Sample records for order parameter due

  1. Magnetostructural coupling behavior at the ferromagnetic transition in double-perovskite S r2FeMo O6

    NASA Astrophysics Data System (ADS)

    Yang, Dexin; Harrison, Richard J.; Schiemer, Jason A.; Lampronti, Giulio I.; Liu, Xueyin; Zhang, Fenghua; Ding, Hao; Liu, Yan'gai; Carpenter, Michael A.

    2016-01-01

    The ordered double-perovskite S r2FeMo O6 (SFMO) possesses remarkable room-temperature low-field colossal magnetoresistivity and transport properties which are related, at least in part, to combined structural and magnetic instabilities that are responsible for a cubic-tetragonal phase transition near 420 K. A formal strain analysis combined with measurements of elastic properties from resonant ultrasound spectroscopy reveal a system with weak biquadratic coupling between two order parameters belonging to Γ4+ and m Γ4+ of parent space group F m 3 ¯m . The observed softening of the shear modulus by ˜50% is due to the classical effects of strain/order parameter coupling at an improper ferroelastic (Γ4+) transition which is second order in character, while the ferromagnetic order parameter (m Γ4+ ) couples only with volume strain. The influence of a third order parameter, for ordering of Fe and Mo on crystallographic B sites, is to change the strength of coupling between the Γ4+ order parameter and the tetragonal shear strain due to the influence of changes in local strain heterogeneity at a unit cell scale. High anelastic loss below the transition point reveals the presence of mobile ferroelastic twin walls which become pinned by oxygen vacancies in a temperature interval near 340 K. The twin walls must be both ferroelastic and ferromagnetic, but due to the weak coupling between the magnetic and structural order parameters it should be possible to pull them apart with a weak magnetic field. These insights into the role of strain coupling and relaxational effects in a system with only weak coupling between three order parameters allow rationalization and prediction of how static and dynamic properties of the material might be tuned in thin film form by choice of strain contrast with a substrate.

  2. Fractional Order PIλDμ Control for Maglev Guiding System

    NASA Astrophysics Data System (ADS)

    Hu, Qing; Hu, Yuwei

    To effectively suppress the external disturbances and parameter perturbation problem of the maglev guiding system, and improve speed and robustness, the electromagnetic guiding system is exactly linearized using state feedback method, Fractional calculus theory is introduced, the order of integer order PID control was extended to the field of fractional, then fractional order PIλDμ Controller was presented, Due to the extra two adjustable parameters compared with traditional PID controller, fractional order PIλDμ controllers were expected to show better control performance. The results of the computer simulation show that the proposed controller suppresses the external disturbances and parameter perturbation of the system effectively; the system response speed was increased; at the same time, it had flexible structure and stronger robustness.

  3. Order-parameter model for unstable multilane traffic flow

    NASA Astrophysics Data System (ADS)

    Lubashevsky, Ihor A.; Mahnke, Reinhard

    2000-11-01

    We discuss a phenomenological approach to the description of unstable vehicle motion on multilane highways that explains in a simple way the observed sequence of the ``free flow <--> synchronized mode <--> jam'' phase transitions as well as the hysteresis in these transitions. We introduce a variable called an order parameter that accounts for possible correlations in the vehicle motion at different lanes. So, it is principally due to the ``many-body'' effects in the car interaction in contrast to such variables as the mean car density and velocity being actually the zeroth and first moments of the ``one-particle'' distribution function. Therefore, we regard the order parameter as an additional independent state variable of traffic flow. We assume that these correlations are due to a small group of ``fast'' drivers and by taking into account the general properties of the driver behavior we formulate a governing equation for the order parameter. In this context we analyze the instability of homogeneous traffic flow that manifested itself in the above-mentioned phase transitions and gave rise to the hysteresis in both of them. Besides, the jam is characterized by the vehicle flows at different lanes which are independent of one another. We specify a certain simplified model in order to study the general features of the car cluster self-formation under the ``free flow <--> synchronized motion'' phase transition. In particular, we show that the main local parameters of the developed cluster are determined by the state characteristics of vehicle motion only.

  4. Impact of Next-to-Leading Order Contributions to Cosmic Microwave Background Lensing.

    PubMed

    Marozzi, Giovanni; Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth

    2017-05-26

    In this Letter we study the impact on cosmological parameter estimation, from present and future surveys, due to lensing corrections on cosmic microwave background temperature and polarization anisotropies beyond leading order. In particular, we show how post-Born corrections, large-scale structure effects, and the correction due to the change in the polarization direction between the emission at the source and the detection at the observer are non-negligible in the determination of the polarization spectra. They have to be taken into account for an accurate estimation of cosmological parameters sensitive to or even based on these spectra. We study in detail the impact of higher order lensing on the determination of the tensor-to-scalar ratio r and on the estimation of the effective number of relativistic species N_{eff}. We find that neglecting higher order lensing terms can lead to misinterpreting these corrections as a primordial tensor-to-scalar ratio of about O(10^{-3}). Furthermore, it leads to a shift of the parameter N_{eff} by nearly 2σ considering the level of accuracy aimed by future S4 surveys.

  5. Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM

    DOE PAGES

    Permann, Cody J.; Tonks, Michael R.; Fromm, Bradley; ...

    2016-01-14

    Phase field modeling (PFM) is a well-known technique for simulating microstructural evolution. To model grain growth using PFM, typically each grain is assigned a unique non-conserved order parameter and each order parameter field is evolved in time. Traditional approaches using a one-to-one mapping of grains to order parameters present a challenge when modeling large numbers of grains due to the computational expense of using many order parameters. This problem is exacerbated when using an implicit finite element method (FEM), as the global matrix size is proportional to the number of order parameters. While previous work has developed methods to reducemore » the number of required variables and thus computational complexity and run time, none of the existing approaches can be applied for an implicit FEM implementation of PFM. Here, we present a modular, dynamic, scalable reassignment algorithm suitable for use in such a system. Polycrystal modeling with grain growth and stress require careful tracking of each grain’s position and orientation which is lost when using a reduced order parameter set. In conclusion, the method presented in this paper maintains a unique ID for each grain even after reassignment, to allow the PFM to be tightly coupled to calculations of the stress throughout the polycrystal. Implementation details and comparative results of our approach are presented.« less

  6. MHD Flow and Heat Transfer of a Generalized Burgers’ Fluid due to a Periodic Oscillating and Periodic Heating Plate

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Jiang, Yue-Hua; Zhang, Yan; Zhao, Hao-Jie

    2017-10-01

    This paper investigates the MHD flow and heat transfer of the incompressible generalized Burgers’ fluid due to a periodic oscillating plate with the effects of the second order slip and periodic heating plate. The momentum equation is formulated with multi-term fractional derivatives, and by means of viscous dissipation, the fractional derivative is considered in the energy equation. A finite difference scheme is established based on the G1-algorithm, whose convergence is confirmed by the comparison with the analytical solution in an example. Meanwhile the numerical solutions of velocity, temperature and shear stress are obtained. The effects of involved parameters on velocity and temperature fields are presented graphically and analyzed in detail. Increasing the fractional derivative parameter α, the velocity and temperature have a decreasing trend, while the influences of fractional derivative parameter β on the velocity and temperature behave conversely. Increasing the absolute value of the first order slip parameter and the second order slip parameter both cause a decrease of velocity. Furthermore, with the decreasing of the magnetic parameter, the shear stress decreases. Supported by the National Natural Science Foundations of China under Grant Nos. 21576023, 51406008, the National Key Research Program of China under Grant Nos. 2016YFC0700601, 2016YFC0700603 and the BUCEA Post Graduate Innovation Project (PG2017032)

  7. A Fast Evaluation Method for Energy Building Consumption Based on the Design of Experiments

    NASA Astrophysics Data System (ADS)

    Belahya, Hocine; Boubekri, Abdelghani; Kriker, Abdelouahed

    2017-08-01

    Building sector is one of the effective consumer energy by 42% in Algeria. The need for energy has continued to grow, in inordinate way, due to lack of legislation on energy performance in this large consumer sector. Another reason is the simultaneous change of users’ requirements to maintain their comfort, especially summer in dry lands and parts of southern Algeria, where the town of Ouargla presents a typical example which leads to a large amount of electricity consumption through the use of air conditioning. In order to achieve a high performance envelope of the building, an optimization of major parameters building envelope is required, using design of experiments (DOE), can determine the most effective parameters and eliminate the less importance. The study building is often complex and time consuming due to the large number of parameters to consider. This study focuses on reducing the computing time and determines the major parameters of building energy consumption, such as area of building, factor shape, orientation, ration walls to windows …etc to make some proposal models in order to minimize the seasonal energy consumption due to air conditioning needs.

  8. Accuracy of gravitational physics tests using ranges to the inner planets

    NASA Technical Reports Server (NTRS)

    Ashby, N.; Bender, P.

    1981-01-01

    A number of different types of deviations from Kepler's laws for planetary orbits can occur in nonNewtonian metric gravitational theories. These include secular changes in all of the orbital elements and in the mean motion, plus additional periodic perturbations in the coordinates. The first order corrections to the Keplerian motion of a single planet around the Sun due to the parameterized post Newtonian theory parameters were calculated as well as the corrections due to the solar quadrupole moment and a possible secular change in the gravitational constant. The results were applied to the case of proposed high accuracy ranging experiments from the Earth to a Mercury orbiting spacecraft in order to see how well the various parameters can be determined.

  9. High-order dynamic modeling and parameter identification of structural discontinuities in Timoshenko beams by using reflection coefficients

    NASA Astrophysics Data System (ADS)

    Fan, Qiang; Huang, Zhenyu; Zhang, Bing; Chen, Dayue

    2013-02-01

    Properties of discontinuities, such as bolt joints and cracks in the waveguide structures, are difficult to evaluate by either analytical or numerical methods due to the complexity and uncertainty of the discontinuities. In this paper, the discontinuity in a Timoshenko beam is modeled with high-order parameters and then these parameters are identified by using reflection coefficients at the discontinuity. The high-order model is composed of several one-order sub-models in series and each sub-model consists of inertia, stiffness and damping components in parallel. The order of the discontinuity model is determined based on the characteristics of the reflection coefficient curve and the accuracy requirement of the dynamic modeling. The model parameters are identified through the least-square fitting iteration method, of which the undetermined model parameters are updated in iteration to fit the dynamic reflection coefficient curve with the wave-based one. By using the spectral super-element method (SSEM), simulation cases, including one-order discontinuities on infinite- and finite-beams and a two-order discontinuity on an infinite beam, were employed to evaluate both the accuracy of the discontinuity model and the effectiveness of the identification method. For practical considerations, effects of measurement noise on the discontinuity parameter identification are investigated by adding different levels of noise to the simulated data. The simulation results were then validated by the corresponding experiments. Both the simulation and experimental results show that (1) the one-order discontinuities can be identified accurately with the maximum errors of 6.8% and 8.7%, respectively; (2) and the high-order discontinuities can be identified with the maximum errors of 15.8% and 16.2%, respectively; and (3) the high-order model can predict the complex discontinuity much more accurately than the one-order discontinuity model.

  10. Demonstrative fractional order - PID controller based DC motor drive on digital platform.

    PubMed

    Khubalkar, Swapnil W; Junghare, Anjali S; Aware, Mohan V; Chopade, Amit S; Das, Shantanu

    2017-09-21

    In industrial drives applications, fractional order controllers can exhibit phenomenal impact due to realization through digital implementation. Digital fractional order controllers have created wide scope as it possess the inherent advantages like robustness against the plant parameter variation. This paper provides brief design procedure of fractional order proportional-integral-derivative (FO-PID) controller through the indirect approach of approximation using constant phase technique. The new modified dynamic particle swarm optimization (IdPSO) technique is proposed to find controller parameters. The FO-PID controller is implemented using floating point digital signal processor. The building blocks are designed and assembled with all peripheral components for the 1.5kW industrial DC motor drive. The robust operation for parametric variation is ascertained by testing the controller with two separately excited DC motors with the same rating but different parameters. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Dirty two-band superconductivity with interband pairing order

    NASA Astrophysics Data System (ADS)

    Asano, Yasuhiro; Sasaki, Akihiro; Golubov, Alexander A.

    2018-04-01

    We study theoretically the effects of random nonmagnetic impurities on the superconducting transition temperature T c in a two-band superconductor characterized by an equal-time s-wave interband pairing order parameter. Because of the two-band degree of freedom, it is possible to define a spin-triplet s-wave pairing order parameter as well as a spin-singlet s-wave order parameter. The former belongs to odd-band-parity symmetry class, whereas the latter belongs to even-band-parity symmetry class. In a spin-singlet superconductor, T c is insensitive to the impurity concentration when we estimate the self-energy due to the random impurity potential within the Born approximation. On the other hand in a spin-triplet superconductor, T c decreases with the increase of the impurity concentration. We conclude that Cooper pairs belonging to odd-band-parity symmetry class are fragile under the random impurity potential even though they have s-wave pairing symmetry.

  12. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters.

    PubMed

    Galavis, Paulina E; Hollensen, Christian; Jallow, Ngoneh; Paliwal, Bhudatt; Jeraj, Robert

    2010-10-01

    Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45-60 minutes post-injection of 10 mCi of [(18)F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor segmentation.

  13. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters

    PubMed Central

    GALAVIS, PAULINA E.; HOLLENSEN, CHRISTIAN; JALLOW, NGONEH; PALIWAL, BHUDATT; JERAJ, ROBERT

    2014-01-01

    Background Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Material and methods Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45–60 minutes post-injection of 10 mCi of [18F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Results Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Conclusion Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor segmentation. PMID:20831489

  14. Calibration of two complex ecosystem models with different likelihood functions

    NASA Astrophysics Data System (ADS)

    Hidy, Dóra; Haszpra, László; Pintér, Krisztina; Nagy, Zoltán; Barcza, Zoltán

    2014-05-01

    The biosphere is a sensitive carbon reservoir. Terrestrial ecosystems were approximately carbon neutral during the past centuries, but they became net carbon sinks due to climate change induced environmental change and associated CO2 fertilization effect of the atmosphere. Model studies and measurements indicate that the biospheric carbon sink can saturate in the future due to ongoing climate change which can act as a positive feedback. Robustness of carbon cycle models is a key issue when trying to choose the appropriate model for decision support. The input parameters of the process-based models are decisive regarding the model output. At the same time there are several input parameters for which accurate values are hard to obtain directly from experiments or no local measurements are available. Due to the uncertainty associated with the unknown model parameters significant bias can be experienced if the model is used to simulate the carbon and nitrogen cycle components of different ecosystems. In order to improve model performance the unknown model parameters has to be estimated. We developed a multi-objective, two-step calibration method based on Bayesian approach in order to estimate the unknown parameters of PaSim and Biome-BGC models. Biome-BGC and PaSim are a widely used biogeochemical models that simulate the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems (in this research the developed version of Biome-BGC is used which is referred as BBGC MuSo). Both models were calibrated regardless the simulated processes and type of model parameters. The calibration procedure is based on the comparison of measured data with simulated results via calculating a likelihood function (degree of goodness-of-fit between simulated and measured data). In our research different likelihood function formulations were used in order to examine the effect of the different model goodness metric on calibration. The different likelihoods are different functions of RMSE (root mean squared error) weighted by measurement uncertainty: exponential / linear / quadratic / linear normalized by correlation. As a first calibration step sensitivity analysis was performed in order to select the influential parameters which have strong effect on the output data. In the second calibration step only the sensitive parameters were calibrated (optimal values and confidence intervals were calculated). In case of PaSim more parameters were found responsible for the 95% of the output data variance than is case of BBGC MuSo. Analysis of the results of the optimized models revealed that the exponential likelihood estimation proved to be the most robust (best model simulation with optimized parameter, highest confidence interval increase). The cross-validation of the model simulations can help in constraining the highly uncertain greenhouse gas budget of grasslands.

  15. Evaluation of higher order statistics parameters for multi channel sEMG using different force levels.

    PubMed

    Naik, Ganesh R; Kumar, Dinesh K

    2011-01-01

    The electromyograpy (EMG) signal provides information about the performance of muscles and nerves. The shape of the muscle signal and motor unit action potential (MUAP) varies due to the movement of the position of the electrode or due to changes in contraction level. This research deals with evaluating the non-Gaussianity in Surface Electromyogram signal (sEMG) using higher order statistics (HOS) parameters. To achieve this, experiments were conducted for four different finger and wrist actions at different levels of Maximum Voluntary Contractions (MVCs). Our experimental analysis shows that at constant force and for non-fatiguing contractions, probability density functions (PDF) of sEMG signals were non-Gaussian. For lesser MVCs (below 30% of MVC) PDF measures tends to be Gaussian process. The above measures were verified by computing the Kurtosis values for different MVCs.

  16. The surface-induced spatial-temporal structures in confined binary alloys

    NASA Astrophysics Data System (ADS)

    Krasnyuk, Igor B.; Taranets, Roman M.; Chugunova, Marina

    2014-12-01

    This paper examines surface-induced ordering in confined binary alloys. The hyperbolic initial boundary value problem (IBVP) is used to describe a scenario of spatiotemporal ordering in a disordered phase for concentration of one component of binary alloy and order parameter with non-linear dynamic boundary conditions. This hyperbolic model consists of two coupled second order differential equations for order parameter and concentration. It also takes into account effects of the “memory” on the ordering of atoms and their densities in the alloy. The boundary conditions characterize surface velocities of order parameter and concentration changing which is due to surface (super)cooling on walls confining the binary alloy. It is shown that for large times there are three classes of dynamic non-linear boundary conditions which lead to three different types of attractor’s elements for the IBVP. Namely, the elements of attractor are the limit periodic simple shock waves with fronts of “discontinuities” Γ. If Γ is finite, then the attractor contains spatiotemporal functions of relaxation type. If Γ is infinite and countable then we observe the functions of pre-turbulent type. If Γ is infinite and uncountable then we obtain the functions of turbulent type.

  17. Application of physical parameter identification to finite-element models

    NASA Technical Reports Server (NTRS)

    Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.

    1987-01-01

    The time domain parameter identification method described previously is applied to TRW's Large Space Structure Truss Experiment. Only control sensors and actuators are employed in the test procedure. The fit of the linear structural model to the test data is improved by more than an order of magnitude using a physically reasonable parameter set. The electro-magnetic control actuators are found to contribute significant damping due to a combination of eddy current and back electro-motive force (EMF) effects. Uncertainties in both estimated physical parameters and modal behavior variables are given.

  18. Hidden Order as a Source of Interface Superconductivity

    NASA Astrophysics Data System (ADS)

    Moor, Andreas; Volkov, Anatoly; Efetov, Konstantin

    2015-03-01

    We propose a new mechanism of the interfacial superconductivity observed in many heterostructures composed of different materials including high-temperature superconductors. Our proposal is based on the use of the Ginzburg-Landau equations applicable to a wide class of systems. The system under consideration is assumed to have, alongside the superconducting order parameter, also another competing order that might be a charge- or spin-density wave. At certain temperatures or doping level the superconducting state is not realized (thus, ``hidden''), while the amplitude of another order parameter corresponds to a minimum of the free energy. We also assume that at an interface or at a defect, the non-superconducting order parameter is suppressed (strongly or weakly), e.g., due to an enhanced impurity scattering. The local superconductivity is shown to emerge at the interface, and the spatial dependence of the corresponding order parameter is described by the Gross-Pitaevskii equation. The quantized values of the temperature and doping levels, at which Δ (x) arises, are determined by the ``energy'' levels of the linearized Gross-Pitaevskii equation, i.e., of the Schrodinger equation. Interestingly, the local superconductivity arises even at a small suppression of the rival order. We appreciate the support from DFG via the Projekt EF 11/8-1; K. B. E. gratefully acknowledges the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST ``MISiS.''

  19. Dielectric properties of ferroelectric betaine phosphite crystals with a high degree of deuteration

    NASA Astrophysics Data System (ADS)

    Balashova, E. V.; Krichevtsov, B. B.; Yurko, E. I.; Svinarev, F. B.; Pankova, G. A.

    2015-12-01

    The dielectric properties of deuterated betaine phosphite crystals with a high degree of deuteration in the region of the antiferrodistorsive (at T = T c1) and ferroelectric (at T = T c2) phase transitions have been investigated. The temperature behavior of the dielectric permittivity of betaine phosphite and deuterated betaine phosphite has been described within the framework of the Landau thermodynamic model taking into account the biquadratic coupling between the polar order parameter of the ferroelectric transition and the nonpolar order parameter of the antiferrodistorsive phase transition. It has been shown that an increase in the degree of deuteration leads to a decrease in the coupling between the order parameters. An increase in the temperature of the ferroelectric phase transition due to the deuteration of betaine phosphite is caused by an increase in the dielectric permittivity in the symmetric phase above the temperature of the antiferrodistorsive phase transition.

  20. Estimating order statistics of network degrees

    NASA Astrophysics Data System (ADS)

    Chu, J.; Nadarajah, S.

    2018-01-01

    We model the order statistics of network degrees of big data sets by a range of generalised beta distributions. A three parameter beta distribution due to Libby and Novick (1982) is shown to give the best overall fit for at least four big data sets. The fit of this distribution is significantly better than the fit suggested by Olhede and Wolfe (2012) across the whole range of order statistics for all four data sets.

  1. Optimisation of process parameters on thin shell part using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Faiz, J. M.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.

    2017-09-01

    This study is carried out to focus on optimisation of process parameters by simulation using Autodesk Moldflow Insight (AMI) software. The process parameters are taken as the input in order to analyse the warpage value which is the output in this study. There are some significant parameters that have been used which are melt temperature, mould temperature, packing pressure, and cooling time. A plastic part made of Polypropylene (PP) has been selected as the study part. Optimisation of process parameters is applied in Design Expert software with the aim to minimise the obtained warpage value. Response Surface Methodology (RSM) has been applied in this study together with Analysis of Variance (ANOVA) in order to investigate the interactions between parameters that are significant to the warpage value. Thus, the optimised warpage value can be obtained using the model designed using RSM due to its minimum error value. This study comes out with the warpage value improved by using RSM.

  2. First and Higher Order Effects on Zero Order Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Neelam, M.; Mohanty, B.

    2014-12-01

    Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.

  3. Pattern statistics on Markov chains and sensitivity to parameter estimation

    PubMed Central

    Nuel, Grégory

    2006-01-01

    Background: In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). Results: In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of σ, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. Conclusion: We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation. PMID:17044916

  4. Pattern statistics on Markov chains and sensitivity to parameter estimation.

    PubMed

    Nuel, Grégory

    2006-10-17

    In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of sigma, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation.

  5. An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Cooper, J. E.; Wright, J. R.

    1987-01-01

    A modification to the Eigensystem Realization Algorithm (ERA) for modal parameter identification is presented in this paper. The ERA minimum order realization approach using singular value decomposition is combined with the philosophy of the Correlation Fit method in state space form such that response data correlations rather than actual response values are used for modal parameter identification. This new method, the ERA using data correlations (ERA/DC), reduces bias errors due to noise corruption significantly without the need for model overspecification. This method is tested using simulated five-degree-of-freedom system responses corrupted by measurement noise. It is found for this case that, when model overspecification is permitted and a minimum order solution obtained via singular value truncation, the results from the two methods are of similar quality.

  6. Time-reversal and rotation symmetry breaking superconductivity in Dirac materials

    NASA Astrophysics Data System (ADS)

    Chirolli, Luca; de Juan, Fernando; Guinea, Francisco

    2017-05-01

    We consider mixed symmetry superconducting phases in Dirac materials in the odd-parity channel, where pseudoscalar and vector order parameters can coexist due to their similar critical temperatures when attractive interactions are of a finite range. We show that the coupling of these order parameters to unordered magnetic dopants favors the condensation of time-reversal symmetry breaking (TRSB) phases, characterized by a condensate magnetization, rotation symmetry breaking, and simultaneous ordering of the dopant moments. We find a rich phase diagram of mixed TRSB phases characterized by peculiar bulk quasiparticles, with Weyl nodes and nodal lines, and distinctive surface states. These findings are consistent with recent experiments on NbxBi2Se3 that report evidence of point nodes, nematicity, and TRSB superconductivity induced by Nb magnetic moments.

  7. Spectroscopic signatures of different symmetries of the superconducting order parameter in metal-decorated graphene

    NASA Astrophysics Data System (ADS)

    Saari, Timo; Nieminen, Jouko; Bansil, Arun

    2017-06-01

    Motivated by the recent experiments indicating superconductivity in metal-decorated graphene sheets, we investigate their quasi-particle structure within the framework of an effective tight-binding Hamiltonian augmented by appropriate BCS-like pairing terms for p-type order parameter. The normal state band structure of graphene is modified not only through interaction with adsorbed metal atoms, but also due to the folding of bands at Brillouin zone boundaries resulting from a \\sqrt{3}× \\sqrt{3}R{{30}\\circ} reconstruction. Several different types of pairing symmetries are analyzed utilizing Nambu-Gorkov Green’s function techniques to show that p+\\text{i}p -symmetric nearest-neighbor pairing yields the most enhanced superconducting gap. The character of the order parameter depends on the nature of the atomic orbitals involved in the pairing process and exhibits interesting angular and radial asymmetries. Finally, we suggest a method to distinguish between singlet and triplet type superconductivity in the presence of magnetic substitutional impurities using scanning tunneling spectroscopy.

  8. Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity

    NASA Astrophysics Data System (ADS)

    Silaev, Mihail; Babaev, Egor

    2011-03-01

    In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.

  9. Seat pan and backrest pressure distribution while sitting in office chairs.

    PubMed

    Zemp, Roland; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Nowadays, an increasing amount of time is spent seated, especially in office environments, where sitting comfort and support are increasingly important due to the prevalence of musculoskeletal disorders. The aim of this study was to develop a methodology for chair-specific sensor mat calibration, to evaluate the interconnections between specific pressure parameters and to establish those that are most meaningful and significant in order to differentiate pressure distribution measures between office chairs. The shape of the exponential calibration function was highly influenced by the material properties and geometry of the office chairs, and therefore a chair-specific calibration proved to be essential. High correlations were observed between the eight analysed pressure parameters, whereby the pressure parameters could be reduced to a set of four and three parameters for the seat pan and the backrest respectively. In order to find significant differences between office chairs, gradient parameters should be analysed for the seat pan, whereas for the backrest almost all parameters are suitable. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part I: Model development and observability analysis

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Fan, Guodong; Pan, Ke; Wei, Guo; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello

    2017-11-01

    The design of a lumped parameter battery model preserving physical meaning is especially desired by the automotive researchers and engineers due to the strong demand for battery system control, estimation, diagnosis and prognostics. In light of this, a novel simplified fractional order electrochemical model is developed for electric vehicle (EV) applications in this paper. In the model, a general fractional order transfer function is designed for the solid phase lithium ion diffusion approximation. The dynamic characteristics of the electrolyte concentration overpotential are approximated by a first-order resistance-capacitor transfer function in the electrolyte phase. The Ohmic resistances and electrochemical reaction kinetics resistance are simplified to a lumped Ohmic resistance parameter. Overall, the number of model parameters is reduced from 30 to 9, yet the accuracy of the model is still guaranteed. In order to address the dynamics of phase-change phenomenon in the active particle during charging and discharging, variable solid-state diffusivity is taken into consideration in the model. Also, the observability of the model is analyzed on two types of lithium ion batteries subsequently. Results show the fractional order model with variable solid-state diffusivity agrees very well with experimental data at various current input conditions and is suitable for electric vehicle applications.

  11. Critical phenomena at the complex tensor ordering phase transition

    NASA Astrophysics Data System (ADS)

    Boettcher, Igor; Herbut, Igor F.

    2018-02-01

    We investigate the critical properties of the phase transition towards complex tensor order that has been proposed to occur in spin-orbit-coupled superconductors. For this purpose, we formulate the bosonic field theory for fluctuations of the complex irreducible second-rank tensor order parameter close to the transition. We then determine the scale dependence of the couplings of the theory by means of the perturbative renormalization group (RG). For the isotropic system, we generically detect a fluctuation-induced first-order phase transition. The initial values for the running couplings are determined by the underlying microscopic model for the tensorial order. As an example, we study three-dimensional Luttinger semimetals with electrons at a quadratic band-touching point. Whereas the strong-coupling transition of the model receives substantial fluctuation corrections, the weak-coupling transition at low temperatures is rendered only weakly first order due to the presence of a fixed point in the vicinity of the RG trajectory. If the number of fluctuating complex components of the order parameter is reduced by cubic anisotropy, the theory maps onto the field theory for frustrated magnetism.

  12. Care during freeze-drying of bovine pericardium tissue to be used as a biomaterial: a comparative study.

    PubMed

    Polak, Roberta; Pitombo, Ronaldo N M

    2011-10-01

    Bovine pericardium (BP) tissue is widely used in the manufacture of bioprosthetics. The effects of freeze-drying on the BP tissue have been studied by some researchers in order to decrease their cytotoxicity due to preservation in formaldehyde solution, and to increase the lifetime of the product in storage. This study was undertaken in order to study the effect of freeze-drying in the structure of BP. To perform this study BP samples were freeze-dried in two different types of freeze-dryers available in our laboratory: a laboratory freeze-dryer, in which it was not possible to control parameters and a pilot freeze-dryer, wherein all parameters during freezing and drying were controlled. After freeze-drying processes, samples were analyzed by SEM, Raman spectroscopy, tensile strength, water uptake tests and TEM. In summary, it has been demonstrated that damages occur in collagen fibers by the loss of bulk water of collagen structure implicating in a drastic decreasing of BP mechanical properties due to its structural alterations. Moreover, it was proven that the collagen fibrils suffered breakage at some points, which can be attributed to the uncontrolled parameters during drying. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters

    PubMed Central

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  14. Nanosecond electric modification of order parameters

    NASA Astrophysics Data System (ADS)

    Borshch, Volodymyr

    In this Dissertation, we study a nanosecond electro-optic response of a nematic liquid crystal in a geometry where an applied electric field E modifies the tensor order parameter but does not change the orientation of the optic axis (director N̂). We use nematics with negative dielectric anisotropy with the electric field applied perpendicularly to N̂. The field changes the dielectric tensor at optical frequencies (optic tensor), due to the following mechanisms: (a) nanosecond creation of biaxial orientational order; (b) uniaxial modification of the orientational order that occurs over the timescales of tens of nanoseconds, and (c) quenching of director fluctuations with a wide range of characteristic times up to milliseconds. We develop a model to describe the dynamics of all three mechanisms. We design the experimental conditions to selectively suppress the contributions from the quenching of director fluctuations (c) and from the biaxial order effect (a) and thus, separate the contributions of the three mechanisms in the electro-optic response. As a result, the experimental data can be well fitted with the model parameters. The analysis provides a rather detailed physical picture of how the liquid crystal responds to a strong electric field, E ˜ 108 V/m, on a timescale of nanoseconds. This work provides a useful guide in the current search of the biaxial nematic phase. Namely, the temperature dependence of the biaxial susceptibility allows one to estimate the temperature of the potential uniaxial-to-biaxial phase transition. An analysis of the quenching of director fluctuations indicates that on a timescale of nanoseconds, the classic model with constant viscoelastic material parameters might reach its limit of validity. The effect of nanosecond electric modification of the order parameter (NEMOP) can be used in applications in which one needs to achieve ultrafast (nanosecond) changes of optical characteristics, such as birefringence.

  15. Imprint of non-linear effects on HI intensity mapping on large scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeh, Obinna, E-mail: umeobinna@gmail.com

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on themore » power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.« less

  16. Spitzer Instrument Pointing Frame (IPF) Kalman Filter Algorithm

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.

    2004-01-01

    This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algorithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter, which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the science instrument arrays with respect to the telescope boresight. The most stringent calibration requirement specifies knowledge of certain instrument pointing frames to an accuracy of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechanical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing frames and calibration parameters are essential for supporting on-board precision pointing capability, in addition to end-to-end 'pixels on the sky' ground pointing reconstruction efforts.

  17. Imprint of non-linear effects on HI intensity mapping on large scales

    NASA Astrophysics Data System (ADS)

    Umeh, Obinna

    2017-06-01

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.

  18. Numerical and Experimental Investigations of Humping Phenomena in Laser Micro Welding

    NASA Astrophysics Data System (ADS)

    Otto, Andreas; Patschger, Andreas; Seiler, Michael

    The Humping effect is a phenomenon which is observed approximately since 50 years in various welding procedures and is characterized by droplets due to a pile-up of the melt pool. It occurs within a broad range of process parameters. Particularly during micro welding, humping effect is critical due to typically high feed rates. In the past, essentially two approaches (fluid-dynamic approach of streaming melt within the molten pool and the Plateau-Rayleigh instability of a liquid jet) were discussed in order to explain the occurrence of the humping effect. But none of both can fully explain all observed effects. For this reason, experimental studies in micro welding of thin metal foils were performed in order to determine the influence of process parameters on the occurrence of humping effects. The experimental observations were compared with results from numerical multi-physical simulations (incorporating beam propagation, incoupling, heat transfer, fluid dynamics etc.) to provide a deeper understanding of the causes for hump formation.

  19. Identifying key sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2013-09-01

    This study investigates sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment, through the use of local and global sensitivity analysis tools, and contributes to an in-depth understanding of wastewater treatment modelling by revealing critical parameters and parameter interactions. One-factor-at-a-time sensitivity analysis is used to screen model parameters and identify those with significant individual effects on three performance indicators: total greenhouse gas emissions, effluent quality and operational cost. Sobol's method enables identification of parameters with significant higher order effects and of particular parameter pairs to which model outputs are sensitive. Use of a variance-based global sensitivity analysis tool to investigate parameter interactions enables identification of important parameters not revealed in one-factor-at-a-time sensitivity analysis. These interaction effects have not been considered in previous studies and thus provide a better understanding wastewater treatment plant model characterisation. It was found that uncertainty in modelled nitrous oxide emissions is the primary contributor to uncertainty in total greenhouse gas emissions, due largely to the interaction effects of three nitrogen conversion modelling parameters. The higher order effects of these parameters are also shown to be a key source of uncertainty in effluent quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. FAST TRACK COMMUNICATION: Phenomenology of the equivalence principle with light scalars

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Donoghue, John F.

