegorowska, O
2015-01-01
Posttraumatic pneumothorax still remains to be a serious clinical problem and requires a comprehensive diagnostic and monitoring during treatment. The aim of this paper is to present a computer method of modeling of small closed pneumothorax. Radiological images of 34 patients of both sexes with small closed pneumothorax were taken into consideration. The control group consisted of X-rays of 22 patients treated because of tension pneumothorax. In every single case the model was correlated with the clinical manifestations. The procedure of computational rapid analysis (CRA) for in silico analysis of surgical intervention was introduced. It included implementation of computerize tomography images and their automatic conversion into 3D finite elements model (FEM). In order to segmentize the 3D model, an intelligent procedure of domain recognition was used. In the final step, a computer simulation project of fluid-structure interaction was built, using the ANSYS\\Workbench environment of multi-physics analysis. The FEM model and computer simulation project were employed in the analysis in order to optimize surgical intervention. The model worked out well and was compatible with the clinical manifestations of pneumothorax. We conclude that the created FEM model is a promising tool for facilitation of diagnostic procedures and prognosis of treatment in the case of small closed pneumothorax.
A hybrid finite-difference and analytic element groundwater model.
Haitjema, H M; Feinstein, D T; Hunt, R J; Gusyev, M A
2010-01-01
Regional finite-difference models tend to have large cell sizes, often on the order of 1-2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW-MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models.
A new weak Galerkin finite element method for elliptic interface problems
Mu, Lin; Wang, Junping; Ye, Xiu; Zhao, Shan
2016-08-26
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments in order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.
A new weak Galerkin finite element method for elliptic interface problems
Mu, Lin; Wang, Junping; Ye, Xiu; ...
2016-08-26
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
Finite Element Modeling of the Buckling Response of Sandwich Panels
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.
2002-01-01
A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.
Reissner-Mindlin Legendre Spectral Finite Elements with Mixed Reduced Quadrature
Brito, K. D.; Sprague, M. A.
2012-10-01
Legendre spectral finite elements (LSFEs) are examined through numerical experiments for static and dynamic Reissner-Mindlin plate bending and a mixed-quadrature scheme is proposed. LSFEs are high-order Lagrangian-interpolant finite elements with nodes located at the Gauss-Lobatto-Legendre quadrature points. Solutions on unstructured meshes are examined in terms of accuracy as a function of the number of model nodes and total operations. While nodal-quadrature LSFEs have been shown elsewhere to be free of shear locking on structured grids, locking is demonstrated here on unstructured grids. LSFEs with mixed quadrature are, however, locking free and are significantly more accurate than low-order finite-elements for a given model size or total computation time.
Development of an Equivalent Composite Honeycomb Model: A Finite Element Study
NASA Astrophysics Data System (ADS)
Steenackers, G.; Peeters, J.; Ribbens, B.; Vuye, C.
2016-12-01
Finite element analysis of complex geometries such as honeycomb composites, brings forth several difficulties. These problems are expressed primarily as high calculation times but also memory issues when solving these models. In order to bypass these issues, the main goal of this research paper is to define an appropriate equivalent model in order to minimize the complexity of the finite element model and thus minimize computation times. A finite element study is conducted on the design and analysis of equivalent layered models, substituting the honeycomb core in sandwich structures. A comparison is made between available equivalent models. An equivalent model with the right set of material property values is defined and benchmarked, consisting of one continuous layer with orthotropic elastic properties based on different available approximate formulas. This way the complex geometry does not need to be created while the model yields sufficiently accurate results.
Development of an hp-version finite element method for computational optimal control
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Warner, Michael S.
1993-01-01
The purpose of this research effort is to develop a means to use, and to ultimately implement, hp-version finite elements in the numerical solution of optimal control problems. The hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element.
CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES
GILLETTE, ANDREW; RAND, ALEXANDER; BAJAJ, CHANDRAJIT
2016-01-01
We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties. PMID:28077939
Order Information in Multiple-Element Comparison.
ERIC Educational Resources Information Center
Angiolillo-Bent, Joel S.; Rips, Lance J.
1982-01-01
Two strings of letters were presented. Subjects were instructed to indicate whether the second string contained the same elements as the first, regardless of position. Reaction time increased with the number of positions that the letters were displaced. Results indicate that order may be an important factor in retrieval from memory. (Author/BW)
Dedicated finite elements for electrode thin films on quartz resonators.
Srivastava, Sonal A; Yong, Yook-Kong; Tanaka, Masako; Imai, Tsutomu
2008-08-01
The accuracy of the finite element analysis for thickness shear quartz resonators is a function of the mesh resolution; the finer the mesh resolution, the more accurate the finite element solution. A certain minimum number of elements are required in each direction for the solution to converge. This places a high demand on memory for computation, and often the available memory is insufficient. Typically the thickness of the electrode films is very small compared with the thickness of the resonator itself; as a result, electrode elements have very poor aspect ratios, and this is detrimental to the accuracy of the result. In this paper, we propose special methods to model the electrodes at the crystal interface of an AT cut crystal. This reduces the overall problem size and eliminates electrode elements having poor aspect ratios. First, experimental data are presented to demonstrate the effects of electrode film boundary conditions on the frequency-temperature curves of an AT cut plate. Finite element analysis is performed on a mesh representing the resonator, and the results are compared for testing the accuracy of the analysis itself and thus validating the results of analysis. Approximations such as lumping and Guyan reduction are then used to model the electrode thin films at the electrode interface and their results are studied. In addition, a new approximation called merging is proposed to model electrodes at the electrode interface.
Finite-element analysis of end-notch flexure specimens
NASA Technical Reports Server (NTRS)
Mall, S.; Kochhar, N. K.
1986-01-01
A finite-element analysis of the end-notch flexure specimen for Mode II interlaminar fracture toughness measurement was conducted. The effects of friction between the crack faces and large deflection on the evaluation of G(IIc) from this specimen were investigated. Results of this study are presented in this paper.
Finite element analysis of end notch flexure specimen
NASA Technical Reports Server (NTRS)
Mall, S.; Kochhar, N. K.
1986-01-01
A finite element analysis of the end notch flexure specimen for mode II interlaminar fracture toughness measurement was conducted. The effect of friction between the crack faces and large deflection on the evaluation of G sub IIc from this specimen were investigated. Results of this study are presented in this paper.
SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.
2007-01-01
This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.
2-D Finite Element Cable and Box IEMP Analysis
Scivner, G.J.; Turner, C.D.
1998-12-17
A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
Finite-element analysis of an epoxy-curing process
Gartling, D K; Hickox, C E; Nunziato, J W
1983-01-01
A finite element numerical procedure is used to study the curing of an epoxy compound. The problem involves the gelation of an incompressible liquid due to an exothermic chemical reaction. Nonuniform temperature fields produce buoyancy-driven fluid motions that interact with the solidifying material. The numerical simulations provide temperature histories and the progression of the gel front that are compared with experimental data.
A finite element approach for prediction of aerothermal loads
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Vemaganti, G.
1986-01-01
A Taylor-Galerkin finite element approach is presented for analysis of high speed viscous flows with an emphasis on predicting heating rates. Five computational issues relevant to the computation of steady flows are examined. Numerical results for supersonic and hypersonic problems address the computational issues and demonstrate the validity for the approach for analysis of high speed flows.
Coupling finite element and spectral methods: First results
NASA Technical Reports Server (NTRS)
Bernardi, Christine; Debit, Naima; Maday, Yvon
1987-01-01
A Poisson equation on a rectangular domain is solved by coupling two methods: the domain is divided in two squares, a finite element approximation is used on the first square and a spectral discretization is used on the second one. Two kinds of matching conditions on the interface are presented and compared. In both cases, error estimates are proved.
Design, development and use of the finite element machine
NASA Technical Reports Server (NTRS)
Adams, L. M.; Voigt, R. C.
1983-01-01
Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained.
Finite-Element Fracture Analysis of Pins and Bolts
NASA Technical Reports Server (NTRS)
Nord, K. J.
1986-01-01
Stress intensities calculated in bending and tension. Finite-element stress-analysis method gives stress-intensity estimates for surface flaws on smooth and threaded round bars. Calculations done for purely tensile and purely bending loads. Results, presented in dimensionless form, useful for determining fatigue lives of bolts and pins.
Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations
2012-10-16
state-based peridynamic method, Warren et al. [46] studied the elastic deformation and fracture of a bar. Littlewood [47] presented fragmentation of an...Journal of Solids and Structures 46 (2009) 1186-1195. [47] D. J. Littlewood , Simulation of dynamic fracture using peridynamics, finite element modeling
Probabilistic Finite Element Analysis & Design Optimization for Structural Designs
NASA Astrophysics Data System (ADS)
Deivanayagam, Arumugam
This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that
A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.
High-order optimal edge elements for pyramids, prisms and hexahedra
NASA Astrophysics Data System (ADS)
Bergot, Morgane; Duruflé, Marc
2013-01-01
Edge elements are a popular method to solve Maxwell's equations especially in time-harmonic domain. However, when non-affine elements are considered, elements of the Nédélec's first family [19] are not providing an optimal rate of the convergence of the numerical solution toward the solution of the exact problem in H(curl)-norm. We propose new finite element spaces for pyramids, prisms, and hexahedra in order to recover the optimal convergence. In the particular case of pyramids, a comparison with other existing elements found in the literature is performed. Numerical results show the good behavior of these new finite elements.
Modelling of orbital deformation using finite-element analysis
Al-Sukhun, Jehad; Lindqvist, Christian; Kontio, Risto
2005-01-01
The purpose of this study was to develop a three-dimensional finite-element model (FEM) of the human orbit, containing the globe, to predict orbital deformation in subjects following a blunt injury. This study investigated the hypothesis that such deformation could be modelled using finite-element techniques. One patient who had CT-scan examination to the maxillofacial skeleton including the orbits, as part of her treatment, was selected for this study. A FEM of one of the orbits containing the globe was constructed, based on CT-scan images. Simulations were performed with a computer using the finite-element software NISA (EMRC, Troy, USA). The orbit was subjected to a blunt injury of a 0.5 kg missile with 30 m s−1 velocity. The FEM was then used to predict principal and shear stresses or strains at each node position. Two types of orbital deformation were predicted during different impact simulations: (i) horizontal distortion and (ii) rotational distortion. Stress values ranged from 213.4 to 363.3 MPa for the maximum principal stress, from −327.8 to −653.1 MPa for the minimum principal stress, and from 212.3 to 444.3 MPa for the maximum shear stress. This is the first finite-element study, which demonstrates different and concurrent patterns of orbital deformation in a subject following a blunt injury. Finite element modelling is a powerful and invaluable tool to study the multifaceted phenomenon of orbital deformation. PMID:16849235
Application of modified integration rule to time-domain finite-element acoustic simulation of rooms.
