Model predictive control based on reduced order models applied to belt conveyor system.
Chen, Wei; Li, Xin
2016-11-01
In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodriguez Marco, Albert
Battery management systems (BMS) require computationally simple but highly accurate models of the battery cells they are monitoring and controlling. Historically, empirical equivalent-circuit models have been used, but increasingly researchers are focusing their attention on physics-based models due to their greater predictive capabilities. These models are of high intrinsic computational complexity and so must undergo some kind of order-reduction process to make their use by a BMS feasible: we favor methods based on a transfer-function approach of battery cell dynamics. In prior works, transfer functions have been found from full-order PDE models via two simplifying assumptions: (1) a linearization assumption--which is a fundamental necessity in order to make transfer functions--and (2) an assumption made out of expedience that decouples the electrolyte-potential and electrolyte-concentration PDEs in order to render an approach to solve for the transfer functions from the PDEs. This dissertation improves the fidelity of physics-based models by eliminating the need for the second assumption and, by linearizing nonlinear dynamics around different constant currents. Electrochemical transfer functions are infinite-order and cannot be expressed as a ratio of polynomials in the Laplace variable s. Thus, for practical use, these systems need to be approximated using reduced-order models that capture the most significant dynamics. This dissertation improves the generation of physics-based reduced-order models by introducing different realization algorithms, which produce a low-order model from the infinite-order electrochemical transfer functions. Physics-based reduced-order models are linear and describe cell dynamics if operated near the setpoint at which they have been generated. Hence, multiple physics-based reduced-order models need to be generated at different setpoints (i.e., state-of-charge, temperature and C-rate) in order to extend the cell operating range. This dissertation improves the implementation of physics-based reduced-order models by introducing different blending approaches that combine the pre-computed models generated (offline) at different setpoints in order to produce good electrochemical estimates (online) along the cell state-of-charge, temperature and C-rate range.
Arslan, Burcu; Taatgen, Niels A; Verbrugge, Rineke
2017-01-01
The focus of studies on second-order false belief reasoning generally was on investigating the roles of executive functions and language with correlational studies. Different from those studies, we focus on the question how 5-year-olds select and revise reasoning strategies in second-order false belief tasks by constructing two computational cognitive models of this process: an instance-based learning model and a reinforcement learning model. Unlike the reinforcement learning model, the instance-based learning model predicted that children who fail second-order false belief tasks would give answers based on first-order theory of mind (ToM) reasoning as opposed to zero-order reasoning. This prediction was confirmed with an empirical study that we conducted with 72 5- to 6-year-old children. The results showed that 17% of the answers were correct and 83% of the answers were wrong. In line with our prediction, 65% of the wrong answers were based on a first-order ToM strategy, while only 29% of them were based on a zero-order strategy (the remaining 6% of subjects did not provide any answer). Based on our instance-based learning model, we propose that when children get feedback "Wrong," they explicitly revise their strategy to a higher level instead of implicitly selecting one of the available ToM strategies. Moreover, we predict that children's failures are due to lack of experience and that with exposure to second-order false belief reasoning, children can revise their wrong first-order reasoning strategy to a correct second-order reasoning strategy.
Arslan, Burcu; Taatgen, Niels A.; Verbrugge, Rineke
2017-01-01
The focus of studies on second-order false belief reasoning generally was on investigating the roles of executive functions and language with correlational studies. Different from those studies, we focus on the question how 5-year-olds select and revise reasoning strategies in second-order false belief tasks by constructing two computational cognitive models of this process: an instance-based learning model and a reinforcement learning model. Unlike the reinforcement learning model, the instance-based learning model predicted that children who fail second-order false belief tasks would give answers based on first-order theory of mind (ToM) reasoning as opposed to zero-order reasoning. This prediction was confirmed with an empirical study that we conducted with 72 5- to 6-year-old children. The results showed that 17% of the answers were correct and 83% of the answers were wrong. In line with our prediction, 65% of the wrong answers were based on a first-order ToM strategy, while only 29% of them were based on a zero-order strategy (the remaining 6% of subjects did not provide any answer). Based on our instance-based learning model, we propose that when children get feedback “Wrong,” they explicitly revise their strategy to a higher level instead of implicitly selecting one of the available ToM strategies. Moreover, we predict that children’s failures are due to lack of experience and that with exposure to second-order false belief reasoning, children can revise their wrong first-order reasoning strategy to a correct second-order reasoning strategy. PMID:28293206
Singh, Jay; Chattterjee, Kalyan; Vishwakarma, C B
2018-01-01
Load frequency controller has been designed for reduced order model of single area and two-area reheat hydro-thermal power system through internal model control - proportional integral derivative (IMC-PID) control techniques. The controller design method is based on two degree of freedom (2DOF) internal model control which combines with model order reduction technique. Here, in spite of taking full order system model a reduced order model has been considered for 2DOF-IMC-PID design and the designed controller is directly applied to full order system model. The Logarithmic based model order reduction technique is proposed to reduce the single and two-area high order power systems for the application of controller design.The proposed IMC-PID design of reduced order model achieves good dynamic response and robustness against load disturbance with the original high order system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Reduced-order modeling for hyperthermia: an extended balanced-realization-based approach.
Mattingly, M; Bailey, E A; Dutton, A W; Roemer, R B; Devasia, S
1998-09-01
Accurate thermal models are needed in hyperthermia cancer treatments for such tasks as actuator and sensor placement design, parameter estimation, and feedback temperature control. The complexity of the human body produces full-order models which are too large for effective execution of these tasks, making use of reduced-order models necessary. However, standard balanced-realization (SBR)-based model reduction techniques require a priori knowledge of the particular placement of actuators and sensors for model reduction. Since placement design is intractable (computationally) on the full-order models, SBR techniques must use ad hoc placements. To alleviate this problem, an extended balanced-realization (EBR)-based model-order reduction approach is presented. The new technique allows model order reduction to be performed over all possible placement designs and does not require ad hoc placement designs. It is shown that models obtained using the EBR method are more robust to intratreatment changes in the placement of the applied power field than those models obtained using the SBR method.
Mixture of autoregressive modeling orders and its implication on single trial EEG classification
Atyabi, Adham; Shic, Frederick; Naples, Adam
2016-01-01
Autoregressive (AR) models are of commonly utilized feature types in Electroencephalogram (EEG) studies due to offering better resolution, smoother spectra and being applicable to short segments of data. Identifying correct AR’s modeling order is an open challenge. Lower model orders poorly represent the signal while higher orders increase noise. Conventional methods for estimating modeling order includes Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Final Prediction Error (FPE). This article assesses the hypothesis that appropriate mixture of multiple AR orders is likely to better represent the true signal compared to any single order. Better spectral representation of underlying EEG patterns can increase utility of AR features in Brain Computer Interface (BCI) systems by increasing timely & correctly responsiveness of such systems to operator’s thoughts. Two mechanisms of Evolutionary-based fusion and Ensemble-based mixture are utilized for identifying such appropriate mixture of modeling orders. The classification performance of the resultant AR-mixtures are assessed against several conventional methods utilized by the community including 1) A well-known set of commonly used orders suggested by the literature, 2) conventional order estimation approaches (e.g., AIC, BIC and FPE), 3) blind mixture of AR features originated from a range of well-known orders. Five datasets from BCI competition III that contain 2, 3 and 4 motor imagery tasks are considered for the assessment. The results indicate superiority of Ensemble-based modeling order mixture and evolutionary-based order fusion methods within all datasets. PMID:28740331
An error bound for a discrete reduced order model of a linear multivariable system
NASA Technical Reports Server (NTRS)
Al-Saggaf, Ubaid M.; Franklin, Gene F.
1987-01-01
The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.
NASA Astrophysics Data System (ADS)
Lye, Ribin; Tan, James Peng Lung; Cheong, Siew Ann
2012-11-01
We describe a bottom-up framework, based on the identification of appropriate order parameters and determination of phase diagrams, for understanding progressively refined agent-based models and simulations of financial markets. We illustrate this framework by starting with a deterministic toy model, whereby N independent traders buy and sell M stocks through an order book that acts as a clearing house. The price of a stock increases whenever it is bought and decreases whenever it is sold. Price changes are updated by the order book before the next transaction takes place. In this deterministic model, all traders based their buy decisions on a call utility function, and all their sell decisions on a put utility function. We then make the agent-based model more realistic, by either having a fraction fb of traders buy a random stock on offer, or a fraction fs of traders sell a random stock in their portfolio. Based on our simulations, we find that it is possible to identify useful order parameters from the steady-state price distributions of all three models. Using these order parameters as a guide, we find three phases: (i) the dead market; (ii) the boom market; and (iii) the jammed market in the phase diagram of the deterministic model. Comparing the phase diagrams of the stochastic models against that of the deterministic model, we realize that the primary effect of stochasticity is to eliminate the dead market phase.
Constrained reduced-order models based on proper orthogonal decomposition
Reddy, Sohail R.; Freno, Brian Andrew; Cizmas, Paul G. A.; ...
2017-04-09
A novel approach is presented to constrain reduced-order models (ROM) based on proper orthogonal decomposition (POD). The Karush–Kuhn–Tucker (KKT) conditions were applied to the traditional reduced-order model to constrain the solution to user-defined bounds. The constrained reduced-order model (C-ROM) was applied and validated against the analytical solution to the first-order wave equation. C-ROM was also applied to the analysis of fluidized beds. Lastly, it was shown that the ROM and C-ROM produced accurate results and that C-ROM was less sensitive to error propagation through time than the ROM.
Bailey, E A; Dutton, A W; Mattingly, M; Devasia, S; Roemer, R B
1998-01-01
Reduced-order modelling techniques can make important contributions in the control and state estimation of large systems. In hyperthermia, reduced-order modelling can provide a useful tool by which a large thermal model can be reduced to the most significant subset of its full-order modes, making real-time control and estimation possible. Two such reduction methods, one based on modal decomposition and the other on balanced realization, are compared in the context of simulated hyperthermia heat transfer problems. The results show that the modal decomposition reduction method has three significant advantages over that of balanced realization. First, modal decomposition reduced models result in less error, when compared to the full-order model, than balanced realization reduced models of similar order in problems with low or moderate advective heat transfer. Second, because the balanced realization based methods require a priori knowledge of the sensor and actuator placements, the reduced-order model is not robust to changes in sensor or actuator locations, a limitation not present in modal decomposition. Third, the modal decomposition transformation is less demanding computationally. On the other hand, in thermal problems dominated by advective heat transfer, numerical instabilities make modal decomposition based reduction problematic. Modal decomposition methods are therefore recommended for reduction of models in which advection is not dominant and research continues into methods to render balanced realization based reduction more suitable for real-time clinical hyperthermia control and estimation.
Han, Jinxiang; Huang, Jinzhao
2012-03-01
In this study, based on the resonator model and exciplex model of electromagnetic radiation within the human body, mathematical model of biological order state, also referred to as syndrome in traditional Chinese medicine, was established and expressed as: "Sy = v/ 1n(6I + 1)". This model provides the theoretical foundation for experimental research addressing the order state of living system, especially the quantitative research syndrome in traditional Chinese medicine.
Universal block diagram based modeling and simulation schemes for fractional-order control systems.
Bai, Lu; Xue, Dingyü
2017-05-08
Universal block diagram based schemes are proposed for modeling and simulating the fractional-order control systems in this paper. A fractional operator block in Simulink is designed to evaluate the fractional-order derivative and integral. Based on the block, the fractional-order control systems with zero initial conditions can be modeled conveniently. For modeling the system with nonzero initial conditions, the auxiliary signal is constructed in the compensation scheme. Since the compensation scheme is very complicated, therefore the integrator chain scheme is further proposed to simplify the modeling procedures. The accuracy and effectiveness of the schemes are assessed in the examples, the computation results testify the block diagram scheme is efficient for all Caputo fractional-order ordinary differential equations (FODEs) of any complexity, including the implicit Caputo FODEs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Microscopic understanding of heavy-tailed return distributions in an agent-based model
NASA Astrophysics Data System (ADS)
Schmitt, Thilo A.; Schäfer, Rudi; Münnix, Michael C.; Guhr, Thomas
2012-11-01
The distribution of returns in financial time series exhibits heavy tails. It has been found that gaps between the orders in the order book lead to large price shifts and thereby to these heavy tails. We set up an agent-based model to study this issue and, in particular, how the gaps in the order book emerge. The trading mechanism in our model is based on a double-auction order book. In situations where the order book is densely occupied with limit orders we do not observe fat-tailed distributions. As soon as less liquidity is available, a gap structure forms which leads to return distributions with heavy tails. We show that return distributions with heavy tails are an order-book effect if the available liquidity is constrained. This is largely independent of specific trading strategies.
NASA Astrophysics Data System (ADS)
Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong
2018-04-01
A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.
Kerfriden, P.; Goury, O.; Rabczuk, T.; Bordas, S.P.A.
2013-01-01
We propose in this paper a reduced order modelling technique based on domain partitioning for parametric problems of fracture. We show that coupling domain decomposition and projection-based model order reduction permits to focus the numerical effort where it is most needed: around the zones where damage propagates. No a priori knowledge of the damage pattern is required, the extraction of the corresponding spatial regions being based solely on algebra. The efficiency of the proposed approach is demonstrated numerically with an example relevant to engineering fracture. PMID:23750055
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Gebraad, Pieter M. O.; Scholbrock, Andrew K.
2015-08-14
Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.
NASA Astrophysics Data System (ADS)
Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad
2017-07-01
This paper introduces a fractional order total variation (FOTV) based model with three different weights in the fractional order derivative definition for multiplicative noise removal purpose. The fractional-order Euler Lagrange equation which is a highly non-linear partial differential equation (PDE) is obtained by the minimization of the energy functional for image restoration. Two numerical schemes namely an iterative scheme based on the dual theory and majorization- minimization algorithm (MMA) are used. To improve the restoration results, we opt for an adaptive parameter selection procedure for the proposed model by applying the trial and error method. We report numerical simulations which show the validity and state of the art performance of the fractional-order model in visual improvement as well as an increase in the peak signal to noise ratio comparing to corresponding methods. Numerical experiments also demonstrate that MMAbased methodology is slightly better than that of an iterative scheme.
Equilibrium pricing in an order book environment: Case study for a spin model
NASA Astrophysics Data System (ADS)
Meudt, Frederik; Schmitt, Thilo A.; Schäfer, Rudi; Guhr, Thomas
2016-07-01
When modeling stock market dynamics, the price formation is often based on an equilibrium mechanism. In real stock exchanges, however, the price formation is governed by the order book. It is thus interesting to check if the resulting stylized facts of a model with equilibrium pricing change, remain the same or, more generally, are compatible with the order book environment. We tackle this issue in the framework of a case study by embedding the Bornholdt-Kaizoji-Fujiwara spin model into the order book dynamics. To this end, we use a recently developed agent based model that realistically incorporates the order book. We find realistic stylized facts. We conclude for the studied case that equilibrium pricing is not needed and that the corresponding assumption of a ;fundamental; price may be abandoned.
Modeling and simulation of continuous wave velocity radar based on third-order DPLL
NASA Astrophysics Data System (ADS)
Di, Yan; Zhu, Chen; Hong, Ma
2015-02-01
Second-order digital phase-locked-loop (DPLL) is widely used in traditional Continuous wave (CW) velocity radar with poor performance in high dynamic conditions. Using the third-order DPLL can improve the performance. Firstly, the echo signal model of CW radar is given. Secondly, theoretical derivations of the tracking performance in different velocity conditions are given. Finally, simulation model of CW radar is established based on Simulink tool. Tracking performance of the two kinds of DPLL in different acceleration and jerk conditions is studied by this model. The results show that third-order PLL has better performance in high dynamic conditions. This model provides a platform for further research of CW radar.
NASA Astrophysics Data System (ADS)
Ryzhikov, I. S.; Semenkin, E. S.; Akhmedova, Sh A.
2017-02-01
A novel order reduction method for linear time invariant systems is described. The method is based on reducing the initial problem to an optimization one, using the proposed model representation, and solving the problem with an efficient optimization algorithm. The proposed method of determining the model allows all the parameters of the model with lower order to be identified and by definition, provides the model with the required steady-state. As a powerful optimization tool, the meta-heuristic Co-Operation of Biology-Related Algorithms was used. Experimental results proved that the proposed approach outperforms other approaches and that the reduced order model achieves a high level of accuracy.
A Model-Free Diagnostic for Single-Peakedness of Item Responses Using Ordered Conditional Means
ERIC Educational Resources Information Center
Polak, Marike; De Rooij, Mark; Heiser, Willem J.
2012-01-01
In this article we propose a model-free diagnostic for single-peakedness (unimodality) of item responses. Presuming a unidimensional unfolding scale and a given item ordering, we approximate item response functions of all items based on ordered conditional means (OCM). The proposed OCM methodology is based on Thurstone & Chave's (1929) "criterion…
Mixed-order phase transition in a minimal, diffusion-based spin model.
Fronczak, Agata; Fronczak, Piotr
2016-07-01
In this paper we exactly solve, within the grand canonical ensemble, a minimal spin model with the hybrid phase transition. We call the model diffusion based because its Hamiltonian can be recovered from a simple dynamic procedure, which can be seen as an equilibrium statistical mechanics representation of a biased random walk. We outline the derivation of the phase diagram of the model, in which the triple point has the hallmarks of the hybrid transition: discontinuity in the average magnetization and algebraically diverging susceptibilities. At this point, two second-order transition curves meet in equilibrium with the first-order curve, resulting in a prototypical mixed-order behavior.
1986-09-01
differentiation between the systems. This study will investigate an appropriate Order Processing and Management Information System (OP&MIS) to link base-level...methodology: 1. Reviewed the current order processing and information model of the TUAF Logistics System. (centralized-manual model) 2. Described the...RDS program’s order processing and information system. (centralized-computerized model) 3. Described the order irocessing and information system of
Power law-based local search in spider monkey optimisation for lower order system modelling
NASA Astrophysics Data System (ADS)
Sharma, Ajay; Sharma, Harish; Bhargava, Annapurna; Sharma, Nirmala
2017-01-01
The nature-inspired algorithms (NIAs) have shown efficiency to solve many complex real-world optimisation problems. The efficiency of NIAs is measured by their ability to find adequate results within a reasonable amount of time, rather than an ability to guarantee the optimal solution. This paper presents a solution for lower order system modelling using spider monkey optimisation (SMO) algorithm to obtain a better approximation for lower order systems and reflects almost original higher order system's characteristics. Further, a local search strategy, namely, power law-based local search is incorporated with SMO. The proposed strategy is named as power law-based local search in SMO (PLSMO). The efficiency, accuracy and reliability of the proposed algorithm is tested over 20 well-known benchmark functions. Then, the PLSMO algorithm is applied to solve the lower order system modelling problem.
NASA Astrophysics Data System (ADS)
Fan, Qiang; Huang, Zhenyu; Zhang, Bing; Chen, Dayue
2013-02-01
Properties of discontinuities, such as bolt joints and cracks in the waveguide structures, are difficult to evaluate by either analytical or numerical methods due to the complexity and uncertainty of the discontinuities. In this paper, the discontinuity in a Timoshenko beam is modeled with high-order parameters and then these parameters are identified by using reflection coefficients at the discontinuity. The high-order model is composed of several one-order sub-models in series and each sub-model consists of inertia, stiffness and damping components in parallel. The order of the discontinuity model is determined based on the characteristics of the reflection coefficient curve and the accuracy requirement of the dynamic modeling. The model parameters are identified through the least-square fitting iteration method, of which the undetermined model parameters are updated in iteration to fit the dynamic reflection coefficient curve with the wave-based one. By using the spectral super-element method (SSEM), simulation cases, including one-order discontinuities on infinite- and finite-beams and a two-order discontinuity on an infinite beam, were employed to evaluate both the accuracy of the discontinuity model and the effectiveness of the identification method. For practical considerations, effects of measurement noise on the discontinuity parameter identification are investigated by adding different levels of noise to the simulated data. The simulation results were then validated by the corresponding experiments. Both the simulation and experimental results show that (1) the one-order discontinuities can be identified accurately with the maximum errors of 6.8% and 8.7%, respectively; (2) and the high-order discontinuities can be identified with the maximum errors of 15.8% and 16.2%, respectively; and (3) the high-order model can predict the complex discontinuity much more accurately than the one-order discontinuity model.
Modeling the Monthly Water Balance of a First Order Coastal Forested Watershed
S. V. Harder; Devendra M. Amatya; T. J. Callahan; Carl C. Trettin
2006-01-01
A study has been conducted to evaluate a spreadsheet-based conceptual Thornthwaite monthly water balance model and the process-based DRAINMOD model for their reliability in predicting monthly water budgets of a poorly drained, first order forested watershed at the Santee Experimental Forest located along the Lower Coastal Plain of South Carolina. Measured precipitation...
Approximating recreation site choice: the predictive capability of a lexicographic semi-order model
Alan E. Watson; Joseph W. Roggenbuck
1985-01-01
The relevancy of a lexicographic semi-order model, as a basis for development of a microcomputer-based decision aid for backcountry hikers, was investigated. In an interactive microcomputer exercise, it was found that a decision aid based upon this model may assist recreationists in reduction of an alternative set to a cognitively manageable number.
A methodology for reduced order modeling and calibration of the upper atmosphere
NASA Astrophysics Data System (ADS)
Mehta, Piyush M.; Linares, Richard
2017-10-01
Atmospheric drag is the largest source of uncertainty in accurately predicting the orbit of satellites in low Earth orbit (LEO). Accurately predicting drag for objects that traverse LEO is critical to space situational awareness. Atmospheric models used for orbital drag calculations can be characterized either as empirical or physics-based (first principles based). Empirical models are fast to evaluate but offer limited real-time predictive/forecasting ability, while physics based models offer greater predictive/forecasting ability but require dedicated parallel computational resources. Also, calibration with accurate data is required for either type of models. This paper presents a new methodology based on proper orthogonal decomposition toward development of a quasi-physical, predictive, reduced order model that combines the speed of empirical and the predictive/forecasting capabilities of physics-based models. The methodology is developed to reduce the high dimensionality of physics-based models while maintaining its capabilities. We develop the methodology using the Naval Research Lab's Mass Spectrometer Incoherent Scatter model and show that the diurnal and seasonal variations can be captured using a small number of modes and parameters. We also present calibration of the reduced order model using the CHAMP and GRACE accelerometer-derived densities. Results show that the method performs well for modeling and calibration of the upper atmosphere.
Model and controller reduction of large-scale structures based on projection methods
NASA Astrophysics Data System (ADS)
Gildin, Eduardo
The design of low-order controllers for high-order plants is a challenging problem theoretically as well as from a computational point of view. Frequently, robust controller design techniques result in high-order controllers. It is then interesting to achieve reduced-order models and controllers while maintaining robustness properties. Controller designed for large structures based on models obtained by finite element techniques yield large state-space dimensions. In this case, problems related to storage, accuracy and computational speed may arise. Thus, model reduction methods capable of addressing controller reduction problems are of primary importance to allow the practical applicability of advanced controller design methods for high-order systems. A challenging large-scale control problem that has emerged recently is the protection of civil structures, such as high-rise buildings and long-span bridges, from dynamic loadings such as earthquakes, high wind, heavy traffic, and deliberate attacks. Even though significant effort has been spent in the application of control theory to the design of civil structures in order increase their safety and reliability, several challenging issues are open problems for real-time implementation. This dissertation addresses with the development of methodologies for controller reduction for real-time implementation in seismic protection of civil structures using projection methods. Three classes of schemes are analyzed for model and controller reduction: nodal truncation, singular value decomposition methods and Krylov-based methods. A family of benchmark problems for structural control are used as a framework for a comparative study of model and controller reduction techniques. It is shown that classical model and controller reduction techniques, such as balanced truncation, modal truncation and moment matching by Krylov techniques, yield reduced-order controllers that do not guarantee stability of the closed-loop system, that is, the reduced-order controller implemented with the full-order plant. A controller reduction approach is proposed such that to guarantee closed-loop stability. It is based on the concept of dissipativity (or positivity) of linear dynamical systems. Utilizing passivity preserving model reduction together with dissipative-LQG controllers, effective low-order optimal controllers are obtained. Results are shown through simulations.
Assessing School Work Culture: A Higher-Order Analysis and Strategy.
ERIC Educational Resources Information Center
Johnson, William L.; Johnson, Annabel M.; Zimmerman, Kurt J.
This paper reviews a work culture productivity model and reports the development of a work culture instrument based on the culture productivity model. Higher order principal components analysis was used to assess work culture, and a third-order factor analysis shows how the first-order factors group into higher-order factors. The school work…
Development of an inpatient operational pharmacy productivity model.
Naseman, Ryan W; Lopez, Ben R; Forrey, Ryan A; Weber, Robert J; Kipp, Kris M
2015-02-01
An innovative model for measuring the operational productivity of medication order management in inpatient settings is described. Order verification within a computerized prescriber order-entry system was chosen as the pharmacy workload driver. To account for inherent variability in the tasks involved in processing different types of orders, pharmaceutical products were grouped by class, and each class was assigned a time standard, or "medication complexity weight" reflecting the intensity of pharmacist and technician activities (verification of drug indication, verification of appropriate dosing, adverse-event prevention and monitoring, medication preparation, product checking, product delivery, returns processing, nurse/provider education, and problem-order resolution). The resulting "weighted verifications" (WV) model allows productivity monitoring by job function (pharmacist versus technician) to guide hiring and staffing decisions. A 9-month historical sample of verified medication orders was analyzed using the WV model, and the calculations were compared with values derived from two established models—one based on the Case Mix Index (CMI) and the other based on the proprietary Pharmacy Intensity Score (PIS). Evaluation of Pearson correlation coefficients indicated that values calculated using the WV model were highly correlated with those derived from the CMI-and PIS-based models (r = 0.845 and 0.886, respectively). Relative to the comparator models, the WV model offered the advantage of less period-to-period variability. The WV model yielded productivity data that correlated closely with values calculated using two validated workload management models. The model may be used as an alternative measure of pharmacy operational productivity. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Reverse time migration by Krylov subspace reduced order modeling
NASA Astrophysics Data System (ADS)
Basir, Hadi Mahdavi; Javaherian, Abdolrahim; Shomali, Zaher Hossein; Firouz-Abadi, Roohollah Dehghani; Gholamy, Shaban Ali
2018-04-01
Imaging is a key step in seismic data processing. To date, a myriad of advanced pre-stack depth migration approaches have been developed; however, reverse time migration (RTM) is still considered as the high-end imaging algorithm. The main limitations associated with the performance cost of reverse time migration are the intensive computation of the forward and backward simulations, time consumption, and memory allocation related to imaging condition. Based on the reduced order modeling, we proposed an algorithm, which can be adapted to all the aforementioned factors. Our proposed method benefit from Krylov subspaces method to compute certain mode shapes of the velocity model computed by as an orthogonal base of reduced order modeling. Reverse time migration by reduced order modeling is helpful concerning the highly parallel computation and strongly reduces the memory requirement of reverse time migration. The synthetic model results showed that suggested method can decrease the computational costs of reverse time migration by several orders of magnitudes, compared with reverse time migration by finite element method.
Large-Signal Lyapunov-Based Stability Analysis of DC/AC Inverters and Inverter-Based Microgrids
NASA Astrophysics Data System (ADS)
Kabalan, Mahmoud
Microgrid stability studies have been largely based on small-signal linearization techniques. However, the validity and magnitude of the linearization domain is limited to small perturbations. Thus, there is a need to examine microgrids with large-signal nonlinear techniques to fully understand and examine their stability. Large-signal stability analysis can be accomplished by Lyapunov-based mathematical methods. These Lyapunov methods estimate the domain of asymptotic stability of the studied system. A survey of Lyapunov-based large-signal stability studies showed that few large-signal studies have been completed on either individual systems (dc/ac inverters, dc/dc rectifiers, etc.) or microgrids. The research presented in this thesis addresses the large-signal stability of droop-controlled dc/ac inverters and inverter-based microgrids. Dc/ac power electronic inverters allow microgrids to be technically feasible. Thus, as a prelude to examining the stability of microgrids, the research presented in Chapter 3 analyzes the stability of inverters. First, the 13 th order large-signal nonlinear model of a droop-controlled dc/ac inverter connected to an infinite bus is presented. The singular perturbation method is used to decompose the nonlinear model into 11th, 9th, 7th, 5th, 3rd and 1st order models. Each model ignores certain control or structural components of the full order model. The aim of the study is to understand the accuracy and validity of the reduced order models in replicating the performance of the full order nonlinear model. The performance of each model is studied in three different areas: time domain simulations, Lyapunov's indirect method and domain of attraction estimation. The work aims to present the best model to use in each of the three domains of study. Results show that certain reduced order models are capable of accurately reproducing the performance of the full order model while others can be used to gain insights into those three areas of study. This will enable future studies to save computational effort and produce the most accurate results according to the needs of the study being performed. Moreover, the effect of grid (line) impedance on the accuracy of droop control is explored using the 5th order model. Simulation results show that traditional droop control is valid up to R/X line impedance value of 2. Furthermore, the 3rd order nonlinear model improves the currently available inverter-infinite bus models by accounting for grid impedance, active power-frequency droop and reactive power-voltage droop. Results show the 3rd order model's ability to account for voltage and reactive power changes during a transient event. Finally, the large-signal Lyapunov-based stability analysis is completed for a 3 bus microgrid system (made up of 2 inverters and 1 linear load). The thesis provides a systematic state space large-signal nonlinear mathematical modeling method of inverter-based microgrids. The inverters include the dc-side dynamics associated with dc sources. The mathematical model is then used to estimate the domain of asymptotic stability of the 3 bus microgrid. The three bus microgrid system was used as a case study to highlight the design and optimization capability of a large-signal-based approach. The study explores the effect of system component sizing, load transient and generation variations on the asymptotic stability of the microgrid. Essentially, this advancement gives microgrid designers and engineers the ability to manipulate the domain of asymptotic stability depending on performance requirements. Especially important, this research was able to couple the domain of asymptotic stability of the ac microgrid with that of the dc side voltage source. Time domain simulations were used to demonstrate the mathematical nonlinear analysis results.
Computer-Mediated Assessment of Higher-Order Thinking Development
ERIC Educational Resources Information Center
Tilchin, Oleg; Raiyn, Jamal
2015-01-01
Solving complicated problems in a contemporary knowledge-based society requires higher-order thinking (HOT). The most productive way to encourage development of HOT in students is through use of the Problem-based Learning (PBL) model. This model organizes learning by solving corresponding problems relative to study courses. Students are directed…
Reduced Order Modeling of Combustion Instability in a Gas Turbine Model Combustor
NASA Astrophysics Data System (ADS)
Arnold-Medabalimi, Nicholas; Huang, Cheng; Duraisamy, Karthik
2017-11-01
Hydrocarbon fuel based propulsion systems are expected to remain relevant in aerospace vehicles for the foreseeable future. Design of these devices is complicated by combustion instabilities. The capability to model and predict these effects at reduced computational cost is a requirement for both design and control of these devices. This work focuses on computational studies on a dual swirl model gas turbine combustor in the context of reduced order model development. Full fidelity simulations are performed utilizing URANS and Hybrid RANS-LES with finite rate chemistry. Following this, data decomposition techniques are used to extract a reduced basis representation of the unsteady flow field. These bases are first used to identify sensor locations to guide experimental interrogations and controller feedback. Following this, initial results on developing a control-oriented reduced order model (ROM) will be presented. The capability of the ROM will be further assessed based on different operating conditions and geometric configurations.
NASA Technical Reports Server (NTRS)
Yam, Yeung; Johnson, Timothy L.; Lang, Jeffrey H.
1987-01-01
A model reduction technique based on aggregation with respect to sensor and actuator influence functions rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the reduced-order plant model and the neglected plant model are derived. For the special case of collocated actuators and sensors, these expressions lead to the derivation of constraints on the controller gains that are, given the validity of the perturbation technique, sufficient to guarantee the stability of the closed-loop system. A case study demonstrates the derivation of stabilizing controllers based on the present technique. The use of control and observation synthesis in modifying the dimension of the reduced-order plant model is also discussed. A numerical example is provided for illustration.
Reduced-order modeling for hyperthermia control.
Potocki, J K; Tharp, H S
1992-12-01
This paper analyzes the feasibility of using reduced-order modeling techniques in the design of multiple-input, multiple-output (MIMO) hyperthermia temperature controllers. State space thermal models are created based upon a finite difference expansion of the bioheat transfer equation model of a scanned focused ultrasound system (SFUS). These thermal state space models are reduced using the balanced realization technique, and an order reduction criterion is tabulated. Results show that a drastic reduction in model dimension can be achieved using the balanced realization. The reduced-order model is then used to design a reduced-order optimal servomechanism controller for a two-scan input, two thermocouple output tissue model. In addition, a full-order optimal servomechanism controller is designed for comparison and validation purposes. These two controllers are applied to a variety of perturbed tissue thermal models to test the robust nature of the reduced-order controller. A comparison of the two controllers validates the use of open-loop balanced reduced-order models in the design of MIMO hyperthermia controllers.
Stochastic Ordering Using the Latent Trait and the Sum Score in Polytomous IRT Models.
ERIC Educational Resources Information Center
Hemker, Bas T.; Sijtsma, Klaas; Molenaar, Ivo W.; Junker, Brian W.
1997-01-01
Stochastic ordering properties are investigated for a broad class of item response theory (IRT) models for which the monotone likelihood ratio does not hold. A taxonomy is given for nonparametric and parametric models for polytomous models based on the hierarchical relationship between the models. (SLD)
Model Reduction for Control System Design
NASA Technical Reports Server (NTRS)
Enns, D. F.
1985-01-01
An approach and a technique for effectively obtaining reduced order mathematical models of a given large order model for the purposes of synthesis, analysis and implementation of control systems is developed. This approach involves the use of an error criterion which is the H-infinity norm of a frequency weighted error between the full and reduced order models. The weightings are chosen to take into account the purpose for which the reduced order model is intended. A previously unknown error bound in the H-infinity norm for reduced order models obtained from internally balanced realizations was obtained. This motivated further development of the balancing technique to include the frequency dependent weightings. This resulted in the frequency weighted balanced realization and a new model reduction technique. Two approaches to designing reduced order controllers were developed. The first involves reducing the order of a high order controller with an appropriate weighting. The second involves linear quadratic Gaussian synthesis based on a reduced order model obtained with an appropriate weighting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudunuru, Maruti Kumar; Karra, Satish; Harp, Dylan Robert
Reduced-order modeling is a promising approach, as many phenomena can be described by a few parameters/mechanisms. An advantage and attractive aspect of a reduced-order model is that it is computational inexpensive to evaluate when compared to running a high-fidelity numerical simulation. A reduced-order model takes couple of seconds to run on a laptop while a high-fidelity simulation may take couple of hours to run on a high-performance computing cluster. The goal of this paper is to assess the utility of regression-based reduced-order models (ROMs) developed from high-fidelity numerical simulations for predicting transient thermal power output for an enhanced geothermal reservoirmore » while explicitly accounting for uncertainties in the subsurface system and site-specific details. Numerical simulations are performed based on equally spaced values in the specified range of model parameters. Key sensitive parameters are then identified from these simulations, which are fracture zone permeability, well/skin factor, bottom hole pressure, and injection flow rate. We found the fracture zone permeability to be the most sensitive parameter. The fracture zone permeability along with time, are used to build regression-based ROMs for the thermal power output. The ROMs are trained and validated using detailed physics-based numerical simulations. Finally, predictions from the ROMs are then compared with field data. We propose three different ROMs with different levels of model parsimony, each describing key and essential features of the power production curves. The coefficients in the proposed regression-based ROMs are developed by minimizing a non-linear least-squares misfit function using the Levenberg–Marquardt algorithm. The misfit function is based on the difference between numerical simulation data and reduced-order model. ROM-1 is constructed based on polynomials up to fourth order. ROM-1 is able to accurately reproduce the power output of numerical simulations for low values of permeabilities and certain features of the field-scale data. ROM-2 is a model with more analytical functions consisting of polynomials up to order eight, exponential functions and smooth approximations of Heaviside functions, and accurately describes the field-data. At higher permeabilities, ROM-2 reproduces numerical results better than ROM-1, however, there is a considerable deviation from numerical results at low fracture zone permeabilities. ROM-3 consists of polynomials up to order ten, and is developed by taking the best aspects of ROM-1 and ROM-2. ROM-1 is relatively parsimonious than ROM-2 and ROM-3, while ROM-2 overfits the data. ROM-3 on the other hand, provides a middle ground for model parsimony. Based on R 2-values for training, validation, and prediction data sets we found that ROM-3 is better model than ROM-2 and ROM-1. For predicting thermal drawdown in EGS applications, where high fracture zone permeabilities (typically greater than 10 –15 m 2) are desired, ROM-2 and ROM-3 outperform ROM-1. As per computational time, all the ROMs are 10 4 times faster when compared to running a high-fidelity numerical simulation. In conclusion, this makes the proposed regression-based ROMs attractive for real-time EGS applications because they are fast and provide reasonably good predictions for thermal power output.« less
Mudunuru, Maruti Kumar; Karra, Satish; Harp, Dylan Robert; ...
2017-07-10
Reduced-order modeling is a promising approach, as many phenomena can be described by a few parameters/mechanisms. An advantage and attractive aspect of a reduced-order model is that it is computational inexpensive to evaluate when compared to running a high-fidelity numerical simulation. A reduced-order model takes couple of seconds to run on a laptop while a high-fidelity simulation may take couple of hours to run on a high-performance computing cluster. The goal of this paper is to assess the utility of regression-based reduced-order models (ROMs) developed from high-fidelity numerical simulations for predicting transient thermal power output for an enhanced geothermal reservoirmore » while explicitly accounting for uncertainties in the subsurface system and site-specific details. Numerical simulations are performed based on equally spaced values in the specified range of model parameters. Key sensitive parameters are then identified from these simulations, which are fracture zone permeability, well/skin factor, bottom hole pressure, and injection flow rate. We found the fracture zone permeability to be the most sensitive parameter. The fracture zone permeability along with time, are used to build regression-based ROMs for the thermal power output. The ROMs are trained and validated using detailed physics-based numerical simulations. Finally, predictions from the ROMs are then compared with field data. We propose three different ROMs with different levels of model parsimony, each describing key and essential features of the power production curves. The coefficients in the proposed regression-based ROMs are developed by minimizing a non-linear least-squares misfit function using the Levenberg–Marquardt algorithm. The misfit function is based on the difference between numerical simulation data and reduced-order model. ROM-1 is constructed based on polynomials up to fourth order. ROM-1 is able to accurately reproduce the power output of numerical simulations for low values of permeabilities and certain features of the field-scale data. ROM-2 is a model with more analytical functions consisting of polynomials up to order eight, exponential functions and smooth approximations of Heaviside functions, and accurately describes the field-data. At higher permeabilities, ROM-2 reproduces numerical results better than ROM-1, however, there is a considerable deviation from numerical results at low fracture zone permeabilities. ROM-3 consists of polynomials up to order ten, and is developed by taking the best aspects of ROM-1 and ROM-2. ROM-1 is relatively parsimonious than ROM-2 and ROM-3, while ROM-2 overfits the data. ROM-3 on the other hand, provides a middle ground for model parsimony. Based on R 2-values for training, validation, and prediction data sets we found that ROM-3 is better model than ROM-2 and ROM-1. For predicting thermal drawdown in EGS applications, where high fracture zone permeabilities (typically greater than 10 –15 m 2) are desired, ROM-2 and ROM-3 outperform ROM-1. As per computational time, all the ROMs are 10 4 times faster when compared to running a high-fidelity numerical simulation. In conclusion, this makes the proposed regression-based ROMs attractive for real-time EGS applications because they are fast and provide reasonably good predictions for thermal power output.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, R.
This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.
A unified model for transfer alignment at random misalignment angles based on second-order EKF
NASA Astrophysics Data System (ADS)
Cui, Xiao; Mei, Chunbo; Qin, Yongyuan; Yan, Gongmin; Liu, Zhenbo
2017-04-01
In the transfer alignment process of inertial navigation systems (INSs), the conventional linear error model based on the small misalignment angle assumption cannot be applied to large misalignment situations. Furthermore, the nonlinear model based on the large misalignment angle suffers from redundant computation with nonlinear filters. This paper presents a unified model for transfer alignment suitable for arbitrary misalignment angles. The alignment problem is transformed into an estimation of the relative attitude between the master INS (MINS) and the slave INS (SINS), by decomposing the attitude matrix of the latter. Based on the Rodriguez parameters, a unified alignment model in the inertial frame with the linear state-space equation and a second order nonlinear measurement equation are established, without making any assumptions about the misalignment angles. Furthermore, we employ the Taylor series expansions on the second-order nonlinear measurement equation to implement the second-order extended Kalman filter (EKF2). Monte-Carlo simulations demonstrate that the initial alignment can be fulfilled within 10 s, with higher accuracy and much smaller computational cost compared with the traditional unscented Kalman filter (UKF) at large misalignment angles.
Maneuverability Estimation of High-Speed Craft
2015-06-01
derived based on equations by Lewandowski and Denny- Hubble in order to find the fundamental maneuvering characteristics. The model is developed in...characteristic of high- speed craft. A mathematical model is derived based on equations by Lewandowski and Denny- Hubble in order to find the fundamental...33 C. EQUATIONS BY DENNY AND HUBBLE ................................................43 D. NOMOTO
Reduced-order model based feedback control of the modified Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goumiri, I. R.; Rowley, C. W.; Ma, Z.
2013-04-15
In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modified Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in flow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then, a model-based feedback controller is designed for the reduced order model using linear quadratic regulators. Finally, a linear quadratic Gaussian controller which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHW equations to stabilizemore » the equilibrium and suppress the transition to drift-wave induced turbulence.« less
NASA Astrophysics Data System (ADS)
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
A new medical image segmentation model based on fractional order differentiation and level set
NASA Astrophysics Data System (ADS)
Chen, Bo; Huang, Shan; Xie, Feifei; Li, Lihong; Chen, Wensheng; Liang, Zhengrong
2018-03-01
Segmenting medical images is still a challenging task for both traditional local and global methods because the image intensity inhomogeneous. In this paper, two contributions are made: (i) on the one hand, a new hybrid model is proposed for medical image segmentation, which is built based on fractional order differentiation, level set description and curve evolution; and (ii) on the other hand, three popular definitions of Fourier-domain, Grünwald-Letnikov (G-L) and Riemann-Liouville (R-L) fractional order differentiation are investigated and compared through experimental results. Because of the merits of enhancing high frequency features of images and preserving low frequency features of images in a nonlinear manner by the fractional order differentiation definitions, one fractional order differentiation definition is used in our hybrid model to perform segmentation of inhomogeneous images. The proposed hybrid model also integrates fractional order differentiation, fractional order gradient magnitude and difference image information. The widely-used dice similarity coefficient metric is employed to evaluate quantitatively the segmentation results. Firstly, experimental results demonstrated that a slight difference exists among the three expressions of Fourier-domain, G-L, RL fractional order differentiation. This outcome supports our selection of one of the three definitions in our hybrid model. Secondly, further experiments were performed for comparison between our hybrid segmentation model and other existing segmentation models. A noticeable gain was seen by our hybrid model in segmenting intensity inhomogeneous images.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.
NASA Technical Reports Server (NTRS)
Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea
2015-01-01
This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.
Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava
2012-03-01
Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Structural Stability of Mathematical Models of National Economy
NASA Astrophysics Data System (ADS)
Ashimov, Abdykappar A.; Sultanov, Bahyt T.; Borovskiy, Yuriy V.; Adilov, Zheksenbek M.; Ashimov, Askar A.
2011-12-01
In the paper we test robustness of particular dynamic systems in a compact regions of a plane and a weak structural stability of one dynamic system of high order in a compact region of its phase space. The test was carried out based on the fundamental theory of dynamical systems on a plane and based on the conditions for weak structural stability of high order dynamic systems. A numerical algorithm for testing the weak structural stability of high order dynamic systems has been proposed. Based on this algorithm we assess the weak structural stability of one computable general equilibrium model.
Fractional order creep model for dam concrete considering degree of hydration
NASA Astrophysics Data System (ADS)
Huang, Yaoying; Xiao, Lei; Bao, Tengfei; Liu, Yu
2018-05-01
Concrete is a material that is an intermediate between an ideal solid and an ideal fluid. The creep of concrete is related not only to the loading age and duration, but also to its temperature and temperature history. Fractional order calculus is a powerful tool for solving physical mechanics modeling problems. Using a software element based on the generalized Kelvin model, a fractional order creep model of concrete considering the loading age and duration is established. Then, the hydration rate of cement is considered in terms of the degree of hydration, and the fractional order creep model of concrete considering the degree of hydration is established. Moreover, uniaxial tensile creep tests of dam concrete under different curing temperatures were conducted, and the results were combined with the creep test data and complex optimization method to optimize the parameters of a new creep model. The results show that the fractional tensile creep model based on hydration degree can better describe the tensile creep properties of concrete, and this model involves fewer parameters than the 8-parameter model.
A hierarchy for modeling high speed propulsion systems
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Deabreu, Alex
1991-01-01
General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery, such as inlets, ramjets, and scramjets. The discussion is separated into four areas: (1) computational fluid dynamics models for the entire nonlinear system or high order nonlinear models; (2) high order linearized models derived from fundamental physics; (3) low order linear models obtained from the other high order models; and (4) low order nonlinear models (order here refers to the number of dynamic states). Included in the discussion are any special considerations based on the relevant control system designs. The methods discussed are for the quasi-one-dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, including moving normal shocks, hammershocks, simple subsonic combustion via heat addition, temperature dependent gases, detonations, and thermal choking. The report also contains a comprehensive list of papers and theses generated by this grant.
Fractional-order difference equations for physical lattices and some applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2015-10-15
Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions.more » Continuum limits of these fractional-order difference equations are also suggested.« less
NASA Astrophysics Data System (ADS)
Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai
2017-10-01
With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.
Higher Order, Hybrid BEM/FEM Methods Applied to Antenna Modeling
NASA Technical Reports Server (NTRS)
Fink, P. W.; Wilton, D. R.; Dobbins, J. A.
2002-01-01
In this presentation, the authors address topics relevant to higher order modeling using hybrid BEM/FEM formulations. The first of these is the limitation on convergence rates imposed by geometric modeling errors in the analysis of scattering by a dielectric sphere. The second topic is the application of an Incomplete LU Threshold (ILUT) preconditioner to solve the linear system resulting from the BEM/FEM formulation. The final tOpic is the application of the higher order BEM/FEM formulation to antenna modeling problems. The authors have previously presented work on the benefits of higher order modeling. To achieve these benefits, special attention is required in the integration of singular and near-singular terms arising in the surface integral equation. Several methods for handling these terms have been presented. It is also well known that achieving he high rates of convergence afforded by higher order bases may als'o require the employment of higher order geometry models. A number of publications have described the use of quadratic elements to model curved surfaces. The authors have shown in an EFIE formulation, applied to scattering by a PEC .sphere, that quadratic order elements may be insufficient to prevent the domination of modeling errors. In fact, on a PEC sphere with radius r = 0.58 Lambda(sub 0), a quartic order geometry representation was required to obtain a convergence benefi.t from quadratic bases when compared to the convergence rate achieved with linear bases. Initial trials indicate that, for a dielectric sphere of the same radius, - requirements on the geometry model are not as severe as for the PEC sphere. The authors will present convergence results for higher order bases as a function of the geometry model order in the hybrid BEM/FEM formulation applied to dielectric spheres. It is well known that the system matrix resulting from the hybrid BEM/FEM formulation is ill -conditioned. For many real applications, a good preconditioner is required to obtain usable convergence from an iterative solver. The authors have examined the use of an Incomplete LU Threshold (ILUT) preconditioner . to solver linear systems stemming from higher order BEM/FEM formulations in 2D scattering problems. Although the resulting preconditioner provided aD excellent approximation to the system inverse, its size in terms of non-zero entries represented only a modest improvement when compared with the fill-in associated with a sparse direct solver. Furthermore, the fill-in of the preconditioner could not be substantially reduced without the occurrence of instabilities. In addition to the results for these 2D problems, the authors will present iterative solution data from the application of the ILUT preconditioner to 3D problems.