    2010-10-01

    Light scalar particles with couplings of sub-gravitational strength, which can generically be called 'dilatons', can produce violations of the equivalence principle. However, in order to understand experimental sensitivities one must know the coupling of these scalars to atomic systems. We report here on a study of the required couplings. We give a general Lagrangian with five independent dilaton parameters and calculate the 'dilaton charge' of atomic systems for each of these. Two combinations are particularly important. One is due to the variations in the nuclear binding energy, with a sensitivity scaling with the atomic number as A-1/3. The other is due to electromagnetism. We compare limits on the dilaton parameters from existing experiments.

  1. Influence of multiband sign-changing superconductivity on vortex cores and vortex pinning in stoichiometric high- T c   CaKFe 4 As 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fente, Anton; Meier, William R.; Kong, Tai

    We use a scanning tunneling microscope to study the superconducting density of states and vortex lattice of single crystals of CaKFe 4As 4. This material has a critical temperature of T c = 35 K, one of the highest among stoichiometric iron based superconductors (FeBSCs), and is comparable to T c found near optimal doping in other FeBSCs. We observe quasiparticle scattering from defects with a pattern related to interband scattering between zone centered hole sheets. We measure the tunneling conductance in vortex cores and find a peak due to Caroli–de Gennes–Matricon bound states. The peak is located above themore » Fermi level, showing that CaKFe 4As 4 is a clean superconductor with vortex core bound states close to the so-called extreme quantum limit. We identify locations where the superconducting order parameter is strongly suppressed due to pair breaking. Vortices are pinned at these locations, and the length scale of the suppression of the order parameter is of order of the vortex core size. Finally, as a consequence, the vortex lattice is disordered up to 8 T.« less

  2. Influence of multiband sign-changing superconductivity on vortex cores and vortex pinning in stoichiometric high- T c   CaKFe 4 As 4

    DOE PAGES

    Fente, Anton; Meier, William R.; Kong, Tai; ...

    2018-04-02

    We use a scanning tunneling microscope to study the superconducting density of states and vortex lattice of single crystals of CaKFe 4As 4. This material has a critical temperature of T c = 35 K, one of the highest among stoichiometric iron based superconductors (FeBSCs), and is comparable to T c found near optimal doping in other FeBSCs. We observe quasiparticle scattering from defects with a pattern related to interband scattering between zone centered hole sheets. We measure the tunneling conductance in vortex cores and find a peak due to Caroli–de Gennes–Matricon bound states. The peak is located above themore » Fermi level, showing that CaKFe 4As 4 is a clean superconductor with vortex core bound states close to the so-called extreme quantum limit. We identify locations where the superconducting order parameter is strongly suppressed due to pair breaking. Vortices are pinned at these locations, and the length scale of the suppression of the order parameter is of order of the vortex core size. Finally, as a consequence, the vortex lattice is disordered up to 8 T.« less

  3. Influence of multiband sign-changing superconductivity on vortex cores and vortex pinning in stoichiometric high-Tc CaKFe4As4

    NASA Astrophysics Data System (ADS)

    Fente, Antón; Meier, William R.; Kong, Tai; Kogan, Vladimir G.; Bud'ko, Sergey L.; Canfield, Paul C.; Guillamón, Isabel; Suderow, Hermann

    2018-04-01

    We use a scanning tunneling microscope to study the superconducting density of states and vortex lattice of single crystals of CaKFe4As4 . This material has a critical temperature of Tc=35 K, one of the highest among stoichiometric iron based superconductors (FeBSCs), and is comparable to Tc found near optimal doping in other FeBSCs. We observe quasiparticle scattering from defects with a pattern related to interband scattering between zone centered hole sheets. We measure the tunneling conductance in vortex cores and find a peak due to Caroli-de Gennes-Matricon bound states. The peak is located above the Fermi level, showing that CaKFe4As4 is a clean superconductor with vortex core bound states close to the so-called extreme quantum limit. We identify locations where the superconducting order parameter is strongly suppressed due to pair breaking. Vortices are pinned at these locations, and the length scale of the suppression of the order parameter is of order of the vortex core size. As a consequence, the vortex lattice is disordered up to 8 T.

  4. Quasi-phase-matching of high-order harmonics in plasma plumes: theory and experiment.

    PubMed

    Strelkov, V V; Ganeev, R A

    2017-09-04

    We theoretically analyze the phase-matching of high-order harmonic generation (HHG) in multi-jet plasmas and find the harmonic orders for which the quasi-phase-matching (QPM) is achieved depending on the parameters of the plasma and the generating beam. HHG by single- and two-color generating fields is analyzed. The QMP is studied experimentally for silver, indium and manganese plasmas using near IR and mid-IR laser fields. The theory is validated by comparison with our experimental observations, as well as published experimental data. In particular, the plasma densities and the harmonic phase coefficients reconstructed from the observed harmonic spectra using our theory agree with the corresponding parameters found using other methods. Our theory allows defining the plasma jet and the generating field properties, which can maximize the HHG efficiency due to QPM.

  5. Universal relations for range corrections to Efimov features

    DOE PAGES

    Ji, Chen; Braaten, Eric; Phillips, Daniel R.; ...

    2015-09-09

    In a three-body system of identical bosons interacting through a large S-wave scattering length a, there are several sets of features related to the Efimov effect that are characterized by discrete scale invariance. Effective field theory was recently used to derive universal relations between these Efimov features that include the first-order correction due to a nonzero effective range r s. We reveal a simple pattern in these range corrections that had not been previously identified. The pattern is explained by the renormalization group for the effective field theory, which implies that the Efimov three-body parameter runs logarithmically with the momentummore » scale at a rate proportional to r s/a. The running Efimov parameter also explains the empirical observation that range corrections can be largely taken into account by shifting the Efimov parameter by an adjustable parameter divided by a. Furthermore, the accuracy of universal relations that include first-order range corrections is verified by comparing them with various theoretical calculations using models with nonzero range.« less

  6. The Magnus problem in Rodrigues-Hamilton parameters

    NASA Astrophysics Data System (ADS)

    Koshliakov, V. N.

    1984-04-01

    The formalism of Rodrigues-Hamilton parameters is applied to the Magnus problem related to the systematic drift of a gimbal-mounted astatic gyroscope due to the nutational vibration of the main axis of the rotor. It is shown that the use of the above formalism makes it possible to limit the analysis to a consideration of a linear system of differential equations written in perturbed values of Rodrigues-Hamilton parameters. A refined formula for the drift of the main axis of the gyroscope rotor is obtained, and an estimation is made of the effect of the truncation of higher-order terms.

  7. High-order sliding-mode control for blood glucose regulation in the presence of uncertain dynamics.

    PubMed

    Hernández, Ana Gabriela Gallardo; Fridman, Leonid; Leder, Ron; Andrade, Sergio Islas; Monsalve, Cristina Revilla; Shtessel, Yuri; Levant, Arie

    2011-01-01

    The success of blood glucose automatic regulation depends on the robustness of the control algorithm used. It is a difficult task to perform due to the complexity of the glucose-insulin regulation system. The variety of model existing reflects the great amount of phenomena involved in the process, and the inter-patient variability of the parameters represent another challenge. In this research a High-Order Sliding-Mode Control is proposed. It is applied to two well known models, Bergman Minimal Model, and Sorensen Model, to test its robustness with respect to uncertain dynamics, and patients' parameter variability. The controller designed based on the simulations is tested with the specific Bergman Minimal Model of a diabetic patient whose parameters were identified from an in vivo assay. To minimize the insulin infusion rate, and avoid the hypoglycemia risk, the glucose target is a dynamical profile.

  8. The minimal number of parameters in triclinic crystal-field potentials

    NASA Astrophysics Data System (ADS)

    Mulak, J.

    2003-09-01

    The optimal parametrization schemes of the crystal-field (CF) potential in fitting procedures are those based on the smallest numbers of parameters. The surplus parametrizations usually lead to artificial and non-physical solutions. Therefore, the symmetry adapted reference systems are commonly used. Instead of them, however, the coordinate systems with the z-axis directed along the principal axes of the CF multipoles (2 k-poles) can be applied successfully, particularly for triclinic CF potentials. Due to the irreducibility of the D(k) representations such a choice can reduce the number of the k-order parameters by 2 k: from 2 k+1 (in the most general case) to only 1 (the axial one). Unfortunately, in general, the numbers of other order CF parameters stay then unrestricted. In this way, the number of parameters for the k-even triclinic CF potentials can be reduced by 4, 8 or 12, for k=2,4 or 6, respectively. Hence, the parametrization schemes based on maximum 14 parameters can be in use solely. For higher point symmetries this number is usually greater than that for the symmetry adapted systems. Nonetheless, many instructive correlations between the multipole contributions to the CF interaction are attainable in this way.

  9. Pyroelectric property of SrTiO3/Si ferroelectric-semiconductor heterojunctions near room temperature

    NASA Astrophysics Data System (ADS)

    Bai, Gang; Wu, Dongmei; Xie, Qiyun; Guo, Yanyan; Li, Wei; Deng, Licheng; Liu, Zhiguo

    2015-12-01

    A nonlinear thermodynamic formalism is developed to calculate the pyroelectric property of epitaxial single domain SrTiO3/Si heterojunctions by taking into account the thermal expansion misfit strain at different temperatures. It has been demonstrated that the crucial role was played by the contribution associated with the structure order parameter arising from the rotations of oxygen octahedral on pyroelectricity. A dramatic decrease in the pyroelectric coefficient due to the strong coupling between the polarization and the structure order parameter is found at ferroelectric TF1-TF2 phase transition. At the same time, the thermal expansion mismatch between film and substrate is also found to provide an additional weak decrease of pyroelectricity. The analytic relationship of the out-of-plane pyroelectric coefficient and dielectric constant of ferroelectric phases by considering the thermal expansion of thin films and substrates has been determined for the first time. Our research provides another avenue for the investigation of the pyroelectric effects of ferroic thin films, especially, such as antiferroelectric and multiferroic materials having two or more order parameters.

  10. Growth of thin films of dicyanovinylanisole on quartz and teflon-coated quartz by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Pearson, Earl F.

    1994-01-01

    Organic compounds offer the possibility of molecular engineering in order to optimize the nonlinearity and minimize damage due to the high-power lasers used in nonlinear optical devices. Recently dicyanovinylanisole (DIVA), ((2-methoxyphenyl) methylenepropanedinitrile) has been shown to have a second order nonlinearity 40 times that of alpha-quartz. Debe et. al. have shown that a high degree of orientational order exists for thin films of phthalocyanine grown by physical vapor transport in microgravity. The microgravity environment eliminates convective flow and was critical to the formation of highly ordered dense continuous films in these samples. This work seeks to discover the parameters necessary for the production of thin continuous films of high optical quality in Earth gravity. These parameters must be known before the experiment can be planned for growing DIVA in a microgravity environment. The microgravity grown films are expected to be denser and of better optical quality than the unit gravity films as was observed in the phthalocyanine films.

  11. Temporal correlations in the Vicsek model with vectorial noise

    NASA Astrophysics Data System (ADS)

    Gulich, Damián; Baglietto, Gabriel; Rozenfeld, Alejandro F.

    2018-07-01

    We study the temporal correlations in the evolution of the order parameter ϕ(t) for the Vicsek model with vectorial noise by estimating its Hurst exponent H with detrended fluctuation analysis (DFA). We present results on this parameter as a function of noise amplitude η introduced in simulations. We also compare with well known order-disorder phase transition for that same noise range. We find that - regardless of detrending degree - H spikes at the known coexistence noise for phase transition, and that this is due to nonstationarities introduced by the transit of the system between two well defined states with lower exponents. We statistically support this claim by successfully synthesizing equivalent cases derived from a transformed fractional Brownian motion (TfBm).

  12. A new method for unambiguous determination of trap parameters from afterglow and TSL curves connection: Example on garnets

    NASA Astrophysics Data System (ADS)

    Khanin, Vasilii; Venevtsev, Ivan; Spoor, Sandra; Boerekamp, Jack; van Dongen, Anne-Marie; Wieczorek, Herfried; Chernenko, Kirill; Buettner, Daniela; Ronda, Cees; Rodnyi, Piotr

    2017-10-01

    Due to presence of charge carrier traps, many scintillating materials exhibit afterglow. The de-trapping mechanisms are usually studied separately via either thermally stimulated luminescence (TSL) or isothermal decay (afterglow) measurements. In this paper, we develop procedures to determine trap parameters such as thermal trap depth and frequency factor in an unambiguous manner by connecting TSL and afterglow measurements. In order to accomplish that, we have devised a special method of extracting the lifetime of trapped carriers from afterglow measurements, independent of kinetic order. The procedures are first shown on simulated TSL and afterglow curves and then illustrated using (Y,Gd)3Al5O12:Ce garnets as example.

  13. Implications of the measured angular anisotropy at the hidden order transition of URu2Si2

    NASA Astrophysics Data System (ADS)

    Chandra, P.; Coleman, P.; Flint, R.; Trinh, J.; Ramirez, A. P.

    2018-05-01

    The heavy fermion compound URu2Si2 continues to attract great interest due to the long-unidentified nature of the hidden order that develops below 17.5 K. Here we discuss the implications of an angular survey of the linear and nonlinear susceptibility of URu2Si2 in the vicinity of the hidden order transition [1]. While the anisotropic nature of spin fluctuations and low-temperature quasiparticles was previously established, our recent results suggest that the order parameter itself has intrinsic Ising anisotropy, and that moreover this anisotropy extends far above the hidden order transition. Consistency checks and subsequent questions for future experimental and theoretical studies of hidden order are discussed.

  14. Realistic uncertainties on Hapke model parameters from photometric measurement

    NASA Astrophysics Data System (ADS)

    Schmidt, Frédéric; Fernando, Jennifer

    2015-11-01

    The single particle phase function describes the manner in which an average element of a granular material diffuses the light in the angular space usually with two parameters: the asymmetry parameter b describing the width of the scattering lobe and the backscattering fraction c describing the main direction of the scattering lobe. Hapke proposed a convenient and widely used analytical model to describe the spectro-photometry of granular materials. Using a compilation of the published data, Hapke (Hapke, B. [2012]. Icarus 221, 1079-1083) recently studied the relationship of b and c for natural examples and proposed the hockey stick relation (excluding b > 0.5 and c > 0.5). For the moment, there is no theoretical explanation for this relationship. One goal of this article is to study a possible bias due to the retrieval method. We expand here an innovative Bayesian inversion method in order to study into detail the uncertainties of retrieved parameters. On Emission Phase Function (EPF) data, we demonstrate that the uncertainties of the retrieved parameters follow the same hockey stick relation, suggesting that this relation is due to the fact that b and c are coupled parameters in the Hapke model instead of a natural phenomena. Nevertheless, the data used in the Hapke (Hapke, B. [2012]. Icarus 221, 1079-1083) compilation generally are full Bidirectional Reflectance Diffusion Function (BRDF) that are shown not to be subject to this artifact. Moreover, the Bayesian method is a good tool to test if the sampling geometry is sufficient to constrain the parameters (single scattering albedo, surface roughness, b, c , opposition effect). We performed sensitivity tests by mimicking various surface scattering properties and various single image-like/disk resolved image, EPF-like and BRDF-like geometric sampling conditions. The second goal of this article is to estimate the favorable geometric conditions for an accurate estimation of photometric parameters in order to provide new constraints for future observation campaigns and instrumentations.

  15. Roto-flexoelectric coupling impact on the phase diagrams and pyroelectricity of thin SrTiO 3 films

    DOE PAGES

    Morozovska, Anna N.; Eliseev, Eugene A.; Bravina, Svetlana L.; ...

    2012-09-20

    The influence of the flexoelectric and rotostriction coupling on the phase diagrams of ferroelastic-quantum paraelectric SrTiO 3 films was studied using Landau-Ginzburg-Devonshire (LGD) theory. We calculated the phase diagrams in coordinates temperature - film thickness for different epitaxial misfit strains. Tensile misfit strains stimulate appearance of the spontaneous out-of-plane structural order parameter (displacement vector of an appropriate oxygen atom from its cubic position) in the structural phase. For compressive misfit strains are stimulated because of the spontaneous in-plane structural order parameter. Furthermore, gradients of the structural order parameter components, which inevitably exist in the vicinity of film surfaces due tomore » the termination and symmetry breaking, induce improper polarization and pyroelectric response via the flexoelectric and rotostriction coupling mechanism. Flexoelectric and rotostriction coupling results in the roto-flexoelectric field that is antisymmetric inside the film, small in the central part of the film, where the gradients of the structural parameter are small, and maximal near the surfaces, where the gradients of the structural parameter are highest. The field induces improper polarization and pyroelectric response. Penetration depths of the improper phases (both polar and structural) can reach several nm from the film surfaces. An improper pyroelectric response of thin films is high enough to be registered with planar-type electrode configurations by conventional pyroelectric methods.« less

  16. Using Diffraction Tomography to Estimate Marine Animal Size

    NASA Astrophysics Data System (ADS)

    Jaffe, J. S.; Roberts, P.

    In this article we consider the development of acoustic methods which have the potential to size marine animals. The proposed technique uses scattered sound in order to invert for both animal size and shape. The technique uses the Distorted Wave Born Approximation (DWBA) in order to model sound scattered from these organisms. The use of the DWBA also provides a valuable context for formulating data analysis techniques in order to invert for parameters of the animal. Although 3-dimensional observations can be obtained from a complete set of views, due to the difficulty of collecting full 3-dimensional scatter, it is useful to simplify the inversion by approximating the animal by a few parameters. Here, the animals are modeled as 3-dimensional ellipsoids. This reduces the complexity of the problem to a determination of the 3 semi axes for the x, y and z dimensions from just a few radial spokes through the 3-dimensional Fourier Transform. In order to test the idea, simulated scatter data is taken from a 3-dimensional model of a marine animal and the resultant data are inverted in order to estimate animal shape

  17. Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides

    PubMed Central

    2015-01-01

    Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium–niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials. PMID:25122534

  18. Novel third-order Lovelock wormhole solutions

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Mohammad Reza; Lobo, Francisco S. N.

    2016-06-01

    In this work, we consider wormhole geometries in third-order Lovelock gravity and investigate the possibility that these solutions satisfy the energy conditions. In this framework, by applying a specific equation of state, we obtain exact wormhole solutions, and by imposing suitable values for the parameters of the theory, we find that these geometries satisfy the weak energy condition in the vicinity of the throat, due to the presence of higher-order curvature terms. Finally, we trace out a numerical analysis, by assuming a specific redshift function, and find asymptotically flat solutions that satisfy the weak energy condition throughout the spacetime.

  19. Relation between Soil Order and Sorptive Capacity for Dissolved Organic Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heal, Katherine R; Brandt, Craig C; Mayes, Melanie

    2012-01-01

    Soils have historically been considered a temporary sink for organic C, but deeper soils may serve as longer term C sinks due to the sorption of dissolved organic C (DOC) onto Fe- and clay-rich mineral soil particles. This project provides an improved understanding and predictive capability of the physical and chemical properties of deep soils that control their sorptive capacities for DOC. Two hundred thirteen subsurface soil samples (72 series from five orders) were selected from the eastern and central United States. A characterized natural DOC source was added to the soils, and the Langmuir sorption equation was fitted tomore » the observed data by adjusting the maximum DOC sorption capacity (Q{sub max}) and the binding coefficient (k). Different isotherm shapes were observed for Ultisols, Alfisols, and Mollisols due to statistically significant differences in the magnitude of k, while Q{sub max} was statistically invariant among these three orders. Linear regressions were performed on the entire database and as a function of soil order to correlate Langmuir fitted parameters with measured soil properties, e.g., pH, clay content, total organic C (TOC), and total Fe oxide content. Together, textural clay and Fe oxide content accounted for 35% of the variation in Q{sub max} in the database, and clay was most important for Alfisols and Ultisols. The TOC content, however, accounted for 27% of the variation in Q{sub max} in Mollisols. Soil pH accounted for 45% of the variation in k for the entire database, 41% for Mollisols, and 22% for Alfisols. Our findings demonstrate that correlations between Langmuir parameters and soil properties are different for different soil orders and that k is a more sensitive parameter for DOC sorption than is Q{sub max} for temperate soils from the central and eastern United States.« less

  20. Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj

    2013-09-01

    We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the <100>, <110>, <111> in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

  1. Uncertainty Due to Unsteady Fluid/Structure Interaction for the Ares I Vehicle Traversing the Transonic Regime

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2012-01-01

    Rapid reduced-order numerical models are being investigated as candidates to simulate the dynamics of a flexible launch vehicle during atmospheric ascent. There has also been the extension of these new approaches to include gust response. These methods are used to perform aeroelastic and gust response analyses at isolated Mach numbers. Such models require a method to time march through a succession of ascent Mach numbers. An approach is presented for interpolating reduced-order models of the unsteady aerodynamics at successive Mach numbers. The transonic Mach number range is considered here since launch vehicles can suffer the highest dynamic loads through this range. Realistic simulations of the flexible vehicle behavior as it traverses this Mach number range are presented. The response of the vehicle due to gusts is computed. Uncertainties in root mean square and maximum bending moment and crew module accelerations are presented due to assumed probability distributions in design parameters, ascent flight conditions, gusts. The primary focus is on the uncertainty introduced by modeling fidelity. It is found that an unsteady reduced order model produces larger excursions in the root mean square loading and accelerations than does a quasi-steady reduced order model.

  2. Fractional viscoelasticity of soft elastomers and auxetic foams

    NASA Astrophysics Data System (ADS)

    Solheim, Hannah; Stanisauskis, Eugenia; Miles, Paul; Oates, William

    2018-03-01

    Dielectric elastomers are commonly implemented in adaptive structures due to their unique capabilities for real time control of a structure's shape, stiffness, and damping. These active polymers are often used in applications where actuator control or dynamic tunability are important, making an accurate understanding of the viscoelastic behavior critical. This challenge is complicated as these elastomers often operate over a broad range of deformation rates. Whereas research has demonstrated success in applying a nonlinear viscoelastic constitutive model to characterize the behavior of Very High Bond (VHB) 4910, robust predictions of the viscoelastic response over the entire range of time scales is still a significant challenge. An alternative formulation for viscoelastic modeling using fractional order calculus has shown significant improvement in predictive capabilities. While fractional calculus has been explored theoretically in the field of linear viscoelasticity, limited experimental validation and statistical evaluation of the underlying phenomena have been considered. In the present study, predictions across several orders of magnitude in deformation rates are validated against data using a single set of model parameters. Moreover, we illustrate the fractional order is material dependent by running complementary experiments and parameter estimation on the elastomer VHB 4949 as well as an auxetic foam. All results are statistically validated using Bayesian uncertainty methods to obtain posterior densities for the fractional order as well as the hyperelastic parameters.

  3. An investigation of using an RQP based method to calculate parameter sensitivity derivatives

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1989-01-01

    Estimation of the sensitivity of problem functions with respect to problem variables forms the basis for many of our modern day algorithms for engineering optimization. The most common application of problem sensitivities has been in the calculation of objective function and constraint partial derivatives for determining search directions and optimality conditions. A second form of sensitivity analysis, parameter sensitivity, has also become an important topic in recent years. By parameter sensitivity, researchers refer to the estimation of changes in the modeling functions and current design point due to small changes in the fixed parameters of the formulation. Methods for calculating these derivatives have been proposed by several authors (Armacost and Fiacco 1974, Sobieski et al 1981, Schmit and Chang 1984, and Vanderplaats and Yoshida 1985). Two drawbacks to estimating parameter sensitivities by current methods have been: (1) the need for second order information about the Lagrangian at the current point, and (2) the estimates assume no change in the active set of constraints. The first of these two problems is addressed here and a new algorithm is proposed that does not require explicit calculation of second order information.

  4. Evolution of arbitrary moments of radiant intensity distribution for partially coherent general beams in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Dan, Youquan; Xu, Yonggen

    2018-04-01

    The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.

  5. Transition to collective oscillations in finite Kuramoto ensembles

    NASA Astrophysics Data System (ADS)

    Peter, Franziska; Pikovsky, Arkady

    2018-03-01

    We present an alternative approach to finite-size effects around the synchronization transition in the standard Kuramoto model. Our main focus lies on the conditions under which a collective oscillatory mode is well defined. For this purpose, the minimal value of the amplitude of the complex Kuramoto order parameter appears as a proper indicator. The dependence of this minimum on coupling strength varies due to sampling variations and correlates with the sample kurtosis of the natural frequency distribution. The skewness of the frequency sample determines the frequency of the resulting collective mode. The effects of kurtosis and skewness hold in the thermodynamic limit of infinite ensembles. We prove this by integrating a self-consistency equation for the complex Kuramoto order parameter for two families of distributions with controlled kurtosis and skewness, respectively.

  6. Phase diagram of the underdoped cuprates at high magnetic field

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debmalya; Morice, Corentin; Pépin, Catherine

    2018-06-01

    The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist in a small intermediate region. The charge order transition is strikingly insensitive to temperature and quickly reaches a transition temperature close to the zero-field superconducting Tc. We argue that such a transition along with the presence of the coexisting phase is difficult to obtain in a weak coupling competing orders formalism. We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge and superconducting orders in the system depending on their relative masses and the coupling strength of the two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping is also discussed.

  7. Hollow vortex Gaussian beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing

    2013-05-01

    A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter γ, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.

  8. Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity

    NASA Astrophysics Data System (ADS)

    Sarma, Bijita; Sarma, Amarendra K.

    2018-04-01

    Photon statistics in a weakly driven optomechanical cavity, with Kerr-type nonlinearity, are analyzed both analytically and numerically. The single-photon blockade effect is demonstrated via calculations of the zero-time-delay second-order correlation function g (2)(0). The analytical results obtained by solving the Schrödinger equation are in complete conformity with the results obtained through numerical solution of the quantum master equation. A systematic study on the parameter regime for observing photon blockade in the weak coupling regime is reported. The parameter regime where the photon blockade is not realizable due to the combined effect of nonlinearities owing to the optomechanical coupling and the Kerr-effect is demonstrated. The experimental feasibility with state-of-the-art device parameters is discussed and it is observed that photon blockade could be generated at the telecommunication wavelength. An elaborate analysis of the thermal effects on photon antibunching is presented. The system is found to be robust against pure dephasing-induced decoherences and thermal phonon number fluctuations.

  9. Evaluating effective swath width and droplet distribution of aerial spraying systems on M-18B and Thrush 510G airplanes

    USDA-ARS?s Scientific Manuscript database

    Aerial spraying plays an important role in promoting agricultural production and protecting the biological environment due to its flexibility, high effectiveness, and large operational area per unit of time. In order to evaluate the performance parameters of the spraying systems on two fixed wing ai...

  10. Selection of the most influential factors on the water-jet assisted underwater laser process by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Nikolić, Vlastimir; Petković, Dalibor; Lazov, Lyubomir; Milovančević, Miloš

    2016-07-01

    Water-jet assisted underwater laser cutting has shown some advantages as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. It is important to determine which parameters are the most important for the process. In this investigation was analyzed the water-jet assisted underwater laser cutting parameters forecasting based on the different parameters. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for water-jet assisted underwater laser cutting parameters forecasting. Three inputs are considered: laser power, cutting speed and water-jet speed. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the water-jet assisted underwater laser cutting parameters. According to the results the combination of laser power cutting speed forms the most influential combination foe the prediction of water-jet assisted underwater laser cutting parameters. The best prediction was observed for the bottom kerf-width (R2 = 0.9653). The worst prediction was observed for dross area per unit length (R2 = 0.6804). According to the results, a greater improvement in estimation accuracy can be achieved by removing the unnecessary parameter.

  11. Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects

    NASA Astrophysics Data System (ADS)

    Margueron, Jérôme; Hoffmann Casali, Rudiney; Gulminelli, Francesca

    2018-02-01

    Metamodeling for the nucleonic equation of state (EOS), inspired from a Taylor expansion around the saturation density of symmetric nuclear matter, is proposed and parameterized in terms of the empirical parameters. The present knowledge of nuclear empirical parameters is first reviewed in order to estimate their average values and associated uncertainties, and thus defining the parameter space of the metamodeling. They are divided into isoscalar and isovector types, and ordered according to their power in the density expansion. The goodness of the metamodeling is analyzed against the predictions of the original models. In addition, since no correlation among the empirical parameters is assumed a priori, all arbitrary density dependences can be explored, which might not be accessible in existing functionals. Spurious correlations due to the assumed functional form are also removed. This meta-EOS allows direct relations between the uncertainties on the empirical parameters and the density dependence of the nuclear equation of state and its derivatives, and the mapping between the two can be done with standard Bayesian techniques. A sensitivity analysis shows that the more influential empirical parameters are the isovector parameters Lsym and Ksym, and that laboratory constraints at supersaturation densities are essential to reduce the present uncertainties. The present metamodeling for the EOS for nuclear matter is proposed for further applications in neutron stars and supernova matter.

  12. Probabilistic modelling of overflow, surcharge and flooding in urban drainage using the first-order reliability method and parameterization of local rain series.

    PubMed

    Thorndahl, S; Willems, P

    2008-01-01

    Failure of urban drainage systems may occur due to surcharge or flooding at specific manholes in the system, or due to overflows from combined sewer systems to receiving waters. To quantify the probability or return period of failure, standard approaches make use of the simulation of design storms or long historical rainfall series in a hydrodynamic model of the urban drainage system. In this paper, an alternative probabilistic method is investigated: the first-order reliability method (FORM). To apply this method, a long rainfall time series was divided in rainstorms (rain events), and each rainstorm conceptualized to a synthetic rainfall hyetograph by a Gaussian shape with the parameters rainstorm depth, duration and peak intensity. Probability distributions were calibrated for these three parameters and used on the basis of the failure probability estimation, together with a hydrodynamic simulation model to determine the failure conditions for each set of parameters. The method takes into account the uncertainties involved in the rainstorm parameterization. Comparison is made between the failure probability results of the FORM method, the standard method using long-term simulations and alternative methods based on random sampling (Monte Carlo direct sampling and importance sampling). It is concluded that without crucial influence on the modelling accuracy, the FORM is very applicable as an alternative to traditional long-term simulations of urban drainage systems.

  13. Simulated performance of an order statistic threshold strategy for detection of narrowband signals

    NASA Technical Reports Server (NTRS)

    Satorius, E.; Brady, R.; Deich, W.; Gulkis, S.; Olsen, E.

    1988-01-01

    The application of order statistics to signal detection is becoming an increasingly active area of research. This is due to the inherent robustness of rank estimators in the presence of large outliers that would significantly degrade more conventional mean-level-based detection systems. A detection strategy is presented in which the threshold estimate is obtained using order statistics. The performance of this algorithm in the presence of simulated interference and broadband noise is evaluated. In this way, the robustness of the proposed strategy in the presence of the interference can be fully assessed as a function of the interference, noise, and detector parameters.

  14. Parametric Excitation of Marangoni Instability in a Heated Thin Layer Covered by Insoluble Surfactant

    NASA Astrophysics Data System (ADS)

    Mikishev, Alexander B.; Nepomnyashchy, Alexander A.

    2018-05-01

    The paper presents the analysis of the impact of vertical periodic vibrations on the long-wavelength Marangoni instability in a liquid layer with poorly conducting boundaries in the presence of insoluble surfactant on the deformable gas-liquid interface. The layer is subject to a uniform transverse temperature gradient. Linear stability analysis is performed in order to find critical values of Marangoni numbers for both monotonic and oscillatory instability modes. Longwave asymptotic expansions are used. At the leading order, the critical values are independent on vibration parameters; at the next order of approximation we obtained the rise of stability thresholds due to vibration.

  15. The tight binding model study of the role of anisotropic AFM spin ordering in the charge ordered CMR manganites

    NASA Astrophysics Data System (ADS)

    Kar, J. K.; Panda, Saswati; Rout, G. C.

    2017-05-01

    We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.

  16. Kinetic theory of coupled oscillators.

    PubMed

    Hildebrand, Eric J; Buice, Michael A; Chow, Carson C

    2007-02-02

    We present an approach for the description of fluctuations that are due to finite system size induced correlations in the Kuramoto model of coupled oscillators. We construct a hierarchy for the moments of the density of oscillators that is analogous to the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy in the kinetic theory of plasmas and gases. To calculate the lowest order system size effect, we truncate this hierarchy at second order and solve the resulting closed equations for the two-oscillator correlation function around the incoherent state. We use this correlation function to compute the fluctuations of the order parameter, including the effect of transients, and compare this computation with numerical simulations.

  17. Non-linear Parameter Estimates from Non-stationary MEG Data

    PubMed Central

    Martínez-Vargas, Juan D.; López, Jose D.; Baker, Adam; Castellanos-Dominguez, German; Woolrich, Mark W.; Barnes, Gareth

    2016-01-01

    We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast. PMID:27597815

  18. Parameters estimation for reactive transport: A way to test the validity of a reactive model

    NASA Astrophysics Data System (ADS)

    Aggarwal, Mohit; Cheikh Anta Ndiaye, Mame; Carrayrou, Jérôme

    The chemical parameters used in reactive transport models are not known accurately due to the complexity and the heterogeneous conditions of a real domain. We will present an efficient algorithm in order to estimate the chemical parameters using Monte-Carlo method. Monte-Carlo methods are very robust for the optimisation of the highly non-linear mathematical model describing reactive transport. Reactive transport of tributyltin (TBT) through natural quartz sand at seven different pHs is taken as the test case. Our algorithm will be used to estimate the chemical parameters of the sorption of TBT onto the natural quartz sand. By testing and comparing three models of surface complexation, we show that the proposed adsorption model cannot explain the experimental data.