Okuzono, Takeshi; Otsuru, Toru; Tomiku, Reiji; Okamoto, Noriko
2012-08-01
The applicability of the modified integration rule for time-domain finite-element analysis is tested in sound field analysis of rooms involving rectangular elements, distorted elements, and finite impedance boundary conditions. Dispersion error analysis in three dimensions is conducted to evaluate the dispersion error in time-domain finite-element analysis using eight-node hexahedral elements. The results of analysis confirmed that fourth-order accuracy with respect to dispersion error is obtainable using the Fox-Goodwin method (FG) with a modified integration rule, even for rectangular elements. The stability condition in three-dimensional analysis using the modified integration rule is also presented. Numerical experiments demonstrate that FG with a modified integration rule performs much better than FG with the conventional integration rule for problems with rectangular elements, distorted elements, and with finite impedance boundary conditions. Further, as another advantage, numerical results revealed that the use of modified integration rule engenders faster convergence of the iterative solver than a conventional rule for problems with the same degrees of freedom.
Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P
2011-04-01
Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.
A new weak Galerkin finite element method for elliptic interface problems
NASA Astrophysics Data System (ADS)
Mu, Lin; Wang, Junping; Ye, Xiu; Zhao, Shan
2016-11-01
A new weak Galerkin (WG) finite element method is introduced and analyzed in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. Extensive numerical experiments have been conducted to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.
Dynamic quasistatic characterization of finite elements for shell structures.
Thomas, Jesse David
2010-11-01
Finite elements for shell structures have been investigated extensively, with numerous formulations offered in the literature. These elements are vital in modern computational solid mechanics due to their computational efficiency and accuracy for thin and moderately thick shell structures, allowing larger and more comprehensive (e.g. multi-scale and multi-physics) simulations. Problems now of interest in the research and development community are routinely pushing our computational capabilities, and thus shell finite elements are being used to deliver efficient yet high quality computations. Much work in the literature is devoted to the formulation of shell elements and their numerical accuracy, but there is little published work on the computational characterization and comparison of shell elements for modern solid mechanics problems. The present study is a comparison of three disparate shell element formulations in the Sandia National Laboratories massively parallel Sierra Solid Mechanics code. A constant membrane and bending stress shell element (Key and Hoff, 1995), a thick shell hex element (Key et al., 2004) and a 7-parameter shell element (Buechter et al., 1994) are available in Sierra Solid Mechanics for explicit transient dynamic, implicit transient dynamic and quasistatic calculations. Herein these three elements are applied to a set of canonical dynamic and quasistatic problems, and their numerical accuracy, computational efficiency and scalability are investigated. The results show the trade-off between the relative inefficiency and improved accuracy of the latter two high quality element types when compared with the highly optimized and more widely used constant membrane and bending stress shell element.
Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.
2002-01-01
The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.
PWSCC Assessment by Using Extended Finite Element Method
NASA Astrophysics Data System (ADS)
Lee, Sung-Jun; Lee, Sang-Hwan; Chang, Yoon-Suk
2015-12-01
The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.
Edge-based finite element scheme for the Euler equations
NASA Astrophysics Data System (ADS)
Luo, Hong; Baum, Joseph D.; Loehner, Rainald
1994-06-01
This paper describes the development, validation, and application of a new finite element scheme for the solution of the compressible Euler equations on unstructured grids. The implementation of the numerical scheme is based on an edge-based data structure, as opposed to a more element-based data structure. The use of this edge-based data structure not only improves the efficiency of the algorithm but also enables a straightforward implementation of the upwind schemes in the context of finite element methods. The algorithm has been tested and validated on some well documented configurations. A flow solution about a complete F-18 fighter is shown to demonstrate the accuracy and robustness of the proposed algorithm.
Edge-based finite element scheme for the Euler equations
NASA Astrophysics Data System (ADS)
Luo, Hong; Baum, Joseph D.; Lohner, Rainald
1994-06-01
This paper describes the development, validation, and application of a new finite element scheme for the solution of the compressible Euler equations on unstructured grids. The implementation of the numerical scheme is based on an edge-based data structure, as opposed to a more traditional element-based data structure. The use of this edge-based data structure not only improves the efficiency of the algorithm but also enables a straightforward implementation of upwind schemes in the context of finite element methods. The algorithm has been tested and validated on some well-documented configurations. A flow solution about a complete F-18 fighter is shown to demonstrate the accuracy and robustness of the proposed algorithm.
Finite Element Modelling of Fluid Coupling in the Coiled Cochlea
NASA Astrophysics Data System (ADS)
Ni, Guangjian; Elliott, S. J.; Lineton, B.; Saba, R.
2011-11-01
A finite element model is first used to calculate the modal pressure difference for a box model of the cochlea, which shows that the number of fluid elements across the width of the cochlea determines the accuracy with which the near field, or short wavenumber, component of the fluid coupling is reproduced. Then results are compared with the analytic results to validate the accuracy of the FE model. It is, however, the far field, or long wavelength, component of the fluid coupling that is most affected by the geometry. A finite element model of the coiled cochlea is then used to calculate fluid coupling in this case, which has similar characteristics to the uncoiled model.
Solar Electric Generating System II finite element analysis
Dohner, J.L.; Anderson, J.R.
1994-04-01
On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.
FLASH: A finite element computer code for variably saturated flow
Baca, R.G.; Magnuson, S.O.
1992-05-01
A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A.
Optimization design of thumbspica splint using finite element method.
Huang, Tz-How; Feng, Chi-Kung; Gung, Yih-Wen; Tsai, Mei-Wun; Chen, Chen-Sheng; Liu, Chien-Lin
2006-12-01
De Quervain's tenosynovitis is often observed on repetitive flexion of the thumb. In the clinical setting, the conservative treatment is usually an applied thumbspica splint to immobilize the thumb. However, the traditional thumbspica splint is bulky and heavy. Thus, this study used the finite element (FE) method to remove redundant material in order to reduce the splint's weight and increase ventilation. An FE model of a thumbspica splint was constructed using ANSYS9.0 software. A maximum lateral thumb pinch force of 98 N was used as the input loading condition for the FE model. This study implemented topology optimization and design optimization to seek the optimal thickness and shape of the splint. This new design was manufactured and compared with the traditional thumbspica splint. Ten thumbspica splints were tested in a materials testing system, and statistically analyzed using an independent t test. The optimal thickness of the thumbspica splint was 3.2 mm. The new design is not significantly different from the traditional splint in the immobilization effect. However, the volume of this new design has been reduced by about 35%. This study produced a new thumbspica splint shape with less volume, but had a similar immobilization effect compared to the traditional shape. In a clinical setting, this result can be used by the occupational therapist as a reference for manufacturing lighter thumbspica splints for patients with de Quervain's tenosynovitis.
Finite element based damage assessment of composite tidal turbine blades
NASA Astrophysics Data System (ADS)
Fagan, Edward M.; Leen, Sean B.; Kennedy, Ciaran R.; Goggins, Jamie
2015-07-01
With significant interest growing in the ocean renewables sector, horizontal axis tidal current turbines are in a position to dominate the marketplace. The test devices that have been placed in operation so far have suffered from premature failures, caused by difficulties with structural strength prediction. The goal of this work is to develop methods of predicting the damage level in tidal turbines under their maximum operating tidal velocity. The analysis was conducted using the finite element software package Abaqus; shell models of three representative tidal turbine blades are produced. Different construction methods will affect the damage level in the blade and for this study models were developed with varying hydrofoil profiles. In order to determine the risk of failure, a user material subroutine (UMAT) was created. The UMAT uses the failure criteria designed by Alfred Puck to calculate the risk of fibre and inter-fibre failure in the blades. The results show that degradation of the stiffness is predicted for the operating conditions, having an effect on the overall tip deflection. The failure criteria applied via the UMAT form a useful tool for analysis of high risk regions within the blade designs investigated.
Finite element modeling of superelastic nickel-titanium orthodontic wires.
Naceur, Ines Ben; Charfi, Amin; Bouraoui, Tarak; Elleuch, Khaled
2014-11-28
Thanks to its good corrosion resistance and biocompatibility, superelastic Ni–Ti wire alloys have been successfully used in orthodontic treatment. Therefore, it is important to quantify and evaluate the level of orthodontic force applied to the bracket and teeth in order to achieve tooth movement. In this study, three dimensional finite element models with a Gibbs-potential-based-formulation and thermodynamic principles were used. The aim was to evaluate the influence of possible intraoral temperature differences on the forces exerted by NiTi orthodontic arch wires with different cross sectional shapes and sizes. The prediction made by this phenomenological model, for superelastic tensile and bending tests, shows good agreement with the experimental data. A bending test is simulated to study the force variation of an orthodontic NiTi arch wire when it loaded up to the deflection of 3 mm, for this task one half of the arch wire and the 3 adjacent brackets were modeled. The results showed that the stress required for the martensite transformation increases with the increase of cross-sectional dimensions and temperature. Associated with this increase in stress, the plateau of this transformation becomes steeper. In addition, the area of the mechanical hysteresis, measured as the difference between the forces of the upper and lower plateau, increases.
ELLIPT2D: A Flexible Finite Element Code Written Python
Pletzer, A.; Mollis, J.C.
2001-03-22
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.
Galvanic coupling transmission in intrabody communication: a finite element approach.
Amparo Callejón, M; Reina-Tosina, Javier; Naranjo-Hernández, David; Roa, Laura M
2014-03-01
Galvanic coupling in intrabody communication (IBC) is a technique that couples low-power and low-frequency voltages and currents into the human body, which acts as a transmission medium, and thus constitutes a promising approach in the design of personal health devices. Despite important advances being made during recent years, the investigation of relevant galvanic IBC parameters, including the influence of human tissues and different electrode configurations, still requires further research efforts. The objective of this work is to disclose knowledge into IBC galvanic coupling transmission mechanisms by using a realistic 3-D finite element model of the human arm. Unlike other computational models for IBC, we have modeled the differential configuration of the galvanic coupling as a four-port network in order to analyze the electric field distribution and current density through different tissues. This has allowed us to provide an insight into signal transmission paths through the human body, showing them to be considerably dependent on variables such as frequency and inter-electrode distance. In addition, other important variables, for example bioimpedance and pathloss, have also been analyzed. Finally, experimental measurements were also carried out for the sake of validation, demonstrating the reliability of the model to emulate in general forms some of the behaviors observed in practice.