Hübner, U; Klein, F; Hofstetter, J; Kammeyer, G; Seete, H
2000-01-01
Web-based drug ordering allows a growing number of hospitals without pharmacy to communicate seamlessly with their external pharmacy. Business process analysis and object oriented modelling performed together with the users at a pilot hospital resulted in a comprehensive picture of the user and business requirements for electronic drug ordering. The user requirements were further validated with the help of a software prototype. In order to capture the needs of a large number of users CAP10, a new method making use of pre-built models, is proposed. Solutions for coping with the technical requirements (interfacing the business software at the pharmacy) and with the legal requirements (signing the orders) are presented.
Wavelet-based 3-D inversion for frequency-domain airborne EM data
NASA Astrophysics Data System (ADS)
Liu, Yunhe; Farquharson, Colin G.; Yin, Changchun; Baranwal, Vikas C.
2018-04-01
In this paper, we propose a new wavelet-based 3-D inversion method for frequency-domain airborne electromagnetic (FDAEM) data. Instead of inverting the model in the space domain using a smoothing constraint, this new method recovers the model in the wavelet domain based on a sparsity constraint. In the wavelet domain, the model is represented by two types of coefficients, which contain both large- and fine-scale informations of the model, meaning the wavelet-domain inversion has inherent multiresolution. In order to accomplish a sparsity constraint, we minimize an L1-norm measure in the wavelet domain that mostly gives a sparse solution. The final inversion system is solved by an iteratively reweighted least-squares method. We investigate different orders of Daubechies wavelets to accomplish our inversion algorithm, and test them on synthetic frequency-domain AEM data set. The results show that higher order wavelets having larger vanishing moments and regularity can deliver a more stable inversion process and give better local resolution, while the lower order wavelets are simpler and less smooth, and thus capable of recovering sharp discontinuities if the model is simple. At last, we test this new inversion algorithm on a frequency-domain helicopter EM (HEM) field data set acquired in Byneset, Norway. Wavelet-based 3-D inversion of HEM data is compared to L2-norm-based 3-D inversion's result to further investigate the features of the new method.
A Model of the Base Civil Engineering Work Request/Work Order Processing System.
1979-09-01
changes to the work order processing system. This research identifies the variables that significantly affect the accomplishment time and proposes a... order processing system and its behavior with respect to work order processing time. A conceptual model was developed to describe the work request...work order processing system as a stochastic queueing system in which the processing times and the various distributions are treated as random variables
Reduced-order model for dynamic optimization of pressure swing adsorption processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, A.; Biegler, L.; Zitney, S.
2007-01-01
Over the past decades, pressure swing adsorption (PSA) processes have been widely used as energy-efficient gas and liquid separation techniques, especially for high purity hydrogen purification from refinery gases. The separation processes are based on solid-gas equilibrium and operate under periodic transient conditions. Models for PSA processes are therefore multiple instances of partial differential equations (PDEs) in time and space with periodic boundary conditions that link the processing steps together. The solution of this coupled stiff PDE system is governed by steep concentrations and temperature fronts moving with time. As a result, the optimization of such systems for either designmore » or operation represents a significant computational challenge to current differential algebraic equation (DAE) optimization techniques and nonlinear programming algorithms. Model reduction is one approach to generate cost-efficient low-order models which can be used as surrogate models in the optimization problems. The study develops a reduced-order model (ROM) based on proper orthogonal decomposition (POD), which is a low-dimensional approximation to a dynamic PDE-based model. Initially, a representative ensemble of solutions of the dynamic PDE system is constructed by solving a higher-order discretization of the model using the method of lines, a two-stage approach that discretizes the PDEs in space and then integrates the resulting DAEs over time. Next, the ROM method applies the Karhunen-Loeve expansion to derive a small set of empirical eigenfunctions (POD modes) which are used as basis functions within a Galerkin's projection framework to derive a low-order DAE system that accurately describes the dominant dynamics of the PDE system. The proposed method leads to a DAE system of significantly lower order, thus replacing the one obtained from spatial discretization before and making optimization problem computationally-efficient. The method has been applied to the dynamic coupled PDE-based model of a two-bed four-step PSA process for separation of hydrogen from methane. Separate ROMs have been developed for each operating step with different POD modes for each of them. A significant reduction in the order of the number of states has been achieved. The gas-phase mole fraction, solid-state loading and temperature profiles from the low-order ROM and from the high-order simulations have been compared. Moreover, the profiles for a different set of inputs and parameter values fed to the same ROM were compared with the accurate profiles from the high-order simulations. Current results indicate the proposed ROM methodology as a promising surrogate modeling technique for cost-effective optimization purposes. Moreover, deviations from the ROM for different set of inputs and parameters suggest that a recalibration of the model is required for the optimization studies. Results for these will also be presented with the aforementioned results.« less
A new fractional order derivative based active contour model for colon wall segmentation
NASA Astrophysics Data System (ADS)
Chen, Bo; Li, Lihong C.; Wang, Huafeng; Wei, Xinzhou; Huang, Shan; Chen, Wensheng; Liang, Zhengrong
2018-02-01
Segmentation of colon wall plays an important role in advancing computed tomographic colonography (CTC) toward a screening modality. Due to the low contrast of CT attenuation around colon wall, accurate segmentation of the boundary of both inner and outer wall is very challenging. In this paper, based on the geodesic active contour model, we develop a new model for colon wall segmentation. First, tagged materials in CTC images were automatically removed via a partial volume (PV) based electronic colon cleansing (ECC) strategy. We then present a new fractional order derivative based active contour model to segment the volumetric colon wall from the cleansed CTC images. In this model, the regionbased Chan-Vese model is incorporated as an energy term to the whole model so that not only edge/gradient information but also region/volume information is taken into account in the segmentation process. Furthermore, a fractional order differentiation derivative energy term is also developed in the new model to preserve the low frequency information and improve the noise immunity of the new segmentation model. The proposed colon wall segmentation approach was validated on 16 patient CTC scans. Experimental results indicate that the present scheme is very promising towards automatically segmenting colon wall, thus facilitating computer aided detection of initial colonic polyp candidates via CTC.
ERIC Educational Resources Information Center
Saragih, Sahat; Napitupulu, E. Elvis; Fauzi, Amin
2017-01-01
This research aims to develop a student-centered learning model based on local culture and instrument of mathematical higher order thinking of junior high school students in the frame of the 2013-Curriculum in North Sumatra, Indonesia. The subjects of the research are seventh graders which are taken proportionally random consisted of three public…
NASA Technical Reports Server (NTRS)
Celaya, Jose R.; Saha, Sankalita; Goebel, Kai
2011-01-01
Accelerated aging methodologies for electrolytic components have been designed and accelerated aging experiments have been carried out. The methodology is based on imposing electrical and/or thermal overstresses via electrical power cycling in order to mimic the real world operation behavior. Data are collected in-situ and offline in order to periodically characterize the devices' electrical performance as it ages. The data generated through these experiments are meant to provide capability for the validation of prognostic algorithms (both model-based and data-driven). Furthermore, the data allow validation of physics-based and empirical based degradation models for this type of capacitor. A first set of models and algorithms has been designed and tested on the data.
Reduced order modeling and active flow control of an inlet duct
NASA Astrophysics Data System (ADS)
Ge, Xiaoqing
Many aerodynamic applications require the modeling of compressible flows in or around a body, e.g., the design of aircraft, inlet or exhaust duct, wind turbines, or tall buildings. Traditional methods use wind tunnel experiments and computational fluid dynamics (CFD) to investigate the spatial and temporal distribution of the flows. Although they provide a great deal of insight into the essential characteristics of the flow field, they are not suitable for control analysis and design due to the high physical/computational cost. Many model reduction methods have been studied to reduce the complexity of the flow model. There are two main approaches: linearization based input/output modeling and proper orthogonal decomposition (POD) based model reduction. The former captures mostly the local behavior near a steady state, which is suitable to model laminar flow dynamics. The latter obtains a reduced order model by projecting the governing equation onto an "optimal" subspace and is able to model complex nonlinear flow phenomena. In this research we investigate various model reduction approaches and compare them in flow modeling and control design. We propose an integrated model-based control methodology and apply it to the reduced order modeling and active flow control of compressible flows within a very aggressive (length to exit diameter ratio, L/D, of 1.5) inlet duct and its upstream contraction section. The approach systematically applies reduced order modeling, estimator design, sensor placement and control design to improve the aerodynamic performance. The main contribution of this work is the development of a hybrid model reduction approach that attempts to combine the best features of input/output model identification and POD method. We first identify a linear input/output model by using a subspace algorithm. We next project the difference between CFD response and the identified model response onto a set of POD basis. This trajectory is fit to a nonlinear dynamical model to augment the linear input/output model. Thus, the full system is decomposed into a dominant linear subsystem and a low order nonlinear subsystem. The hybrid model is then used for control design and compared with other modeling methods in CFD simulations. Numerical results indicate that the hybrid model accurately predicts the nonlinear behavior of the flow for a 2D diffuser contraction section model. It also performs best in terms of feedback control design and learning control. Since some outputs of interest (e.g., the AIP pressure recovery) are not observable during normal operations, static and dynamic estimators are designed to recreate the information from available sensor measurements. The latter also provides a state estimation for feedback controller. Based on the reduced order models and estimators, different controllers are designed to improve the aerodynamic performance of the contraction section and inlet duct. The integrated control methodology is evaluated with CFD simulations. Numerical results demonstrate the feasibility and efficacy of the active flow control based on reduced order models. Our reduced order models not only generate a good approximation of the nonlinear flow dynamics over a wide input range, but also help to design controllers that significantly improve the flow response. The tools developed for model reduction, estimator and control design can also be applied to wind tunnel experiment.
NASA Astrophysics Data System (ADS)
Yao, Bing; Yang, Hui
2016-12-01
This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.
Validation of a RANS transition model using a high-order weighted compact nonlinear scheme
NASA Astrophysics Data System (ADS)
Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang
2013-04-01
A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.
Flow Channel Influence of a Collision-Based Piezoelectric Jetting Dispenser on Jet Performance
Deng, Guiling; Li, Junhui; Duan, Ji’an
2018-01-01
To improve the jet performance of a bi-piezoelectric jet dispenser, mathematical and simulation models were established according to the operating principle. In order to improve the accuracy and reliability of the simulation calculation, a viscosity model of the fluid was fitted to a fifth-order function with shear rate based on rheological test data, and the needle displacement model was fitted to a nine-order function with time based on real-time displacement test data. The results show that jet performance is related to the diameter of the nozzle outlet and the cone angle of the nozzle, and the impacts of the flow channel structure were confirmed. The approach of numerical simulation is confirmed by the testing results of droplet volume. It will provide a reliable simulation platform for mechanical collision-based jet dispensing and a theoretical basis for micro jet valve design and improvement. PMID:29677140
Projection-Based Reduced Order Modeling for Spacecraft Thermal Analysis
NASA Technical Reports Server (NTRS)
Qian, Jing; Wang, Yi; Song, Hongjun; Pant, Kapil; Peabody, Hume; Ku, Jentung; Butler, Charles D.
2015-01-01
This paper presents a mathematically rigorous, subspace projection-based reduced order modeling (ROM) methodology and an integrated framework to automatically generate reduced order models for spacecraft thermal analysis. Two key steps in the reduced order modeling procedure are described: (1) the acquisition of a full-scale spacecraft model in the ordinary differential equation (ODE) and differential algebraic equation (DAE) form to resolve its dynamic thermal behavior; and (2) the ROM to markedly reduce the dimension of the full-scale model. Specifically, proper orthogonal decomposition (POD) in conjunction with discrete empirical interpolation method (DEIM) and trajectory piece-wise linear (TPWL) methods are developed to address the strong nonlinear thermal effects due to coupled conductive and radiative heat transfer in the spacecraft environment. Case studies using NASA-relevant satellite models are undertaken to verify the capability and to assess the computational performance of the ROM technique in terms of speed-up and error relative to the full-scale model. ROM exhibits excellent agreement in spatiotemporal thermal profiles (<0.5% relative error in pertinent time scales) along with salient computational acceleration (up to two orders of magnitude speed-up) over the full-scale analysis. These findings establish the feasibility of ROM to perform rational and computationally affordable thermal analysis, develop reliable thermal control strategies for spacecraft, and greatly reduce the development cycle times and costs.
Metamodel-based inverse method for parameter identification: elastic-plastic damage model
NASA Astrophysics Data System (ADS)
Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb
2017-04-01
This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.
Robustness of reduced-order observer-based controllers in transitional 2D Blasius boundary layers
NASA Astrophysics Data System (ADS)
Belson, Brandt; Semeraro, Onofrio; Rowley, Clarence; Pralits, Jan; Henningson, Dan
2011-11-01
In this work, we seek to delay transition in the Blasius boundary layer. We trip the flow with an upstream disturbance and dampen the growth of the resulting structures downstream. The observer-based controllers use a single sensor and a single localized body force near the wall. To formulate the controllers, we first find a reduced-order model of the system via the Eigensystem Realization Algorithm (ERA), then find the H2 optimal controller for this reduced-order system. We find the resulting controllers are effective only when the sensor is upstream of the actuator (in a feedforward configuration), but as is expected, are sensitive to model uncertainty. When the sensor is downstream of the actuator (in a feedback configuration), the reduced-order observer-based controllers are not robust and ineffective on the full system. In order to investigate the robustness properties of the system, an iterative technique called the adjoint of the direct adjoint (ADA) is employed to find a full-dimensional H2 optimal controller. This avoids the reduced-order modelling step and serves as a reference point. ADA is promising for investigating the lack of robustness previously mentioned.
2010-02-01
98 8.4.5 Training Screening ............................. .................................................................99 8.5 Experimental...associated with the proposed parametric model. Several im- portant issues are discussed, including model order selection, training screening , and time...parameters associated with the NS-AR model. In addition, we develop model order selection, training screening , and time-series based whitening and
USDA-ARS?s Scientific Manuscript database
Adaptive waveform interpretation with Gaussian filtering (AWIGF) and second order bounded mean oscillation operator Z square 2(u,t,r) are TDR analysis methods based on second order differentiation. AWIGF was originally designed for relatively long probe (greater than 150 mm) TDR waveforms, while Z s...
Investigation of the Stability of POD-Galerkin Techniques for Reduced Order Model Development
2016-01-09
symmetrizing the higher- order PDE with a preconditioning matrix. Rowley et al. also pointed out that defining a proper inner product can be important when...equations. The ROM is obtained by employing Galerkin’s method to reduce the high-order PDEs to a lower-order ODE system by means of POD eigen-bases...employing Galerkin’s method to reduce the high-order PDEs to a lower-order ODE system by means of POD eigen-bases. Possible solutions of the ROM stability
Hybrid perturbation methods based on statistical time series models
NASA Astrophysics Data System (ADS)
San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario
2016-04-01
In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.
Simulation and optimization of pressure swing adsorption systmes using reduced-order modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, A.; Biegler, L.; Zitney, S.
2009-01-01
Over the past three decades, pressure swing adsorption (PSA) processes have been widely used as energyefficient gas separation techniques, especially for high purity hydrogen purification from refinery gases. Models for PSA processes are multiple instances of partial differential equations (PDEs) in time and space with periodic boundary conditions that link the processing steps together. The solution of this coupled stiff PDE system is governed by steep fronts moving with time. As a result, the optimization of such systems represents a significant computational challenge to current differential algebraic equation (DAE) optimization techniques and nonlinear programming algorithms. Model reduction is one approachmore » to generate cost-efficient low-order models which can be used as surrogate models in the optimization problems. This study develops a reducedorder model (ROM) based on proper orthogonal decomposition (POD), which is a low-dimensional approximation to a dynamic PDE-based model. The proposed method leads to a DAE system of significantly lower order, thus replacing the one obtained from spatial discretization and making the optimization problem computationally efficient. The method has been applied to the dynamic coupled PDE-based model of a twobed four-step PSA process for separation of hydrogen from methane. Separate ROMs have been developed for each operating step with different POD modes for each of them. A significant reduction in the order of the number of states has been achieved. The reduced-order model has been successfully used to maximize hydrogen recovery by manipulating operating pressures, step times and feed and regeneration velocities, while meeting product purity and tight bounds on these parameters. Current results indicate the proposed ROM methodology as a promising surrogate modeling technique for cost-effective optimization purposes.« less
Transport coefficient computation based on input/output reduced order models
NASA Astrophysics Data System (ADS)
Hurst, Joshua L.
The guiding purpose of this thesis is to address the optimal material design problem when the material description is a molecular dynamics model. The end goal is to obtain a simplified and fast model that captures the property of interest such that it can be used in controller design and optimization. The approach is to examine model reduction analysis and methods to capture a specific property of interest, in this case viscosity, or more generally complex modulus or complex viscosity. This property and other transport coefficients are defined by a input/output relationship and this motivates model reduction techniques that are tailored to preserve input/output behavior. In particular Singular Value Decomposition (SVD) based methods are investigated. First simulation methods are identified that are amenable to systems theory analysis. For viscosity, these models are of the Gosling and Lees-Edwards type. They are high order nonlinear Ordinary Differential Equations (ODEs) that employ Periodic Boundary Conditions. Properties can be calculated from the state trajectories of these ODEs. In this research local linear approximations are rigorously derived and special attention is given to potentials that are evaluated with Periodic Boundary Conditions (PBC). For the Gosling description LTI models are developed from state trajectories but are found to have limited success in capturing the system property, even though it is shown that full order LTI models can be well approximated by reduced order LTI models. For the Lees-Edwards SLLOD type model nonlinear ODEs will be approximated by a Linear Time Varying (LTV) model about some nominal trajectory and both balanced truncation and Proper Orthogonal Decomposition (POD) will be used to assess the plausibility of reduced order models to this system description. An immediate application of the derived LTV models is Quasilinearization or Waveform Relaxation. Quasilinearization is a Newton's method applied to the ODE operator equation. Its a recursive method that solves nonlinear ODE's by solving a LTV systems at each iteration to obtain a new closer solution. LTV models are derived for both Gosling and Lees-Edwards type models. Particular attention is given to SLLOD Lees-Edwards models because they are in a form most amenable to performing Taylor series expansion, and the most commonly used model to examine viscosity. With linear models developed a method is presented to calculate viscosity based on LTI Gosling models but is shown to have some limitations. To address these issues LTV SLLOD models are analyzed with both Balanced Truncation and POD and both show that significant order reduction is possible. By examining the singular values of both techniques it is shown that Balanced Truncation has a potential to offer greater reduction, which should be expected as it is based on the input/output mapping instead of just the state information as in POD. Obtaining reduced order systems that capture the property of interest is challenging. For Balanced Truncation reduced order models for 1-D LJ and FENE systems are obtained and are shown to capture the output of interest fairly well. However numerical challenges currently limit this analysis to small order systems. Suggestions are presented to extend this method to larger systems. In addition reduced 2nd order systems are obtained from POD. Here the challenge is extending the solution beyond the original period used for the projection, in particular identifying the manifold the solution travels along. The remaining challenges are presented and discussed.
A first-order model for impact crater degradation on Venus
NASA Technical Reports Server (NTRS)
Izenberg, Noam R.; Arvidson, Raymond E.; Phillips, Roger J.
1993-01-01
A first-order impact crater aging model is presented based on observations of the global crater population of Venus. The total population consists of 879 craters found over the approximately 98 percent of the planet that has been mapped by the Magellan spacecraft during the first three cycles of its mission. The model is based upon three primary aspects of venusian impact craters: (1) extended ejecta deposits (EED's); (2) crater rims and continuous ejecta deposits; and (3) crater interiors and floors.
Modeling and managing risk early in software development
NASA Technical Reports Server (NTRS)
Briand, Lionel C.; Thomas, William M.; Hetmanski, Christopher J.
1993-01-01
In order to improve the quality of the software development process, we need to be able to build empirical multivariate models based on data collectable early in the software process. These models need to be both useful for prediction and easy to interpret, so that remedial actions may be taken in order to control and optimize the development process. We present an automated modeling technique which can be used as an alternative to regression techniques. We show how it can be used to facilitate the identification and aid the interpretation of the significant trends which characterize 'high risk' components in several Ada systems. Finally, we evaluate the effectiveness of our technique based on a comparison with logistic regression based models.
NASA Astrophysics Data System (ADS)
Divayana, D. G. H.; Adiarta, A.; Abadi, I. B. G. S.
2018-01-01
The aim of this research was to create initial design of CSE-UCLA evaluation model modified with Weighted Product in evaluating digital library service at Computer College in Bali. The method used in this research was developmental research method and developed by Borg and Gall model design. The results obtained from the research that conducted earlier this month was a rough sketch of Weighted Product based CSE-UCLA evaluation model that the design had been able to provide a general overview of the stages of weighted product based CSE-UCLA evaluation model used in order to optimize the digital library services at the Computer Colleges in Bali.
NASA Astrophysics Data System (ADS)
Li, Gaohua; Fu, Xiang; Wang, Fuxin
2017-10-01
The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.
Recent literature on structural modeling, identification, and analysis
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.
1990-01-01
The literature on the mathematical modeling of large space structures is first reviewed, with attention given to continuum models, model order reduction, substructuring, and computational techniques. System identification and mode verification are then discussed with reference to the verification of mathematical models of large space structures. In connection with analysis, the paper surveys recent research on eigensolvers and dynamic response solvers for large-order finite-element-based models.
Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong
2008-10-01
We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.
NASA Astrophysics Data System (ADS)
Vincenti, Henri; Vay, Jean-Luc
2018-07-01
The advent of massively parallel supercomputers, with their distributed-memory technology using many processing units, has favored the development of highly-scalable local low-order solvers at the expense of harder-to-scale global very high-order spectral methods. Indeed, FFT-based methods, which were very popular on shared memory computers, have been largely replaced by finite-difference (FD) methods for the solution of many problems, including plasmas simulations with electromagnetic Particle-In-Cell methods. For some problems, such as the modeling of so-called "plasma mirrors" for the generation of high-energy particles and ultra-short radiations, we have shown that the inaccuracies of standard FD-based PIC methods prevent the modeling on present supercomputers at sufficient accuracy. We demonstrate here that a new method, based on the use of local FFTs, enables ultrahigh-order accuracy with unprecedented scalability, and thus for the first time the accurate modeling of plasma mirrors in 3D.
The 4th order GISS model of the global atmosphere
NASA Technical Reports Server (NTRS)
Kalnay-Rivas, E.; Bayliss, A.; Storch, J.
1977-01-01
The new GISS 4th order model of the global atmosphere is described. It is based on 4th order quadratically conservative differences with the periodic application of a 16th order filter on the sea level pressure and potential temperature equations, a combination which is approximately enstrophy conserving. Several short range forecasts indicate a significant improvement over 2nd order forecasts with the same resolution (approximately 400 km). However the 4th order forecasts are somewhat inferior to 2nd order forecasts with double resolution. This is probably due to the presence of short waves in the range between 1000 km and 2000 km, which are computed more accurately by the 2nd order high resolution model. An operation count of the schemes indicates that with similar code optimization, the 4th order model will require approximately the same amount of computer time as the 2nd order model with the same resolution. It is estimated that the 4th order model with a grid size of 200 km provides enough accuracy to make horizontal truncation errors negligible over a period of a week for all synoptic scales (waves longer than 1000 km).
Blum, Philipp; Hunkeler, Daniel; Weede, Matthias; Beyer, Christof; Grathwohl, Peter; Morasch, Barbara
2009-04-01
At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis-Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d(-1) and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d(-1). Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of k(max)=0.1 microg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d(-1). The stable isotope-based biodegradation rate constant of 0.0027 d(-1) was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d(-1). With MM-kinetics a maximum degradation rate of k(max)=12 microg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor epsilon(field) of -1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.
Ultra wideband (0.5-16 kHz) MR elastography for robust shear viscoelasticity model identification.
Liu, Yifei; Yasar, Temel K; Royston, Thomas J
2014-12-21
Changes in the viscoelastic parameters of soft biological tissues often correlate with progression of disease, trauma or injury, and response to treatment. Identifying the most appropriate viscoelastic model, then estimating and monitoring the corresponding parameters of that model can improve insight into the underlying tissue structural changes. MR Elastography (MRE) provides a quantitative method of measuring tissue viscoelasticity. In a previous study by the authors (Yasar et al 2013 Magn. Reson. Med. 70 479-89), a silicone-based phantom material was examined over the frequency range of 200 Hz-7.75 kHz using MRE, an unprecedented bandwidth at that time. Six viscoelastic models including four integer order models and two fractional order models, were fit to the wideband viscoelastic data (measured storage and loss moduli as a function of frequency). The 'fractional Voigt' model (spring and springpot in parallel) exhibited the best fit and was even able to fit the entire frequency band well when it was identified based only on a small portion of the band. This paper is an extension of that study with a wider frequency range from 500 Hz to 16 kHz. Furthermore, more fractional order viscoelastic models are added to the comparison pool. It is found that added complexity of the viscoelastic model provides only marginal improvement over the 'fractional Voigt' model. And, again, the fractional order models show significant improvement over integer order viscoelastic models that have as many or more fitting parameters.
McSwiggen, P.L.
1993-01-01
Earlier attempts at solution models for the ternary carbonate system have been unable to adequately accommodate the cation ordering which occurs in some of the carbonate phases. The carbonate solution model of this study combines a Margules type of interaction model with a Bragg-Williams type of ordering model. The ordering model determines the equilibrium state of order for a crystal, from which the cation distribution within the lattice can be obtained. The interaction model addresses the effect that mixing different cation species within a given cation layer has on the total free energy of the system. An ordering model was derived, based on the Bragg-Williams approach; it is applicable to ternary systems involving three cations substituting on two sites, and contains three ordering energy parameters (WCaMg, WCaFe, and WCaMgFe). The solution model of this study involves six Margules-type interaction parameters (W12, W21, W13, W31, W23, and W32). Values for the two sets of energy parameters were calculated from experimental data and from compositional relationships in natural assemblages. ?? 1993 Springer-Verlag.
Graph cuts for curvature based image denoising.
Bae, Egil; Shi, Juan; Tai, Xue-Cheng
2011-05-01
Minimization of total variation (TV) is a well-known method for image denoising. Recently, the relationship between TV minimization problems and binary MRF models has been much explored. This has resulted in some very efficient combinatorial optimization algorithms for the TV minimization problem in the discrete setting via graph cuts. To overcome limitations, such as staircasing effects, of the relatively simple TV model, variational models based upon higher order derivatives have been proposed. The Euler's elastica model is one such higher order model of central importance, which minimizes the curvature of all level lines in the image. Traditional numerical methods for minimizing the energy in such higher order models are complicated and computationally complex. In this paper, we will present an efficient minimization algorithm based upon graph cuts for minimizing the energy in the Euler's elastica model, by simplifying the problem to that of solving a sequence of easy graph representable problems. This sequence has connections to the gradient flow of the energy function, and converges to a minimum point. The numerical experiments show that our new approach is more effective in maintaining smooth visual results while preserving sharp features better than TV models.
Reduced-Order Modeling: New Approaches for Computational Physics
NASA Technical Reports Server (NTRS)
Beran, Philip S.; Silva, Walter A.
2001-01-01
In this paper, we review the development of new reduced-order modeling techniques and discuss their applicability to various problems in computational physics. Emphasis is given to methods ba'sed on Volterra series representations and the proper orthogonal decomposition. Results are reported for different nonlinear systems to provide clear examples of the construction and use of reduced-order models, particularly in the multi-disciplinary field of computational aeroelasticity. Unsteady aerodynamic and aeroelastic behaviors of two- dimensional and three-dimensional geometries are described. Large increases in computational efficiency are obtained through the use of reduced-order models, thereby justifying the initial computational expense of constructing these models and inotivatim,- their use for multi-disciplinary design analysis.
A probabilistic union model with automatic order selection for noisy speech recognition.
Jancovic, P; Ming, J
2001-09-01
A critical issue in exploiting the potential of the sub-band-based approach to robust speech recognition is the method of combining the sub-band observations, for selecting the bands unaffected by noise. A new method for this purpose, i.e., the probabilistic union model, was recently introduced. This model has been shown to be capable of dealing with band-limited corruption, requiring no knowledge about the band position and statistical distribution of the noise. A parameter within the model, which we call its order, gives the best results when it equals the number of noisy bands. Since this information may not be available in practice, in this paper we introduce an automatic algorithm for selecting the order, based on the state duration pattern generated by the hidden Markov model (HMM). The algorithm has been tested on the TIDIGITS database corrupted by various types of additive band-limited noise with unknown noisy bands. The results have shown that the union model equipped with the new algorithm can achieve a recognition performance similar to that achieved when the number of noisy bands is known. The results show a very significant improvement over the traditional full-band model, without requiring prior information on either the position or the number of noisy bands. The principle of the algorithm for selecting the order based on state duration may also be applied to other sub-band combination methods.
Documentation of the Retail Price Model
The Retail Price Model (RPM) provides a first‐order estimate of average retail electricity prices using information from the EPA Base Case v.5.13 Base Case or other scenarios for each of the 64 Integrated Planing Model (IPM) regions.
Monitoring by forward scatter radar techniques: an improved second-order analytical model
NASA Astrophysics Data System (ADS)
Falconi, Marta Tecla; Comite, Davide; Galli, Alessandro; Marzano, Frank S.; Pastina, Debora; Lombardo, Pierfrancesco
2017-10-01
In this work, a second-order phase approximation is introduced to provide an improved analytical model of the signal received in forward scatter radar systems. A typical configuration with a rectangular metallic object illuminated while crossing the baseline, in far- or near-field conditions, is considered. An improved second-order model is compared with a simplified one already proposed by the authors and based on a paraxial approximation. A phase error analysis is carried out to investigate benefits and limitations of the second-order modeling. The results are validated by developing full-wave numerical simulations implementing the relevant scattering problem on a commercial tool.
Statistical analysis of financial returns for a multiagent order book model of asset trading
NASA Astrophysics Data System (ADS)
Preis, Tobias; Golke, Sebastian; Paul, Wolfgang; Schneider, Johannes J.
2007-07-01
We recently introduced a realistic order book model [T. Preis , Europhys. Lett. 75, 510 (2006)] which is able to generate the stylized facts of financial markets. We analyze this model in detail, explain the consequences of the use of different groups of traders, and focus on the foundation of a nontrivial Hurst exponent based on the introduction of a market trend. Our order book model supports the theoretical argument that a nontrivial Hurst exponent implies not necessarily long-term correlations. A coupling of the order placement depth to the market trend can produce fat tails, which can be described by a truncated Lévy distribution.
Reduced-Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1999-01-01
This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.
Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1999-01-01
This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of an RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.
Markov models of genome segmentation
NASA Astrophysics Data System (ADS)
Thakur, Vivek; Azad, Rajeev K.; Ramaswamy, Ram
2007-01-01
We introduce Markov models for segmentation of symbolic sequences, extending a segmentation procedure based on the Jensen-Shannon divergence that has been introduced earlier. Higher-order Markov models are more sensitive to the details of local patterns and in application to genome analysis, this makes it possible to segment a sequence at positions that are biologically meaningful. We show the advantage of higher-order Markov-model-based segmentation procedures in detecting compositional inhomogeneity in chimeric DNA sequences constructed from genomes of diverse species, and in application to the E. coli K12 genome, boundaries of genomic islands, cryptic prophages, and horizontally acquired regions are accurately identified.
Data on industrial new orders for the euro area.
de Bondt, Gabe J; Dieden, Heinz C; Muzikarova, Sona; Pavlova, Iskra
2016-12-01
This data article provides time series on euro area industrial new orders and is related to the research article entitled "Modelling industrial new orders" (G.J. de Bondt, H.C. Dieden, S. Muzikarova, I. Vincze, 2014b) [3]. The data are in index format with a fixed base year (currently 2010) for total new orders as well as a number of breakdowns. The euro area data are based on the official national data for countries that still collect data and on European Central Bank (ECB) model estimates for countries that discontinued the data collection. The weighting scheme to calculate euro area aggregates makes use of country weights derived from industrial turnover statistics as published by Eurostat.
Kuiper, Rebecca M; Nederhoff, Tim; Klugkist, Irene
2015-05-01
In this paper, the performance of six types of techniques for comparisons of means is examined. These six emerge from the distinction between the method employed (hypothesis testing, model selection using information criteria, or Bayesian model selection) and the set of hypotheses that is investigated (a classical, exploration-based set of hypotheses containing equality constraints on the means, or a theory-based limited set of hypotheses with equality and/or order restrictions). A simulation study is conducted to examine the performance of these techniques. We demonstrate that, if one has specific, a priori specified hypotheses, confirmation (i.e., investigating theory-based hypotheses) has advantages over exploration (i.e., examining all possible equality-constrained hypotheses). Furthermore, examining reasonable order-restricted hypotheses has more power to detect the true effect/non-null hypothesis than evaluating only equality restrictions. Additionally, when investigating more than one theory-based hypothesis, model selection is preferred over hypothesis testing. Because of the first two results, we further examine the techniques that are able to evaluate order restrictions in a confirmatory fashion by examining their performance when the homogeneity of variance assumption is violated. Results show that the techniques are robust to heterogeneity when the sample sizes are equal. When the sample sizes are unequal, the performance is affected by heterogeneity. The size and direction of the deviations from the baseline, where there is no heterogeneity, depend on the effect size (of the means) and on the trend in the group variances with respect to the ordering of the group sizes. Importantly, the deviations are less pronounced when the group variances and sizes exhibit the same trend (e.g., are both increasing with group number). © 2014 The British Psychological Society.
The confluence model: birth order as a within-family or between-family dynamic?
Zajonc, R B; Sulloway, Frank J
2007-09-01
The confluence model explains birth-order differences in intellectual performance by quantifying the changing dynamics within the family. Wichman, Rodgers, and MacCallum (2006) claimed that these differences are a between-family phenomenon--and hence are not directly related to birth order itself. The study design and analyses presented by Wichman et al. nevertheless suffer from crucial shortcomings, including their use of unfocused tests, which cause statistically significant trends to be overlooked. In addition, Wichman et al. treated birth-order effects as a linear phenomenon thereby ignoring the confluence model's prediction that these two samples may manifest opposing results based on age. This article cites between- and within-family data that demonstrate systematic birth-order effects as predicted by the confluence model. The corpus of evidence invoked here offers strong support for the assumption of the confluence model that birth-order differences in intellectual performance are primarily a within-family phenomenon.
Bayesian Image Segmentations by Potts Prior and Loopy Belief Propagation
NASA Astrophysics Data System (ADS)
Tanaka, Kazuyuki; Kataoka, Shun; Yasuda, Muneki; Waizumi, Yuji; Hsu, Chiou-Ting
2014-12-01
This paper presents a Bayesian image segmentation model based on Potts prior and loopy belief propagation. The proposed Bayesian model involves several terms, including the pairwise interactions of Potts models, and the average vectors and covariant matrices of Gauss distributions in color image modeling. These terms are often referred to as hyperparameters in statistical machine learning theory. In order to determine these hyperparameters, we propose a new scheme for hyperparameter estimation based on conditional maximization of entropy in the Potts prior. The algorithm is given based on loopy belief propagation. In addition, we compare our conditional maximum entropy framework with the conventional maximum likelihood framework, and also clarify how the first order phase transitions in loopy belief propagations for Potts models influence our hyperparameter estimation procedures.
A Reduced Order Model for Whole-Chip Thermal Analysis of Microfluidic Lab-on-a-Chip Systems
Wang, Yi; Song, Hongjun; Pant, Kapil
2013-01-01
This paper presents a Krylov subspace projection-based Reduced Order Model (ROM) for whole microfluidic chip thermal analysis, including conjugate heat transfer. Two key steps in the reduced order modeling procedure are described in detail, including (1) the acquisition of a 3D full-scale computational model in the state-space form to capture the dynamic thermal behavior of the entire microfluidic chip; and (2) the model order reduction using the Block Arnoldi algorithm to markedly lower the dimension of the full-scale model. Case studies using practically relevant thermal microfluidic chip are undertaken to establish the capability and to evaluate the computational performance of the reduced order modeling technique. The ROM is compared against the full-scale model and exhibits good agreement in spatiotemporal thermal profiles (<0.5% relative error in pertinent time scales) and over three orders-of-magnitude acceleration in computational speed. The salient model reusability and real-time simulation capability renders it amenable for operational optimization and in-line thermal control and management of microfluidic systems and devices. PMID:24443647
NASA Astrophysics Data System (ADS)
Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya
2016-11-01
We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.
Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models
Hooten, Mevin B.; Leeds, William B.; Fiechter, Jerome; Wikle, Christopher K.
2011-01-01
We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.
Teacher Stress: Complex Model Building with LISREL. Pedagogical Reports, No. 16.
ERIC Educational Resources Information Center
Tellenback, Sten
This paper presents a complex causal model of teacher stress based on data received from the responses of 1,466 teachers from Malmo, Sweden to a questionnaire. Also presented is a method for treating the model variables as higher-order factors or higher-order theoretical constructs. The paper's introduction presents a brief review of teacher…
POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
NASA Astrophysics Data System (ADS)
Ştefănescu, R.; Sandu, A.; Navon, I. M.
2015-08-01
This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key requirement for a successful reduced order solution is that reduced order Karush-Kuhn-Tucker conditions accurately represent their full order counterparts. In particular, accurate reduced order approximations are needed for the forward and adjoint dynamical models, as well as for the reduced gradient. New strategies to construct reduced order based are developed for proper orthogonal decomposition (POD) ROM data assimilation using both Galerkin and Petrov-Galerkin projections. For the first time POD, tensorial POD, and discrete empirical interpolation method (DEIM) are employed to develop reduced data assimilation systems for a geophysical flow model, namely, the two dimensional shallow water equations. Numerical experiments confirm the theoretical framework for Galerkin projection. In the case of Petrov-Galerkin projection, stabilization strategies must be considered for the reduced order models. The new reduced order shallow water data assimilation system provides analyses similar to those produced by the full resolution data assimilation system in one tenth of the computational time.
Active vibration and noise control of vibro-acoustic system by using PID controller
NASA Astrophysics Data System (ADS)
Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping
2015-07-01
Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.
Bayesian inference based on dual generalized order statistics from the exponentiated Weibull model
NASA Astrophysics Data System (ADS)
Al Sobhi, Mashail M.
2015-02-01
Bayesian estimation for the two parameters and the reliability function of the exponentiated Weibull model are obtained based on dual generalized order statistics (DGOS). Also, Bayesian prediction bounds for future DGOS from exponentiated Weibull model are obtained. The symmetric and asymmetric loss functions are considered for Bayesian computations. The Markov chain Monte Carlo (MCMC) methods are used for computing the Bayes estimates and prediction bounds. The results have been specialized to the lower record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.
OPTICON: Pro-Matlab software for large order controlled structure design
NASA Technical Reports Server (NTRS)
Peterson, Lee D.
1989-01-01
A software package for large order controlled structure design is described and demonstrated. The primary program, called OPTICAN, uses both Pro-Matlab M-file routines and selected compiled FORTRAN routines linked into the Pro-Matlab structure. The program accepts structural model information in the form of state-space matrices and performs three basic design functions on the model: (1) open loop analyses; (2) closed loop reduced order controller synthesis; and (3) closed loop stability and performance assessment. The current controller synthesis methods which were implemented in this software are based on the Generalized Linear Quadratic Gaussian theory of Bernstein. In particular, a reduced order Optimal Projection synthesis algorithm based on a homotopy solution method was successfully applied to an experimental truss structure using a 58-state dynamic model. These results are presented and discussed. Current plans to expand the practical size of the design model to several hundred states and the intention to interface Pro-Matlab to a supercomputing environment are discussed.
Li, Shuliang; Meng, Wei; Xie, Yufeng
2017-01-01
With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something about water security of roughly one-third of China’s population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM (1,1) (DWSGM (1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of “r” by using particle swarm optimization (PSO) algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM (1,1) model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM (1,1) grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system. PMID:29295517
Li, Shuliang; Meng, Wei; Xie, Yufeng
2017-12-23
With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something aboutwater security of roughly one-third of China's population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM(1,1)(DWSGM(1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of "r" by using particle swarm optimization(PSO)algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM(1,1)model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM(1,1)grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system.
Model-based control strategies for systems with constraints of the program type
NASA Astrophysics Data System (ADS)
Jarzębowska, Elżbieta
2006-08-01
The paper presents a model-based tracking control strategy for constrained mechanical systems. Constraints we consider can be material and non-material ones referred to as program constraints. The program constraint equations represent tasks put upon system motions and they can be differential equations of orders higher than one or two, and be non-integrable. The tracking control strategy relies upon two dynamic models: a reference model, which is a dynamic model of a system with arbitrary order differential constraints and a dynamic control model. The reference model serves as a motion planner, which generates inputs to the dynamic control model. It is based upon a generalized program motion equations (GPME) method. The method enables to combine material and program constraints and merge them both into the motion equations. Lagrange's equations with multipliers are the peculiar case of the GPME, since they can be applied to systems with constraints of first orders. Our tracking strategy referred to as a model reference program motion tracking control strategy enables tracking of any program motion predefined by the program constraints. It extends the "trajectory tracking" to the "program motion tracking". We also demonstrate that our tracking strategy can be extended to a hybrid program motion/force tracking.
Reduced-Order Model Based Feedback Control For Modified Hasegawa-Wakatani Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goumiri, I. R.; Rowley, C. W.; Ma, Z.
2013-01-28
In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modi ed Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in ow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then a modelbased feedback controller is designed for the reduced order model using linear quadratic regulators (LQR). Finally, a linear quadratic gaussian (LQG) controller, which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHWmore » equations to stabilize the equilibrium and suppress the transition to drift-wave induced turbulence.« less
Design of fast earth-return trajectories from a lunar base
NASA Astrophysics Data System (ADS)
Anhorn, Walter
1991-09-01
The Apollo Lunar Program utilized efficient transearth trajectories which employed parking orbits in order to minimize energy requirements. This thesis concentrates on a different type of transearth trajectory. These are direct-ascent, hyperbolic trajectories which omit the parking orbits in order to achieve short flight times to and from a future lunar base. The object of the thesis is the development of a three-dimensional transearth trajectory model and associated computer program for exploring trade-offs between flight-time and energy, given various mission constraints. The program also targets the Moon with a hyperbolic trajectory, which can be used for targeting Earth impact points. The first-order model is based on an Earth-centered conic and a massless spherical Moon, using MathCAD version 3.0. This model is intended as the basis for future patched-conic formulations for the design of fast Earth-return trajectories. Applications include placing nuclear deterrent arsenals on the Moon, various space support related activities, and finally protection against Earth-threatening asteroids and comets using lunar bases.
NASA Astrophysics Data System (ADS)
Zou, Changfu; Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Wik, Torsten; Pecht, Michael
2018-06-01
Electrochemical energy storage systems play an important role in diverse applications, such as electrified transportation and integration of renewable energy with the electrical grid. To facilitate model-based management for extracting full system potentials, proper mathematical models are imperative. Due to extra degrees of freedom brought by differentiation derivatives, fractional-order models may be able to better describe the dynamic behaviors of electrochemical systems. This paper provides a critical overview of fractional-order techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are presented by identifying disperse dynamic processes and using electrochemical impedance spectroscopy. Available battery/supercapacitor models are comprehensively reviewed, and the advantages of fractional types are discussed. Two case studies demonstrate the accuracy and computational efficiency of fractional-order models. These models offer 15-30% higher accuracy than their integer-order analogues, but have reasonable complexity. Consequently, fractional-order models can be good candidates for the development of advanced battery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical energy storage system modeling, state estimation, and control in the fractional-order domain, as well as future research directions, are highlighted.
Reduced-Order Modeling: Cooperative Research and Development at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Beran, Philip S.; Cesnik, Carlos E. S.; Guendel, Randal E.; Kurdila, Andrew; Prazenica, Richard J.; Librescu, Liviu; Marzocca, Piergiovanni; Raveh, Daniella E.
2001-01-01
Cooperative research and development activities at the NASA Langley Research Center (LaRC) involving reduced-order modeling (ROM) techniques are presented. Emphasis is given to reduced-order methods and analyses based on Volterra series representations, although some recent results using Proper Orthogonal Deco in position (POD) are discussed as well. Results are reported for a variety of computational and experimental nonlinear systems to provide clear examples of the use of reduced-order models, particularly within the field of computational aeroelasticity. The need for and the relative performance (speed, accuracy, and robustness) of reduced-order modeling strategies is documented. The development of unsteady aerodynamic state-space models directly from computational fluid dynamics analyses is presented in addition to analytical and experimental identifications of Volterra kernels. Finally, future directions for this research activity are summarized.
Analysis of a decision model in the context of equilibrium pricing and order book pricing
NASA Astrophysics Data System (ADS)
Wagner, D. C.; Schmitt, T. A.; Schäfer, R.; Guhr, T.; Wolf, D. E.
2014-12-01
An agent-based model for financial markets has to incorporate two aspects: decision making and price formation. We introduce a simple decision model and consider its implications in two different pricing schemes. First, we study its parameter dependence within a supply-demand balance setting. We find realistic behavior in a wide parameter range. Second, we embed our decision model in an order book setting. Here, we observe interesting features which are not present in the equilibrium pricing scheme. In particular, we find a nontrivial behavior of the order book volumes which reminds of a trend switching phenomenon. Thus, the decision making model alone does not realistically represent the trading and the stylized facts. The order book mechanism is crucial.
Mesoscale Particle-Based Model of Electrophoretic Deposition
Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; ...
2016-12-20
In this paper, we present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increasesmore » and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. Finally, we find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force.« less
Second-order closure models for supersonic turbulent flows
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Sarkar, Sutanu
1991-01-01
Recent work by the authors on the development of a second-order closure model for high-speed compressible flows is reviewed. This turbulence closure is based on the solution of modeled transport equations for the Favre-averaged Reynolds stress tensor and the solenoidal part of the turbulent dissipation rate. A new model for the compressible dissipation is used along with traditional gradient transport models for the Reynolds heat flux and mass flux terms. Consistent with simple asymptotic analyses, the deviatoric part of the remaining higher-order correlations in the Reynolds stress transport equation are modeled by a variable density extension of the newest incompressible models. The resulting second-order closure model is tested in a variety of compressible turbulent flows which include the decay of isotropic turbulence, homogeneous shear flow, the supersonic mixing layer, and the supersonic flat-plate turbulent boundary layer. Comparisons between the model predictions and the results of physical and numerical experiments are quite encouraging.
Second-order closure models for supersonic turbulent flows
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Sarkar, Sutanu
1991-01-01
Recent work on the development of a second-order closure model for high-speed compressible flows is reviewed. This turbulent closure is based on the solution of modeled transport equations for the Favre-averaged Reynolds stress tensor and the solenoidal part of the turbulent dissipation rate. A new model for the compressible dissipation is used along with traditional gradient transport models for the Reynolds heat flux and mass flux terms. Consistent with simple asymptotic analyses, the deviatoric part of the remaining higher-order correlations in the Reynolds stress transport equations are modeled by a variable density extension of the newest incompressible models. The resulting second-order closure model is tested in a variety of compressible turbulent flows which include the decay of isotropic turbulence, homogeneous shear flow, the supersonic mixing layer, and the supersonic flat-plate turbulent boundary layer. Comparisons between the model predictions and the results of physical and numerical experiments are quite encouraging.