  19. A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus.

    PubMed

    Elyasi, Nahid; Taheri, Kimia Karimi; Narooei, Keivan; Taheri, Ali Karimi

    2017-06-01

    In this research, the nonlinear elastic behavior of human extensor apparatus was investigated. To this goal, firstly the best material parameters of hyperelastic strain energy density functions consisting of the Mooney-Rivlin, Ogden, invariants, and general exponential models were derived for the simple tension experimental data. Due to the significance of stress response in other deformation modes of nonlinear models, the calculated parameters were used to study the pure shear and balance biaxial tension behavior of the extensor apparatus. The results indicated that the Mooney-Rivlin model predicts an unstable behavior in the balance biaxial deformation of the extensor apparatus, while the Ogden order 1 represents a stable behavior, although the fitting of experimental data and theoretical model was not satisfactory. However, the Ogden order 6 model was unstable in the simple tension mode and the Ogden order 5 and general exponential models presented accurate and stable results. In order to reduce the material parameters, the invariants model with four material parameters was investigated and this model presented the minimum error and stable behavior in all deformation modes. The ABAQUS Explicit solver was coupled with the VUMAT subroutine code of the invariants model to simulate the mechanical behavior of the central and terminal slips of the extensor apparatus during the passive finger flexion, which is important in the prediction of boutonniere deformity and chronic mallet finger injuries, respectively. Also, to evaluate the adequacy of constitutive models in simulations, the results of the Ogden order 5 were presented. The difference between the predictions was attributed to the better fittings of the invariants model compared with the Ogden model.

  20. Optimum performance of electron beam pumped GaAs and GaN

    NASA Astrophysics Data System (ADS)

    Afify, M. S.; Moslem, W. M.; Hassouba, M. A.; Abu-El Hassan, A.

    2018-05-01

    This paper introduces a physical solution in order to overcome the damage to semiconductors, due to increasing temperature during the pumping process. For this purpose, we use quantum hydrodynamic fluid equations, including different quantum effects. This study concludes that nonlinear acoustic waves, in the form of soliton and shock-like (double layer) pulses, can propagate depending on the electron beam temperature and the streaming speed. Therefore, one can precisely tune the beam parameters in order to avoid such unfavorable noises that may lead to defects in semiconductors.

  1. Entropy of a (1+1)-dimensional charged black hole to all orders in the Planck length

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Wan; Park, Young-Jai

    2013-02-01

    We study the statistical entropy of a scalar field on the (1+1)-dimensional Maxwell-dilaton background without an artificial cutoff by considering corrections to all orders in the Planck length obtained from a generalized uncertainty principle applied to the quantum state density. In contrast to the previous results for d ≥ 3 dimensional cases, we obtain an unadjustable entropy due to the independence of the minimal length, which plays the role of an adjustable parameter. However, this entropy is still proportional to the Bekenstein-Hawking entropy.

  2. Atmospherical simulations of the OMEGA/MEX observations

    NASA Astrophysics Data System (ADS)

    Melchiorri, R.; Drossart, P.; Combes, M.; Encrenaz, T.; Fouchet, T.; Forget, F.; Bibring, J. P.; Ignatiev, N.; Moroz, V.; OMEGA Team

    The modelization of the atmospheric contribution in the martian spectrum is an important step for the OMEGA data analysis.A full line by line radiative transfer calculation is made for the gas absorption; the dust opacity component, in a first approximation, is calculated as an optically thin additive component.Due to the large number of parameters needed in the calculations, the building of a huge data base to be interpolated is not envisageable, for each observed OMEGA spectrum with calculation for all the involved parameters (atmospheric pressure, water abundance, CO abundance, dust opacity and geometric angles of observation). The simulation of the observations allows us to fix all the orbital parameters and leave the unknown parameters as the only variables.Starting from the predictions of the current meteorological models of Mars we build a smaller data base corresponding on each observation. We present here a first order simulation, which consists in retrieving atmospheric contribution from the solar reflected component as a multiplicative (for gas absorption) and an additive component (for suspended dust contribution); although a fully consistent approach will require to include surface and atmosphere contributions together in synthetic calculations, this approach is sufficient for retrieving mineralogic information cleaned from atmospheric absorption at first order.First comparison to OMEGA spectra will be presented, with first order retrieval of CO2 pressure, CO and H2O abundance, and dust opacity.

  3. Topological superconductivity in an ultrathin, magnetically-doped topological insulator proximity coupled to a conventional superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Philip, Timothy M.; Park, Moon Jip; Gilbert, Matthew J.

    2016-12-01

    As a promising candidate system to realize topological superconductivity, the system of a 3D topological insulator (TI) grown on top of the s -wave superconductor has been extensively studied. To access the topological superconductivity experimentally, the 3D TI sample must be thin enough to allow for Cooper pair tunneling to the exposed surface of TI. The use of magnetically ordered dopants to break time-reversal symmetry may allow the surface of a TI to host Majorana fermion, which are believed to be a signature of topological superconductivity. In this work, we study a magnetically-doped thin film TI-superconductor hybrid system. Considering the proximity induced order parameter in thin film of TI, we analyze the gap closing points of the Hamiltonian and draw the phase diagram as a function of relevant parameters: the hybridization gap, Zeeman energy, and chemical potential of the TI system. Our findings provide a useful guide in choosing relevant parameters to facilitate the observation of topological superconductivity in thin film TI-superconductor hybrid systems. In addition, we further perform numerical analysis on a TI proximity coupled to an s -wave superconductor and find that, due to the spin-momentum locked nature of the surface states in TI, the induced s -wave order parameter of the surface states persists even at large magnitude of the Zeeman energy.

  4. Nonmagnetic impurity resonances as a signature of sign-reversal pairing in FeAs-based superconductors.

    PubMed

    Zhang, Degang

    2009-10-30

    The energy band structure of FeAs-based superconductors is fitted by a tight-binding model with two Fe ions per unit cell and two degenerate orbitals per Fe ion. Based on this, superconductivity with extended s-wave pairing symmetry of the form cosk(x)+cosk(y) is examined. The local density of states near an impurity is also investigated by using the T-matrix approach. For the nonmagnetic scattering potential, we found that there exist two major resonances inside the gap. The height of the resonance peaks depends on the strength of the impurity potential. These in-gap resonances are originated in the Andreev's bound states due to the quasiparticle scattering between the hole Fermi surfaces around Gamma point with positive order parameter and the electron Fermi surfaces around M point with negative order parameter.

  5. radiation and electric field induced effects on the order-disorder phase in lithium sodium sulphate crystals

    NASA Astrophysics Data System (ADS)

    Hamed, A. E.; Kassem, M. E.; El-Wahidy, E. F.; El-Abshehy, M. A.

    1995-03-01

    The temperature dependence of specific heat at constant pressure, Cp(T), has been measured for lithium sodium sulphate, LiNaSo4 crystals, at different ?-radiation doses and external bias electric field (Eb), in the temperature range 300-900 K. A nonlinear dependence of transition temperature, T1 and a remarkable change in the thermodynamic parameters, were obtained as the effect of both electric field and ?-radiation. The effect of ?-radiation doses on the phase transition in LiNaSO4 crystals was explained as due to an internal bias field, Eb, originating from the interaction of polar defects with the order parameter of the host lattice. The internal bias field effect on the behaviour of Cp(T) in LiNaSO4 crystals was similar to that of the external electric field (E).

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, Matthew B

    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, themore » behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.« less

  7. Spectral engineering for circular-side square microlasers.

    PubMed

    Weng, Hai-Zhong; Yang, Yue-De; Xiao, Jin-Long; Hao, You-Zeng; Huang, Yong-Zhen

    2018-04-16

    Spectral engineering has been demonstrated for the circular-side square microlasers with an output waveguide butt-coupled to one vertex. By carefully optimizing deformation parameter and waveguide connection angle, undesired high-order transverse modes are suppressed while the mode Q factors and the transverse-mode intervals are enhanced simultaneously for the low-order transverse modes. Dual-mode lasing with pure lasing spectra is realized experimentally for the circular-side square microlasers with side lengths of 16 μm, and the transverse mode intervals can be adjusted from 0.54 to 5.4 nm by changing the deformation parameter. Due to the enhanced mode confinement, single-mode lasing with a side-mode suppression-ratio of 36 dB is achieved for a 10μm-side-length circular-side square microlaser with a 1.5μm-wide waveguide.

  8. Model of an asymmetric DPPC/DPPS membrane: effect of asymmetry on the lipid properties. A molecular dynamics simulation study.

    PubMed

    López Cascales, J J; Otero, T F; Smith, Bradley D; González, Carlos; Márquez, M

    2006-02-09

    The study of asymmetric lipid bilayers is of a crucial importance due to the great number of biological process in which they are involved such as exocytosis, intracellular fusion processes, phospholipid-protein interactions, and signal transduction pathway. In addition, the loss of this asymmetry is a hallmark of the early stages of apoptosis. In this regard, a model of an asymmetric lipid bilayer composed of DPPC and DPPS was simulated by molecular dynamics simulation. Thus, the asymmetric membrane was modeled by 264 lipids, of which 48 corresponded to DPPS- randomly distributed in the same leaflet with 96 DPPC. In the other leaflet, 120 DPPC were placed without DPPS-. Due to the presence of a net charge of -1 for the DPPS- in physiological conditions, 48 Na+ were introduced into the system to balance the charge. To ascertain whether the presence of the DPPS- in only one of the two leaflets perturbs the properties of the DPPC in the other leaflet composed only of DPPC, different properties were studied, such as the atomic density of the different components across the membrane, the electrostatic potential across the membrane, the translational diffusion of DPPC and DPPS, the deuterium order parameters, lipid hydration, and lipid-lipid charge bridges. Thus, we obtained that certain properties such as the surface area lipid molecule, lipid head orientation, order parameter, translational diffusion coefficient, or lipid hydration of DPPC in the leaflet without DPPS remain unperturbed by the presence of DPPS in the other leaflet, compared with a DPPC bilayer. On the other hand, in the leaflet containing DPPS, some of the DPPC properties were strongly affected by the presence of DPPS such as the order parameter or electrostatic potential.

  9. Invariant models in the inversion of gravity and magnetic fields and their derivatives

    NASA Astrophysics Data System (ADS)

    Ialongo, Simone; Fedi, Maurizio; Florio, Giovanni

    2014-11-01

    In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block; alternatively it has been defined as the structural index of the investigated source distribution. In both cases, when k-order derivatives of the potential field are considered, the depth-weighting exponent has to be increased by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We show instead that invariant and realistic source-distribution models are obtained using the same depth-weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model and equal to that of the corresponding magnetic field, in the magnetic case, and of the 1st derivative of the gravity field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general constraints, the mathematical demonstration of such invariance is difficult, because of its non-linearity, and of its variable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to confirm the invariance of the depth-weighting exponent. A final consideration regards the role of the regularization parameter; we show that the regularization can severely affect the depth to the source because the estimated depth tends to increase proportionally with the size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regularization parameter and depth weighting.

  10. Thermodynamic properties of rhodium at high temperature and pressure by using mean field potential approach

    NASA Astrophysics Data System (ADS)

    Kumar, Priyank; Bhatt, Nisarg K.; Vyas, Pulastya R.; Gohel, Vinod B.

    2016-10-01

    The thermophysical properties of rhodium are studied up to melting temperature by incorporating anharmonic effects due to lattice ions and thermally excited electrons. In order to account anharmonic effects due to lattice vibrations, we have employed mean field potential (MFP) approach and for thermally excited electrons Mermin functional. The local form of the pseudopotential with only one effective adjustable parameter rc is used to construct MFP and hence vibrational free energy due to ions - Fion. We have studied equation of state at 300 K and further, to access the applicability of present conjunction scheme, we have also estimated shock-Hugoniot and temperature along principle Hugoniot. We have carried out the study of temperature variation of several thermophysical properties like thermal expansion (βP), enthalpy (EH), specific heats at constant pressure and volume (CP and CV), specific heats due to lattice ions and thermally excited electrons ( and , isothermal and adiabatic bulk moduli (BT and Bs) and thermodynamic Gruneisen parameter (γth) in order to examine the inclusion of anharmonic effects in the present study. The computed results are compared with available experimental results measured by using different methods and previously obtained theoretical results using different theoretical philosophy. Our computed results are in good agreement with experimental findings and for some physical quantities better or comparable with other theoretical results. We conclude that local form of the pseudopotential used accounts s-p-d hybridization properly and found to be transferable at extreme environment without changing the values of the parameter. Thus, even the behavior of transition metals having complexity in electronic structure can be well understood with local pseudopotential without any modification in the potential at extreme environment. Looking to the success of present scheme (MFP + pseudopotential) we would like to extend it further for the study of liquid state properties as well as thermophysical properties of d and f block metals.

  11. Spin-lattice relaxation-rate anomaly at structural phase transitions

    NASA Astrophysics Data System (ADS)

    Levanyuk, A. P.; Minyukov, S. A.; Etrillard, J.; Toudic, B.

    1997-12-01

    The theory of spin-lattice relaxation (SLR)-rate anomaly at structural phase transitions proposed about 30 years ago is reconsidered taking into account that knowledge about the relevant lattice response functions has changed considerably. We use both the results of previous authors and perform original calculations of the response functions when it is necessary. We consider displacive systems and use the perturbation theory to treat the lattice anharmonicities in a broad temperature region whenever possible. Some comments about the order-disorder systems are made as well. The possibility of linear coupling of the order parameter and the resonance frequency is always assumed. It is found that in the symmetrical phase the anomaly is due to the one-phonon processes, the anomalous part being proportional to either (T-Tc)-1 or (T-Tc)-1/2 depending on some condition on the soft-mode dispersion. In both cases the value of the SLR rate at the boundary of applicabity of the theory (close to the phase transition) is estimated to be 102-103 times more than the typical value of the SLR rate in an ideal crystal. An essential specific feature of the nonsymmetrical phase is appearance of third-order anharmonicities that are well known to lead to a low-frequency dispersion of the order-parameter damping constant. We have found that this constant exhibits, in addition, a strong wave-vector dispersion, so that the damping constant determing the SLR rate is quite different from that at zero wave vector. In the case of two-component order parameter the damping constant for the component with nonzero equilibrium value is different from that for the other component, the difference is of the same order of magnitude as the damping constants themselves. In the case of the incommensurate phase a part of the mentioned third-order anharmonicity is responsible for longitudinal-transversal interaction that is well known to influence the static longitudinal response function. We calculate as well the dynamic response function to find that for the SLR calculations the imaginary part is of main importance. Due to this interaction the longitudinal SLR rate acquires a dependence on the Larmor frequency. This dependence is however, fairly weak: a logarithmic one. The implications of the obtained results for interpretation of the experimental data on SLR in incommensurate phase are discussed as well.

  12. Topological superconductivity in an ultrathin, magnetically-doped topological insulator proximity coupled to a conventional superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Philip, Timothy M.; Park, Moon Jip; Gilbert, Matthew J.; University of Illinois at Urbana; Champaign Team

    As a promising candidate system to realize topological superconductivity (SC), 3D time-reversal invariant topological insulators (TI) proximity-coupled to s-wave superconductors have been intensively studied. Recent experiments on proximity-coupled TI have shown that superconductivity may be induced in ultrathin TI. One proposal to observe the topological SC in proximity-coupled ultrathin TI system is to add magnetic dopants to the TI. However, detailed study on the impact of the experimental parameters on possible topological phase is sparse. In this work, we investigate ultrathin, magnetically-doped, proximity-coupled TI in order to determine the experimentally relevant parameters needed to observe topological SC. We find that, due to the spin-momentum locked nature of the surface states in TI, the induced s-wave order parameter within the surface states persists even at large magnitudes of the Zeeman energy, allowing us to explore the system in parameter space. We elucidate the phase diagram as a function of: the hybridization gap, Zeeman energy, and chemical potential of the TI system. Our findings provide a useful guide in choosing relevant parameters to facilitate the observation of topological SC in thin film TI-superconductor hybrid systems. National Science Foundation (NSF) under Grant CAREER ECCS-1351871.

  13. Parameter Estimation with Small Sample Size: A Higher-Order IRT Model Approach

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Hong, Yuan

    2010-01-01

    Sample size ranks as one of the most important factors that affect the item calibration task. However, due to practical concerns (e.g., item exposure) items are typically calibrated with much smaller samples than what is desired. To address the need for a more flexible framework that can be used in small sample item calibration, this article…

  14. Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons.

    PubMed

    Calisto, Vânia; Ferreira, Catarina I A; Oliveira, João A B P; Otero, Marta; Esteves, Valdemar I

    2015-04-01

    This work describes the single adsorption of seven pharmaceuticals (carbamazepine, oxazepam, sulfamethoxazole, piroxicam, cetirizine, venlafaxine and paroxetine) from water onto a commercially available activated carbon and a non-activated carbon produced by pyrolysis of primary paper mill sludge. Kinetics and equilibrium adsorption studies were performed using a batch experimental approach. For all pharmaceuticals, both carbons presented fast kinetics (equilibrium times varying from less than 5 min to 120 min), mainly described by a pseudo-second order model. Equilibrium data were appropriately described by the Langmuir and Freundlich isotherm models, the last one giving slightly higher correlation coefficients. The fitted parameters obtained for both models were quite different for the seven pharmaceuticals under study. In order to evaluate the influence of water solubility, log Kow, pKa, polar surface area and number of hydrogen bond acceptors of pharmaceuticals on the adsorption parameters, multiple linear regression analysis was performed. The variability is mainly due to log Kow followed by water solubility, in the case of the waste-based carbon, and due to water solubility in the case of the commercial activated carbon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. An investigation of fatigue phenomenon in the upper limb muscle due to short duration pulses in an FES system

    NASA Astrophysics Data System (ADS)

    Naeem, Jannatul; Wong Azman, Amelia; Khan, Sheroz; Mohd Mustafah, Yasir

    2013-12-01

    Functional Electrical Stimulation (FES) is a method of artificially stimulating muscles or nerves in order to result in contraction or relaxation of muscles. Many studies have shown that FES system has helped patients to live a better lives especially those who are suffering from physical mobility. Unfortunately, one of the main limitations of an FES system besides of its high cost is largely due to muscle fatigue. Muscle fatigue will affect the training duration which could delay patients' recovery rate. In this paper, we analyzed the occurrence of this fatigue phenomenon in terms of stimulator parameters such as amplitude, frequency, pulse width and pulse shape. The objective of this investigation is to identify other key features of the FES system parameters in order to prolong the training duration among patients. The experiment has been done on a healthy person for the duration of one minute and later the muscles response will be observed. Resultant muscle response is recorded as force using force resistive sensor. The experimental results show muscles will get fatigue at a different rate as the frequency increases. The experiment also shows that the duty cycle is reciprocal to the resultant force.

  16. Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Veenendaal, Michel

    2016-09-01

    The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. For small long-range interactions, recovery can be slow due to domain formation.« less

  17. Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects

    DOE PAGES

    van Veenendaal, Michel

    2016-09-01

    The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. Finally, for small long-range interactions, recovery can be slow due to domain formation.« less

  18. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    NASA Astrophysics Data System (ADS)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  19. Uncertainties of flood frequency estimation approaches based on continuous simulation using data resampling

    NASA Astrophysics Data System (ADS)

    Arnaud, Patrick; Cantet, Philippe; Odry, Jean

    2017-11-01

    Flood frequency analyses (FFAs) are needed for flood risk management. Many methods exist ranging from classical purely statistical approaches to more complex approaches based on process simulation. The results of these methods are associated with uncertainties that are sometimes difficult to estimate due to the complexity of the approaches or the number of parameters, especially for process simulation. This is the case of the simulation-based FFA approach called SHYREG presented in this paper, in which a rainfall generator is coupled with a simple rainfall-runoff model in an attempt to estimate the uncertainties due to the estimation of the seven parameters needed to estimate flood frequencies. The six parameters of the rainfall generator are mean values, so their theoretical distribution is known and can be used to estimate the generator uncertainties. In contrast, the theoretical distribution of the single hydrological model parameter is unknown; consequently, a bootstrap method is applied to estimate the calibration uncertainties. The propagation of uncertainty from the rainfall generator to the hydrological model is also taken into account. This method is applied to 1112 basins throughout France. Uncertainties coming from the SHYREG method and from purely statistical approaches are compared, and the results are discussed according to the length of the recorded observations, basin size and basin location. Uncertainties of the SHYREG method decrease as the basin size increases or as the length of the recorded flow increases. Moreover, the results show that the confidence intervals of the SHYREG method are relatively small despite the complexity of the method and the number of parameters (seven). This is due to the stability of the parameters and takes into account the dependence of uncertainties due to the rainfall model and the hydrological calibration. Indeed, the uncertainties on the flow quantiles are on the same order of magnitude as those associated with the use of a statistical law with two parameters (here generalised extreme value Type I distribution) and clearly lower than those associated with the use of a three-parameter law (here generalised extreme value Type II distribution). For extreme flood quantiles, the uncertainties are mostly due to the rainfall generator because of the progressive saturation of the hydrological model.

  20. Theoretical study of orbital ordering induced structural phase transition in iron pnictides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jena, Sushree Sangita, E-mail: sushree@iopb.res.in; Rout, G. C., E-mail: gcr@iopb.res.in; Panda, S. K., E-mail: skp@iopb.res.in

    2016-05-06

    We attribute the structural phase transition (SPT) in the parent compounds of the iron pnictides to orbital ordering. Due to anisotropy of the d{sub xz} and d{sub yz} orbitals in the xy plane, orbital ordering makes the orthorhombic structure more favorable and thus inducing the SPT. We consider a one band model Hamiltonian consisting of first and second-nearest-neighbor hopping of the electrons. We introduce Jahn-Tellar (JT) distortion in the system arising due to the orbital ordering present in this system. We calculate the electron Green’s function by using Zuvareb’s Green’s function technique and hence calculate an expression for the temperaturemore » dependent lattice strain which is computed numerically and self-consistently. The temperature dependent electron specific heat is calculated by minimizing the free energy of the system. The lattice strain is studied by varying the JT coupling and elastic constant of the system. The structural anomaly is studied through the electron occupation number and the specific heat by varying the physical parameters like JT coupling, lattice constant, chemical potential and hopping integrals of the system.« less

  1. Characterization of DC Magnetron Sputtering Plasma Used for Deposition of Amorphous Carbon Nitride

    NASA Astrophysics Data System (ADS)

    Camps, Enrique; Escobar-Alarcón, Luis; López, J.; Zambrano, G.; Prieto, P.

    2006-12-01

    Amorphous carbon nitride (a-CNx) thin films are attractive due to their potential applications, in different areas. This material can be hard and used as a protective coating, or can be soft and porous and used as the active element in gas sensors, it can also be used as a radiation detector due to its thermoluminescent response. The use of this material for one or another application, will depend on the material's structure, which can be changed by changing the deposition parameters. When using the d.c. magnetron sputtering technique it means mainly the change of discharge power, type of Ar/N2 gas mixture, and the working gas pressure. The variation of these deposition parameters has an important influence on the characteristics of the plasma formed in the discharge. In this work we studied the plasma characteristics, such as the type of excited species, plasma density, and electron temperature under different deposition conditions, using Optical Emission Spectroscopy (OES), and a single Langmuir probe. These parameters were correlated with the properties of a-CNx films deposited under those characterized regimes, in order to establish the role that the plasma parameters play on the formation of the different structures of CNx films.

  2. Target parameter estimation

    NASA Technical Reports Server (NTRS)

    Hocking, W. K.

    1989-01-01

    The objective of any radar experiment is to determine as much as possible about the entities which scatter the radiation. This review discusses many of the various parameters which can be deduced in a radar experiment, and also critically examines the procedures used to deduce them. Methods for determining the mean wind velocity, the RMS fluctuating velocities, turbulence parameters, and the shapes of the scatterers are considered. Complications with these determinations are discussed. It is seen throughout that a detailed understanding of the shape and cause of the scatterers is important in order to make better determinations of these various quantities. Finally, some other parameters, which are less easily acquired, are considered. For example, it is noted that momentum fluxes due to buoyancy waves and turbulence can be determined, and on occasions radars can be used to determine stratospheric diffusion coefficients and even temperature profiles in the atmosphere.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quennet, Marcel, E-mail: marcel.quennet@fu-berlin.de; Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin; Ritscher, Anna

    In this work the Cu/Zn order-disorder transition in Cu{sub 2}ZnSnS{sub 4} kesterites on Wyckoff positions 2c and 2d was investigated by a structural and electronic analysis in theory and experiment. For experimental investigations stoichiometric samples with different Cu/Zn order, annealed in the temperature range of 473–623 K and afterwards quenched, were used. The optical gaps were determined using the Derivation of Absorption Spectrum Fitting (DASF) method. Furthermore, the order-disorder transition was examined by DFT calculations for a closer analysis of the origins of the reduced band gap, showing a good agreement with experimental data with respect to structural and electronicmore » properties. Our studies show a slight increase of lattice parameter c in the kesterite lattice with increasing disorder. Additionally, a reduced band gap was observed with increasing disorder, which is an effect of newly occurring binding motifs in the disordered kesterite structure. - Highlights: • Experimental and theoretical investigation on the order-disorder transition in kesterites. • Slight enlargements of lattice constants due to disorder in experiment and theory. • Strong band gap fluctuations with decreasing order. • Electronic structure deviations due to changing binding motifs. • Disorder as possible main source of low open-circuit voltages.« less

  4. Optical isotropy and iridescence in a smectic 'blue phase'.

    PubMed

    Yamamoto, Jun; Nishiyama, Isa; Inoue, Miyoshi; Yokoyama, Hiroshi

    2005-09-22

    When liquid crystal molecules are chiral, the twisted structure competes with spatially uniform liquid crystalline orders, resulting in a variety of modulated liquid crystal phases, such as the cholesteric blue phase, twist grain boundary and smectic blue phases. Here we report a liquid crystal smectic blue phase (SmBP(iso)), formed from a two-component mixture containing a chiral monomer and a 'twin' containing two repeat units of the first molecule connected by a linear hydrocarbon spacer. The phase exhibits the simultaneous presence of finite local-order parameters of helices and smectic layers, without any discontinuity on a mesoscopic length scale. The anomalous softening of elasticity due to a strong reduction in entropy caused by mixing the monomer and the twin permits the seamless coexistence of these two competing liquid crystal orders. The new phase spontaneously exhibits an optically isotropic but uniformly iridescent colour and automatically acquires spherical symmetry, so that the associated photonic band gap maintains the same symmetry despite the local liquid crystalline order. We expect a range of unusual optical transmission properties based on this three-dimensional isotropic structure, and complete tunability due to the intrinsic softness and responsiveness of the liquid crystalline order against external fields.

  5. Ambiguity-free completion of the equations of motion of compact binary systems at the fourth post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Marchand, Tanguy; Bernard, Laura; Blanchet, Luc; Faye, Guillaume

    2018-02-01

    We present the first complete (i.e., ambiguity-free) derivation of the equations of motion of two nonspinning compact objects up to the 4PN (post-Newtonian) order, based on the Fokker action of point particles in harmonic coordinates. The last ambiguity parameter is determined from first principle, by resorting to a matching between the near-zone and far-zone fields, and a consistent computation of the 4PN tail effect in d dimensions. Dimensional regularization is used throughout for treating IR divergences appearing at 4PN order, as well as UV divergences due to the modeling of the compact objects as point particles.

  6. Nonlinear optical susceptibilities in the diffusion modified AlxGa1-xN/GaN single quantum well

    NASA Astrophysics Data System (ADS)

    Das, T.; Panda, S.; Panda, B. K.

    2018-05-01

    Under thermal treatment of the post growth AlGaN/GaN single quantum well, the diffusion of Al and Ga atoms across the interface is expected to form the diffusion modified quantum well with diffusion length as a quantitative parameter for diffusion. The modification of confining potential and position-dependent effective mass in the quantum well due to diffusion is calculated taking the Fick's law. The built-in electric field which arises from spontaneous and piezoelectric polarizations in the wurtzite structure is included in the effective mass equation. The electronic states are calculated from the effective mass equation using the finite difference method for several diffusion lengths. Since the effective well width decreases with increasing diffusion length, the energy levels increase with it. The intersubband energy spacing in the conduction band decreases with diffusion length due to built-in electric field and reduction of effective well width. The linear susceptibility for first-order and the nonlinear second-order and third-order susceptibilities are calculated using the compact density matrix approach taking only two levels. The calculated susceptibilities are red shifted with increase in diffusion lengths due to decrease in intersubband energy spacing.

  7. Theoretical studies of the EPR parameters and local structures for Cu2+-doped cobalt ammonium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Li, Chao-Ying; Liu, Shi-Fei; Fu, Jin-Xian

    2015-11-01

    High-order perturbation formulas for a 3d9 ion in rhombically elongated octahedral was applied to calculate the electron paramagnetic resonance (EPR) parameters (the g factors, gi, and the hyperfine structure constants Ai, i = x, y, z) of the rhombic Cu2+ center in CoNH4PO4.6H2O. In the calculations, the required crystal-field parameters are estimated from the superposition model which enables correlation of the crystal-field parameters and hence the EPR parameters with the local structure of the rhombic Cu2+ center. Based on the calculations, the ligand octahedral (i.e. [Cu(H2O)6]2+ cluster) are found to experience the local bond length variations ΔZ (≈0.213 Å) and δr (≈0.132 Å) along axial and perpendicular directions due to the Jahn-Teller effect. Theoretical EPR parameters based on the above local structure are in good agreement with the observed values; the results are discussed.

  8. Automated parameter tuning applied to sea ice in a global climate model

    NASA Astrophysics Data System (ADS)

    Roach, Lettie A.; Tett, Simon F. B.; Mineter, Michael J.; Yamazaki, Kuniko; Rae, Cameron D.

    2018-01-01

    This study investigates the hypothesis that a significant portion of spread in climate model projections of sea ice is due to poorly-constrained model parameters. New automated methods for optimization are applied to historical sea ice in a global coupled climate model (HadCM3) in order to calculate the combination of parameters required to reduce the difference between simulation and observations to within the range of model noise. The optimized parameters result in a simulated sea-ice time series which is more consistent with Arctic observations throughout the satellite record (1980-present), particularly in the September minimum, than the standard configuration of HadCM3. Divergence from observed Antarctic trends and mean regional sea ice distribution reflects broader structural uncertainty in the climate model. We also find that the optimized parameters do not cause adverse effects on the model climatology. This simple approach provides evidence for the contribution of parameter uncertainty to spread in sea ice extent trends and could be customized to investigate uncertainties in other climate variables.

  9. A micromachined device describing over a hundred orders of parametric resonance

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Du, Sijun; Arroyo, Emmanuelle; Seshia, Ashwin A.

    2018-04-01

    Parametric resonance in mechanical oscillators can onset from the periodic modulation of at least one of the system parameters, and the behaviour of the principal (1st order) parametric resonance has long been well established. However, the theoretically predicted higher orders of parametric resonance, in excess of the first few orders, have mostly been experimentally elusive due to the fast diminishing instability intervals. A recent paper experimentally reported up to 28 orders in a micromachined membrane oscillator. This paper reports the design and characterisation of a micromachined membrane oscillator with a segmented proof mass topology, in an attempt to amplify the inherent nonlinearities within the membrane layer. The resultant oscillator device exhibited up to over a hundred orders of parametric resonance, thus experimentally validating these ultra-high orders as well as overlapping instability transitions between these higher orders. This research introduces design possibilities for the transducer and dynamic communities, by exploiting the behaviour of these previously elusive higher order resonant regimes.

  10. Spin-polarized current in Zeeman-split d-wave superconductor/quantum wire junctions

    NASA Astrophysics Data System (ADS)

    Emamipour, Hamidreza

    2016-06-01

    We study a thin-film quantum wire/unconventional superconductor junction in the presence of an intrinsic exchange field for a d-wave symmetry of the superconducting order parameter. A strongly spin-polarized current is generated due to an interplay between Zeeman splitting of bands and the nodal structure of the superconducting order parameter. We show that strongly spin-polarized current is achievable for both metallic and tunnel junctions. This is because of the presence of a quantum wire (one-dimensional metal) in our junction. While in two-dimensional junctions with both conventional [F. Giazotto, F. Taddei, Phys. Rev. B 77 (2008) 132501] and unconventional [J. Linder, T. Yokoyama, Y. Tanaka, A. Sudbo, Phys. Rev. B 78 (2008) 014516] pairing states, highly spin polarized current takes place just for a tunnel junction. Also, the obtained spin-polarized current is tunable in sign and magnitude in terms of exchange field and applied bias voltage.

  11. Dynamic Control of Collapse in a Vortex Airy Beam

    PubMed Central

    Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing

    2013-01-01

    Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858

  12. Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model

    NASA Astrophysics Data System (ADS)

    Khaniki, Hossein Bakhshi

    2018-05-01

    Due to the inability of differential form of nonlocal elastic theory in modelling cantilever beams and inaccurate results for some type of boundaries, in this study, a reliable investigation on transverse vibrational behavior of rotating cantilever size-dependent beams is presented. Governing higher order equations are written in the framework of Eringen's two-phase local/nonlocal model and solved using a modified generalized differential quadrature method. In order to indicate the influence of different material and scale parameters, a comprehensive parametric study is presented. It is shown that increasing the nonlocality term leads to lower natural frequency terms for cantilever nanobeams especially for the fundamental frequency parameter which differential nonlocal model is unable to track appropriately. Moreover, it is shown that rotating speed and hub radius have a remarkable effect in varying the mechanical behavior of rotating cantilever nanobeams. This study is a step forward in analyzing nanorotors, nanoturbines, nanoblades, etc.