A finite element simulation of biological conversion processes in landfills
Robeck, M.; Ricken, T.
2011-04-15
Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.
Mixed finite-element formulations in piezoelectricity and flexoelectricity.
Mao, Sheng; Purohit, Prashant K; Aravas, Nikolaos
2016-06-01
Flexoelectricity, the linear coupling of strain gradient and electric polarization, is inherently a size-dependent phenomenon. The energy storage function for a flexoelectric material depends not only on polarization and strain, but also strain-gradient. Thus, conventional finite-element methods formulated solely on displacement are inadequate to treat flexoelectric solids since gradients raise the order of the governing differential equations. Here, we introduce a computational framework based on a mixed formulation developed previously by one of the present authors and a colleague. This formulation uses displacement and displacement-gradient as separate variables which are constrained in a 'weighted integral sense' to enforce their known relation. We derive a variational formulation for boundary-value problems for piezo- and/or flexoelectric solids. We validate this computational framework against available exact solutions. Our new computational method is applied to more complex problems, including a plate with an elliptical hole, stationary cracks, as well as tension and shear of solids with a repeating unit cell. Our results address several issues of theoretical interest, generate predictions of experimental merit and reveal interesting flexoelectric phenomena with potential for application.
Finite-size scaling for quantum criticality using the finite-element method.
Antillon, Edwin; Wehefritz-Kaufmann, Birgit; Kais, Sabre
2012-03-01
Finite size scaling for the Schrödinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite-element method was shown to be a powerful numerical method for ab initio electronic-structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite-element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, local density approximation, and an "exact" formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.
Finite Element Models for Electron Beam Freeform Fabrication Process
NASA Technical Reports Server (NTRS)
Chandra, Umesh
2012-01-01
Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the
Optimizing the seamless tube extrusion process using the finite element method
NASA Astrophysics Data System (ADS)
Li, Feng; Li, Li; Wang, Xiang; Ma, Xu Liang
2010-03-01
In order to reveal the mechanism of extrusion forming for large-scale aluminum alloy seamless pipe, in this research the rigid-viscous plastic finite element method was used to analyze the effect of the technological parameters of the aluminum alloy pipe extrusion process, consistent with the use requirements.
Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.
Chang, Cheng-Tao; Chen, Yu-Hsing; Lin, Chou-Ching K; Ju, Ming-Shaung
2015-07-16
The mechanical characteristics of ultrastructures of rat sciatic nerves were investigated through animal experiments and finite element analyses. A custom-designed dynamic testing apparatus was used to conduct in vitro transverse compression experiments on the nerves. The optical coherence tomography (OCT) was utilized to record the cross-sectional images of nerve during the dynamic testing. Two-dimensional finite element models of the nerves were built based on their OCT images. A hyper-viscoelastic model was employed to describe the elastic and stress relaxation response of each ultrastructure of the nerve, namely the endoneurium, the perineurium and the epineurium. The first-order Ogden model was employed to describe the elasticity of each ultrastructure and a generalized Maxwell model for the relaxation. The inverse finite element analysis was used to estimate the material parameters of the ultrastructures. The results show the instantaneous shear modulus of the ultrastructures in decreasing order is perineurium, endoneurium, and epineurium. The FE model combined with the first-order Ogden model and the second-order Prony series is good enough for describing the compress-and-hold response of the nerve ultrastructures. The integration of OCT and the nonlinear finite element modeling may be applicable to study the viscoelasticity of peripheral nerve down to the ultrastructural level.
Automated volumetric grid generation for finite element modeling of human hand joints
Hollerbach, K.; Underhill, K.; Rainsberger, R.
1995-02-01
We are developing techniques for finite element analysis of human joints. These techniques need to provide high quality results rapidly in order to be useful to a physician. The research presented here increases model quality and decreases user input time by automating the volumetric mesh generation step.
On the Finite Element Approximation of the Streamfunction-Vorticity Equations,
1984-01-01
conditions on *b are constant values at Methods", RAIRO , 1980. y- 0 and 1 and a/an - 0 onall boundaries. We note that the solution of Problem 1, due to...Order Problems and due to the high symmetry of this configuration, the Using Linear Finite Elements", RAIRO , 1978. exact value of a - -1/2 was computed
Finite element analysis of hysteresis effects in piezoelectric transducers
NASA Astrophysics Data System (ADS)
Simkovics, Reinhard; Landes, Hermann; Kaltenbacher, Manfred; Hoffelner, Johann; Lerch, Reinhard
2000-06-01
The design of ultrasonic transducers for high power applications, e.g. in medical therapy or production engineering, asks for effective computer aided design tools to analyze the occurring nonlinear effects. In this paper the finite-element-boundary-element package CAPA is presented that allows to model different types of electromechanical sensors and actuators. These transducers are based on various physical coupling effects, such as piezoelectricity or magneto- mechanical interactions. Their computer modeling requires the numerical solution of a multifield problem, such as coupled electric-mechanical fields or magnetic-mechanical fields as well as coupled mechanical-acoustic fields. With the reported software environment we are able to compute the dynamic behavior of electromechanical sensors and actuators by taking into account geometric nonlinearities, nonlinear wave propagation and ferroelectric as well as magnetic material nonlinearities. After a short introduction to the basic theory of the numerical calculation schemes, two practical examples will demonstrate the applicability of the numerical simulation tool. As a first example an ultrasonic thickness mode transducer consisting of a piezoceramic material used for high power ultrasound production is examined. Due to ferroelectric hysteresis, higher order harmonics can be detected in the actuators input current. Also in case of electrical and mechanical prestressing a resonance frequency shift occurs, caused by ferroelectric hysteresis and nonlinear dependencies of the material coefficients on electric field and mechanical stresses. As a second example, a power ultrasound transducer used in HIFU-therapy (high intensity focused ultrasound) is presented. Due to the compressibility and losses in the propagating fluid a nonlinear shock wave generation can be observed. For both examples a good agreement between numerical simulation and experimental data has been achieved.
Heat transfer monitoring by means of the hot wire technique and finite element analysis software.
Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E
2014-01-01
It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances.
A variational method for finite element stress recovery and error estimation
NASA Technical Reports Server (NTRS)
Tessler, A.; Riggs, H. R.; Macy, S. C.
1993-01-01
A variational method for obtaining smoothed stresses from a finite element derived nonsmooth stress field is presented. The method is based on minimizing a functional involving discrete least-squares error plus a penalty constraint that ensures smoothness of the stress field. An equivalent accuracy criterion is developed for the smoothing analysis which results in a C sup 1-continuous smoothed stress field possessing the same order of accuracy as that found at the superconvergent optimal stress points of the original finite element analysis. Application of the smoothing analysis to residual error estimation is also demonstrated.
Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows
Xia, Yidong; Wang, Chuanjin; Luo, Hong; Christon, Mark; Bakosi, Jozsef
2016-02-15
Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in the simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the Hydra-TH code. -- Highlights: •We performed a comprehensive study to verify and validate the turbulence models in Hydra-TH. •Hydra-TH delivers 2nd-order grid convergence for the incompressible Navier–Stokes equations. •Hydra-TH can accurately simulate the laminar boundary layers. •Hydra-TH can accurately simulate the turbulent boundary layers with RANS turbulence models. •Hydra-TH delivers high-fidelity LES capability for simulating turbulent flows in confined space.
Hollaus, K; Weiss, B; Magele, Ch; Hutten, H
2004-02-01
The acceleration of the solution of the quasi-static electric field problem considering anisotropic complex conductivity simulated by tetrahedral finite elements of first order is investigated by geometric multigrid.
NASA Technical Reports Server (NTRS)
Hughes, T. J. R.; Winget, J.; Levit, I.; Tezduyar, T. E.
1983-01-01
Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in computational mechanics. A variety of techniques are compared on problems of structural mechanics, heat conduction and fluid mechanics. The results obtained suggest considerable potential for the methods described.
A hybridized formulation for the weak Galerkin mixed finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-01-14
This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising from the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.
A hybridized formulation for the weak Galerkin mixed finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-01-14
This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less
FECAP - FINITE ELEMENT COMPOSITE ANALYSIS PROGRAM FOR A MICROCOMPUTER
NASA Technical Reports Server (NTRS)
Bowles, D. E.
1994-01-01
Advanced composite materials have gained use in the aerospace industry over the last 20 years because of their high specific strength and stiffness, and low coefficient of thermal expansion. Design of composite structures requires the analysis of composite material behavior. The Finite Element Composite Analysis Program, FECAP, is a special purpose finite element analysis program for analyzing composite material behavior with a microcomputer. Composite materials, in regard to this program, are defined as the combination of at least two distinct materials to form one nonhomogeneous anisotropic material. FECAP assumes a state of generalized plane strain exists in a material consisting of two or more orthotropic phases, subjected to mechanical and/or thermal loading. The finite element formulation used in FECAP is displacement based and requires the minimization of the total potential energy for each element with respect to the unknown variables. This procedure leads to a set of linear simultaneous equations relating the unknown nodal displacements to the applied loads. The equations for each element are assembled into a global system, the boundary conditions are applied, and the system is solved for the nodal displacements. The analysis may be performed using either 4-mode linear or 8-mode quadratic isoparametric elements. Output includes the nodal displacements, and the element stresses and strains. FECAP was written for a Hewlett Packard HP9000 Series 200 Microcomputer with the HP Basic operating system. It was written in HP BASIC 3.0 and requires approximately 0.5 Mbytes of RAM in addition to what is required for the operating system. A math coprocessor card is highly recommended. FECAP was developed in 1988.
A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation
Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; /SLAC
2010-06-07
A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.
An approach for verification of finite-element analysis in nonlinear elasticity under large strains
NASA Astrophysics Data System (ADS)
Zingerman, K. M.; Vershinin, A. V.; Levin, V. A.
2016-11-01
An approach to verification of finite-element calculations of stress-strain state of nonlinear elastic bodies under large deformations is suggested. The problems that may be reduced to one-dimensional ones using a semi-inverse method are taken as test problems. An example of such a test problem is the Lame problem for a cylinder. Generally, this problem for compressible hyperelastic materials has no exact analytical solution, but it can be reduced to a boundary value problem for an ordinary second-order nonlinear differential equation, and in some cases - to the Cauchy problem. A numerical solution of this problem can be used as a test one for finite element calculations carried out in three-dimensional statement. Some results of such verification (finite element calculations were performed using the Fidesys CAE-system) are presented.