Passivity/Lyapunov based controller design for trajectory tracking of flexible joint manipulators
NASA Technical Reports Server (NTRS)
Sicard, Pierre; Wen, John T.; Lanari, Leonardo
1992-01-01
A passivity and Lyapunov based approach for the control design for the trajectory tracking problem of flexible joint robots is presented. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. Feedforward selection and solution is analyzed for a general model for flexible joints, and for more specific and practical model structures. Passivity theory is used to design a motor state-based controller in order to input-output stabilize the error system formed by the feedforward. Observability conditions for asymptotic stability are stated and verified. In order to accommodate for modeling uncertainties and to allow for the implementation of a simplified feedforward compensation, the stability of the system is analyzed in presence of approximations in the feedforward by using a Lyapunov based robustness analysis. It is shown that under certain conditions, e.g., the desired trajectory is varying slowly enough, stability is maintained for various approximations of a canonical feedforward.
A robust method of computing finite difference coefficients based on Vandermonde matrix
NASA Astrophysics Data System (ADS)
Zhang, Yijie; Gao, Jinghuai; Peng, Jigen; Han, Weimin
2018-05-01
When the finite difference (FD) method is employed to simulate the wave propagation, high-order FD method is preferred in order to achieve better accuracy. However, if the order of FD scheme is high enough, the coefficient matrix of the formula for calculating finite difference coefficients is close to be singular. In this case, when the FD coefficients are computed by matrix inverse operator of MATLAB, inaccuracy can be produced. In order to overcome this problem, we have suggested an algorithm based on Vandermonde matrix in this paper. After specified mathematical transformation, the coefficient matrix is transformed into a Vandermonde matrix. Then the FD coefficients of high-order FD method can be computed by the algorithm of Vandermonde matrix, which prevents the inverse of the singular matrix. The dispersion analysis and numerical results of a homogeneous elastic model and a geophysical model of oil and gas reservoir demonstrate that the algorithm based on Vandermonde matrix has better accuracy compared with matrix inverse operator of MATLAB.
Serial recall of colors: Two models of memory for serial order applied to continuous visual stimuli.
Peteranderl, Sonja; Oberauer, Klaus
2018-01-01
This study investigated the effects of serial position and temporal distinctiveness on serial recall of simple visual stimuli. Participants observed lists of five colors presented at varying, unpredictably ordered interitem intervals, and their task was to reproduce the colors in their order of presentation by selecting colors on a continuous-response scale. To control for the possibility of verbal labeling, articulatory suppression was required in one of two experimental sessions. The predictions were derived through simulation from two computational models of serial recall: SIMPLE represents the class of temporal-distinctiveness models, whereas SOB-CS represents event-based models. According to temporal-distinctiveness models, items that are temporally isolated within a list are recalled more accurately than items that are temporally crowded. In contrast, event-based models assume that the time intervals between items do not affect recall performance per se, although free time following an item can improve memory for that item because of extended time for the encoding. The experimental and the simulated data were fit to an interference measurement model to measure the tendency to confuse items with other items nearby on the list-the locality constraint-in people as well as in the models. The continuous-reproduction performance showed a pronounced primacy effect with no recency, as well as some evidence for transpositions obeying the locality constraint. Though not entirely conclusive, this evidence favors event-based models over a role for temporal distinctiveness. There was also a strong detrimental effect of articulatory suppression, suggesting that verbal codes can be used to support serial-order memory of simple visual stimuli.
Design of distributed PID-type dynamic matrix controller for fractional-order systems
NASA Astrophysics Data System (ADS)
Wang, Dawei; Zhang, Ridong
2018-01-01
With the continuous requirements for product quality and safety operation in industrial production, it is difficult to describe the complex large-scale processes with integer-order differential equations. However, the fractional differential equations may precisely represent the intrinsic characteristics of such systems. In this paper, a distributed PID-type dynamic matrix control method based on fractional-order systems is proposed. First, the high-order approximate model of integer order is obtained by utilising the Oustaloup method. Then, the step response model vectors of the plant is obtained on the basis of the high-order model, and the online optimisation for multivariable processes is transformed into the optimisation of each small-scale subsystem that is regarded as a sub-plant controlled in the distributed framework. Furthermore, the PID operator is introduced into the performance index of each subsystem and the fractional-order PID-type dynamic matrix controller is designed based on Nash optimisation strategy. The information exchange among the subsystems is realised through the distributed control structure so as to complete the optimisation task of the whole large-scale system. Finally, the control performance of the designed controller in this paper is verified by an example.
Characterizing multivariate decoding models based on correlated EEG spectral features
McFarland, Dennis J.
2013-01-01
Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267
First-order fire effects models for land Management: Overview and issues
Elizabeth D. Reinhardt; Matthew B. Dickinson
2010-01-01
We give an overview of the science application process at work in supporting fire management. First-order fire effects models, such as those discussed in accompanying papers, are the building blocks of software systems designed for application to landscapes over time scales from days to centuries. Fire effects may be modeled using empirical, rule based, or process...
An order statistics approach to the halo model for galaxies
NASA Astrophysics Data System (ADS)
Paul, Niladri; Paranjape, Aseem; Sheth, Ravi K.
2017-04-01
We use the halo model to explore the implications of assuming that galaxy luminosities in groups are randomly drawn from an underlying luminosity function. We show that even the simplest of such order statistics models - one in which this luminosity function p(L) is universal - naturally produces a number of features associated with previous analyses based on the 'central plus Poisson satellites' hypothesis. These include the monotonic relation of mean central luminosity with halo mass, the lognormal distribution around this mean and the tight relation between the central and satellite mass scales. In stark contrast to observations of galaxy clustering; however, this model predicts no luminosity dependence of large-scale clustering. We then show that an extended version of this model, based on the order statistics of a halo mass dependent luminosity function p(L|m), is in much better agreement with the clustering data as well as satellite luminosities, but systematically underpredicts central luminosities. This brings into focus the idea that central galaxies constitute a distinct population that is affected by different physical processes than are the satellites. We model this physical difference as a statistical brightening of the central luminosities, over and above the order statistics prediction. The magnitude gap between the brightest and second brightest group galaxy is predicted as a by-product, and is also in good agreement with observations. We propose that this order statistics framework provides a useful language in which to compare the halo model for galaxies with more physically motivated galaxy formation models.
Kimizuka, Hajime; Kurokawa, Shu; Yamaguchi, Akihiro; Sakai, Akira; Ogata, Shigenobu
2014-01-01
Predicting the equilibrium ordered structures at internal interfaces, especially in the case of nanometer-scale chemical heterogeneities, is an ongoing challenge in materials science. In this study, we established an ab-initio coarse-grained modeling technique for describing the phase-like behavior of a close-packed stacking-fault-type interface containing solute nanoclusters, which undergo a two-dimensional disorder-order transition, depending on the temperature and composition. Notably, this approach can predict the two-dimensional medium-range ordering in the nanocluster arrays realized in Mg-based alloys, in a manner consistent with scanning tunneling microscopy-based measurements. We predicted that the repulsively interacting solute-cluster system undergoes a continuous evolution into a highly ordered densely packed morphology while maintaining a high degree of six-fold orientational order, which is attributable mainly to an entropic effect. The uncovered interaction-dependent ordering properties may be useful for the design of nanostructured materials utilizing the self-organization of two-dimensional nanocluster arrays in the close-packed interfaces. PMID:25471232
Integrated model for pricing, delivery time setting, and scheduling in make-to-order environments
NASA Astrophysics Data System (ADS)
Garmdare, Hamid Sattari; Lotfi, M. M.; Honarvar, Mahboobeh
2018-03-01
Usually, in make-to-order environments which work only in response to the customer's orders, manufacturers for maximizing the profits should offer the best price and delivery time for an order considering the existing capacity and the customer's sensitivity to both the factors. In this paper, an integrated approach for pricing, delivery time setting and scheduling of new arrival orders are proposed based on the existing capacity and accepted orders in system. In the problem, the acquired market demands dependent on the price and delivery time of both the manufacturer and its competitors. A mixed-integer non-linear programming model is presented for the problem. After converting to a pure non-linear model, it is validated through a case study. The efficiency of proposed model is confirmed by comparing it to both the literature and the current practice. Finally, sensitivity analysis for the key parameters is carried out.
NASA Astrophysics Data System (ADS)
Singh, Kirmender; Bhattacharyya, A. B.
2017-03-01
Gummel Symmetry Test (GST) has been a benchmark industry standard for MOSFET models and is considered as one of important tests by the modeling community. BSIM4 MOSFET model fails to pass GST as the drain current equation is not symmetrical because drain and source potentials are not referenced to bulk. BSIM6 MOSFET model overcomes this limitation by taking all terminal biases with reference to bulk and using proper velocity saturation (v -E) model. The drain current equation in BSIM6 is charge based and continuous in all regions of operation. It, however, adopts a complicated method to compute source and drain charges. In this work we propose to use conventional charge based method formulated by Enz for obtaining simpler analytical drain current expression that passes GST. For this purpose we adopt two steps: (i) In the first step we use a modified first-order hyperbolic v -E model with adjustable coefficients which is integrable, simple and accurate, and (ii) In the second we use a multiplying factor in the modified first-order hyperbolic v -E expression to obtain correct monotonic asymptotic behavior around the origin of lateral electric field. This factor is of empirical form, which is a function of drain voltage (vd) and source voltage (vs) . After considering both the above steps we obtain drain current expression whose accuracy is similar to that obtained from second-order hyperbolic v -E model. In modified first-order hyperbolic v -E expression if vd and vs is replaced by smoothing functions for the effective drain voltage (vdeff) and effective source voltage (vseff), it will as well take care of discontinuity between linear to saturation regions of operation. The condition of symmetry is shown to be satisfied by drain current and its higher order derivatives, as both of them are odd functions and their even order derivatives smoothly pass through the origin. In strong inversion region and technology node of 22 nm the GST is shown to pass till sixth-order derivative and for weak inversion it is shown till fifth-order derivative. In the expression of drain current major short channel phenomena like vertical field mobility reduction, velocity saturation and velocity overshoot have been taken into consideration.
A quantum probability account of order effects in inference.
Trueblood, Jennifer S; Busemeyer, Jerome R
2011-01-01
Order of information plays a crucial role in the process of updating beliefs across time. In fact, the presence of order effects makes a classical or Bayesian approach to inference difficult. As a result, the existing models of inference, such as the belief-adjustment model, merely provide an ad hoc explanation for these effects. We postulate a quantum inference model for order effects based on the axiomatic principles of quantum probability theory. The quantum inference model explains order effects by transforming a state vector with different sequences of operators for different orderings of information. We demonstrate this process by fitting the quantum model to data collected in a medical diagnostic task and a jury decision-making task. To further test the quantum inference model, a new jury decision-making experiment is developed. Using the results of this experiment, we compare the quantum inference model with two versions of the belief-adjustment model, the adding model and the averaging model. We show that both the quantum model and the adding model provide good fits to the data. To distinguish the quantum model from the adding model, we develop a new experiment involving extreme evidence. The results from this new experiment suggest that the adding model faces limitations when accounting for tasks involving extreme evidence, whereas the quantum inference model does not. Ultimately, we argue that the quantum model provides a more coherent account for order effects that was not possible before. Copyright © 2011 Cognitive Science Society, Inc.
Limited-memory adaptive snapshot selection for proper orthogonal decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxberry, Geoffrey M.; Kostova-Vassilevska, Tanya; Arrighi, Bill
2015-04-02
Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory boundingmore » the approximation error in time of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full order model is recovered to within discretization error. The resulting method can be used on supercomputers to generate proper orthogonal decomposition-based reduced order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space.« less
NASA Technical Reports Server (NTRS)
Daigle, Matthew John; Goebel, Kai Frank
2010-01-01
Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.
Modelling vortex-induced fluid-structure interaction.
Benaroya, Haym; Gabbai, Rene D
2008-04-13
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid-structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid-structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion.Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid-structure interaction models entails-formulating generalized equations of motion, as a superset of the flow-oscillator models; and-developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier-Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.
A lattice Boltzmann model for the Burgers-Fisher equation.
Zhang, Jianying; Yan, Guangwu
2010-06-01
A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. (c) 2010 American Institute of Physics.
POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ştefănescu, R., E-mail: rstefane@vt.edu; Sandu, A., E-mail: sandu@cs.vt.edu; Navon, I.M., E-mail: inavon@fsu.edu
2015-08-15
This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key requirement for a successful reduced order solution is that reduced order Karush–Kuhn–Tucker conditions accurately represent their full order counterparts. In particular, accurate reduced order approximations are needed for the forward and adjoint dynamical models, as well as for the reduced gradient. New strategies to construct reduced order based are developed for proper orthogonal decomposition (POD) ROM data assimilation using both Galerkin and Petrov–Galerkin projections. For the first time POD, tensorialmore » POD, and discrete empirical interpolation method (DEIM) are employed to develop reduced data assimilation systems for a geophysical flow model, namely, the two dimensional shallow water equations. Numerical experiments confirm the theoretical framework for Galerkin projection. In the case of Petrov–Galerkin projection, stabilization strategies must be considered for the reduced order models. The new reduced order shallow water data assimilation system provides analyses similar to those produced by the full resolution data assimilation system in one tenth of the computational time.« less
Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models
2015-03-16
sensitivity value was the maximum uncertainty in that value estimated by the Sobol method. 2.4. Global Sensitivity Analysis of the Reduced Order Coagulation...sensitivity analysis, using the variance-based method of Sobol , to estimate which parameters controlled the performance of the reduced order model [69]. We...Environment. Comput. Sci. Eng. 2007, 9, 90–95. 69. Sobol , I. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
Genetic Algorithm-Based Model Order Reduction of Aeroservoelastic Systems with Consistant States
NASA Technical Reports Server (NTRS)
Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter M.; Brenner, Martin J.
2017-01-01
This paper presents a model order reduction framework to construct linear parameter-varying reduced-order models of flexible aircraft for aeroservoelasticity analysis and control synthesis in broad two-dimensional flight parameter space. Genetic algorithms are used to automatically determine physical states for reduction and to generate reduced-order models at grid points within parameter space while minimizing the trial-and-error process. In addition, balanced truncation for unstable systems is used in conjunction with the congruence transformation technique to achieve locally optimal realization and weak fulfillment of state consistency across the entire parameter space. Therefore, aeroservoelasticity reduced-order models at any flight condition can be obtained simply through model interpolation. The methodology is applied to the pitch-plant model of the X-56A Multi-Use Technology Testbed currently being tested at NASA Armstrong Flight Research Center for flutter suppression and gust load alleviation. The present studies indicate that the reduced-order model with more than 12× reduction in the number of states relative to the original model is able to accurately predict system response among all input-output channels. The genetic-algorithm-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The interpolated aeroservoelasticity reduced order models exhibit smooth pole transition and continuously varying gains along a set of prescribed flight conditions, which verifies consistent state representation obtained by congruence transformation. The present model order reduction framework can be used by control engineers for robust aeroservoelasticity controller synthesis and novel vehicle design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubukov, Andrey V.; Khodas, M.; Fernandes, Rafael M.
Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalizationmore » group (RG) analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s ± superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s ± superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe 2As 2 and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Finally, our results provide a unifying description of different iron-based materials.« less
Chubukov, Andrey V.; Khodas, M.; Fernandes, Rafael M.
2016-12-02
Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalizationmore » group (RG) analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s ± superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s ± superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe 2As 2 and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Finally, our results provide a unifying description of different iron-based materials.« less
Kitamura, Seiya; Morisseau, Christophe; Harris, Todd R.; Inceoglu, Bora
2017-01-01
Recently, dibenzylurea-based potent soluble epoxide hydrolase (sEH) inhibitors were identified in Pentadiplandra brazzeana, a plant in the order Brassicales. In an effort to generalize the concept, we hypothesized that plants that produce benzyl glucosinolates and corresponding isothiocyanates also produce these dibenzylurea derivatives. Our overall aim here was to examine the occurrence of urea derivatives in Brassicales, hoping to find biologically active urea derivatives from plants. First, plants in the order Brassicales were analyzed for the presence of 1, 3-dibenzylurea (compound 1), showing that three additional plants in the order Brassicales produce the urea derivatives. Based on the hypothesis, three dibenzylurea derivatives with sEH inhibitory activity were isolated from maca (Lepidium meyenii) roots. Topical application of one of the identified compounds (compound 3, human sEH IC50 = 222 nM) effectively reduced pain in rat inflammatory pain model, and this compound was bioavailable after oral administration in mice. The biosynthetic pathway of these urea derivatives was investigated using papaya (Carica papaya) seed as a model system. Finally, a small collection of plants from the Brassicales order was grown, collected, extracted and screened for sEH inhibitory activity. Results show that several plants of the Brassicales order could be potential sources of urea-based sEH inhibitors. PMID:28472063
ERIC Educational Resources Information Center
Syahputra, Edi; Surya, Edy
2017-01-01
This paper is a summary study of team Postgraduate on 11th grade. The objective of this study is to develop a learning model based on problem solving which can construct high-order thinking on the learning mathematics in SMA/MA. The subject of dissemination consists of Students of 11th grade in SMA/MA in 3 kabupaten/kota in North Sumatera, namely:…
Entropy Based Genetic Association Tests and Gene-Gene Interaction Tests
de Andrade, Mariza; Wang, Xin
2011-01-01
In the past few years, several entropy-based tests have been proposed for testing either single SNP association or gene-gene interaction. These tests are mainly based on Shannon entropy and have higher statistical power when compared to standard χ2 tests. In this paper, we extend some of these tests using a more generalized entropy definition, Rényi entropy, where Shannon entropy is a special case of order 1. The order λ (>0) of Rényi entropy weights the events (genotype/haplotype) according to their probabilities (frequencies). Higher λ places more emphasis on higher probability events while smaller λ (close to 0) tends to assign weights more equally. Thus, by properly choosing the λ, one can potentially increase the power of the tests or the p-value level of significance. We conducted simulation as well as real data analyses to assess the impact of the order λ and the performance of these generalized tests. The results showed that for dominant model the order 2 test was more powerful and for multiplicative model the order 1 or 2 had similar power. The analyses indicate that the choice of λ depends on the underlying genetic model and Shannon entropy is not necessarily the most powerful entropy measure for constructing genetic association or interaction tests. PMID:23089811
Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi
2018-04-01
Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.
2007-11-01
Control Theory Perspective of Effects-Based Thinking and Operations Modelling “Operations” as a Feedback Control System Philip S. E... Theory Perspective of Effects-Based Thinking and Operations Modelling “Operations” as a Feedback Control System Philip S. E. Farrell...Abstract This paper explores operations that involve effects-based thinking (EBT) using Control Theory techniques in order to highlight the concept’s
Cawello, Willi; Braun, Marina; Andreas, Jens-Otto
2018-01-13
Pharmacokinetic studies using deconvolution methods and non-compartmental analysis to model clinical absorption of drugs are not well represented in the literature. The purpose of this research was (1) to define the system of equations for description of rotigotine (a dopamine receptor agonist delivered via a transdermal patch) absorption based on a pharmacokinetic model and (2) to describe the kinetics of rotigotine disposition after single and multiple dosing. The kinetics of drug disposition was evaluated based on rotigotine plasma concentration data from three phase 1 trials. In two trials, rotigotine was administered via a single patch over 24 h in healthy subjects. In a third trial, rotigotine was administered once daily over 1 month in subjects with early-stage Parkinson's disease (PD). A pharmacokinetic model utilizing deconvolution methods was developed to describe the relationship between drug release from the patch and plasma concentrations. Plasma-concentration over time profiles were modeled based on a one-compartment model with a time lag, a zero-order input (describing a constant absorption via skin into central circulation) and first-order elimination. Corresponding mathematical models for single- and multiple-dose administration were developed. After single-dose administration of rotigotine patches (using 2, 4 or 8 mg/day) in healthy subjects, a constant in vivo absorption was present after a minor time lag (2-3 h). On days 27 and 30 of the multiple-dose study in patients with PD, absorption was constant during patch-on periods and resembled zero-order kinetics. Deconvolution based on rotigotine pharmacokinetic profiles after single- or multiple-dose administration of the once-daily patch demonstrated that in vivo absorption of rotigotine showed constant input through the skin into the central circulation (resembling zero-order kinetics). Continuous absorption through the skin is a basis for stable drug exposure.
Cocho, Germinal; Miramontes, Pedro; Mansilla, Ricardo; Li, Wentian
2014-12-01
We examine the relationship between exponential correlation functions and Markov models in a bacterial genome in detail. Despite the well known fact that Markov models generate sequences with correlation function that decays exponentially, simply constructed Markov models based on nearest-neighbor dimer (first-order), trimer (second-order), up to hexamer (fifth-order), and treating the DNA sequence as being homogeneous all fail to predict the value of exponential decay rate. Even reading-frame-specific Markov models (both first- and fifth-order) could not explain the fact that the exponential decay is very slow. Starting with the in-phase coding-DNA-sequence (CDS), we investigated correlation within a fixed-codon-position subsequence, and in artificially constructed sequences by packing CDSs with out-of-phase spacers, as well as altering CDS length distribution by imposing an upper limit. From these targeted analyses, we conclude that the correlation in the bacterial genomic sequence is mainly due to a mixing of heterogeneous statistics at different codon positions, and the decay of correlation is due to the possible out-of-phase between neighboring CDSs. There are also small contributions to the correlation from bases at the same codon position, as well as by non-coding sequences. These show that the seemingly simple exponential correlation functions in bacterial genome hide a complexity in correlation structure which is not suitable for a modeling by Markov chain in a homogeneous sequence. Other results include: use of the (absolute value) second largest eigenvalue to represent the 16 correlation functions and the prediction of a 10-11 base periodicity from the hexamer frequencies. Copyright © 2014 Elsevier Ltd. All rights reserved.
3D Higher Order Modeling in the BEM/FEM Hybrid Formulation
NASA Technical Reports Server (NTRS)
Fink, P. W.; Wilton, D. R.
2000-01-01
Higher order divergence- and curl-conforming bases have been shown to provide significant benefits, in both convergence rate and accuracy, in the 2D hybrid finite element/boundary element formulation (P. Fink and D. Wilton, National Radio Science Meeting, Boulder, CO, Jan. 2000). A critical issue in achieving the potential for accuracy of the approach is the accurate evaluation of all matrix elements. These involve products of high order polynomials and, in some instances, singular Green's functions. In the 2D formulation, the use of a generalized Gaussian quadrature method was found to greatly facilitate the computation and to improve the accuracy of the boundary integral equation self-terms. In this paper, a 3D, hybrid electric field formulation employing higher order bases and higher order elements is presented. The improvements in convergence rate and accuracy, compared to those resulting from lower order modeling, are established. Techniques developed to facilitate the computation of the boundary integral self-terms are also shown to improve the accuracy of these terms. Finally, simple preconditioning techniques are used in conjunction with iterative solution procedures to solve the resulting linear system efficiently. In order to handle the boundary integral singularities in the 3D formulation, the parent element- either a triangle or rectangle-is subdivided into a set of sub-triangles with a common vertex at the singularity. The contribution to the integral from each of the sub-triangles is computed using the Duffy transformation to remove the singularity. This method is shown to greatly facilitate t'pe self-term computation when the bases are of higher order. In addition, the sub-triangles can be further divided to achieve near arbitrary accuracy in the self-term computation. An efficient method for subdividing the parent element is presented. The accuracy obtained using higher order bases is compared to that obtained using lower order bases when the number of unknowns is approximately equal. Also, convergence rates obtained using higher order bases are compared to those obtained with lower order bases for selected sample
Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid
NASA Astrophysics Data System (ADS)
Nair S, Gayathri; Senroy, Nilanjan
2016-02-01
Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.
Zonal harmonic model of Saturn's magnetic field from Voyager 1 and 2 observations
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Ness, N. F.; Acuna, M. H.
1982-01-01
An analysis of the magnetic field of Saturn is presented which takes into account both the Voyager 1 and 2 vector magnetic field observations. The analysis is based on the traditional spherical harmonic expansion of a scale potential to derive the magnetic field within 8 Saturn radii. A third-order zonal harmonic model fitted to Voyager 1 and 2 observations is found to be capable of predicting the magnetic field characteristics at one encounter based on those observed at another, unlike models including dipole and quadrupole terms only. The third-order model is noted to lead to significantly enhanced polar surface field intensities with respect to dipole models, and probably represents the axisymmetric part of a complex dynamo field.
High order multi-grid methods to solve the Poisson equation
NASA Technical Reports Server (NTRS)
Schaffer, S.
1981-01-01
High order multigrid methods based on finite difference discretization of the model problem are examined. The following methods are described: (1) a fixed high order FMG-FAS multigrid algorithm; (2) the high order methods; and (3) results are presented on four problems using each method with the same underlying fixed FMG-FAS algorithm.
NASA Astrophysics Data System (ADS)
Raghupathy, Arun; Ghia, Karman; Ghia, Urmila
2008-11-01
Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.
ERIC Educational Resources Information Center
DeSarbo, Wayne S.; Park, Joonwook; Scott, Crystal J.
2008-01-01
A cyclical conditional maximum likelihood estimation procedure is developed for the multidimensional unfolding of two- or three-way dominance data (e.g., preference, choice, consideration) measured on ordered successive category rating scales. The technical description of the proposed model and estimation procedure are discussed, as well as the…
NASA Astrophysics Data System (ADS)
Zhong, Chongquan; Lin, Yaoyao
2017-11-01
In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Nelson, C. C.; Nguyen, D. T.
1987-01-01
A new analysis procedure has been presented which solves for the flow variables of an annular pressure seal in which the rotor has a large static displacement (eccentricity) from the centered position. The present paper incorporates the solutions to investigate the effect of eccentricity on the rotordynamic coefficients. The analysis begins with a set of governing equations based on a turbulent bulk-flow model and Moody's friction factor equation. Perturbations of the flow variables yields a set of zeroth- and first-order equations. After integration of the zeroth-order equations, the resulting zeroth-order flow variables are used as input in the solution of the first-order equations. Further integration of the first order pressures yields the eccentric rotordynamic coefficients. The results from this procedure compare well with available experimental and theoretical data, with accuracy just as good or slightly better than the predictions based on a finite-element model.
Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J; Manolakos, Elias S
2013-09-01
A learning scheme based on random forests is used to discriminate between different reach to grasp movements in 3-D space, based on the myoelectric activity of human muscles of the upper-arm and the forearm. Task specificity for motion decoding is introduced in two different levels: Subspace to move toward and object to be grasped. The discrimination between the different reach to grasp strategies is accomplished with machine learning techniques for classification. The classification decision is then used in order to trigger an EMG-based task-specific motion decoding model. Task specific models manage to outperform "general" models providing better estimation accuracy. Thus, the proposed scheme takes advantage of a framework incorporating both a classifier and a regressor that cooperate advantageously in order to split the task space. The proposed learning scheme can be easily used to a series of EMG-based interfaces that must operate in real time, providing data-driven capabilities for multiclass problems, that occur in everyday life complex environments.
Venus Gravity: 180th Degree and Order Model
NASA Technical Reports Server (NTRS)
Konopliv, A. S.; Banerdt, W. B.; Sjogren, W. L.
1998-01-01
The Megallan Doppler radiometric tracking data provides unprecedented precision for spacecraft based gravity measurements with the maximum resolution approaching spherical harmonic degree and order 180 in selected equatorial regions.
Post processing of optically recognized text via second order hidden Markov model
NASA Astrophysics Data System (ADS)
Poudel, Srijana
In this thesis, we describe a postprocessing system on Optical Character Recognition(OCR) generated text. Second Order Hidden Markov Model (HMM) approach is used to detect and correct the OCR related errors. The reason for choosing the 2nd order HMM is to keep track of the bigrams so that the model can represent the system more accurately. Based on experiments with training data of 159,733 characters and testing of 5,688 characters, the model was able to correct 43.38 % of the errors with a precision of 75.34 %. However, the precision value indicates that the model introduced some new errors, decreasing the correction percentage to 26.4%.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Fan, Guodong; Pan, Ke; Wei, Guo; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
The design of a lumped parameter battery model preserving physical meaning is especially desired by the automotive researchers and engineers due to the strong demand for battery system control, estimation, diagnosis and prognostics. In light of this, a novel simplified fractional order electrochemical model is developed for electric vehicle (EV) applications in this paper. In the model, a general fractional order transfer function is designed for the solid phase lithium ion diffusion approximation. The dynamic characteristics of the electrolyte concentration overpotential are approximated by a first-order resistance-capacitor transfer function in the electrolyte phase. The Ohmic resistances and electrochemical reaction kinetics resistance are simplified to a lumped Ohmic resistance parameter. Overall, the number of model parameters is reduced from 30 to 9, yet the accuracy of the model is still guaranteed. In order to address the dynamics of phase-change phenomenon in the active particle during charging and discharging, variable solid-state diffusivity is taken into consideration in the model. Also, the observability of the model is analyzed on two types of lithium ion batteries subsequently. Results show the fractional order model with variable solid-state diffusivity agrees very well with experimental data at various current input conditions and is suitable for electric vehicle applications.
Nevers, Meredith; Byappanahalli, Muruleedhara; Phanikumar, Mantha S.; Whitman, Richard L.
2016-01-01
Mathematical models have been widely applied to surface waters to estimate rates of settling, resuspension, flow, dispersion, and advection in order to calculate movement of particles that influence water quality. Of particular interest are the movement, survival, and persistence of microbial pathogens or their surrogates, which may contaminate recreational water, drinking water, or shellfish. Most models devoted to microbial water quality have been focused on fecal indicator organisms (FIO), which act as a surrogate for pathogens and viruses. Process-based modeling and statistical modeling have been used to track contamination events to source and to predict future events. The use of these two types of models require different levels of expertise and input; process-based models rely on theoretical physical constructs to explain present conditions and biological distribution while data-based, statistical models use extant paired data to do the same. The selection of the appropriate model and interpretation of results is critical to proper use of these tools in microbial source tracking. Integration of the modeling approaches could provide insight for tracking and predicting contamination events in real time. A review of modeling efforts reveals that process-based modeling has great promise for microbial source tracking efforts; further, combining the understanding of physical processes influencing FIO contamination developed with process-based models and molecular characterization of the population by gene-based (i.e., biological) or chemical markers may be an effective approach for locating sources and remediating contamination in order to protect human health better.
Low-illumination image denoising method for wide-area search of nighttime sea surface
NASA Astrophysics Data System (ADS)
Song, Ming-zhu; Qu, Hong-song; Zhang, Gui-xiang; Tao, Shu-ping; Jin, Guang
2018-05-01
In order to suppress complex mixing noise in low-illumination images for wide-area search of nighttime sea surface, a model based on total variation (TV) and split Bregman is proposed in this paper. A fidelity term based on L1 norm and a fidelity term based on L2 norm are designed considering the difference between various noise types, and the regularization mixed first-order TV and second-order TV are designed to balance the influence of details information such as texture and edge for sea surface image. The final detection result is obtained by using the high-frequency component solved from L1 norm and the low-frequency component solved from L2 norm through wavelet transform. The experimental results show that the proposed denoising model has perfect denoising performance for artificially degraded and low-illumination images, and the result of image quality assessment index for the denoising image is superior to that of the contrastive models.
Superposition-Based Analysis of First-Order Probabilistic Timed Automata
NASA Astrophysics Data System (ADS)
Fietzke, Arnaud; Hermanns, Holger; Weidenbach, Christoph
This paper discusses the analysis of first-order probabilistic timed automata (FPTA) by a combination of hierarchic first-order superposition-based theorem proving and probabilistic model checking. We develop the overall semantics of FPTAs and prove soundness and completeness of our method for reachability properties. Basically, we decompose FPTAs into their time plus first-order logic aspects on the one hand, and their probabilistic aspects on the other hand. Then we exploit the time plus first-order behavior by hierarchic superposition over linear arithmetic. The result of this analysis is the basis for the construction of a reachability equivalent (to the original FPTA) probabilistic timed automaton to which probabilistic model checking is finally applied. The hierarchic superposition calculus required for the analysis is sound and complete on the first-order formulas generated from FPTAs. It even works well in practice. We illustrate the potential behind it with a real-life DHCP protocol example, which we analyze by means of tool chain support.
NASA Astrophysics Data System (ADS)
Roşu, M. M.; Tarbă, C. I.; Neagu, C.
2016-11-01
The current models for inventory management are complementary, but together they offer a large pallet of elements for solving complex problems of companies when wanting to establish the optimum economic order quantity for unfinished products, row of materials, goods etc. The main objective of this paper is to elaborate an automated decisional model for the calculus of the economic order quantity taking into account the price regressive rates for the total order quantity. This model has two main objectives: first, to determine the periodicity when to be done the order n or the quantity order q; second, to determine the levels of stock: lighting control, security stock etc. In this way we can provide the answer to two fundamental questions: How much must be ordered? When to Order? In the current practice, the business relationships with its suppliers are based on regressive rates for price. This means that suppliers may grant discounts, from a certain level of quantities ordered. Thus, the unit price of the products is a variable which depends on the order size. So, the most important element for choosing the optimum for the economic order quantity is the total cost for ordering and this cost depends on the following elements: the medium price per units, the stock cost, the ordering cost etc.
Cause and cure of sloppiness in ordinary differential equation models.
Tönsing, Christian; Timmer, Jens; Kreutz, Clemens
2014-08-01
Data-based mathematical modeling of biochemical reaction networks, e.g., by nonlinear ordinary differential equation (ODE) models, has been successfully applied. In this context, parameter estimation and uncertainty analysis is a major task in order to assess the quality of the description of the system by the model. Recently, a broadened eigenvalue spectrum of the Hessian matrix of the objective function covering orders of magnitudes was observed and has been termed as sloppiness. In this work, we investigate the origin of sloppiness from structures in the sensitivity matrix arising from the properties of the model topology and the experimental design. Furthermore, we present strategies using optimal experimental design methods in order to circumvent the sloppiness issue and present nonsloppy designs for a benchmark model.
Cause and cure of sloppiness in ordinary differential equation models
NASA Astrophysics Data System (ADS)
Tönsing, Christian; Timmer, Jens; Kreutz, Clemens
2014-08-01
Data-based mathematical modeling of biochemical reaction networks, e.g., by nonlinear ordinary differential equation (ODE) models, has been successfully applied. In this context, parameter estimation and uncertainty analysis is a major task in order to assess the quality of the description of the system by the model. Recently, a broadened eigenvalue spectrum of the Hessian matrix of the objective function covering orders of magnitudes was observed and has been termed as sloppiness. In this work, we investigate the origin of sloppiness from structures in the sensitivity matrix arising from the properties of the model topology and the experimental design. Furthermore, we present strategies using optimal experimental design methods in order to circumvent the sloppiness issue and present nonsloppy designs for a benchmark model.
Robust Combining of Disparate Classifiers Through Order Statistics
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Ghosh, Joydeep
2001-01-01
Integrating the outputs of multiple classifiers via combiners or meta-learners has led to substantial improvements in several difficult pattern recognition problems. In this article we investigate a family of combiners based on order statistics, for robust handling of situations where there are large discrepancies in performance of individual classifiers. Based on a mathematical modeling of how the decision boundaries are affected by order statistic combiners, we derive expressions for the reductions in error expected when simple output combination methods based on the the median, the maximum and in general, the ith order statistic, are used. Furthermore, we analyze the trim and spread combiners, both based on linear combinations of the ordered classifier outputs, and show that in the presence of uneven classifier performance, they often provide substantial gains over both linear and simple order statistics combiners. Experimental results on both real world data and standard public domain data sets corroborate these findings.
NASA Astrophysics Data System (ADS)
Ayuso, David; Decleva, Piero; Patchkovskii, Serguei; Smirnova, Olga
2018-06-01
The generation of high-order harmonics in a medium of chiral molecules driven by intense bi-elliptical laser fields can lead to strong chiroptical response in a broad range of harmonic numbers and ellipticities (Ayuso et al 2018 J. Phys. B: At. Mol. Opt. Phys. 51 06LT01). Here we present a comprehensive analytical model that can describe the most relevant features arising in the high-order harmonic spectra of chiral molecules driven by strong bi-elliptical fields. Our model recovers the physical picture underlying chiral high-order harmonic generation (HHG) based on ultrafast chiral hole motion and identifies the rotationally invariant molecular pseudoscalars responsible for chiral dynamics. Using the chiral molecule propylene oxide as an example, we show that one can control and enhance the chiral response in bi-elliptical HHG by tailoring the driving field, in particular by tuning its frequency, intensity and ellipticity, exploiting a suppression mechanism of achiral background based on the linear Stark effect.
The Research of Multiple Attenuation Based on Feedback Iteration and Independent Component Analysis
NASA Astrophysics Data System (ADS)
Xu, X.; Tong, S.; Wang, L.
2017-12-01
How to solve the problem of multiple suppression is a difficult problem in seismic data processing. The traditional technology for multiple attenuation is based on the principle of the minimum output energy of the seismic signal, this criterion is based on the second order statistics, and it can't achieve the multiple attenuation when the primaries and multiples are non-orthogonal. In order to solve the above problems, we combine the feedback iteration method based on the wave equation and the improved independent component analysis (ICA) based on high order statistics to suppress the multiple waves. We first use iterative feedback method to predict the free surface multiples of each order. Then, in order to predict multiples from real multiple in amplitude and phase, we design an expanded pseudo multi-channel matching filtering method to get a more accurate matching multiple result. Finally, we present the improved fast ICA algorithm which is based on the maximum non-Gauss criterion of output signal to the matching multiples and get better separation results of the primaries and the multiples. The advantage of our method is that we don't need any priori information to the prediction of the multiples, and can have a better separation result. The method has been applied to several synthetic data generated by finite-difference model technique and the Sigsbee2B model multiple data, the primaries and multiples are non-orthogonal in these models. The experiments show that after three to four iterations, we can get the perfect multiple results. Using our matching method and Fast ICA adaptive multiple subtraction, we can not only effectively preserve the effective wave energy in seismic records, but also can effectively suppress the free surface multiples, especially the multiples related to the middle and deep areas.
Deniz, Fatih; Ersanli, Elif Tezel
2018-03-21
In this study, the capacity of a natural macroalgae consortium consisting of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species for the removal of copper ions from aqueous environment was investigated at different operating conditions, such as solution pH, copper ion concentration and contact time. These environmental parameters affecting the biosorption process were optimized on the basis of batch experiments. The experimentally obtained data for the biosorption of copper ions onto the macroalgae-based biosorbent were modeled using the isotherm models of Freundlich, Langmuir, Sips and Dubinin-Radushkevich and the kinetic models of pseudo-first-order, pseudo-second-order, Elovich and Weber and Morris. The pseudo-first-order and Sips equations were the most suitable models to describe the copper biosorption from aqueous solution. The thermodynamic data revealed the feasibility, spontaneity and physical nature of biosorption process. Based on the data of Sips isotherm model, the biosorption capacity of biosorbent for copper ions was calculated as 105.370 mg g -1 under the optimum operating conditions. A single-stage batch biosorption system was developed to predict the real-scale-based copper removal performance of biosorbent. The results of this investigation showed the potential utility of macroalgae consortium for the biosorption of copper ions from aqueous medium.
An accurate nonlinear stochastic model for MEMS-based inertial sensor error with wavelet networks
NASA Astrophysics Data System (ADS)
El-Diasty, Mohammed; El-Rabbany, Ahmed; Pagiatakis, Spiros
2007-12-01
The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been widely used in many applications for positioning and orientation purposes. Traditionally, random walk (RW), Gauss-Markov (GM), and autoregressive (AR) processes have been used to develop the stochastic model in classical Kalman filters. The main disadvantage of classical Kalman filter is the potentially unstable linearization of the nonlinear dynamic system. Consequently, a nonlinear stochastic model is not optimal in derivative-based filters due to the expected linearization error. With a derivativeless-based filter such as the unscented Kalman filter or the divided difference filter, the filtering process of a complicated highly nonlinear dynamic system is possible without linearization error. This paper develops a novel nonlinear stochastic model for inertial sensor error using a wavelet network (WN). A wavelet network is a highly nonlinear model, which has recently been introduced as a powerful tool for modelling and prediction. Static and kinematic data sets are collected using a MEMS-based IMU (DQI-100) to develop the stochastic model in the static mode and then implement it in the kinematic mode. The derivativeless-based filtering method using GM, AR, and the proposed WN-based processes are used to validate the new model. It is shown that the first-order WN-based nonlinear stochastic model gives superior positioning results to the first-order GM and AR models with an overall improvement of 30% when 30 and 60 seconds GPS outages are introduced.
Chen, Jonathan H; Goldstein, Mary K; Asch, Steven M; Mackey, Lester; Altman, Russ B
2017-05-01
Build probabilistic topic model representations of hospital admissions processes and compare the ability of such models to predict clinical order patterns as compared to preconstructed order sets. The authors evaluated the first 24 hours of structured electronic health record data for > 10 K inpatients. Drawing an analogy between structured items (e.g., clinical orders) to words in a text document, the authors performed latent Dirichlet allocation probabilistic topic modeling. These topic models use initial clinical information to predict clinical orders for a separate validation set of > 4 K patients. The authors evaluated these topic model-based predictions vs existing human-authored order sets by area under the receiver operating characteristic curve, precision, and recall for subsequent clinical orders. Existing order sets predict clinical orders used within 24 hours with area under the receiver operating characteristic curve 0.81, precision 16%, and recall 35%. This can be improved to 0.90, 24%, and 47% ( P < 10 -20 ) by using probabilistic topic models to summarize clinical data into up to 32 topics. Many of these latent topics yield natural clinical interpretations (e.g., "critical care," "pneumonia," "neurologic evaluation"). Existing order sets tend to provide nonspecific, process-oriented aid, with usability limitations impairing more precise, patient-focused support. Algorithmic summarization has the potential to breach this usability barrier by automatically inferring patient context, but with potential tradeoffs in interpretability. Probabilistic topic modeling provides an automated approach to detect thematic trends in patient care and generate decision support content. A potential use case finds related clinical orders for decision support. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Goldstein, Mary K; Asch, Steven M; Mackey, Lester; Altman, Russ B
2017-01-01
Objective: Build probabilistic topic model representations of hospital admissions processes and compare the ability of such models to predict clinical order patterns as compared to preconstructed order sets. Materials and Methods: The authors evaluated the first 24 hours of structured electronic health record data for > 10 K inpatients. Drawing an analogy between structured items (e.g., clinical orders) to words in a text document, the authors performed latent Dirichlet allocation probabilistic topic modeling. These topic models use initial clinical information to predict clinical orders for a separate validation set of > 4 K patients. The authors evaluated these topic model-based predictions vs existing human-authored order sets by area under the receiver operating characteristic curve, precision, and recall for subsequent clinical orders. Results: Existing order sets predict clinical orders used within 24 hours with area under the receiver operating characteristic curve 0.81, precision 16%, and recall 35%. This can be improved to 0.90, 24%, and 47% (P < 10−20) by using probabilistic topic models to summarize clinical data into up to 32 topics. Many of these latent topics yield natural clinical interpretations (e.g., “critical care,” “pneumonia,” “neurologic evaluation”). Discussion: Existing order sets tend to provide nonspecific, process-oriented aid, with usability limitations impairing more precise, patient-focused support. Algorithmic summarization has the potential to breach this usability barrier by automatically inferring patient context, but with potential tradeoffs in interpretability. Conclusion: Probabilistic topic modeling provides an automated approach to detect thematic trends in patient care and generate decision support content. A potential use case finds related clinical orders for decision support. PMID:27655861
Negotiation-based Order Lot-Sizing Approach for Two-tier Supply Chain
NASA Astrophysics Data System (ADS)
Chao, Yuan; Lin, Hao Wen; Chen, Xili; Murata, Tomohiro
This paper focuses on a negotiation based collaborative planning process for the determination of order lot-size over multi-period planning, and confined to a two-tier supply chain scenario. The aim is to study how negotiation based planning processes would be used to refine locally preferred ordering patterns, which would consequently affect the overall performance of the supply chain in terms of costs and service level. Minimal information exchanges in the form of mathematical models are suggested to represent the local preferences and used to support the negotiation processes.
An object-oriented description method of EPMM process
NASA Astrophysics Data System (ADS)
Jiang, Zuo; Yang, Fan
2017-06-01
In order to use the object-oriented mature tools and language in software process model, make the software process model more accord with the industrial standard, it’s necessary to study the object-oriented modelling of software process. Based on the formal process definition in EPMM, considering the characteristics that Petri net is mainly formal modelling tool and combining the Petri net modelling with the object-oriented modelling idea, this paper provides this implementation method to convert EPMM based on Petri net into object models based on object-oriented description.
Characterizing multivariate decoding models based on correlated EEG spectral features.
McFarland, Dennis J
2013-07-01
Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches
NASA Astrophysics Data System (ADS)
Milewski, Jaroslaw; Guandalini, Giulio; Campanari, Stefano
2014-12-01
The paper presents two approaches to the mathematical modeling of an Alkaline Electrolyzer Cell. The presented models were compared and validated against available experimental results taken from a laboratory test and against literature data. The first modeling approach is based on the analysis of estimated losses due to the different phenomena occurring inside the electrolytic cell, and requires careful calibration of several specific parameters (e.g. those related to the electrochemical behavior of the electrodes) some of which could be hard to define. An alternative approach is based on a reduced-order equivalent circuit, resulting in only two fitting parameters (electrodes specific resistance and parasitic losses) and calculation of the internal electric resistance of the electrolyte. Both models yield satisfactory results with an average error limited below 3% vs. the considered experimental data and show the capability to describe with sufficient accuracy the different operating conditions of the electrolyzer; the reduced-order model could be preferred thanks to its simplicity for implementation within plant simulation tools dealing with complex systems, such as electrolyzers coupled with storage facilities and intermittent renewable energy sources.
On the derivation of approximations to cellular automata models and the assumption of independence.
Davies, K J; Green, J E F; Bean, N G; Binder, B J; Ross, J V
2014-07-01
Cellular automata are discrete agent-based models, generally used in cell-based applications. There is much interest in obtaining continuum models that describe the mean behaviour of the agents in these models. Previously, continuum models have been derived for agents undergoing motility and proliferation processes, however, these models only hold under restricted conditions. In order to narrow down the reason for these restrictions, we explore three possible sources of error in deriving the model. These sources are the choice of limiting arguments, the use of a discrete-time model as opposed to a continuous-time model and the assumption of independence between the state of sites. We present a rigorous analysis in order to gain a greater understanding of the significance of these three issues. By finding a limiting regime that accurately approximates the conservation equation for the cellular automata, we are able to conclude that the inaccuracy between our approximation and the cellular automata is completely based on the assumption of independence. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga
2016-11-01
This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient.
McSwiggen, P.L.
1993-01-01
The minerals of the ternary carbonate system CaCO3 - MgCO3 - FeCO3 represent a complex series of solid solutions and ordering states. An understanding of those complexities requires a solution model that can both duplicate the subsolidus phase relationships and generate correct values for the activities. Such a solution model must account for the changes in the total energy of the system resulting from a change in the ordering state of the individual constituents. Various ordering models have been applied to binary carbonate systems, but no attempts have previously been made to model the ordering in the ternary system. This study derives a new set of equations that allow for the equilibrium degree of order to be calculated for a system involving three cations mixing on two sites, as in the case of the ternary carbonates. The method is based on the Bragg-Williams approach. From the degree of order, the mole fractions of the three cations in each of the two sites can be determined. Once the site occupancies have been established, a Margules-type mixing model can be used to determine the free energy of mixing in the solid solution and therefore the activities of the various components. ?? 1993 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Lim, C. W.; Wang, C. M.