  13. Precision ESR measurements of transverse anisotropy in the single-molecule magnet Ni4

    NASA Astrophysics Data System (ADS)

    Collett, Charles A.; Allão Cassaro, Rafael A.; Friedman, Jonathan R.

    2016-12-01

    We present a method for precisely measuring the tunnel splitting in single-molecule magnets (SMMs) using electron-spin resonance, and use these measurements to precisely and independently determine the underlying transverse anisotropy parameter, given a certain class of transitions. By diluting samples of the SMM Ni4 via cocrystallization in a diamagnetic isostructural analog we obtain markedly narrower resonance peaks than are observed in undiluted samples. Using custom loop-gap resonators we measure the transitions at several frequencies, allowing a precise determination of the tunnel splitting. Because the transition under investigation occurs at zero field, and arises due to a first-order perturbation from the transverse anisotropy, we can determine the magnitude of this anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with tunnel splittings arising from first-order transverse anisotropy perturbations.

  14. Single image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction.

    PubMed

    Yang, Qi; Zhang, Yanzhu; Zhao, Tiebiao; Chen, YangQuan

    2017-04-04

    Image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction aims to recover detailed information from low-resolution images and reconstruct them into high-resolution images. Due to the limited amount of data and information retrieved from low-resolution images, it is difficult to restore clear, artifact-free images, while still preserving enough structure of the image such as the texture. This paper presents a new single image super-resolution method which is based on adaptive fractional-order gradient interpolation and reconstruction. The interpolated image gradient via optimal fractional-order gradient is first constructed according to the image similarity and afterwards the minimum energy function is employed to reconstruct the final high-resolution image. Fractional-order gradient based interpolation methods provide an additional degree of freedom which helps optimize the implementation quality due to the fact that an extra free parameter α-order is being used. The proposed method is able to produce a rich texture detail while still being able to maintain structural similarity even under large zoom conditions. Experimental results show that the proposed method performs better than current single image super-resolution techniques. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. The Kaon B-parameter in mixed action chiral perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubin, C.; /Columbia U.; Laiho, Jack

    2006-09-01

    We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an {Omicron}(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of {Omicron}(a{sup 2}).more » This term, however, is not strictly due to taste-breaking, and is therefore also present in the expression for B{sub K} for pure G-W lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.« less

  16. Kaon B-parameter in mixed action chiral perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubin, C.; Laiho, Jack; Water, Ruth S. van de

    2007-02-01

    We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed-action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At 1-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an O(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of O(a{sup 2}). Thismore » term, however, is not strictly due to taste breaking, and is therefore also present in the expression for B{sub K} for pure Ginsparg-Wilson lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.« less

  17. Passive control of thermoacoustic oscillations with adjoint methods

    NASA Astrophysics Data System (ADS)

    Aguilar, Jose; Juniper, Matthew

    2017-11-01

    Strict pollutant regulations are driving gas turbine manufacturers to develop devices that operate under lean premixed conditions, which produce less NOx but encourage thermoacoustic oscillations. These are a form of unstable combustion that arise due to the coupling between the acoustic field and the fluctuating heat release in a combustion chamber. In such devices, in which safety is paramount, thermoacoustic oscillations must be eliminated passively, rather than through feedback control. The ideal way to eliminate thermoacoustic oscillations is by subtly changing the shape of the device. To achieve this, one must calculate the sensitivity of each unstable thermoacoustic mode to every geometric parameter. This is prohibitively expensive with standard methods, but is relatively cheap with adjoint methods. In this study we first present low-order network models as a tool to model and study the thermoacoustic behaviour of combustion chambers. Then we compute the continuous adjoint equations and the sensitivities to relevant parameters. With this, we run an optimization routine that modifies the parameters in order to stabilize all the resonant modes of a laboratory combustor rig.

  18. Thermoluminescence glow curve deconvolution and trapping parameters determination of dysprosium doped magnesium borate glass

    NASA Astrophysics Data System (ADS)

    Salama, E.; Soliman, H. A.

    2018-07-01

    In this paper, thermoluminescence glow curves of gamma irradiated magnesium borate glass doped with dysprosium were studied. The number of interfering peaks and in turn the number of electron trap levels are determined using the Repeated Initial Rise (RIR) method. At different heating rates (β), the glow curves were deconvoluted into two interfering peaks based on the results of RIR method. Kinetic parameters such as trap depth, kinetic order (b) and frequency factor (s) for each electron trap level is determined using the Peak Shape (PS) method. The obtained results indicated that, the magnesium borate glass doped with dysprosium has two electron trap levels with the average depth energies of 0.63 and 0.79 eV respectively. These two traps have second order kinetic and are formed at low temperature region. The obtained results due to the glow curve analysis could be used to explain some observed properties such as, high thermal fading and light sensitivity for such thermoluminescence material. In this work, systematic procedures to determine the kinetic parameters of any thermoluminescence material are successfully introduced.

  19. Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions

    PubMed Central

    Hopkins, Jesse B.; Badeau, Ryan; Warkentin, Matthew; Thorne, Robert E.

    2012-01-01

    Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10 to 104 K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates. PMID:22728046

  20. Dispersion dependence of second-order refractive index and complex third-order optical susceptibility in oxide glasses

    NASA Astrophysics Data System (ADS)

    Abdel Wahab, F. A.; El-Diasty, Fouad; Abdel-Baki, Manal

    2009-10-01

    A method correlates Fresnel-based spectrophotometric measurements and Lorentz dispersion theory is presented to study the dispersion of nonlinear optical parameters in particularly oxide glasses in a very wide range of angular frequency. The second-order refractive index and third-order optical susceptibility of Cr-doped glasses are determined from linear refractive index. Furthermore, both real and imaginary components of the complex susceptibility are carried out. The study reveals the importance of determining the dispersion of nonlinear absorption (two-photon absorption coefficient) to find the maximum resonant and nonresonant susceptibilities of investigated glasses. The present method is applied on Cr-doped lithium aluminum silicate (LAS) glasses due to their semiconductor-like behavior and also to their application in laser industry.

  1. Cracking on anisotropic neutron stars

    NASA Astrophysics Data System (ADS)

    Setiawan, A. M.; Sulaksono, A.

    2017-07-01

    We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.

  2. A Review on Investigation and Assessment of Path Loss Models in Urban and Rural Environment

    NASA Astrophysics Data System (ADS)

    Maurya, G. R.; Kokate, P. A.; Lokhande, S. K.; Shrawankar, J. A.

    2017-08-01

    This paper aims at providing a clear knowledge of Path Loss (PL) to the researcher. The important data have been extracted from the papers and mentioned in clear and precise manner. The limited studies were based on identification of PL due to FM frequency. Majority of studies based on identification of PL considering telephonic frequency as a source. In this paper the PL in urban and rural areas of different places due to various factors like buildings, trees, antenna height, forest etc. have been studied. The common parameters like frequency, model and location based studies were done. The studies were segregated based on various parameters in tabular format and they were compared based on frequency, location and best fit model in that table. Scatter chart was drawn in order to make the things clearer and more understandable. However, location specific PL models are required to investigate the RF propagation in identified terrain.

  3. Hierarchical Freezing in a Lattice Model

    NASA Astrophysics Data System (ADS)

    Byington, Travis W.; Socolar, Joshua E. S.

    2012-01-01

    A certain two-dimensional lattice model with nearest and next-nearest neighbor interactions is known to have a limit-periodic ground state. We show that during a slow quench from the high temperature, disordered phase, the ground state emerges through an infinite sequence of phase transitions. We define appropriate order parameters and show that the transitions are related by renormalizations of the temperature scale. As the temperature is decreased, sublattices with increasingly large lattice constants become ordered. A rapid quench results in a glasslike state due to kinetic barriers created by simultaneous freezing on sublattices with different lattice constants.

  4. Impurity optical absorption spectra of ZnGa 2Se 4:Ni 2+ single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Wha-Tek; Jin, Moon-Seog; Cheon, Seung-Ho; Kim, Yong-Geun; Park, Byong-Seo

    1990-04-01

    The optical absorption of single crystals of ZnGa 2Se 4:Ni 2+ grown by the chemical transport reaction method was investigated in the temperature region 20-300 K. In the single crystals the impurity optical absorption peaks due to the transitions 3T1( 3F) → 3T2( 3F), 3T1( 3F) → 3A2( 3F) and 3T1( 3F) → 3T1( 3P) of the Ni 2+ ions sited in the host lattice of the ZnGa 2Se 4 single crystal with Td symmetry appeared at 4444, 7874 and 11 600 cm -1, respectively. The crystal-field parameter and the Racah parameter were given by Dq = 340 cm -1 and B = 615 cm -1, respectively. The peak due to the transition 3T1( 3F) → 3T1( 3P) split into four levels by first order spin-orbit-coupling effects of Ni 2+ ions in the lower temperature below 150 K. The spin-orbit-coupling parameter was found to be λ = -400 cm -1.

  5. Study on rotational frequency noise in a centrifugal compressor for automobile turbochargers

    NASA Astrophysics Data System (ADS)

    Wakaki, Daichi; Sakuka, Yuta; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2014-02-01

    The rotational frequency noise (also known as the pulsation noise) due to the mistuning of impeller blade rows introduced at the manufacturing stage of the impellers is observed in the small-sized centrifugal compressor for automobile turbochargers. The present paper addresses the elucidation of the generating mechanism and parameter dependency such as the kind and degree of mistuning. In order to analyze numerically the rotational frequency noise due to mistuning, the unsteady computational fluid dynamics (CFD) of the whole compressor including volute is executed, and the resultant time history of the pressure is fed into the spectral analysis.

  6. Critical behavior and phase transition of dilaton black holes with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Dayyani, Z.; Sheykhi, A.; Dehghani, M. H.; Hajkhalili, S.

    2018-02-01

    In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid-gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of T>T_c, we have no phase transition. When T=T_c, the system admits a second-order phase transition, while for T=T_f

  7. Quantification of uncertainties in the tsunami hazard for Cascadia using statistical emulation

    NASA Astrophysics Data System (ADS)

    Guillas, S.; Day, S. J.; Joakim, B.

    2016-12-01

    We present new high resolution tsunami wave propagation and coastal inundation for the Cascadia region in the Pacific Northwest. The coseismic representation in this analysis is novel, and more realistic than in previous studies, as we jointly parametrize multiple aspects of the seabed deformation. Due to the large computational cost of such simulators, statistical emulation is required in order to carry out uncertainty quantification tasks, as emulators efficiently approximate simulators. The emulator replaces the tsunami model VOLNA by a fast surrogate, so we are able to efficiently propagate uncertainties from the source characteristics to wave heights, in order to probabilistically assess tsunami hazard for Cascadia. We employ a new method for the design of the computer experiments in order to reduce the number of runs while maintaining good approximations properties of the emulator. Out of the initial nine parameters, mostly describing the geometry and time variation of the seabed deformation, we drop two parameters since these turn out to not have an influence on the resulting tsunami waves at the coast. We model the impact of another parameter linearly as its influence on the wave heights is identified as linear. We combine this screening approach with the sequential design algorithm MICE (Mutual Information for Computer Experiments), that adaptively selects the input values at which to run the computer simulator, in order to maximize the expected information gain (mutual information) over the input space. As a result, the emulation is made possible and accurate. Starting from distributions of the source parameters that encapsulate geophysical knowledge of the possible source characteristics, we derive distributions of the tsunami wave heights along the coastline.

  8. Optimal order policy in response to announced price increase for deteriorating items with limited special order quantity

    NASA Astrophysics Data System (ADS)

    Ouyang, Liang-Yuh; Wu, Kun-Shan; Yang, Chih-Te; Yen, Hsiu-Feng

    2016-02-01

    When a supplier announces an impending price increase due to take effect at a certain time in the future, it is important for each retailer to decide whether to purchase additional stock to take advantage of the present lower price. This study explores the possible effects of price increases on a retailer's replenishment policy when the special order quantity is limited and the rate of deterioration of the goods is assumed to be constant. The two situations discussed in this study are as follows: (1) when the special order time coincides with the retailer's replenishment time and (2) when the special order time occurs during the retailer's sales period. By analysing the total cost savings between special and regular orders during the depletion time of the special order quantity, the optimal order policy for each situation can be determined. We provide several numerical examples to illustrate the theories in practice. Additionally, we conduct a sensitivity analysis on the optimal solution with respect to the main parameters.

  9. Second-order sliding mode controller with model reference adaptation for automatic train operation

    NASA Astrophysics Data System (ADS)

    Ganesan, M.; Ezhilarasi, D.; Benni, Jijo

    2017-11-01

    In this paper, a new approach to model reference based adaptive second-order sliding mode control together with adaptive state feedback is presented to control the longitudinal dynamic motion of a high speed train for automatic train operation with the objective of minimal jerk travel by the passengers. The nonlinear dynamic model for the longitudinal motion of the train comprises of a locomotive and coach subsystems is constructed using multiple point-mass model by considering the forces acting on the vehicle. An adaptation scheme using Lyapunov criterion is derived to tune the controller gains by considering a linear, stable reference model that ensures the stability of the system in closed loop. The effectiveness of the controller tracking performance is tested under uncertain passenger load, coupler-draft gear parameters, propulsion resistance coefficients variations and environmental disturbances due to side wind and wet rail conditions. The results demonstrate improved tracking performance of the proposed control scheme with a least jerk under maximum parameter uncertainties when compared to constant gain second-order sliding mode control.

  10. Geiger-Nuttall Law for Nuclei in Strong Electromagnetic Fields.

    PubMed

    Delion, D S; Ghinescu, S A

    2017-11-17

    We investigate the influence of a strong laser electromagnetic field on the α-decay rate by using the Hennenberger frame of reference. We introduce an adimensional parameter D=S_{0}/R_{0}, where R_{0} is the geometrical nuclear radius and S_{0}∼sqrt[I]/ω^{2} is a length parameter depending on the laser intensity I and frequency ω. We show that the barrier penetrability has a strong increase for intensities corresponding to D>D_{crit}=1, due to the fact that the resulting Coulomb potential becomes strongly anisotropic even for spherical nuclei. As a consequence, the contribution of the monopole term increases the barrier penetrability by 2 orders of magnitude, while the total contribution has an effect of 6 orders of magnitude at D∼3D_{crit}. In the case of deformed nuclei, the electromagnetic field increases the penetrability by an additional order of magnitude for a quadrupole deformation β_{2}∼0.3. The influence of the electromagnetic field can be expressed in terms of a shifted Geiger-Nuttal law by a term depending on S_{0} and deformation.

  11. Geiger-Nuttall Law for Nuclei in Strong Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Ghinescu, S. A.

    2017-11-01

    We investigate the influence of a strong laser electromagnetic field on the α -decay rate by using the Hennenberger frame of reference. We introduce an adimensional parameter D =S0/R0, where R0 is the geometrical nuclear radius and S0˜√{I }/ω2 is a length parameter depending on the laser intensity I and frequency ω . We show that the barrier penetrability has a strong increase for intensities corresponding to D >Dcrit=1 , due to the fact that the resulting Coulomb potential becomes strongly anisotropic even for spherical nuclei. As a consequence, the contribution of the monopole term increases the barrier penetrability by 2 orders of magnitude, while the total contribution has an effect of 6 orders of magnitude at D ˜3 Dcrit. In the case of deformed nuclei, the electromagnetic field increases the penetrability by an additional order of magnitude for a quadrupole deformation β2˜0.3 . The influence of the electromagnetic field can be expressed in terms of a shifted Geiger-Nuttal law by a term depending on S0 and deformation.

  12. Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches

    NASA Astrophysics Data System (ADS)

    Milewski, Jaroslaw; Guandalini, Giulio; Campanari, Stefano

    2014-12-01

    The paper presents two approaches to the mathematical modeling of an Alkaline Electrolyzer Cell. The presented models were compared and validated against available experimental results taken from a laboratory test and against literature data. The first modeling approach is based on the analysis of estimated losses due to the different phenomena occurring inside the electrolytic cell, and requires careful calibration of several specific parameters (e.g. those related to the electrochemical behavior of the electrodes) some of which could be hard to define. An alternative approach is based on a reduced-order equivalent circuit, resulting in only two fitting parameters (electrodes specific resistance and parasitic losses) and calculation of the internal electric resistance of the electrolyte. Both models yield satisfactory results with an average error limited below 3% vs. the considered experimental data and show the capability to describe with sufficient accuracy the different operating conditions of the electrolyzer; the reduced-order model could be preferred thanks to its simplicity for implementation within plant simulation tools dealing with complex systems, such as electrolyzers coupled with storage facilities and intermittent renewable energy sources.

  13. Damage detection in rotating machinery by means of entropy-based parameters

    NASA Astrophysics Data System (ADS)

    Tocarciuc, Alexandru; Bereteu, Liviu; ǎgǎnescu, Gheorghe Eugen, Dr

    2014-11-01

    The paper is proposing two new entropy-based parameters, namely Renyi Entropy Index (REI) and Sharma-Mittal Entropy Index (SMEI), for detecting the presence of failures (or damages) in rotating machinery, namely: belt structural damage, belt wheels misalignment, failure of the fixing bolt of the machine to its baseplate and eccentricities (i.e.: due to detaching a small piece of material or bad mounting of the rotating components of the machine). The algorithms to obtain the proposed entropy-based parameters are described and test data is used in order to assess their sensitivity. A vibration test bench is used for measuring the levels of vibration while artificially inducing damage. The deviation of the two entropy-based parameters is compared in two states of the vibration test bench: not damaged and damaged. At the end of the study, their sensitivity is compared to Shannon Entropic Index.

  14. Parameter estimation techniques based on optimizing goodness-of-fit statistics for structural reliability

    NASA Technical Reports Server (NTRS)

    Starlinger, Alois; Duffy, Stephen F.; Palko, Joseph L.

    1993-01-01

    New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm.

  15. Observation model and parameter partials for the JPL VLBI parameter estimation software MODEST/1991

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.

    1991-01-01

    A revision is presented of MASTERFIT-1987, which it supersedes. Changes during 1988 to 1991 included introduction of the octupole component of solid Earth tides, the NUVEL tectonic motion model, partial derivatives for the precession constant and source position rates, the option to correct for source structure, a refined model for antenna offsets, modeling the unique antenna at Richmond, FL, improved nutation series due to Zhu, Groten, and Reigber, and reintroduction of the old (Woolard) nutation series for simulation purposes. Text describing the relativistic transformations and gravitational contributions to the delay model was also revised in order to reflect the computer code more faithfully.

  16. Coulomb matrix elements in multi-orbital Hubbard models.

    PubMed

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  17. Study of array plasma antenna parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Kumar, Prince

    2018-04-01

    This paper is aimed to investigate the array plasma antenna parameters to help the optimization of an array plasma antenna. Single plasma antenna is transformed into array plasma antenna by changing the operating parameters. The re-configurability arises in the form of striations, due to transverse bifurcation of plasma column by changing the operating parameters. Each striation can be treated as an antenna element and system performs like an array plasma antenna. In order to achieve the goal of this paper, three different configurations of array plasma antenna (namely Array 1, Array 2 and Array 3) are simulated. The observations are made on variation in antenna parameters like resonance frequency, radiation pattern, directivity and gain with variation in length and number of antenna elements for each array plasma antenna. Moreover experiments are also performed and results are compared with simulation. Further array plasma antenna parameters are also compared with monopole plasma antenna parameters. The study of present paper invoke the array plasma antenna can be applied for steering and controlling the strength of Wi-Fi signals as per requirement.

  18. Gene order in rosid phylogeny, inferred from pairwise syntenies among extant genomes

    PubMed Central

    2012-01-01

    Background Ancestral gene order reconstruction for flowering plants has lagged behind developments in yeasts, insects and higher animals, because of the recency of widespread plant genome sequencing, sequencers' embargoes on public data use, paralogies due to whole genome duplication (WGD) and fractionation of undeleted duplicates, extensive paralogy from other sources, and the computational cost of existing methods. Results We address these problems, using the gene order of four core eudicot genomes (cacao, castor bean, papaya and grapevine) that have escaped any recent WGD events, and two others (poplar and cucumber) that descend from independent WGDs, in inferring the ancestral gene order of the rosid clade and those of its main subgroups, the fabids and malvids. We improve and adapt techniques including the OMG method for extracting large, paralogy-free, multiple orthologies from conflated pairwise synteny data among the six genomes and the PATHGROUPS approach for ancestral gene order reconstruction in a given phylogeny, where some genomes may be descendants of WGD events. We use the gene order evidence to evaluate the hypothesis that the order Malpighiales belongs to the malvids rather than as traditionally assigned to the fabids. Conclusions Gene orders of ancestral eudicot species, involving 10,000 or more genes can be reconstructed in an efficient, parsimonious and consistent way, despite paralogies due to WGD and other processes. Pairwise genomic syntenies provide appropriate input to a parameter-free procedure of multiple ortholog identification followed by gene-order reconstruction in solving instances of the "small phylogeny" problem. PMID:22759433

  19. Evaluation of the pre-posterior distribution of optimized sampling times for the design of pharmacokinetic studies.

    PubMed

    Duffull, Stephen B; Graham, Gordon; Mengersen, Kerrie; Eccleston, John

    2012-01-01

    Information theoretic methods are often used to design studies that aim to learn about pharmacokinetic and linked pharmacokinetic-pharmacodynamic systems. These design techniques, such as D-optimality, provide the optimum experimental conditions. The performance of the optimum design will depend on the ability of the investigator to comply with the proposed study conditions. However, in clinical settings it is not possible to comply exactly with the optimum design and hence some degree of unplanned suboptimality occurs due to error in the execution of the study. In addition, due to the nonlinear relationship of the parameters of these models to the data, the designs are also locally dependent on an arbitrary choice of a nominal set of parameter values. A design that is robust to both study conditions and uncertainty in the nominal set of parameter values is likely to be of use clinically. We propose an adaptive design strategy to account for both execution error and uncertainty in the parameter values. In this study we investigate designs for a one-compartment first-order pharmacokinetic model. We do this in a Bayesian framework using Markov-chain Monte Carlo (MCMC) methods. We consider log-normal prior distributions on the parameters and investigate several prior distributions on the sampling times. An adaptive design was used to find the sampling window for the current sampling time conditional on the actual times of all previous samples.

  20. Role of fluctuations in random compressible systems at marginal dimensionality

    NASA Astrophysics Data System (ADS)

    Meissner, G.; Sasvári, L.; Tadić, B.

    1986-07-01

    In a unified treatment we have studied the role of fluctuations in uniaxial random systems at marginal dimensionality d*=4 with the n=1 component order parameter being coupled to elastic degrees of freedom. Depending on the ratio of the nonuniversal parameters of quenched disorder Δ0 and of elastic fluctuations v~0, a first- or second-order phase transition is found to occur, separated by a tricritical point. A complete account of critical properties and of macroscopic as well as of microscopic elastic stability is given for temperatures T>Tc. Universal singularities of thermodynamic functions are determined for t=(T-Tc)/Tc-->0 including the tricritical point: for v~0/Δ0>-2, they are the same as in a rigid random system; for v~0/Δ0=-2, they are different due to lattice compressibility being related, however, to the former by Fisher renormalization. Fluctuation corrections in one-loop approximation have been evaluated in a nonuniversal critical temperature range, tx<

  1. Higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Wu, Xiao-Yu; Sun, Yan

    2018-02-01

    Under investigation in this paper is the higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials which can be applied in the nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein condensation. Based on the Kadomtsev-Petviashvili hierarchy reduction, we construct the Nth order rogue wave-like solutions in terms of the Gramian under the integrable constraint. With the help of the analytic and graphic analysis, we exhibit the first-, second- and third-order rogue wave-like solutions through the different dispersion, nonlinearity and linear potential coefficients. We find that only if the dispersion and nonlinearity coefficients are proportional to each other, heights of the background of those rogue waves maintain unchanged with time increasing. Due to the existence of complex parameters, such nonautonomous rogue waves in the higher-order cases have more complex features than those in the lower.

  2. Cosmology, Cosmomicrophysics and Gravitation Properties of the Gravitational Lens Mapping in the Vicinity of a Cusp Caustic

    NASA Astrophysics Data System (ADS)

    Alexandrov, A. N.; Zhdanov, V. I.; Koval, S. M.

    We derive approximate formulas for the coordinates and magnification of critical images of a point source in a vicinity of a cusp caustic arising in the gravitational lens mapping. In the lowest (zero-order) approximation, these formulas were obtained in the classical work by Schneider&Weiss (1992) and then studied by a number of authors; first-order corrections in powers of the proximity parameter were treated by Congdon, Keeton and Nordgren. We have shown that the first-order corrections are solely due to the asymmetry of the cusp. We found expressions for the second-order corrections in the case of general lens potential and for an arbitrary position of the source near a symmetric cusp. Applications to a lensing galaxy model represented by a singular isothermal sphere with an external shear y are studied and the role of the second-order corrections is demonstrated.

  3. A Fortran 77 computer code for damped least-squares inversion of Slingram electromagnetic anomalies over thin tabular conductors

    NASA Astrophysics Data System (ADS)

    Dondurur, Derman; Sarı, Coşkun

    2004-07-01

    A FORTRAN 77 computer code is presented that permits the inversion of Slingram electromagnetic anomalies to an optimal conductor model. Damped least-squares inversion algorithm is used to estimate the anomalous body parameters, e.g. depth, dip and surface projection point of the target. Iteration progress is controlled by maximum relative error value and iteration continued until a tolerance value was satisfied, while the modification of Marquardt's parameter is controlled by sum of the squared errors value. In order to form the Jacobian matrix, the partial derivatives of theoretical anomaly expression with respect to the parameters being optimised are calculated by numerical differentiation by using first-order forward finite differences. A theoretical and two field anomalies are inserted to test the accuracy and applicability of the present inversion program. Inversion of the field data indicated that depth and the surface projection point parameters of the conductor are estimated correctly, however, considerable discrepancies appeared on the estimated dip angles. It is therefore concluded that the most important factor resulting in the misfit between observed and calculated data is due to the fact that the theory used for computing Slingram anomalies is valid for only thin conductors and this assumption might have caused incorrect dip estimates in the case of wide conductors.

  4. Parameter uncertainty and variability in evaluative fate and exposure models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertwich, E.G.; McKone, T.E.; Pease, W.S.

    The human toxicity potential, a weighting scheme used to evaluate toxic emissions for life cycle assessment and toxics release inventories, is based on potential dose calculations and toxicity factors. This paper evaluates the variance in potential dose calculations that can be attributed to the uncertainty in chemical-specific input parameters as well as the variability in exposure factors and landscape parameters. A knowledge of the uncertainty allows us to assess the robustness of a decision based on the toxicity potential; a knowledge of the sources of uncertainty allows one to focus resources if the uncertainty is to be reduced. The potentialmore » does of 236 chemicals was assessed. The chemicals were grouped by dominant exposure route, and a Monte Carlo analysis was conducted for one representative chemical in each group. The variance is typically one to two orders of magnitude. For comparison, the point estimates in potential dose for 236 chemicals span ten orders of magnitude. Most of the variance in the potential dose is due to chemical-specific input parameters, especially half-lives, although exposure factors such as fish intake and the source of drinking water can be important for chemicals whose dominant exposure is through indirect routes. Landscape characteristics are generally of minor importance.« less

  5. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation.

    PubMed

    Suzuki, Ryo; Ito, Kohta; Lee, Taeyong; Ogihara, Naomichi

    2017-01-01

    Accurate identification of the material properties of the plantar soft tissue is important for computer-aided analysis of foot pathologies and design of therapeutic footwear interventions based on subject-specific models of the foot. However, parameter identification of the hyperelastic material properties of plantar soft tissues usually requires an inverse finite element analysis due to the lack of a practical contact model of the indentation test. In the present study, we derive an analytical contact model of a spherical indentation test in order to directly estimate the material properties of the plantar soft tissue. Force-displacement curves of the heel pads are obtained through an indentation experiment. The experimental data are fit to the analytical stress-strain solution of the spherical indentation in order to obtain the parameters. A spherical indentation approach successfully predicted the non-linear material properties of the heel pad without iterative finite element calculation. The force-displacement curve obtained in the present study was found to be situated lower than those identified in previous studies. The proposed framework for identifying the hyperelastic material parameters may facilitate the development of subject-specific FE modeling of the foot for possible clinical and ergonomic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Nonstandard neutrino interactions at DUNE, T2HK and T2HKK

    DOE PAGES

    Liao, Jiajun; Marfatia, Danny; Whisnant, Kerry

    2017-01-17

    Here, we study the matter effect caused by nonstandard neutrino interactions (NSI) in the next generation long-baseline neutrino experiments, DUNE, T2HK and T2HKK. If multiple NSI parameters are nonzero, the potential of these experiments to detect CP violation, determine the mass hierarchy and constrain NSI is severely impaired by degeneracies between the NSI parameters and by the generalized mass hierarchy degeneracy. In particular, a cancellation between leading order terms in the appearance channels when ϵ eτ= cot θ 23ϵ eμ, strongly affects the sensitivities to these two NSI parameters at T2HK and T2HKK. We also study the dependence of themore » sensitivities on the true CP phase and the true mass hierarchy, and find that overall DUNE has the best sensitivity to the magnitude of the NSI parameters, while T2HKK has the best sensitivity to CP violation whether or not there are NSI. Furthermore, for T2HKK a smaller off-axis angle for the Korean detector is better overall. We find that due to the structure of the leading order terms in the appearance channel probabilities, the NSI sensitivities in a given experiment are similar for both mass hierarchies, modulo the phase change δ→δ + 180°.« less

  7. Nonstandard neutrino interactions at DUNE, T2HK and T2HKK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Jiajun; Marfatia, Danny; Whisnant, Kerry

    Here, we study the matter effect caused by nonstandard neutrino interactions (NSI) in the next generation long-baseline neutrino experiments, DUNE, T2HK and T2HKK. If multiple NSI parameters are nonzero, the potential of these experiments to detect CP violation, determine the mass hierarchy and constrain NSI is severely impaired by degeneracies between the NSI parameters and by the generalized mass hierarchy degeneracy. In particular, a cancellation between leading order terms in the appearance channels when ϵ eτ= cot θ 23ϵ eμ, strongly affects the sensitivities to these two NSI parameters at T2HK and T2HKK. We also study the dependence of themore » sensitivities on the true CP phase and the true mass hierarchy, and find that overall DUNE has the best sensitivity to the magnitude of the NSI parameters, while T2HKK has the best sensitivity to CP violation whether or not there are NSI. Furthermore, for T2HKK a smaller off-axis angle for the Korean detector is better overall. We find that due to the structure of the leading order terms in the appearance channel probabilities, the NSI sensitivities in a given experiment are similar for both mass hierarchies, modulo the phase change δ→δ + 180°.« less

  8. Structural Technology Evaluation and Analysis Program (STEAP). Delivery Order 0045: Progressive Failure Analysis of Translaminar Reinforced Composite Structures

    DTIC Science & Technology

    2011-11-01

    Approved for public release; distribution unlimited. See additional restrictions described on inside pages STINFO COPY AIR...pin density, diameter and length are some of the parameters related to the effectiveness of z-pins for increasing the delamination resistance...has received considerable attention in recent years due to increased use of composite materials in aerospace and related industries. Mainly in the

  9. Human Systems Integration Synthesis Model for Ship Design

    DTIC Science & Technology

    2012-09-01

    this process. Specifically, I thank Dr. Paulo for both planting the seed that led to this thesis and giving me the opportunity to participate in the...manufacturing systems, refineries, and nuclear power plants must also rely on up-to-date knowledge of situation parameters and any patterns among...safety hazards were many due to exposure to toxic fuel, increased probability of fires, and steam plant explosions. In order to address the

  10. Moment-Based Physical Models of Broadband Clutter due to Aggregations of Fish

    DTIC Science & Technology

    2013-09-30

    statistical models for signal-processing algorithm development. These in turn will help to develop a capability to statistically forecast the impact of...aggregations of fish based on higher-order statistical measures describable in terms of physical and system parameters. Environmentally , these models...processing. In this experiment, we had good ground truth on (1) and (2), and had control over (3) and (4) except for environmentally -imposed restrictions

  11. Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects

    NASA Astrophysics Data System (ADS)

    Bansi, C. D. K.; Tabi, C. B.; Motsumi, T. G.; Mohamadou, A.

    2018-06-01

    A fractional model is proposed to study the effect of heat transfer and magnetic field on the blood flowing inside oscillatory arteries. The flow is due to periodic pressure gradient and the fractional model equations include body acceleration. The proposed velocity and temperature distribution equations are solved using the Laplace and Hankel transforms. The effect of the fluid parameters such as the Reynolds number (Re), the magnetic parameter (M) and the radiation parameter (N) is studied graphically with changing the fractional-order parameter. It is found that the fractional derivative is a valuable tool to control both the temperature and velocity of blood when flow parameters change under treatment, for example. Besides, this work highlights the fact that in the presence of strong magnetic field, blood velocity and temperature reduce. A reversed effect is observed where the applied thermal radiation increase; the velocity and temperature of blood increase. However, the temperature remains high around the artery centerline, which is appropriate during treatment to avoid tissues damage.

  12. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe-Strogatz integrability

    NASA Astrophysics Data System (ADS)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-08-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.