Wang, Wansheng; Chen, Long; Zhou, Jie
2016-05-01
A postprocessing technique for mixed finite element methods for the Cahn-Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on the coarser mesh, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures.
A finite element study of the EIDI system. [Electro-Impulse De-Icing System
NASA Technical Reports Server (NTRS)
Khatkhate, A. A.; Scavuzzo, R. J.; Chu, M. L.
1988-01-01
This paper presents a method for modeling the structural dynamics of an Electro-Impulse De-Icing System, using finite element analyses procedures. A guideline for building a representative finite element model is discussed. Modeling was done initially using four noded cubic elements, four noded isoparametric plate elements and eight noded isoparametric shell elements. Due to the size of the problem and due to the underestimation of shear stress results when compared to previous analytical work an approximate model was created to predict possible areas of shedding of ice. There appears to be good agreement with the test data provided by The Boeing Commercial Airplane Company. Thus these initial results of this method were found to be encouraging. Additional analytical work and comparison with experiment is needed in order to completely evaluate this approach.
Finite element structural redesign by large admissible perturbations
NASA Technical Reports Server (NTRS)
Bernitsas, Michael M.; Beyko, E.; Rim, C. W.; Alzahabi, B.
1991-01-01
In structural redesign, two structural states are involved; the baseline (known) State S1 with unacceptable performance, and the objective (unknown) State S2 with given performance specifications. The difference between the two states in performance and design variables may be as high as 100 percent or more depending on the scale of the structure. A Perturbation Approach to Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the same finite element model and represented by different values of the design variables. General perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes, static deflections, static stresses, Euler buckling loads, and buckling modes of the objective S2 in terms of its performance specifications, and S1 data and Finite Element Analysis (FEA) results. Large Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the objective S2 incrementally without trial and error by postprocessing FEA results of S1 with no additional FEAs. Systematic numerical applications in redesign of a 10 element 48 degree of freedom (dof) beam, a 104 element 192 dof offshore tower, a 64 element 216 dof plate, and a 144 element 896 dof cylindrical shell show the accuracy, efficiency, and potential of PAR to find an objective state that may differ 100 percent from the baseline design.
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)
2002-01-01
Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.
On Computing the Pressure by the p Version of the Finite Element Method for Stokes Problem
1990-02-15
approximation of saddlepoint prob- lems arising from Lagrangian multipliers. RAIRO , 8:129-151, 1974. [9] M. Dauge. Stationary Stokes and Navier-Stokes systems...Jensen and M. Vogelius. Divergence stability in connection with the p version of the finite element method. RAIRO , Modelisation Math. Anal. Numer., 1990...element method for elliptic problems of order 2 1. RAIRO , Modelisation Math. Anal. Numer., 24:107-146, 1990. 1261 M. Suri. On the stability and convergence
Finite-order universal portfolios generated by probability mass functions
NASA Astrophysics Data System (ADS)
Tan, Choon Peng; Chu, Sin Yen; Pan, Wei Yeing
2015-05-01
It is shown that the finite-order universal portfolios generated by independent discrete random variables are constant rebalanced portfolios. The case where the universal portfolios are generated by the moments of the joint Dirichlet distribution is studied. The performance of the low-order Dirichlet universal portfolios on some stock-price data set is analyzed. It is demonstrated that the performance is comparable and in some cases outperform the moving-order Cover-Ordentlich universal portfolios with faster implementation time and higher wealth achieved.
Finite Element Modelling of the Apollo Heat Flow Experiments
NASA Astrophysics Data System (ADS)
Platt, J.; Siegler, M. A.; Williams, J.
2013-12-01
The heat flow experiments sent on Apollo missions 15 and 17 were designed to measure the temperature gradient of the lunar regolith in order to determine the heat flux of the moon. Major problems in these experiments arose from the fact that the astronauts were not able to insert the probes below the thermal skin depth. Compounding the problem, anomalies in the data have prevented scientists from conclusively determining the temperature dependent conductivity of the soil, which enters as a linear function into the heat flow calculation, thus stymieing them in their primary goal of constraining the global heat production of the Moon. Different methods of determining the thermal conductivity have yielded vastly different results resulting in downward corrections of up to 50% in some cases from the original calculations. Along with problems determining the conductivity, the data was inconsistent with theoretical predictions of the temperature variation over time, leading some to suspect that the Apollo experiment itself changed the thermal properties of the localised area surrounding the probe. The average temperature of the regolith, according to the data, increased over time, a phenomenon that makes calculating the thermal conductivity of the soil and heat flux impossible without knowing the source of error and accounting for it. The changes, possibly resulting from as varied sources as the imprint of the Astronauts boots on the lunar surface, compacted soil around the bore stem of the probe or even heat radiating down the inside of the tube, have convinced many people that the recorded data is unusable. In order to shed some light on the possible causes of this temperature rise, we implemented a finite element model of the probe using the program COMSOL Multi-physics as well as Matlab. Once the cause of the temperature rise is known then steps can be taken to account for the failings of the experiment and increase the data's utility.
Compatibility conditions of structural mechanics for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Berke, L.; Gallagher, R. H.
1991-01-01
The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's; (2) the cluster or field CC's; and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown.
Finite element thermo-viscoplastic analysis of aerospace structures
NASA Technical Reports Server (NTRS)
Pandey, Ajay K.; Dechaumphai, Pramote; Thornton, Earl A.
1990-01-01
The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.
An emulator for minimizing finite element analysis implementation resources
NASA Technical Reports Server (NTRS)
Melosh, R. J.; Utku, S.; Salama, M.; Islam, M.
1982-01-01
A finite element analysis emulator providing a basis for efficiently establishing an optimum computer implementation strategy when many calculations are involved is described. The SCOPE emulator determines computer resources required as a function of the structural model, structural load-deflection equation characteristics, the storage allocation plan, and computer hardware capabilities. Thereby, it provides data for trading analysis implementation options to arrive at a best strategy. The models contained in SCOPE lead to micro-operation computer counts of each finite element operation as well as overall computer resource cost estimates. Application of SCOPE to the Memphis-Arkansas bridge analysis provides measures of the accuracy of resource assessments. Data indicate that predictions are within 17.3 percent for calculation times and within 3.2 percent for peripheral storage resources for the ELAS code.
An emulator for minimizing computer resources for finite element analysis
NASA Technical Reports Server (NTRS)
Melosh, R.; Utku, S.; Islam, M.; Salama, M.
1984-01-01
A computer code, SCOPE, has been developed for predicting the computer resources required for a given analysis code, computer hardware, and structural problem. The cost of running the code is a small fraction (about 3 percent) of the cost of performing the actual analysis. However, its accuracy in predicting the CPU and I/O resources depends intrinsically on the accuracy of calibration data that must be developed once for the computer hardware and the finite element analysis code of interest. Testing of the SCOPE code on the AMDAHL 470 V/8 computer and the ELAS finite element analysis program indicated small I/O errors (3.2 percent), larger CPU errors (17.8 percent), and negligible total errors (1.5 percent).
Finite Element Analysis of Extrusion of Multifilamentary Superconductor Precursor
Peng, X.; Sumption, M.D.; Collings, E.W.
2004-06-28
The extrusion of multifilamentary superconductor precursor billets has been modeled using finite element analysis. The billet configuration was 6 around 1, with the subelement consisting of Nb rods, and the outer can or sleeve was Cu. Two general cases were investigated, those in which the re-stack rods were initially; (i) round, and (ii) hexed. A thermo-mechanical, elasto-plastic, finite-element method was used to analyze the extrusion process. In this 3D FEM model, the initial state of the billet was assumed to be absent of bonding. A typical die angle (2{alpha}=45 deg.) and a series of extrusion ratios were selected to perform the simulation and the corresponding stress and strain distributions of the two billet variants processed were compared. Based on the stress and deformation created at the rod/rod and rod/sleeve interfaces, the bonding conditions generated through the extrusion were investigated.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1989-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Surface subsidence prediction by nonlinear finite-element analysis
Najjar, Y. . Dept. of Civil Engineering); Zaman, M. . School of Civil Engineering and Environmental Science)
1993-11-01
An improved two-dimensional plane-strain numerical procedure based on the incremental-iterative nonlinear finite-element is developed to predict ground subsidence caused by underground mining. The procedure emphasizes the use of the following features: (1) an appropriate constitutive model that can accurately describe the nonlinear behavior of geological strata; and (2) an accurate algorithm for simulation of excavation sequences consistent with the actual underground mining process. The computer code is used to analyze a collapse that occurred in the Blue Goose Lease [number sign]1 Mine in northeastern Oklahoma. A parametric study is conducted to investigate the effects of some selected factors on the shape and extent of subsidence profiles. Analyses of the numerical results indicate that the nonlinear finite-element technique can be employed to meaningfully predict and characterize the potential for ground subsidence due to underground mining.
A fast hidden line algorithm for plotting finite element models
NASA Technical Reports Server (NTRS)
Jones, G. K.
1982-01-01
Effective plotting of finite element models requires the use of fast hidden line plot techniques that provide interactive response. A high speed hidden line technique was developed to facilitate the plotting of NASTRAN finite element models. Based on testing using 14 different models, the new hidden line algorithm (JONES-D) appears to be very fast: its speed equals that for normal (all lines visible) plotting and when compared to other existing methods it appears to be substantially faster. It also appears to be very reliable: no plot errors were observed using the new method to plot NASTRAN models. The new algorithm was made part of the NPLOT NASTRAN plot package and was used by structural analysts for normal production tasks.
Cyclic creep analysis from elastic finite-element solutions
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hwang, S. Y.
1986-01-01
A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from the stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code.
Finite element methods for integrated aerodynamic heating analysis
NASA Technical Reports Server (NTRS)
Peraire, J.
1990-01-01
Over the past few years finite element based procedures for the solution of high speed viscous compressible flows were developed. The objective of this research is to build upon the finite element concepts which have already been demonstrated and to develop these ideas to produce a method which is applicable to the solution of large scale practical problems. The problems of interest range from three dimensional full vehicle Euler simulations to local analysis of three-dimensional viscous laminar flow. Transient Euler flow simulations involving moving bodies are also to be included. An important feature of the research is to be the coupling of the flow solution methods with thermal/structural modeling techniques to provide an integrated fluid/thermal/structural modeling capability. The progress made towards achieving these goals during the first twelve month period of the research is presented.