2007-03-01
This article presents a complete and asymptotic representation of the one-dimensional nanobeam model with nonlocal stress via an exact variational principle approach. An asymptotic governing differential equation of infinite-order strain gradient model and the corresponding infinite number of boundary conditions are derived and discussed. For practical applications, it explores and presents a reduced higher-order solution to the asymptotic nonlocal model. It is also identified here and explained at length that most publications on this subject have inaccurately employed an excessively simplified lower-order model which furnishes intriguing solutions under certain loading and boundary conditions where the results become identical to the classical solution, i.e., without the small-scale effect at all. Various nanobeam examples are solved to demonstrate the difference between using the simplified lower-order nonlocal model and the asymptotic higher-order strain gradient nonlocal stress model. An important conclusion is the discovery of significant over- or underestimation of stress levels using the lower-order model, particularly at the vicinity of the clamped end of a cantilevered nanobeam under a tip point load. The consequence is that the design of a nanobeam based on the lower-order strain gradient model could be flawed in predicting the nonlocal stress at the clamped end where it could, depending on the magnitude of the small-scale parameter, significantly over- or underestimate the failure criteria of a nanobeam which are governed by the level of stress.
A Model of Reading Teaching for University EFL Students: Need Analysis and Model Design
ERIC Educational Resources Information Center
Hamra, Arifuddin; Syatriana, Eny
2012-01-01
This study designed a model of teaching reading for university EFL students based on the English curriculum at the Faculty of Languages and Literature and the concept of the team-based learning in order to improve the reading comprehension of the students. What kind of teaching model can help students to improve their reading comprehension? The…
NASA Astrophysics Data System (ADS)
Lai, J.-S.; Tsai, F.; Chiang, S.-H.
2016-06-01
This study implements a data mining-based algorithm, the random forests classifier, with geo-spatial data to construct a regional and rainfall-induced landslide susceptibility model. The developed model also takes account of landslide regions (source, non-occurrence and run-out signatures) from the original landslide inventory in order to increase the reliability of the susceptibility modelling. A total of ten causative factors were collected and used in this study, including aspect, curvature, elevation, slope, faults, geology, NDVI (Normalized Difference Vegetation Index), rivers, roads and soil data. Consequently, this study transforms the landslide inventory and vector-based causative factors into the pixel-based format in order to overlay with other raster data for constructing the random forests based model. This study also uses original and edited topographic data in the analysis to understand their impacts to the susceptibility modeling. Experimental results demonstrate that after identifying the run-out signatures, the overall accuracy and Kappa coefficient have been reached to be become more than 85 % and 0.8, respectively. In addition, correcting unreasonable topographic feature of the digital terrain model also produces more reliable modelling results.
Refractive indices of liquid crystal E7 depending on temperature and wavelengths
NASA Astrophysics Data System (ADS)
Ma, Mingjian; Li, Shuguang; Jing, Xili; Chen, Hailiang
2017-11-01
The dependence of refractive indices of liquid crystal (LC) on temperature is represented by the Haller approximation model, and its dependence on the wavelength is expressed by the extended Cauchy model. We derived the refractive indices expressions of nematic LC E7 depending on temperature and wavelength simultaneously by combining these two models. Based on the obtained expressions, one can acquire the refractive indices of E7 at arbitrary temperature and wavelengths. The birefringence, variation rate of refractive indices, macroscopic order parameter Q, and orientational order parameter ⟨P2⟩ of E7 were then discussed based on the expressions.
Pilot modeling and closed-loop analysis of flexible aircraft in the pitch tracking task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1983-01-01
The issue addressed in the appropriate modeling technique for pilot vehicle analysis of large flexible aircraft, when the frequency separation between the rigid-body mode and the dynamic aeroelastic modes is reduced. This situation was shown to have significant effects on pitch-tracking performance and subjective rating of the task, obtained via fixed base simulation. Further, the dynamics in these cases are not well modeled with a rigid-body-like model obtained by including only 'static elastic' effects, for example. It is shown that pilot/vehicle analysis of this data supports the hypothesis that an appropriate pilot-model structure is an optimal-control pilot model of full order. This is in contrast to the contention that a representative model is of reduced order when the subject is controlling high-order dynamics as in a flexible vehicle. The key appears to be in the correct assessment of the pilot's objective of attempting to control 'rigid-body' vehicle response, a response that must be estimated by the pilot from observations contaminated by aeroelastic dynamics. Finally, a model-based metric is shown to correlate well with the pilot's subjective ratings.
Quality tracing in meat supply chains
Mack, Miriam; Dittmer, Patrick; Veigt, Marius; Kus, Mehmet; Nehmiz, Ulfert; Kreyenschmidt, Judith
2014-01-01
The aim of this study was the development of a quality tracing model for vacuum-packed lamb that is applicable in different meat supply chains. Based on the development of relevant sensory parameters, the predictive model was developed by combining a linear primary model and the Arrhenius model as the secondary model. Then a process analysis was conducted to define general requirements for the implementation of the temperature-based model into a meat supply chain. The required hardware and software for continuous temperature monitoring were developed in order to use the model under practical conditions. Further on a decision support tool was elaborated in order to use the model as an effective tool in combination with the temperature monitoring equipment for the improvement of quality and storage management within the meat logistics network. Over the long term, this overall procedure will support the reduction of food waste and will improve the resources efficiency of food production. PMID:24797136
Quality tracing in meat supply chains.
Mack, Miriam; Dittmer, Patrick; Veigt, Marius; Kus, Mehmet; Nehmiz, Ulfert; Kreyenschmidt, Judith
2014-06-13
The aim of this study was the development of a quality tracing model for vacuum-packed lamb that is applicable in different meat supply chains. Based on the development of relevant sensory parameters, the predictive model was developed by combining a linear primary model and the Arrhenius model as the secondary model. Then a process analysis was conducted to define general requirements for the implementation of the temperature-based model into a meat supply chain. The required hardware and software for continuous temperature monitoring were developed in order to use the model under practical conditions. Further on a decision support tool was elaborated in order to use the model as an effective tool in combination with the temperature monitoring equipment for the improvement of quality and storage management within the meat logistics network. Over the long term, this overall procedure will support the reduction of food waste and will improve the resources efficiency of food production.
ERIC Educational Resources Information Center
Samo, Damianus D.; Darhim; Kartasasmita, Bana
2017-01-01
The purpose of this research is to develop contextual mathematical thinking learning model which is valid, practical and effective based on the theoretical reviews and its support to enhance higher-order thinking ability. This study is a research and development (R & D) with three main phases: investigation, development, and implementation.…
Higher Order Testlet Response Models for Hierarchical Latent Traits and Testlet-Based Items
ERIC Educational Resources Information Center
Huang, Hung-Yu; Wang, Wen-Chung
2013-01-01
Both testlet design and hierarchical latent traits are fairly common in educational and psychological measurements. This study aimed to develop a new class of higher order testlet response models that consider both local item dependence within testlets and a hierarchy of latent traits. Due to high dimensionality, the authors adopted the Bayesian…
Developing Student-Centered Learning Model to Improve High Order Mathematical Thinking Ability
ERIC Educational Resources Information Center
Saragih, Sahat; Napitupulu, Elvis
2015-01-01
The purpose of this research was to develop student-centered learning model aiming to improve high order mathematical thinking ability of junior high school students of based on curriculum 2013 in North Sumatera, Indonesia. The special purpose of this research was to analyze and to formulate the purpose of mathematics lesson in high order…
Credibilistic multi-period portfolio optimization based on scenario tree
NASA Astrophysics Data System (ADS)
Mohebbi, Negin; Najafi, Amir Abbas
2018-02-01
In this paper, we consider a multi-period fuzzy portfolio optimization model with considering transaction costs and the possibility of risk-free investment. We formulate a bi-objective mean-VaR portfolio selection model based on the integration of fuzzy credibility theory and scenario tree in order to dealing with the markets uncertainty. The scenario tree is also a proper method for modeling multi-period portfolio problems since the length and continuity of their horizon. We take the return and risk as well cardinality, threshold, class, and liquidity constraints into consideration for further compliance of the model with reality. Then, an interactive dynamic programming method, which is based on a two-phase fuzzy interactive approach, is employed to solve the proposed model. In order to verify the proposed model, we present an empirical application in NYSE under different circumstances. The results show that the consideration of data uncertainty and other real-world assumptions lead to more practical and efficient solutions.
Modelling Wind Turbine Failures based on Weather Conditions
NASA Astrophysics Data System (ADS)
Reder, Maik; Melero, Julio J.
2017-11-01
A large proportion of the overall costs of a wind farm is directly related to operation and maintenance (O&M) tasks. By applying predictive O&M strategies rather than corrective approaches these costs can be decreased significantly. Here, especially wind turbine (WT) failure models can help to understand the components’ degradation processes and enable the operators to anticipate upcoming failures. Usually, these models are based on the age of the systems or components. However, latest research shows that the on-site weather conditions also affect the turbine failure behaviour significantly. This study presents a novel approach to model WT failures based on the environmental conditions to which they are exposed to. The results focus on general WT failures, as well as on four main components: gearbox, generator, pitch and yaw system. A penalised likelihood estimation is used in order to avoid problems due to for example highly correlated input covariates. The relative importance of the model covariates is assessed in order to analyse the effect of each weather parameter on the model output.
Model reconstruction using POD method for gray-box fault detection
NASA Technical Reports Server (NTRS)
Park, H. G.; Zak, M.
2003-01-01
This paper describes using Proper Orthogonal Decomposition (POD) method to create low-order dynamical models for the Model Filter component of Beacon-based Exception Analysis for Multi-missions (BEAM).
NASA Astrophysics Data System (ADS)
Kruglyakov, Mikhail; Kuvshinov, Alexey
2018-05-01
3-D interpretation of electromagnetic (EM) data of different origin and scale becomes a common practice worldwide. However, 3-D EM numerical simulations (modeling)—a key part of any 3-D EM data analysis—with realistic levels of complexity, accuracy and spatial detail still remains challenging from the computational point of view. We present a novel, efficient 3-D numerical solver based on a volume integral equation (IE) method. The efficiency is achieved by using a high-order polynomial (HOP) basis instead of the zero-order (piecewise constant) basis that is invoked in all routinely used IE-based solvers. We demonstrate that usage of the HOP basis allows us to decrease substantially the number of unknowns (preserving the same accuracy), with corresponding speed increase and memory saving.
NASA Astrophysics Data System (ADS)
Kim, Euiyoung; Cho, Maenghyo
2017-11-01
In most non-linear analyses, the construction of a system matrix uses a large amount of computation time, comparable to the computation time required by the solving process. If the process for computing non-linear internal force matrices is substituted with an effective equivalent model that enables the bypass of numerical integrations and assembly processes used in matrix construction, efficiency can be greatly enhanced. A stiffness evaluation procedure (STEP) establishes non-linear internal force models using polynomial formulations of displacements. To efficiently identify an equivalent model, the method has evolved such that it is based on a reduced-order system. The reduction process, however, makes the equivalent model difficult to parameterize, which significantly affects the efficiency of the optimization process. In this paper, therefore, a new STEP, E-STEP, is proposed. Based on the element-wise nature of the finite element model, the stiffness evaluation is carried out element-by-element in the full domain. Since the unit of computation for the stiffness evaluation is restricted by element size, and since the computation is independent, the equivalent model can be constructed efficiently in parallel, even in the full domain. Due to the element-wise nature of the construction procedure, the equivalent E-STEP model is easily characterized by design parameters. Various reduced-order modeling techniques can be applied to the equivalent system in a manner similar to how they are applied in the original system. The reduced-order model based on E-STEP is successfully demonstrated for the dynamic analyses of non-linear structural finite element systems under varying design parameters.
New second order Mumford-Shah model based on Γ-convergence approximation for image processing
NASA Astrophysics Data System (ADS)
Duan, Jinming; Lu, Wenqi; Pan, Zhenkuan; Bai, Li
2016-05-01
In this paper, a second order variational model named the Mumford-Shah total generalized variation (MSTGV) is proposed for simultaneously image denoising and segmentation, which combines the original Γ-convergence approximated Mumford-Shah model with the second order total generalized variation (TGV). For image denoising, the proposed MSTGV can eliminate both the staircase artefact associated with the first order total variation and the edge blurring effect associated with the quadratic H1 regularization or the second order bounded Hessian regularization. For image segmentation, the MSTGV can obtain clear and continuous boundaries of objects in the image. To improve computational efficiency, the implementation of the MSTGV does not directly solve its high order nonlinear partial differential equations and instead exploits the efficient split Bregman algorithm. The algorithm benefits from the fast Fourier transform, analytical generalized soft thresholding equation, and Gauss-Seidel iteration. Extensive experiments are conducted to demonstrate the effectiveness and efficiency of the proposed model.
Glynne-Jones, Peter; Mishra, Puja P; Boltryk, Rosemary J; Hill, Martyn
2013-04-01
A finite element based method is presented for calculating the acoustic radiation force on arbitrarily shaped elastic and fluid particles. Importantly for future applications, this development will permit the modeling of acoustic forces on complex structures such as biological cells, and the interactions between them and other bodies. The model is based on a non-viscous approximation, allowing the results from an efficient, numerical, linear scattering model to provide the basis for the second-order forces. Simulation times are of the order of a few seconds for an axi-symmetric structure. The model is verified against a range of existing analytical solutions (typical accuracy better than 0.1%), including those for cylinders, elastic spheres that are of significant size compared to the acoustic wavelength, and spheroidal particles.
A reduced order, test verified component mode synthesis approach for system modeling applications
NASA Astrophysics Data System (ADS)
Butland, Adam; Avitabile, Peter
2010-05-01
Component mode synthesis (CMS) is a very common approach used for the generation of large system models. In general, these modeling techniques can be separated into two categories: those utilizing a combination of constraint modes and fixed interface normal modes and those based on a combination of free interface normal modes and residual flexibility terms. The major limitation of the methods utilizing constraint modes and fixed interface normal modes is the inability to easily obtain the required information from testing; the result of this limitation is that constraint mode-based techniques are primarily used with numerical models. An alternate approach is proposed which utilizes frequency and shape information acquired from modal testing to update reduced order finite element models using exact analytical model improvement techniques. The connection degrees of freedom are then rigidly constrained in the test verified, reduced order model to provide the boundary conditions necessary for constraint modes and fixed interface normal modes. The CMS approach is then used with this test verified, reduced order model to generate the system model for further analysis. A laboratory structure is used to show the application of the technique with both numerical and simulated experimental components to describe the system and validate the proposed approach. Actual test data is then used in the approach proposed. Due to typical measurement data contaminants that are always included in any test, the measured data is further processed to remove contaminants and is then used in the proposed approach. The final case using improved data with the reduced order, test verified components is shown to produce very acceptable results from the Craig-Bampton component mode synthesis approach. Use of the technique with its strengths and weaknesses are discussed.
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.
1994-01-01
Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model.
Sardar, Tridip; Rana, Sourav; Bhattacharya, Sabyasachi; Al-Khaled, Kamel; Chattopadhyay, Joydev
2015-05-01
In the present investigation, three mathematical models on a common single strain mosquito-transmitted diseases are considered. The first one is based on ordinary differential equations, and other two models are based on fractional order differential equations. The proposed models are validated using published monthly dengue incidence data from two provinces of Venezuela during the period 1999-2002. We estimate several parameters of these models like the order of the fractional derivatives (in case of two fractional order systems), the biting rate of mosquito, two probabilities of infection, mosquito recruitment and mortality rates, etc., from the data. The basic reproduction number, R0, for the ODE system is estimated using the data. For two fractional order systems, an upper bound for, R0, is derived and its value is obtained using the published data. The force of infection, and the effective reproduction number, R(t), for the three models are estimated using the data. Sensitivity analysis of the mosquito memory parameter with some important responses is worked out. We use Akaike Information Criterion (AIC) to identify the best model among the three proposed models. It is observed that the model with memory in both the host, and the vector population provides a better agreement with epidemic data. Finally, we provide a control strategy for the vector-borne disease, dengue, using the memory of the host, and the vector. Copyright © 2015 Elsevier Inc. All rights reserved.
Reduced-Order Aerothermoelastic Analysis of Hypersonic Vehicle Structures
NASA Astrophysics Data System (ADS)
Falkiewicz, Nathan J.
Design and simulation of hypersonic vehicles require consideration of a variety of disciplines due to the highly coupled nature of the flight regime. In order to capture all of the potential effects on vehicle dynamics, one must consider the aerodynamics, aerodynamic heating, heat transfer, and structural dynamics as well as the interactions between these disciplines. The problem is further complicated by the large computational expense involved in capturing all of these effects and their interactions in a full-order sense. While high-fidelity modeling techniques exist for each of these disciplines, the use of such techniques is computationally infeasible in a vehicle design and control system simulation setting for such a highly coupled problem. Early in the design stage, many iterations of analyses may need to be carried out as the vehicle design matures, thus requiring quick analysis turnaround time. Additionally, the number of states used in the analyses must be small enough to allow for efficient control simulation and design. As a result, alternatives to full-order models must be considered. This dissertation presents a fully coupled, reduced-order aerothermoelastic framework for the modeling and analysis of hypersonic vehicle structures. The reduced-order transient thermal solution is a modal solution based on the proper orthogonal decomposition. The reduced-order structural dynamic model is based on projection of the equations of motion onto a Ritz modal subspace that is identified a priori. The reduced-order models are assembled into a time-domain aerothermoelastic simulation framework which uses a partitioned time-marching scheme to account for the disparate time scales of the associated physics. The aerothermoelastic modeling framework is outlined and the formulations associated with the unsteady aerodynamics, aerodynamic heating, transient thermal, and structural dynamics are outlined. Results demonstrate the accuracy of the reduced-order transient thermal and structural dynamic models under variation in boundary conditions and flight conditions. The framework is applied to representative hypersonic vehicle control surface structures and a variety of studies are conducted to assess the impact of aerothermoelastic effects on hypersonic vehicle dynamics. The results presented in this dissertation demonstrate the ability of the proposed framework to perform efficient aerothermoelastic analysis.
NASA Astrophysics Data System (ADS)
Gurrala, Praveen; Downs, Andrew; Chen, Kun; Song, Jiming; Roberts, Ron
2018-04-01
Full wave scattering models for ultrasonic waves are necessary for the accurate prediction of voltage signals received from complex defects/flaws in practical nondestructive evaluation (NDE) measurements. We propose the high-order Nyström method accelerated by the multilevel fast multipole algorithm (MLFMA) as an improvement to the state-of-the-art full-wave scattering models that are based on boundary integral equations. We present numerical results demonstrating improvements in simulation time and memory requirement. Particularly, we demonstrate the need for higher order geom-etry and field approximation in modeling NDE measurements. Also, we illustrate the importance of full-wave scattering models using experimental pulse-echo data from a spherical inclusion in a solid, which cannot be modeled accurately by approximation-based scattering models such as the Kirchhoff approximation.
Determining Reduced Order Models for Optimal Stochastic Reduced Order Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonney, Matthew S.; Brake, Matthew R.W.
2015-08-01
The use of parameterized reduced order models(PROMs) within the stochastic reduced order model (SROM) framework is a logical progression for both methods. In this report, five different parameterized reduced order models are selected and critiqued against the other models along with truth model for the example of the Brake-Reuss beam. The models are: a Taylor series using finite difference, a proper orthogonal decomposition of the the output, a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results and constructs a polynomial curve to better representmore » the output data. The methods are compared against a parameter sweep and a distribution propagation where the first four statistical moments are used as a comparison. Each method produces very accurate results with the Craig-Bampton reduction having the least accurate results. The models are also compared based on time requirements for the evaluation of each model where the Meta- Model requires the least amount of time for computation by a significant amount. Each of the five models provided accurate results in a reasonable time frame. The determination of which model to use is dependent on the availability of the high-fidelity model and how many evaluations can be performed. Analysis of the output distribution is examined by using a large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and the stochastic reduced order model sampling technique. Both techniques produced accurate results. The stochastic reduced order modeling technique produced less error when compared to an exhaustive sampling for the majority of methods.« less
NASA Astrophysics Data System (ADS)
Cui, Z.; Welty, C.; Maxwell, R. M.
2011-12-01
Lagrangian, particle-tracking models are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking models are capable of simulating geochemical reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order geochemical reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is modeled by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are modeled by coupling multiple Monod equations with other geochemical reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical models will be presented in addition to a discussion of implementation challenges.
End-to-end Coronagraphic Modeling Including a Low-order Wavefront Sensor
NASA Technical Reports Server (NTRS)
Krist, John E.; Trauger, John T.; Unwin, Stephen C.; Traub, Wesley A.
2012-01-01
To evaluate space-based coronagraphic techniques, end-to-end modeling is necessary to simulate realistic fields containing speckles caused by wavefront errors. Real systems will suffer from pointing errors and thermal and motioninduced mechanical stresses that introduce time-variable wavefront aberrations that can reduce the field contrast. A loworder wavefront sensor (LOWFS) is needed to measure these changes at a sufficiently high rate to maintain the contrast level during observations. We implement here a LOWFS and corresponding low-order wavefront control subsystem (LOWFCS) in end-to-end models of a space-based coronagraph. Our goal is to be able to accurately duplicate the effect of the LOWFS+LOWFCS without explicitly evaluating the end-to-end model at numerous time steps.
Competing phases in a model of Pr-based cobaltites
NASA Astrophysics Data System (ADS)
Sotnikov, A.; Kuneš, J.
2017-12-01
Motivated by the physics of Pr-based cobaltites, we study the effect of the external magnetic field in the hole-doped two-band Hubbard model close to instabilities toward the excitonic condensation and ferromagnetic ordering. Using the dynamical mean-field theory we observe a field-driven suppression of the excitonic condensate. The onset of a magnetically ordered phase at the fixed chemical potential is accompanied by a sizable change of the electron density. This leads us to predict that Pr3 + abundance increases on the high-field side of the transition.
Stock price forecasting based on time series analysis
NASA Astrophysics Data System (ADS)
Chi, Wan Le
2018-05-01
Using the historical stock price data to set up a sequence model to explain the intrinsic relationship of data, the future stock price can forecasted. The used models are auto-regressive model, moving-average model and autoregressive-movingaverage model. The original data sequence of unit root test was used to judge whether the original data sequence was stationary. The non-stationary original sequence as a first order difference needed further processing. Then the stability of the sequence difference was re-inspected. If it is still non-stationary, the second order differential processing of the sequence is carried out. Autocorrelation diagram and partial correlation diagram were used to evaluate the parameters of the identified ARMA model, including coefficients of the model and model order. Finally, the model was used to forecast the fitting of the shanghai composite index daily closing price with precision. Results showed that the non-stationary original data series was stationary after the second order difference. The forecast value of shanghai composite index daily closing price was closer to actual value, indicating that the ARMA model in the paper was a certain accuracy.
Toward a better understanding of helicopter stability derivatives
NASA Technical Reports Server (NTRS)
Hansen, R. S.
1982-01-01
An amended six degree of freedom helicopter stability and control derivative model was developed in which body acceleration and control rate derivatives were included in the Taylor series expansion. These additional derivatives were derived from consideration of the effects of the higher order rotor flapping dynamics, which are known to be inadequately represented in the conventional six degree of freedom, quasistatic stability derivative model. The amended model was a substantial improvement over the conventional model, effectively doubling the unsable bandwidth and providing a more accurate representation of the short period and cross axis characteristics. Further investigations assessed the applicability of the two stability derivative model structures for flight test parameter identification. Parameters were identified using simulation data generated from a higher order base line model having sixth order rotor tip path plane dynamics. Three lower order models were identified: one using the conventional stability derivative model structure, a second using the amended six degree of freedom model structure, and a third model having eight degrees of freedom that included a simplified rotor tip path plane tilt representation.
Arrindell, Willem A; Urbán, Róbert; Carrozzino, Danilo; Bech, Per; Demetrovics, Zsolt; Roozen, Hendrik G
2017-09-01
To fully understand the dimensionality of an instrument in a certain population, rival bi-factor models should be routinely examined and tested against oblique first-order and higher-order structures. The present study is among the very few studies that have carried out such a comparison in relation to the Symptom Checklist-90-R. In doing so, it utilized a sample comprising 2593 patients with substance use and impulse control disorders. The study also included a test of a one-dimensional model of general psychological distress. Oblique first-order factors were based on the original a priori 9-dimensional model advanced by Derogatis (1977); and on an 8-dimensional model proposed by Arrindell and Ettema (2003)-Agoraphobia, Anxiety, Depression, Somatization, Cognitive-performance deficits, Interpersonal sensitivity and mistrust, Acting-out hostility, and Sleep difficulties. Taking individual symptoms as input, three higher-order models were tested with at the second-order levels either (1) General psychological distress; (2) 'Panic with agoraphobia', 'Depression' and 'Extra-punitive behavior'; or (3) 'Irritable-hostile depression' and 'Panic with agoraphobia'. In line with previous studies, no support was found for the one-factor model. Bi-factor models were found to fit the dataset best relative to the oblique first-order and higher-order models. However, oblique first-order and higher-order factor models also fit the data fairly well in absolute terms. Higher-order solution (2) provided support for R.F. Krueger's empirical model of psychopathology which distinguishes between fear, distress, and externalizing factors (Krueger, 1999). The higher-order model (3), which combines externalizing and distress factors (Irritable-hostile depression), fit the data numerically equally well. Overall, findings were interpreted as supporting the hypothesis that the prevalent forms of symptomatology addressed have both important common and unique features. Proposals were made to improve the Depression subscale as its scores represent more of a very common construct as is measured with the severity (total) scale than of a specific measure that purports to measure what it should assess-symptoms of depression. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Accuracy assessment for a multi-parameter optical calliper in on line automotive applications
NASA Astrophysics Data System (ADS)
D'Emilia, G.; Di Gasbarro, D.; Gaspari, A.; Natale, E.
2017-08-01
In this work, a methodological approach based on the evaluation of the measurement uncertainty is applied to an experimental test case, related to the automotive sector. The uncertainty model for different measurement procedures of a high-accuracy optical gauge is discussed in order to individuate the best measuring performances of the system for on-line applications and when the measurement requirements are becoming more stringent. In particular, with reference to the industrial production and control strategies of high-performing turbochargers, two uncertainty models are proposed, discussed and compared, to be used by the optical calliper. Models are based on an integrated approach between measurement methods and production best practices to emphasize their mutual coherence. The paper shows the possible advantages deriving from the considerations that the measurement uncertainty modelling provides, in order to keep control of the uncertainty propagation on all the indirect measurements useful for production statistical control, on which basing further improvements.
Program Evaluation of a Competency-Based Online Model in Higher Education
ERIC Educational Resources Information Center
DiGiacomo, Karen
2017-01-01
In order to serve its nontraditional students, a university piloted a competency-based program as alternative method for its students to earn college credit. The purpose of this mixed-methods study was to conduct a summative program evaluation to determine if the program was successful in order to make decisions about program revision and…
Online Estimation of Model Parameters of Lithium-Ion Battery Using the Cubature Kalman Filter
NASA Astrophysics Data System (ADS)
Tian, Yong; Yan, Rusheng; Tian, Jindong; Zhou, Shijie; Hu, Chao
2017-11-01
Online estimation of state variables, including state-of-charge (SOC), state-of-energy (SOE) and state-of-health (SOH) is greatly crucial for the operation safety of lithium-ion battery. In order to improve estimation accuracy of these state variables, a precise battery model needs to be established. As the lithium-ion battery is a nonlinear time-varying system, the model parameters significantly vary with many factors, such as ambient temperature, discharge rate and depth of discharge, etc. This paper presents an online estimation method of model parameters for lithium-ion battery based on the cubature Kalman filter. The commonly used first-order resistor-capacitor equivalent circuit model is selected as the battery model, based on which the model parameters are estimated online. Experimental results show that the presented method can accurately track the parameters variation at different scenarios.
A unified tensor level set for image segmentation.
Wang, Bin; Gao, Xinbo; Tao, Dacheng; Li, Xuelong
2010-06-01
This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt- and pepper-type noise. Second, considering the local geometrical features, e.g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.
ERIC Educational Resources Information Center
Komalasari, Kokom; Saripudin, Didin
2018-01-01
This study aims to develop and examine a civic education textbook model based on living values education in order to foster the development of junior high school students' characters. This research employs Research and Development approach with an explorative method being used at model development stage and experiment method at model testing…
Input variable selection and calibration data selection for storm water quality regression models.
Sun, Siao; Bertrand-Krajewski, Jean-Luc
2013-01-01
Storm water quality models are useful tools in storm water management. Interest has been growing in analyzing existing data for developing models for urban storm water quality evaluations. It is important to select appropriate model inputs when many candidate explanatory variables are available. Model calibration and verification are essential steps in any storm water quality modeling. This study investigates input variable selection and calibration data selection in storm water quality regression models. The two selection problems are mutually interacted. A procedure is developed in order to fulfil the two selection tasks in order. The procedure firstly selects model input variables using a cross validation method. An appropriate number of variables are identified as model inputs to ensure that a model is neither overfitted nor underfitted. Based on the model input selection results, calibration data selection is studied. Uncertainty of model performances due to calibration data selection is investigated with a random selection method. An approach using the cluster method is applied in order to enhance model calibration practice based on the principle of selecting representative data for calibration. The comparison between results from the cluster selection method and random selection shows that the former can significantly improve performances of calibrated models. It is found that the information content in calibration data is important in addition to the size of calibration data.
Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water
NASA Astrophysics Data System (ADS)
Reinhardt, Aleks; Doye, Jonathan P. K.; Noya, Eva G.; Vega, Carlos
2012-11-01
We present a local order parameter based on the standard Steinhardt-Ten Wolde approach that is capable both of tracking and of driving homogeneous ice nucleation in simulations of all-atom models of water. We demonstrate that it is capable of forcing the growth of ice nuclei in supercooled liquid water simulated using the TIP4P/2005 model using over-biassed umbrella sampling Monte Carlo simulations. However, even with such an order parameter, the dynamics of ice growth in deeply supercooled liquid water in all-atom models of water are shown to be very slow, and so the computation of free energy landscapes and nucleation rates remains extremely challenging.
ERIC Educational Resources Information Center
Sins, Patrick H. M.; van Joolingen, Wouter R.; Savelsbergh, Elwin R.; van Hout-Wolters, Bernadette
2008-01-01
Purpose of the present study was to test a conceptual model of relations among achievement goal orientation, self-efficacy, cognitive processing, and achievement of students working within a particular collaborative task context. The task involved a collaborative computer-based modeling task. In order to test the model, group measures of…
Baranwal, Mayank; Gorugantu, Ram S; Salapaka, Srinivasa M
2015-08-01
This paper aims at control design and its implementation for robust high-bandwidth precision (nanoscale) positioning systems. Even though modern model-based control theoretic designs for robust broadband high-resolution positioning have enabled orders of magnitude improvement in performance over existing model independent designs, their scope is severely limited by the inefficacies of digital implementation of the control designs. High-order control laws that result from model-based designs typically have to be approximated with reduced-order systems to facilitate digital implementation. Digital systems, even those that have very high sampling frequencies, provide low effective control bandwidth when implementing high-order systems. In this context, field programmable analog arrays (FPAAs) provide a good alternative to the use of digital-logic based processors since they enable very high implementation speeds, moreover with cheaper resources. The superior flexibility of digital systems in terms of the implementable mathematical and logical functions does not give significant edge over FPAAs when implementing linear dynamic control laws. In this paper, we pose the control design objectives for positioning systems in different configurations as optimal control problems and demonstrate significant improvements in performance when the resulting control laws are applied using FPAAs as opposed to their digital counterparts. An improvement of over 200% in positioning bandwidth is achieved over an earlier digital signal processor (DSP) based implementation for the same system and same control design, even when for the DSP-based system, the sampling frequency is about 100 times the desired positioning bandwidth.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
1997-01-01
The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended somewhat so that linear models can also be generated from two- and three-dimensional steady-state results. Standard techniques are adequate for reducing the order of one-dimensional CFD-based linear models. However, reduction of linear models based on two- and three-dimensional CFD results is complicated by very sparse, ill-conditioned matrices. Some novel approaches are being investigated to solve this problem.
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
NASA Astrophysics Data System (ADS)
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-05-01
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Fu, Shubin; Chung, Eric T.
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-02-04
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less
NASA Astrophysics Data System (ADS)
Yin, G.; Forman, B. A.; Loomis, B. D.; Luthcke, S. B.
2017-12-01
Vertical deformation of the Earth's crust due to the movement and redistribution of terrestrial freshwater can be studied using satellite measurements, ground-based sensors, hydrologic models, or a combination thereof. This current study explores the relationship between vertical deformation estimates derived from mass concentrations (mascons) from the Gravity Recovery and Climate Experiment (GRACE), vertical deformation from ground-based Global Positioning System (GPS) observations collected from the Plate Boundary Observatory (PBO), and hydrologic loading estimates based on model output from the NASA Catchment Land Surface Model (Catchment). A particular focus is made to snow-dominated basins where mass accumulates during the snow season and subsequently runs off during the ablation season. The mean seasonal cycle and the effects of atmospheric loading, non-tidal ocean loading, and glacier isostatic adjustment (GIA) are removed from the GPS observations in order to derive the vertical displacement caused predominately by hydrological processes. A low-pass filter is applied to GPS observations to remove high frequency noise. Correlation coefficients between GRACE- and GPS-based estimates at all PBO sites are calculated. GRACE-derived and Catchment-derived displacements are subtracted from the GPS height variations, respectively, in order to compute the root mean square (RMS) reduction as a means of studying the consistency between the three different methods. Results show that in most sites, the three methods exhibit good agreement. Exceptions to this generalization include the Central Valley of California where extensive groundwater pumping is witnessed in the GRACE- and GPS-based estimates, but not in the Catchment-based estimates because anthropogenic groundwater pumping activities are not included in the Catchment model. The relatively good agreement between GPS- and GRACE-derived vertical crustal displacements suggests that ground-based GPS has tremendous potential for a Bayesian merger with GRACE-based estimates in order to provide a higher resolution (in space and time) of terrestrial water storage.
Spin-neurons: A possible path to energy-efficient neuromorphic computers
NASA Astrophysics Data System (ADS)
Sharad, Mrigank; Fan, Deliang; Roy, Kaushik
2013-12-01
Recent years have witnessed growing interest in the field of brain-inspired computing based on neural-network architectures. In order to translate the related algorithmic models into powerful, yet energy-efficient cognitive-computing hardware, computing-devices beyond CMOS may need to be explored. The suitability of such devices to this field of computing would strongly depend upon how closely their physical characteristics match with the essential computing primitives employed in such models. In this work, we discuss the rationale of applying emerging spin-torque devices for bio-inspired computing. Recent spin-torque experiments have shown the path to low-current, low-voltage, and high-speed magnetization switching in nano-scale magnetic devices. Such magneto-metallic, current-mode spin-torque switches can mimic the analog summing and "thresholding" operation of an artificial neuron with high energy-efficiency. Comparison with CMOS-based analog circuit-model of a neuron shows that "spin-neurons" (spin based circuit model of neurons) can achieve more than two orders of magnitude lower energy and beyond three orders of magnitude reduction in energy-delay product. The application of spin-neurons can therefore be an attractive option for neuromorphic computers of future.
Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.
Saccenti, Edoardo; Timmerman, Marieke E
2017-03-01
Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.
Spin-neurons: A possible path to energy-efficient neuromorphic computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharad, Mrigank; Fan, Deliang; Roy, Kaushik
Recent years have witnessed growing interest in the field of brain-inspired computing based on neural-network architectures. In order to translate the related algorithmic models into powerful, yet energy-efficient cognitive-computing hardware, computing-devices beyond CMOS may need to be explored. The suitability of such devices to this field of computing would strongly depend upon how closely their physical characteristics match with the essential computing primitives employed in such models. In this work, we discuss the rationale of applying emerging spin-torque devices for bio-inspired computing. Recent spin-torque experiments have shown the path to low-current, low-voltage, and high-speed magnetization switching in nano-scale magnetic devices.more » Such magneto-metallic, current-mode spin-torque switches can mimic the analog summing and “thresholding” operation of an artificial neuron with high energy-efficiency. Comparison with CMOS-based analog circuit-model of a neuron shows that “spin-neurons” (spin based circuit model of neurons) can achieve more than two orders of magnitude lower energy and beyond three orders of magnitude reduction in energy-delay product. The application of spin-neurons can therefore be an attractive option for neuromorphic computers of future.« less
ERIC Educational Resources Information Center
Budsankom, Prayoonsri; Sawangboon, Tatsirin; Damrongpanit, Suntorapot; Chuensirimongkol, Jariya
2015-01-01
The purpose of the research is to develop and identify the validity of factors affecting higher order thinking skills (HOTS) of students. The thinking skills can be divided into three types: analytical, critical, and creative thinking. This analysis is done by applying the meta-analytic structural equation modeling (MASEM) based on a database of…
ERIC Educational Resources Information Center
Schwarz, Wolf
2006-01-01
Paradigms used to study the time course of the redundant signals effect (RSE; J. O. Miller, 1986) and temporal order judgments (TOJs) share many important similarities and address related questions concerning the time course of sensory processing. The author of this article proposes and tests a new aggregate diffusion-based model to quantitatively…
A Comparison of Surface Acoustic Wave Modeling Methods
NASA Technical Reports Server (NTRS)
Wilson, W. c.; Atkinson, G. M.
2009-01-01
Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices.
A border-ownership model based on computational electromagnetism.
Zainal, Zaem Arif; Satoh, Shunji
2018-03-01
The mathematical relation between a vector electric field and its corresponding scalar potential field is useful to formulate computational problems of lower/middle-order visual processing, specifically related to the assignment of borders to the side of the object: so-called border ownership (BO). BO coding is a key process for extracting the objects from the background, allowing one to organize a cluttered scene. We propose that the problem is solvable simultaneously by application of a theorem of electromagnetism, i.e., "conservative vector fields have zero rotation, or "curl." We hypothesize that (i) the BO signal is definable as a vector electric field with arrowheads pointing to the inner side of perceived objects, and (ii) its corresponding scalar field carries information related to perceived order in depth of occluding/occluded objects. A simple model was developed based on this computational theory. Model results qualitatively agree with object-side selectivity of BO-coding neurons, and with perceptions of object order. The model update rule can be reproduced as a plausible neural network that presents new interpretations of existing physiological results. Results of this study also suggest that T-junction detectors are unnecessary to calculate depth order. Copyright © 2017 Elsevier Ltd. All rights reserved.
Proper Orthogonal Decomposition in Optimal Control of Fluids
NASA Technical Reports Server (NTRS)
Ravindran, S. S.
1999-01-01
In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.
ERIC Educational Resources Information Center
Satilmis, Yilmaz; Yakup, Doganay; Selim, Guvercin; Aybarsha, Islam
2015-01-01
This study investigates three models of content-based instruction in teaching concepts and terms of natural sciences in order to increase the efficiency of teaching these kinds of concepts in realization and to prove that the content-based instruction is a teaching strategy that helps students understand concepts of natural sciences. Content-based…
Davidson, Clare M; de Paor, Annraoi M; Cagnan, Hayriye; Lowery, Madeleine M
2016-01-01
Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.
Performance of Low Dissipative High Order Shock-Capturing Schemes for Shock-Turbulence Interactions
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.
1998-01-01
Accurate and efficient direct numerical simulation of turbulence in the presence of shock waves represents a significant challenge for numerical methods. The objective of this paper is to evaluate the performance of high order compact and non-compact central spatial differencing employing total variation diminishing (TVD) shock-capturing dissipations as characteristic based filters for two model problems combining shock wave and shear layer phenomena. A vortex pairing model evaluates the ability of the schemes to cope with shear layer instability and eddy shock waves, while a shock wave impingement on a spatially-evolving mixing layer model studies the accuracy of computation of vortices passing through a sequence of shock and expansion waves. A drastic increase in accuracy is observed if a suitable artificial compression formulation is applied to the TVD dissipations. With this modification to the filter step the fourth-order non-compact scheme shows improved results in comparison to second-order methods, while retaining the good shock resolution of the basic TVD scheme. For this characteristic based filter approach, however, the benefits of compact schemes or schemes with higher than fourth order are not sufficient to justify the higher complexity near the boundary and/or the additional computational cost.
Construction of moment-matching multinomial lattices using Vandermonde matrices and Gröbner bases
NASA Astrophysics Data System (ADS)
Lundengârd, Karl; Ogutu, Carolyne; Silvestrov, Sergei; Ni, Ying; Weke, Patrick
2017-01-01
In order to describe and analyze the quantitative behavior of stochastic processes, such as the process followed by a financial asset, various discretization methods are used. One such set of methods are lattice models where a time interval is divided into equal time steps and the rate of change for the process is restricted to a particular set of values in each time step. The well-known binomial- and trinomial models are the most commonly used in applications, although several kinds of higher order models have also been examined. Here we will examine various ways of designing higher order lattice schemes with different node placements in order to guarantee moment-matching with the process.
3D airborne EM modeling based on the spectral-element time-domain (SETD) method
NASA Astrophysics Data System (ADS)
Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.
2017-12-01
In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays important roles. This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). Figure 1: (a) AEM system over a 3D earth model; (b) magnetic field Bz; (c) magnetic induction dBz/dt.
A fourth order accurate finite difference scheme for the computation of elastic waves
NASA Technical Reports Server (NTRS)
Bayliss, A.; Jordan, K. E.; Lemesurier, B. J.; Turkel, E.
1986-01-01
A finite difference for elastic waves is introduced. The model is based on the first order system of equations for the velocities and stresses. The differencing is fourth order accurate on the spatial derivatives and second order accurate in time. The model is tested on a series of examples including the Lamb problem, scattering from plane interf aces and scattering from a fluid-elastic interface. The scheme is shown to be effective for these problems. The accuracy and stability is insensitive to the Poisson ratio. For the class of problems considered here it is found that the fourth order scheme requires for two-thirds to one-half the resolution of a typical second order scheme to give comparable accuracy.
Tuning algorithms for fractional order internal model controllers for time delay processes
NASA Astrophysics Data System (ADS)
Muresan, Cristina I.; Dutta, Abhishek; Dulf, Eva H.; Pinar, Zehra; Maxim, Anca; Ionescu, Clara M.
2016-03-01
This paper presents two tuning algorithms for fractional-order internal model control (IMC) controllers for time delay processes. The two tuning algorithms are based on two specific closed-loop control configurations: the IMC control structure and the Smith predictor structure. In the latter, the equivalency between IMC and Smith predictor control structures is used to tune a fractional-order IMC controller as the primary controller of the Smith predictor structure. Fractional-order IMC controllers are designed in both cases in order to enhance the closed-loop performance and robustness of classical integer order IMC controllers. The tuning procedures are exemplified for both single-input-single-output as well as multivariable processes, described by first-order and second-order transfer functions with time delays. Different numerical examples are provided, including a general multivariable time delay process. Integer order IMC controllers are designed in each case, as well as fractional-order IMC controllers. The simulation results show that the proposed fractional-order IMC controller ensures an increased robustness to modelling uncertainties. Experimental results are also provided, for the design of a multivariable fractional-order IMC controller in a Smith predictor structure for a quadruple-tank system.
A model of the hierarchy of behaviour, cognition, and consciousness.
Toates, Frederick
2006-03-01
Processes comparable in important respects to those underlying human conscious and non-conscious processing can be identified in a range of species and it is argued that these reflect evolutionary precursors of the human processes. A distinction is drawn between two types of processing: (1) stimulus-based and (2) higher-order. For 'higher-order,' in humans the operations of processing are themselves associated with conscious awareness. Conscious awareness sets the context for stimulus-based processing and its end-point is accessible to conscious awareness. However, the mechanics of the translation between stimulus and response proceeds without conscious control. The paper argues that higher-order processing is an evolutionary addition to stimulus-based processing. The model's value is shown for gaining insight into a range of phenomena and their link with consciousness. These include brain damage, learning, memory, development, vision, emotion, motor control, reasoning, the voluntary versus involuntary debate, and mental disorder.
Development of a General Form CO 2 and Brine Flux Input Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansoor, K.; Sun, Y.; Carroll, S.
2014-08-01
The National Risk Assessment Partnership (NRAP) project is developing a science-based toolset for the quantitative analysis of the potential risks associated with changes in groundwater chemistry from CO 2 injection. In order to address uncertainty probabilistically, NRAP is developing efficient, reduced-order models (ROMs) as part of its approach. These ROMs are built from detailed, physics-based process models to provide confidence in the predictions over a range of conditions. The ROMs are designed to reproduce accurately the predictions from the computationally intensive process models at a fraction of the computational time, thereby allowing the utilization of Monte Carlo methods to probemore » variability in key parameters. This report presents the procedures used to develop a generalized model for CO 2 and brine leakage fluxes based on the output of a numerical wellbore simulation. The resulting generalized parameters and ranges reported here will be used for the development of third-generation groundwater ROMs.« less
Liu, Hesen; Zhu, Lin; Pan, Zhuohong; ...
2015-09-14
One of the main drawbacks of the existing oscillation damping controllers that are designed based on offline dynamic models is adaptivity to the power system operating condition. With the increasing availability of wide-area measurements and the rapid development of system identification techniques, it is possible to identify a measurement-based transfer function model online that can be used to tune the oscillation damping controller. Such a model could capture all dominant oscillation modes for adaptive and coordinated oscillation damping control. our paper describes a comprehensive approach to identify a low-order transfer function model of a power system using a multi-input multi-outputmore » (MIMO) autoregressive moving average exogenous (ARMAX) model. This methodology consists of five steps: 1) input selection; 2) output selection; 3) identification trigger; 4) model estimation; and 5) model validation. The proposed method is validated by using ambient data and ring-down data in the 16-machine 68-bus Northeast Power Coordinating Council system. Our results demonstrate that the measurement-based model using MIMO ARMAX can capture all the dominant oscillation modes. Compared with the MIMO subspace state space model, the MIMO ARMAX model has equivalent accuracy but lower order and improved computational efficiency. The proposed model can be applied for adaptive and coordinated oscillation damping control.« less
A Method for Generating Reduced Order Linear Models of Supersonic Inlets
NASA Technical Reports Server (NTRS)
Chicatelli, Amy; Hartley, Tom T.
1997-01-01
For the modeling of high speed propulsion systems, there are at least two major categories of models. One is based on computational fluid dynamics (CFD), and the other is based on design and analysis of control systems. CFD is accurate and gives a complete view of the internal flow field, but it typically has many states and runs much slower dm real-time. Models based on control design typically run near real-time but do not always capture the fundamental dynamics. To provide improved control models, methods are needed that are based on CFD techniques but yield models that are small enough for control analysis and design.
NASA Astrophysics Data System (ADS)
Kikuchi, Ryota; Misaka, Takashi; Obayashi, Shigeru
2016-04-01
An integrated method consisting of a proper orthogonal decomposition (POD)-based reduced-order model (ROM) and a particle filter (PF) is proposed for real-time prediction of an unsteady flow field. The proposed method is validated using identical twin experiments of an unsteady flow field around a circular cylinder for Reynolds numbers of 100 and 1000. In this study, a PF is employed (ROM-PF) to modify the temporal coefficient of the ROM based on observation data because the prediction capability of the ROM alone is limited due to the stability issue. The proposed method reproduces the unsteady flow field several orders faster than a reference numerical simulation based on Navier-Stokes equations. Furthermore, the effects of parameters, related to observation and simulation, on the prediction accuracy are studied. Most of the energy modes of the unsteady flow field are captured, and it is possible to stably predict the long-term evolution with ROM-PF.