  13. Compact high-speed reciprocating probe system for measurements in a Hall thruster discharge and plume.

    PubMed

    Dannenmayer, K; Mazouffre, S

    2012-12-01

    A compact high-speed reciprocating probe system has been developed in order to perform measurements of the plasma parameters by means of electrostatic probes in the discharge and the plume of a Hall thruster. The system is based on a piezoelectric linear drive that can achieve a speed of up to 350 mm/s over a travel range of 90 mm. Due to the high velocity of the linear drive the probe can be rapidly moved in and out the measurement region in order to minimize perturbation of the thruster discharge due to sputtering of probe material. To demonstrate the impact of the new system, a heated emissive probe, installed on the high-speed translation stage, was used to measure the plasma potential and the electron temperature in the near-field plume of a low power Hall thruster.

  14. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    PubMed

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition energies being equal to 1.46, 1.50, 1.38, and 0.89 eV.

  15. Effect of solar flares flux on the propagation and modal composition of VLF signal in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Bouderba, Yasmina; Nait Amor, Samir; Tribeche, Mouloud

    2015-04-01

    The VLF radio waves propagating in the Earth-Ionosphere waveguide are sensitive to the ionospheric disturbances due to X rays solar flux. In order to understand the VLF signal response to the solar flares, the LWPC code is used to simulate the signal perturbation parameters (amplitude and phase) at fixed solar zenith angle. In this work, we used the NRK-Algiers signal data and the study was done for different flares classes. The results show that the perturbed parameters increase with the increasing solar flares flux. This increases is due to the growth of the electron density resulting from the changes of the Wait's parameters. However, the behavior of the perturbation parameters as function of distance shows different forms of signal perturbations. It was also observed that the null points move towards the transmitter location when the flare flux increases which is related to the modal composition of the propagating signal. Effectively, for a given mode, the plot of the attenuation coefficient as function of the flare flux shows a decreases when the flux increases which is more significant for high modes. Thus, the solar flares effect is to amplify the VLF signal by reducing the attenuation coefficient.

  16. Entanglement scaling at first order quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Yuste, A.; Cartwright, C.; De Chiara, G.; Sanpera, A.

    2018-04-01

    First order quantum phase transitions (1QPTs) are signalled, in the thermodynamic limit, by discontinuous changes in the ground state properties. These discontinuities affect expectation values of observables, including spatial correlations. When a 1QPT is crossed in the vicinity of a second order one, due to the correlation length divergence of the latter, the corresponding ground state is modified and it becomes increasingly difficult to determine the order of the transition when the size of the system is finite. Here we show that, in such situations, it is possible to apply finite size scaling (FSS) to entanglement measures, as it has recently been done for the order parameters and the energy gap, in order to recover the correct thermodynamic limit (Campostrini et al 2014 Phys. Rev. Lett. 113 070402). Such a FSS can unambiguously discriminate between first and second order phase transitions in the vicinity of multicritical points even when the singularities displayed by entanglement measures lead to controversial results.

  17. Probing the A1 to L1{sub 0} transformation in FeCuPt using the first order reversal curve method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Dustin A.; Liu, Kai; Liao, Jung-Wei

    2014-08-01

    The A1-L1{sub 0} phase transformation has been investigated in (001) FeCuPt thin films prepared by atomic-scale multilayer sputtering and rapid thermal annealing (RTA). Traditional x-ray diffraction is not always applicable in generating a true order parameter, due to non-ideal crystallinity of the A1 phase. Using the first-order reversal curve (FORC) method, the A1 and L1{sub 0} phases are deconvoluted into two distinct features in the FORC distribution, whose relative intensities change with the RTA temperature. The L1{sub 0} ordering takes place via a nucleation-and-growth mode. A magnetization-based phase fraction is extracted, providing a quantitative measure of the L1{sub 0} phasemore » homogeneity.« less

  18. Measuring Parameters of Massive Black Hole Binaries with Partially Aligned Spins

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2011-01-01

    The future space-based gravitational wave detector LISA will be able to measure parameters of coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic spin-induced precession modulates the waveform in a manner which can break degeneracies between parameters, in principle significantly improving how well they are measured. Recent studies have indicated, however, that spin precession may be weak for an important subset of astrophysical binary black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine how well a binary's parameters can be measured when its spins are partially aligned and compare results using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading quadrupole order. We find that the weakened precession can substantially degrade parameter estimation, particularly for the "extrinsic" parameters sky position and distance. Absent higher harmonics, LISA typically localizes the sky position of a nearly aligned binary about an order of magnitude less accurately than one for which the spin orientations are random. Our knowledge of a source's sky position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which most of the binary's parameters are measured can be substantially improved. In some cases, the improvement is such that they are measured almost as well as when the binary spins are randomly aligned.

  19. Vibrational spectroscopic and DFT calculation studies of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile

    NASA Astrophysics Data System (ADS)

    Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Milton Franklin Benial, A.

    2015-03-01

    The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908 × 10-30 issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π → π∗ transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature.

  20. Testing for characterization of the materials from radiological point of view

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercea, Sorin; Iliescu, Elena; Dudu, Dorin

    2013-12-16

    The nuclear techniques and materials are now used in a large number of applications, both in medicine and industry. Due to this fact, new materials are needed in order to assure the radiological protection of the personnel involved in these activities. But, finally, all these materials have to be tested for some specific parameters, in order to prove that they are adequate for the purposed for which they were created. One of the important parameters of the materials used for the radiological protection is the attenuation coefficient. The attenuation coefficient of the ionizing radiation composed by particles without electrical chargemore » (X,γ-ray and neutron) is the most important parameter for the materials used for the shielding of these ionizing radiation. This paper deals with the experimental methods developed for the determination of the attenuation of fast and thermal neutrons. These experimental methods, involved the use of Am-Be source and U-120 Cyclotron of IFIN-HH. For the tests which were done at the U-120 Cyclotron, a number of experiments had to be performed, in order to establish the irradiation geometry and the dose equivalent rates in front of and behind the material samples. The experimental results obtained for samples of several materials, confirmed the methods as adequate for the aim of the test.« less

  1. Control of extreme events in the bubbling onset of wave turbulence.

    PubMed

    Galuzio, P P; Viana, R L; Lopes, S R

    2014-04-01

    We show the existence of an intermittent transition from temporal chaos to turbulence in a spatially extended dynamical system, namely, the forced and damped one-dimensional nonlinear Schrödinger equation. For some values of the forcing parameter, the system dynamics intermittently switches between ordered states and turbulent states, which may be seen as extreme events in some contexts. In a Fourier phase space, the intermittency takes place due to the loss of transversal stability of unstable periodic orbits embedded in a low-dimensional subspace. We mapped these transversely unstable regions and perturbed the system in order to significantly reduce the occurrence of extreme events of turbulence.

  2. Correlated sequential tunneling through a double barrier for interacting one-dimensional electrons

    NASA Astrophysics Data System (ADS)

    Thorwart, M.; Egger, R.; Grifoni, M.

    2005-07-01

    The problem of resonant tunneling through a quantum dot weakly coupled to spinless Tomonaga-Luttinger liquids has been studied. We compute the linear conductance due to sequential tunneling processes upon employing a master equation approach. Besides the previously used lowest-order golden rule rates describing uncorrelated sequential tunneling processes, we systematically include higher-order correlated sequential tunneling (CST) diagrams within the standard Weisskopf-Wigner approximation. We provide estimates for the parameter regions where CST effects can be important. Focusing mainly on the temperature dependence of the peak conductance, we discuss the relation of these findings to previous theoretical and experimental results.

  3. Correlated sequential tunneling in Tomonaga-Luttinger liquid quantum dots

    NASA Astrophysics Data System (ADS)

    Thorwart, M.; Egger, R.; Grifoni, M.

    2005-02-01

    We investigate tunneling through a quantum dot formed by two strong impurites in a spinless Tomonaga-Luttinger liquid. Upon employing a Markovian master equation approach, we compute the linear conductance due to sequential tunneling processes. Besides the previously used lowest-order Golden Rule rates describing uncorrelated sequential tunneling (UST) processes, we systematically include higher-order correlated sequential tunneling (CST) diagrams within the standard Weisskopf-Wigner approximation. We provide estimates for the parameter regions where CST effects are shown to dominate over UST. Focusing mainly on the temperature dependence of the conductance maximum, we discuss the relation of our results to previous theoretical and experimental results.

  4. Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.

    2005-01-01

    An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.

  5. Wear of sharp aggregates in a rotating drum

    NASA Astrophysics Data System (ADS)

    Deiros Quintanilla, Ivan; Combe, Gaël; Emeriault, Fabrice; Toni, Jean-Benoît; Voivret, Charles; Ferellec, Jean François

    2017-06-01

    Aggregates constituting ballast layer wear due to the continuous passage of trains and during the necessary maintenance operations of the track. In order to develop efficient solutions for ballasted tracks design and maintenance, a proper knowledge of the degradation laws of ballast grains is needed. In tribology, the amount of wear due to friction when two surfaces are in contact is classically predicted by Archard's equation. However, due to the continuous evolution of grain angularity and roughness, at the macro-scale wear coefficient cannot be assumed to remain constant, but will depend on the state of degradation of the grain surface. In order to adjust the model to this particular case, the Micro-Deval Attrition test is used. The rotating drum is stopped at intermediate stages and the amount of generated fine particles is measured. Thus the curve of mass loss along time is built. These results are then linked to Archard's model using the values of contact forces and relative displacements extracted from discrete element simulations. Finally, a morphology analysis is performed tracking shape and roughness parameters at different stages of degradation using X-ray tomography and a laser profilometer.

  6. Sensitivity analysis of periodic errors in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-03-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.

  7. Dependence of short and intermediate-range order on preparation in experimental and modeled pure a-Si

    DOE PAGES

    Holmstrom, Eero; Haberl, Bianca; Pakarinen, Olli H.; ...

    2016-02-20

    Variability in the short-to-intermediate range order of pure amorphous silicon prepared by different experimental and computational techniques is probed by measuring mass density, atomic coordination, bond-angle deviation, and dihedral angle deviation. It is found that there is significant variability in order parameters at these length scales in this archetypal covalently bonded, monoatomic system. This diversity strongly reflects preparation technique and thermal history in both experimental and simulated systems. Experiment and simulation do not fully quantitatively agree, partly due to differences in the way parameters are accessed. However, qualitative agreement in the trends is identified. Relaxed forms of amorphous silicon closelymore » resemble continuous random networks generated by a hybrid method of bond-switching Monte Carlo and molecular dynamics simulation. As-prepared ion implanted amorphous silicon can be adequately modeled using a structure generated from amorphization via ion bombardement using energetic recoils. Preparation methods which narrowly avoid crystallization such as experimental pressure-induced amorphization or simulated melt-quenching result in inhomogeneous structures that contain regions with significant variations in atomic ordering. Ad hoc simulated structures containing small (1 nm) diamond cubic crystal inclusions were found to possess relatively high bond-angle deviations and low dihedral angle deviations, a trend that could not be reconciled with any experimental material.« less

  8. A Numerical Investigation of the Electric and Thermal Cell Kill Distributions in Electroporation-Based Therapies in Tissue

    PubMed Central

    Garcia, Paulo A.; Davalos, Rafael V.; Miklavcic, Damijan

    2014-01-01

    Electroporation-based therapies are powerful biotechnological tools for enhancing the delivery of exogeneous agents or killing tissue with pulsed electric fields (PEFs). Electrochemotherapy (ECT) and gene therapy based on gene electrotransfer (EGT) both use reversible electroporation to deliver chemotherapeutics or plasmid DNA into cells, respectively. In both ECT and EGT, the goal is to permeabilize the cell membrane while maintaining high cell viability in order to facilitate drug or gene transport into the cell cytoplasm and induce a therapeutic response. Irreversible electroporation (IRE) results in cell kill due to exposure to PEFs without drugs and is under clinical evaluation for treating otherwise unresectable tumors. These PEF therapies rely mainly on the electric field distributions and do not require changes in tissue temperature for their effectiveness. However, in immediate vicinity of the electrodes the treatment may results in cell kill due to thermal damage because of the inhomogeneous electric field distribution and high current density during the electroporation-based therapies. Therefore, the main objective of this numerical study is to evaluate the influence of pulse number and electrical conductivity in the predicted cell kill zone due to irreversible electroporation and thermal damage. Specifically, we simulated a typical IRE protocol that employs ninety 100-µs PEFs. Our results confirm that it is possible to achieve predominant cell kill due to electroporation if the PEF parameters are chosen carefully. However, if either the pulse number and/or the tissue conductivity are too high, there is also potential to achieve cell kill due to thermal damage in the immediate vicinity of the electrodes. Therefore, it is critical for physicians to be mindful of placement of electrodes with respect to critical tissue structures and treatment parameters in order to maintain the non-thermal benefits of electroporation and prevent unnecessary damage to surrounding healthy tissue, critical vascular structures, and/or adjacent organs. PMID:25115970

  9. Phase behavior of charged colloids at a fluid interface

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.; Guerra, Rodrigo E.; Hollingsworth, Andrew D.; Chaikin, Paul M.

    2017-02-01

    We study the phase behavior of a system of charged colloidal particles that are electrostatically bound to an almost flat interface between two fluids. We show that, despite the fact that our experimental system consists of only 103-104 particles, the phase behavior is consistent with the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson, and Young. Using spatial and temporal correlations of the bond-orientational order parameter, we classify our samples into solid, isotropic fluid, and hexatic phases. We demonstrate that the topological defect structure we observe in each phase corresponds to the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young theory. By measuring the dynamic Lindemann parameter γL(τ ) and the non-Gaussian parameter α2(τ ) of the displacements of the particles relative to their neighbors, we show that each of the phases displays distinctive dynamical behavior.

  10. Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model

    NASA Astrophysics Data System (ADS)

    Yuan, Zhongda; Deng, Junxiang; Wang, Dawei

    2018-02-01

    Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.

  11. Fitting the Incidence Data from the City of Campinas, Brazil, Based on Dengue Transmission Modellings Considering Time-Dependent Entomological Parameters

    PubMed Central

    Yang, Hyun Mo; Boldrini, José Luiz; Fassoni, Artur César; Freitas, Luiz Fernando Souza; Gomez, Miller Ceron; de Lima, Karla Katerine Barboza; Andrade, Valmir Roberto; Freitas, André Ricardo Ribas

    2016-01-01

    Four time-dependent dengue transmission models are considered in order to fit the incidence data from the City of Campinas, Brazil, recorded from October 1st 1995 to September 30th 2012. The entomological parameters are allowed to depend on temperature and precipitation, while the carrying capacity and the hatching of eggs depend only on precipitation. The whole period of incidence of dengue is split into four periods, due to the fact that the model is formulated considering the circulation of only one serotype. Dengue transmission parameters from human to mosquito and mosquito to human are fitted for each one of the periods. The time varying partial and overall effective reproduction numbers are obtained to explain the incidence of dengue provided by the models. PMID:27010654

  12. Tunable Collagen I Hydrogels for Engineered Physiological Tissue Micro-Environments

    PubMed Central

    Antoine, Elizabeth E.; Vlachos, Pavlos P.; Rylander, Marissa N.

    2015-01-01

    Collagen I hydrogels are commonly used to mimic the extracellular matrix (ECM) for tissue engineering applications. However, the ability to design collagen I hydrogels similar to the properties of physiological tissues has been elusive. This is primarily due to the lack of quantitative correlations between multiple fabrication parameters and resulting material properties. This study aims to enable informed design and fabrication of collagen hydrogels in order to reliably and reproducibly mimic a variety of soft tissues. We developed empirical predictive models relating fabrication parameters with material and transport properties. These models were obtained through extensive experimental characterization of these properties, which include compression modulus, pore and fiber diameter, and diffusivity. Fabrication parameters were varied within biologically relevant ranges and included collagen concentration, polymerization pH, and polymerization temperature. The data obtained from this study elucidates previously unknown fabrication-property relationships, while the resulting equations facilitate informed a priori design of collagen hydrogels with prescribed properties. By enabling hydrogel fabrication by design, this study has the potential to greatly enhance the utility and relevance of collagen hydrogels in order to develop physiological tissue microenvironments for a wide range of tissue engineering applications. PMID:25822731

  13. Evaluating the Impact of Contaminant Dilution and Biodegradation in Uncertainty Quantification of Human Health Risk

    NASA Astrophysics Data System (ADS)

    Zarlenga, Antonio; de Barros, Felipe; Fiori, Aldo

    2016-04-01

    We present a probabilistic framework for assessing human health risk due to groundwater contamination. Our goal is to quantify how physical hydrogeological and biochemical parameters control the magnitude and uncertainty of human health risk. Our methodology captures the whole risk chain from the aquifer contamination to the tap water assumption by human population. The contaminant concentration, the key parameter for the risk estimation, is governed by the interplay between the large-scale advection, caused by heterogeneity and the degradation processes strictly related to the local scale dispersion processes. The core of the hazard identification and of the methodology is the reactive transport model: erratic displacement of contaminant in groundwater, due to the spatial variability of hydraulic conductivity (K), is characterized by a first-order Lagrangian stochastic model; different dynamics are considered as possible ways of biodegradation in aerobic and anaerobic conditions. With the goal of quantifying uncertainty, the Beta distribution is assumed for the concentration probability density function (pdf) model, while different levels of approximation are explored for the estimation of the one-point concentration moments. The information pertaining the flow and transport is connected with a proper dose response assessment which generally involves the estimation of physiological parameters of the exposed population. Human health response depends on the exposed individual metabolism (e.g. variability) and is subject to uncertainty. Therefore, the health parameters are intrinsically a stochastic. As a consequence, we provide an integrated in a global probabilistic human health risk framework which allows the propagation of the uncertainty from multiple sources. The final result, the health risk pdf, is expressed as function of a few relevant, physically-based parameters such as the size of the injection area, the Péclet number, the K structure metrics and covariance shape, reaction parameters pertaining to aerobic and anaerobic degradation processes respectively as well as the dose response parameters. Even though the final result assumes a relatively simple form, few numerical quadratures are required in order to evaluate the trajectory moments of the solute plume. In order to perform a sensitivity analysis we apply the methodology to a hypothetical case study. The scenario investigated is made by an aquifer which constitutes a water supply for a population where a continuous source of NAPL contaminant feeds a steady plume. The risk analysis is limited to carcinogenic compounds for which the well-known linear relation for human risk is assumed. Analysis performed shows few interesting findings: the risk distribution is strictly dependent on the pore scale dynamics that trigger dilution and mixing; biodegradation may involve a significant reduction of the risk.

  14. Detection of damage in welded structure using experimental modal data

    NASA Astrophysics Data System (ADS)

    Abu Husain, N.; Ouyang, H.

    2011-07-01

    A typical automotive structure could contain thousands of spot weld joints that contribute significantly to the vehicle's structural stiffness and dynamic characteristics. However, some of these joints may be imperfect or even absent during the manufacturing process and they are also highly susceptible to damage due to operational and environmental conditions during the vehicle lifetime. Therefore, early detection and estimation of damage are important so necessary actions can be taken to avoid further problems. Changes in physical parameters due to existence of damage in a structure often leads to alteration of vibration modes; thus demonstrating the dependency between the vibration characteristics and the physical properties of structures. A sensitivity-based model updating method, performed using a combination of MATLAB and NASTRAN, has been selected for the purpose of this work. The updating procedure is regarded as parameter identification which aims to bring the numerical prediction to be as closely as possible to the measured natural frequencies and mode shapes data of the damaged structure in order to identify the damage parameters (characterised by the reductions in the Young's modulus of the weld patches to indicate the loss of material/stiffness at the damage region).

  15. A combinaison of UV curing technology with ATL process

    NASA Astrophysics Data System (ADS)

    Balbzioui, I.; Hasiaoui, B.; Barbier, G.; L'hostis, G.; Laurent, F.; Ibrahim, A.; Durand, B.

    2017-10-01

    In order to reduce the time and the cost of manufacturing composite, UV curing technology combined with automated tape placement process (ATL) based on reverse approach by working with a fixed head was studied in this article. First, a brief description of the developed head placement is presented. Mechanical properties are then evaluated by varying process parameters, including compaction force and tape placement speed. Finally, a parametric study is carried out to identify suitable materials and process parameters to manufacture a photo composite material with high mechanical performances. The obtained results show that UV curing is a very good alternative for thermal polymerization because of its fast cure speed due to less dependency on temperature.

  16. Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms.

    PubMed

    García-Miranda Ferrari, Alejandro; Foster, Christopher W; Kelly, Peter J; Brownson, Dale A C; Banks, Craig E

    2018-06-08

    Screen-printed electrochemical sensing platforms, due to their scales of economy and high reproducibility, can provide a useful approach to translate laboratory-based electrochemistry into the field. An important factor when utilising screen-printed electrodes (SPEs) is the determination of their real electrochemical surface area, which allows for the benchmarking of these SPEs and is an important parameter in quality control. In this paper, we consider the use of cyclic voltammetry and chronocoulometry to allow for the determination of the real electrochemical area of screen-printed electrochemical sensing platforms, highlighting to experimentalists the various parameters that need to be diligently considered and controlled in order to obtain useful measurements of the real electroactive area.

  17. Synthesis of dynamic phase profile by the correlation technique for spatial control of optical beams in multiplexing and switching

    NASA Astrophysics Data System (ADS)

    Bugaychuk, Svitlana A.; Gnatovskyy, Vladimir O.; Sidorenko, Andrey V.; Pryadko, Igor I.; Negriyko, Anatoliy M.

    2015-11-01

    New approach for the correlation technique, which is based on multiple periodic structures to create a controllable angular spectrum, is proposed and investigated both theoretically and experimentally. The transformation of an initial laser beam occurs due to the actions of consecutive phase periodic structures, which may differ by their parameters. Then, after the Fourier transformation of a complex diffraction field, the output diffraction orders will be changed both by their intensities and by their spatial position. The controllable change of output angular spectrum is carried out by a simple control of the parameters of the periodic structures. We investigate several simple examples of such management.

  18. A statistical survey of heat input parameters into the cusp thermosphere

    NASA Astrophysics Data System (ADS)

    Moen, J. I.; Skjaeveland, A.; Carlson, H. C.

    2017-12-01

    Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.

  19. Temperature dependence of the magneto-controllable first-order phase transition in dilute magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.

    2017-11-01

    Experimental study was carried out to investigate the influence of particle size distribution function on the temperature dependent magneto-controllable first-order phase transition of the "gas-liquid" type in magnetic fluids. The study resolves one crisis situation in ferrohydrodynamic experiment made by several research groups in the 1980-1990s. It is shown that due to polydispersity magnetic fluids exhibit phase diagrams which are divided into three regions by vaporus and liquidus curves. Granulometric data states the primary role of the width of the particle size distribution function in the process of spinodal decomposition. New modified Langevin parameter is introduced for unification of liquidus curves of different ferrofluids despite the significant difference between the curves (one order of magnitude) in (H, T) coordinates.

  20. Study on the mapping of dark matter clustering from real space to redshift space

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Song, Yong-Seon

    2016-08-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.

  1. Characterisation of CFRP adhesive bonds by electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Wandowski, Tomasz; Ostachowicz, Wieslaw M.

    2014-03-01

    In aircraft industry the Carbon Fiber Reinforced Polymer (CFRP) elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. The contamination leading to weak bonds may have various origin and be caused by moisture, release agent, hydraulic fluid, fuel, poor curing of adhesive and so on. In this research three different causes of possible weak bonds were selected for the investigation: 1. Weak bond due to release agent contamination, 2. Weak bond due to moisture contamination, 3. Weak bond due to poor curing of the adhesive. In order to assess the bond quality electromechanical impedance (EMI) technique was selected and investigation was focused on the influence of bond quality on electrical impedance of piezoelectric transducer. The piezoelectric transducer was mounted at the middle of each sample surface. Measurements were conducted using HIOKI Impedance Analyzer IM3570. Using the impedance analyzer the electrical parameters were measured for wide frequency band. Due to piezoelectric effect the electrical response of a piezoelectric transducer is related to mechanical response of the sample to which the transducers is attached. The impedance spectra were investigated in order to find indication of the weak bonds. These spectra were compared with measurements for reference sample using indexes proposed in order to assess the bond quality.

  2. Investigation and statistical modeling of InAs-based double gate tunnel FETs for RF performance enhancement

    NASA Astrophysics Data System (ADS)

    Poorvasha, S.; Lakshmi, B.

    2018-05-01

    In this paper, RF performance analysis of InAs-based double gate (DG) tunnel field effect transistors (TFETs) is investigated in both qualitative and quantitative fashion. This investigation is carried out by varying the geometrical and doping parameters of TFETs to extract various RF parameters, unity gain cut-off frequency (f t), maximum oscillation frequency (f max), intrinsic gain and admittance (Y) parameters. An asymmetric gate oxide is introduced in the gate-drain overlap and compared with that of DG TFETs. Higher ON-current (I ON) of about 0.2 mA and less leakage current (I OFF) of 29 fA is achieved for DG TFET with gate-drain overlap. Due to increase in transconductance (g m), higher f t and intrinsic gain is attained for DG TFET with gate-drain overlap. Higher f max of 985 GHz is obtained for drain doping of 5 × 1017 cm‑3 because of the reduced gate-drain capacitance (C gd) with DG TFET with gate-drain overlap. In terms of Y-parameters, gate oxide thickness variation offers better performance due to the reduced values of C gd. A second order numerical polynomial model is generated for all the RF responses as a function of geometrical and doping parameters. The simulation results are compared with this numerical model where the predicted values match with the simulated values. Project supported by the Department of Science and Technology, Government of India under SERB Scheme (No. SERB/F/2660).

  3. Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory.

    PubMed

    Beni, Yaghoub Tadi; Zeverdejani, M Karimi; Mehralian, Fahimeh

    2017-10-01

    Protein microtubules (MTs) are one of the important intercellular components and have a vital role in the stability and strength of the cells. Due to applied external loads, protein microtubules may be involved buckling phenomenon. Due to impact of protein microtubules in cell reactions, it is important to determine their critical buckling load. Considering nature of protein microtubules, various parameters are effective on microtubules buckling. The small size of microtubules and also lack of uniformity of MTs properties in different directions caused the necessity of accuracy in the analysis of these bio-structure. In fact, microtubules must be considered as a size dependent cylinder, which behave as an orthotropic material. Hence, in the present work using first-order shear deformation model (FSDT), the buckling equations of anisotropic MTs are derived based on new modified couple stress theory (NMCST). After solving the stability equations, the influences of various parameters are measured on the MTs critical buckling load. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Feasibility and accuracy assessment of light field (plenoptic) PIV flow-measurement technique

    NASA Astrophysics Data System (ADS)

    Shekhar, Chandra; Ogawa, Syo; Kawaguchi, Tatsuya

    A light field camera can enable measurement of all the three velocity components of a flow field inside a three-dimensional volume when implemented in a PIV measurement. Due to the usage of only one camera, the measurement procedure gets greatly simplified, as well as measurement of the flows with limited visual access also becomes possible. Due to these advantages, light field cameras and their usage in PIV measurements are actively studied. The overall procedure of obtaining an instantaneous flow field consists of imaging a seeded flow at two closely separated time instants, reconstructing the two volumetric distributions of the particles using algorithms such as MART, followed by obtaining the flow velocity through cross-correlations. In this study, we examined effects of various configuration parameters of a light field camera on the in-plane and the depth resolutions, obtained near-optimal parameters in a given case, and then used it to simulate a PIV measurement scenario in order to assess the reconstruction accuracy.

  5. Simulative Investigation on the Effect of Different Parameters on the Performance of IsOWC System

    NASA Astrophysics Data System (ADS)

    Singh, Mehtab

    2017-08-01

    Inter-satellite communication links are very crucial between satellites orbiting around the earth in order to transmit information between them and also for the purpose of data relaying from one satellite station to other stations and ground stations. Inter-satellite optical wireless communication (IsOWC) links involve the application of optical wireless signals as compared to radio frequency signals used in traditional satellite communication systems. One of the major problems leading to the performance degradation of IsOWC link is the signal degradation due to satellite vibrations also known as pointing errors. In this paper, the performance of an IsOWC communication link has been investigated for different system parameters such as data transmission rates, antenna aperture diameter, transmission power levels, operating wavelength and responsivity of photodiode by analyzing Q-factor, signal-to-noise ratio (SNR), and total power of received signal to mitigate the effects of signal degradation of received signal due to satellite vibrations.

  6. Analysis of earing behaviour in deep drawing of ASS 304 at elevated temperature

    NASA Astrophysics Data System (ADS)

    Gupta, Amit Kumar; Deole, Aditya; Kotkunde, Nitin; Singh, Swadesh Kumar; jella, Gangadhar

    2016-08-01

    Earing tendency in a deep drawn cup of circular blanks is one the most prominent characteristics observed due to anisotropy in a metal sheet. Such formation of uneven rim is mainly due to dissimilarity in yield stress as well as Lankford parameter (r- value) in different orientations. In this paper, an analytical function coupled with different yield functions viz., Hill 1948, Barlat 1989 and Barlat Yld 2000-2d has been used to provide an approximation of earing profile. In order to validate the results, material parameters for yield functions and hardening rule have been calibrated for ASS 304 at 250°C and deep drawing experiment is conducted to measure the earing profile. The predicted earing profiles based on analytical results have been validated using experimental earing profile. Based on this analysis, Barlat Yld 2000-2d has been observed to be a well suited yield model for deep drawing of ASS 304, which also confirms the reliability of analytical function for earing profile estimation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. Themore » occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.« less

  8. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 2. Sensitivity to external forcings

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    A coupled ice stream-ice shelf-ocean cavity model is used to assess the sensitivity of the coupled system to far-field ocean temperatures, varying from 0.0 to 1.8°C, as well as sensitivity to the parameters controlling grounded ice flow. A response to warming is seen in grounding line retreat and grounded ice loss that cannot be inferred from the response of integrated melt rates alone. This is due to concentrated thinning at the ice shelf lateral margin, and to processes that contribute to this thinning. Parameters controlling the flow of grounded ice have a strong influence on the response to sub-ice shelf melting, but this influence is not seen until several years after an initial perturbation in temperatures. The simulated melt rates are on the order of that observed for Pine Island Glacier in the 1990s. However, retreat rates are much slower, possibly due to unrepresented bedrock features.

  9. Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing

    DOE PAGES

    Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.

    2017-11-15

    In Hezaveh et al. (2017) we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data,more » as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single hyperparameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that neural networks can be a fast alternative to Monte Carlo Markov Chains for parameter uncertainty estimation in many practical applications, allowing more than seven orders of magnitude improvement in speed.« less

  10. An architecture for efficient gravitational wave parameter estimation with multimodal linear surrogate models

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Richard; Blackman, Jonathan; Field, Scott E.

    2017-07-01

    The recent direct observation of gravitational waves has further emphasized the desire for fast, low-cost, and accurate methods to infer the parameters of gravitational wave sources. Due to expense in waveform generation and data handling, the cost of evaluating the likelihood function limits the computational performance of these calculations. Building on recently developed surrogate models and a novel parameter estimation pipeline, we show how to quickly generate the likelihood function as an analytic, closed-form expression. Using a straightforward variant of a production-scale parameter estimation code, we demonstrate our method using surrogate models of effective-one-body and numerical relativity waveforms. Our study is the first time these models have been used for parameter estimation and one of the first ever parameter estimation calculations with multi-modal numerical relativity waveforms, which include all \\ell ≤slant 4 modes. Our grid-free method enables rapid parameter estimation for any waveform with a suitable reduced-order model. The methods described in this paper may also find use in other data analysis studies, such as vetting coincident events or the computation of the coalescing-compact-binary detection statistic.

  11. Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.

    2017-11-01

    In Hezaveh et al. we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational-lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data, as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single variational parameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that the application of approximate Bayesian neural networks to astrophysical modeling problems can be a fast alternative to Monte Carlo Markov Chains, allowing orders of magnitude improvement in speed.

  12. Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.

    In Hezaveh et al. (2017) we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data,more » as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single hyperparameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that neural networks can be a fast alternative to Monte Carlo Markov Chains for parameter uncertainty estimation in many practical applications, allowing more than seven orders of magnitude improvement in speed.« less

  13. Compressive properties of passive skeletal muscle-the impact of precise sample geometry on parameter identification in inverse finite element analysis.

    PubMed

    Böl, Markus; Kruse, Roland; Ehret, Alexander E; Leichsenring, Kay; Siebert, Tobias

    2012-10-11

    Due to the increasing developments in modelling of biological material, adequate parameter identification techniques are urgently needed. The majority of recent contributions on passive muscle tissue identify material parameters solely by comparing characteristic, compressive stress-stretch curves from experiments and simulation. In doing so, different assumptions concerning e.g. the sample geometry or the degree of friction between the sample and the platens are required. In most cases these assumptions are grossly simplified leading to incorrect material parameters. In order to overcome such oversimplifications, in this paper a more reliable parameter identification technique is presented: we use the inverse finite element method (iFEM) to identify the optimal parameter set by comparison of the compressive stress-stretch response including the realistic geometries of the samples and the presence of friction at the compressed sample faces. Moreover, we judge the quality of the parameter identification by comparing the simulated and experimental deformed shapes of the samples. Besides this, the study includes a comprehensive set of compressive stress-stretch data on rabbit soleus muscle and the determination of static friction coefficients between muscle and PTFE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Overview and benchmark analysis of fuel cell parameters estimation for energy management purposes

    NASA Astrophysics Data System (ADS)

    Kandidayeni, M.; Macias, A.; Amamou, A. A.; Boulon, L.; Kelouwani, S.; Chaoui, H.