Pavement nondestructive evaluation using finite-element dynamic simulation
NASA Astrophysics Data System (ADS)
Uddin, W.; Hackett, R. M.
1996-11-01
This paper describes the nondestructive evaluation devices, visual distress survey and coring used to investigate jointed concrete pavement performance in northern Mississippi. 3D finite-element models were developed to simulate in-service conditions and to characterize in-situ material properties. Reasonable good agreement is found between in-situ moduli backcalculated from the dynamic analysis of falling weight deflectometer (FWD) deflections measured on selected pavements and laboratory moduli. Effects of load pulse shape, cracking, and discontinuities on the surface deflection response of pavements subjected to FWD load wee also investigated. It is shown that 3D analysis of temperature distribution and resulting thermal stresses play a significant role int he performance of concrete pavements. The study results demonstrated the extensive usefulness of the finite-element dynamic analysis and limitations of the static multilayered analysis and other pavement analysis programs which do not allow for crack modeling and dynamic analysis.
Design Optimization of Coronary Stent Based on Finite Element Models
Qiu, Tianshuang; Zhu, Bao; Wu, Jinying
2013-01-01
This paper presents an effective optimization method using the Kriging surrogate model combing with modified rectangular grid sampling to reduce the stent dogboning effect in the expansion process. An infilling sampling criterion named expected improvement (EI) is used to balance local and global searches in the optimization iteration. Four commonly used finite element models of stent dilation were used to investigate stent dogboning rate. Thrombosis models of three typical shapes are built to test the effectiveness of optimization results. Numerical results show that two finite element models dilated by pressure applied inside the balloon are available, one of which with the artery and plaque can give an optimal stent with better expansion behavior, while the artery and plaque unincluded model is more efficient and takes a smaller amount of computation. PMID:24222743
Finite Element Analysis of Electrically Excited Quartz Tuning Fork Devices
Oria, Roger; Otero, Jorge; González, Laura; Botaya, Luis; Carmona, Manuel; Puig-Vidal, Manel
2013-01-01
Quartz Tuning Fork (QTF)-based Scanning Probe Microscopy (SPM) is an important field of research. A suitable model for the QTF is important to obtain quantitative measurements with these devices. Analytical models have the limitation of being based on the double cantilever configuration. In this paper, we present an electromechanical finite element model of the QTF electrically excited with two free prongs. The model goes beyond the state-of-the-art of numerical simulations currently found in the literature for this QTF configuration. We present the first numerical analysis of both the electrical and mechanical behavior of QTF devices. Experimental measurements obtained with 10 units of the same model of QTF validate the finite element model with a good agreement. PMID:23722828
FEHM: finite element heat and mass transfer code
Zyvoloski, G.; Dash, Z.; Kelkar, S.
1988-03-01
The finite element heat and mass (FEHM) transfer code is a computer code developed to simulate geothermal and hot dry rock reservoirs. It is also applicable to natural-state studies of geothermal systems and ground-water flow. It solves the equations of heat and mass transfer for multiphase flow in porous and permeable media using the finite element method. The code also has provisions for a noncoupled tracer; that is, the tracer solutions do not affect the heat and mass transfer solutions. It can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model, the numerical solution procedure, and model verification and validation are provided in this report. A user's guide and sample problems are included in the appendices. 17 refs., 10 figs., 4 tabs.
A finite element model of ferroelectric/ferroelastic polycrystals
HWANG,STEPHEN C.; MCMEEKING,ROBERT M.
2000-02-17
A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.
A finite element model for residual stress in repair welds
Feng, Z.; Wang, X.L.; Spooner, S.; Goodwin, G.M.; Maziasz, P.J.; Hubbard, C.R.; Zacharia, T.
1996-03-28
This paper describes a three-dimensional finite element model for calculation of the residual stress distribution caused by repair welding. Special user subroutines were developed to simulate the continuous deposition of filler metal during welding. The model was then tested by simulating the residual stress/strain field of a FeAl weld overlay clad on a 2{1/4}Cr-1 Mo steel plate, for which neutron diffraction measurement data of the residual strain field were available. It is shown that the calculated residual stress distribution was consistent with that determined with neutron diffraction. High tensile residual stresses in both the longitudinal and transverse directions were observed around the weld toe at the end of the weld. The strong spatial dependency of the residual stresses in the region around the weld demonstrates that the common two-dimensional cross-section finite element models should not be used for repair welding analysis.
Compatibility conditions of structural mechanics for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.
1990-01-01
The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's; (2) the cluster or field CC's; and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown.
Finite element solution of transient fluid-structure interaction problems
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.
1991-01-01
A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.
Recent finite element studies in plasticity and fracture mechanics
NASA Technical Reports Server (NTRS)
Rice, J. R.; Mcmeeking, R. M.; Parks, D. M.; Sorensen, E. P.
1979-01-01
The paper reviews recent work on fundamentals of elastic-plastic finite-element analysis and its applications to the mechanics of crack opening and growth in ductile solids. The presentation begins with a precise formulation of incremental equilibrium equations and their finite-element forms in a manner valid for deformations of arbitrary magnitude. Special features of computational procedures are outlined for accuracy in view of the near-incompressibility of elastic-plastic response. Applications to crack mechanics include the analysis of large plastic deformations at a progressively opening crack tip, the determination of J integral values and of limitations to J characterizations of the intensity of the crack tip field, and the determination of crack tip fields in stable crack growth.
ORION96. 2-d Finite Element Code Postprocessor
Sanford, L.A.; Hallquist, J.O.
1992-02-02
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
An hybrid finite volume finite element method for variable density incompressible flows
NASA Astrophysics Data System (ADS)
Calgaro, Caterina; Creusé, Emmanuel; Goudon, Thierry
2008-04-01
This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier-Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh-Taylor instability evolution is carefully investigated.
Elastoplastic notch root strains - Measurements versus finite-element predictions
NASA Technical Reports Server (NTRS)
Tregoning, R. L.
1992-01-01
A study intended to experimentally and computationally probe the nature of the elastoplastic strain fields created by notches with various levels of constraint is presented. An interferometric strain/displacement gage is used to measure both the axial and lateral strain at the center of a machined and polished notch. The monotonic response of various notches is determined using 3D finite-element calculations.
Finite Element Modeling of Intermuscular Interactions and Myofascial Force Transmission
2001-10-25
obtained explain force differences at the distal and proximal tendons of muscles that have mechanical interaction. This is in agreement with experimental...consequence is that active force generated within one muscle may be exerted at the tendon of another muscle. Keywords- Finite element method...7]. Therefore, in vivo there is an additional route for force transmission out off the muscle, which completely bypasses the tendon of the muscle
Quality Assessment and Control of Finite Element Solutions.
1986-05-01
Extensions," to be published in the Proceedings of the NATO Advanced Study Institute on Computer Aided Optimal Design, Portugal, Springer-Verlag, June 1986...FINITE ELEMENT SOLUTIONS by I. Babuska Institute f’or Physical Science and Technology University of Maryland College Park, Maryland 2C742 and Ahmed K...PROJECT. TASK AREA & WORK UNIT NUMBERS Institute for Physical Science and Technology University of Maryland College Park, MD 20742 II. CONTROLLING OFFICE
Finite Element Modeling and Exploration of Double Hearing Protection Systems
2006-02-10
broad frequency range were determined from this method. The elastomeric rubber material was cut into small wafers of 2 to 5mm thickness. A mass was... material (being 0.1 for soft elastomeric foams), G and E are the shear and elastic moduli of the material , respectively, D is the diameter of the...and to investigate the behavior of the modeled system. The foam earplug material properties for the finite element model are required in the same shear
Discontinuous Galerkin Finite Element Method for Parabolic Problems
NASA Technical Reports Server (NTRS)
Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.
2004-01-01
In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of parallel ut(t) parallel Lz(omega) = parallel ut parallel2, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also included.
Faster, Easier Finite-Element Modeling Of Weld Offsets
NASA Technical Reports Server (NTRS)
Hong, C. Chen; Lichwala, Bradley E.
1993-01-01
In faster, easier technique, material in weld zone fictitiously softened to negligibly low modulus of elasticity, and material considered deformed to specified offset. Displacements caused by deformation computed by analysis of static stresses and strains in fictitiously deformed material, using specified offset as displacement boundary condition. Resulting displacements added to coordinates of corresponding nodes of original (nonoffset) mathematical model of welded part. Technique used to modify large finite-element mathematical model to any desired weld offset configuration in short time.
A verification procedure for MSC/NASTRAN Finite Element Models
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.
1995-01-01
Finite Element Models (FEM's) are used in the design and analysis of aircraft to mathematically describe the airframe structure for such diverse tasks as flutter analysis and actively controlled landing gear design. FEM's are used to model the entire airplane as well as airframe components. The purpose of this document is to describe recommended methods for verifying the quality of the FEM's and to specify a step-by-step procedure for implementing the methods.
Application of Finite Element Method to Analyze Inflatable Waveguide Structures
NASA Technical Reports Server (NTRS)
Deshpande, M. D.
1998-01-01
A Finite Element Method (FEM) is presented to determine propagation characteristics of deformed inflatable rectangular waveguide. Various deformations that might be present in an inflatable waveguide are analyzed using the FEM. The FEM procedure and the code developed here are so general that they can be used for any other deformations that are not considered in this report. The code is validated by applying the present code to rectangular waveguide without any deformations and comparing the numerical results with earlier published results.
Piezoelectric theory for finite element analysis of ultrasonic motors
Emery, J.D.; Mentesana, C.P.
1997-06-01
The authors present the fundamental equations of piezoelectricity and references. They show how a second form of the equations and a second set of coefficients can be found, through inversions involving the elasticity tensor. They show how to compute the clamped permittivity matrix from the unclamped matrix. The authors list the program pzansys.ftn and present examples of its use. This program does the conversions and calculations needed by the finite element program ANSYS.
Transient Finite Element Computations on a Variable Transputer System
NASA Technical Reports Server (NTRS)
Smolinski, Patrick J.; Lapczyk, Ireneusz
1993-01-01
A parallel program to analyze transient finite element problems was written and implemented on a system of transputer processors. The program uses the explicit time integration algorithm which eliminates the need for equation solving, making it more suitable for parallel computations. An interprocessor communication scheme was developed for arbitrary two dimensional grid processor configurations. Several 3-D problems were analyzed on a system with a small number of processors.