Exploiting Mirrors in 3d Reconstruction of Small Artefacts
NASA Astrophysics Data System (ADS)
Kontogianni, G.; Thomaidis, A. T.; Chliverou, R.; Georgopoulos, A.
2018-05-01
3D reconstruction of small artefacts is very significant in order to capture the details of the whole object irrespective of the documentation method which is used (Ranged Based or Image Based). Sometimes it is very difficult to achieve it because of hidden parts, occlusions, and obstructions which the object has. Hence, more data are necessary in order to 3D digitise the whole of the artefact leading to increased time for collecting and consequently processing the data. A methodology is necessary in order to reduce the collection of the data and therefore their processing time especially in cases of mass digitisation. So in this paper, the use of mirrors in particular high-quality mirrors in the data acquisition phase for the 3D reconstruction of small artefacts is investigated. Two case studies of 3D reconstruction are presented: the first one concerns Range-Based modelling especially a Time of Flight laser scanner is utilised and in the second one Image-Based modelling technique is implemented.
Questionnaire Construction Manual Annex. Questionnaires: Literature Survey and Bibliography
1989-06-01
from the work of Hamel, Braby, Terrell, and Thomas (1·983). ’ lIFormat models on which learning aids are based present guidance on how to apply...alternatives in a survey. Sources of information about federal involvement in a model city. project was the topic area. A modified example of their...these sets of descriptions are then analyzed using conjoint measurement in order to find a mathematical model that describes the person’s ordering. This
Order reduction, identification and localization studies of dynamical systems
NASA Astrophysics Data System (ADS)
Ma, Xianghong
In this thesis methods are developed for performing order reduction, system identification and induction of nonlinear localization in complex mechanical dynamic systems. General techniques are proposed for constructing low-order models of linear and nonlinear mechanical systems; in addition, novel mechanical designs are considered for inducing nonlinear localization phenomena for the purpose of enhancing their dynamical performance. The thesis is in three major parts. In the first part, the transient dynamics of an impulsively loaded multi-bay truss is numerically computed by employing the Direct Global Matrix (DGM) approach. The approach is applicable to large-scale flexible structures with periodicity. Karhunen-Loeve (K-L) decomposition is used to discretize the dynamics of the truss and to create the low-order models of the truss. The leading order K-L modes are recovered by an experiment, which shows the feasibility of K-L based order reduction technique. In the second part of the thesis, nonlinear localization in dynamical systems is studied through two applications. In the seismic base isolation study, it is shown that the dynamics are sensitive to the presence of nonlinear elements and that passive motion confinement can be induced under proper design. In the coupled rod system, numerical simulation of the transient dynamics shows that a nonlinear backlash spring can induce either nonlinear localization or delocalization in the form of beat phenomena. K-L decomposition and poincare maps are utilized to study the nonlinear effects. The study shows that nonlinear localization can be induced in complex structures through backlash. In the third and final part of the thesis, a new technique based on Green!s function method is proposed to identify the dynamics of practical bolted joints. By modeling the difference between the dynamics of the bolted structure and the corresponding unbolted one, one constructs a nonparametric model for the joint dynamics. Two applications are given with a bolted beam and a truss joint in order to show the applicability of the technique.
Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.
2009-01-01
Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.
NASA Astrophysics Data System (ADS)
Trinks, I.; Wallner, M.; Kucera, M.; Verhoeven, G.; Torrejón Valdelomar, J.; Löcker, K.; Nau, E.; Sevara, C.; Aldrian, L.; Neubauer, E.; Klein, M.
2017-02-01
The excavated architecture of the exceptional prehistoric site of Akrotiri on the Greek island of Thera/Santorini is endangered by gradual decay, damage due to accidents, and seismic shocks, being located on an active volcano in an earthquake-prone area. Therefore, in 2013 and 2014 a digital documentation project has been conducted with support of the National Geographic Society in order to generate a detailed digital model of Akrotiri's architecture using terrestrial laser scanning and image-based modeling. Additionally, non-invasive geophysical prospection has been tested in order to investigate its potential to explore and map yet buried archaeological remains. This article describes the project and the generated results.
Reduced size first-order subsonic and supersonic aeroelastic modeling
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1990-01-01
Various aeroelastic, aeroservoelastic, dynamic-response, and sensitivity analyses are based on a time-domain first-order (state-space) formulation of the equations of motion. The formulation of this paper is based on the minimum-state (MS) aerodynamic approximation method, which yields a low number of aerodynamic augmenting states. Modifications of the MS and the physical weighting procedures make the modeling method even more attractive. The flexibility of constraint selection is increased without increasing the approximation problem size; the accuracy of dynamic residualization of high-frequency modes is improved; and the resulting model is less sensitive to parametric changes in subsequent analyses. Applications to subsonic and supersonic cases demonstrate the generality, flexibility, accuracy, and efficiency of the method.
Robust Takagi-Sugeno fuzzy control for fractional order hydro-turbine governing system.
Wang, Bin; Xue, Jianyi; Wu, Fengjiao; Zhu, Delan
2016-11-01
A robust fuzzy control method for fractional order hydro-turbine governing system (FOHGS) in the presence of random disturbances is investigated in this paper. Firstly, the mathematical model of FOHGS is introduced, and based on Takagi-Sugeno (T-S) fuzzy rules, the generalized T-S fuzzy model of FOHGS is presented. Secondly, based on fractional order Lyapunov stability theory, a novel T-S fuzzy control method is designed for the stability control of FOHGS. Thirdly, the relatively loose sufficient stability condition is acquired, which could be transformed into a group of linear matrix inequalities (LMIs) via Schur complement as well as the strict mathematical derivation is given. Furthermore, the control method could resist random disturbances, which shows the good robustness. Simulation results indicate the designed fractional order T-S fuzzy control scheme works well compared with the existing method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling
NASA Technical Reports Server (NTRS)
Wilson, William; Atkinson, Gary
2009-01-01
Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.
Order reduction for a model of marine bacteriophage evolution
NASA Astrophysics Data System (ADS)
Pagliarini, Silvia; Korobeinikov, Andrei
2017-02-01
A typical mechanistic model of viral evolution necessary includes several time scales which can differ by orders of magnitude. Such a diversity of time scales makes analysis of these models difficult. Reducing the order of a model is highly desirable when handling such a model. A typical approach applied to such slow-fast (or singularly perturbed) systems is the time scales separation technique. Constructing the so-called quasi-steady-state approximation is the usual first step in applying the technique. While this technique is commonly applied, in some cases its straightforward application can lead to unsatisfactory results. In this paper we construct the quasi-steady-state approximation for a model of evolution of marine bacteriophages based on the Beretta-Kuang model. We show that for this particular model the quasi-steady-state approximation is able to produce only qualitative but not quantitative fit.
Semi-supervised Machine Learning for Analysis of Hydrogeochemical Data and Models
NASA Astrophysics Data System (ADS)
Vesselinov, Velimir; O'Malley, Daniel; Alexandrov, Boian; Moore, Bryan
2017-04-01
Data- and model-based analyses such as uncertainty quantification, sensitivity analysis, and decision support using complex physics models with numerous model parameters and typically require a huge number of model evaluations (on order of 10^6). Furthermore, model simulations of complex physics may require substantial computational time. For example, accounting for simultaneously occurring physical processes such as fluid flow and biogeochemical reactions in heterogeneous porous medium may require several hours of wall-clock computational time. To address these issues, we have developed a novel methodology for semi-supervised machine learning based on Non-negative Matrix Factorization (NMF) coupled with customized k-means clustering. The algorithm allows for automated, robust Blind Source Separation (BSS) of groundwater types (contamination sources) based on model-free analyses of observed hydrogeochemical data. We have also developed reduced order modeling tools, which coupling support vector regression (SVR), genetic algorithms (GA) and artificial and convolutional neural network (ANN/CNN). SVR is applied to predict the model behavior within prior uncertainty ranges associated with the model parameters. ANN and CNN procedures are applied to upscale heterogeneity of the porous medium. In the upscaling process, fine-scale high-resolution models of heterogeneity are applied to inform coarse-resolution models which have improved computational efficiency while capturing the impact of fine-scale effects at the course scale of interest. These techniques are tested independently on a series of synthetic problems. We also present a decision analysis related to contaminant remediation where the developed reduced order models are applied to reproduce groundwater flow and contaminant transport in a synthetic heterogeneous aquifer. The tools are coded in Julia and are a part of the MADS high-performance computational framework (https://github.com/madsjulia/Mads.jl).
Tu, Shih-Kai; Liao, Hung-En
2014-01-01
Community-based intervention health examinations were implemented at a health care facility to comply with the government's primary health care promotion policy. The theory of planned behavior model was applied to examine the effect that community-based health examinations had on people's health concepts regarding seeking future health examinations. The research participants were individuals who had received a health examination provided at two branches of a hospital in central Taiwan in 2012. The hospital's two branches held a total of 14 free community-based health examination sessions. The hospital provided health examination equipment and staff to perform health examinations during public holidays. We conducted an exploratory questionnaire survey to collect data and implemented cross-sectional research based on anonymous self-ratings to examine the public's intention to receive future community-based or hospital-based health examinations. Including of 807 valid questionnaires, accounting for 89.4% of the total number of questionnaires distributed. The correlation coefficients of the second-order structural model indicate that attitudes positively predict behavioral intentions (γ = .66, p < .05), and subjective norms also positively predict behavioral intentions (γ = .66, p < .01). By contrast, perceived behavioral control has no significant relationship with behavioral intentions (γ = -.71, p > .05). The results of the first-order structural model indicated that the second-order constructs had a high explanatory power for the first-order constructs. People's health concepts regarding health examinations and their desire to continue receiving health examinations must be considered when promoting health examinations in the community. Regarding hospital management and the government's implementation of primary health care, health examination services should address people's medical needs to increase coverage and participation rates and reduce the waste of medical resources.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
1998-01-01
Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.
Recent Enhancements to the Development of CFD-Based Aeroelastic Reduced-Order Models
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2007-01-01
Recent enhancements to the development of CFD-based unsteady aerodynamic and aeroelastic reduced-order models (ROMs) are presented. These enhancements include the simultaneous application of structural modes as CFD input, static aeroelastic analysis using a ROM, and matched-point solutions using a ROM. The simultaneous application of structural modes as CFD input enables the computation of the unsteady aerodynamic state-space matrices with a single CFD execution, independent of the number of structural modes. The responses obtained from a simultaneous excitation of the CFD-based unsteady aerodynamic system are processed using system identification techniques in order to generate an unsteady aerodynamic state-space ROM. Once the unsteady aerodynamic state-space ROM is generated, a method for computing the static aeroelastic response using this unsteady aerodynamic ROM and a state-space model of the structure, is presented. Finally, a method is presented that enables the computation of matchedpoint solutions using a single ROM that is applicable over a range of dynamic pressures and velocities for a given Mach number. These enhancements represent a significant advancement of unsteady aerodynamic and aeroelastic ROM technology.
Finite element formulation of viscoelastic sandwich beams using fractional derivative operators
NASA Astrophysics Data System (ADS)
Galucio, A. C.; Deü, J.-F.; Ohayon, R.
This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.
NASA Technical Reports Server (NTRS)
Burns, John A.; Marrekchi, Hamadi
1993-01-01
The problem of using reduced order dynamic compensators to control a class of nonlinear parabolic distributed parameter systems was considered. Concentration was on a system with unbounded input and output operators governed by Burgers' equation. A linearized model was used to compute low-order-finite-dimensional control laws by minimizing certain energy functionals. Then these laws were applied to the nonlinear model. Standard approaches to this problem employ model/controller reduction techniques in conjunction with linear quadratic Gaussian (LQG) theory. The approach used is based on the finite dimensional Bernstein/Hyland optimal projection theory which yields a fixed-finite-order controller.
Estimating procedure times for surgeries by determining location parameters for the lognormal model.
Spangler, William E; Strum, David P; Vargas, Luis G; May, Jerrold H
2004-05-01
We present an empirical study of methods for estimating the location parameter of the lognormal distribution. Our results identify the best order statistic to use, and indicate that using the best order statistic instead of the median may lead to less frequent incorrect rejection of the lognormal model, more accurate critical value estimates, and higher goodness-of-fit. Using simulation data, we constructed and compared two models for identifying the best order statistic, one based on conventional nonlinear regression and the other using a data mining/machine learning technique. Better surgical procedure time estimates may lead to improved surgical operations.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1983-01-01
Tensor model order reduction, recursive tensor model identification, input design for tensor model identification, software development for nonlinear feedback control laws based upon tensors, and development of the CATNAP software package for tensor modeling, identification and simulation were studied. The last of these are discussed.
Development and Application of a Simple Hydrogeomorphic Model for Headwater Catchments
We developed a catchment model based on a hydrogeomorphic concept that simulates discharge from channel-riparian complexes, zero-order basins (ZOB, basins ZB and FA), and hillslopes. Multitank models simulate ZOB and hillslope hydrological response, while kinematic wave models pr...
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Average inactivity time model, associated orderings and reliability properties
NASA Astrophysics Data System (ADS)
Kayid, M.; Izadkhah, S.; Abouammoh, A. M.
2018-02-01
In this paper, we introduce and study a new model called 'average inactivity time model'. This new model is specifically applicable to handle the heterogeneity of the time of the failure of a system in which some inactive items exist. We provide some bounds for the mean average inactivity time of a lifespan unit. In addition, we discuss some dependence structures between the average variable and the mixing variable in the model when original random variable possesses some aging behaviors. Based on the conception of the new model, we introduce and study a new stochastic order. Finally, to illustrate the concept of the model, some interesting reliability problems are reserved.
Advanced Fluid Reduced Order Models for Compressible Flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tezaur, Irina Kalashnikova; Fike, Jeffrey A.; Carlberg, Kevin Thomas
This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly themore » POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.« less
Understanding Group/Party Affiliation Using Social Networks and Agent-Based Modeling
NASA Technical Reports Server (NTRS)
Campbell, Kenyth
2012-01-01
The dynamics of group affiliation and group dispersion is a concept that is most often studied in order for political candidates to better understand the most efficient way to conduct their campaigns. While political campaigning in the United States is a very hot topic that most politicians analyze and study, the concept of group/party affiliation presents its own area of study that producers very interesting results. One tool for examining party affiliation on a large scale is agent-based modeling (ABM), a paradigm in the modeling and simulation (M&S) field perfectly suited for aggregating individual behaviors to observe large swaths of a population. For this study agent based modeling was used in order to look at a community of agents and determine what factors can affect the group/party affiliation patterns that are present. In the agent-based model that was used for this experiment many factors were present but two main factors were used to determine the results. The results of this study show that it is possible to use agent-based modeling to explore group/party affiliation and construct a model that can mimic real world events. More importantly, the model in the study allows for the results found in a smaller community to be translated into larger experiments to determine if the results will remain present on a much larger scale.
Fidelity in Models-Based Practice Research in Sport Pedagogy: A Guide for Future Investigations
ERIC Educational Resources Information Center
Hastie, Peter A.; Casey, Ashley
2014-01-01
This paper provides a commentary on research on models-based practice within physical education and presents a tutorial that aims to guide the reporting of future research using pedagogical models. Three key elements are presented that could be considered as essential for inclusion in any methods section in order for readers to gain an accurate…
Authentication in Virtual Organizations: A Reputation Based PKI Interconnection Model
NASA Astrophysics Data System (ADS)
Wazan, Ahmad Samer; Laborde, Romain; Barrere, Francois; Benzekri, Abdelmalek
Authentication mechanism constitutes a central part of the virtual organization work. The PKI technology is used to provide the authentication in each organization involved in the virtual organization. Different trust models are proposed to interconnect the different PKIs in order to propagate the trust between them. While the existing trust models contain many drawbacks, we propose a new trust model based on the reputation of PKIs.
Mobile Food Ordering Application using Android OS Platform
NASA Astrophysics Data System (ADS)
Yosep Ricky, Michael
2014-03-01
The purpose of this research is making an ordering food application based on Android with New Order, Order History, Restaurant Profile, Order Status, Tracking Order, and Setting Profile features. The research method used in this research is water model of System Development Life Cycle (SDLC) method with following phases: requirement definition, analyzing and determining the features needed in developing application and making the detail definition of each features, system and software design, designing the flow of developing application by using storyboard design, user experience design, Unified Modeling Language (UML) design, and database structure design, implementation an unit testing, making database and translating the result of designs to programming language code then doing unit testing, integration and System testing, integrating unit program to one unit system then doing system testing, operation and maintenance, operating the result of system testing and if any changes and reparations needed then the previous phases could be back. The result of this research is an ordering food application based on Android for customer and courier user, and a website for restaurant and admin user. The conclusion of this research is to help customer in making order easily, to give detail information needed by customer, to help restaurant in receiving order, and to help courier while doing delivery.
Cavallari, Stefano; Panzeri, Stefano; Mazzoni, Alberto
2014-01-01
Models of networks of Leaky Integrate-and-Fire (LIF) neurons are a widely used tool for theoretical investigations of brain function. These models have been used both with current- and conductance-based synapses. However, the differences in the dynamics expressed by these two approaches have been so far mainly studied at the single neuron level. To investigate how these synaptic models affect network activity, we compared the single neuron and neural population dynamics of conductance-based networks (COBNs) and current-based networks (CUBNs) of LIF neurons. These networks were endowed with sparse excitatory and inhibitory recurrent connections, and were tested in conditions including both low- and high-conductance states. We developed a novel procedure to obtain comparable networks by properly tuning the synaptic parameters not shared by the models. The so defined comparable networks displayed an excellent and robust match of first order statistics (average single neuron firing rates and average frequency spectrum of network activity). However, these comparable networks showed profound differences in the second order statistics of neural population interactions and in the modulation of these properties by external inputs. The correlation between inhibitory and excitatory synaptic currents and the cross-neuron correlation between synaptic inputs, membrane potentials and spike trains were stronger and more stimulus-modulated in the COBN. Because of these properties, the spike train correlation carried more information about the strength of the input in the COBN, although the firing rates were equally informative in both network models. Moreover, the network activity of COBN showed stronger synchronization in the gamma band, and spectral information about the input higher and spread over a broader range of frequencies. These results suggest that the second order statistics of network dynamics depend strongly on the choice of synaptic model. PMID:24634645
Cavallari, Stefano; Panzeri, Stefano; Mazzoni, Alberto
2014-01-01
Models of networks of Leaky Integrate-and-Fire (LIF) neurons are a widely used tool for theoretical investigations of brain function. These models have been used both with current- and conductance-based synapses. However, the differences in the dynamics expressed by these two approaches have been so far mainly studied at the single neuron level. To investigate how these synaptic models affect network activity, we compared the single neuron and neural population dynamics of conductance-based networks (COBNs) and current-based networks (CUBNs) of LIF neurons. These networks were endowed with sparse excitatory and inhibitory recurrent connections, and were tested in conditions including both low- and high-conductance states. We developed a novel procedure to obtain comparable networks by properly tuning the synaptic parameters not shared by the models. The so defined comparable networks displayed an excellent and robust match of first order statistics (average single neuron firing rates and average frequency spectrum of network activity). However, these comparable networks showed profound differences in the second order statistics of neural population interactions and in the modulation of these properties by external inputs. The correlation between inhibitory and excitatory synaptic currents and the cross-neuron correlation between synaptic inputs, membrane potentials and spike trains were stronger and more stimulus-modulated in the COBN. Because of these properties, the spike train correlation carried more information about the strength of the input in the COBN, although the firing rates were equally informative in both network models. Moreover, the network activity of COBN showed stronger synchronization in the gamma band, and spectral information about the input higher and spread over a broader range of frequencies. These results suggest that the second order statistics of network dynamics depend strongly on the choice of synaptic model.
In order to assess risk of contaminants to taxa with limited or no toxicity data available, Interspecies Correlation Estimation (ICE) models have been developed by the U.S. Environmental Protection Agency to extrapolate contaminant sensitivity predictions based on data from commo...
The Analysis on Systematic Development of College Microlecture
ERIC Educational Resources Information Center
Liu, Xiaohong; Wang, Lisi
2013-01-01
In order to apply micro lectures to college education successfully, construct new teaching and learning strategies and teaching model, this paper proposes characteristics of college microlecture based on the college education features and construct microlecture structure model based on the definitions by the experts and scholars. Microlecture's…
Development of a biologically based dose response (BBDR) model for arsenic induced cancer
We are developing a biologically based dose response (BBDR) model for arsenic carcinogenicity in order to reduce uncertainty in estimates of low dose risk by maximizing the use of relevant data on the mode of action. Expert consultation and literature review are being conducted t...
NASA Astrophysics Data System (ADS)
Jiang, Fan; Rossi, Mathieu; Parent, Guillaume
2018-05-01
Accurately modeling the anisotropic behavior of electrical steel is mandatory in order to perform good end simulations. Several approaches can be found in the literature for that purpose but the more often those methods are not able to deal with grain oriented electrical steel. In this paper, a method based on orientation distribution function is applied to modern grain oriented laminations. In particular, two solutions are proposed in order to increase the results accuracy. The first one consists in increasing the decomposition number of the cosine series on which the method is based. The second one consists in modifying the determination method of the terms belonging to this cosine series.
Order Matters: Sequencing Scale-Realistic Versus Simplified Models to Improve Science Learning
NASA Astrophysics Data System (ADS)
Chen, Chen; Schneps, Matthew H.; Sonnert, Gerhard
2016-10-01
Teachers choosing between different models to facilitate students' understanding of an abstract system must decide whether to adopt a model that is simplified and striking or one that is realistic and complex. Only recently have instructional technologies enabled teachers and learners to change presentations swiftly and to provide for learning based on multiple models, thus giving rise to questions about the order of presentation. Using disjoint individual growth modeling to examine the learning of astronomical concepts using a simulation of the solar system on tablets for 152 high school students (age 15), the authors detect both a model effect and an order effect in the use of the Orrery, a simplified model that exaggerates the scale relationships, and the True-to-scale, a proportional model that more accurately represents the realistic scale relationships. Specifically, earlier exposure to the simplified model resulted in diminution of the conceptual gain from the subsequent realistic model, but the realistic model did not impede learning from the following simplified model.
An actual load forecasting methodology by interval grey modeling based on the fractional calculus.
Yang, Yang; Xue, Dingyü
2017-07-17
The operation processes for thermal power plant are measured by the real-time data, and a large number of historical interval data can be obtained from the dataset. Within defined periods of time, the interval information could provide important information for decision making and equipment maintenance. Actual load is one of the most important parameters, and the trends hidden in the historical data will show the overall operation status of the equipments. However, based on the interval grey parameter numbers, the modeling and prediction process is more complicated than the one with real numbers. In order not lose any information, the geometric coordinate features are used by the coordinates of area and middle point lines in this paper, which are proved with the same information as the original interval data. The grey prediction model for interval grey number by the fractional-order accumulation calculus is proposed. Compared with integer-order model, the proposed method could have more freedom with better performance for modeling and prediction, which can be widely used in the modeling process and prediction for the small amount interval historical industry sequence samples. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A First-Order Radiative Transfer Model for Microwave Radiometry of Forest Canopies at L-Band
NASA Technical Reports Server (NTRS)
Kurum, Mehmet; Lang, Roger H.; O'Neill, Peggy E.; Joseph, Alicia T.; Jackson, Thomas J.; Cosh, Michael H.
2011-01-01
In this study, a first-order radiative transfer (RT) model is developed to more accurately account for vegetation canopy scattering by modifying the basic Tau-Omega model (the zero-order RT solution). In order to optimally utilize microwave radiometric data in soil moisture (SM) retrievals over vegetated landscapes, a quantitative understanding of the relationship between scattering mechanisms within vegetation canopies and the microwave brightness temperature is desirable. The first-order RT model is used to investigate this relationship and to perform a physical analysis of the scattered and emitted radiation from vegetated terrain. This model is based on an iterative solution (successive orders of scattering) of the RT equations up to the first order. This formulation adds a new scattering term to the . model. The additional term represents emission by particles (vegetation components) in the vegetation layer and emission by the ground that is scattered once by particles in the layer. The model is tested against 1.4-GHz brightness temperature measurements acquired over deciduous trees by a truck-mounted microwave instrument system called ComRAD in 2007. The model predictions are in good agreement with the data, and they give quantitative understanding for the influence of first-order scattering within the canopy on the brightness temperature. The model results show that the scattering term is significant for trees and modifications are necessary to the . model when applied to dense vegetation. Numerical simulations also indicate that the scattering term has a negligible dependence on SM and is mainly a function of the incidence angle and polarization of the microwave observation. Index Terms Emission,microwave radiometry, scattering, soil, vegetation.
A First-Order Radiative Transfer Model for Microwave Radiometry of Forest Canopies at L-Band
NASA Technical Reports Server (NTRS)
Kurum, Mehmet; Lang, Roger H.; O'Neill, Peggy E.; Joseph, Alicia T.; Jackson, Thomas J.; Cosh, Michael H.
2010-01-01
In this study, a new first-order radiative transfer (RT) model is developed to more accurately account for vegetation canopy scattering by modifying the basic r-co model (the zero-order RT solution). In order to optimally utilize microwave radiometric data in soil moisture (SM) retrievals over moderately to densely vegetated landscapes, a quantitative understanding of the relationship between scattering mechanisms within vegetation canopies and the microwave brightness temperature is desirable. A first-order RT model is used to investigate this relationship and to perform a physical analysis of the scattered and emitted radiation from vegetated terrain. The new model is based on an iterative solution (successive orders of scattering) of the RT equations up to the first order. This formulation adds a new scattering term to the i-w model. The additional term represents emission by particles (vegetation components) in the vegetation layer and emission by the ground that is scattered once by particles in the layer. The new model is tested against 1.4 GHz brightness temperature measurements acquired over deciduous trees by a truck-mounted microwave instrument system called ComRAD in 2007. The model predictions are in good agreement with the data and they give quantitative understanding for the influence of first-order scattering within the canopy on the brightness temperature. The model results show that the scattering term is significant for trees and modifications are necessary to the T-w model when applied to dense vegetation. Numerical simulations also indicate that the scattering term has a negligible dependence on SM and is mainly a function of the angle and polarization of the microwave observation.
Pole-zero form fractional model identification in frequency domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansouri, R.; Djamah, T.; Djennoune, S.
2009-03-05
This paper deals with system identification in the frequency domain using non integer order models given in the pole-zero form. The usual identification techniques cannot be used in this case because of the non integer orders of differentiation which makes the problem strongly nonlinear. A general identification method based on Levenberg-Marquardt algorithm is developed and allows to estimate the (2n+2m+1) parameters of the model. Its application to identify the ''skin effect'' of a squirrel cage induction machine modeling is then presented.
A two-scale model for dynamic damage evolution
NASA Astrophysics Data System (ADS)
Keita, Oumar; Dascalu, Cristian; François, Bertrand
2014-03-01
This paper presents a new micro-mechanical damage model accounting for inertial effect. The two-scale damage model is fully deduced from small-scale descriptions of dynamic micro-crack propagation under tensile loading (mode I). An appropriate micro-mechanical energy analysis is combined with homogenization based on asymptotic developments in order to obtain the macroscopic evolution law for damage. Numerical simulations are presented in order to illustrate the ability of the model to describe known behaviors like size effects for the structural response, strain-rate sensitivity, brittle-ductile transition and wave dispersion.
Physically-Based Reduced Order Modelling of a Uni-Axial Polysilicon MEMS Accelerometer
Ghisi, Aldo; Mariani, Stefano; Corigliano, Alberto; Zerbini, Sarah
2012-01-01
In this paper, the mechanical response of a commercial off-the-shelf, uni-axial polysilicon MEMS accelerometer subject to drops is numerically investigated. To speed up the calculations, a simplified physically-based (beams and plate), two degrees of freedom model of the movable parts of the sensor is adopted. The capability and the accuracy of the model are assessed against three-dimensional finite element simulations, and against outcomes of experiments on instrumented samples. It is shown that the reduced order model provides accurate outcomes as for the system dynamics. To also get rather accurate results in terms of stress fields within regions that are prone to fail upon high-g shocks, a correction factor is proposed by accounting for the local stress amplification induced by re-entrant corners. PMID:23202031
Review of the "AS-BUILT BIM" Approaches
NASA Astrophysics Data System (ADS)
Hichri, N.; Stefani, C.; De Luca, L.; Veron, P.
2013-02-01
Today, we need 3D models of heritage buildings in order to handle more efficiently projects of restoration, documentation and maintenance. In this context, developing a performing approach, based on a first phase of building survey, is a necessary step in order to build a semantically enriched digital model. For this purpose, the Building Information Modeling is an efficient tool for storing and exchanging knowledge about buildings. In order to create such a model, there are three fundamental steps: acquisition, segmentation and modeling. For these reasons, it is essential to understand and analyze this entire chain that leads to a well- structured and enriched 3D digital model. This paper proposes a survey and an analysis of the existing approaches on these topics and tries to define a new approach of semantic structuring taking into account the complexity of this chain.
Miri, Mehdi; Khavasi, Amin; Mehrany, Khashayar; Rashidian, Bizhan
2010-01-15
The transmission-line analogy of the planar electromagnetic reflection problem is exploited to obtain a transmission-line model that can be used to design effective, robust, and wideband interference-based matching stages. The proposed model based on a new definition for a scalar impedance is obtained by using the reflection coefficient of the zeroth-order diffracted plane wave outside the photonic crystal. It is shown to be accurate for in-band applications, where the normalized frequency is low enough to ensure that the zeroth-order diffracted plane wave is the most important factor in determining the overall reflection. The frequency limitation of employing the proposed approach is explored, highly dispersive photonic crystals are considered, and wideband matching stages based on binomial impedance transformers are designed to work at the first two photonic bands.
NASA Astrophysics Data System (ADS)
Fontchastagner, Julien; Lubin, Thierry; Mezani, Smaïl; Takorabet, Noureddine
2018-03-01
This paper presents a design optimization of an axial-flux eddy-current magnetic coupling. The design procedure is based on a torque formula derived from a 3D analytical model and a population algorithm method. The main objective of this paper is to determine the best design in terms of magnets volume in order to transmit a torque between two movers, while ensuring a low slip speed and a good efficiency. The torque formula is very accurate and computationally efficient, and is valid for any slip speed values. Nevertheless, in order to solve more realistic problems, and then, take into account the thermal effects on the torque value, a thermal model based on convection heat transfer coefficients is also established and used in the design optimization procedure. Results show the effectiveness of the proposed methodology.
Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms
NASA Astrophysics Data System (ADS)
Yu, Yue; Perdikaris, Paris; Karniadakis, George Em
2016-10-01
We develop efficient numerical methods for fractional order PDEs, and employ them to investigate viscoelastic constitutive laws for arterial wall mechanics. Recent simulations using one-dimensional models [1] have indicated that fractional order models may offer a more powerful alternative for modeling the arterial wall response, exhibiting reduced sensitivity to parametric uncertainties compared with the integer-calculus-based models. Here, we study three-dimensional (3D) fractional PDEs that naturally model the continuous relaxation properties of soft tissue, and for the first time employ them to simulate flow structure interactions for patient-specific brain aneurysms. To deal with the high memory requirements and in order to accelerate the numerical evaluation of hereditary integrals, we employ a fast convolution method [2] that reduces the memory cost to O (log (N)) and the computational complexity to O (Nlog (N)). Furthermore, we combine the fast convolution with high-order backward differentiation to achieve third-order time integration accuracy. We confirm that in 3D viscoelastic simulations, the integer order models strongly depends on the relaxation parameters, while the fractional order models are less sensitive. As an application to long-time simulations in complex geometries, we also apply the method to modeling fluid-structure interaction of a 3D patient-specific compliant cerebral artery with an aneurysm. Taken together, our findings demonstrate that fractional calculus can be employed effectively in modeling complex behavior of materials in realistic 3D time-dependent problems if properly designed efficient algorithms are employed to overcome the extra memory requirements and computational complexity associated with the non-local character of fractional derivatives.
Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms
Perdikaris, Paris; Karniadakis, George Em
2017-01-01
We develop efficient numerical methods for fractional order PDEs, and employ them to investigate viscoelastic constitutive laws for arterial wall mechanics. Recent simulations using one-dimensional models [1] have indicated that fractional order models may offer a more powerful alternative for modeling the arterial wall response, exhibiting reduced sensitivity to parametric uncertainties compared with the integer-calculus-based models. Here, we study three-dimensional (3D) fractional PDEs that naturally model the continuous relaxation properties of soft tissue, and for the first time employ them to simulate flow structure interactions for patient-specific brain aneurysms. To deal with the high memory requirements and in order to accelerate the numerical evaluation of hereditary integrals, we employ a fast convolution method [2] that reduces the memory cost to O(log(N)) and the computational complexity to O(N log(N)). Furthermore, we combine the fast convolution with high-order backward differentiation to achieve third-order time integration accuracy. We confirm that in 3D viscoelastic simulations, the integer order models strongly depends on the relaxation parameters, while the fractional order models are less sensitive. As an application to long-time simulations in complex geometries, we also apply the method to modeling fluid–structure interaction of a 3D patient-specific compliant cerebral artery with an aneurysm. Taken together, our findings demonstrate that fractional calculus can be employed effectively in modeling complex behavior of materials in realistic 3D time-dependent problems if properly designed efficient algorithms are employed to overcome the extra memory requirements and computational complexity associated with the non-local character of fractional derivatives. PMID:29104310
Extremely low order time-fractional differential equation and application in combustion process
NASA Astrophysics Data System (ADS)
Xu, Qinwu; Xu, Yufeng
2018-11-01
Fractional blow-up model, especially which is of very low order of fractional derivative, plays a significant role in combustion process. The order of time-fractional derivative in diffusion model essentially distinguishes the super-diffusion and sub-diffusion processes when it is relatively high or low accordingly. In this paper, the blow-up phenomenon and condition of its appearance are theoretically proved. The blow-up moment is estimated by using differential inequalities. To numerically study the behavior around blow-up point, a mixed numerical method based on adaptive finite difference on temporal direction and highly effective discontinuous Galerkin method on spatial direction is proposed. The time of blow-up is calculated accurately. In simulation, we analyze the dynamics of fractional blow-up model under different orders of fractional derivative. It is found that the lower the order, the earlier the blow-up comes, by fixing the other parameters in the model. Our results confirm the physical truth that a combustor for explosion cannot be too small.
ERIC Educational Resources Information Center
Vidergor, Hava E.
2018-01-01
The study aimed to assess the effectiveness of the multidimensional curriculum model (MdCM) in the development of higher-order thinking skills in a sample of 394 elementary and secondary school students in Israel. The study employed a quantitative quasi-experimental pre-post design, using a study module based on MdCM, comparing intervention group…
A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes
NASA Technical Reports Server (NTRS)
Carpenter, Russell; Lee, Taesul
2008-01-01
Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.
Heterogeneous fractionation profiles of meta-analytic coactivation networks.
Laird, Angela R; Riedel, Michael C; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L; Eickhoff, Simon B; Smith, Stephen M; Fox, Peter T; Sutherland, Matthew T
2017-04-01
Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how "parent" functional brain systems decompose into constituent "child" sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. Copyright © 2017 Elsevier Inc. All rights reserved.
Heterogeneous fractionation profiles of meta-analytic coactivation networks
Laird, Angela R.; Riedel, Michael C.; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L.; Eickhoff, Simon B.; Smith, Stephen M.; Fox, Peter T.; Sutherland, Matthew T.
2017-01-01
Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d = 20 to 300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how “parent” functional brain systems decompose into constituent “child” sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. PMID:28222386
NASA Astrophysics Data System (ADS)
Garcia Fernandez, M.; Butala, M.; Komjathy, A.; Desai, S. D.
2012-12-01
Correcting GNSS tracking data for the effects of second order ionospheric effects have been shown to cause a southward shift in GNSS-based precise point positioning solutions by as much as 10 mm, depending on the solar cycle conditions. The most commonly used approaches for modeling the higher order ionospheric effect include, (a) the use of global ionosphere maps to determine vertical total electron content (VTEC) and convert to slant TEC (STEC) assuming a thin shell ionosphere, and (b) using the dual-frequency measurements themselves to determine STEC. The latter approach benefits from not requiring ionospheric mapping functions between VTEC and STEC. However, this approach will require calibrations with receiver and transmitter Differential Code Biases (DCBs). We present results from comparisons of the two approaches. For the first approach, we also compare the use of VTEC observations from IONEX maps compared to climatological model-derived VTEC as provided by the International Reference Ionosphere (IRI2012). We consider various metrics to evaluate the relative performance of the different approaches, including station repeatability, GNSS-based reference frame recovery, and post-fit measurement residuals. Overall, the GIM-based approaches tend to provide lower noise in second order ionosphere correction and positioning solutions. The use of IONEX and IRI2012 models of VTEC provide similar results, especially in periods of low solar activity periods. The use of the IRI2012 model provides a convenient approach for operational scenarios by eliminating the dependence on routine updates of the GIMs, and also serves as a useful source of VTEC when IONEX maps may not be readily available.
Parameterized reduced order models from a single mesh using hyper-dual numbers
NASA Astrophysics Data System (ADS)
Brake, M. R. W.; Fike, J. A.; Topping, S. D.
2016-06-01
In order to assess the predicted performance of a manufactured system, analysts must consider random variations (both geometric and material) in the development of a model, instead of a single deterministic model of an idealized geometry with idealized material properties. The incorporation of random geometric variations, however, potentially could necessitate the development of thousands of nearly identical solid geometries that must be meshed and separately analyzed, which would require an impractical number of man-hours to complete. This research advances a recent approach to uncertainty quantification by developing parameterized reduced order models. These parameterizations are based upon Taylor series expansions of the system's matrices about the ideal geometry, and a component mode synthesis representation for each linear substructure is used to form an efficient basis with which to study the system. The numerical derivatives required for the Taylor series expansions are obtained via hyper-dual numbers, and are compared to parameterized models constructed with finite difference formulations. The advantage of using hyper-dual numbers is two-fold: accuracy of the derivatives to machine precision, and the need to only generate a single mesh of the system of interest. The theory is applied to a stepped beam system in order to demonstrate proof of concept. The results demonstrate that the hyper-dual number multivariate parameterization of geometric variations, which largely are neglected in the literature, are accurate for both sensitivity and optimization studies. As model and mesh generation can constitute the greatest expense of time in analyzing a system, the foundation to create a parameterized reduced order model based off of a single mesh is expected to reduce dramatically the necessary time to analyze multiple realizations of a component's possible geometry.
Bret C. Harvey; Steven F. Railsback
2009-01-01
We explored the effects of elevated turbidity on stream-resident populations of coastal cutthroat trout Oncorhynchus clarkii clarkii using a spatially explicit individual-based model. Turbidity regimes were contrasted by means of 15-year simulations in a third-order stream in northwestern California. The alternative regimes were based on multiple-year, continuous...
Theory and experiments in model-based space system anomaly management
NASA Astrophysics Data System (ADS)
Kitts, Christopher Adam
This research program consists of an experimental study of model-based reasoning methods for detecting, diagnosing and resolving anomalies that occur when operating a comprehensive space system. Using a first principles approach, several extensions were made to the existing field of model-based fault detection and diagnosis in order to develop a general theory of model-based anomaly management. Based on this theory, a suite of algorithms were developed and computationally implemented in order to detect, diagnose and identify resolutions for anomalous conditions occurring within an engineering system. The theory and software suite were experimentally verified and validated in the context of a simple but comprehensive, student-developed, end-to-end space system, which was developed specifically to support such demonstrations. This space system consisted of the Sapphire microsatellite which was launched in 2001, several geographically distributed and Internet-enabled communication ground stations, and a centralized mission control complex located in the Space Technology Center in the NASA Ames Research Park. Results of both ground-based and on-board experiments demonstrate the speed, accuracy, and value of the algorithms compared to human operators, and they highlight future improvements required to mature this technology.
Exploration of POD-Galerkin Techniques for Developing Reduced Order Models of the Euler Equations
2015-07-01
modes [1]. Barone et al [15, 16] proposed to stabilize the reduced system by symmetrizing the higher-order PDE with a preconditioning matrix. Rowley et...advection scalar equation. The ROM is obtained by employing Galerkin’s method to reduce the high-order PDEs to a lower- order ODE system by means of POD...high-order PDEs to a lower-order ODE system by means of POD eigen-bases. For purposes of this study, a linearized version of the Euler equations is
3D Surface Temperature Measurement of Plant Canopies Using Photogrammetry Techniques From A UAV.
NASA Astrophysics Data System (ADS)
Irvine, M.; Lagouarde, J. P.
2017-12-01
Surface temperature of plant canopies and within canopies results from the coupling of radiative and energy exchanges processes which govern the fluxes at the interface soil-plant-atmosphere. As a key parameter, surface temperature permits the estimation of canopy exchanges using processes based modeling methods. However detailed 3D surface temperature measurements or even profile surface temperature measurements are rarely made as they have inherent difficulties. Such measurements would greatly improve multi-level canopy models such as NOAH (Chen and Dudhia 2001) or MuSICA (Ogée and Brunet 2002, Ogée et al 2003) where key surface temperature estimations, at present, are not tested. Additionally, at larger scales, canopy structure greatly influences satellite based surface temperature measurements as the structure impacts the observations which are intrinsically made at varying satellite viewing angles and solar heights. In order to account for these differences, again accurate modeling is required such as through the above mentioned multi-layer models or with several source type models such as SCOPE (Van der Tol 2009) in order to standardize observations. As before, in order to validate these models, detailed field observations are required. With the need for detailed surface temperature observations in mind we have planned a series of experiments over non-dense plant canopies to investigate the use of photogrammetry techniques. Photogrammetry is normally used for visible wavelengths to produce 3D images using cloud point reconstruction of aerial images (for example Dandois and Ellis, 2010, 2013 over a forest). From these cloud point models it should be possible to establish 3D plant surface temperature images when using thermal infrared array sensors. In order to do this our experiments are based on the use of a thermal Infrared camera embarked on a UAV. We adapt standard photogrammetry to account for limits imposed by thermal imaginary, especially the low image resolution compared with standard RGB sensors. At the session B081, we intend to present first results of our thermal photogrammetric experiments with 3D surface temperature plots in order to discuss and adapt our methods to the modelling community's needs.
Cognitive Modeling for Agent-Based Simulation of Child Maltreatment
NASA Astrophysics Data System (ADS)
Hu, Xiaolin; Puddy, Richard
This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.
NASA Astrophysics Data System (ADS)
Yu, Jianbo
2015-12-01
Prognostics is much efficient to achieve zero-downtime performance, maximum productivity and proactive maintenance of machines. Prognostics intends to assess and predict the time evolution of machine health degradation so that machine failures can be predicted and prevented. A novel prognostics system is developed based on the data-model-fusion scheme using the Bayesian inference-based self-organizing map (SOM) and an integration of logistic regression (LR) and high-order particle filtering (HOPF). In this prognostics system, a baseline SOM is constructed to model the data distribution space of healthy machine under an assumption that predictable fault patterns are not available. Bayesian inference-based probability (BIP) derived from the baseline SOM is developed as a quantification indication of machine health degradation. BIP is capable of offering failure probability for the monitored machine, which has intuitionist explanation related to health degradation state. Based on those historic BIPs, the constructed LR and its modeling noise constitute a high-order Markov process (HOMP) to describe machine health propagation. HOPF is used to solve the HOMP estimation to predict the evolution of the machine health in the form of a probability density function (PDF). An on-line model update scheme is developed to adapt the Markov process changes to machine health dynamics quickly. The experimental results on a bearing test-bed illustrate the potential applications of the proposed system as an effective and simple tool for machine health prognostics.
NASA Astrophysics Data System (ADS)
Wang, Y. P.; Lu, Z. P.; Sun, D. S.; Wang, N.
2016-01-01
In order to better express the characteristics of satellite clock bias (SCB) and improve SCB prediction precision, this paper proposed a new SCB prediction model which can take physical characteristics of space-borne atomic clock, the cyclic variation, and random part of SCB into consideration. First, the new model employs a quadratic polynomial model with periodic items to fit and extract the trend term and cyclic term of SCB; then based on the characteristics of fitting residuals, a time series ARIMA ~(Auto-Regressive Integrated Moving Average) model is used to model the residuals; eventually, the results from the two models are combined to obtain final SCB prediction values. At last, this paper uses precise SCB data from IGS (International GNSS Service) to conduct prediction tests, and the results show that the proposed model is effective and has better prediction performance compared with the quadratic polynomial model, grey model, and ARIMA model. In addition, the new method can also overcome the insufficiency of the ARIMA model in model recognition and order determination.
NASA Astrophysics Data System (ADS)
Allen, John M.; Elbasiouny, Sherif M.
2018-06-01
Objective. Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. Approach. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Main results. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Significance. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.
Allen, John M; Elbasiouny, Sherif M
2018-06-01
Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.
The human body metabolism process mathematical simulation based on Lotka-Volterra model
NASA Astrophysics Data System (ADS)
Oliynyk, Andriy; Oliynyk, Eugene; Pyptiuk, Olexandr; DzierŻak, RóŻa; Szatkowska, Małgorzata; Uvaysova, Svetlana; Kozbekova, Ainur
2017-08-01
The mathematical model of metabolism process in human organism based on Lotka-Volterra model has beeng proposed, considering healing regime, nutrition system, features of insulin and sugar fragmentation process in the organism. The numerical algorithm of the model using IV-order Runge-Kutta method has been realized. After the result of calculations the conclusions have been made, recommendations about using the modeling results have been showed, the vectors of the following researches are defined.
Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet
NASA Technical Reports Server (NTRS)
Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.
2000-01-01
This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.
Reduced order model based on principal component analysis for process simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, Y.; Malacina, A.; Biegler, L.
2009-01-01
It is well-known that distributed parameter computational fluid dynamics (CFD) models provide more accurate results than conventional, lumped-parameter unit operation models used in process simulation. Consequently, the use of CFD models in process/equipment co-simulation offers the potential to optimize overall plant performance with respect to complex thermal and fluid flow phenomena. Because solving CFD models is time-consuming compared to the overall process simulation, we consider the development of fast reduced order models (ROMs) based on CFD results to closely approximate the high-fidelity equipment models in the co-simulation. By considering process equipment items with complicated geometries and detailed thermodynamic property models,more » this study proposes a strategy to develop ROMs based on principal component analysis (PCA). Taking advantage of commercial process simulation and CFD software (for example, Aspen Plus and FLUENT), we are able to develop systematic CFD-based ROMs for equipment models in an efficient manner. In particular, we show that the validity of the ROM is more robust within well-sampled input domain and the CPU time is significantly reduced. Typically, it takes at most several CPU seconds to evaluate the ROM compared to several CPU hours or more to solve the CFD model. Two case studies, involving two power plant equipment examples, are described and demonstrate the benefits of using our proposed ROM methodology for process simulation and optimization.« less
Wind growth and wave breaking in higher-order spectral phase resolved wave models
NASA Astrophysics Data System (ADS)
Leighton, R.; Walker, D. T.