    2018-03-01

    Proton exchange membrane fuel cells (PEMFCs) have become the center of attention for energy conversion in many areas such as automotive industry, where they confront a high dynamic behavior resulting in their characteristics variation. In order to ensure appropriate modeling of PEMFCs, accurate parameters estimation is in demand. However, parameter estimation of PEMFC models is highly challenging due to their multivariate, nonlinear, and complex essence. This paper comprehensively reviews PEMFC models parameters estimation methods with a specific view to online identification algorithms, which are considered as the basis of global energy management strategy design, to estimate the linear and nonlinear parameters of a PEMFC model in real time. In this respect, different PEMFC models with different categories and purposes are discussed first. Subsequently, a thorough investigation of PEMFC parameter estimation methods in the literature is conducted in terms of applicability. Three potential algorithms for online applications, Recursive Least Square (RLS), Kalman filter, and extended Kalman filter (EKF), which has escaped the attention in previous works, have been then utilized to identify the parameters of two well-known semi-empirical models in the literature, Squadrito et al. and Amphlett et al. Ultimately, the achieved results and future challenges are discussed.

  15. Mesoscale Particle-Based Model of Electrophoretic Deposition

    DOE PAGES

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; ...

    2016-12-20

    In this paper, we present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increasesmore » and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. Finally, we find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force.« less

  16. Estimating Function Approaches for Spatial Point Processes

    NASA Astrophysics Data System (ADS)

    Deng, Chong

    Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting second-order intensity function of spatial point processes. However, the original second-order quasi-likelihood is barely feasible due to the intense computation and high memory requirement needed to solve a large linear system. Motivated by the existence of geometric regular patterns in the stationary point processes, we find a lower dimension representation of the optimal weight function and propose a reduced second-order quasi-likelihood approach. Through a simulation study, we show that the proposed method not only demonstrates superior performance in fitting the clustering parameter but also merits in the relaxation of the constraint of the tuning parameter, H. Third, we studied the quasi-likelihood type estimating funciton that is optimal in a certain class of first-order estimating functions for estimating the regression parameter in spatial point process models. Then, by using a novel spectral representation, we construct an implementation that is computationally much more efficient and can be applied to more general setup than the original quasi-likelihood method.

  17. An embedded Simplified Fuzzy ARTMAP implemented on a microcontroller for food classification.

    PubMed

    Garcia-Breijo, Eduardo; Garrigues, Jose; Sanchez, Luis Gil; Laguarda-Miro, Nicolas

    2013-08-13

    In the present study, a portable system based on a microcontroller has been developed to classify different kinds of honeys. In order to do this classification, a Simplified Fuzzy ARTMAP network (SFA) implemented in a microcontroller has been used. Due to memory limits when working with microcontrollers, it is necessary to optimize the use of both program and data memory. Thus, a Graphical User Interface (GUI) for MATLAB® has been developed in order to optimize the necessary parameters to programme the SFA in a microcontroller. The measures have been carried out by potentiometric techniques using a multielectrode made of seven different metals. Next, the neural network has been trained on a PC by means of the GUI in Matlab using the data obtained in the experimental phase. The microcontroller has been programmed with the obtained parameters and then, new samples have been analysed using the portable system in order to test the model. Results are very promising, as an 87.5% recognition rate has been achieved in the training phase, which suggests that this kind of procedures can be successfully used not only for honey classification, but also for many other kinds of food.

  18. An Embedded Simplified Fuzzy ARTMAP Implemented on a Microcontroller for Food Classification

    PubMed Central

    Garcia-Breijo, Eduardo; Garrigues, Jose; Sanchez, Luis Gil; Laguarda-Miro, Nicolas

    2013-01-01

    In the present study, a portable system based on a microcontroller has been developed to classify different kinds of honeys. In order to do this classification, a Simplified Fuzzy ARTMAP network (SFA) implemented in a microcontroller has been used. Due to memory limits when working with microcontrollers, it is necessary to optimize the use of both program and data memory. Thus, a Graphical User Interface (GUI) for MATLAB® has been developed in order to optimize the necessary parameters to programme the SFA in a microcontroller. The measures have been carried out by potentiometric techniques using a multielectrode made of seven different metals. Next, the neural network has been trained on a PC by means of the GUI in Matlab using the data obtained in the experimental phase. The microcontroller has been programmed with the obtained parameters and then, new samples have been analysed using the portable system in order to test the model. Results are very promising, as an 87.5% recognition rate has been achieved in the training phase, which suggests that this kind of procedures can be successfully used not only for honey classification, but also for many other kinds of food. PMID:23945736

  19. Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models.

    PubMed

    Pekař, Miloslav

    2018-01-01

    Recently, a method based on non-equilibrium continuum thermodynamics which derives thermodynamically consistent reaction rate models together with thermodynamic constraints on their parameters was analyzed using a triangular reaction scheme. The scheme was kinetically of the first order. Here, the analysis is further developed for several first and second order schemes to gain a deeper insight into the thermodynamic consistency of rate equations and relationships between chemical thermodynamic and kinetics. It is shown that the thermodynamic constraints on the so-called proper rate coefficient are usually simple sign restrictions consistent with the supposed reaction directions. Constraints on the so-called coupling rate coefficients are more complex and weaker. This means more freedom in kinetic coupling between reaction steps in a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction in a reacting system. When compared with traditional mass-action rate equations, the method allows a reduction in the number of traditional rate constants to be evaluated from data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is due to identifying relationships between mass-action rate constants (relationships which also include thermodynamic equilibrium constants) which have so far been unknown.

  20. A bioconvection model for a squeezing flow of nanofluid between parallel plates in the presence of gyrotactic microorganisms

    NASA Astrophysics Data System (ADS)

    Bin-Mohsin, Bandar; Ahmed, Naveed; Adnan; Khan, Umar; Tauseef Mohyud-Din, Syed

    2017-04-01

    This article deals with the bioconvection flow in a parallel-plate channel. The plates are parallel and the flowing fluid is saturated with nanoparticles, and water is considered as a base fluid because microorganisms can survive only in water. A highly nonlinear and coupled system of partial differential equations presenting the model of bioconvection flow between parallel plates is reduced to a nonlinear and coupled system (nondimensional bioconvection flow model) of ordinary differential equations with the help of feasible nondimensional variables. In order to find the convergent solution of the system, a semi-analytical technique is utilized called variation of parameters method (VPM). Numerical solution is also computed and the Runge-Kutta scheme of fourth order is employed for this purpose. Comparison between these solutions has been made on the domain of interest and found to be in excellent agreement. Also, influence of various parameters has been discussed for the nondimensional velocity, temperature, concentration and density of the motile microorganisms both for suction and injection cases. Almost inconsequential influence of thermophoretic and Brownian motion parameters on the temperature field is observed. An interesting variation are inspected for the density of the motile microorganisms due to the varying bioconvection parameter in suction and injection cases. At the end, we make some concluding remarks in the light of this article.

  1. Optimization of the transmission of observable expectation values and observable statistics in continuous-variable teleportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albano Farias, L.; Stephany, J.

    2010-12-15

    We analyze the statistics of observables in continuous-variable (CV) quantum teleportation in the formalism of the characteristic function. We derive expressions for average values of output-state observables, in particular, cumulants which are additive in terms of the input state and the resource of teleportation. Working with a general class of teleportation resources, the squeezed-bell-like states, which may be optimized in a free parameter for better teleportation performance, we discuss the relation between resources optimal for fidelity and those optimal for different observable averages. We obtain the values of the free parameter of the squeezed-bell-like states which optimize the central momentamore » and cumulants up to fourth order. For the cumulants the distortion between in and out states due to teleportation depends only on the resource. We obtain optimal parameters {Delta}{sub (2)}{sup opt} and {Delta}{sub (4)}{sup opt} for the second- and fourth-order cumulants, which do not depend on the squeezing of the resource. The second-order central momenta, which are equal to the second-order cumulants, and the photon number average are also optimized by the resource with {Delta}{sub (2)}{sup opt}. We show that the optimal fidelity resource, which has been found previously to depend on the characteristics of input, approaches for high squeezing to the resource that optimizes the second-order momenta. A similar behavior is obtained for the resource that optimizes the photon statistics, which is treated here using the sum of the squared differences in photon probabilities of input versus output states as the distortion measure. This is interpreted naturally to mean that the distortions associated with second-order momenta dominate the behavior of the output state for large squeezing of the resource. Optimal fidelity resources and optimal photon statistics resources are compared, and it is shown that for mixtures of Fock states both resources are equivalent.« less

  2. Effects of Parameter Uncertainty on Long-Term Simulations of Lake Alkalinity

    NASA Astrophysics Data System (ADS)

    Lee, Sijin; Georgakakos, Konstantine P.; Schnoor, Jerald L.

    1990-03-01

    A first-order second-moment uncertainty analysis has been applied to two lakes in the Adirondack Park, New York, to assess the long-term response of lakes to acid deposition. Uncertainty due to parameter error and initial condition error was considered. Because the enhanced trickle-down (ETD) model is calibrated with only 3 years of field data and is used to simulate a 50-year period, the uncertainty in the lake alkalinity prediction is relatively large. When a best estimate of parameter uncertainty is used, the annual average alkalinity is predicted to be -11 ±28 μeq/L for Lake Woods and 142 ± 139 μeq/L for Lake Panther after 50 years. Hydrologic parameters and chemical weathering rate constants contributed most to the uncertainty of the simulations. Results indicate that the uncertainty in long-range predictions of lake alkalinity increased significantly over a 5- to 10-year period and then reached a steady state.

  3. Selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children

    NASA Astrophysics Data System (ADS)

    Landowska, A.; Karpienko, K.; Wróbel, M.; Jedrzejewska-Szczerska, M.

    2014-11-01

    In this article the procedure of selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children is proposed. Authors designed and conducted an experiment in which a group of 30 health volunteers (16 females and 14 males) were examined. Under controlled conditions people were exposed to a stressful situation caused by the picture or sound (1kHz constant sound, which was gradually silenced and finished with a shot sound). For each of volunteers, a set of physiological parameters were recorded, including: skin conductance, heart rate, peripheral temperature, respiration rate and electromyography. The selected characteristics were measured in different locations in order to choose the most suitable one for the designed therapy supporting system. The bio-statistical analysis allowed us to discern the proper physiological parameters that are most associated to changes due to emotional state of a patient, such as: skin conductance, temperatures and respiration rate. This allowed us to design optoelectronic sensors network for supporting behavioral therapy of children with autism.

  4. Improvements in aircraft extraction programs

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.; Maine, R. E.

    1976-01-01

    Flight data from an F-8 Corsair and a Cessna 172 was analyzed to demonstrate specific improvements in the LRC parameter extraction computer program. The Cramer-Rao bounds were shown to provide a satisfactory relative measure of goodness of parameter estimates. It was not used as an absolute measure due to an inherent uncertainty within a multiplicative factor, traced in turn to the uncertainty in the noise bandwidth in the statistical theory of parameter estimation. The measure was also derived on an entirely nonstatistical basis, yielding thereby also an interpretation of the significance of off-diagonal terms in the dispersion matrix. The distinction between coefficients as linear and non-linear was shown to be important in its implication to a recommended order of parameter iteration. Techniques of improving convergence generally, were developed, and tested out on flight data. In particular, an easily implemented modification incorporating a gradient search was shown to improve initial estimates and thus remove a common cause for lack of convergence.

  5. From in situ coal to the final coal product: A case study of the Danville Coal Member (Indiana)

    USGS Publications Warehouse

    Mastalerz, Maria; Padgett, P.L.

    1999-01-01

    A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.

  6. Lamb Shift of n = 1 and n = 2 States of Hydrogen-like Atoms, 1 ≤ Z ≤ 110

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yerokhin, V. A.; Shabaev, V. M.

    2015-09-15

    Theoretical energy levels of the n = 1 and n = 2 states of hydrogen-like atoms with the nuclear charge numbers 1 ≤ Z ≤ 110 are tabulated. The tabulation is based on ab initio quantum electrodynamics calculations performed to all orders in the nuclear binding strength parameter Zα, where α is the fine structure constant. Theoretical errors due to various effects are critically examined and estimated.

  7. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    NASA Astrophysics Data System (ADS)

    Aadhavan, R.; Suresh Babu, K.

    2017-07-01

    Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50-300 °C) and deposition rate (0.1-50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7-18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10-3 kg2 m-4 s-1 while ceria coating lowered the kinetics by 3-4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  8. The interplay between viscoelastic and thermodynamic properties determines the birefringence of F-actin gels.

    PubMed

    Helfer, Emmanuèle; Panine, Pierre; Carlier, Marie-France; Davidson, Patrick

    2005-07-01

    F-actin gels of increasing concentrations (25-300 microM) display in vitro a progressive onset of birefringence due to orientational ordering of actin filaments. At F-actin concentrations <100 microM, this birefringence can be erased and restored at will by sonication and gentle flow, respectively. Hence, the orientational ordering does not result from a thermodynamic transition to a nematic phase but instead is due to mechanical stresses stored in the gels. In contrast, at F-actin concentrations > or =100 microM, gels display spontaneous birefringence recovery, at rest, which is the sign of true nematic ordering, in good agreement with statistical physics models of the isotropic/nematic transition. Well-aligned samples of F-actin gels could be produced and their small-angle x-ray scattering patterns are quite anisotropic. These patterns show no sign of filament positional short-range order and could be modeled by averaging the form factor with the Maier-Saupe nematic distribution function. The derived nematic order parameter S of the gels ranged from S = 0.7 at 300 microM to S = 0.4 at 25 microM. Both birefringence and small-angle x-ray scattering data indicate that, even in absence of cross-linking proteins, spontaneous cooperative alignment of actin filaments may arise in motile regions of living cells where F-actin concentrations can reach values of a few 100 microM.

  9. The optimization of design parameters for surge relief valve for pipeline systems

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjun; Hur, Jisung; Kim, Sanghyun

    2017-06-01

    Surge is an abnormal pressure which induced by rapid changes of flow rate in pipeline systems. In order to protect pipeline system from the surge pressure, various hydraulic devices have been developed. Surge-relief valve(SRV) is one of the widely applied devices to control surge due to its feasibility in application, efficiency and cost-effectiveness. SRV is designed to automatically open under abnormal pressure and discharge the flow and makes pressure of the system drop to the allowable level. The performance of the SRV is influenced by hydraulics. According to previous studies, there are several affecting factors which determine performance of the PRV such as design parameters (e.g. size of the valve), system parameters (e.g. number of the valves and location of the valve), and operation parameters (e.g. set point and operation time). Therefore, the systematic consideration for factors affecting performance of SRV is required for the proper installation of SRV in the system. In this study, methodology for finding optimum parameters of the SRV is explored through the integration of Genetic Algorithm(GA) into surge analysis.

  10. Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Ashorynejad, H. R.; Sheikholeslami, M.; Pop, I.; Ganji, D. D.

    2013-03-01

    In this paper, flow and heat transfer of a nanofluid over a stretching cylinder in the presence of magnetic field has been investigated. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations with the appropriate boundary conditions using similarity transformation, which is then solved numerically by the fourth order Runge-Kutta integration scheme featuring a shooting technique. Different types of nanoparticles as copper (Cu), silver (Ag), alumina (Al2O3) and titanium oxide (TiO2) with water as their base fluid has been considered. The influence of significant parameters such as nanoparticle volume fraction, nanofluids type, magnetic parameter and Reynolds number on the flow and heat transfer characteristics is discussed. It was found that the Nusselt number increases as each of Reynolds number or nanoparticles volume fraction increase, but it decreases as magnetic parameter increase. Also it can be found that choosing copper (for small of magnetic parameter) and alumina (for large values of magnetic parameter) leads to the highest cooling performance for this problem.

  11. A square-force cohesion model and its extraction from bulk measurements

    NASA Astrophysics Data System (ADS)

    Liu, Peiyuan; Lamarche, Casey; Kellogg, Kevin; Hrenya, Christine

    2017-11-01

    Cohesive particles remain poorly understood, with order of magnitude differences exhibited for prior, physical predictions of agglomerate size. A major obstacle lies in the absence of robust models of particle-particle cohesion, thereby precluding accurate prediction of the behavior of cohesive particles. Rigorous cohesion models commonly contain parameters related to surface roughness, to which cohesion shows extreme sensitivity. However, both roughness measurement and its distillation into these model parameters are challenging. Accordingly, we propose a ``square-force'' model, where cohesive force remains constant until a cut-off separation. Via DEM simulations, we demonstrate validity of the square-force model as surrogate of more rigorous models, when its two parameters are selected to match the two key quantities governing dense and dilute granular flows, namely maximum cohesive force and critical cohesive energy, respectively. Perhaps more importantly, we establish a method to extract the parameters in the square-force model via defluidization, due to its ability to isolate the effects of the two parameters. Thus, instead of relying on complicated scans of individual grains, determination of particle-particle cohesion from simple bulk measurements becomes feasible. Dow Corning Corporation.

  12. Improved first-order uncertainty method for water-quality modeling

    USGS Publications Warehouse

    Melching, C.S.; Anmangandla, S.

    1992-01-01

    Uncertainties are unavoidable in water-quality modeling and subsequent management decisions. Monte Carlo simulation and first-order uncertainty analysis (involving linearization at central values of the uncertain variables) have been frequently used to estimate probability distributions for water-quality model output due to their simplicity. Each method has its drawbacks: Monte Carlo simulation's is mainly computational time; and first-order analysis are mainly questions of accuracy and representativeness, especially for nonlinear systems and extreme conditions. An improved (advanced) first-order method is presented, where the linearization point varies to match the output level whose exceedance probability is sought. The advanced first-order method is tested on the Streeter-Phelps equation to estimate the probability distribution of critical dissolved-oxygen deficit and critical dissolved oxygen using two hypothetical examples from the literature. The advanced first-order method provides a close approximation of the exceedance probability for the Streeter-Phelps model output estimated by Monte Carlo simulation using less computer time - by two orders of magnitude - regardless of the probability distributions assumed for the uncertain model parameters.

  13. Nematic order on the surface of a three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph

    2017-12-01

    We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.

  14. Optimal ordering quantities for substitutable deteriorating items under joint replenishment with cost of substitution

    NASA Astrophysics Data System (ADS)

    Mishra, Vinod Kumar

    2017-09-01

    In this paper we develop an inventory model, to determine the optimal ordering quantities, for a set of two substitutable deteriorating items. In this inventory model the inventory level of both items depleted due to demands and deterioration and when an item is out of stock, its demands are partially fulfilled by the other item and all unsatisfied demand is lost. Each substituted item incurs a cost of substitution and the demands and deterioration is considered to be deterministic and constant. Items are order jointly in each ordering cycle, to take the advantages of joint replenishment. The problem is formulated and a solution procedure is developed to determine the optimal ordering quantities that minimize the total inventory cost. We provide an extensive numerical and sensitivity analysis to illustrate the effect of different parameter on the model. The key observation on the basis of numerical analysis, there is substantial improvement in the optimal total cost of the inventory model with substitution over without substitution.

  15. Persistent order due to transiently enhanced nesting in an electronically excited charge density wave

    DOE PAGES

    Rettig, L.; Cortés, R.; Chu, J. -H.; ...

    2016-01-25

    Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time-and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of themore » dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. In conclusion, our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order.« less

  16. Evaluating low pass filters on SPECT reconstructed cardiac orientation estimation

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shekhar

    2009-02-01

    Low pass filters can affect the quality of clinical SPECT images by smoothing. Appropriate filter and parameter selection leads to optimum smoothing that leads to a better quantification followed by correct diagnosis and accurate interpretation by the physician. This study aims at evaluating the low pass filters on SPECT reconstruction algorithms. Criteria for evaluating the filters are estimating the SPECT reconstructed cardiac azimuth and elevation angle. Low pass filters studied are butterworth, gaussian, hamming, hanning and parzen. Experiments are conducted using three reconstruction algorithms, FBP (filtered back projection), MLEM (maximum likelihood expectation maximization) and OSEM (ordered subsets expectation maximization), on four gated cardiac patient projections (two patients with stress and rest projections). Each filter is applied with varying cutoff and order for each reconstruction algorithm (only butterworth used for MLEM and OSEM). The azimuth and elevation angles are calculated from the reconstructed volume and the variation observed in the angles with varying filter parameters is reported. Our results demonstrate that behavior of hamming, hanning and parzen filter (used with FBP) with varying cutoff is similar for all the datasets. Butterworth filter (cutoff > 0.4) behaves in a similar fashion for all the datasets using all the algorithms whereas with OSEM for a cutoff < 0.4, it fails to generate cardiac orientation due to oversmoothing, and gives an unstable response with FBP and MLEM. This study on evaluating effect of low pass filter cutoff and order on cardiac orientation using three different reconstruction algorithms provides an interesting insight into optimal selection of filter parameters.

  17. Vibrational spectroscopic and DFT calculation studies of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile.

    PubMed

    Premkumar, S; Jawahar, A; Mathavan, T; Kumara Dhas, M; Milton Franklin Benial, A

    2015-03-05

    The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908×10(-30) issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π→π(∗) transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Parameter Estimation of the Thermal Network Model of a Machine Tool Spindle by Self-made Bluetooth Temperature Sensor Module

    PubMed Central

    Lo, Yuan-Chieh; Hu, Yuh-Chung; Chang, Pei-Zen

    2018-01-01

    Thermal characteristic analysis is essential for machine tool spindles because sudden failures may occur due to unexpected thermal issue. This article presents a lumped-parameter Thermal Network Model (TNM) and its parameter estimation scheme, including hardware and software, in order to characterize both the steady-state and transient thermal behavior of machine tool spindles. For the hardware, the authors develop a Bluetooth Temperature Sensor Module (BTSM) which accompanying with three types of temperature-sensing probes (magnetic, screw, and probe). Its specification, through experimental test, achieves to the precision ±(0.1 + 0.0029|t|) °C, resolution 0.00489 °C, power consumption 7 mW, and size Ø40 mm × 27 mm. For the software, the heat transfer characteristics of the machine tool spindle correlative to rotating speed are derived based on the theory of heat transfer and empirical formula. The predictive TNM of spindles was developed by grey-box estimation and experimental results. Even under such complicated operating conditions as various speeds and different initial conditions, the experiments validate that the present modeling methodology provides a robust and reliable tool for the temperature prediction with normalized mean square error of 99.5% agreement, and the present approach is transferable to the other spindles with a similar structure. For realizing the edge computing in smart manufacturing, a reduced-order TNM is constructed by Model Order Reduction (MOR) technique and implemented into the real-time embedded system. PMID:29473877

  19. Parameter Estimation of the Thermal Network Model of a Machine Tool Spindle by Self-made Bluetooth Temperature Sensor Module.

    PubMed

    Lo, Yuan-Chieh; Hu, Yuh-Chung; Chang, Pei-Zen

    2018-02-23

    Thermal characteristic analysis is essential for machine tool spindles because sudden failures may occur due to unexpected thermal issue. This article presents a lumped-parameter Thermal Network Model (TNM) and its parameter estimation scheme, including hardware and software, in order to characterize both the steady-state and transient thermal behavior of machine tool spindles. For the hardware, the authors develop a Bluetooth Temperature Sensor Module (BTSM) which accompanying with three types of temperature-sensing probes (magnetic, screw, and probe). Its specification, through experimental test, achieves to the precision ±(0.1 + 0.0029|t|) °C, resolution 0.00489 °C, power consumption 7 mW, and size Ø40 mm × 27 mm. For the software, the heat transfer characteristics of the machine tool spindle correlative to rotating speed are derived based on the theory of heat transfer and empirical formula. The predictive TNM of spindles was developed by grey-box estimation and experimental results. Even under such complicated operating conditions as various speeds and different initial conditions, the experiments validate that the present modeling methodology provides a robust and reliable tool for the temperature prediction with normalized mean square error of 99.5% agreement, and the present approach is transferable to the other spindles with a similar structure. For realizing the edge computing in smart manufacturing, a reduced-order TNM is constructed by Model Order Reduction (MOR) technique and implemented into the real-time embedded system.

  20. Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Yang, Qu; Liu, Ming; Zhang, Zhiguo; Zhang, Xinyang; Sun, Dazhi; Nan, Tianxiang; Sun, Nianxiang; Chen, Xing

    2015-04-01

    Antiferroelectric (AFE) materials with adjacent dipoles oriented in antiparallel directions have a double polarization hysteresis loops. An electric field (E-field)-induced AFE-ferroelectric (FE) phase transition takes place in such materials, leading to a large lattice strain and energy change. The high dielectric constant and the distinct phase transition in AFE materials provide great opportunities for the realization of energy storage devices like super-capacitors and energy conversion devices such as AFE MEMS applications. Lots of work has been done in this field since 60-70 s. Recently, the strain tuning of the spin, charge and orbital orderings and their interactions in complex oxides and multiferroic heterostructures have received great attention. In these systems, a single control parameter of lattice strain is used to control lattice-spin, lattice-phonon, and lattice-charge interactions and tailor properties or create a transition between distinct magnetic/electronic phases. Due to the large strain/stress arising from the phase transition, AFE materials are great candidates for integrating with ferromagnetic (FM) materials to realize in situ manipulation of magnetism and lattice-ordered parameters by voltage. In this paper, we introduce the AFE material and it's applications shortly and then review the recent progress in AFEs based on multiferroic heterostructures. These new multiferroic materials could pave a new way towards next generation light, compact, fast and energy efficient voltage tunable RF/microwave, spintronic and memory devices promising approaches to in situ manipulation of lattice-coupled order parameters is to grow epitaxial oxide films on FE/ferroelastic substrates.

  1. Investigation of antenna pattern constraints for passive geosynchronous microwave imaging radiometers

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Skofronick, G. M.

    1992-01-01

    Progress by investigators at Georgia Tech in defining the requirements for large space antennas for passive microwave Earth imaging systems is reviewed. In order to determine antenna constraints (e.g., the aperture size, illumination taper, and gain uncertainty limits) necessary for the retrieval of geophysical parameters (e.g., rain rate) with adequate spatial resolution and accuracy, a numerical simulation of the passive microwave observation and retrieval process is being developed. Due to the small spatial scale of precipitation and the nonlinear relationships between precipitation parameters (e.g., rain rate, water density profile) and observed brightness temperatures, the retrieval of precipitation parameters are of primary interest in the simulation studies. Major components of the simulation are described as well as progress and plans for completion. The overall goal of providing quantitative assessments of the accuracy of candidate geosynchronous and low-Earth orbiting imaging systems will continue under a separate grant.

  2. Introduction of Shear-Based Transport Mechanisms in Radial-Axial Hybrid Hall Thruster Simulations

    NASA Astrophysics Data System (ADS)

    Scharfe, Michelle; Gascon, Nicolas; Scharfe, David; Cappelli, Mark; Fernandez, Eduardo

    2007-11-01

    Electron diffusion across magnetic field lines in Hall effect thrusters is experimentally observed to be higher than predicted by classical diffusion theory. Motivated by theoretical work for fusion applications and experimental measurements of Hall thrusters, numerical models for the electron transport are implemented in radial-axial hybrid simulations in order to compute the electron mobility using simulated plasma properties and fitting parameters. These models relate the cross-field transport to the imposed magnetic field distribution through shear suppression of turbulence-enhanced transport. While azimuthal waves likely enhance cross field mobility, axial shear in the electron fluid may reduce transport due to a reduction in turbulence amplitudes and modification of phase shifts between fluctuating properties. The sensitivity of the simulation results to the fitting parameters is evaluated and an examination is made of the transportability of these parameters to several Hall thruster devices.

  3. Evaluation of Signal Regeneration Impact on the Power Efficiency of Long-Haul DWDM Systems

    NASA Astrophysics Data System (ADS)

    Pavlovs, D.; Bobrovs, V.; Parfjonovs, M.; Alsevska, A.; Ivanovs, G.

    2017-10-01

    Due to potential economic benefits and expected environmental impact, the power consumption issue in wired networks has become a major challenge. Furthermore, continuously increasing global Internet traffic demands high spectral efficiency values. As a result, the relationship between spectral efficiency and energy consumption of telecommunication networks has become a popular topic of academic research over the past years, where a critical parameter is power efficiency. The present research contains calculation results that can be used by optical network designers and operators as guidance for developing more power efficient communication networks if the planned system falls within the scope of this paper. The research results are presented as average aggregated traffic curves that provide more flexible data for the systems with different spectrum availability. Further investigations could be needed in order to evaluate the parameters under consideration taking into account particular spectral parameters, e.g., the entire C-band.

  4. Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Basu, Rajratan; Lee, Andrew

    2017-10-01

    A monolayer graphene coated glass slide and an indium tin oxide (ITO) coated glass slide with a planar-aligning polyimide layer were placed together to make a planar hybrid liquid crystal (LC) cell. The free-ion concentration in the LC was found to be significantly reduced in the graphene-ITO hybrid cell compared to that in a conventional ITO-ITO cell. The free-ion concentration was suppressed in the hybrid cell due to the graphene-electrode's ion trapping process. The dielectric anisotropy of the LC was found to increase in the hybrid cell, indicating an increase in the nematic order parameter of the LC due to the reduction of ionic impurities.

  5. On the sensitivity of 4 different CPV module technologies to relevant ambient and operation conditions

    NASA Astrophysics Data System (ADS)

    Domínguez, César; Besson, Pierre

    2014-09-01

    The sensitivity of four different CPV module technologies to most operating conditions relevant to CPV systems has been studied, namely DNI, spectrum, cell and lens temperature and clearness of the sky. In order to isolate the influence of a single operation parameter, the analysis of long-term outdoor monitoring data is required. The effect of lens temperature on cell current has been found to vary greatly between modules due to the different optical architectures studied. Maximum sensitivity is found for silicone-on-glass primary lenses. The VOC thermal coefficient was found to vary between module technologies, probably due to differences in maximum local effective concentration.

  6. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Chauhan, Prashant

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled lasermore » beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.« less

  7. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage (FOD) Events

    NASA Technical Reports Server (NTRS)

    Turso, James; Lawrence, Charles; Litt, Jonathan

    2004-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  8. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage "FOD" Events

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Lawrence, Charles; Litt, Jonathan S.

    2007-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/ health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite-element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  9. Dielectric Anistropy and Elastic Constants Near the Nematic-Smectic A Transition

    NASA Astrophysics Data System (ADS)

    Visco, Angelo; Mahmood, Rizwan; Zapien, Donald

    The present work examines the behavior of dielectric anisotropy and the elastic constants associated with the deformation of liquid crystal molecules under the influence of an AC electric field and measured by an Automatic Liquid Crystal Tester (ALCT). The systems investigated are of various concentrations of 5CB (4-Cyano-4'-pentylbiphenyl) and 8CB (4-octyl-4'-cyanobiphenyl) liquid crystal as a function of temperature. These studies are important due to the complexity of the coupling between the orientational (nematic) and positional (smectic A) order parameters that can drive this transition to be either continuous or discontinuous. Theoretically, NA transition is weakly first order due to nematic director fluctuations in semctic A phase. This is similar to the transition from normal to superconductor. Thus, there exists a triple point similar to He3/He4 mixtures. Moreover, despite more than four decades of intense work, our understanding of this complex and interesting problem remains unclear. The funding for the project was provided by Slippery Rock University (2015-2016).

  10. Microscopic coexistence of magnetism and superconductivity in charge-compensated Ba1-xKx(Fe1-yCoy)2As2

    NASA Astrophysics Data System (ADS)

    Goltz, Til; Zinth, Veronika; Johrendt, Dirk; Rosner, Helge; Pascua, Gwendolyne; Luetkens, Hubertus; Materne, Philipp; Klauss, Hans-Henning

    2014-04-01

    We present a detailed investigation of the electronic phase diagram of effectively charge compensated Ba1-xKx(Fe1-yCoy)2As2 with x /2≈y. Our experimental study by means of x-ray diffraction, Mössbauer spectroscopy, muon spin relaxation and ac-susceptibility measurements on polycrystalline samples is complemented by density functional electronic structure calculations. For low substitution levels of x /2≈y≤0.13, the system displays an orthorhombically distorted and antiferromagnetically ordered ground state. The low-temperature structural and magnetic order parameters are successively reduced with increasing substitution level. We observe a linear relationship between the structural and the magnetic order parameter as a function of temperature and substitution level for x /2≈y≤0.13. At intermediate substitution levels in the range between 0.13 and 0.19, we find superconductivity with a maximum Tc of 15 K coexisting with static magnetic order on a microscopic length scale. For higher substitution levels x /2≈y≥0.25, a tetragonal nonmagnetic ground state is observed. Our DFT calculations yield a significant reduction of the Fe 3d density of states at the Fermi energy and a strong suppression of the ordered magnetic moment in excellent agreement with experimental results. The appearance of superconductivity within the antiferromagnetic state can by explained by the introduction of disorder due to nonmagnetic impurities to a system with a constant charge carrier density.