Finite Element Modeling of Tire-Terrain Interaction
2001-11-01
cent advancements in the contact formulations of general-purpose finite element codes (e.g. ABAQUS , HKS 1998) and increases in computer processing...are based on the models as implemented in ABAQUS (HKS 1998). Additional information on soil plasticity and critical state soil mechanics is given...snow interaction, however, the model must simulate snow deformation in a three-dimensional stress field. Initial simulations using the ABAQUS
Building Finite Element Models to Investigate Zebrafish Jaw Biomechanics
Brunt, Lucy H.; Roddy, Karen A.; Rayfield, Emily J.; Hammond, Chrissy L.
2016-01-01
Skeletal morphogenesis occurs through tightly regulated cell behaviors during development; many cell types alter their behavior in response to mechanical strain. Skeletal joints are subjected to dynamic mechanical loading. Finite element analysis (FEA) is a computational method, frequently used in engineering that can predict how a material or structure will respond to mechanical input. By dividing a whole system (in this case the zebrafish jaw skeleton) into a mesh of smaller 'finite elements', FEA can be used to calculate the mechanical response of the structure to external loads. The results can be visualized in many ways including as a 'heat map' showing the position of maximum and minimum principal strains (a positive principal strain indicates tension while a negative indicates compression. The maximum and minimum refer the largest and smallest strain). These can be used to identify which regions of the jaw and therefore which cells are likely to be under particularly high tensional or compressional loads during jaw movement and can therefore be used to identify relationships between mechanical strain and cell behavior. This protocol describes the steps to generate Finite Element models from confocal image data on the musculoskeletal system, using the zebrafish lower jaw as a practical example. The protocol leads the reader through a series of steps: 1) staining of the musculoskeletal components, 2) imaging the musculoskeletal components, 3) building a 3 dimensional (3D) surface, 4) generating a mesh of Finite Elements, 5) solving the FEA and finally 6) validating the results by comparison to real displacements seen in movements of the fish jaw. PMID:28060270
An interactive virtual environment for finite element analysis
Bradshaw, S.; Canfield, T.; Kokinis, J.; Disz, T.
1995-06-01
Virtual environments (VE) provide a powerful human-computer interface that opens the door to exciting new methods of interaction with high-performance computing applications in several areas of research. The authors are interested in the use of virtual environments as a user interface to real-time simulations used in rapid prototyping procedures. Consequently, the authors are developing methods for coupling finite element models of complex mechanical systems with a VE interface for real-time interaction.
Finite element analysis of a deployable space structure
NASA Technical Reports Server (NTRS)
Hutton, D. V.
1982-01-01
To assess the dynamic characteristics of a deployable space truss, a finite element model of the Scientific Applications Space Platform (SASP) truss has been formulated. The model incorporates all additional degrees of freedom associated with the pin-jointed members. Comparison of results with SPAR models of the truss show that the joints of the deployable truss significantly affect the vibrational modes of the structure only if the truss is relatively short.
Better Finite-Element Analysis of Composite Shell Structures
NASA Technical Reports Server (NTRS)
Clarke, Gregory
2007-01-01
A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.
Parallel finite element simulation of large ram-air parachutes
NASA Astrophysics Data System (ADS)
Kalro, V.; Aliabadi, S.; Garrard, W.; Tezduyar, T.; Mittal, S.; Stein, K.
1997-06-01
In the near future, large ram-air parachutes are expected to provide the capability of delivering 21 ton payloads from altitudes as high as 25,000 ft. In development and test and evaluation of these parachutes the size of the parachute needed and the deployment stages involved make high-performance computing (HPC) simulations a desirable alternative to costly airdrop tests. Although computational simulations based on realistic, 3D, time-dependent models will continue to be a major computational challenge, advanced finite element simulation techniques recently developed for this purpose and the execution of these techniques on HPC platforms are significant steps in the direction to meet this challenge. In this paper, two approaches for analysis of the inflation and gliding of ram-air parachutes are presented. In one of the approaches the point mass flight mechanics equations are solved with the time-varying drag and lift areas obtained from empirical data. This approach is limited to parachutes with similar configurations to those for which data are available. The other approach is 3D finite element computations based on the Navier-Stokes equations governing the airflow around the parachute canopy and Newtons law of motion governing the 3D dynamics of the canopy, with the forces acting on the canopy calculated from the simulated flow field. At the earlier stages of canopy inflation the parachute is modelled as an expanding box, whereas at the later stages, as it expands, the box transforms to a parafoil and glides. These finite element computations are carried out on the massively parallel supercomputers CRAY T3D and Thinking Machines CM-5, typically with millions of coupled, non-linear finite element equations solved simultaneously at every time step or pseudo-time step of the simulation.
GRIZ. Finite Element Results Visualization for Unstructured Grids
Dovey, D.; Spelce, T.E.; Christon, M.A.
1996-03-01
GRIZ is a general-purpose post-processing application supporting interactive visualization of finite element analysis results on unstructured grids. In addition to basic pseudocolor renderings of state variables over the mesh surface, GRIZ provides modern visualization techniques such as isocontours and isosurfaces, cutting planes, vector field display, and particle traces. GRIZ accepts both command-line and mouse-driven input, and is portable to virtually any UNIX platform which provides Motif and OpenGl libraries.
NASA Astrophysics Data System (ADS)
Wang, Dongdong; Li, Xiwei; Pan, Feixu
2016-11-01
A simple and unified finite element formulation is presented for superconvergent eigenvalue computation of wave equations ranging from 1D to 3D. In this framework, a general method based upon the so called α mass matrix formulation is first proposed to effectively construct 1D higher order mass matrices for arbitrary order elements. The finite elements discussed herein refer to the Lagrangian type of Lobatto elements that take the Lobatto points as nodes. Subsequently a set of quadrature rules that exactly integrate the 1D higher order mass matrices are rationally derived, which are termed as the superconvergent quadrature rules. More importantly, in 2D and 3D cases, it is found that the employment of these quadrature rules via tensor product simultaneously for the mass and stiffness matrix integrations of Lobatto elements produces a unified superconvergent formulation for the eigenvalue or frequency computation without wave propagation direction dependence, which usually is a critical issue for the multidimensional higher order mass matrix formulation. Consequently the proposed approach is capable of computing arbitrary frequencies in a superconvergent fashion. Meanwhile, numerical implementation of the proposed method for multidimensional problems is trivial. The effectiveness of the proposed methodology is systematically demonstrated by a series of numerical examples. Numerical results revealed that a superconvergence with 2(p+1)th order of frequency accuracy is achieved by the present unified formulation for the pth order Lobatto element.
NASA Astrophysics Data System (ADS)
Wang, Dongdong; Li, Xiwei; Pan, Feixu
2017-01-01
A simple and unified finite element formulation is presented for superconvergent eigenvalue computation of wave equations ranging from 1D to 3D. In this framework, a general method based upon the so called α mass matrix formulation is first proposed to effectively construct 1D higher order mass matrices for arbitrary order elements. The finite elements discussed herein refer to the Lagrangian type of Lobatto elements that take the Lobatto points as nodes. Subsequently a set of quadrature rules that exactly integrate the 1D higher order mass matrices are rationally derived, which are termed as the superconvergent quadrature rules. More importantly, in 2D and 3D cases, it is found that the employment of these quadrature rules via tensor product simultaneously for the mass and stiffness matrix integrations of Lobatto elements produces a unified superconvergent formulation for the eigenvalue or frequency computation without wave propagation direction dependence, which usually is a critical issue for the multidimensional higher order mass matrix formulation. Consequently the proposed approach is capable of computing arbitrary frequencies in a superconvergent fashion. Meanwhile, numerical implementation of the proposed method for multidimensional problems is trivial. The effectiveness of the proposed methodology is systematically demonstrated by a series of numerical examples. Numerical results revealed that a superconvergence with 2(p+1)th order of frequency accuracy is achieved by the present unified formulation for the pth order Lobatto element.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Pates, Carl S., III
1994-01-01
A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.
GPU accelerated spectral finite elements on all-hex meshes
NASA Astrophysics Data System (ADS)
Remacle, J.-F.; Gandham, R.; Warburton, T.
2016-11-01
This paper presents a spectral element finite element scheme that efficiently solves elliptic problems on unstructured hexahedral meshes. The discrete equations are solved using a matrix-free preconditioned conjugate gradient algorithm. An additive Schwartz two-scale preconditioner is employed that allows h-independence convergence. An extensible multi-threading programming API is used as a common kernel language that allows runtime selection of different computing devices (GPU and CPU) and different threading interfaces (CUDA, OpenCL and OpenMP). Performance tests demonstrate that problems with over 50 million degrees of freedom can be solved in a few seconds on an off-the-shelf GPU.
Recent advances in hybrid/mixed finite elements
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1985-01-01
In formulations of Hybrid/Mixed finite element methods respectively by the Hellinger-Reissner principle and the Hu-Washizu principle, the stress equilibrium equations are brought in as conditions of constraint through the introduction of additional internal displacement parameters. These two approaches are more flexible and have better computing efficiencies. A procedure for the choice of assumed stress terms for 3-D solids is suggested. Example solutions are given for plates and shells using the present formulations and the idea of semiloof elements.
Finite Element Method for Thermal Analysis. [with computer program
NASA Technical Reports Server (NTRS)
Heuser, J.
1973-01-01
A two- and three-dimensional, finite-element thermal-analysis program which handles conduction with internal heat generation, convection, radiation, specified flux, and specified temperature boundary conditions is presented. Elements used in the program are the triangle and tetrahedron for two- and three-dimensional analysis, respectively. The theory used in the program is developed, and several sample problems demonstrating the capability and reliability of the program are presented. A guide to using the program, description of the input cards, and program listing are included.
Finite element model for brittle fracture and fragmentation
Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; ...
2016-06-01
A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.
PC Windows finite element modeling of landfill gas flow
Mull, S.R.; Lang, R.J.; Vigil, S.A.; Cota, H.
1996-09-01
A two dimensional demonstration program, GAS, has been developed for the solution of landfill gas (LFG) flow problems on a personal computer (PC). The program combines a Windows{trademark} graphical user interface, object oriented programming (OOP) techniques, and finite element modeling (FEM) to demonstrate the practicality of performing LFG flow modeling on the PC. GAS is demonstrated on a sample LFG problem consisting of a landfill, one gas extraction well, the landfill liner, cap, and surrounding soil. Analyses of the program results are performed for successively finer grid resolutions. Element flux imbalance, execution time, and required memory are characterized as a function of grid resolution.