2016-02-01
Wind growth and wave breaking are a integral parts of the wave evolution. Higher-OrderSpectral models (HoS) describing the non-linear evolution require empirical models for these effects. In particular, the assimilation of phase-resolved remotesensing data will require the prediction and modeling of wave breaking events.The HoS formulation used in this effort is based on fully nonlinear model of O. Nwogu (2009). The model for wave growth due to wind is based on the early normal and tangential stress model of Munk (1947). The model for wave breaking contains two parts. The first part initiates the breaking events based on the local wave geometry and the second part is a model for the pressure field, which acting against the surface normal velocity extracts energy from the wave. The models are tuned to balance the wind energy input with the breaking wave losses and to be similarfield observations of breaking wave coverage. The initial wave field, based on a Pierson-Moskowitz spectrum for 10 meter wind speed of 5-15 m/s, defined over a region of up to approximate 2.5 km on a side with the simulation running for several hundreds of peak wave periods. Results will be presented describing the evolution of the wave field.Sponsored by Office of Naval Research, Code 322
2015-03-01
of 7 information -theoretic criteria plotted against the model order used . The legend is labeled according to the figures in which the power spectra...spectrum (Brovelli et al. 2004). 6 Fig. 2 Values of 7 information -theoretic criteria plotted against the model order used . The legend is labeled...Identification of directed influence: Granger causality, Kullback - Leibler divergence, and complexity. Neural Computation. 2012;24(7):1722–1739. doi:10.1162
Xia, Hong; Luo, Zhendong
2017-01-01
In this study, we devote ourselves to establishing a stabilized mixed finite element (MFE) reduced-order extrapolation (SMFEROE) model holding seldom unknowns for the two-dimensional (2D) unsteady conduction-convection problem via the proper orthogonal decomposition (POD) technique, analyzing the existence and uniqueness and the stability as well as the convergence of the SMFEROE solutions and validating the correctness and dependability of the SMFEROE model by means of numerical simulations.
NASA Astrophysics Data System (ADS)
Kurniati, Devi; Hoyyi, Abdul; Widiharih, Tatik
2018-05-01
Time series data is a series of data taken or measured based on observations at the same time interval. Time series data analysis is used to perform data analysis considering the effect of time. The purpose of time series analysis is to know the characteristics and patterns of a data and predict a data value in some future period based on data in the past. One of the forecasting methods used for time series data is the state space model. This study discusses the modeling and forecasting of electric energy consumption using the state space model for univariate data. The modeling stage is began with optimal Autoregressive (AR) order selection, determination of state vector through canonical correlation analysis, estimation of parameter, and forecasting. The result of this research shows that modeling of electric energy consumption using state space model of order 4 with Mean Absolute Percentage Error (MAPE) value 3.655%, so the model is very good forecasting category.
Scavenging and recombination kinetics in a radiation spur: The successive ordered scavenging events
NASA Astrophysics Data System (ADS)
Al-Samra, Eyad H.; Green, Nicholas J. B.
2018-03-01
This study describes stochastic models to investigate the successive ordered scavenging events in a spur of four radicals, a model system based on a radiation spur. Three simulation models have been developed to obtain the probabilities of the ordered scavenging events: (i) a Monte Carlo random flight (RF) model, (ii) hybrid simulations in which the reaction rate coefficient is used to generate scavenging times for the radicals and (iii) the independent reaction times (IRT) method. The results of these simulations are found to be in agreement with one another. In addition, a detailed master equation treatment is also presented, and used to extract simulated rate coefficients of the ordered scavenging reactions from the RF simulations. These rate coefficients are transient, the rate coefficients obtained for subsequent reactions are effectively equal, and in reasonable agreement with the simple correction for competition effects that has recently been proposed.
Stanley, Clayton; Byrne, Michael D
2016-12-01
The growth of social media and user-created content on online sites provides unique opportunities to study models of human declarative memory. By framing the task of choosing a hashtag for a tweet and tagging a post on Stack Overflow as a declarative memory retrieval problem, 2 cognitively plausible declarative memory models were applied to millions of posts and tweets and evaluated on how accurately they predict a user's chosen tags. An ACT-R based Bayesian model and a random permutation vector-based model were tested on the large data sets. The results show that past user behavior of tag use is a strong predictor of future behavior. Furthermore, past behavior was successfully incorporated into the random permutation model that previously used only context. Also, ACT-R's attentional weight term was linked to an entropy-weighting natural language processing method used to attenuate high-frequency words (e.g., articles and prepositions). Word order was not found to be a strong predictor of tag use, and the random permutation model performed comparably to the Bayesian model without including word order. This shows that the strength of the random permutation model is not in the ability to represent word order, but rather in the way in which context information is successfully compressed. The results of the large-scale exploration show how the architecture of the 2 memory models can be modified to significantly improve accuracy, and may suggest task-independent general modifications that can help improve model fit to human data in a much wider range of domains. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A
2017-01-21
Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer's Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26 cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to conventional whole-body gradients. The even-order terms were necessary for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric accuracy compared with the simulation-based coefficients.
Fourth-order partial differential equation noise removal on welding images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halim, Suhaila Abd; Ibrahim, Arsmah; Sulong, Tuan Nurul Norazura Tuan
2015-10-22
Partial differential equation (PDE) has become one of the important topics in mathematics and is widely used in various fields. It can be used for image denoising in the image analysis field. In this paper, a fourth-order PDE is discussed and implemented as a denoising method on digital images. The fourth-order PDE is solved computationally using finite difference approach and then implemented on a set of digital radiographic images with welding defects. The performance of the discretized model is evaluated using Peak Signal to Noise Ratio (PSNR). Simulation is carried out on the discretized model on different level of Gaussianmore » noise in order to get the maximum PSNR value. The convergence criteria chosen to determine the number of iterations required is measured based on the highest PSNR value. Results obtained show that the fourth-order PDE model produced promising results as an image denoising tool compared with median filter.« less
CDMBE: A Case Description Model Based on Evidence
Zhu, Jianlin; Yang, Xiaoping; Zhou, Jing
2015-01-01
By combining the advantages of argument map and Bayesian network, a case description model based on evidence (CDMBE), which is suitable to continental law system, is proposed to describe the criminal cases. The logic of the model adopts the credibility logical reason and gets evidence-based reasoning quantitatively based on evidences. In order to consist with practical inference rules, five types of relationship and a set of rules are defined to calculate the credibility of assumptions based on the credibility and supportability of the related evidences. Experiments show that the model can get users' ideas into a figure and the results calculated from CDMBE are in line with those from Bayesian model. PMID:26421006
Marker Configuration Model-Based Roentgen Fluoroscopic Analysis.
Garling, Eric H; Kaptein, Bart L; Geleijns, Koos; Nelissen, Rob G H H; Valstar, Edward R
2005-04-01
It remains unknown if and how the polyethylene bearing in mobile bearing knees moves during dynamic activities with respect to the tibial base plate. Marker Configuration Model-Based Roentgen Fluoroscopic Analysis (MCM-based RFA) uses a marker configuration model of inserted tantalum markers in order to accurately estimate the pose of an implant or bone using single plane Roentgen images or fluoroscopic images. The goal of this study is to assess the accuracy of (MCM-Based RFA) in a standard fluoroscopic set-up using phantom experiments and to determine the error propagation with computer simulations. The experimental set-up of the phantom study was calibrated using a calibration box equipped with 600 tantalum markers, which corrected for image distortion and determined the focus position. In the computer simulation study the influence of image distortion, MC-model accuracy, focus position, the relative distance between MC-models and MC-model configuration on the accuracy of MCM-Based RFA were assessed. The phantom study established that the in-plane accuracy of MCM-Based RFA is 0.1 mm and the out-of-plane accuracy is 0.9 mm. The rotational accuracy is 0.1 degrees. A ninth-order polynomial model was used to correct for image distortion. Marker-Based RFA was estimated to have, in a worst case scenario, an in vivo translational accuracy of 0.14 mm (x-axis), 0.17 mm (y-axis), 1.9 mm (z-axis), respectively, and a rotational accuracy of 0.3 degrees. When using fluoroscopy to study kinematics, image distortion and the accuracy of models are important factors, which influence the accuracy of the measurements. MCM-Based RFA has the potential to be an accurate, clinically useful tool for studying kinematics after total joint replacement using standard equipment.
Haptics-based dynamic implicit solid modeling.
Hua, Jing; Qin, Hong
2004-01-01
This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.
2018-01-01
Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.
NASA Astrophysics Data System (ADS)
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational efficiency, the OTSEM is more efficient than the Fekete-based TSEM, although it is slightly costlier than the QSEM when a comparable numerical accuracy is required.
ERIC Educational Resources Information Center
Kaya, Yasemin; Leite, Walter L.
2017-01-01
Cognitive diagnosis models are diagnostic models used to classify respondents into homogenous groups based on multiple categorical latent variables representing the measured cognitive attributes. This study aims to present longitudinal models for cognitive diagnosis modeling, which can be applied to repeated measurements in order to monitor…
Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke
2015-10-01
Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large carnivore species where landscape-scale resource selection data already exist.
A framework for analyzing the cognitive complexity of computer-assisted clinical ordering.
Horsky, Jan; Kaufman, David R; Oppenheim, Michael I; Patel, Vimla L
2003-01-01
Computer-assisted provider order entry is a technology that is designed to expedite medical ordering and to reduce the frequency of preventable errors. This paper presents a multifaceted cognitive methodology for the characterization of cognitive demands of a medical information system. Our investigation was informed by the distributed resources (DR) model, a novel approach designed to describe the dimensions of user interfaces that introduce unnecessary cognitive complexity. This method evaluates the relative distribution of external (system) and internal (user) representations embodied in system interaction. We conducted an expert walkthrough evaluation of a commercial order entry system, followed by a simulated clinical ordering task performed by seven clinicians. The DR model was employed to explain variation in user performance and to characterize the relationship of resource distribution and ordering errors. The analysis revealed that the configuration of resources in this ordering application placed unnecessarily heavy cognitive demands on the user, especially on those who lacked a robust conceptual model of the system. The resources model also provided some insight into clinicians' interactive strategies and patterns of associated errors. Implications for user training and interface design based on the principles of human-computer interaction in the medical domain are discussed.
Aligning ERP systems with companies' real needs: an `Operational Model Based' method
NASA Astrophysics Data System (ADS)
Mamoghli, Sarra; Goepp, Virginie; Botta-Genoulaz, Valérie
2017-02-01
Enterprise Resource Planning (ERP) systems offer standard functionalities that have to be configured and customised by a specific company depending on its own requirements. A consistent alignment is therefore an essential success factor of ERP projects. To manage this alignment, an 'Operational Model Based' method is proposed. It is based on the design and the matching of models, and conforms to the modelling views and constructs of the ISO 19439 and 19440 enterprise-modelling standards. It is characterised by: (1) a predefined design and matching order of the models; (2) the formalisation, in terms of modelling constructs, of alignment and misalignment situations; and (3) their association with a set of decisions in order to mitigate the misalignment risk. Thus, a comprehensive understanding of the alignment management during ERP projects is given. Unlike existing methods, this one includes decisions related to the organisational changes an ERP system can induce, as well as criteria on which the best decision can be based. In this way, it provides effective support and guidance to companies implementing ERP systems, as the alignment process is detailed and structured. The method is applied on the ERP project of a Small and Medium Enterprise, showing that it can be used even in contexts where the ERP project expertise level is low.
A minimal model of neutrino flavor
NASA Astrophysics Data System (ADS)
Luhn, Christoph; Parattu, Krishna Mohan; Wingerter, Akın
2012-12-01
Models of neutrino mass which attempt to describe the observed lepton mixing pattern are typically based on discrete family symmetries with a non-Abelian and one or more Abelian factors. The latter so-called shaping symmetries are imposed in order to yield a realistic phenomenology by forbidding unwanted operators. Here we propose a supersymmetric model of neutrino flavor which is based on the group T 7 and does not require extra {Z} N or U(1) factors in the Yukawa sector, which makes it the smallest realistic family symmetry that has been considered so far. At leading order, the model predicts tribimaximal mixing which arises completely accidentally from a combination of the T 7 Clebsch-Gordan coefficients and suitable flavon alignments. Next-to-leading order (NLO) operators break the simple tribimaximal structure and render the model compatible with the recent results of the Daya Bay and Reno collaborations which have measured a reactor angle of around 9°. Problematic NLO deviations of the other two mixing angles can be controlled in an ultraviolet completion of the model. The vacuum alignment mechanism that we use necessitates the introduction of a hidden flavon sector that transforms under a {Z} 6 symmetry, thereby spoiling the minimality of our model whose flavor symmetry is then T 7 × {Z} 6.
ERIC Educational Resources Information Center
Wisconsin Univ., Madison. Center for Studies in Vocational and Technical Education.
Volume 3 presents a descriptive outline of the Wisconsin school-based career placement model. The two major objectives for the model are: (1) to maximize the individual student's competencies for independent career functioning and (2) to maximize the availability of career placement options. For orderly transition, each student must receive the…
NASA Astrophysics Data System (ADS)
Accioly, Antonio; Correia, Gilson; de Brito, Gustavo P.; de Almeida, José; Herdy, Wallace
2017-03-01
Simple prescriptions for computing the D-dimensional classical potential related to electromagnetic and gravitational models, based on the functional generator, are built out. These recipes are employed afterward as a support for probing the premise that renormalizable higher-order systems have a finite classical potential at the origin. It is also shown that the opposite of the conjecture above is not true. In other words, if a higher-order model is renormalizable, it is necessarily endowed with a finite classical potential at the origin, but the reverse of this statement is untrue. The systems used to check the conjecture were D-dimensional fourth-order Lee-Wick electrodynamics, and the D-dimensional fourth- and sixth-order gravity models. A special attention is devoted to New Massive Gravity (NMG) since it was the analysis of this model that inspired our surmise. In particular, we made use of our premise to resolve trivially the issue of the renormalizability of NMG, which was initially considered to be renormalizable, but it was shown some years later to be non-renormalizable. We remark that our analysis is restricted to local models in which the propagator has simple and real poles.
An image-based model of brain volume biomarker changes in Huntington's disease.
Wijeratne, Peter A; Young, Alexandra L; Oxtoby, Neil P; Marinescu, Razvan V; Firth, Nicholas C; Johnson, Eileanoir B; Mohan, Amrita; Sampaio, Cristina; Scahill, Rachael I; Tabrizi, Sarah J; Alexander, Daniel C
2018-05-01
Determining the sequence in which Huntington's disease biomarkers become abnormal can provide important insights into the disease progression and a quantitative tool for patient stratification. Here, we construct and present a uniquely fine-grained model of temporal progression of Huntington's disease from premanifest through to manifest stages. We employ a probabilistic event-based model to determine the sequence of appearance of atrophy in brain volumes, learned from structural MRI in the Track-HD study, as well as to estimate the uncertainty in the ordering. We use longitudinal and phenotypic data to demonstrate the utility of the patient staging system that the resulting model provides. The model recovers the following order of detectable changes in brain region volumes: putamen, caudate, pallidum, insula white matter, nonventricular cerebrospinal fluid, amygdala, optic chiasm, third ventricle, posterior insula, and basal forebrain. This ordering is mostly preserved even under cross-validation of the uncertainty in the event sequence. Longitudinal analysis performed using 6 years of follow-up data from baseline confirms efficacy of the model, as subjects consistently move to later stages with time, and significant correlations are observed between the estimated stages and nonimaging phenotypic markers. We used a data-driven method to provide new insight into Huntington's disease progression as well as new power to stage and predict conversion. Our results highlight the potential of disease progression models, such as the event-based model, to provide new insight into Huntington's disease progression and to support fine-grained patient stratification for future precision medicine in Huntington's disease.
Predicting subsurface contaminant transport and transformation requires mathematical models based on a variety of physical, chemical, and biological processes. The mathematical model is an attempt to quantitatively describe observed processes in order to permit systematic forecas...
NASA Astrophysics Data System (ADS)
Ibrahim, I. N.; Akkad, M. A. Al; Abramov, I. V.
2018-05-01
This paper discusses the control of Unmanned Aerial Vehicles (UAVs) for active interaction and manipulation of objects. The manipulator motion with an unknown payload was analysed concerning force and moment disturbances, which influence the mass distribution, and the centre of gravity (CG). Therefore, a general dynamics mathematical model of a hexacopter was formulated where a stochastic state-space model was extracted in order to build anti-disturbance controllers. Based on the compound pendulum method, the disturbances model that simulates the robotic arm with a payload was inserted into the stochastic model. This study investigates two types of controllers in order to study the stability of a hexacopter. A controller based on Ackermann’s method and the other - on the linear quadratic regulator (LQR) approach - were presented. The latter constitutes a challenge for UAV control performance especially with the presence of uncertainties and disturbances.
Internationalizing Nussbaum's Model of Cosmopolitan Democratic Education
ERIC Educational Resources Information Center
Culp, Julian
2018-01-01
Nussbaum's moral cosmopolitanism informs her capability-based theory of justice, which she uses in order to develop a distinctive model of cosmopolitan democratic education. I characterize Nussbaum's educational model as a 'statist model,' however, because it regards cosmopolitan democratic education as necessary for realizing democratic…
Complex Sequencing Rules of Birdsong Can be Explained by Simple Hidden Markov Processes
Katahira, Kentaro; Suzuki, Kenta; Okanoya, Kazuo; Okada, Masato
2011-01-01
Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors such as human speech and musical performance, it is crucial to characterize the statistical properties of the sequencing rules in birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we investigate the statistical properties of the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based on manual-annotated syllable labeles, we first show that there are significant higher-order context dependencies in Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. We then analyze acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well known statistical models with a large range of application for time series modeling. The song annotation with these models with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-order HMM, and surpassed the zeroth-order model (the Gaussian mixture model; GMM), which does not use context information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural implementation for generating complex behavioral sequences with higher-order dependencies. PMID:21915345
NASA Astrophysics Data System (ADS)
Skitka, J.; Marston, B.; Fox-Kemper, B.
2016-02-01
Sub-grid turbulence models for planetary boundary layers are typically constructed additively, starting with local flow properties and including non-local (KPP) or higher order (Mellor-Yamada) parameters until a desired level of predictive capacity is achieved or a manageable threshold of complexity is surpassed. Such approaches are necessarily limited in general circumstances, like global circulation models, by their being optimized for particular flow phenomena. By building a model reductively, starting with the infinite hierarchy of turbulence statistics, truncating at a given order, and stripping degrees of freedom from the flow, we offer the prospect a turbulence model and investigative tool that is equally applicable to all flow types and able to take full advantage of the wealth of nonlocal information in any flow. Direct statistical simulation (DSS) that is based upon expansion in equal-time cumulants can be used to compute flow statistics of arbitrary order. We investigate the feasibility of a second-order closure (CE2) by performing simulations of the ocean boundary layer in a quasi-linear approximation for which CE2 is exact. As oceanographic examples, wind-driven Langmuir turbulence and thermal convection are studied by comparison of the quasi-linear and fully nonlinear statistics. We also characterize the computational advantages and physical uncertainties of CE2 defined on a reduced basis determined via proper orthogonal decomposition (POD) of the flow fields.
Not Funding the Evidence-Based Model in Ohio
ERIC Educational Resources Information Center
Edlefson, Carla
2010-01-01
The purpose of this descriptive case study was to describe the implementation of Ohio's version of the Evidence-Based Model (OEBM) state school finance system in 2009. Data sources included state budget documents and analyses as well as interviews with local school officials. The new system was responsive to three policy objectives ordered by the…
A Model for Art Therapists in Community-Based Practice
ERIC Educational Resources Information Center
Ottemiller, Dylan D.; Awais, Yasmine J.
2016-01-01
With growing trends toward preventative, community-based health care, art therapists must expand their scope of practice beyond the medical model and individual psychodynamics in order to serve, include, and empower those in need. In this article the authors review literature that illustrates the unique qualities art therapists can contribute to…
Singh, Baljit; Sharma, Vikrant
2014-01-30
The present article deals with design of tragacanth gum-based pH responsive hydrogel drug delivery systems. The characterization of hydrogels has been carried out by SEMs, EDAX, FTIR, (13)C NMR, XRD, TGA/DTA/DTG and swelling studies. The correlation between reaction conditions and structural parameters of polymer networks such as polymer volume fraction in the swollen state (ϕ), Flory-Huggins interaction parameter (χ), molecular weight of the polymer chain between two neighboring cross links (M¯c), crosslink density (ρ) and mesh size (ξ) has been determined. The different kinetic models such as zero order, first order, Higuchi square root law, Korsmeyer-Peppas model and Hixson-Crowell cube root model were applied and it has been observed that release profile of amoxicillin best followed the first order model for the release of drug from the polymer matrix. The swelling of the hydrogels and release of drug from the drug loaded hydrogels occurred through non-Fickian diffusion mechanism in pH 7.4 solution. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin Thomas; Drohmann, Martin; Tuminaro, Raymond S.
2014-10-01
Model reduction for dynamical systems is a promising approach for reducing the computational cost of large-scale physics-based simulations to enable high-fidelity models to be used in many- query (e.g., Bayesian inference) and near-real-time (e.g., fast-turnaround simulation) contexts. While model reduction works well for specialized problems such as linear time-invariant systems, it is much more difficult to obtain accurate, stable, and efficient reduced-order models (ROMs) for systems with general nonlinearities. This report describes several advances that enable nonlinear reduced-order models (ROMs) to be deployed in a variety of time-critical settings. First, we present an error bound for the Gauss-Newton with Approximatedmore » Tensors (GNAT) nonlinear model reduction technique. This bound allows the state-space error for the GNAT method to be quantified when applied with the backward Euler time-integration scheme. Second, we present a methodology for preserving classical Lagrangian structure in nonlinear model reduction. This technique guarantees that important properties--such as energy conservation and symplectic time-evolution maps--are preserved when performing model reduction for models described by a Lagrangian formalism (e.g., molecular dynamics, structural dynamics). Third, we present a novel technique for decreasing the temporal complexity --defined as the number of Newton-like iterations performed over the course of the simulation--by exploiting time-domain data. Fourth, we describe a novel method for refining projection-based reduced-order models a posteriori using a goal-oriented framework similar to mesh-adaptive h -refinement in finite elements. The technique allows the ROM to generate arbitrarily accurate solutions, thereby providing the ROM with a 'failsafe' mechanism in the event of insufficient training data. Finally, we present the reduced-order model error surrogate (ROMES) method for statistically quantifying reduced- order-model errors. This enables ROMs to be rigorously incorporated in uncertainty-quantification settings, as the error model can be treated as a source of epistemic uncertainty. This work was completed as part of a Truman Fellowship appointment. We note that much additional work was performed as part of the Fellowship. One salient project is the development of the Trilinos-based model-reduction software module Razor , which is currently bundled with the Albany PDE code and currently allows nonlinear reduced-order models to be constructed for any application supported in Albany. Other important projects include the following: 1. ROMES-equipped ROMs for Bayesian inference: K. Carlberg, M. Drohmann, F. Lu (Lawrence Berkeley National Laboratory), M. Morzfeld (Lawrence Berkeley National Laboratory). 2. ROM-enabled Krylov-subspace recycling: K. Carlberg, V. Forstall (University of Maryland), P. Tsuji, R. Tuminaro. 3. A pseudo balanced POD method using only dual snapshots: K. Carlberg, M. Sarovar. 4. An analysis of discrete v. continuous optimality in nonlinear model reduction: K. Carlberg, M. Barone, H. Antil (George Mason University). Journal articles for these projects are in progress at the time of this writing.« less
ERIC Educational Resources Information Center
Yusmanto, Harry; Soetjipto, Budi Eko; Djatmika, Ery Tri
2017-01-01
This Classroom Action Research aims to improve students' HOTS (High Order Thinking Skills) and Social Studies learning outcomes through the application of Carousel Feedback and Round Table cooperative learning methods. This study was based on a model proposed by Elliott and was implemented for three cycles. The subjects were 30 female students of…
The use of fractional order derivatives for eddy current non-destructive testing
NASA Astrophysics Data System (ADS)
Sikora, Ryszard; Grzywacz, Bogdan; Chady, Tomasz
2018-04-01
The paper presents the possibility of using the fractional derivatives for non-destructive testing when a multi-frequency method based on eddy current is applied. It is shown that frequency characteristics obtained during tests can be approximated by characteristics of a proposed model in the form of fractional order transfer function, and values of parameters of this model can be utilized for detection and identification of defects.
Investigation of micromixing by acoustically oscillated sharp-edges
Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco
2016-01-01
Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel. PMID:27158292
Improving clinical models based on knowledge extracted from current datasets: a new approach.
Mendes, D; Paredes, S; Rocha, T; Carvalho, P; Henriques, J; Morais, J
2016-08-01
The Cardiovascular Diseases (CVD) are the leading cause of death in the world, being prevention recognized to be a key intervention able to contradict this reality. In this context, although there are several models and scores currently used in clinical practice to assess the risk of a new cardiovascular event, they present some limitations. The goal of this paper is to improve the CVD risk prediction taking into account the current models as well as information extracted from real and recent datasets. This approach is based on a decision tree scheme in order to assure the clinical interpretability of the model. An innovative optimization strategy is developed in order to adjust the decision tree thresholds (rule structure is fixed) based on recent clinical datasets. A real dataset collected in the ambit of the National Registry on Acute Coronary Syndromes, Portuguese Society of Cardiology is applied to validate this work. In order to assess the performance of the new approach, the metrics sensitivity, specificity and accuracy are used. This new approach achieves sensitivity, a specificity and an accuracy values of, 80.52%, 74.19% and 77.27% respectively, which represents an improvement of about 26% in relation to the accuracy of the original score.
Investigation of micromixing by acoustically oscillated sharp-edges.
Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco
2016-03-01
Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel.
Hadwin, Paul J; Peterson, Sean D
2017-04-01
The Bayesian framework for parameter inference provides a basis from which subject-specific reduced-order vocal fold models can be generated. Previously, it has been shown that a particle filter technique is capable of producing estimates and associated credibility intervals of time-varying reduced-order vocal fold model parameters. However, the particle filter approach is difficult to implement and has a high computational cost, which can be barriers to clinical adoption. This work presents an alternative estimation strategy based upon Kalman filtering aimed at reducing the computational cost of subject-specific model development. The robustness of this approach to Gaussian and non-Gaussian noise is discussed. The extended Kalman filter (EKF) approach is found to perform very well in comparison with the particle filter technique at dramatically lower computational cost. Based upon the test cases explored, the EKF is comparable in terms of accuracy to the particle filter technique when greater than 6000 particles are employed; if less particles are employed, the EKF actually performs better. For comparable levels of accuracy, the solution time is reduced by 2 orders of magnitude when employing the EKF. By virtue of the approximations used in the EKF, however, the credibility intervals tend to be slightly underpredicted.
Watermarked cardiac CT image segmentation using deformable models and the Hermite transform
NASA Astrophysics Data System (ADS)
Gomez-Coronel, Sandra L.; Moya-Albor, Ernesto; Escalante-Ramírez, Boris; Brieva, Jorge
2015-01-01
Medical image watermarking is an open area for research and is a solution for the protection of copyright and intellectual property. One of the main challenges of this problem is that the marked images should not differ perceptually from the original images allowing a correct diagnosis and authentication. Furthermore, we also aim at obtaining watermarked images with very little numerical distortion so that computer vision tasks such as segmentation of important anatomical structures do not be impaired or affected. We propose a preliminary watermarking application in cardiac CT images based on a perceptive approach that includes a brightness model to generate a perceptive mask and identify the image regions where the watermark detection becomes a difficult task for the human eye. We propose a normalization scheme of the image in order to improve robustness against geometric attacks. We follow a spread spectrum technique to insert an alphanumeric code, such as patient's information, within the watermark. The watermark scheme is based on the Hermite transform as a bio-inspired image representation model. In order to evaluate the numerical integrity of the image data after watermarking, we perform a segmentation task based on deformable models. The segmentation technique is based on a vector-value level sets method such that, given a curve in a specific image, and subject to some constraints, the curve can evolve in order to detect objects. In order to stimulate the curve evolution we introduce simultaneously some image features like the gray level and the steered Hermite coefficients as texture descriptors. Segmentation performance was assessed by means of the Dice index and the Hausdorff distance. We tested different mark sizes and different insertion schemes on images that were later segmented either automatic or manual by physicians.
Zhai, Peng-Wang; Hu, Yongxiang; Trepte, Charles R; Lucker, Patricia L
2009-02-16
A vector radiative transfer model has been developed for coupled atmosphere and ocean systems based on the Successive Order of Scattering (SOS) Method. The emphasis of this study is to make the model easy-to-use and computationally efficient. This model provides the full Stokes vector at arbitrary locations which can be conveniently specified by users. The model is capable of tracking and labeling different sources of the photons that are measured, e.g. water leaving radiances and reflected sky lights. This model also has the capability to separate florescence from multi-scattered sunlight. The delta - fit technique has been adopted to reduce computational time associated with the strongly forward-peaked scattering phase matrices. The exponential - linear approximation has been used to reduce the number of discretized vertical layers while maintaining the accuracy. This model is developed to serve the remote sensing community in harvesting physical parameters from multi-platform, multi-sensor measurements that target different components of the atmosphere-oceanic system.
Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing
2017-01-01
Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405
Alcalá-Quintana, Rocío; García-Pérez, Miguel A
2013-12-01
Research on temporal-order perception uses temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks in their binary SJ2 or ternary SJ3 variants. In all cases, two stimuli are presented with some temporal delay, and observers judge the order of presentation. Arbitrary psychometric functions are typically fitted to obtain performance measures such as sensitivity or the point of subjective simultaneity, but the parameters of these functions are uninterpretable. We describe routines in MATLAB and R that fit model-based functions whose parameters are interpretable in terms of the processes underlying temporal-order and simultaneity judgments and responses. These functions arise from an independent-channels model assuming arrival latencies with exponential distributions and a trichotomous decision space. Different routines fit data separately for SJ2, SJ3, and TOJ tasks, jointly for any two tasks, or also jointly for the three tasks (for common cases in which two or even the three tasks were used with the same stimuli and participants). Additional routines provide bootstrap p-values and confidence intervals for estimated parameters. A further routine is included that obtains performance measures from the fitted functions. An R package for Windows and source code of the MATLAB and R routines are available as Supplementary Files.
Network community-based model reduction for vortical flows
NASA Astrophysics Data System (ADS)
Gopalakrishnan Meena, Muralikrishnan; Nair, Aditya G.; Taira, Kunihiko
2018-06-01
A network community-based reduced-order model is developed to capture key interactions among coherent structures in high-dimensional unsteady vortical flows. The present approach is data-inspired and founded on network-theoretic techniques to identify important vortical communities that are comprised of vortical elements that share similar dynamical behavior. The overall interaction-based physics of the high-dimensional flow field is distilled into the vortical community centroids, considerably reducing the system dimension. Taking advantage of these vortical interactions, the proposed methodology is applied to formulate reduced-order models for the inter-community dynamics of vortical flows, and predict lift and drag forces on bodies in wake flows. We demonstrate the capabilities of these models by accurately capturing the macroscopic dynamics of a collection of discrete point vortices, and the complex unsteady aerodynamic forces on a circular cylinder and an airfoil with a Gurney flap. The present formulation is found to be robust against simulated experimental noise and turbulence due to its integrating nature of the system reduction.
Role of spin-orbit coupling in the Kugel-Khomskii model on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji
2018-03-01
We study the effective spin-orbital model for honeycomb-layered transition metal compounds, applying the second-order perturbation theory to the three-orbital Hubbard model with the anisotropic hoppings. This model is reduced to the Kitaev model in the strong spin-orbit coupling limit. Combining the cluster mean-field approximations with the exact diagonalization, we treat the Kugel-Khomskii type superexchange interaction and spin-orbit coupling on an equal footing to discuss ground-state properties. We find that a zigzag ordered state is realized in the model within nearest-neighbor interactions. We clarify how the ordered state competes with the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit. Thermodynamic properties are also addressed. The present paper should provide another route to account for the Kitaev-based magnetic properties in candidate materials.
Second order modeling of boundary-free turbulent shear flows
NASA Technical Reports Server (NTRS)
Shih, T.-H.; Chen, Y.-Y.; Lumley, J. L.
1991-01-01
A set of realizable second order models for boundary-free turbulent flows is presented. The constraints on second order models based on the realizability principle are re-examined. The rapid terms in the pressure correlations for both the Reynolds stress and the passive scalar flux equations are constructed to exactly satisfy the joint realizability. All other model terms (return-to-isotropy, third moments, and terms in the dissipation equations) already satisfy realizability. To correct the spreading rate of the axisymmetric jet, an extra term is added to the dissipation equation which accounts for the effect of mean vortex stretching on dissipation. The test flows used in this study are the mixing shear layer, plane jet, axisymmetric jet, and plane wake. The numerical solutions show that the unified model equations predict all these flows reasonably. It is expected that these models would be suitable for more complex and critical flows.
A reduced-order nonlinear sliding mode observer for vehicle slip angle and tyre forces
NASA Astrophysics Data System (ADS)
Chen, Yuhang; Ji, Yunfeng; Guo, Konghui
2014-12-01
In this paper, a reduced-order sliding mode observer (RO-SMO) is developed for vehicle state estimation. Several improvements are achieved in this paper. First, the reference model accuracy is improved by considering vehicle load transfers and using a precise nonlinear tyre model 'UniTire'. Second, without the reference model accuracy degraded, the computing burden of the state observer is decreased by a reduced-order approach. Third, nonlinear system damping is integrated into the SMO to speed convergence and reduce chattering. The proposed RO-SMO is evaluated through simulation and experiments based on an in-wheel motor electric vehicle. The results show that the proposed observer accurately predicts the vehicle states.
Nematic elastomers: from a microscopic model to macroscopic elasticity theory.
Xing, Xiangjun; Pfahl, Stephan; Mukhopadhyay, Swagatam; Goldbart, Paul M; Zippelius, Annette
2008-05-01
A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity. These phenomenological theories of elasticity are thereby derived from a microscopic model, and it is furthermore demonstrated that they are universal mean-field descriptions of the elasticity for all chemical gels and vulcanized media.
Daniels, Marcus G; Farmer, J Doyne; Gillemot, László; Iori, Giulia; Smith, Eric
2003-03-14
We model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure of financial risk) and the spread and price impact functions (which are the main determinants of transaction cost). Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.
NASA Astrophysics Data System (ADS)
Daniels, Marcus G.; Farmer, J. Doyne; Gillemot, László; Iori, Giulia; Smith, Eric
2003-03-01
We model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure of financial risk) and the spread and price impact functions (which are the main determinants of transaction cost). Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.
Model-based Clustering of Categorical Time Series with Multinomial Logit Classification
NASA Astrophysics Data System (ADS)
Frühwirth-Schnatter, Sylvia; Pamminger, Christoph; Winter-Ebmer, Rudolf; Weber, Andrea
2010-09-01
A common problem in many areas of applied statistics is to identify groups of similar time series in a panel of time series. However, distance-based clustering methods cannot easily be extended to time series data, where an appropriate distance-measure is rather difficult to define, particularly for discrete-valued time series. Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter [6], is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This model-based clustering method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to further explain group membership we present an extension to the approach of Pamminger and Frühwirth-Schnatter [6] by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule by using a multinomial logit model. The parameters are estimated for a fixed number of clusters within a Bayesian framework using an Markov chain Monte Carlo (MCMC) sampling scheme representing a (full) Gibbs-type sampler which involves only draws from standard distributions. Finally, an application to a panel of Austrian wage mobility data is presented which leads to an interesting segmentation of the Austrian labour market.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksen, Janus J., E-mail: janusje@chem.au.dk; Jørgensen, Poul; Matthews, Devin A.
The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T–n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test setmore » of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T–n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T–n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.« less
Mota Navarro, Roberto; Larralde, Hernán
2017-01-01
We present an agent based model of a single asset financial market that is capable of replicating most of the non-trivial statistical properties observed in real financial markets, generically referred to as stylized facts. In our model agents employ strategies inspired on those used in real markets, and a realistic trade mechanism based on a double auction order book. We study the role of the distinct types of trader on the return statistics: specifically, correlation properties (or lack thereof), volatility clustering, heavy tails, and the degree to which the distribution can be described by a log-normal. Further, by introducing the practice of "profit taking", our model is also capable of replicating the stylized fact related to an asymmetry in the distribution of losses and gains.
2017-01-01
We present an agent based model of a single asset financial market that is capable of replicating most of the non-trivial statistical properties observed in real financial markets, generically referred to as stylized facts. In our model agents employ strategies inspired on those used in real markets, and a realistic trade mechanism based on a double auction order book. We study the role of the distinct types of trader on the return statistics: specifically, correlation properties (or lack thereof), volatility clustering, heavy tails, and the degree to which the distribution can be described by a log-normal. Further, by introducing the practice of “profit taking”, our model is also capable of replicating the stylized fact related to an asymmetry in the distribution of losses and gains. PMID:28245251
Modeling of metastable phase formation diagrams for sputtered thin films.
Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M
2016-01-01
A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.
NASA Astrophysics Data System (ADS)
Dobeš, Josef; Grábner, Martin; Puričer, Pavel; Vejražka, František; Míchal, Jan; Popp, Jakub
2017-05-01
Nowadays, there exist relatively precise pHEMT models available for computer-aided design, and they are frequently compared to each other. However, such comparisons are mostly based on absolute errors of drain-current equations and their derivatives. In the paper, a novel method is suggested based on relative root-mean-square errors of both drain current and its derivatives up to the third order. Moreover, the relative errors are subsequently relativized to the best model in each category to further clarify obtained accuracies of both drain current and its derivatives. Furthermore, one our older and two newly suggested models are also included in comparison with the traditionally precise Ahmed, TOM-2 and Materka ones. The assessment is performed using measured characteristics of a pHEMT operating up to 110 GHz. Finally, a usability of the proposed models including the higher-order derivatives is illustrated using s-parameters analysis and measurement at more operating points as well as computation and measurement of IP3 points of a low-noise amplifier of a multi-constellation satellite navigation receiver with ATF-54143 pHEMT.
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Hussain, Matloob
2016-10-01
In this research, a modified form of Vening Meinesz-Moritz (VMM) theory of isostasy for the second-order radial derivative of gravitational potential, measured from the Gravity field and steady-state Ocean Circulation Explorer (GOCE), is developed for local Moho depth recovery. An integral equation is organised for inverting the GOCE data to compute a Moho model in combination with topographic/bathymetric heights of SRTM30, sediment and consolidated crystalline basement and the laterally-varying density contrast model of CRUST1.0. A Moho model from EGM2008 to degree and order 180 is also computed based on the same principle for the purpose of comparison. In addition, we compare both of them with the 3 available seismic Moho models; two global and one regional over the Indo-Pak region. Numerical results show that our GOCE-based Moho model is closer to the all seismic models than that of EGM2008. The model is closest to the regional one with a standard deviation of 5.5 km and a root mean squares error of 7.8 km, which is 2.3 km smaller than the corresponding one based on EGM2008.
A decision tool for selecting trench cap designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paige, G.B.; Stone, J.J.; Lane, L.J.
1995-12-31
A computer based prototype decision support system (PDSS) is being developed to assist the risk manager in selecting an appropriate trench cap design for waste disposal sites. The selection of the {open_quote}best{close_quote} design among feasible alternatives requires consideration of multiple and often conflicting objectives. The methodology used in the selection process consists of: selecting and parameterizing decision variables using data, simulation models, or expert opinion; selecting feasible trench cap design alternatives; ordering the decision variables and ranking the design alternatives. The decision model is based on multi-objective decision theory and uses a unique approach to order the decision variables andmore » rank the design alternatives. Trench cap designs are evaluated based on federal regulations, hydrologic performance, cover stability and cost. Four trench cap designs, which were monitored for a four year period at Hill Air Force Base in Utah, are used to demonstrate the application of the PDSS and evaluate the results of the decision model. The results of the PDSS, using both data and simulations, illustrate the relative advantages of each of the cap designs and which cap is the {open_quotes}best{close_quotes} alternative for a given set of criteria and a particular importance order of those decision criteria.« less
On the probability distribution of stock returns in the Mike-Farmer model
NASA Astrophysics Data System (ADS)
Gu, G.-F.; Zhou, W.-X.
2009-02-01
Recently, Mike and Farmer have constructed a very powerful and realistic behavioral model to mimick the dynamic process of stock price formation based on the empirical regularities of order placement and cancelation in a purely order-driven market, which can successfully reproduce the whole distribution of returns, not only the well-known power-law tails, together with several other important stylized facts. There are three key ingredients in the Mike-Farmer (MF) model: the long memory of order signs characterized by the Hurst index Hs, the distribution of relative order prices x in reference to the same best price described by a Student distribution (or Tsallis’ q-Gaussian), and the dynamics of order cancelation. They showed that different values of the Hurst index Hs and the freedom degree αx of the Student distribution can always produce power-law tails in the return distribution fr(r) with different tail exponent αr. In this paper, we study the origin of the power-law tails of the return distribution fr(r) in the MF model, based on extensive simulations with different combinations of the left part L(x) for x < 0 and the right part R(x) for x > 0 of fx(x). We find that power-law tails appear only when L(x) has a power-law tail, no matter R(x) has a power-law tail or not. In addition, we find that the distributions of returns in the MF model at different timescales can be well modeled by the Student distributions, whose tail exponents are close to the well-known cubic law and increase with the timescale.
Model Order Reduction Algorithm for Estimating the Absorption Spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Beeumen, Roel; Williams-Young, David B.; Kasper, Joseph M.
The ab initio description of the spectral interior of the absorption spectrum poses both a theoretical and computational challenge for modern electronic structure theory. Due to the often spectrally dense character of this domain in the quantum propagator’s eigenspectrum for medium-to-large sized systems, traditional approaches based on the partial diagonalization of the propagator often encounter oscillatory and stagnating convergence. Electronic structure methods which solve the molecular response problem through the solution of spectrally shifted linear systems, such as the complex polarization propagator, offer an alternative approach which is agnostic to the underlying spectral density or domain location. This generality comesmore » at a seemingly high computational cost associated with solving a large linear system for each spectral shift in some discretization of the spectral domain of interest. In this work, we present a novel, adaptive solution to this high computational overhead based on model order reduction techniques via interpolation. Model order reduction reduces the computational complexity of mathematical models and is ubiquitous in the simulation of dynamical systems and control theory. The efficiency and effectiveness of the proposed algorithm in the ab initio prediction of X-ray absorption spectra is demonstrated using a test set of challenging water clusters which are spectrally dense in the neighborhood of the oxygen K-edge. On the basis of a single, user defined tolerance we automatically determine the order of the reduced models and approximate the absorption spectrum up to the given tolerance. We also illustrate that, for the systems studied, the automatically determined model order increases logarithmically with the problem dimension, compared to a linear increase of the number of eigenvalues within the energy window. Furthermore, we observed that the computational cost of the proposed algorithm only scales quadratically with respect to the problem dimension.« less
An Equivalent Fracture Modeling Method
NASA Astrophysics Data System (ADS)
Li, Shaohua; Zhang, Shujuan; Yu, Gaoming; Xu, Aiyun
2017-12-01
3D fracture network model is built based on discrete fracture surfaces, which are simulated based on fracture length, dip, aperture, height and so on. The interesting area of Wumishan Formation of Renqiu buried hill reservoir is about 57 square kilometer and the thickness of target strata is more than 2000 meters. In addition with great fracture density, the fracture simulation and upscaling of discrete fracture network model of Wumishan Formation are very intense computing. In order to solve this problem, a method of equivalent fracture modeling is proposed. First of all, taking the fracture interpretation data obtained from imaging logging and conventional logging as the basic data, establish the reservoir level model, and then under the constraint of reservoir level model, take fault distance analysis model as the second variable, establish fracture density model by Sequential Gaussian Simulation method. Increasing the width, height and length of fracture, at the same time decreasing its density in order to keep the similar porosity and permeability after upscaling discrete fracture network model. In this way, the fracture model of whole interesting area can be built within an accepted time.
Basic research for the geodynamics program
NASA Technical Reports Server (NTRS)
1991-01-01
The mathematical models of space very long base interferometry (VLBI) observables suitable for least squares covariance analysis were derived and estimatability problems inherent in the space VLBI system were explored, including a detailed rank defect analysis and sensitivity analysis. An important aim is to carry out a comparative analysis of the mathematical models of the ground-based VLBI and space VLBI observables in order to describe the background in detail. Computer programs were developed in order to check the relations, assess errors, and analyze sensitivity. In order to investigate the estimatability of different geodetic and geodynamic parameters from the space VLBI observables, the mathematical models for time delay and time delay rate observables of space VLBI were analytically derived along with the partial derivatives with respect to the parameters. Rank defect analysis was carried out both by analytical and numerical testing of linear dependencies between the columns of the normal matrix thus formed. Definite conclusions were formed about the rank defects in the system.
Autonomous Rhythmic Drug Delivery Systems Based on Chemical and Biochemomechanical Oscillators
NASA Astrophysics Data System (ADS)
Siegel, Ronald A.
While many drug delivery systems target constant, or zero-order drug release, certain drugs and hormones must be delivered in rhythmic pulses in order to achieve their optimal effect. Here we describe studies with two model autonomous rhythmic delivery systems. The first system is driven by a pH oscillator that modulates the ionization state of a model drug, benzoic acid, which can permeate through a lipophilic membrane when the drug is uncharged. The second system is based on a nonlinear negative feedback instability that arises from coupling of swelling of a hydrogel membrane to an enzymatic reaction, with the hydrogel controlling access of substrate to the enzyme, and the enzyme's product controlling the hydrogel's swelling state. The latter system, whose autonomous oscillations are driven by glucose at constant external activity, is shown to deliver gonadotropin releasing hormone (GnRH) in rhythmic pulses, with periodicity of the same order as observed in sexually mature adult humans. Relevant experimental results and some mathematical models are reviewed.
From the Boltzmann to the Lattice-Boltzmann Equation:. Beyond BGK Collision Models
NASA Astrophysics Data System (ADS)
Philippi, Paulo Cesar; Hegele, Luiz Adolfo; Surmas, Rodrigo; Siebert, Diogo Nardelli; Dos Santos, Luís Orlando Emerich
In this work, we present a derivation for the lattice-Boltzmann equation directly from the linearized Boltzmann equation, combining the following main features: multiple relaxation times and thermodynamic consistency in the description of non isothermal compressible flows. The method presented here is based on the discretization of increasingly order kinetic models of the Boltzmann equation. Following a Gross-Jackson procedure, the linearized collision term is developed in Hermite polynomial tensors and the resulting infinite series is diagonalized after a chosen integer N, establishing the order of approximation of the collision term. The velocity space is discretized, in accordance with a quadrature method based on prescribed abscissas (Philippi et al., Phys. Rev E 73, 056702, 2006). The problem of describing the energy transfer is discussed, in relation with the order of approximation of a two relaxation-times lattice Boltzmann model. The velocity-step, temperature-step and the shock tube problems are investigated, adopting lattices with 37, 53 and 81 velocities.
Modeling of pilot's visual behavior for low-level flight
NASA Astrophysics Data System (ADS)
Schulte, Axel; Onken, Reiner
1995-06-01
Developers of synthetic vision systems for low-level flight simulators deal with the problem to decide which features to incorporate in order to achieve most realistic training conditions. This paper supports an approach to this problem on the basis of modeling the pilot's visual behavior. This approach is founded upon the basic requirement that the pilot's mechanisms of visual perception should be identical in simulated and real low-level flight. Flight simulator experiments with pilots were conducted for knowledge acquisition. During the experiments video material of a real low-level flight mission containing different situations was displayed to the pilot who was acting under a realistic mission assignment in a laboratory environment. Pilot's eye movements could be measured during the replay. The visual mechanisms were divided into rule based strategies for visual navigation, based on the preflight planning process, as opposed to skill based processes. The paper results in a model of the pilot's planning strategy of a visual fixing routine as part of the navigation task. The model is a knowledge based system based upon the fuzzy evaluation of terrain features in order to determine the landmarks used by pilots. It can be shown that a computer implementation of the model selects those features, which were preferred by trained pilots, too.
Cumulative impact of developments on the surrounding roadways' traffic.
DOT National Transportation Integrated Search
2011-10-01
"In order to recommend a procedure for cumulative impact study, four different travel : demand models were developed, calibrated, and validated. The base year for the models was 2005. : Two study areas were used, and the models were run for three per...