  11. Metabolic markers in sports medicine.

    PubMed

    Banfi, Giuseppe; Colombini, Alessandra; Lombardi, Giovanni; Lubkowska, Anna

    2012-01-01

    Physical exercise induces adaptations in metabolism considered beneficial for health. Athletic performance is linked to adaptations, training, and correct nutrition in individuals with genetic traits that can facilitate such adaptations. Intense and continuous exercise, training, and competitions, however, can induce changes in the serum concentrations of numerous laboratory parameters. When these modifications, especially elevated laboratory levels, result outside the reference range, further examinations are ordered or participation in training and competition is discontinued or sports practice loses its appeal. In order to correctly interpret commonly used laboratory data, laboratory professionals and sport physicians need to know the behavior of laboratory parameters during and after practice and competition. We reviewed the literature on liver, kidney, muscle, heart, energy, and bone parameters in athletes with a view to increase the knowledge about clinical chemistry applied to sport and to stimulate studies in this field. In liver metabolism, the interpretation of serum aminotransferases concentration in athletes should consider the release of aspartate aminotransferase (AST) from muscle and of alanine aminotransferase (ALT) mainly from the liver, when bilirubin can be elevated because of continuous hemolysis, which is typical of exercise. Muscle metabolism parameters such as creatine kinase (CK) are typically increased after exercise. This parameter can be used to interpret the physiological release of CK from muscle, its altered release due to rhabdomyolysis, or incomplete recovery due to overreaching or trauma. Cardiac markers are released during exercise, and especially endurance training. Increases in these markers should not simply be interpreted as a signal of cardiac damage or wall stress but rather as a sign of regulation of myocardial adaptation. Renal function can be followed in athletes by measuring serum creatinine concentration, but it should be interpreted considering the athlete's body-mass index (BMI) and phase of the competitive season; use of cystatin C could be a reliable alternative to creatinine. Exercise and training induce adaptations in glucose metabolism which improve glucose utilization in athletes and are beneficial for reducing insulin insensitivity in nonathletes. Glucose metabolism differs slightly for different sports disciplines, as revealed in laboratory levels. Sport activities induce a blood lipid profile superior to that of sedentary subjects. There are few reports for a definitive conclusion, however. The differences between athletes and sedentary subjects are mainly due to high-density lipoprotein cholesterol (HDLC) concentrations in physically active individuals, although some differences among sport disciplines exist. The effect of sports on serum and urinary markers for bone metabolism is not univocal; further studies are needed to establish the real and effective influence of sport on bone turnover and especially to establish its beneficial effect.

  12. Persistent model order reduction for complex dynamical systems using smooth orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Ilbeigi, Shahab; Chelidze, David

    2017-11-01

    Full-scale complex dynamic models are not effective for parametric studies due to the inherent constraints on available computational power and storage resources. A persistent reduced order model (ROM) that is robust, stable, and provides high-fidelity simulations for a relatively wide range of parameters and operating conditions can provide a solution to this problem. The fidelity of a new framework for persistent model order reduction of large and complex dynamical systems is investigated. The framework is validated using several numerical examples including a large linear system and two complex nonlinear systems with material and geometrical nonlinearities. While the framework is used for identifying the robust subspaces obtained from both proper and smooth orthogonal decompositions (POD and SOD, respectively), the results show that SOD outperforms POD in terms of stability, accuracy, and robustness.

  13. Mapping the structural order of laser-induced periodic surface structures in thin polymer films by microfocus beam grazing incidence small-angle X-ray scattering.

    PubMed

    Martín-Fabiani, Ignacio; Rebollar, Esther; García-Gutiérrez, Mari Cruz; Rueda, Daniel R; Castillejo, Marta; Ezquerra, Tiberio A

    2015-02-11

    In this work we present an accurate mapping of the structural order of laser-induced periodic surface structures (LIPSS) in spin-coated thin polymer films, via a microfocus beam grazing incidence small-angle X-ray scattering (μGISAXS) scan, GISAXS modeling, and atomic force microscopy imaging all along the scanned area. This combined study has allowed the evaluation of the effects on LIPSS formation due to nonhomogeneous spatial distribution of the laser pulse energy, mapping with micrometric resolution the evolution of the period and degree of structural order of LIPSS across the laser beam diameter in a direction perpendicular to the polarization vector. The experiments presented go one step further toward controlling nanostructure formation in LIPSS through a deep understanding of the parameters that influence this process.

  14. A Parameter Subset Selection Algorithm for Mixed-Effects Models

    DOE PAGES

    Schmidt, Kathleen L.; Smith, Ralph C.

    2016-01-01

    Mixed-effects models are commonly used to statistically model phenomena that include attributes associated with a population or general underlying mechanism as well as effects specific to individuals or components of the general mechanism. This can include individual effects associated with data from multiple experiments. However, the parameterizations used to incorporate the population and individual effects are often unidentifiable in the sense that parameters are not uniquely specified by the data. As a result, the current literature focuses on model selection, by which insensitive parameters are fixed or removed from the model. Model selection methods that employ information criteria are applicablemore » to both linear and nonlinear mixed-effects models, but such techniques are limited in that they are computationally prohibitive for large problems due to the number of possible models that must be tested. To limit the scope of possible models for model selection via information criteria, we introduce a parameter subset selection (PSS) algorithm for mixed-effects models, which orders the parameters by their significance. In conclusion, we provide examples to verify the effectiveness of the PSS algorithm and to test the performance of mixed-effects model selection that makes use of parameter subset selection.« less

  15. An extended harmonic balance method based on incremental nonlinear control parameters

    NASA Astrophysics Data System (ADS)

    Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.

    2017-02-01

    A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.

  16. Single-chip microcomputer for image processing in the photonic measuring system

    NASA Astrophysics Data System (ADS)

    Smoleva, Olga S.; Ljul, Natalia Y.

    2002-04-01

    The non-contact measuring system has been designed for rail- track parameters control on the Moscow Metro. It detects some significant parameters: rail-track width, rail-track height, gage, rail-slums, crosslevel, pickets, and car speed. The system consists of three subsystems: non-contact system of rail-track width, height, and gage inspection, non-contact system of rail-slums inspection and subsystem for crosslevel, speed, and pickets detection. Data from subsystems is transferred to pre-processing unit. In order to process data received from subsystems, the single-chip signal processor ADSP-2185 must be used due to providing required processing speed. After data will be processed, it is send to PC, which processes it and outputs it in the readable form.

  17. Restoration of motion blurred images

    NASA Astrophysics Data System (ADS)

    Gaxiola, Leopoldo N.; Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.

    2017-08-01

    Image restoration is a classic problem in image processing. Image degradations can occur due to several reasons, for instance, imperfections of imaging systems, quantization errors, atmospheric turbulence, relative motion between camera or objects, among others. Motion blur is a typical degradation in dynamic imaging systems. In this work, we present a method to estimate the parameters of linear motion blur degradation from a captured blurred image. The proposed method is based on analyzing the frequency spectrum of a captured image in order to firstly estimate the degradation parameters, and then, to restore the image with a linear filter. The performance of the proposed method is evaluated by processing synthetic and real-life images. The obtained results are characterized in terms of accuracy of image restoration given by an objective criterion.

  18. The application of sensitivity analysis to models of large scale physiological systems

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1974-01-01

    A survey of the literature of sensitivity analysis as it applies to biological systems is reported as well as a brief development of sensitivity theory. A simple population model and a more complex thermoregulatory model illustrate the investigatory techniques and interpretation of parameter sensitivity analysis. The role of sensitivity analysis in validating and verifying models, and in identifying relative parameter influence in estimating errors in model behavior due to uncertainty in input data is presented. This analysis is valuable to the simulationist and the experimentalist in allocating resources for data collection. A method for reducing highly complex, nonlinear models to simple linear algebraic models that could be useful for making rapid, first order calculations of system behavior is presented.

  19. A surrogate accelerated multicanonical Monte Carlo method for uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Wu, Keyi; Li, Jinglai

    2016-09-01

    In this work we consider a class of uncertainty quantification problems where the system performance or reliability is characterized by a scalar parameter y. The performance parameter y is random due to the presence of various sources of uncertainty in the system, and our goal is to estimate the probability density function (PDF) of y. We propose to use the multicanonical Monte Carlo (MMC) method, a special type of adaptive importance sampling algorithms, to compute the PDF of interest. Moreover, we develop an adaptive algorithm to construct local Gaussian process surrogates to further accelerate the MMC iterations. With numerical examples we demonstrate that the proposed method can achieve several orders of magnitudes of speedup over the standard Monte Carlo methods.

  20. The absence of intraband scattering in a consistent theory of Gilbert damping in pure metallic ferromagnets.

    PubMed

    Edwards, D M

    2016-03-02

    Damping of magnetization dynamics in a ferromagnetic metal, arising from spin-orbit coupling, is usually characterised by the Gilbert parameter α. Recent calculations of this quantity, using a formula due to Kambersky, find that it is infinite for a perfect crystal owing to an intraband scattering term which is of third order in the spin-orbit parameter ξ. This surprising result conflicts with recent work by Costa and Muniz who study damping numerically by direct calculation of the dynamical transverse susceptibility in the presence of spin-orbit coupling. We resolve this inconsistency by following the approach of Costa and Muniz for a slightly simplified model where it is possible to calculate α analytically. We show that to second order in ξ one retrieves the Kambersky result for α, but to higher order one does not obtain any divergent intraband terms. The present work goes beyond that of Costa and Muniz by pointing out the necessity of including the effect of long-range Coulomb interaction in calculating damping for large ξ. A direct derivation of the Kambersky formula is given which shows clearly the restriction of its validity to second order in ξ so that no intraband scattering terms appear. This restriction has an important effect on the damping over a substantial range of impurity content and temperature. The experimental situation is discussed.

  1. Third-order nonlinear optical properties of organic azo dyes by using strength of nonlinearity parameter and Z-scan technique

    NASA Astrophysics Data System (ADS)

    Motiei, H.; Jafari, A.; Naderali, R.

    2017-02-01

    In this paper, two chemically synthesized organic azo dyes, 2-(2,5-Dichloro-phenyazo)-5,5-dimethyl-cyclohexane-1,3-dione (azo dye (i)) and 5,5-Dimethyl-2-tolylazo-cyclohexane-1,3-dione (azo dye (ii)), have been studied from optical Kerr nonlinearity point of view. These materials were characterized by Ultraviolet-visible spectroscopy. Experiments were performed using a continous wave diode-pumped laser at 532 nm wavelength in three intensities of the laser beam. Nonlinear absorption (β), refractive index (n2) and third-order susceptibility (χ (3)) of dyes, were calculated. Nonlinear absorption coefficient of dyes have been calculated from two methods; 1) using theoretical fits and experimental data in the Z-scan technique, 2) using the strength of nonlinearity curves. The values of β obtained from both of the methods were approximately the same. The results demonstrated that azo dye (ii) displays better nonlinearity and has a lower two-photon absorption threshold than azo dye (i). Calculated parameter related to strength of nonlinearity for azo dye (ii) was higher than azo dye (i), It may be due to presence of methyl in azo dye (ii) instead of chlorine in azo dye (i). Furthermore, The measured values of third order susceptibility of azo dyes were from the order of 10-9 esu . These azo dyes can be suitable candidate for optical switching devices.

  2. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-05-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  3. Bayesian Inference for the Stereotype Regression Model: Application to a Case-control Study of Prostate Cancer

    PubMed Central

    Ahn, Jaeil; Mukherjee, Bhramar; Banerjee, Mousumi; Cooney, Kathleen A.

    2011-01-01

    Summary The stereotype regression model for categorical outcomes, proposed by Anderson (1984) is nested between the baseline category logits and adjacent category logits model with proportional odds structure. The stereotype model is more parsimonious than the ordinary baseline-category (or multinomial logistic) model due to a product representation of the log odds-ratios in terms of a common parameter corresponding to each predictor and category specific scores. The model could be used for both ordered and unordered outcomes. For ordered outcomes, the stereotype model allows more flexibility than the popular proportional odds model in capturing highly subjective ordinal scaling which does not result from categorization of a single latent variable, but are inherently multidimensional in nature. As pointed out by Greenland (1994), an additional advantage of the stereotype model is that it provides unbiased and valid inference under outcome-stratified sampling as in case-control studies. In addition, for matched case-control studies, the stereotype model is amenable to classical conditional likelihood principle, whereas there is no reduction due to sufficiency under the proportional odds model. In spite of these attractive features, the model has been applied less, as there are issues with maximum likelihood estimation and likelihood based testing approaches due to non-linearity and lack of identifiability of the parameters. We present comprehensive Bayesian inference and model comparison procedure for this class of models as an alternative to the classical frequentist approach. We illustrate our methodology by analyzing data from The Flint Men’s Health Study, a case-control study of prostate cancer in African-American men aged 40 to 79 years. We use clinical staging of prostate cancer in terms of Tumors, Nodes and Metastatsis (TNM) as the categorical response of interest. PMID:19731262

  4. Spontaneous Division and Motility in Active Nematic Droplets

    NASA Astrophysics Data System (ADS)

    Giomi, Luca; DeSimone, Antonio

    2014-04-01

    We investigate the mechanics of an active droplet endowed with internal nematic order and surrounded by an isotropic Newtonian fluid. Using numerical simulations we demonstrate that, due to the interplay between the active stresses and the defective geometry of the nematic director, this system exhibits two of the fundamental functions of living cells: spontaneous division and motility, by means of self-generated hydrodynamic flows. These behaviors can be selectively activated by controlling a single physical parameter, namely, an active variant of the capillary number.

  5. The variations in eccentricity and apse precession rate of a narrow ring perturbed by a close satellite

    NASA Technical Reports Server (NTRS)

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1983-01-01

    The first-order perturbations of orbital eccentricity and apse precession rate for the case of a narrow ring, due to a close satellite whose orbit is also eccentric, are described by means of a Hamiltonian. The present treatment covers cases in which the satellite crosses the ring, and the level curves of the Hamiltonian are displayed for several parameter values. The results obtained are applied to the interaction of Saturn's F ring with its inner shepherd satellite.

  6. On butterfly effect in higher derivative gravities

    NASA Astrophysics Data System (ADS)

    Alishahiha, Mohsen; Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid

    2016-11-01

    We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.

  7. Reply to "Comment on `Optical Imaging of Light-Induced Thermopower in Semiconductors'"

    NASA Astrophysics Data System (ADS)

    Gibelli, François; Lombez, Laurent; Rodière, Jean; Guillemoles, Jean-François

    2018-05-01

    In a Comment [1] on our previously published article [2], Apertet stated, "The definition of the thermopower given in that article seems erroneous due to a confusion between the different physical quantities needed to derive this parameter." We believe some definitions need to be clarified in order to avoid confusion. We here intend to answer the questions of Apertet by detailing the method and by focusing on the definition of the quantities that we optically measured.

  8. Nuclear relaxation rate in layered superconductors with unconventional pairing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maleyev, S.V.; Yashenkin, A.G.; Aristov, D.N.

    1994-11-01

    The cubic temperature dependence of the nuclear relaxation rate (NRR) in layered superconductors with the order parameter having zeros at the Fermi surface (FS) is found to be universal under quite general conditions. The coefficient in the quasi-Korringa term for the NRR appearing at low temperatures due to impurity scattering is estimated. It is shown that an anisotropy of the gap function over the FS leads to the disappearance of the Hebel-Slichter coherence peak close to [ital T][sub [ital c

  9. Developing strategies for predicting hyperkalemia in potassium-increasing drug-drug interactions.

    PubMed

    Eschmann, Emmanuel; Beeler, Patrick Emanuel; Schneemann, Markus; Blaser, Jürg

    2017-01-01

    To compare different strategies predicting hyperkalemia (serum potassium level ≥5.5 mEq/l) in hospitalized patients for whom medications triggering potassium-increasing drug-drug interactions (DDIs) were ordered. We investigated 5 strategies that combined prediction triggered at onset of DDI versus continuous monitoring and taking into account an increasing number of patient parameters. The considered patient parameters were identified using generalized additive models, and the thresholds of the prediction strategies were calculated by applying Youden's J statistic to receiver operation characteristic curves. Half of the data served as the calibration set, half as the validation set. We identified 132 incidences of hyperkalemia induced by 8413 potentially severe potassium-increasing DDIs among 76 467 patients. The positive predictive value (PPV) of those strategies predicting hyperkalemia at the onset of DDI ranged from 1.79% (undifferentiated anticipation of hyperkalemia due to the DDI) to 3.02% (additionally considering the baseline serum potassium) and 3.10% (including further patient parameters). Continuous monitoring significantly increased the PPV to 8.25% (considering the current serum potassium) and 9.34% (additional patient parameters). Continuous monitoring of the risk for hyperkalemia based on current potassium level shows a better predictive power than predictions triggered at the onset of DDI. This contrasts with efforts to improve DDI alerts by taking into account more patient parameters at the time of ordering. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera.

    PubMed

    Yoshida, Keiichiro; Nishidate, Izumi; Ishizuka, Tomohiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-05-01

    In order to estimate multispectral images of the absorption and scattering properties in the cerebral cortex of in vivo rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital RGB camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentrations of oxygenated hemoglobin and that of deoxygenated hemoglobin were estimated as the absorption parameters, whereas the coefficient a and the exponent b of the reduced scattering coefficient spectrum approximated by a power law function were estimated as the scattering parameters. The spectra of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters, and the spectral images of absorption and reduced scattering coefficients were then estimated. In order to confirm the feasibility of this method, we performed in vivo experiments on exposed rat brain. The estimated images of the absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. The changes in the estimated absorption and scattering parameters during normoxia, hyperoxia, and anoxia indicate the potential applicability of the method by which to evaluate the pathophysiological conditions of in vivo brain due to the loss of tissue viability.

  11. Study on the mapping of dark matter clustering from real space to redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown inmore » this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.« less

  12. Forecasting the mortality rates of Malaysian population using Heligman-Pollard model

    NASA Astrophysics Data System (ADS)

    Ibrahim, Rose Irnawaty; Mohd, Razak; Ngataman, Nuraini; Abrisam, Wan Nur Azifah Wan Mohd

    2017-08-01

    Actuaries, demographers and other professionals have always been aware of the critical importance of mortality forecasting due to declining trend of mortality and continuous increases in life expectancy. Heligman-Pollard model was introduced in 1980 and has been widely used by researchers in modelling and forecasting future mortality. This paper aims to estimate an eight-parameter model based on Heligman and Pollard's law of mortality. Since the model involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 7.0 (MATLAB 7.0) software will be used in order to estimate the parameters. Statistical Package for the Social Sciences (SPSS) will be applied to forecast all the parameters according to Autoregressive Integrated Moving Average (ARIMA). The empirical data sets of Malaysian population for period of 1981 to 2015 for both genders will be considered, which the period of 1981 to 2010 will be used as "training set" and the period of 2011 to 2015 as "testing set". In order to investigate the accuracy of the estimation, the forecast results will be compared against actual data of mortality rates. The result shows that Heligman-Pollard model fit well for male population at all ages while the model seems to underestimate the mortality rates for female population at the older ages.

  13. Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram.

    PubMed

    Dafilis, Mathew P; Frascoli, Federico; Cadusch, Peter J; Liley, David T J

    2013-06-01

    The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.

  14. Degradation kinetics of peroxidase enzyme, phenolic content, and physical and sensorial characteristics in broccoli (Brassica oleracea L. ssp. Italica) during blanching.

    PubMed

    Gonçalves, Elsa M; Pinheiro, Joaquina; Alegria, Carla; Abreu, Marta; Brandão, Teresa R S; Silva, Cristina L M

    2009-06-24

    The effects of water blanching treatment on peroxidase inactivation, total phenolic content, color parameters [-a*/b* and hue (h degrees*)], texture (maximum shear force), and sensory attributes (color and texture, evaluated by a trained panel) of broccoli (Brassica oleracea L. ssp. Italica) were studied at five temperatures (70, 75, 80, 85, and 90 degrees C). Experimental results showed that all studied broccoli quality parameters suffered significative changes due to blanching treatments. The vegetal total phenolic content showed a marked decline. Degradation on objective color and texture measurements and alterations in sensorial attributes were detected. Correlations between sensory and instrumental measurements have been found. Under the conditions 70 degrees C and 6.5 min or 90 degrees C and 0.4 min, 90% of the initial peroxidase activity was reduced. At these conditions, no significant alterations were detected by panelists, and a small amount of phenolic content was lost (ca. 16 and 10%, respectively). The peroxidase inactivation and phenolic content degradation were found to follow first-order reaction models. The zero-order reaction model showed a good fit to the broccoli color (-a*/b* and h degrees*), texture, and sensory parameters changes. The temperature effect was well-described by the Arrhenius law.

  15. A Boussinesq-scaled, pressure-Poisson water wave model

    NASA Astrophysics Data System (ADS)

    Donahue, Aaron S.; Zhang, Yao; Kennedy, Andrew B.; Westerink, Joannes J.; Panda, Nishant; Dawson, Clint

    2015-02-01

    Through the use of Boussinesq scaling we develop and test a model for resolving non-hydrostatic pressure profiles in nonlinear wave systems over varying bathymetry. A Green-Nagdhi type polynomial expansion is used to resolve the pressure profile along the vertical axis, this is then inserted into the pressure-Poisson equation, retaining terms up to a prescribed order and solved using a weighted residual approach. The model shows rapid convergence properties with increasing order of polynomial expansion which can be greatly improved through the application of asymptotic rearrangement. Models of Boussinesq scaling of the fully nonlinear O (μ2) and weakly nonlinear O (μN) are presented, the analytical and numerical properties of O (μ2) and O (μ4) models are discussed. Optimal basis functions in the Green-Nagdhi expansion are determined through manipulation of the free-parameters which arise due to the Boussinesq scaling. The optimal O (μ2) model has dispersion accuracy equivalent to a Padé [2,2] approximation with one extra free-parameter. The optimal O (μ4) model obtains dispersion accuracy equivalent to a Padé [4,4] approximation with two free-parameters which can be used to optimize shoaling or nonlinear properties. In comparison to experimental results the O (μ4) model shows excellent agreement to experimental data.

  16. On the analysis of very small samples of Gaussian repeated measurements: an alternative approach.

    PubMed

    Westgate, Philip M; Burchett, Woodrow W

    2017-03-15

    The analysis of very small samples of Gaussian repeated measurements can be challenging. First, due to a very small number of independent subjects contributing outcomes over time, statistical power can be quite small. Second, nuisance covariance parameters must be appropriately accounted for in the analysis in order to maintain the nominal test size. However, available statistical strategies that ensure valid statistical inference may lack power, whereas more powerful methods may have the potential for inflated test sizes. Therefore, we explore an alternative approach to the analysis of very small samples of Gaussian repeated measurements, with the goal of maintaining valid inference while also improving statistical power relative to other valid methods. This approach uses generalized estimating equations with a bias-corrected empirical covariance matrix that accounts for all small-sample aspects of nuisance correlation parameter estimation in order to maintain valid inference. Furthermore, the approach utilizes correlation selection strategies with the goal of choosing the working structure that will result in the greatest power. In our study, we show that when accurate modeling of the nuisance correlation structure impacts the efficiency of regression parameter estimation, this method can improve power relative to existing methods that yield valid inference. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Influence of hopping self-energy effects and quasiparticle degradation on the antiferromagnetic ordering in the bilayer honeycomb Hubbard model

    NASA Astrophysics Data System (ADS)

    Honerkamp, Carsten

    2017-12-01

    We study the Hubbard model on the AB-stacked bilayer honeycomb lattice with a repulsive on-site interaction U in second-order perturbation theory and in self-consistent random phase approximation. We determine the changes in the antiferromagnetic magnetic ordering tendencies due to the real and imaginary parts of the self-energy at the band crossing points. In particular, we present an estimate for the threshold value U* below which the magnetic order is endangered by the splitting of the quadratic band touching points into four Dirac points by an interaction-induced interlayer skew hopping. For most of the parameter space, however, the quasiparticle degradation by the frequency-dependence of the sublattice-diagonal self-energies and the Dirac-cone steepening are more essential for suppressing the AF ordering tendencies considerably. Our results might help to understand the energy scales obtained in renormalization group treatments of the same model and shed light on recent quantum Monte Carlo investigations about the fate of the magnetic ordering down to lower U .

  18. A new approach to determine the capture conditions of bark beetles in pheromone-baited traps

    PubMed Central

    Ozcan, Gonca Ece; Cicek, Osman; Enez, Korhan; Yildiz, Mustafa

    2014-01-01

    Forests form an organic unity with a great number of organic and inorganic components and tend to maintain the sustainability of their existing balance. However, some factors which adversely affect the balance of nature may interrupt this sustainability. The epidemic which is formed by bark beetles in their spreading region, due to various factors, changes the stability so much that interference is required. One of the most common methods used to monitor these beetles is pheromone-baited traps. The recognition of parameters, such as date (day/month/year), temperature and humidity, when bark beetles are captured in pheromone-baited traps, especially those used for monitoring will help to increase the trap efficiency on land and to develop an effective strategy for combating pests. In this study, an electronic control unit was added to pheromone-baited traps in order to obtain all of the above mentioned parameters. This unit operates with microcontrollers and data related to the parameters is saved in a storage unit. This is triggered by the beetle at the moment it is captured in the trap. A photovoltaic system was used to meet the energy needed for the system functioning and to complete the counting process in due time. PMID:26019592

  19. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Licatta, Angelo; Griffin, Devon

    2007-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  20. Predicting temperature drop rate of mass concrete during an initial cooling period using genetic programming

    NASA Astrophysics Data System (ADS)

    Bhattarai, Santosh; Zhou, Yihong; Zhao, Chunju; Zhou, Huawei

    2018-02-01

    Thermal cracking on concrete dams depends upon the rate at which the concrete is cooled (temperature drop rate per day) within an initial cooling period during the construction phase. Thus, in order to control the thermal cracking of such structure, temperature development due to heat of hydration of cement should be dropped at suitable rate. In this study, an attempt have been made to formulate the relation between cooling rate of mass concrete with passage of time (age of concrete) and water cooling parameters: flow rate and inlet temperature of cooling water. Data measured at summer season (April-August from 2009 to 2012) from recently constructed high concrete dam were used to derive a prediction model with the help of Genetic Programming (GP) software “Eureqa”. Coefficient of Determination (R) and Mean Square Error (MSE) were used to evaluate the performance of the model. The value of R and MSE is 0.8855 and 0.002961 respectively. Sensitivity analysis was performed to evaluate the relative impact on the target parameter due to input parameters. Further, testing the proposed model with an independent dataset those not included during analysis, results obtained from the proposed GP model are close enough to the real field data.

  1. Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network.

    PubMed

    Şimşir, Mehmet; Bayır, Raif; Uyaroğlu, Yılmaz

    2016-01-01

    Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured.

  2. Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network

    PubMed Central

    Şimşir, Mehmet; Bayır, Raif; Uyaroğlu, Yılmaz

    2016-01-01

    Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured. PMID:26819590

  3. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon

    2008-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  4. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Order parameters and synchronization of FitzHugh-Nagumo small-world networks

    NASA Astrophysics Data System (ADS)

    Li, Yan-Long; Ma, Jun; Zhang, Wei; Liu, Yan-Jun

    2009-10-01

    This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g.

  5. GGOS and the EOP - the key role of SLR for a stable estimation of highly accurate Earth orientation parameters

    NASA Astrophysics Data System (ADS)

    Bloßfeld, Mathis; Panzetta, Francesca; Müller, Horst; Gerstl, Michael

    2016-04-01

    The GGOS vision is to integrate geometric and gravimetric observation techniques to estimate consistent geodetic-geophysical parameters. In order to reach this goal, the common estimation of station coordinates, Stokes coefficients and Earth Orientation Parameters (EOP) is necessary. Satellite Laser Ranging (SLR) provides the ability to study correlations between the different parameter groups since the observed satellite orbit dynamics are sensitive to the above mentioned geodetic parameters. To decrease the correlations, SLR observations to multiple satellites have to be combined. In this paper, we compare the estimated EOP of (i) single satellite SLR solutions and (ii) multi-satellite SLR solutions. Therefore, we jointly estimate station coordinates, EOP, Stokes coefficients and orbit parameters using different satellite constellations. A special focus in this investigation is put on the de-correlation of different geodetic parameter groups due to the combination of SLR observations. Besides SLR observations to spherical satellites (commonly used), we discuss the impact of SLR observations to non-spherical satellites such as, e.g., the JASON-2 satellite. The goal of this study is to discuss the existing parameter interactions and to present a strategy how to obtain reliable estimates of station coordinates, EOP, orbit parameter and Stokes coefficients in one common adjustment. Thereby, the benefits of a multi-satellite SLR solution are evaluated.

  6. Effects of temperature and electric field on order parameters in ferroelectric hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Yang, K. L.; Jia, P.; Lin, H. L.; Li, C. F.; Lin, L.; Yan, Z. B.; Liu, J.-M.

    2018-03-01

    In Landau-Devonshire phase transition theory, the order parameter represents a unique property for a disorder-order transition at the critical temperature. Nevertheless, for a phase transition with more than one order parameter, such behaviors can be quite different and system-dependent in many cases. In this work, we investigate the temperature (T) and electric field (E) dependence of the two order parameters in improper ferroelectric hexagonal manganites, addressing the phase transition from the high-symmetry P63/mmc structure to the polar P63cm structure. It is revealed that the trimerization as the primary order parameter with two components: the trimerization amplitude Q and phase Φ, and the spontaneous polarization P emerging as the secondary order parameter exhibit quite different stability behaviors against various T and E. The critical exponents for the two parameters Q and P are 1/2 and 3/2, respectively. As temperature increases, the window for the electric field E enduring the trimerization state will shrink. An electric field will break the Z2 part of the Z2×Z3 symmetry. The present work may shed light on the complexity of the vortex-antivortex domain structure evolution near the phase transition temperature.

  7. Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium

    NASA Astrophysics Data System (ADS)

    Mohd Zin, Nor Athirah; Khan, Ilyas; Shafie, Sharidan; Alshomrani, Ali Saleh

    In this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD) free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs) are dispersed in the Kerosene Oil (KO) which is chosen as conventional base fluid. Appropriate dimensionless variables are used and the system of equations is transformed into dimensionless form. The resulting problem is solved using the Laplace transform technique. The impact of pertinent parameters including volume fraction φ , material parameters of Jeffrey fluid λ1 , λ , rotation parameter r , Hartmann number Ha , permeability parameter K , Grashof number Gr , Prandtl number Pr , radiation parameter Rd and dimensionless time t on velocity and temperature profiles are presented graphically with comprehensive discussions. It is observed that, the rotation parameter, due to the Coriolis force, tends to decrease the primary velocity but reverse effect is observed in the secondary velocity. It is also observed that, the Lorentz force retards the fluid flow for both primary and secondary velocities. The expressions for skin friction and Nusselt number are also evaluated for different values of emerging parameters. A comparative study with the existing published work is provided in order to verify the present results. An excellent agreement is found.

  8. Determination of Solubility Parameters of Ibuprofen and Ibuprofen Lysinate.

    PubMed

    Kitak, Teja; Dumičić, Aleksandra; Planinšek, Odon; Šibanc, Rok; Srčič, Stanko

    2015-12-03

    In recent years there has been a growing interest in formulating solid dispersions, which purposes mainly include solubility enhancement, sustained drug release and taste masking. The most notable problem by these dispersions is drug-carrier (in)solubility. Here we focus on solubility parameters as a tool for predicting the solubility of a drug in certain carriers. Solubility parameters were determined in two different ways: solely by using calculation methods, and by experimental approaches. Six different calculation methods were applied in order to calculate the solubility parameters of the drug ibuprofen and several excipients. However, we were not able to do so in the case of ibuprofen lysinate, as calculation models for salts are still not defined. Therefore, the extended Hansen's approach and inverse gas chromatography (IGC) were used for evaluating of solubility parameters for ibuprofen lysinate. The obtained values of the total solubility parameter did not differ much between the two methods: by the extended Hansen's approach it was δt = 31.15 MPa(0.5) and with IGC it was δt = 35.17 MPa(0.5). However, the values of partial solubility parameters, i.e., δd, δp and δh, did differ from each other, what might be due to the complex behaviour of a salt in the presence of various solvents.

  9. Adaptive tracking for complex systems using reduced-order models

    NASA Technical Reports Server (NTRS)

    Carnigan, Craig R.

    1990-01-01

    Reduced-order models are considered in the context of parameter adaptive controllers for tracking workspace trajectories. A dual-arm manipulation task is used to illustrate the methodology and provide simulation results. A parameter adaptive controller is designed to track a payload trajectory using a four-parameter model instead of the full-order, nine-parameter model. Several simulations with different payload-to-arm mass ratios are used to illustrate the capabilities of the reduced-order model in tracking the desired trajectory.

  10. Adaptive tracking for complex systems using reduced-order models

    NASA Technical Reports Server (NTRS)

    Carignan, Craig R.

    1990-01-01

    Reduced-order models are considered in the context of parameter adaptive controllers for tracking workspace trajectories. A dual-arm manipulation task is used to illustrate the methodology and provide simulation results. A parameter adaptive controller is designed to track the desired position trajectory of a payload using a four-parameter model instead of a full-order, nine-parameter model. Several simulations with different payload-to-arm mass ratios are used to illustrate the capabilities of the reduced-order model in tracking the desired trajectory.

  11. Improved photoluminescence characteristics of order-disorder AlGaInP quantum wells at room and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Kunal; Fitzgerald, Eugene A.; Deotare, Parag B.

    2015-04-06

    A set of nominally undoped CuPt-B type ordered (Al{sub x}Ga{sub 1−x}){sub 0.5}In{sub 0.5}P quantum-wells with disordered (Al{sub 0.7}Ga{sub 0.3}){sub 0.5}In{sub 0.5}P barriers were grown and characterized using transmission electron microscopy and photoluminescence spectroscopy. Such structures are potentially beneficial for light emitting devices due to the possibility of greater carrier confinement, reduced scattering into the indirect valleys, and band-offset adjustment beyond what is possible with strain and composition. Furthermore, the possibility of independently tuning the composition and the order-parameter of the quantum-well allows for the decoupling of the carrier confinement and the aluminum content and aids in the identification of carriermore » loss mechanisms. In this study, sharp order-disorder interfaces were achieved via the control of growth temperature between 650 °C and 750 °C using growth pauses. Improved high-temperature (400 K) photoluminescence intensity was obtained from quantum-wells with ordered Ga{sub 0.5}In{sub 0.5}P as compared to disordered Ga{sub 0.5}In{sub 0.5}P due to greater confinement. Additionally, in the ordered samples with a higher Al/Ga ratio to counter the band-gap reduction, the photoluminescence intensity at high temperature was as bright as that from conventional disordered heterostructures and had slightly improved wavelength stability. Room-temperature time-resolved luminescence measurements indicated a longer radiative lifetime in the ordered quantum-well with reduced scattering into the barrier. These results show that in samples of good material quality, the property controlling the luminescence intensity is the carrier confinement and not the presence of ordering or the aluminum content.« less

  12. Order parameter analysis of synchronization transitions on star networks

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bin; Sun, Yu-Ting; Gao, Jian; Xu, Can; Zheng, Zhi-Gang

    2017-12-01

    The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe-Strogatz transformation, Ott-Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.