Experience with automatic, dynamic load balancing and adaptive finite element computation
Wheat, S.R.; Devine, K.D.; Maccabe, A.B.
1993-10-01
Distributed memory, Massively Parallel (MP), MIMD technology has enabled the development of applications requiring computational resources previously unobtainable. Structural mechanics and fluid dynamics applications, for example, are often solved by finite element methods (FEMs) requiring, millions of degrees of freedom to accurately simulate physical phenomenon. Adaptive methods, which automatically refine or coarsen meshes and vary the order of accuracy of the numerical solution, offer greater robustness and computational efficiency than traditional FEMs by reducing the amount of computation required away from physical structures such as shock waves and boundary layers. On MP computers, FEMs frequently result in distributed processor load imbalances. To overcome load imbalance, many MP FEMs use static load balancing as a preprocessor to the finite element calculation. Adaptive methods complicate the load imbalance problem since the work per element is not uniform across the solution domain and changes as the computation proceeds. Therefore, dynamic load balancing is required to maintain global load balance. We describe a dynamic, fine-grained, element-based data migration system that maintains global load balance and is effective in the presence of changing work loads. Global load balance is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method utilizes an automatic element management system library to which a programmer integrates the application`s computational description. The library`s flexibility supports a large class of finite element and finite difference based applications.
3-D Finite Element Analyses of the Egan Cavern Field
Klamerus, E.W.; Ehgartner, B.L.
1999-02-01
Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.
Finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.
1986-01-01
The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous, and turbulent with large gradients in flow quantities and regions of recirculations. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modeling of the particular zone of the SSME being studied. Accessing the geometry definition, digitalizing it, and developing surface interpolations suitable for an interior grid generator require considerable amount of manual labor. There are several types of grid generators available with some general-purpose finite element programs. An efficient and robust computational scheme for solving 3D Navier-Stokes equations has to be implemented. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. The progress made in a project to develop software for the analysis of the flow is discussed. The technical approach to the development of the finite element scheme and the relaxation procedure are discussed. The three dimensional finite element code for the compressible Navier-Stokes equations is listed.
A finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.; Nayani, S.
1990-01-01
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.
Process control of large-scale finite element simulation software
Spence, P.A.; Weingarten, L.I.; Schroder, K.; Tung, D.M.; Sheaffer, D.A.
1996-02-01
We have developed a methodology for coupling large-scale numerical codes with process control algorithms. Closed-loop simulations were demonstrated using the Sandia-developed finite element thermal code TACO and the commercially available finite element thermal-mechanical code ABAQUS. This new capability enables us to use computational simulations for designing and prototyping advanced process-control systems. By testing control algorithms on simulators before building and testing hardware, enormous time and cost savings can be realized. The need for a closed-loop simulation capability was demonstrated in a detailed design study of a rapid-thermal-processing reactor under development by CVC Products Inc. Using a thermal model of the RTP system as a surrogate for the actual hardware, we were able to generate response data needed for controller design. We then evaluated the performance of both the controller design and the hardware design by using the controller to drive the finite element model. The controlled simulations provided data on wafer temperature uniformity as a function of ramp rate, temperature sensor locations, and controller gain. This information, which is critical to reactor design, cannot be obtained from typical open-loop simulations.
Massively parallel finite element computation of three dimensional flow problems
NASA Astrophysics Data System (ADS)
Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S.
1992-12-01
The parallel finite element computation of three-dimensional compressible, and incompressible flows, with emphasis on the space-time formulations, mesh moving schemes and implementations on the Connection Machines CM-200 and CM-5 are presented. For computation of unsteady compressible and incompressible flows involving moving boundaries and interfaces, the Deformable-Spatial-Domain/Stabilized-Space-Time (DSD/SST) formulation that previously developed are employed. In this approach, the stabilized finite element formulations of the governing equations are written over the space-time domain of the problem; therefore, the deformation of the spatial domain with respect to time is taken into account automatically. This approach gives the capability to solve a large class of problems involving free surfaces, moving interfaces, and fluid-structure and fluid-particle interactions. By using special mesh moving schemes, the frequency of remeshing is minimized to reduce the projection errors involved in remeshing and also to increase the parallelization ease of the computations. The implicit equation systems arising from the finite element discretizations are solved iteratively by using the GMRES update technique with the diagonal and nodal-block-diagonal preconditioners. These formulations have all been implemented on the CM-200 and CM-5, and have been applied to several large-scale problems. The three-dimensional problems in this report were all computed on the CM-200 and CM-5.
Finite Element Modeling, Simulation, Tools, and Capabilities at Superform
NASA Astrophysics Data System (ADS)
Raman, Hari; Barnes, A. J.
2010-06-01
Over the past thirty years Superform has been a pioneer in the SPF arena, having developed a keen understanding of the process and a range of unique forming techniques to meet varying market needs. Superform’s high-profile list of customers includes Boeing, Airbus, Aston Martin, Ford, and Rolls Royce. One of the more recent additions to Superform’s technical know-how is finite element modeling and simulation. Finite element modeling is a powerful numerical technique which when applied to SPF provides a host of benefits including accurate prediction of strain levels in a part, presence of wrinkles and predicting pressure cycles optimized for time and part thickness. This paper outlines a brief history of finite element modeling applied to SPF and then reviews some of the modeling tools and techniques that Superform have applied and continue to do so to successfully superplastically form complex-shaped parts. The advantages of employing modeling at the design stage are discussed and illustrated with real-world examples.
HYDRA, A finite element computational fluid dynamics code: User manual
Christon, M.A.
1995-06-01
HYDRA is a finite element code which has been developed specifically to attack the class of transient, incompressible, viscous, computational fluid dynamics problems which are predominant in the world which surrounds us. The goal for HYDRA has been to achieve high performance across a spectrum of supercomputer architectures without sacrificing any of the aspects of the finite element method which make it so flexible and permit application to a broad class of problems. As supercomputer algorithms evolve, the continuing development of HYDRA will strive to achieve optimal mappings of the most advanced flow solution algorithms onto supercomputer architectures. HYDRA has drawn upon the many years of finite element expertise constituted by DYNA3D and NIKE3D Certain key architectural ideas from both DYNA3D and NIKE3D have been adopted and further improved to fit the advanced dynamic memory management and data structures implemented in HYDRA. The philosophy for HYDRA is to focus on mapping flow algorithms to computer architectures to try and achieve a high level of performance, rather than just performing a port.
Finite element methods for the nonlinear motion of flexible aircraft
NASA Astrophysics Data System (ADS)
Yang, Victor P.
Conventional strategies in aeroelasticity and flight dynamics for studying aircraft involve making broad assumptions based more on analytical or computational convenience rather than on physical reality. Typically in aeroelastic analyses, the study of the interaction between aircraft flexibility and aerodynamic forces, the aircraft or structural component in question is constrained in a way that is not representative of realistic flight conditions. In flight dynamics, the study of the maneuvering of aircraft, it is common to consider the vehicle as perfectly rigid. In both disciplines it is well known that such contrivances can produce incorrect results. To address these shortcomings, a finite element formulation is developed for analyzing the dynamics of flexible aircraft undergoing arbitrarily large rotation and translation. The formulation is derived in a set of body-attached axes, a frame of reference conducive to analyzing the motion and control of aircraft, and considers the structure as a whole. Several implementation issues are addressed and mitigated, including finite element interpolating functions, the use of eigenvectors as the basis for nonlinear deformation, inclusion of geometrically nonlinear effects in the strain energy, and enforcement of kinematic constraints. Numerical examples illustrate the capabilities of the latter two aspects, and a free-flying aeroelastic model problem demonstrates the overall potential of the proposed formulation. The development is approached in a general way so that the methodology can be applied to any structure that may be modeled by finite elements.
Crystal level simulations using Eulerian finite element methods
Becker, R; Barton, N R; Benson, D J
2004-02-06
Over the last several years, significant progress has been made in the use of crystal level material models in simulations of forming operations. However, in Lagrangian finite element approaches simulation capabilities are limited in many cases by mesh distortion associated with deformation heterogeneity. Contexts in which such large distortions arise include: bulk deformation to strains approaching or exceeding unity, especially in highly anisotropic or multiphase materials; shear band formation and intersection of shear bands; and indentation with sharp indenters. Investigators have in the past used Eulerian finite element methods with material response determined from crystal aggregates to study steady state forming processes. However, Eulerian and Arbitrary Lagrangian-Eulerian (ALE) finite element methods have not been widely utilized for simulation of transient deformation processes at the crystal level. The advection schemes used in Eulerian and ALE codes control mesh distortion and allow for simulation of much larger total deformations. We will discuss material state representation issues related to advection and will present results from ALE simulations.
Interpreting finite element results for brittle materials in endodontic restorations
2011-01-01
Background Finite element simulation has been used in last years for analysing the biomechanical performance of post-core restorations in endodontics, but results of these simulations have been interpreted in most of the works using von Mises stress criterion. However, the validity of this failure criterion for brittle materials, which are present in these restorations, is questionable. The objective of the paper is to analyse how finite element results for brittle materials of endodontic restorations should be interpreted to obtain correct conclusions about the possible failure in the restoration. Methods Different failure criteria (Von Mises, Rankine, Coulomb-Mohr, Modified Mohr and Christensen) and material strength data (diametral tensile strength and flexural strength) were considered in the study. Three finite element models (FEM) were developed to simulate an endodontic restoration and two typical material tests: diametral tensile test and flexural test. Results Results showed that the Christensen criterion predicts similar results as the Von Mises criterion for ductile components, while it predicts similar results to all other criteria for brittle components. The different criteria predict different failure points for the diametral tensile test, all of them under multi-axial stress states. All criteria except Von Mises predict failure for flexural test at the same point of the specimen, with this point under uniaxial tensile stress. Conclusions From the results it is concluded that the Christensen criterion is recommended for FEM result interpretation in endodontic restorations and that the flexural test is recommended to estimate tensile strength instead of the diametral tensile test. PMID:21635759
Evaluation of MHOST analysis capabilities for a plate element. [finite element modeling
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Abumeri, Galib H.; Brown, Helen C.
1992-01-01
Results of the evaluation of the static, buckling, and free vibration analyses capabilities of MHOST for the plate elements are presented. Two large scale, general purpose finite element codes (MARC and MSC/NASTRAN) are used to validate MHOST. Comparisons of MHOST results with those from MARC and MSC/NASTRAN show good agreement and indicate that MHOST can be used with confidence to perform the aforementioned analyses using the plate element.
An implementation analysis of the linear discontinuous finite element method
Becker, T. L.