Identifiability of PBPK Models with Applications to Dimethylarsinic Acid Exposure
Any statistical model should be identifiable in order for estimates and tests using it to be meaningful. We consider statistical analysis of physiologically-based pharmacokinetic (PBPK) models in which parameters cannot be estimated precisely from available data, and discuss diff...
Simplified predictive models for CO 2 sequestration performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Srikanta; Ganesh, Priya; Schuetter, Jared
CO2 sequestration in deep saline formations is increasingly being considered as a viable strategy for the mitigation of greenhouse gas emissions from anthropogenic sources. In this context, detailed numerical simulation based models are routinely used to understand key processes and parameters affecting pressure propagation and buoyant plume migration following CO2 injection into the subsurface. As these models are data and computation intensive, the development of computationally-efficient alternatives to conventional numerical simulators has become an active area of research. Such simplified models can be valuable assets during preliminary CO2 injection project screening, serve as a key element of probabilistic system assessmentmore » modeling tools, and assist regulators in quickly evaluating geological storage projects. We present three strategies for the development and validation of simplified modeling approaches for CO2 sequestration in deep saline formations: (1) simplified physics-based modeling, (2) statisticallearning based modeling, and (3) reduced-order method based modeling. In the first category, a set of full-physics compositional simulations is used to develop correlations for dimensionless injectivity as a function of the slope of the CO2 fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Furthermore, the dimensionless average pressure buildup after the onset of boundary effects can be correlated to dimensionless time, CO2 plume footprint, and storativity contrast between the reservoir and caprock. In the second category, statistical “proxy models” are developed using the simulation domain described previously with two approaches: (a) classical Box-Behnken experimental design with a quadratic response surface, and (b) maximin Latin Hypercube sampling (LHS) based design with a multidimensional kriging metamodel fit. For roughly the same number of simulations, the LHS-based metamodel yields a more robust predictive model, as verified by a k-fold cross-validation approach (with data split into training and test sets) as well by validation with an independent dataset. In the third category, a reduced-order modeling procedure is utilized that combines proper orthogonal decomposition (POD) for reducing problem dimensionality with trajectory-piecewise linearization (TPWL) in order to represent system response at new control settings from a limited number of training runs. Significant savings in computational time are observed with reasonable accuracy from the PODTPWL reduced-order model for both vertical and horizontal well problems – which could be important in the context of history matching, uncertainty quantification and optimization problems. The simplified physics and statistical learning based models are also validated using an uncertainty analysis framework. Reference cumulative distribution functions of key model outcomes (i.e., plume radius and reservoir pressure buildup) generated using a 97-run full-physics simulation are successfully validated against the CDF from 10,000 sample probabilistic simulations using the simplified models. The main contribution of this research project is the development and validation of a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formations.« less
NASA Astrophysics Data System (ADS)
Du, Xiaosong; Leifsson, Leifur; Grandin, Robert; Meeker, William; Roberts, Ronald; Song, Jiming
2018-04-01
Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination with model-assisted POD (MAPOD) methods. With the development of advanced physics-based methods, such as ultrasonic NDT testing, the empirical information, needed for POD methods, can be reduced. However, performing accurate numerical simulations can be prohibitively time-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the random input variables through the physics-based simulation model to obtain the joint probability distribution of the output. The POD curves are then generated based on those results. Here, the stochastic surrogates are constructed using non-intrusive polynomial chaos (NIPC) expansions. In particular, the NIPC methods used are the quadrature, ordinary least-squares (OLS), and least-angle regression sparse (LARS) techniques. The proposed approach is demonstrated on the ultrasonic testing simulation of a flat bottom hole flaw in an aluminum block. The results show that the stochastic surrogates have at least two orders of magnitude faster convergence on the statistics than direct Monte Carlo sampling (MCS). Moreover, the evaluation of the stochastic surrogate models is over three orders of magnitude faster than the underlying simulation model for this case, which is the UTSim2 model.
A Hydrologic Routing Model Based on Geomorphological Characteristics of the River Network
NASA Astrophysics Data System (ADS)
Krajewski, W. F.; Quintero, F.; Ghimire, G.; Rojas, M.
2017-12-01
The Iowa Flood Center (IFC) provides streamflow forecasts for about 2000 locations in Iowa using a real-time distributed hydrologic model, forced with radar and raingage rainfall information. The model structure is based on ordinary differential equations that represent the flow of water from the hillslopes to the channels of the river network. The formulation of the routing of water across the rivers constitutes a fundamental aspect of the model, because this component is mostly responsible for providing estimates of the time-to-peak and peak magnitude. The routing model structure of the system is based on the scaling properties of river velocity with the discharge and drainage area of the channel, which can be written in terms of a power-law function. This study examines how this scaling relation is connected to the Horton-Strahler order of the channel network. This evaluation represents a step forward towards formulating model structures that are based on characteristics that are invariant across spatial scales. We proposed a routing model for every different Horton orders of the network, by adjusting a power-law function to available observations of velocity and discharge provided by USGS. The models were implemented into the Hillslope-Link Model (HLM) of the IFC for offline evaluation. Model simulations were compared to discharge observations to assess their performance, and compared to simulations obtained with other hydrologic routing schemes, to determine if the new formulation improves performance of the model.
NASA Astrophysics Data System (ADS)
Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal
2014-06-01
This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.
Cocoa based agroforestry: An economic perspective in resource scarcity conflict era
NASA Astrophysics Data System (ADS)
Jumiyati, S.; Arsyad, M.; Rajindra; Pulubuhu, D. A. T.; Hadid, A.
2018-05-01
Agricultural development towards food self-sufficiency based on increasing production alone has caused the occurrence of environmental disasters that are the impact of the exploitation of natural resources resulting in the scarcity of resources. This paper describes the optimization of land area, revenue, cost (production inputs), income and use of production input based on economic and ecological aspects. In order to sustainability farming by integrating environmental and economic consideration can be made through farmers’ decision making with the goal of optimizing revenue based on cost optimization through cocoa based agroforestry model in order to cope with a resource conflict resolution.
Extreme learning machine for reduced order modeling of turbulent geophysical flows.
San, Omer; Maulik, Romit
2018-04-01
We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.
Extreme learning machine for reduced order modeling of turbulent geophysical flows
NASA Astrophysics Data System (ADS)
San, Omer; Maulik, Romit
2018-04-01
We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.
NASA Astrophysics Data System (ADS)
Wälz, Gero; Kats, Daniel; Usvyat, Denis; Korona, Tatiana; Schütz, Martin
2012-11-01
Linear-response methods, based on the time-dependent variational coupled-cluster or the unitary coupled-cluster model, and truncated at the second order according to the Møller-Plesset partitioning, i.e., the TD-VCC[2] and TD-UCC[2] linear-response methods, are presented and compared. For both of these methods a Hermitian eigenvalue problem has to be solved to obtain excitation energies and state eigenvectors. The excitation energies thus are guaranteed always to be real valued, and the eigenvectors are mutually orthogonal, in contrast to response theories based on “traditional” coupled-cluster models. It turned out that the TD-UCC[2] working equations for excitation energies and polarizabilities are equivalent to those of the second-order algebraic diagrammatic construction scheme ADC(2). Numerical tests are carried out by calculating TD-VCC[2] and TD-UCC[2] excitation energies and frequency-dependent dipole polarizabilities for several test systems and by comparing them to the corresponding values obtained from other second- and higher-order methods. It turns out that the TD-VCC[2] polarizabilities in the frequency regions away from the poles are of a similar accuracy as for other second-order methods, as expected from the perturbative analysis of the TD-VCC[2] polarizability expression. On the other hand, the TD-VCC[2] excitation energies are systematically too low relative to other second-order methods (including TD-UCC[2]). On the basis of these results and an analysis presented in this work, we conjecture that the perturbative expansion of the Jacobian converges more slowly for the TD-VCC formalism than for TD-UCC or for response theories based on traditional coupled-cluster models.
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Rosen, I. G.
1988-01-01
In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.
Random fluctuations of optical signal path delay in the atmosphere
NASA Astrophysics Data System (ADS)
Kral, L.; Prochazka, I.; Hamal, K.
2006-09-01
Atmospheric turbulence induces random delay fluctuations to any optical signal transmitted through the air. These fluctuations can influence for example the measurement precision of laser rangefinders. We have found an appropriate theoretical model based on geometrical optics that allows us to predict the amplitude of the random delay fluctuations for different observing conditions. We have successfully proved the applicability of this model by a series of experiments, directly determining the amplitude of the turbulence-induced pulse delay fluctuations by analysis of a high precision laser ranging data. Moreover, we have also shown that a standard theoretical approach based on diffractive propagation of light through inhomogeneous media and implemented using the GLAD software is not suitable for modeling of the optical signal delay fluctuations caused by the atmosphere. These models based on diffractive propagation predict the turbulence-induced optical path length fluctuations of the order of micrometers, whereas the fluctuations predicted by the geometrical optics model (in agreement with our experimental data) are generally larger by two orders of magnitude, i.e. in the submillimeter range. The reason of this discrepancy is a subject to discussion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutheerawatthana, Pitch, E-mail: pitch.venture@gmail.co; Minato, Takayuki, E-mail: minato@k.u-tokyo.ac.j
The response of a social group is a missing element in the formal impact assessment model. Previous discussion of the involvement of social groups in an intervention has mainly focused on the formation of the intervention. This article discusses the involvement of social groups in a different way. A descriptive model is proposed by incorporating a social group's response into the concept of second- and higher-order effects. The model is developed based on a cause-effect relationship through the observation of phenomena in case studies. The model clarifies the process by which social groups interact with a lower-order effect and thenmore » generate a higher-order effect in an iterative manner. This study classifies social groups' responses into three forms-opposing, modifying, and advantage-taking action-and places them in six pathways. The model is expected to be used as an analytical tool for investigating and identifying impacts in the planning stage and as a framework for monitoring social groups' responses during the implementation stage of a policy, plan, program, or project (PPPPs).« less
REVEAL: An Extensible Reduced Order Model Builder for Simulation and Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Khushbu; Sharma, Poorva; Ma, Jinliang
2013-04-30
Many science domains need to build computationally efficient and accurate representations of high fidelity, computationally expensive simulations. These computationally efficient versions are known as reduced-order models. This paper presents the design and implementation of a novel reduced-order model (ROM) builder, the REVEAL toolset. This toolset generates ROMs based on science- and engineering-domain specific simulations executed on high performance computing (HPC) platforms. The toolset encompasses a range of sampling and regression methods that can be used to generate a ROM, automatically quantifies the ROM accuracy, and provides support for an iterative approach to improve ROM accuracy. REVEAL is designed to bemore » extensible in order to utilize the core functionality with any simulator that has published input and output formats. It also defines programmatic interfaces to include new sampling and regression techniques so that users can ‘mix and match’ mathematical techniques to best suit the characteristics of their model. In this paper, we describe the architecture of REVEAL and demonstrate its usage with a computational fluid dynamics model used in carbon capture.« less
Hamiltonian modelling of relative motion.
Kasdin, N Jeremy; Gurfil, Pini
2004-05-01
This paper presents a Hamiltonian approach to modelling relative spacecraft motion based on derivation of canonical coordinates for the relative state-space dynamics. The Hamiltonian formulation facilitates the modelling of high-order terms and orbital perturbations while allowing us to obtain closed-form solutions to the relative motion problem. First, the Hamiltonian is partitioned into a linear term and a high-order term. The Hamilton-Jacobi equations are solved for the linear part by separation, and new constants for the relative motions are obtained, they are called epicyclic elements. The influence of higher order terms and perturbations, such as the oblateness of the Earth, are incorporated into the analysis by a variation of parameters procedure. Closed-form solutions for J(2-) and J(4-)invariant orbits and for periodic high-order unperturbed relative motion, in terms of the relative motion elements only, are obtained.
Assessment of WENO-extended two-fluid modelling in compressible multiphase flows
NASA Astrophysics Data System (ADS)
Kitamura, Keiichi; Nonomura, Taku
2017-03-01
The two-fluid modelling based on an advection-upwind-splitting-method (AUSM)-family numerical flux function, AUSM+-up, following the work by Chang and Liou [Journal of Computational Physics 2007;225: 840-873], has been successfully extended to the fifth order by weighted-essentially-non-oscillatory (WENO) schemes. Then its performance is surveyed in several numerical tests. The results showed a desired performance in one-dimensional benchmark test problems: Without relying upon an anti-diffusion device, the higher-order two-fluid method captures the phase interface within a fewer grid points than the conventional second-order method, as well as a rarefaction wave and a very weak shock. At a high pressure ratio (e.g. 1,000), the interpolated variables appeared to affect the performance: the conservative-variable-based characteristic-wise WENO interpolation showed less sharper but more robust representations of the shocks and expansions than the primitive-variable-based counterpart did. In two-dimensional shock/droplet test case, however, only the primitive-variable-based WENO with a huge void fraction realised a stable computation.
Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES
NASA Astrophysics Data System (ADS)
Marras, Simone; Nazarov, Murtazo; Giraldo, Francis X.
2015-11-01
The high order spectral element approximation of the Euler equations is stabilized via a dynamic sub-grid scale model (Dyn-SGS). This model was originally designed for linear finite elements to solve compressible flows at large Mach numbers. We extend its application to high-order spectral elements to solve the Euler equations of low Mach number stratified flows. The major justification of this work is twofold: stabilization and large eddy simulation are achieved via one scheme only. Because the diffusion coefficients of the regularization stresses obtained via Dyn-SGS are residual-based, the effect of the artificial diffusion is minimal in the regions where the solution is smooth. The direct consequence is that the nominal convergence rate of the high-order solution of smooth problems is not degraded. To our knowledge, this is the first application in atmospheric modeling of a spectral element model stabilized by an eddy viscosity scheme that, by construction, may fulfill stabilization requirements, can model turbulence via LES, and is completely free of a user-tunable parameter. From its derivation, it will be immediately clear that Dyn-SGS is independent of the numerical method; it could be implemented in a discontinuous Galerkin, finite volume, or other environments alike. Preliminary discontinuous Galerkin results are reported as well. The straightforward extension to non-linear scalar problems is also described. A suite of 1D, 2D, and 3D test cases is used to assess the method, with some comparison against the results obtained with the most known Lilly-Smagorinsky SGS model.
A posteriori model validation for the temporal order of directed functional connectivity maps.
Beltz, Adriene M; Molenaar, Peter C M
2015-01-01
A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a) to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests), and (b) to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one) simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates) and substantive implications (e.g., higher order lags may be common in resting state data).
Controller reduction by preserving impulse response energy
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Su, Tzu-Jeng
1989-01-01
A model order reduction algorithm based on a Krylov recurrence formulation is developed to reduce order of controllers. The reduced-order controller is obtained by projecting the full-order LQG controller onto a Krylov subspace in which either the controllability or the observability grammian is equal to the identity matrix. The reduced-order controller preserves the impulse response energy of the full-order controller and has a parameter-matching property. Two numerical examples drawn from other controller reduction literature are used to illustrate the efficacy of the proposed reduction algorithm.
Integrated Model Reduction and Control of Aircraft with Flexible Wings
NASA Technical Reports Server (NTRS)
Swei, Sean Shan-Min; Zhu, Guoming G.; Nguyen, Nhan T.
2013-01-01
This paper presents an integrated approach to the modeling and control of aircraft with exible wings. The coupled aircraft rigid body dynamics with a high-order elastic wing model can be represented in a nite dimensional state-space form. Given a set of desired output covariance, a model reduction process is performed by using the weighted Modal Cost Analysis (MCA). A dynamic output feedback controller, which is designed based on the reduced-order model, is developed by utilizing output covariance constraint (OCC) algorithm, and the resulting OCC design weighting matrix is used for the next iteration of the weighted cost analysis. This controller is then validated for full-order evaluation model to ensure that the aircraft's handling qualities are met and the uttering motion of the wings suppressed. An iterative algorithm is developed in CONDUIT environment to realize the integration of model reduction and controller design. The proposed integrated approach is applied to NASA Generic Transport Model (GTM) for demonstration.
Speeded Probed Recall Is Affected by Grouping.
Morra, Sergio; Epidendio, Valentina
2015-01-01
Most of the evidence from previous studies on speeded probed recall supported primacy-gradient models of serial order representation. Two experiments investigated the effect of grouping on speeded probed recall. Six-word lists, followed by a number between 1 and 6, were presented for speeded recall of the word in the position indicated by the number. Grouping was manipulated through interstimulus intervals. In both experiments, a significant Position × Grouping interaction was found in RT. It is concluded that the results are not consistent with models of order representation only based on a primacy gradient. Possible alternative representations of serial order are also discussed; a case is made for a holistic order representation.
Efficient Unsteady Flow Visualization with High-Order Access Dependencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru
We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiencymore » of pathline computation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofeng, E-mail: xfyang@math.sc.edu; Han, Daozhi, E-mail: djhan@iu.edu
2017-02-01
In this paper, we develop a series of linear, unconditionally energy stable numerical schemes for solving the classical phase field crystal model. The temporal discretizations are based on the first order Euler method, the second order backward differentiation formulas (BDF2) and the second order Crank–Nicolson method, respectively. The schemes lead to linear elliptic equations to be solved at each time step, and the induced linear systems are symmetric positive definite. We prove that all three schemes are unconditionally energy stable rigorously. Various classical numerical experiments in 2D and 3D are performed to validate the accuracy and efficiency of the proposedmore » schemes.« less
Moment-Based Physical Models of Broadband Clutter due to Aggregations of Fish
2013-09-30
statistical models for signal-processing algorithm development. These in turn will help to develop a capability to statistically forecast the impact of...aggregations of fish based on higher-order statistical measures describable in terms of physical and system parameters. Environmentally , these models...processing. In this experiment, we had good ground truth on (1) and (2), and had control over (3) and (4) except for environmentally -imposed restrictions
What is needed to eliminate new pediatric HIV infections: The contribution of model-based analyses
Doherty, Katie; Ciaranello, Andrea
2013-01-01
Purpose of Review Computer simulation models can identify key clinical, operational, and economic interventions that will be needed to achieve the elimination of new pediatric HIV infections. In this review, we summarize recent findings from model-based analyses of strategies for prevention of mother-to-child HIV transmission (MTCT). Recent Findings In order to achieve elimination of MTCT (eMTCT), model-based studies suggest that scale-up of services will be needed in several domains: uptake of services and retention in care (the PMTCT “cascade”), interventions to prevent HIV infections in women and reduce unintended pregnancies (the “four-pronged approach”), efforts to support medication adherence through long periods of pregnancy and breastfeeding, and strategies to make breastfeeding safer and/or shorter. Models also project the economic resources that will be needed to achieve these goals in the most efficient ways to allocate limited resources for eMTCT. Results suggest that currently recommended PMTCT regimens (WHO Option A, Option B, and Option B+) will be cost-effective in most settings. Summary Model-based results can guide future implementation science, by highlighting areas in which additional data are needed to make informed decisions and by outlining critical interventions that will be necessary in order to eliminate new pediatric HIV infections. PMID:23743788
Dong, Ling-Bo; Liu, Zhao-Gang; Li, Feng-Ri; Jiang, Li-Chun
2013-09-01
By using the branch analysis data of 955 standard branches from 60 sampled trees in 12 sampling plots of Pinus koraiensis plantation in Mengjiagang Forest Farm in Heilongjiang Province of Northeast China, and based on the linear mixed-effect model theory and methods, the models for predicting branch variables, including primary branch diameter, length, and angle, were developed. Considering tree effect, the MIXED module of SAS software was used to fit the prediction models. The results indicated that the fitting precision of the models could be improved by choosing appropriate random-effect parameters and variance-covariance structure. Then, the correlation structures including complex symmetry structure (CS), first-order autoregressive structure [AR(1)], and first-order autoregressive and moving average structure [ARMA(1,1)] were added to the optimal branch size mixed-effect model. The AR(1) improved the fitting precision of branch diameter and length mixed-effect model significantly, but all the three structures didn't improve the precision of branch angle mixed-effect model. In order to describe the heteroscedasticity during building mixed-effect model, the CF1 and CF2 functions were added to the branch mixed-effect model. CF1 function improved the fitting effect of branch angle mixed model significantly, whereas CF2 function improved the fitting effect of branch diameter and length mixed model significantly. Model validation confirmed that the mixed-effect model could improve the precision of prediction, as compare to the traditional regression model for the branch size prediction of Pinus koraiensis plantation.
An Exact Model-Based Method for Near-Field Sources Localization with Bistatic MIMO System.
Singh, Parth Raj; Wang, Yide; Chargé, Pascal
2017-03-30
In this paper, we propose an exact model-based method for near-field sources localization with a bistatic multiple input, multiple output (MIMO) radar system, and compare it with an approximated model-based method. The aim of this paper is to propose an efficient way to use the exact model of the received signals of near-field sources in order to eliminate the systematic error introduced by the use of approximated model in most existing near-field sources localization techniques. The proposed method uses parallel factor (PARAFAC) decomposition to deal with the exact model. Thanks to the exact model, the proposed method has better precision and resolution than the compared approximated model-based method. The simulation results show the performance of the proposed method.
A Model-Free Diagnostic for Single-Peakedness of Item Responses Using Ordered Conditional Means.
Polak, Marike; de Rooij, Mark; Heiser, Willem J
2012-09-01
In this article we propose a model-free diagnostic for single-peakedness (unimodality) of item responses. Presuming a unidimensional unfolding scale and a given item ordering, we approximate item response functions of all items based on ordered conditional means (OCM). The proposed OCM methodology is based on Thurstone & Chave's (1929) criterion of irrelevance, which is a graphical, exploratory method for evaluating the "relevance" of dichotomous attitude items. We generalized this criterion to graded response items and quantified the relevance by fitting a unimodal smoother. The resulting goodness-of-fit was used to determine item fit and aggregated scale fit. Based on a simulation procedure, cutoff values were proposed for the measures of item fit. These cutoff values showed high power rates and acceptable Type I error rates. We present 2 applications of the OCM method. First, we apply the OCM method to personality data from the Developmental Profile; second, we analyze attitude data collected by Roberts and Laughlin (1996) concerning opinions of capital punishment.
Low, slow, small target recognition based on spatial vision network
NASA Astrophysics Data System (ADS)
Cheng, Zhao; Guo, Pei; Qi, Xin
2018-03-01
Traditional photoelectric monitoring is monitored using a large number of identical cameras. In order to ensure the full coverage of the monitoring area, this monitoring method uses more cameras, which leads to more monitoring and repetition areas, and higher costs, resulting in more waste. In order to reduce the monitoring cost and solve the difficult problem of finding, identifying and tracking a low altitude, slow speed and small target, this paper presents spatial vision network for low-slow-small targets recognition. Based on camera imaging principle and monitoring model, spatial vision network is modeled and optimized. Simulation experiment results demonstrate that the proposed method has good performance.
Identification of AR(I)MA processes for modelling temporal correlations of GPS observations
NASA Astrophysics Data System (ADS)
Luo, X.; Mayer, M.; Heck, B.
2009-04-01
In many geodetic applications observations of the Global Positioning System (GPS) are routinely processed by means of the least-squares method. However, this algorithm delivers reliable estimates of unknown parameters und realistic accuracy measures only if both the functional and stochastic models are appropriately defined within GPS data processing. One deficiency of the stochastic model used in many GPS software products consists in neglecting temporal correlations of GPS observations. In practice the knowledge of the temporal stochastic behaviour of GPS observations can be improved by analysing time series of residuals resulting from the least-squares evaluation. This paper presents an approach based on the theory of autoregressive (integrated) moving average (AR(I)MA) processes to model temporal correlations of GPS observations using time series of observation residuals. A practicable integration of AR(I)MA models in GPS data processing requires the determination of the order parameters of AR(I)MA processes at first. In case of GPS, the identification of AR(I)MA processes could be affected by various factors impacting GPS positioning results, e.g. baseline length, multipath effects, observation weighting, or weather variations. The influences of these factors on AR(I)MA identification are empirically analysed based on a large amount of representative residual time series resulting from differential GPS post-processing using 1-Hz observation data collected within the permanent SAPOS® (Satellite Positioning Service of the German State Survey) network. Both short and long time series are modelled by means of AR(I)MA processes. The final order parameters are determined based on the whole residual database; the corresponding empirical distribution functions illustrate that multipath and weather variations seem to affect the identification of AR(I)MA processes much more significantly than baseline length and observation weighting. Additionally, the modelling results of temporal correlations using high-order AR(I)MA processes are compared with those by means of first order autoregressive (AR(1)) processes and empirically estimated autocorrelation functions.
NASA Astrophysics Data System (ADS)
Noori, Roohollah; Safavi, Salman; Nateghi Shahrokni, Seyyed Afshin
2013-07-01
The five-day biochemical oxygen demand (BOD5) is one of the key parameters in water quality management. In this study, a novel approach, i.e., reduced-order adaptive neuro-fuzzy inference system (ROANFIS) model was developed for rapid estimation of BOD5. In addition, an uncertainty analysis of adaptive neuro-fuzzy inference system (ANFIS) and ROANFIS models was carried out based on Monte-Carlo simulation. Accuracy analysis of ANFIS and ROANFIS models based on both developed discrepancy ratio and threshold statistics revealed that the selected ROANFIS model was superior. Pearson correlation coefficient (R) and root mean square error for the best fitted ROANFIS model were 0.96 and 7.12, respectively. Furthermore, uncertainty analysis of the developed models indicated that the selected ROANFIS had less uncertainty than the ANFIS model and accurately forecasted BOD5 in the Sefidrood River Basin. Besides, the uncertainty analysis also showed that bracketed predictions by 95% confidence bound and d-factor in the testing steps for the selected ROANFIS model were 94% and 0.83, respectively.
An implicit spatial and high-order temporal finite difference scheme for 2D acoustic modelling
NASA Astrophysics Data System (ADS)
Wang, Enjiang; Liu, Yang
2018-01-01
The finite difference (FD) method exhibits great superiority over other numerical methods due to its easy implementation and small computational requirement. We propose an effective FD method, characterised by implicit spatial and high-order temporal schemes, to reduce both the temporal and spatial dispersions simultaneously. For the temporal derivative, apart from the conventional second-order FD approximation, a special rhombus FD scheme is included to reach high-order accuracy in time. Compared with the Lax-Wendroff FD scheme, this scheme can achieve nearly the same temporal accuracy but requires less floating-point operation times and thus less computational cost when the same operator length is adopted. For the spatial derivatives, we adopt the implicit FD scheme to improve the spatial accuracy. Apart from the existing Taylor series expansion-based FD coefficients, we derive the least square optimisation based implicit spatial FD coefficients. Dispersion analysis and modelling examples demonstrate that, our proposed method can effectively decrease both the temporal and spatial dispersions, thus can provide more accurate wavefields.
Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach
Kneifel, Joshua; Webb, David
2016-01-01
Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the experimental data collected from the NZERTF. PMID:27956756
Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach.
Kneifel, Joshua; Webb, David
2016-09-01
Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the experimental data collected from the NZERTF.
NASA Technical Reports Server (NTRS)
Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John
2011-01-01
A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.
NASA Astrophysics Data System (ADS)
Yang, Ningning; Xu, Cheng; Wu, Chaojun; Jia, Rong; Liu, Chongxin
2017-12-01
Memristor is a nonlinear “missing circuit element”, that can easily achieve chaotic oscillation. Memristor-based chaotic systems have received more and more attention. Research shows that fractional-order systems are more close to real systems. As an important parameter, the order can increase the flexibility and degree of freedom of the system. In this paper, a fractional-order generalized memristor, which consists of a diode bridge and a parallel circuit with an equivalent unit circuit and a linear resistance, is proposed. Frequency and electrical characteristics of the fractional-order memristor are analyzed. A chain structure circuit is used to implement the fractional-order unit circuit. Then replacing the conventional Chua’s diode by the fractional-order generalized memristor, a fractional-order memristor-based chaotic circuit is proposed. A large amount of research work has been done to investigate the influence of the order on the dynamical behaviors of the fractional-order memristor-based chaotic circuit. Varying with the order, the system enters the chaotic state from the periodic state through the Hopf bifurcation and period-doubling bifurcation. The chaotic state of the system has two types of attractors: single-scroll and double-scroll attractor. The stability theory of fractional-order systems is used to determine the minimum order occurring Hopf bifurcation. And the influence of the initial value on the system is analyzed. Circuit simulations are designed to verify the results of theoretical analysis and numerical simulation.
ERIC Educational Resources Information Center
Moore-Russo, Deborah A.; Cortes-Figueroa, Jose E.; Schuman, Michael J.
2006-01-01
The use of Calculator-Based Laboratory (CBL) technology, the graphing calculator, and the cooling and heating of water to model the behavior of consecutive first-order reactions is presented, where B is the reactant, I is the intermediate, and P is the product for an in-class demonstration. The activity demonstrates the spontaneous and consecutive…
Fracton topological order from nearest-neighbor two-spin interactions and dualities
NASA Astrophysics Data System (ADS)
Slagle, Kevin; Kim, Yong Baek
2017-10-01
Fracton topological order describes a remarkable phase of matter, which can be characterized by fracton excitations with constrained dynamics and a ground-state degeneracy that increases exponentially with the length of the system on a three-dimensional torus. However, previous models exhibiting this order require many-spin interactions, which may be very difficult to realize in a real material or cold atom system. In this work, we present a more physically realistic model which has the so-called X-cube fracton topological order [Vijay, Haah, and Fu, Phys. Rev. B 94, 235157 (2016), 10.1103/PhysRevB.94.235157] but only requires nearest-neighbor two-spin interactions. The model lives on a three-dimensional honeycomb-based lattice with one to two spin-1/2 degrees of freedom on each site and a unit cell of six sites. The model is constructed from two orthogonal stacks of Z2 topologically ordered Kitaev honeycomb layers [Kitaev, Ann. Phys. 321, 2 (2006), 10.1016/j.aop.2005.10.005], which are coupled together by a two-spin interaction. It is also shown that a four-spin interaction can be included to instead stabilize 3+1D Z2 topological order. We also find dual descriptions of four quantum phase transitions in our model, all of which appear to be discontinuous first-order transitions.
Numerical prediction of pollutant dispersion and transport in an atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Zeoli, Stéphanie; Bricteux, Laurent; Mech. Eng. Dpt. Team
2014-11-01
The ability to accurately predict concentration levels of air pollutant released from point sources is required in order to determine their environmental impact. A wall modeled large-eddy simulation (WMLES) of the ABL is performed using the OpenFoam based solver SOWFA (Churchfield and Lee, NREL). It uses Boussinesq approximation for buoyancy effects and takes into account Coriolis forces. A synthetic eddy method is proposed to properly model turbulence inlet velocity boundary conditions. This method will be compared with the standard pressure gradient forcing. WMLES are usually performed using a standard Smagorinsky model or its dynamic version. It is proposed here to investigate a subgrid scale (SGS) model with a better spectral behavior. To this end, a regularized variational multiscale (RVMs) model (Jeanmart and Winckelmans, 2007) is implemented together with standard wall function in order to preserve the dynamics of the large scales within the Ekman layer. The influence of the improved SGS model on the wind simulation and scalar transport will be discussed based on turbulence diagnostics.
ERIC Educational Resources Information Center
Hsiao, Hsien-Sheng; Chen, Jyun-Chen; Hong, Jon-Chao; Chen, Po-Hsi; Lu, Chow-Chin; Chen, Sherry Y.
2017-01-01
A five-stage prediction-observation-explanation inquiry-based learning (FPOEIL) model was developed to improve students' scientific learning performance. In order to intensify the science learning effect, the repertory grid technology-assisted learning (RGTL) approach and the collaborative learning (CL) approach were utilized. A quasi-experimental…
ERIC Educational Resources Information Center
Chang, Yi-Hsing; Chen, Yen-Yi; Chen, Nian-Shing; Lu, You-Te; Fang, Rong-Jyue
2016-01-01
This study designs and implements an adaptive learning management system based on Felder and Silverman's Learning Style Model and the Mashup technology. In this system, Felder and Silverman's Learning Style model is used to assess students' learning styles, in order to provide adaptive learning to leverage learners' learning preferences.…
Understanding the Common Elements of Evidence-Based Practice: Misconceptions and Clinical Examples
ERIC Educational Resources Information Center
Chorpita, Bruce F.; Becker, Kimberly D.; Daleiden, Eric L.
2007-01-01
In this article, the authors proposed a distillation and matching model (DMM) that describes how evidence-based treatment operations can be conceptualized at a lower order level of analysis than simply by their manuals. Also referred to as the "common elements" approach, this model demonstrates the feasibility of coding and identifying the…
Numerical method based on the lattice Boltzmann model for the Fisher equation.
Yan, Guangwu; Zhang, Jianying; Dong, Yinfeng
2008-06-01
In this paper, a lattice Boltzmann model for the Fisher equation is proposed. First, the Chapman-Enskog expansion and the multiscale time expansion are used to describe higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. Second, the modified partial differential equation of the Fisher equation with the higher-order truncation error is obtained. Third, comparison between numerical results of the lattice Boltzmann models and exact solution is given. The numerical results agree well with the classical ones.
NASA Astrophysics Data System (ADS)
Lee, Joohwi; Kim, Sun Hyung; Styner, Martin
2016-03-01
The delineation of rodent brain structures is challenging due to low-contrast multiple cortical and subcortical organs that are closely interfacing to each other. Atlas-based segmentation has been widely employed due to its ability to delineate multiple organs at the same time via image registration. The use of multiple atlases and subsequent label fusion techniques has further improved the robustness and accuracy of atlas-based segmentation. However, the accuracy of atlas-based segmentation is still prone to registration errors; for example, the segmentation of in vivo MR images can be less accurate and robust against image artifacts than the segmentation of post mortem images. In order to improve the accuracy and robustness of atlas-based segmentation, we propose a multi-object, model-based, multi-atlas segmentation method. We first establish spatial correspondences across atlases using a set of dense pseudo-landmark particles. We build a multi-object point distribution model using those particles in order to capture inter- and intra- subject variation among brain structures. The segmentation is obtained by fitting the model into a subject image, followed by label fusion process. Our result shows that the proposed method resulted in greater accuracy than comparable segmentation methods, including a widely used ANTs registration tool.
Alsmadi, Othman M K; Abo-Hammour, Zaer S
2015-01-01
A robust computational technique for model order reduction (MOR) of multi-time-scale discrete systems (single input single output (SISO) and multi-input multioutput (MIMO)) is presented in this paper. This work is motivated by the singular perturbation of multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The new approach is proposed using genetic algorithms (GA) with the advantage of obtaining a reduced order model, maintaining the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the elements of B, C, and D matrices. The GA computational procedure is based on maximizing the fitness function corresponding to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new approach.
Tao, Jianmin; Rappe, Andrew M.
2016-01-20
Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C 6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C 8 and C 10 between small molecules. We findmore » that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C 8 and 7% for C 10. As a result, inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.« less
NASA Astrophysics Data System (ADS)
Wen, Xiao-Gang
2017-05-01
We propose a generic construction of exactly soluble local bosonic models that realize various topological orders with gappable boundaries. In particular, we construct an exactly soluble bosonic model that realizes a (3+1)-dimensional [(3+1)D] Z2-gauge theory with emergent fermionic Kramers doublet. We show that the emergence of such a fermion will cause the nucleation of certain topological excitations in space-time without pin+ structure. The exactly soluble model also leads to a statistical transmutation in (3+1)D. In addition, we construct exactly soluble bosonic models that realize 2 types of time-reversal symmetry-enriched Z2 topological orders in 2+1 dimensions, and 20 types of simplest time-reversal symmetry-enriched topological (SET) orders which have only one nontrivial pointlike and stringlike topological excitation. Many physical properties of those topological states are calculated using the exactly soluble models. We find that some time-reversal SET orders have pointlike excitations that carry Kramers doublet, a fractionalized time-reversal symmetry. We also find that some Z2 SET orders have stringlike excitations that carry anomalous (nononsite) Z2 symmetry, which can be viewed as a fractionalization of Z2 symmetry on strings. Our construction is based on cochains and cocycles in algebraic topology, which is very versatile. In principle, it can also realize emergent topological field theory beyond the twisted gauge theory.
Viscoelastic Finite Difference Modeling Using Graphics Processing Units
NASA Astrophysics Data System (ADS)
Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B.
2014-12-01
Full waveform seismic modeling requires a huge amount of computing power that still challenges today's technology. This limits the applicability of powerful processing approaches in seismic exploration like full-waveform inversion. This paper explores the use of Graphics Processing Units (GPU) to compute a time based finite-difference solution to the viscoelastic wave equation. The aim is to investigate whether the adoption of the GPU technology is susceptible to reduce significantly the computing time of simulations. The code presented herein is based on the freely accessible software of Bohlen (2002) in 2D provided under a General Public License (GNU) licence. This implementation is based on a second order centred differences scheme to approximate time differences and staggered grid schemes with centred difference of order 2, 4, 6, 8, and 12 for spatial derivatives. The code is fully parallel and is written using the Message Passing Interface (MPI), and it thus supports simulations of vast seismic models on a cluster of CPUs. To port the code from Bohlen (2002) on GPUs, the OpenCl framework was chosen for its ability to work on both CPUs and GPUs and its adoption by most of GPU manufacturers. In our implementation, OpenCL works in conjunction with MPI, which allows computations on a cluster of GPU for large-scale model simulations. We tested our code for model sizes between 1002 and 60002 elements. Comparison shows a decrease in computation time of more than two orders of magnitude between the GPU implementation run on a AMD Radeon HD 7950 and the CPU implementation run on a 2.26 GHz Intel Xeon Quad-Core. The speed-up varies depending on the order of the finite difference approximation and generally increases for higher orders. Increasing speed-ups are also obtained for increasing model size, which can be explained by kernel overheads and delays introduced by memory transfers to and from the GPU through the PCI-E bus. Those tests indicate that the GPU memory size and the slow memory transfers are the limiting factors of our GPU implementation. Those results show the benefits of using GPUs instead of CPUs for time based finite-difference seismic simulations. The reductions in computation time and in hardware costs are significant and open the door for new approaches in seismic inversion.
NASA Astrophysics Data System (ADS)
Poroseva, Svetlana V.
2013-11-01
Simulations of turbulent boundary-layer flows are usually conducted using a set of the simplified Reynolds-Averaged Navier-Stokes (RANS) equations obtained by order-of-magnitude analysis (OMA) of the original RANS equations. The resultant equations for the mean-velocity components are closed using the Boussinesq approximation for the Reynolds stresses. In this study OMA is applied to the fourth-order RANS (FORANS) set of equations. The FORANS equations are chosen as they can be closed on the level of the 5th-order correlations without using unknown model coefficients, i.e. no turbulent diffusion modeling is required. New models for the 2nd-, 3rd- and 4th-order velocity-pressure gradient correlations are derived for the current FORANS equations. This set of FORANS equations and models are analyzed for the case of two-dimensional mean flow. The equations include familiar transport terms for the mean-velocity components along with algebraic expressions for velocity correlations of different orders specific to the FORANS approach. Flat plate DNS data (Spalart, 1988) are used to verify these expressions and the areas of the OMA applicability within the boundary layer. The material is based upon work supported by NASA under award NNX12AJ61A.
Blind identification of nonlinear models with non-Gaussian inputs
NASA Astrophysics Data System (ADS)
Prakriya, Shankar; Pasupathy, Subbarayan; Hatzinakos, Dimitrios
1995-12-01
Some methods are proposed for the blind identification of finite-order discrete-time nonlinear models with non-Gaussian circular inputs. The nonlinear models consist of two finite memory linear time invariant (LTI) filters separated by a zero-memory nonlinearity (ZMNL) of the polynomial type (the LTI-ZMNL-LTI models). The linear subsystems are allowed to be of non-minimum phase (NMP). The methods base their estimates of the impulse responses on slices of the N plus 1th order polyspectra of the output sequence. It is shown that the identification of LTI-ZMNL systems requires only a 1-D moment or polyspectral slice. The coefficients of the ZMNL are not estimated, and need not be known. The order of the nonlinearity can, in theory, be estimated from the received signal. These methods possess several noise and interference suppression characteristics, and have applications in modeling nonlinearly amplified QAM/QPSK signals in digital satellite and microwave communications.
Parameterized reduced-order models using hyper-dual numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fike, Jeffrey A.; Brake, Matthew Robert
2013-10-01
The goal of most computational simulations is to accurately predict the behavior of a real, physical system. Accurate predictions often require very computationally expensive analyses and so reduced order models (ROMs) are commonly used. ROMs aim to reduce the computational cost of the simulations while still providing accurate results by including all of the salient physics of the real system in the ROM. However, real, physical systems often deviate from the idealized models used in simulations due to variations in manufacturing or other factors. One approach to this issue is to create a parameterized model in order to characterize themore » effect of perturbations from the nominal model on the behavior of the system. This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to calculate the derivatives necessary for the parameterization.« less
NASA Astrophysics Data System (ADS)
Melendez, Jordan; Wesolowski, Sarah; Furnstahl, Dick
2017-09-01
Chiral effective field theory (EFT) predictions are necessarily truncated at some order in the EFT expansion, which induces an error that must be quantified for robust statistical comparisons to experiment. A Bayesian model yields posterior probability distribution functions for these errors based on expectations of naturalness encoded in Bayesian priors and the observed order-by-order convergence pattern of the EFT. As a general example of a statistical approach to truncation errors, the model was applied to chiral EFT for neutron-proton scattering using various semi-local potentials of Epelbaum, Krebs, and Meißner (EKM). Here we discuss how our model can learn correlation information from the data and how to perform Bayesian model checking to validate that the EFT is working as advertised. Supported in part by NSF PHY-1614460 and DOE NUCLEI SciDAC DE-SC0008533.
A structural model for surface-enhanced stabilization in some metallic glass formers
NASA Astrophysics Data System (ADS)
Levchenko, Elena V.; Evteev, Alexander V.; Yavari, Alain R.; Louzguine-Luzgin, Dmitri V.; Belova, Irina V.; Murch, Graeme E.
2013-01-01
A structural model for surface-enhanced stabilization in some metallic glass formers is proposed. In this model, the alloy surface structure is represented by five-layer Kagomé-net-based lateral ordering. Such surface structure has intrinsic abilities to stabilize icosahedral-like short-range order in the bulk, acting as 'a cloak of liquidity'. In particular, recent experimental observations of surface-induced lateral ordering and a very high glass forming ability of the liquid alloy Au49Ag5.5Pd2.3Cu26.9Si16.3 can be united using this structural model. This model may be useful for the interpretation of surface structure of other liquid alloys with a high glass forming ability. In addition, it suggests the possibility of guiding the design of the surface coating of solid containers for the stabilization of undercooled liquids.
A numerical identifiability test for state-space models--application to optimal experimental design.
Hidalgo, M E; Ayesa, E
2001-01-01
This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is based on the recursive numerical evaluation of the information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of the utility of the proposed test, the paper presents its application to an optimal experimental design of ASM Model No. 1 calibration, in order to estimate the maximum specific growth rate microH and the concentration of heterotrophic biomass XBH.
A trust-region algorithm for the optimization of PSA processes using reduced-order modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, A.; Biegler, L.; Zitney, S.
2009-01-01
The last few decades have seen a considerable increase in the applications of adsorptive gas separation technologies, such as pressure swing adsorption (PSA); the applications range from bulk separations to trace contaminant removal. PSA processes are based on solid-gas equilibrium and operate under periodic transient conditions [1]. Bed models for these processes are therefore defined by coupled nonlinear partial differential and algebraic equations (PDAEs) distributed in space and time with periodic boundary conditions that connect the processing steps together and high nonlinearities arising from non-isothermal effects and nonlinear adsorption isotherms. As a result, the optimization of such systems for eithermore » design or operation represents a significant computational challenge to current nonlinear programming algorithms. Model reduction is a powerful methodology that permits systematic generation of cost-efficient low-order representations of large-scale systems that result from discretization of such PDAEs. In particular, low-dimensional approximations can be obtained from reduced order modeling (ROM) techniques based on proper orthogonal decomposition (POD) and can be used as surrogate models in the optimization problems. In this approach, a representative ensemble of solutions of the dynamic PDAE system is constructed by solving a higher-order discretization of the model using the method of lines, followed by the application of Karhunen-Loeve expansion to derive a small set of empirical eigenfunctions (POD modes). These modes are used as basis functions within a Galerkin's projection framework to derive a low-order DAE system that accurately describes the dominant dynamics of the PDAE system. This approach leads to a DAE system of significantly lower order, thus replacing the one obtained from spatial discretization before and making optimization problem computationally efficient [2]. The ROM methodology has been successfully applied to a 2-bed 4-step PSA process used for separating a hydrogen-methane mixture in [3]. The reduced order model developed was successfully used to optimize this process to maximize hydrogen recovery within a trust-region. We extend this approach in this work to develop a rigorous trust-region algorithm for ROM-based optimization of PSA processes. The trust-region update rules and sufficient decrease condition for the objective is used to determine the size of the trust-region. Based on the decrease in the objective function and error in the ROM, a ROM updation strategy is designed [4, 5]. The inequalities and bounds are handled in the algorithm using exact penalty formulation, and a non-smooth trust-region algorithm by Conn et al. [6] is used to handle non-differentiability. To ensure that the first order consistency condition is met and the optimum obtained from ROM-based optimization corresponds to the optimum of the original problem, a scaling function, such as one proposed by Alexandrov et al. [7], is incorporated in the objective function. Such error control mechanism is also capable of handling numerical inconsistencies such as unphysical oscillations in the state variable profiles. The proposed methodology is applied to optimize a PSA process to concentrate CO{sub 2} from a nitrogen-carbon dioxide mixture. As in [3], separate ROMs are developed for each operating step with different POD modes for each state variable. Numerical results will be presented for optimization case studies which involve maximizing CO{sub 2} recovery, feed throughput or minimizing overall power consumption.« less
A Systematic Planning for Science Laboratory Instruction: Research-Based Evidence
ERIC Educational Resources Information Center
Balta, Nuri
2015-01-01
The aim of this study is to develop an instructional design model for science laboratory instruction. Well-known ID models were analysed and Dick and Carey model was imitated to produce a science laboratory instructional design (SLID) model. In order to validate the usability of the designed model, the views of 34 high school teachers related to…
ERIC Educational Resources Information Center
Martin, Ian; Carey, John
2014-01-01
A logic model was developed based on an analysis of the 2012 American School Counselor Association (ASCA) National Model in order to provide direction for program evaluation initiatives. The logic model identified three outcomes (increased student achievement/gap reduction, increased school counseling program resources, and systemic change and…
The Role of Empirical Evidence in Modeling Speech Segmentation
ERIC Educational Resources Information Center
Phillips, Lawrence
2015-01-01
Choosing specific implementational details is one of the most important aspects of creating and evaluating a model. In order to properly model cognitive processes, choices for these details must be made based on empirical research. Unfortunately, modelers are often forced to make decisions in the absence of relevant data. My work investigates the…
Forgetting in Immediate Serial Recall: Decay, Temporal Distinctiveness, or Interference?
ERIC Educational Resources Information Center
Oberauer, Klaus; Lewandowsky, Stephan
2008-01-01
Three hypotheses of forgetting from immediate memory were tested: time-based decay, decreasing temporal distinctiveness, and interference. The hypotheses were represented by 3 models of serial recall: the primacy model, the SIMPLE (scale-independent memory, perception, and learning) model, and the SOB (serial order in a box) model, respectively.…
Sensitivity of an Antarctic Ice Sheet Model to Sub-Ice-Shelf Melting
NASA Astrophysics Data System (ADS)
Lipscomb, W. H.; Leguy, G.; Urban, N. M.; Berdahl, M.