2013-07-01
This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory constraints against any
Beam and Truss Finite Element Verification for DYNA3D
Rathbun, H J
2007-07-16
The explicit finite element (FE) software program DYNA3D has been developed at Lawrence Livermore National Laboratory (LLNL) to simulate the dynamic behavior of structures, systems, and components. This report focuses on verification of beam and truss element formulations in DYNA3D. An efficient protocol has been developed to verify the accuracy of these structural elements by generating a set of representative problems for which closed-form quasi-static steady-state analytical reference solutions exist. To provide as complete coverage as practically achievable, problem sets are developed for each beam and truss element formulation (and their variants) in all modes of loading and physical orientation. Analyses with loading in the elastic and elastic-plastic regimes are performed. For elastic loading, the FE results are within 1% of the reference solutions for all cases. For beam element bending and torsion loading in the plastic regime, the response is heavily dependent on the numerical integration rule chosen, with higher refinement yielding greater accuracy (agreement to within 1%). Axial loading in the plastic regime produces accurate results (agreement to within 0.01%) for all integration rules and element formulations. Truss elements are also verified to provide accurate results (within 0.01%) for elastic and elastic-plastic loading. A sample problem to verify beam element response in ParaDyn, the parallel version DYNA3D, is also presented.
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, J. L.; Chatterjee, A.; Jin, J. M.
1992-01-01
A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration.
Generalization of mixed multiscale finite element methods with applications
Lee, C S
2016-08-01
Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii
Finite volume and finite element methods applied to 3D laminar and turbulent channel flows
Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel
2014-12-10
The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.
On high-order perturbative calculations at finite density
NASA Astrophysics Data System (ADS)
Ghişoiu, Ioan; Gorda, Tyler; Kurkela, Aleksi; Romatschke, Paul; Säppi, Matias; Vuorinen, Aleksi
2017-02-01
We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes - a result reminiscent of a previously proposed "naive real-time formalism" for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.
Finite element simulation of texture evolution and Swift effect in NiAl under torsion
NASA Astrophysics Data System (ADS)
Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht
2007-09-01
The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.
Parameter sampling and metamodel generation for nonlinear finite element simulations
Cundy, A. L.; Schultze, J. F.; Hemez, F. M.; Doebling, S. W.; Hylok, J. E.; Bingham, D.
2002-01-01
This research addresses the problem of analyzing the nonlinear transient response of a structural dynamics simulation. A threaded joint assembly's response to impulse loading has been studied. Twelve parameters relating to the input level, preloads of the joint and friction between components are thought to influence the acceleration response of the structure. Due to the high cost of physical testing and large amount of computation time to run numerical models a fastrunning metamodel is being developed. In this case, a metamodel is a statistically developed surrogate to the physics-based finite element model and can be evaluated in minutes on a single processor desktop computer. An unreasonable number of runs is required (312>500,000) to generate a three level full factorial design with 12 parameters for metamodel creation. Some manner of down-selecting or variable screening is needed in order to determine which of the parameters most affect the response and should be retained in subsequent models. A comparision of screening methods to general sensitivity analysis was conducted. A significant effects methodology, which involves a design of experiments technique has been examined. In this method, all parameters were first included in the model and then eliminated on the basis of statistical contributions associated with each parameter. Bayesian variable screening techniques, in which probabilities of effects are generated and updated, have also been explored, Encouraging results have been obtained, as the two methods yield similar sets of statistically significant parameters. Both methods have been compared to general sensitivity analysis (GSA). The resulting compact metamodel can then be explored at more levels to appropriately capture the underlying physics of the threaded assembly with a much smaller set of simulations.
Key Parameters Evaluation for Hip Prosthesis with Finite Element Analysis
NASA Astrophysics Data System (ADS)
Guo, Hongqiang; Li, Dichen; Lian, Qin; Li, Xiang; Jin, Zhongmin
2007-09-01
Stem length and cross section are two key parameters that influence the stability and longevity of metallic hip prosthesis in the total hip arthroplasty (THA). In order to assess their influence to the stress and fatigue behavior of hip prosthesis, a series model of hip prosthesis with round-shaped or drum-shaped cross section, and with different stem lengths were created. These models were analyzed under both static and dynamic loading conditions with finite element analysis, and dynamic loading represents normal walking was used in the dynamic analysis. The stress on the metallic stem, cement, and adjacent bone were got, micromotion on the cement-metal interface were got too. Safety factors for fatigue life of the hip prothesis were calculated based on data obtained from dynamic analysis. Static analysis shows that drum-shaped cross section can decrease the displacement of the stem, that stress on drum-shaped stem focus on the corner of the femoral neck and the distal part of hip prosthesis, whereas the stress on the round-shaped stem distributes evenly over most part of the stem, and maximum stress on stem prosthesis fluctuates with stem length bottoming out at stem length range from 80 mm to 110 mm, that drum-shaped stems with drum height 8 mm generate more stress at the distal part of stem than drum-shaped stems with drum height 10 mm and round stems do. Dynamic and fatigue analysis shows that drum-shaped stem with drum height 10 mm and stem length 90 mm has the greatest safety factor therefore long fatigue life.
Development of an hp-version finite element method for computational optimal control
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Warner, Michael S.
1993-01-01
The purpose of this research effort was to begin the study of the application of hp-version finite elements to the numerical solution of optimal control problems. Under NAG-939, the hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element. One possible drawback is the increased computational effort within each element required in implementing hp-version finite elements. We are trying to determine whether this computational effort is sufficiently offset by the reduction in the number of time elements used and improved Newton-Raphson convergence so as to be useful in solving optimal control problems in real time. Because certain of the element interior unknowns can be eliminated at the element level by solving a small set of nonlinear algebraic equations in which the nodal values are taken as given, the scheme may turn out to be especially powerful in a parallel computing environment. A different processor could be assigned to each element. The number of processors, strictly speaking, is not required to be any larger than the number of sub-regions which are free of discontinuities of any kind.
Simulating Space Capsule Water Landing with Explicit Finite Element Method
NASA Technical Reports Server (NTRS)
Wang, John T.; Lyle, Karen H.
2007-01-01
A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.
Finite Element Analysis of the LOLA Receiver Telescope Lens
NASA Technical Reports Server (NTRS)
Matzinger, Elizabeth
2007-01-01
This paper presents the finite element stress and distortion analysis completed on the Receiver Telescope lens of the Lunar Orbiter Laser Altimeter (LOLA). LOLA is one of six instruments on the Lunar Reconnaissance Orbiter (LRO), scheduled to launch in 2008. LOLA's main objective is to produce a high-resolution global lunar topographic model to aid in safe landings and enhance surface mobility in future exploration missions. The Receiver Telescope captures the laser pulses transmitted through a diffractive optical element (DOE) and reflected off the lunar surface. The largest lens of the Receiver Telescope, Lens 1, is a 150 mm diameter aspheric lens originally designed to be made of BK7 glass. The finite element model of the Receiver Telescope Lens 1 is comprised of solid elements and constrained in a manner consistent with the behavior of the mounting configuration of the Receiver Telescope tube. Twenty-one temperature load cases were mapped to the nodes based on thermal analysis completed by LOLA's lead thermal analyst, and loads were applied to simulate the preload applied from the ring flexure. The thermal environment of the baseline design (uncoated BK7 lens with no baffle) produces large radial and axial gradients in the lens. These large gradients create internal stresses that may lead to part failure, as well as significant bending that degrades optical performance. The high stresses and large distortions shown in the analysis precipitated a design change from BK7 glass to sapphire.
Discontinuous finite element method for vector radiative transfer
NASA Astrophysics Data System (ADS)
Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping
2017-03-01
The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.
Finite element modeling of the higher harmonic controlled OH-6A helicopter airframe
NASA Technical Reports Server (NTRS)
Ferg, Douglas; Toossi, Mostafa
1990-01-01
An MSC/NASTRAN finite element model of the higher harmonic control configured OH-6A helicopter fuselage was developed. This finite element model was verified by performing various model checkouts and correlation with results from a ground vibration test.
IFEMS, an Interactive Finite Element Modeling System Using a CAD/CAM System
NASA Technical Reports Server (NTRS)
Mckellip, S.; Schuman, T.; Lauer, S.
1980-01-01
A method of coupling a CAD/CAM system with a general purpose finite element mesh generator is described. The three computer programs which make up the interactive finite element graphics system are discussed.
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.
1986-01-01
A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.
Least-squares finite element solution of 3D incompressible Navier-Stokes problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, Tsung-Liang; Povinelli, Louis A.
1992-01-01
Although significant progress has been made in the finite element solution of incompressible viscous flow problems. Development of more efficient methods is still needed before large-scale computation of 3D problems becomes feasible. This paper presents such a development. The most popular finite element method for the solution of incompressible Navier-Stokes equations is the classic Galerkin mixed method based on the velocity-pressure formulation. The mixed method requires the use of different elements to interpolate the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the existence of the solution. On the other hand, due to the lack of symmetry and positive definiteness of the linear equations arising from the mixed method, iterative methods for the solution of linear systems have been hard to come by. Therefore, direct Gaussian elimination has been considered the only viable method for solving the systems. But, for three-dimensional problems, the computer resources required by a direct method become prohibitively large. In order to overcome these difficulties, a least-squares finite element method (LSFEM) has been developed. This method is based on the first-order velocity-pressure-vorticity formulation. In this paper the LSFEM is extended for the solution of three-dimensional incompressible Navier-Stokes equations written in the following first-order quasi-linear velocity-pressure-vorticity formulation.
Probabilistic finite elements for fracture and fatigue analysis
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.
1989-01-01
The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.
3D finite element simulations of high velocity projectile impact
NASA Astrophysics Data System (ADS)
Ožbolt, Joško; İrhan, Barış; Ruta, Daniela
2015-09-01
An explicit three-dimensional (3D) finite element (FE) code is developed for the simulation of high velocity impact and fragmentation events. The rate sensitive microplane material model, which accounts for large deformations and rate effects, is used as a constitutive law. In the code large deformation frictional contact is treated by forward incremental Lagrange multiplier method. To handle highly distorted and damaged elements the approach based on the element deletion is employed. The code is then used in 3D FE simulations of high velocity projectile impact. The results of the numerical simulations are evaluated and compared with experimental results. It is shown that it realistically predicts failure mode and exit velocities for different geometries of plain concrete slab. Moreover, the importance of some relevant parameters, such as contact friction, rate sensitivity, bulk viscosity and deletion criteria are addressed.