2017-12-01
Theory and observations suggest that marine-based sectors of the Antarctic ice sheet could retreat rapidly under ocean warming and increased melting beneath ice shelves. Numerical models of marine ice sheets vary widely in sensitivity, depending on grid resolution and the parameterization of key processes (e.g., calving and hydrofracture). Here we study the sensitivity of the Antarctic ice sheet to ocean warming and sub-shelf melting in standalone simulations of the Community Ice Sheet Model (CISM). Melt rates either are prescribed based on observations and high-resolution ocean model output, or are derived from a plume model forced by idealized ocean temperature profiles. In CISM, we vary the model resolution (between 1 and 8 km), Stokes approximation (shallow-shelf, depth-integrated higher-order, or 3D higher-order) and calving scheme to create an ensemble of plausible responses to sub-shelf melting. This work supports a broader goal of building statistical and reduced models that can translate large-scale Earth-system model projections to changes in Antarctic ocean temperatures and ice sheet discharge, thus better quantifying uncertainty in Antarctic-sourced sea-level rise.
Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits
NASA Technical Reports Server (NTRS)
Kopasakis, George
2015-01-01
Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits
NASA Technical Reports Server (NTRS)
Kopasakis, George
2010-01-01
Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan
2017-03-01
Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rotaru, Ionela Magdalena
2015-09-01
Knowledge management is a powerful instrument. Areas where knowledge - based modelling can be applied are different from business, industry, government to education area. Companies engage in efforts to restructure the database held based on knowledge management principles as they recognize in it a guarantee of models characterized by the fact that they consist only from relevant and sustainable knowledge that can bring value to the companies. The proposed paper presents a theoretical model of what it means optimizing polyethylene pipes, thus bringing to attention two important engineering fields, the one of the metal cutting process and gas industry, who meet in order to optimize the butt fusion welding process - the polyethylene cutting part - of the polyethylene pipes. All approach is shaped on the principles of knowledge management. The study was made in collaboration with companies operating in the field.
Linear analysis of a force reflective teleoperator
NASA Technical Reports Server (NTRS)
Biggers, Klaus B.; Jacobsen, Stephen C.; Davis, Clark C.
1989-01-01
Complex force reflective teleoperation systems are often very difficult to analyze due to the large number of components and control loops involved. One mode of a force reflective teleoperator is described. An analysis of the performance of the system based on a linear analysis of the general full order model is presented. Reduced order models are derived and correlated with the full order models. Basic effects of force feedback and position feedback are examined and the effects of time delays between the master and slave are studied. The results show that with symmetrical position-position control of teleoperators, a basic trade off must be made between the intersystem stiffness of the teleoperator, and the impedance felt by the operator in free space.
Calculation of Optical Parameters of Liquid Crystals
NASA Astrophysics Data System (ADS)
Kumar, A.
2007-12-01
Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.
Improving the FLORIS wind plant model for compatibility with gradient-based optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Jared J.; Gebraad, Pieter MO; Ning, Andrew
The FLORIS (FLOw Redirection and Induction in Steady-state) model, a parametric wind turbine wake model that predicts steady-state wake characteristics based on wind turbine position and yaw angle, was developed for optimization of control settings and turbine locations. This article provides details on changes made to the FLORIS model to make the model more suitable for gradient-based optimization. Changes to the FLORIS model were made to remove discontinuities and add curvature to regions of non-physical zero gradient. Exact gradients for the FLORIS model were obtained using algorithmic differentiation. A set of three case studies demonstrate that using exact gradients withmore » gradient-based optimization reduces the number of function calls by several orders of magnitude. The case studies also show that adding curvature improves convergence behavior, allowing gradient-based optimization algorithms used with the FLORIS model to more reliably find better solutions to wind farm optimization problems.« less
NASA Astrophysics Data System (ADS)
Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.
2017-12-01
Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.
Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A
2017-01-01
Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer’s Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26-cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to conventional whole-body gradients. The even-order terms were necessary for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric accuracy compared with the simulation-based coefficients. PMID:28033119
Strained layer relaxation effect on current crowding and efficiency improvement of GaN based LED
NASA Astrophysics Data System (ADS)
Aurongzeb, Deeder
2012-02-01
Efficiency droop effect of GaN based LED at high power and high temperature is addressed by several groups based on career delocalization and photon recycling effect(radiative recombination). We extend the previous droop models to optical loss parameters. We correlate stained layer relaxation at high temperature and high current density to carrier delocalization. We propose a third order model and show that Shockley-Hall-Read and Auger recombination effect is not enough to account for the efficiency loss. Several strained layer modification scheme is proposed based on the model.
A new solution method for wheel/rail rolling contact.
Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei
2016-01-01
To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.
Reduced-Order Models Based on POD-Tpwl for Compositional Subsurface Flow Simulation
NASA Astrophysics Data System (ADS)
Durlofsky, L. J.; He, J.; Jin, L. Z.
2014-12-01
A reduced-order modeling procedure applicable for compositional subsurface flow simulation will be described and applied. The technique combines trajectory piecewise linearization (TPWL) and proper orthogonal decomposition (POD) to provide highly efficient surrogate models. The method is based on a molar formulation (which uses pressure and overall component mole fractions as the primary variables) and is applicable for two-phase, multicomponent systems. The POD-TPWL procedure expresses new solutions in terms of linearizations around solution states generated and saved during previously simulated 'training' runs. High-dimensional states are projected into a low-dimensional subspace using POD. Thus, at each time step, only a low-dimensional linear system needs to be solved. Results will be presented for heterogeneous three-dimensional simulation models involving CO2 injection. Both enhanced oil recovery and carbon storage applications (with horizontal CO2 injectors) will be considered. Reasonably close agreement between full-order reference solutions and compositional POD-TPWL simulations will be demonstrated for 'test' runs in which the well controls differ from those used for training. Construction of the POD-TPWL model requires preprocessing overhead computations equivalent to about 3-4 full-order runs. Runtime speedups using POD-TPWL are, however, very significant - typically O(100-1000). The use of POD-TPWL for well control optimization will also be illustrated. For this application, some amount of retraining during the course of the optimization is required, which leads to smaller, but still significant, speedup factors.
Generating Scenarios When Data Are Missing
NASA Technical Reports Server (NTRS)
Mackey, Ryan
2007-01-01
The Hypothetical Scenario Generator (HSG) is being developed in conjunction with other components of artificial-intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. The HSG accepts, as input, possibly incomplete data on the current state of a system (see figure). The HSG models a potential fault scenario as an ordered disjunctive tree of conjunctive consequences, wherein the ordering is based upon the likelihood that a particular conjunctive path will be taken for the given set of inputs. The computation of likelihood is based partly on a numerical ranking of the degree of completeness of data with respect to satisfaction of the antecedent conditions of prognostic rules. The results from the HSG are then used by a model-based artificial- intelligence subsystem to predict realistic scenarios and states.
Crossed and Locked Quotes in a Multi-Market Simulation
Todd, Andrew; Beling, Peter; Scherer, William
2016-01-01
Financial markets are often fragmented, introducing the possibility that quotes in identical securities may become crossed or locked. There are a number of theoretical explanations for the existence of crossed and locked quotes, including competition, simultaneous actions, inattentiveness, fee structure and market access. In this paper, we perform a simulation experiment designed to examine the effect of simple order routing procedures on the properties of a fragmented market consisting of a single security trading in two independent limit order books. The quotes in the two markets are connected solely by the routing decision of the market participants. We report on the health of the consolidated market as measured by the duration of crossed and locked states, as well as the spread and the volatility of transaction prices in the consolidated market. We aim to quantify exactly how the prevalence of order routing among a population of market participants affects properties of the consolidated market. Our model contributes to the zero-intelligence literature by treating order routing as an experimental variable. Additionally, we introduce a parsimonious heuristic for limit order routing, allowing us to study the effects of both market order routing and limit order routing. Our model refines intuition for the sometimes subtle relationships between the prevalence of order routing and various market measures. Our model also provides a benchmark for more complex agent-based models. PMID:26959416
Crossed and Locked Quotes in a Multi-Market Simulation.
Todd, Andrew; Beling, Peter; Scherer, William
2016-01-01
Financial markets are often fragmented, introducing the possibility that quotes in identical securities may become crossed or locked. There are a number of theoretical explanations for the existence of crossed and locked quotes, including competition, simultaneous actions, inattentiveness, fee structure and market access. In this paper, we perform a simulation experiment designed to examine the effect of simple order routing procedures on the properties of a fragmented market consisting of a single security trading in two independent limit order books. The quotes in the two markets are connected solely by the routing decision of the market participants. We report on the health of the consolidated market as measured by the duration of crossed and locked states, as well as the spread and the volatility of transaction prices in the consolidated market. We aim to quantify exactly how the prevalence of order routing among a population of market participants affects properties of the consolidated market. Our model contributes to the zero-intelligence literature by treating order routing as an experimental variable. Additionally, we introduce a parsimonious heuristic for limit order routing, allowing us to study the effects of both market order routing and limit order routing. Our model refines intuition for the sometimes subtle relationships between the prevalence of order routing and various market measures. Our model also provides a benchmark for more complex agent-based models.
NASA Astrophysics Data System (ADS)
Kneringer, Philipp; Dietz, Sebastian; Mayr, Georg J.; Zeileis, Achim
2017-04-01
Low-visibility conditions have a large impact on aviation safety and economic efficiency of airports and airlines. To support decision makers, we develop a statistical probabilistic nowcasting tool for the occurrence of capacity-reducing operations related to low visibility. The probabilities of four different low visibility classes are predicted with an ordered logistic regression model based on time series of meteorological point measurements. Potential predictor variables for the statistical models are visibility, humidity, temperature and wind measurements at several measurement sites. A stepwise variable selection method indicates that visibility and humidity measurements are the most important model inputs. The forecasts are tested with a 30 minute forecast interval up to two hours, which is a sufficient time span for tactical planning at Vienna Airport. The ordered logistic regression models outperform persistence and are competitive with human forecasters.
Modeling Passive Propagation of Malwares on the WWW
NASA Astrophysics Data System (ADS)
Chunbo, Liu; Chunfu, Jia
Web-based malwares host in websites fixedly and download onto user's computers automatically while users browse. This passive propagation pattern is different from that of traditional viruses and worms. A propagation model based on reverse web graph is proposed. In this model, propagation of malwares is analyzed by means of random jump matrix which combines orderness and randomness of user browsing behaviors. Explanatory experiments, which has single or multiple propagation sources respectively, prove the validity of the model. Using this model, people can evaluate the hazardness of specified websites and take corresponding countermeasures.
Data Driven Model Development for the Supersonic Semispan Transport (S(sup 4)T)
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2011-01-01
We investigate two common approaches to model development for robust control synthesis in the aerospace community; namely, reduced order aeroservoelastic modelling based on structural finite-element and computational fluid dynamics based aerodynamic models and a data-driven system identification procedure. It is shown via analysis of experimental Super- Sonic SemiSpan Transport (S4T) wind-tunnel data using a system identification approach it is possible to estimate a model at a fixed Mach, which is parsimonious and robust across varying dynamic pressures.
[GSH fermentation process modeling using entropy-criterion based RBF neural network model].
Tan, Zuoping; Wang, Shitong; Deng, Zhaohong; Du, Guocheng
2008-05-01
The prediction accuracy and generalization of GSH fermentation process modeling are often deteriorated by noise existing in the corresponding experimental data. In order to avoid this problem, we present a novel RBF neural network modeling approach based on entropy criterion. It considers the whole distribution structure of the training data set in the parameter learning process compared with the traditional MSE-criterion based parameter learning, and thus effectively avoids the weak generalization and over-learning. Then the proposed approach is applied to the GSH fermentation process modeling. Our results demonstrate that this proposed method has better prediction accuracy, generalization and robustness such that it offers a potential application merit for the GSH fermentation process modeling.
Output-Feedback Model Predictive Control of a Pasteurization Pilot Plant based on an LPV model
NASA Astrophysics Data System (ADS)
Karimi Pour, Fatemeh; Ocampo-Martinez, Carlos; Puig, Vicenç
2017-01-01
This paper presents a model predictive control (MPC) of a pasteurization pilot plant based on an LPV model. Since not all the states are measured, an observer is also designed, which allows implementing an output-feedback MPC scheme. However, the model of the plant is not completely observable when augmented with the disturbance models. In order to solve this problem, the following strategies are used: (i) the whole system is decoupled into two subsystems, (ii) an inner state-feedback controller is implemented into the MPC control scheme. A real-time example based on the pasteurization pilot plant is simulated as a case study for testing the behavior of the approaches.
Modeling of biaxial gimbal-less MEMS scanning mirrors
NASA Astrophysics Data System (ADS)
von Wantoch, Thomas; Gu-Stoppel, Shanshan; Senger, Frank; Mallas, Christian; Hofmann, Ulrich; Meurer, Thomas; Benecke, Wolfgang
2016-03-01
One- and two-dimensional MEMS scanning mirrors for resonant or quasi-stationary beam deflection are primarily known as tiny micromirror devices with aperture sizes up to a few Millimeters and usually address low power applications in high volume markets, e.g. laser beam scanning pico-projectors or gesture recognition systems. In contrast, recently reported vacuum packaged MEMS scanners feature mirror diameters up to 20 mm and integrated high-reflectivity dielectric coatings. These mirrors enable MEMS based scanning for applications that require large apertures due to optical constraints like 3D sensing or microscopy as well as for high power laser applications like laser phosphor displays, automotive lighting and displays, 3D printing and general laser material processing. This work presents modelling, control design and experimental characterization of gimbal-less MEMS mirrors with large aperture size. As an example a resonant biaxial Quadpod scanner with 7 mm mirror diameter and four integrated PZT (lead zirconate titanate) actuators is analyzed. The finite element method (FEM) model developed and computed in COMSOL Multiphysics is used for calculating the eigenmodes of the mirror as well as for extracting a high order (n < 10000) state space representation of the mirror dynamics with actuation voltages as system inputs and scanner displacement as system output. By applying model order reduction techniques using MATLABR a compact state space system approximation of order n = 6 is computed. Based on this reduced order model feedforward control inputs for different, properly chosen scanner displacement trajectories are derived and tested using the original FEM model as well as the micromirror.
A curvilinear, anisotropic, p-version, brick finite element based on geometric entities
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.
1992-01-01
A 'brick' solid finite element is presently developed on the basis of the p-version analysis, and used to demonstrate the FEM concept of 'geometric entities'. This method eliminates interelement discontinuities between low- and high-order elements, allowing very fine control over the shape-function order in various parts of the model. Attention is given to the illustrative cases of a one-element model of an elliptic pipe, and a square cross-section cantilevered beam.
PySeqLab: an open source Python package for sequence labeling and segmentation.
Allam, Ahmed; Krauthammer, Michael
2017-11-01
Text and genomic data are composed of sequential tokens, such as words and nucleotides that give rise to higher order syntactic constructs. In this work, we aim at providing a comprehensive Python library implementing conditional random fields (CRFs), a class of probabilistic graphical models, for robust prediction of these constructs from sequential data. Python Sequence Labeling (PySeqLab) is an open source package for performing supervised learning in structured prediction tasks. It implements CRFs models, that is discriminative models from (i) first-order to higher-order linear-chain CRFs, and from (ii) first-order to higher-order semi-Markov CRFs (semi-CRFs). Moreover, it provides multiple learning algorithms for estimating model parameters such as (i) stochastic gradient descent (SGD) and its multiple variations, (ii) structured perceptron with multiple averaging schemes supporting exact and inexact search using 'violation-fixing' framework, (iii) search-based probabilistic online learning algorithm (SAPO) and (iv) an interface for Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the limited-memory BFGS algorithms. Viterbi and Viterbi A* are used for inference and decoding of sequences. Using PySeqLab, we built models (classifiers) and evaluated their performance in three different domains: (i) biomedical Natural language processing (NLP), (ii) predictive DNA sequence analysis and (iii) Human activity recognition (HAR). State-of-the-art performance comparable to machine-learning based systems was achieved in the three domains without feature engineering or the use of knowledge sources. PySeqLab is available through https://bitbucket.org/A_2/pyseqlab with tutorials and documentation. ahmed.allam@yale.edu or michael.krauthammer@yale.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Equivalent Relaxations of Optimal Power Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, S; Low, SH; Teeraratkul, T
2015-03-01
Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results implymore » that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.« less
ICA model order selection of task co-activation networks.
Ray, Kimberly L; McKay, D Reese; Fox, Peter M; Riedel, Michael C; Uecker, Angela M; Beckmann, Christian F; Smith, Stephen M; Fox, Peter T; Laird, Angela R
2013-01-01
Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders.
ICA model order selection of task co-activation networks
Ray, Kimberly L.; McKay, D. Reese; Fox, Peter M.; Riedel, Michael C.; Uecker, Angela M.; Beckmann, Christian F.; Smith, Stephen M.; Fox, Peter T.; Laird, Angela R.
2013-01-01
Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders. PMID:24339802
Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong
2014-02-01
Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu
2016-11-23
The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.
Distributed Seismic Moment Fault Model, Spectral Characteristics and Radiation Patterns
NASA Astrophysics Data System (ADS)
Shani-Kadmiel, Shahar; Tsesarsky, Michael; Gvirtzman, Zohar
2014-05-01
We implement a Distributed Seismic Moment (DSM) fault model, a physics-based representation of an earthquake source based on a skewed-Gaussian slip distribution over an elliptical rupture patch, for the purpose of forward modeling of seismic-wave propagation in 3-D heterogeneous medium. The elliptical rupture patch is described by 13 parameters: location (3), dimensions of the patch (2), patch orientation (1), focal mechanism (3), nucleation point (2), peak slip (1), rupture velocity (1). A node based second order finite difference approach is used to solve the seismic-wave equations in displacement formulation (WPP, Nilsson et al., 2007). Results of our DSM fault model are compared with three commonly used fault models: Point Source Model (PSM), Haskell's fault Model (HM), and HM with Radial (HMR) rupture propagation. Spectral features of the waveforms and radiation patterns from these four models are investigated. The DSM fault model best incorporates the simplicity and symmetry of the PSM with the directivity effects of the HMR while satisfying the physical requirements, i.e., smooth transition from peak slip at the nucleation point to zero at the rupture patch border. The implementation of the DSM in seismic-wave propagation forward models comes at negligible computational cost. Reference: Nilsson, S., Petersson, N. A., Sjogreen, B., and Kreiss, H.-O. (2007). Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation. SIAM Journal on Numerical Analysis, 45(5), 1902-1936.
An, Mahru C; O'Brien, Robert N; Zhang, Ningzhe; Patra, Biranchi N; De La Cruz, Michael; Ray, Animesh; Ellerby, Lisa M
2014-04-15
We have previously reported the genetic correction of Huntington's disease (HD) patient-derived induced pluripotent stem cells using traditional homologous recombination (HR) approaches. To extend this work, we have adopted a CRISPR-based genome editing approach to improve the efficiency of recombination in order to generate allelic isogenic HD models in human cells. Incorporation of a rapid antibody-based screening approach to measure recombination provides a powerful method to determine relative efficiency of genome editing for modeling polyglutamine diseases or understanding factors that modulate CRISPR/Cas9 HR.
Unified Simulation and Analysis Framework for Deep Space Navigation Design
NASA Technical Reports Server (NTRS)
Anzalone, Evan; Chuang, Jason; Olsen, Carrie
2013-01-01
As the technology that enables advanced deep space autonomous navigation continues to develop and the requirements for such capability continues to grow, there is a clear need for a modular expandable simulation framework. This tool's purpose is to address multiple measurement and information sources in order to capture system capability. This is needed to analyze the capability of competing navigation systems as well as to develop system requirements, in order to determine its effect on the sizing of the integrated vehicle. The development for such a framework is built upon Model-Based Systems Engineering techniques to capture the architecture of the navigation system and possible state measurements and observations to feed into the simulation implementation structure. These models also allow a common environment for the capture of an increasingly complex operational architecture, involving multiple spacecraft, ground stations, and communication networks. In order to address these architectural developments, a framework of agent-based modules is implemented to capture the independent operations of individual spacecraft as well as the network interactions amongst spacecraft. This paper describes the development of this framework, and the modeling processes used to capture a deep space navigation system. Additionally, a sample implementation describing a concept of network-based navigation utilizing digitally transmitted data packets is described in detail. This developed package shows the capability of the modeling framework, including its modularity, analysis capabilities, and its unification back to the overall system requirements and definition.
Venus - Global gravity and topography
NASA Technical Reports Server (NTRS)
Mcnamee, J. B.; Borderies, N. J.; Sjogren, W. L.
1993-01-01
A new gravity field determination that has been produced combines both the Pioneer Venus Orbiter (PVO) and the Magellan Doppler radio data. Comparisonsbetween this estimate, a spherical harmonic model of degree and order 21, and previous models show that significant improvements have been made. Results are displayed as gravity contours overlaying a topographic map. We also calculate a new spherical harmonic model of topography based on Magellan altimetry, with PVO altimetry included where gaps exist in the Magellan data. This model is also of degree and order 21, so in conjunction with the gravity model, Bouguer and isostatic anomaly maps can be produced. These results are very consistent with previous results, but reveal more spatial resolution in the higher latitudes.
Hurdles to Overcome to Model Carrington Class Events
NASA Astrophysics Data System (ADS)
Engel, M.; Henderson, M. G.; Jordanova, V. K.; Morley, S.
2017-12-01
Large geomagnetic storms pose a threat to both space and ground based infrastructure. In order to help mitigate that threat a better understanding of the specifics of these storms is required. Various computer models are being used around the world to analyze the magnetospheric environment, however they are largely inadequate for analyzing the large and extreme storm time environments. Here we report on the first steps towards expanding and robustifying the RAM-SCB inner magnetospheric model, used in conjunction with BATS-R-US and the Space Weather Modeling Framework, in order to simulate storms with Dst > -400. These results will then be used to help expand our modelling capabilities towards including Carrington-class events.
NASA Astrophysics Data System (ADS)
Peres, David Johnny; Cancelliere, Antonino
2016-04-01
Assessment of shallow landslide hazard is important for appropriate planning of mitigation measures. Generally, return period of slope instability is assumed as a quantitative metric to map landslide triggering hazard on a catchment. The most commonly applied approach to estimate such return period consists in coupling a physically-based landslide triggering model (hydrological and slope stability) with rainfall intensity-duration-frequency (IDF) curves. Among the drawbacks of such an approach, the following assumptions may be mentioned: (1) prefixed initial conditions, with no regard to their probability of occurrence, and (2) constant intensity-hyetographs. In our work we propose the use of a Monte Carlo simulation approach in order to investigate the effects of the two above mentioned assumptions. The approach is based on coupling a physically based hydrological and slope stability model with a stochastic rainfall time series generator. By this methodology a long series of synthetic rainfall data can be generated and given as input to a landslide triggering physically based model, in order to compute the return period of landslide triggering as the mean inter-arrival time of a factor of safety less than one. In particular, we couple the Neyman-Scott rectangular pulses model for hourly rainfall generation and the TRIGRS v.2 unsaturated model for the computation of transient response to individual rainfall events. Initial conditions are computed by a water table recession model that links initial conditions at a given event to the final response at the preceding event, thus taking into account variable inter-arrival time between storms. One-thousand years of synthetic hourly rainfall are generated to estimate return periods up to 100 years. Applications are first carried out to map landslide triggering hazard in the Loco catchment, located in highly landslide-prone area of the Peloritani Mountains, Sicily, Italy. Then a set of additional simulations are performed in order to compare the results obtained by the traditional IDF-based method with the Monte Carlo ones. Results indicate that both variability of initial conditions and of intra-event rainfall intensity significantly affect return period estimation. In particular, the common assumption of an initial water table depth at the base of the pervious strata may lead in practice to an overestimation of return period up to one order of magnitude, while the assumption of constant-intensity hyetographs may yield an overestimation by a factor of two or three. Hence, it may be concluded that the analysed simplifications involved in the traditional IDF-based approach generally imply a non-conservative assessment of landslide triggering hazard.
NASA Astrophysics Data System (ADS)
Huang, Wei; Zhang, Xingnan; Li, Chenming; Wang, Jianying
Management of group decision-making is an important issue in water source management development. In order to overcome the defects in lacking of effective communication and cooperation in the existing decision-making models, this paper proposes a multi-layer dynamic model for coordination in water resource allocation and scheduling based group decision making. By introducing the scheme-recognized cooperative satisfaction index and scheme-adjusted rationality index, the proposed model can solve the problem of poor convergence of multi-round decision-making process in water resource allocation and scheduling. Furthermore, the problem about coordination of limited resources-based group decision-making process can be solved based on the effectiveness of distance-based group of conflict resolution. The simulation results show that the proposed model has better convergence than the existing models.
On explicit algebraic stress models for complex turbulent flows
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Speziale, C. G.
1992-01-01
Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.
H-Bridge Inverter Loading Analysis for an Energy Management System
2013-06-01
In order to accomplish the stated objectives, a physics-based model of the system was developed in MATLAB/Simulink. The system was also implemented ...functional architecture and then compile the high level design down to VHDL in order to program the designed functions to the FPGA. B. INSULATED
A posteriori model validation for the temporal order of directed functional connectivity maps
Beltz, Adriene M.; Molenaar, Peter C. M.
2015-01-01
A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a) to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests), and (b) to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one) simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates) and substantive implications (e.g., higher order lags may be common in resting state data). PMID:26379489
Creating Better Child Care Jobs: Model Work Standards for Teaching Staff in Center-Based Child Care.
ERIC Educational Resources Information Center
Center for the Child Care Workforce, Washington, DC.
This document presents model work standards articulating components of the child care center-based work environment that enable teachers to do their jobs well. These standards establish criteria to assess child care work environments and identify areas to improve in order to assure good jobs for adults and good care for children. The standards are…
A structurally based analytic model for estimation of biomass and fuel loads of woodland trees
Robin J. Tausch
2009-01-01
Allometric/structural relationships in tree crowns are a consequence of the physical, physiological, and fluid conduction processes of trees, which control the distribution, efficient support, and growth of foliage in the crown. The structural consequences of these processes are used to develop an analytic model based on the concept of branch orders. A set of...
Calculus domains modelled using an original bool algebra based on polygons
NASA Astrophysics Data System (ADS)
Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.
2016-08-01
Analytical and numerical computer based models require analytical definitions of the calculus domains. The paper presents a method to model a calculus domain based on a bool algebra which uses solid and hollow polygons. The general calculus relations of the geometrical characteristics that are widely used in mechanical engineering are tested using several shapes of the calculus domain in order to draw conclusions regarding the most effective methods to discretize the domain. The paper also tests the results of several CAD commercial software applications which are able to compute the geometrical characteristics, being drawn interesting conclusions. The tests were also targeting the accuracy of the results vs. the number of nodes on the curved boundary of the cross section. The study required the development of an original software consisting of more than 1700 computer code lines. In comparison with other calculus methods, the discretization using convex polygons is a simpler approach. Moreover, this method doesn't lead to large numbers as the spline approximation did, in that case being required special software packages in order to offer multiple, arbitrary precision. The knowledge resulted from this study may be used to develop complex computer based models in engineering.
The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...
Researching Sport Education Appreciatively
ERIC Educational Resources Information Center
Pill, Shane; Hastie, Peter
2016-01-01
In order to plan and enact appropriate learning environments in physical education (PE) teachers are increasingly directed to models based practice. The Sport Education model is one of these models for PE curriculum and teaching design that informs the content and pedagogical direction of sport teaching in PE. Despite Sport Education being well…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... based upon their business models. For example, vendors such as Bloomberg and Reuters that assess a... generates sufficient commission revenue. Although the business models may differ, these vendors' pricing... these varying business models and pricing disciplines in order to market proprietary data products...
Multilayered Word Structure Model for Assessing Spelling of Finnish Children in Shallow Orthography
ERIC Educational Resources Information Center
Kulju, Pirjo; Mäkinen, Marita
2017-01-01
This study explores Finnish children's word-level spelling by applying a linguistically based multilayered word structure model for assessing spelling performance. The model contributes to the analytical qualitative assessment approach in order to identify children's spelling performance for enhancing writing skills. The children (N = 105)…
MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS
A mass-transfer-based model is developed for predicting chlorine decay in drinking-water distribution networks. The model considers first-order reactions of chlorine to occur both in the bulk flow and at the pipe wall. The overall rate of the wall reaction is a function of the ...
MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS
A mass transfer-based model is developed for predicting chlorine decay in drinking water distribution networks. he model considers first order reactions of chlorine to occur both in the bulk flow and at the pipe wall. he overall rate of the wall reaction is a function of the rate...
NASA Astrophysics Data System (ADS)
Zhang, S. Q.; Li, H. N.; Schmidt, R.; Müller, P. C.
2014-02-01
Thin-walled piezoelectric integrated smart structures are easily excited to vibrate by unknown disturbances. In order to design and simulate a control strategy, firstly, an electro-mechanically coupled dynamic finite element (FE) model of smart structures is developed based on first-order shear deformation (FOSD) hypothesis. Linear piezoelectric constitutive equations and the assumption of constant electric field through the thickness are considered. Based on the dynamic FE model, a disturbance rejection (DR) control with proportional-integral (PI) observer using step functions as the fictitious model of disturbances is developed for vibration suppression of smart structures. In order to achieve a better dynamic behavior of the fictitious model of disturbances, the PI observer is extended to generalized proportional-integral (GPI) observer, in which sine or polynomial functions can be used to represent disturbances resulting in better dynamics. Therefore the disturbances can be estimated either by PI or GPI observer, and then the estimated signals are fed back to the controller. The DR control is validated by various kinds of unknown disturbances, and compared with linear-quadratic regulator (LQR) control. The results illustrate that the vibrations are better suppressed by the proposed DR control.
Development of an end-of-life vehicle recovery model using system dynamics and future research needs
NASA Astrophysics Data System (ADS)
Mohamad-Ali, N.; Ghazilla, R. A. R.; Abdul-Rashid, S. H.; Sakundarini, N.; Ahmad-Yazid, A.; Stephenie, L.
2017-06-01
The implementation of end-of-life vehicle (ELV) recovery policy in Malaysia has led vehicle manufacturers to look at different ways to improve design and development of vehicles. Nowadays, it is crucial to incorporate end-of-life (EOL) design strategies into the vehicle design in order to enhance the effectiveness of the ELV recovery network. Although recent studies have shown that product design has a significant effect on the product recovery rate, there is a lack of studies on how EOL design strategies affects the effectiveness of ELV recovery, particularly when there are dynamic changes in the behaviour of the product recovery network. Thus, in this study, we developed a preliminary model based on the system dynamics approach in order to predict the effectiveness of ELV recovery in response to dynamic changes of various factors (including EOL design strategies) in the business environment. We developed this model based on preliminary data that we had gathered from unstructured interviews with the key stakeholders of ELV management in Malaysia. We believe that our model will greatly benefit product designers in incorporating the appropriate EOL design strategies in order to boost ELV recovery effectiveness in Malaysia.
Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes
NASA Astrophysics Data System (ADS)
Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme
2014-01-01
This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.
Variable threshold algorithm for division of labor analyzed as a dynamical system.
Castillo-Cagigal, Manuel; Matallanas, Eduardo; Navarro, Iñaki; Caamaño-Martín, Estefanía; Monasterio-Huelin, Félix; Gutiérrez, Álvaro
2014-12-01
Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.
Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.
Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon
2017-01-01
In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.
A consensus-based dynamics for market volumes
NASA Astrophysics Data System (ADS)
Sabatelli, Lorenzo; Richmond, Peter
2004-12-01
We develop a model of trading orders based on opinion dynamics. The agents may be thought as the share holders of a major mutual fund rather than as direct traders. The balance between their buy and sell orders determines the size of the fund order (volume) and has an impact on prices and indexes. We assume agents interact simultaneously to each other through a Sznajd-like interaction. Their degree of connection is determined by the probability of changing opinion independently of what their neighbours are doing. We assume that such a probability may change randomly, after each transaction, of an amount proportional to the relative difference between the volatility then measured and a benchmark that we assume to be an exponential moving average of the past volume values. We show how this simple model is compatible with some of the main statistical features observed for the asset volumes in financial markets.
NASA Astrophysics Data System (ADS)
Erdt, Marius; Sakas, Georgios
2010-03-01
This work presents a novel approach for model based segmentation of the kidney in images acquired by Computed Tomography (CT). The developed computer aided segmentation system is expected to support computer aided diagnosis and operation planning. We have developed a deformable model based approach based on local shape constraints that prevents the model from deforming into neighboring structures while allowing the global shape to adapt freely to the data. Those local constraints are derived from the anatomical structure of the kidney and the presence and appearance of neighboring organs. The adaptation process is guided by a rule-based deformation logic in order to improve the robustness of the segmentation in areas of diffuse organ boundaries. Our work flow consists of two steps: 1.) a user guided positioning and 2.) an automatic model adaptation using affine and free form deformation in order to robustly extract the kidney. In cases which show pronounced pathologies, the system also offers real time mesh editing tools for a quick refinement of the segmentation result. Evaluation results based on 30 clinical cases using CT data sets show an average dice correlation coefficient of 93% compared to the ground truth. The results are therefore in most cases comparable to manual delineation. Computation times of the automatic adaptation step are lower than 6 seconds which makes the proposed system suitable for an application in clinical practice.
Prediction of Soil pH Hyperspectral Spectrum in Guanzhong Area of Shaanxi Province Based on PLS
NASA Astrophysics Data System (ADS)
Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Cheng, Jie; Tong, Wei; Wei, Jing
2017-12-01
The soil pH of Fufeng County, Yangling County and Wugong County in Shaanxi Province was studied. The spectral reflectance was measured by ASD Field Spec HR portable terrain spectrum, and its spectral characteristics were analyzed. The first deviation of the original spectral reflectance of the soil, the second deviation, the logarithm of the reciprocal logarithm, the first order differential of the reciprocal logarithm and the second order differential of the reciprocal logarithm were used to establish the soil pH Spectral prediction model. The results showed that the correlation between the reflectance spectra after SNV pre-treatment and the soil pH was significantly improved. The optimal prediction model of soil pH established by partial least squares method was a prediction model based on the first order differential of the reciprocal logarithm of spectral reflectance. The principal component factor was 10, the decision coefficient Rc2 = 0.9959, the model root means square error RMSEC = 0.0076, the correction deviation SEC = 0.0077; the verification decision coefficient Rv2 = 0.9893, the predicted root mean square error RMSEP = 0.0157, The deviation of SEP = 0.0160, the model was stable, the fitting ability and the prediction ability were high, and the soil pH can be measured quickly.
Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics.
Ribeiro, J S; Augusto, F; Salva, T J G; Ferreira, M M C
2012-11-15
In this work, soft modeling based on chemometric analyses of coffee beverage sensory data and the chromatographic profiles of volatile roasted coffee compounds is proposed to predict the scores of acidity, bitterness, flavor, cleanliness, body, and overall quality of the coffee beverage. A partial least squares (PLS) regression method was used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the compounds for the regression model of each sensory attribute in order to take only significant chromatographic peaks into account. The prediction errors of these models, using 4 or 5 latent variables, were equal to 0.28, 0.33, 0.35, 0.33, 0.34 and 0.41, for each of the attributes and compatible with the errors of the mean scores of the experts. Thus, the results proved the feasibility of using a similar methodology in on-line or routine applications to predict the sensory quality of Brazilian Arabica coffee. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Desai, Pooja; Hauser, Dan; Sutherlin, Steven
2017-01-01
NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.
Performability modeling based on real data: A case study
NASA Technical Reports Server (NTRS)
Hsueh, M. C.; Iyer, R. K.; Trivedi, K. S.
1988-01-01
Described is a measurement-based performability model based on error and resource usage data collected on a multiprocessor system. A method for identifying the model structure is introduced and the resulting model is validated against real data. Model development from the collection of raw data to the estimation of the expected reward is described. Both normal and error behavior of the system are characterized. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of apparent types of errors.
Performability modeling based on real data: A casestudy
NASA Technical Reports Server (NTRS)
Hsueh, M. C.; Iyer, R. K.; Trivedi, K. S.
1987-01-01
Described is a measurement-based performability model based on error and resource usage data collected on a multiprocessor system. A method for identifying the model structure is introduced and the resulting model is validated against real data. Model development from the collection of raw data to the estimation of the expected reward is described. Both normal and error behavior of the system are characterized. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of different types of errors.
Identifying Model-Based Reconfiguration Goals through Functional Deficiencies
NASA Technical Reports Server (NTRS)
Benazera, Emmanuel; Trave-Massuyes, Louise
2004-01-01
Model-based diagnosis is now advanced to the point autonomous systems face some uncertain and faulty situations with success. The next step toward more autonomy is to have the system recovering itself after faults occur, a process known as model-based reconfiguration. After faults occur, given a prediction of the nominal behavior of the system and the result of the diagnosis operation, this paper details how to automatically determine the functional deficiencies of the system. These deficiencies are characterized in the case of uncertain state estimates. A methodology is then presented to determine the reconfiguration goals based on the deficiencies. Finally, a recovery process interleaves planning and model predictive control to restore the functionalities in prioritized order.
Siegel, J; Kirkland, D
1991-01-01
The Composite Health Care System (CHCS), a MUMPS-based hospital information system (HIS), has evolved from the Decentralized Hospital Computer Program (DHCP) installed within VA Hospitals. The authors explore the evolution of an ancillary-based system toward an integrated model with a look at its current state and possible future. The history and relationships between orders of different types tie specific patient-related data into a logical and temporal model. Diagrams demonstrate how the database structure has evolved to support clinical needs for integration. It is suggested that a fully integrated model is capable of meeting traditional HIS needs.
A measurement-based performability model for a multiprocessor system
NASA Technical Reports Server (NTRS)
Ilsueh, M. C.; Iyer, Ravi K.; Trivedi, K. S.
1987-01-01
A measurement-based performability model based on real error-data collected on a multiprocessor system is described. Model development from the raw errror-data to the estimation of cumulative reward is described. Both normal and failure behavior of the system are characterized. The measured data show that the holding times in key operational and failure states are not simple exponential and that semi-Markov process is necessary to model the system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of different failure types and recovery procedures.
Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆
Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; W. Rieger, Sebastian; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank
2013-01-01
Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks. PMID:23668967
Simulation of Two-Phase Flow Based on a Thermodynamically Constrained Averaging Theory Flow Model
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Dye, A. L.; McClure, J. E.; Farthing, M. W.; Gray, W. G.; Miller, C. T.
2014-12-01
The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for two-fluid-phase flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as interfacial areas, contact angles, interfacial tension, and curvatures; and dynamics of interface movement and relaxation to an equilibrium state. In order to render the TCAT model solvable, certain closure relations are needed to relate fluid pressure, interfacial areas, curvatures, and relaxation rates. In this work, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instance from a hierarchy of two-fluid-phase flow models that emerge from the theory. We show the closure problem that must be solved. Using recent results from high-resolution microscale simulations, we advance a set of closure relations that produce a closed model. Lastly, we use locally conservative spatial discretization and higher order temporal discretization methods to approximate the solution to this new model and compare the solution to the traditional model.
Inverse finite-size scaling for high-dimensional significance analysis
NASA Astrophysics Data System (ADS)
Xu, Yingying; Puranen, Santeri; Corander, Jukka; Kabashima, Yoshiyuki
2018-06-01
We propose an efficient procedure for significance determination in high-dimensional dependence learning based on surrogate data testing, termed inverse finite-size scaling (IFSS). The IFSS method is based on our discovery of a universal scaling property of random matrices which enables inference about signal behavior from much smaller scale surrogate data than the dimensionality of the original data. As a motivating example, we demonstrate the procedure for ultra-high-dimensional Potts models with order of 1010 parameters. IFSS reduces the computational effort of the data-testing procedure by several orders of magnitude, making it very efficient for practical purposes. This approach thus holds considerable potential for generalization to other types of complex models.
Ground-Based Gas-Liquid Flow Research in Microgravity Conditions: State of Knowledge
NASA Technical Reports Server (NTRS)
McQuillen, J.; Colin, C.; Fabre, J.
1999-01-01
During the last decade, ground-based microgravity facilities have been utilized in order to obtain predictions for spacecraft system designers and further the fundamental understanding of two-phase flow. Although flow regime, pressure drop and heat transfer coefficient data has been obtained for straight tubes and a limited number of fittings, measurements of the void fraction, film thickness, wall shear stress, local velocity and void information are also required in order to develop general mechanistic models that can be utilized to ascertain the effects of fluid properties, tube geometry and acceleration levels. A review of this research is presented and includes both empirical data and mechanistic models of the flow behavior.
NASA Astrophysics Data System (ADS)
Fenner, Trevor; Kaufmann, Eric; Levene, Mark; Loizou, George
Human dynamics and sociophysics suggest statistical models that may explain and provide us with better insight into social phenomena. Contextual and selection effects tend to produce extreme values in the tails of rank-ordered distributions of both census data and district-level election outcomes. Models that account for this nonlinearity generally outperform linear models. Fitting nonlinear functions based on rank-ordering census and election data therefore improves the fit of aggregate voting models. This may help improve ecological inference, as well as election forecasting in majoritarian systems. We propose a generative multiplicative decrease model that gives rise to a rank-order distribution and facilitates the analysis of the recent UK EU referendum results. We supply empirical evidence that the beta-like survival function, which can be generated directly from our model, is a close fit to the referendum results, and also may have predictive value when covariate data are available.
NASA Astrophysics Data System (ADS)
Hadi, M. Z.; Djatna, T.; Sugiarto
2018-04-01
This paper develops a dynamic storage assignment model to solve storage assignment problem (SAP) for beverages order picking in a drive-in rack warehousing system to determine the appropriate storage location and space for each beverage products dynamically so that the performance of the system can be improved. This study constructs a graph model to represent drive-in rack storage position then combine association rules mining, class-based storage policies and an arrangement rule algorithm to determine an appropriate storage location and arrangement of the product according to dynamic orders from customers. The performance of the proposed model is measured as rule adjacency accuracy, travel distance (for picking process) and probability a product become expiry using Last Come First Serve (LCFS) queue approach. Finally, the proposed model is implemented through computer simulation and compare the performance for different storage assignment methods as well. The result indicates that the proposed model outperforms other storage assignment methods.
Shilling Attacks Detection in Recommender Systems Based on Target Item Analysis
Zhou, Wei; Wen, Junhao; Koh, Yun Sing; Xiong, Qingyu; Gao, Min; Dobbie, Gillian; Alam, Shafiq
2015-01-01
Recommender systems are highly vulnerable to shilling attacks, both by individuals and groups. Attackers who introduce biased ratings in order to affect recommendations, have been shown to negatively affect collaborative filtering (CF) algorithms. Previous research focuses only on the differences between genuine profiles and attack profiles, ignoring the group characteristics in attack profiles. In this paper, we study the use of statistical metrics to detect rating patterns of attackers and group characteristics in attack profiles. Another question is that most existing detecting methods are model specific. Two metrics, Rating Deviation from Mean Agreement (RDMA) and Degree of Similarity with Top Neighbors (DegSim), are used for analyzing rating patterns between malicious profiles and genuine profiles in attack models. Building upon this, we also propose and evaluate a detection structure called RD-TIA for detecting shilling attacks in recommender systems using a statistical approach. In order to detect more complicated attack models, we propose a novel metric called DegSim’ based on DegSim. The experimental results show that our detection model based on target item analysis is an effective approach for detecting shilling attacks. PMID:26222882
NASA Astrophysics Data System (ADS)
Smith, B. K.; Smith, J. A.; Baeck, M. L.; Miller, A. J.
2015-03-01
A physically based model of the 14 km2 Dead Run watershed in Baltimore County, MD was created to test the impacts of detention basin storage and soil storage on the hydrologic response of a small urban watershed during flood events. The Dead Run model was created using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) algorithms and validated using U.S. Geological Survey stream gaging observations for the Dead Run watershed and 5 subbasins over the largest 21 warm season flood events during 2008-2012. Removal of the model detention basins resulted in a median peak discharge increase of 11% and a detention efficiency of 0.5, which was defined as the percent decrease in peak discharge divided by percent detention controlled area. Detention efficiencies generally decreased with increasing basin size. We tested the efficiency of detention basin networks by focusing on the "drainage network order," akin to the stream order but including storm drains, streams, and culverts. The detention efficiency increased dramatically between first-order detention and second-order detention but was similar for second and third-order detention scenarios. Removal of the soil compacted layer, a common feature in urban soils, resulted in a 7% decrease in flood peak discharges. This decrease was statistically similar to the flood peak decrease caused by existing detention. Current soil storage within the Dead Run watershed decreased flood peak discharges by a median of 60%. Numerical experiment results suggested that detention basin storage and increased soil storage have the potential to substantially decrease flood peak discharges.
Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.
Chang, Cheng-Tao; Chen, Yu-Hsing; Lin, Chou-Ching K; Ju, Ming-Shaung
2015-07-16
The mechanical characteristics of ultrastructures of rat sciatic nerves were investigated through animal experiments and finite element analyses. A custom-designed dynamic testing apparatus was used to conduct in vitro transverse compression experiments on the nerves. The optical coherence tomography (OCT) was utilized to record the cross-sectional images of nerve during the dynamic testing. Two-dimensional finite element models of the nerves were built based on their OCT images. A hyper-viscoelastic model was employed to describe the elastic and stress relaxation response of each ultrastructure of the nerve, namely the endoneurium, the perineurium and the epineurium. The first-order Ogden model was employed to describe the elasticity of each ultrastructure and a generalized Maxwell model for the relaxation. The inverse finite element analysis was used to estimate the material parameters of the ultrastructures. The results show the instantaneous shear modulus of the ultrastructures in decreasing order is perineurium, endoneurium, and epineurium. The FE model combined with the first-order Ogden model and the second-order Prony series is good enough for describing the compress-and-hold response of the nerve ultrastructures. The integration of OCT and the nonlinear finite element modeling may be applicable to study the viscoelasticity of peripheral nerve down to the ultrastructural level. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modified hyperbolic sine model for titanium dioxide-based memristive thin films
NASA Astrophysics Data System (ADS)
Abu Bakar, Raudah; Syahirah Kamarozaman, Nur; Fazlida Hanim Abdullah, Wan; Herman, Sukreen Hana
2018-03-01
Since the emergence of memristor as the newest fundamental circuit elements, studies on memristor modeling have been evolved. To date, the developed models were based on the linear model, linear ionic drift model using different window functions, tunnelling barrier model and hyperbolic-sine function based model. Although using hyperbolic-sine function model could predict the memristor electrical properties, the model was not well fitted to the experimental data. In order to improve the performance of the hyperbolic-sine function model, the state variable equation was modified. On the one hand, the addition of window function cannot provide an improved fitting. By multiplying the Yakopcic’s state variable model to Chang’s model on the other hand resulted in the closer agreement with the TiO2 thin film experimental data. The percentage error was approximately 2.15%.
Calculation of single chain cellulose elasticity using fully atomistic modeling
Xiawa Wu; Robert J. Moon; Ashlie Martini
2011-01-01
Cellulose nanocrystals, a potential base material for green nanocomposites, are ordered bundles of cellulose chains. The properties of these chains have been studied for many years using atomic-scale modeling. However, model predictions are difficult to interpret because of the significant dependence of predicted properties on model details. The goal of this study is...
ERIC Educational Resources Information Center
Sins, Patrick H. M.; Savelsbergh, Elwin R.; van Joolingen, Wouter R.
2005-01-01
Although computer modelling is widely advocated as a way to offer students a deeper understanding of complex phenomena, the process of modelling is rather complex itself and needs scaffolding. In order to offer adequate support, a thorough understanding of the reasoning processes students employ and of difficulties they encounter during a…