  13. Introducing uncertainty analysis of nucleation and crystal growth models in Process Analytical Technology (PAT) system design of crystallization processes.

    PubMed

    Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul

    2013-11-01

    This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  15. Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan

    NASA Astrophysics Data System (ADS)

    Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz

    2017-03-01

    Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.

  16. The Simple Lamb Wave Analysis to Characterize Concrete Wide Beams by the Practical MASW Test

    PubMed Central

    Lee, Young Hak; Oh, Taekeun

    2016-01-01

    In recent years, the Lamb wave analysis by the multi-channel analysis of surface waves (MASW) for concrete structures has been an effective nondestructive evaluation, such as the condition assessment and dimension identification by the elastic wave velocities and their reflections from boundaries. This study proposes an effective Lamb wave analysis by the practical application of MASW to concrete wide beams in an easy and simple manner in order to identify the dimension and elastic wave velocity (R-wave) for the condition assessment (e.g., the estimation of elastic properties). This is done by identifying the zero-order antisymmetric (A0) and first-order symmetric (S1) modes among multimodal Lamb waves. The MASW data were collected on eight concrete wide beams and compared to the actual depth and to the pressure (P-) wave velocities collected for the same specimen. Information is extracted from multimodal Lamb wave dispersion curves to obtain the elastic stiffness parameters and the thickness of the concrete structures. Due to the simple and cost-effective procedure associated with the MASW processing technique, the characteristics of several fundamental modes in the experimental Lamb wave dispersion curves could be measured. Available reference data are in good agreement with the parameters that were determined by our analysis scheme. PMID:28773562

  17. Universalities of thermodynamic signatures in topological phases

    PubMed Central

    Kempkes, S. N.; Quelle, A.; Smith, C. Morais

    2016-01-01

    Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter. PMID:27929041

  18. Universalities of thermodynamic signatures in topological phases.

    PubMed

    Kempkes, S N; Quelle, A; Smith, C Morais

    2016-12-08

    Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter.

  19. Are non-linearity effects of absorption important for MAX-DOAS observations?

    NASA Astrophysics Data System (ADS)

    Pukite, Janis; Wang, Yang; Wagner, Thomas

    2017-04-01

    For scattered light observations the absorption optical depth depends non-linearly on the trace gas concentrations if their absorption is strong. This is the case because the Beer-Lambert law is generally not applicable for scattered light measurements due to many (i.e. more than one) light paths contributing to the measurement. While in many cases a linear approximation can be made, for scenarios with strong absorption non-linear effects cannot always be neglected. This is especially the case for observation geometries with spatially extended and diffuse light paths, especially in satellite limb geometry but also for nadir measurements as well. Fortunately the effects of non-linear effects can be quantified by means of expanding the radiative transfer equation in a Taylor series with respect to the trace gas absorption coefficients. Herewith if necessary (1) the higher order absorption structures can be described as separate fit parameters in the DOAS fit and (2) the algorithm constraints of retrievals of VCDs and profiles can be improved by considering higher order sensitivity parameters. In this study we investigate the contribution of the higher order absorption structures for MAX-DOAS observation geometry for different atmospheric and ground properties (cloud and aerosol effects, trace gas amount, albedo) and geometry (different Sun and viewing angles).

  20. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation

    NASA Astrophysics Data System (ADS)

    Ragupathy, S.; Raghu, K.; Prabu, P.

    2015-03-01

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models.

  1. Estimation of genetic parameters related to eggshell strength using random regression models.

    PubMed

    Guo, J; Ma, M; Qu, L; Shen, M; Dou, T; Wang, K

    2015-01-01

    This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen's laying life using random regression. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.

  2. Single Spin Superconductivity: Bulk and Junction Effects

    NASA Astrophysics Data System (ADS)

    Rudd, Robert E.; Pickett, Warren E.

    1998-03-01

    The Josephson Effect provides a primary signature of single spin superconductivity (SSS), the as yet unobserved superconducting state which was proposed recently(W.E. Pickett, Phys. Rev. Lett. 77), 3185 (1996). as a low temperature phase of half-metallic antiferromagnets.(W.E. Pickett, ``Spin Density Functional Based Search for Half-Metallic Antiferromagnets,'' cond-mat/9709100 (1997).) These materials are insulating in the spin-down channel but are metallic in the spin-up channel. The SSS state is characterized by a unique form of p-wave pairing within a single spin channel.(R.E. Rudd and W.E. Pickett, ``Single Spin Superconductivity:Formulation and Ginzburg-Landau Theory,'' Phys. Rev. B. in press) We develop the theory of a rich variety of Josephson effects that arise due to the form of the SSS order parameter. Tunneling is allowed at a SSS-SSS^' junction depending on the relative orientation of each of their order parameters (SSS and HM AFM). No current flows between an SSS and an s-wave BCS system, which provides a powerful method to distinguish SSS from other superconducting states.

  3. Experiments in free shear flows: Status and needs for the future

    NASA Technical Reports Server (NTRS)

    Kline, S. J.; Coles, D. E.; Eggers, J. M.; Harsha, P. T.

    1973-01-01

    Experiments in free turbulent flows are recommended with the primary concern placed on classical flows in order to augment understanding and for model building. Five classes of experiments dealing with classical free turbulent flows are outlined and proposed as being of particular significance for the near future. These classes include the following: (1) Experiments clarifying the effect of density variation owing to use of different gases, with and without the additional effect of density variation due to high Mach number or other effects; (2) experiments clarifying the role and importance of various parameters which determine the behavior of the near field as well as the condictions under which any of these parameters can be neglected; (3) experiments determining the cumulative effect of initial conditions in terms of distance to fully established flow; (4) experiments for cases where two layers of distinctly different initial turbulence structure flow side by side at the same mean speed; and (5) experiment using contemporary experimental techniques to study structure in free turbulent shear flows in order to compliment and support contemporary work on boundary layers.

  4. Study of the s - s bar asymmetry in the proton

    NASA Astrophysics Data System (ADS)

    Goharipour, Muhammad

    2018-05-01

    The study of s - s bar asymmetry is essential to better understand of the structure of nucleon and also the perturbative and nonperturbative mechanisms for sea quark generation. Actually, the nature and dynamical origins of this asymmetry have always been an interesting subject to research both experimentally and theoretically. One of the most powerful models can lead to s - s bar asymmetry is the meson-baryon model (MBM). In this work, using a simplified configuration of this model suggested by Pumplin, we calculate the s - s bar asymmetry for different values of cutoff parameter Λ, to study the dependence of model to this parameter and also to estimate the theoretical uncertainty imposed on the results due to its uncertainty. Then, we study the evolution of distributions obtained both at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) using different evolution schemes. It is shown that the evolution of the intrinsic quark distributions from a low initial scale, as suggested by Chang and Pang, is not a good choice at NNLO using variable flavor number scheme (VFNS).

  5. Uncertainty Analysis of Instrument Calibration and Application

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.

  6. Transition metal substitutions for Cu in BSCCO: An instructive probe of high temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Schneider, Clinton W.

    1998-12-01

    Single crystals of the high temperature superconductor Bisb2Srsb2Casb1(Cusb{1-x}Msb{x})sb2)Osb{8+delta} have been grown for M = Zn, Ni, Co, Fe, and Pd in order to probe the effect of transition metal impurities on superconducting properties. Samples have been characterized by XRD, electron microprobe, and transport measurements. Measurement of resistance is used to determine the depression of Tsb{c} due to the impurities. We determine a value dTsb{c}/dx = -7.8K/at/for all substituents, independent of magnetic moment. Considered in terms of the Abrikosov-Gorkov theory for impurity scattering in superconductors, this result agrees with a d-wave order parameter and strong coupling.

  7. The influence of hepatic transport on the distribution volumes and mean residence time of drug in the body and the accuracy of estimating these parameters by the traditional pharmacokinetic calculations.

    PubMed

    Berezhkovskiy, Leonid M

    2011-11-01

    The influence of hepatic uptake and efflux, which includes passive diffusion and transporter-mediated component, on drug distribution volumes [steady-state volume of distribution (V(ss)) and terminal volume of distribution (V(β))], mean residence time (MRT), clearance, and terminal half-life is considered using a simplified physiologically based pharmacokinetic model. To account for hepatic uptake, liver is treated as two-compartmental unit with drug transfer from extracellular water into hepatocytes. The exactly calculated distribution volumes and MRT are compared with that obtained by the traditional equations based on the assumption of central elimination. It was found that V(ss) may increase more than 10-fold and V(β) more than 100-fold due to the contribution of transporter-mediated uptake. The terminal half-life may be substantially shortened (more than 100-fold) due to transporters. It may also decrease significantly due to the increase of intrinsic hepatic clearance (CL(int)), whereas hepatic clearance has already reached saturation (and stays close to the possible maximum value). It is shown that in case of transporter-mediated uptake of compound into hepatocytes, in the absence of efflux and passive diffusion (unidirectional uptake), hepatic clearance is independent of CL(int) and is determined by hepatic blood flow and uptake rate constant. The effects of transporter-mediated uptake are mostly pronounced for hydrophilic acidic compounds and moderately lipophilic neutral compounds. For basic compounds and lipophilic neutral compounds the change of distribution volumes due to transporters is rather unlikely. It was found that the traditional equations provide very accurate values of V(ss), V(β), and MRT in the absence of transporter action even for very low rates of passive diffusion. On the other hand, the traditional equations fail to provide the correct values of these parameters when the increase of distribution volumes due to transporters takes place, and actually yield the values substantially smaller than the true ones (up to an order of magnitude for V(ss) and MRT, and three orders of magnitude for V(β)). Copyright © 2011 Wiley-Liss, Inc.

  8. Superlattice-induced minigaps in graphene band structure due to underlying one-dimensional nanostructuration

    NASA Astrophysics Data System (ADS)

    Celis, A.; Nair, M. N.; Sicot, M.; Nicolas, F.; Kubsky, S.; Malterre, D.; Taleb-Ibrahimi, A.; Tejeda, A.

    2018-05-01

    We have studied the influence of one-dimensional periodic nanostructured substrates on graphene band structure. One-monolayer-thick graphene is extremely sensitive to periodic terrace arrays, as demonstrated on two different nanostructured substrates, namely Ir(332) and multivicinal curved Pt(111). Photoemission shows the presence of minigaps related to the spatial periodicity. The potential barrier strength of the one-dimensional periodic nanostructuration can be tailored with the step-edge type and the nature of the substrate. The minigap opening further demonstrates the presence of backward scattered electronic waves on the surface and the absence of Klein tunneling on the substrate, probably due to the fast variation of the potential, of a spatial extent of the order of the lattice parameter of graphene.

  9. Progress in ethanol production from corn kernel by applying cooking pre-treatment.

    PubMed

    Voca, Neven; Varga, Boris; Kricka, Tajana; Curic, Duska; Jurisic, Vanja; Matin, Ana

    2009-05-01

    In order to improve technological properties of corn kernel for ethanol production, samples were treated with a hydrothermal pre-treatment of cooking (steaming), prior to drying. Two types of cooking process parameters were applied; steam pressure of 0.5 bars during a 10 min period, and steam pressure of 1.5 bars during a 30 min period. Afterwards, samples were dried at four different temperatures, 70, 90, 110 and 130 degrees C. Control sample was also submitted to the aforementioned drying parameters. Since the results showed that starch utilization, due to the gelatinization process, was considerably higher in the samples pre-treated before the ethanol production process, it was found that the cooking treatment had a positive effect on ethanol yield from corn kernel. Therefore, the highest ethanol yield was found in the corn kernel samples cooked for 30 min at steam pressure 1.5 bars and dried at 130 degrees C. Due to the similarity of processes used for starch fermentation, introduction of cooking pre-treatment will not significantly increase the overall ethanol production costs, whereas it will result in significantly higher ethanol yield.

  10. Zero-range effective field theory for resonant wino dark matter. Part III. Annihilation effects

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Johnson, Evan; Zhang, Hong

    2018-05-01

    Near a critical value of the wino mass where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold, low-energy winos can be described by a zero-range effective field theory (ZREFT) in which the winos interact nonperturbatively through a contact interaction and through Coulomb interactions. The effects of wino-pair annihilation into electroweak gauge bosons are taken into account through the analytic continuation of the real parameters for the contact interaction to complex values. The parameters of ZREFT can be determined by matching wino-wino scattering amplitudes calculated by solving the Schrödinger equation for winos interacting through a real potential due to the exchange of electroweak gauge bosons and an imaginary potential due to wino-pair annihilation into electroweak gauge bosons. ZREFT at leading order gives an accurate analytic description of low-energy wino-wino scattering, inclusive wino-pair annihilation, and a wino-pair bound state. ZREFT can also be applied to partial annihilation rates, such as the Sommerfeld enhancement of the annihilation rate of wino pairs into monochromatic photons.

  11. Theory of Intrinsic Spin Torque Due to Interface Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Kalitsov, Alan; Chshiev, Mairbek; Butler, William; Mryasov, Oleg

    2014-03-01

    The effect of intrinsic spin torque due to spin-orbit coupling (SOC) at the interface between thin ferromagnetic film and non-magnetic metal has attracted significant fundamental and applied research interest. We report quantum theory of SOC driven spin torque (SOT) within the Rashba model of SOC and two-band tight binding (TB) Hamiltonian including s-d exchange interactions (J). We employ the non-equilibrium Green Function formalism and find that SOT to the first order in SOC has symmetry consistent with the earlier quasi-classical diffusive theory. An obvious benefit of the proposed approach is the expression for the SOT given in terms of TB parameters which enables a physically transparent analysis of the dependencies of SOT on material specific parameters such as Rashba SOC constant, hopping integral, Fermi level and J. On the basis of analytical and numerical results we discuss trends in strength of SOT and its correlation with the Spin Hall conductivity. This work was supported in part by C-SPIN, STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  12. Schwarzschild black hole encircled by a rotating thin disc: Properties of perturbative solution

    NASA Astrophysics Data System (ADS)

    Kotlařík, P.; Semerák, O.; Čížek, P.

    2018-04-01

    Will [Astrophys. J. 191, 521 (1974), 10.1086/152992] solved the perturbation of a Schwarzschild black hole due to a slowly rotating light concentric thin ring, using Green's functions expressed as infinite-sum expansions in multipoles and in the small mass and rotational parameters. In a previous paper [P. Čížek and O. Semerák, Astrophys. J. Suppl. Ser. 232, 14 (2017), 10.3847/1538-4365/aa876b], we expressed the Green functions in closed form containing elliptic integrals, leaving just summation over the mass expansion. Such a form is more practical for numerical evaluation, but mainly for generalizing the problem to extended sources where the Green functions have to be integrated over the source. We exemplified the method by computing explicitly the first-order perturbation due to a slowly rotating thin disc lying between two finite radii. After finding basic parameters of the system—mass and angular momentum of the black hole and of the disc—we now add further properties, namely those which reveal how the disc gravity influences geometry of the black-hole horizon and those of circular equatorial geodesics (specifically, radii of the photon, marginally bound and marginally stable orbits). We also realize that, in the linear order, no ergosphere occurs and the central singularity remains pointlike, and check the implications of natural physical requirements (energy conditions and subluminal restriction on orbital speed) for the single-stream as well as counter-rotating double-stream interpretations of the disc.

  13. Are Quantum Models for Order Effects Quantum?

    NASA Astrophysics Data System (ADS)

    Moreira, Catarina; Wichert, Andreas

    2017-12-01

    The application of principles of Quantum Mechanics in areas outside of physics has been getting increasing attention in the scientific community in an emergent disciplined called Quantum Cognition. These principles have been applied to explain paradoxical situations that cannot be easily explained through classical theory. In quantum probability, events are characterised by a superposition state, which is represented by a state vector in a N-dimensional vector space. The probability of an event is given by the squared magnitude of the projection of this superposition state into the desired subspace. This geometric approach is very useful to explain paradoxical findings that involve order effects, but do we really need quantum principles for models that only involve projections? This work has two main goals. First, it is still not clear in the literature if a quantum projection model has any advantage towards a classical projection. We compared both models and concluded that the Quantum Projection model achieves the same results as its classical counterpart, because the quantum interference effects play no role in the computation of the probabilities. Second, it intends to propose an alternative relativistic interpretation for rotation parameters that are involved in both classical and quantum models. In the end, instead of interpreting these parameters as a similarity measure between questions, we propose that they emerge due to the lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state of world and towards the context of the questions.

  14. Development of an inexpensive optical method for studies of dental erosion process in vitro

    NASA Astrophysics Data System (ADS)

    Nasution, A. M. T.; Noerjanto, B.; Triwanto, L.

    2008-09-01

    Teeth have important roles in digestion of food, supporting the facial-structure, as well as in articulation of speech. Abnormality in teeth structure can be initiated by an erosion process due to diet or beverages consumption that lead to destruction which affect their functionality. Research to study the erosion processes that lead to teeth's abnormality is important in order to be used as a care and prevention purpose. Accurate measurement methods would be necessary as a research tool, in order to be capable for quantifying dental destruction's degree. In this work an inexpensive optical method as tool to study dental erosion process is developed. It is based on extraction the parameters from the 3D dental visual information. The 3D visual image is obtained from reconstruction of multiple lateral projection of 2D images that captured from many angles. Using a simple motor stepper and a pocket digital camera, sequence of multi-projection 2D images of premolar tooth is obtained. This images are then reconstructed to produce a 3D image, which is useful for quantifying related dental erosion parameters. The quantification process is obtained from the shrinkage of dental volume as well as surface properties due to erosion process. Results of quantification is correlated to the ones of dissolved calcium atom which released from the tooth using atomic absorption spectrometry. This proposed method would be useful as visualization tool in many engineering, dentistry, and medical research. It would be useful also for the educational purposes.

  15. Production of e+e- Pairs Accompanied by Nuclear Dissociation in Ultra-peripheral Heavy Ion Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Adler, C.; Aggarwal, M.M.

    2004-04-07

    We present the first data on e{sup +}e{sup -} pair production accompanied by nuclear breakup in ultra-peripheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects events at small impact parameters, where higher-order corrections to the pair production cross section should be enhanced. We compare the pair kinematic distributions with two calculations: one based on the equivalent photon approximation, and the other using lowest-order quantum electrodynamics (QED); the latter includes the photon virtuality. The cross section, pair mass, rapidity and angular distributions are in good agreement with both calculations. Themore » pair transverse momentum, p{sub T}, spectrum agrees with the QED calculation, but not with the equivalent photon approach. We set limits on higher-order contributions to the cross section. The e{sup +} and e{sup -} p{sub T} spectra are similar, with no evidence for interference effects due to higher-order diagrams.« less

  16. A-posteriori error estimation for second order mechanical systems

    NASA Astrophysics Data System (ADS)

    Ruiner, Thomas; Fehr, Jörg; Haasdonk, Bernard; Eberhard, Peter

    2012-06-01

    One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.

  17. Transfer function verification and block diagram simplification of a very high-order distributed pole closed-loop servo by means of non-linear time-response simulation

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1975-01-01

    Linear frequency domain methods are inadequate in analyzing the 1975 Viking Orbiter (VO75) digital tape recorder servo due to dominant nonlinear effects such as servo signal limiting, unidirectional servo control, and static/dynamic Coulomb friction. The frequency loop (speed control) servo of the VO75 tape recorder is used to illustrate the analytical tools and methodology of system redundancy elimination and high order transfer function verification. The paper compares time-domain performance parameters derived from a series of nonlinear time responses with the available experimental data in order to select the best possible analytical transfer function representation of the tape transport (mechanical segment of the tape recorder) from several possible candidates. The study also shows how an analytical time-response simulation taking into account most system nonlinearities can pinpoint system redundancy and overdesign stemming from a strictly empirical design approach. System order reduction is achieved through truncation of individual transfer functions and elimination of redundant blocks.

  18. Microstructural characteristics of plasma sprayed nanostructured partially stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio Soares

    Thermal barrier coatings have been extensively applied in the aerospace industry in turbines and rocket engines as an insulation system. Partially stabilized zirconia, due to its high thermal stability and low thermal conductivity at high temperatures has been traditionally employed as the ceramic element of the thermal barrier coating system. Different approaches have been taken in order to improve the performance of these coatings. Nanostructured materials are promising an interesting future in the beginning of the 21st century. Due to its enhanced strain to failure and superplasticity new applications may be accomplished or the limits of materials utilization may be placed at higher levels. Single nanostructured particles can not be thermal sprayed by conventional thermal spray equipment. Due to its low mass, they would be deviated to the periphery of the thermal spray jet. To overcome this characteristic, single nanostructured particles were successively agglomerated into large microscopic particles, with particle size distribution similar to the conventional feedstocks for thermal spray equipment. Agglomerated nanostructured particles of partially stabilized zirconia were plasma sprayed in air with different spray parameters. According to traditional thermal spray procedure, the feedstock has to be melted in the thermal spray jet in order to achieve the necessary conditions for adhesion and cohesion on the substrate. Due to the nature of the nanostructured particles, a new step has to be taken in the thermal spray processing; particle melting has to be avoided in order to preserve the feedstock nanostructure in the coating overall microstructure. In this work, the adhesion/cohesion system of nanostructured coatings is investigated and clarified. A percentage of molten particles will retain and hold the non-molten agglomerated nanostructured particles in the coating overall microstructure. Controlling the spray parameters it was possible to produce coatings with different levels of non-molten particles in the coating microstructure; from 25 to 50%. The presence of non-molten and molten phases in the coating microstructure, results in an unique mechanical behavior. The nanostructured coatings present a bimodal distribution with respect to the mechanical properties; each mode has origin from one of the phases. The phases were carefully mapped via scanning electron microscopy and microhardness measurements. These results enabled us to create a model for mechanical properties prediction. This finding is considered one of the most important achievements of this work.

  19. An automated subtraction of NLO EW infrared divergences

    NASA Astrophysics Data System (ADS)

    Schönherr, Marek

    2018-02-01

    In this paper a generalisation of the Catani-Seymour dipole subtraction method to next-to-leading order electroweak calculations is presented. All singularities due to photon and gluon radiation off both massless and massive partons in the presence of both massless and massive spectators are accounted for. Particular attention is paid to the simultaneous subtraction of singularities of both QCD and electroweak origin which are present in the next-to-leading order corrections to processes with more than one perturbative order contributing at Born level. Similarly, embedding non-dipole-like photon splittings in the dipole subtraction scheme discussed. The implementation of the formulated subtraction scheme in the framework of the Sherpa Monte-Carlo event generator, including the restriction of the dipole phase space through the α -parameters and expanding its existing subtraction for NLO QCD calculations, is detailed and numerous internal consistency checks validating the obtained results are presented.

  20. UV conformal window for asymptotic safety

    NASA Astrophysics Data System (ADS)

    Bond, Andrew D.; Litim, Daniel F.; Vazquez, Gustavo Medina; Steudtner, Tom

    2018-02-01

    Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic power series in a small parameter. The underlying ordering principle is explained and contrasted with conventional perturbation theory and Weyl consistency conditions. We then determine the conformal window with asymptotic safety from the complete next-to-next-to-leading order in perturbation theory. Limits for the conformal window arise due to fixed point mergers, the onset of strong coupling, or vacuum instability. A consistent picture is uncovered by comparing various levels of approximation. The theory remains perturbative in the entire conformal window, with vacuum stability dictating the tightest constraints. We also speculate about a secondary conformal window at strong coupling and estimate its lower limit. Implications for model building and cosmology are indicated.

  1. Fisher information approach to nonequilibrium phase transitions in a quantum XXZ spin chain with boundary noise

    NASA Astrophysics Data System (ADS)

    Marzolino, Ugo; Prosen, Tomaž

    2017-09-01

    We investigated quantum critical behaviors in the nonequilibrium steady state of a XXZ spin chain with boundary Markovian noise using Fisher information. The latter represents the distance between two infinitesimally close states, and its superextensive size scaling witnesses a critical behavior due to a phase transition since all the interaction terms are extensive. Perturbatively, in the noise strength, we found superextensive Fisher information at anisotropy |Δ |⩽1 and irrational arccosΔ/π irrespective of the order of two noncommuting limits, i.e., the thermodynamic limit and the limit of sending arccosΔ/π to an irrational number via a sequence of rational approximants. From this result we argue the existence of a nonequilibrium quantum phase transition with a critical phase |Δ |⩽1 . From the nonsuperextensivity of the Fisher information of reduced states, we infer that this nonequilibrium quantum phase transition does not have local order parameters but has nonlocal ones, at least at |Δ |=1 . In the nonperturbative regime for the noise strength, we numerically computed the reduced Fisher information which lower bounds the full-state Fisher information and is superextensive only at |Δ |=1 . From the latter result, we derived local order parameters at |Δ |=1 in the nonperturbative case. The existence of critical behavior witnessed by the Fisher information in the phase |Δ |<1 is still an open problem. The Fisher information also represents the best sensitivity for any estimation of the control parameter, in our case the anisotropy Δ , and its superextensivity implies enhanced estimation precision which is also highly robust in the presence of a critical phase.

  2. The fundamental closed-form solution of control-related states of kth order S3PR system with left-side non-sharing resource places of Petri nets

    NASA Astrophysics Data System (ADS)

    Chao, Daniel Yuh; Yu, Tsung Hsien

    2016-01-01

    Due to the state explosion problem, it has been unimaginable to enumerate reachable states for Petri nets. Chao broke the barrier earlier by developing the very first closed-form solution of the number of reachable and other states for marked graphs and the kth order system. Instead of using first-met bad marking, we propose 'the moment to launch resource allocation' (MLR) as a partial deadlock avoidance policy for a large, real-time dynamic resource allocation system. Presently, we can use the future deadlock ratio of the current state as the indicator of MLR due to which the ratio can be obtained real-time by a closed-form formula. This paper progresses the application of an MLR concept one step further on Gen-Left kth order systems (one non-sharing resource place in any position of the left-side process), which is also the most fundamental asymmetric net structure, by the construction of the system's closed-form solution of the control-related states (reachable, forbidden, live and deadlock states) with a formula depending on the parameters of k and the location of the non-sharing resource. Here, we kick off a new era of real-time, dynamic resource allocation decisions by constructing a generalisation formula of kth order systems (Gen-Left) with r* on the left side but at arbitrary locations.

  3. Polyanion Driven Antiferromagnetic and Insulating Ground State of Olivine Phosphates: LiMPO4

    NASA Astrophysics Data System (ADS)

    Jena, Ajit Kumar; Nanda, B. R. K.; Condensed Matter Theory; Computation Team

    Through density functional calculations we have investigated the electronic and magnetic properties of LiMPO4, where M is a 3d transition metal element. We find that contrary to many transition metal oxides, in these Olivine phosphates the band gap is originated due to crystal field anisotropy as well as weak O-p - M-d covalent interaction. Both of them are attributed to the presence of PO43- polyanion. The anisotropic crystal field, in the absence of covalent interactions, creates atomically localized non-degenerate M-d states and therefore the gap is a natural outcome. Onsite repulsion, due to strong correlation effect, further enhances the gap. These localized d states favor high-spin configuration which leads to antiferromagnetic ordering due to Hund's coupling. Experimentally observed low Neel temperature of this family of compounds is explained from the DFT obtained spin exchange interaction parameters. Work supported by Nissan Research Program.

  4. Imperfection and radiation damage in protein crystals studied with coherent radiation

    PubMed Central

    Nave, Colin; Sutton, Geoff; Evans, Gwyndaf; Owen, Robin; Rau, Christoph; Robinson, Ian; Stuart, David Ian

    2016-01-01

    Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage. PMID:26698068

  5. Contamination of water due to major industries and open refuse dumping in the steel city of Orissa--a case study.

    PubMed

    Mishra, P C; Behera, P C; Patel, R K

    2005-04-01

    Contamination of ground water is common in the areas surrounded by industrial refuse dumping sites and the probability of contamination is more where dumping is done in low lying areas and the rate of percolation through the soil is high. In order to assess the ground water pollution by leachate around the refuse dumping site, eighteen wells were selected for study. Few wells are nearer to the dumps, few are far away and others are in between. Also an attempt has been made to evaluate the effect of industrial effluents on the ground and surface water due to Integrated Rourkela Steel Plant and other major industries. From the analytical data of physico-chemical parameters, it is indicated that the river water is contaminated mainly due to the industrial and municipal effluents and the ground water of some of the analyzed areas is contaminated due to municipal and industrial solid waste dumping.

  6. Resurgence of oscillation in coupled oscillators under delayed cyclic interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar

    2017-07-01

    This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.

  7. Improving the particle beam characteristics resulting from laser ion acceleration at ultra high intensity through target manipulation - Numerical modeling

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; d'Humieres, Emmanuel; Vizman, Daniel

    2017-12-01

    The necessity to produce superior quality ion and electron beams has been a hot research field due to the advances in laser science in the past decade. This work focuses on the parametric study of different target density profiles in order to determine their effect on the spatial distribution of the accelerated particle beam, the particle maximum energy, and the electromagnetic field characteristics. For the scope of this study, the laser pulse parameters were kept constant, while varying the target parameters. The study continues the work published in [1] and focuses on further studying the effects of target curvature coupled with a cone laser focusing structure. The results show increased particle beam focusing and a significant enhancement in particle maximum energy.

  8. Phase diagram and universality of the Lennard-Jones gas-liquid system.

    PubMed

    Watanabe, Hiroshi; Ito, Nobuyasu; Hu, Chin-Kun

    2012-05-28

    The gas-liquid phase transition of the three-dimensional Lennard-Jones particles system is studied by molecular dynamics simulations. The gas and liquid densities in the coexisting state are determined with high accuracy. The critical point is determined by the block density analysis of the Binder parameter with the aid of the law of rectilinear diameter. From the critical behavior of the gas-liquid coexisting density, the critical exponent of the order parameter is estimated to be β = 0.3285(7). Surface tension is estimated from interface broadening behavior due to capillary waves. From the critical behavior of the surface tension, the critical exponent of the correlation length is estimated to be ν = 0.63(4). The obtained values of β and ν are consistent with those of the Ising universality class.

  9. System parameter identification from projection of inverse analysis

    NASA Astrophysics Data System (ADS)

    Liu, K.; Law, S. S.; Zhu, X. Q.

    2017-05-01

    The output of a system due to a change of its parameters is often approximated with the sensitivity matrix from the first order Taylor series. The system output can be measured in practice, but the perturbation in the system parameters is usually not available. Inverse sensitivity analysis can be adopted to estimate the unknown system parameter perturbation from the difference between the observation output data and corresponding analytical output data calculated from the original system model. The inverse sensitivity analysis is re-visited in this paper with improvements based on the Principal Component Analysis on the analytical data calculated from the known system model. The identification equation is projected into a subspace of principal components of the system output, and the sensitivity of the inverse analysis is improved with an iterative model updating procedure. The proposed method is numerical validated with a planar truss structure and dynamic experiments with a seven-storey planar steel frame. Results show that it is robust to measurement noise, and the location and extent of stiffness perturbation can be identified with better accuracy compared with the conventional response sensitivity-based method.

  10. MRR and TWR evaluation on electrical discharge machining of Ti-6Al-4V using tungsten : copper composite electrode

    NASA Astrophysics Data System (ADS)

    Prasanna, J.; Rajamanickam, S.; Amith Kumar, O.; Karthick Raj, G.; Sathya Narayanan, P. V. V.

    2017-05-01

    In this paper Ti-6Al-4V used as workpiece material and it is keenly seen in variety of field including medical, chemical, marine, automotive, aerospace, aviation, electronic industries, nuclear reactor, consumer products etc., The conventional machining of Ti-6Al-4V is very difficult due to its distinctive properties. The Electrical Discharge Machining (EDM) is right choice of machining this material. The tungsten copper composite material is employed as tool material. The gap voltage, peak current, pulse on time and duty factor is considered as the machining parameter to analyze the machining characteristics Material Removal Rate (MRR) and Tool Wear Rate (TWR). The Taguchi method is provided to work for finding the significant parameter of EDM. It is found that for MRR significant parameters rated in the following order Gap Voltage, Pulse On-Time, Peak Current and Duty Factor. On the other hand for TWR significant parameters are listed in line of Gap Voltage, Duty Factor, Peak Current and Pulse On-Time.

  11. Theoretical research of the spin-Hamiltonian parameters for two rhombic W5+ centers in KTiOPO4 (KTP) crystal through a two-mechanism model

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Chen, Bo-Wei; Wei, Chen-Fu; Zheng, Wen-Chen

    2016-09-01

    The high-order perturbation formulas based on the two-mechanism model are employed to calculate the spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i=x, y, z) for two approximately rhombic W5+ centers in KTiOPO4 (KTP) crystal. In the model, both the widely-applied crystal-field (CF) mechanism concerning the interactions of CF excited states with the ground state and the generally-neglected charge-transfer (CT) mechanism concerning the interactions of CT excited states with the ground state are included. The calculated results agree with the experimental values, and the signs of constants Ai are suggested. The calculations indicate that (i) for the high valence state dn ions in crystals, the contributions to spin-Hamiltonian parameters should take into account both the CF and CT mechanisms and (ii) the large g-shifts |Δgi | (=|gi-ge |, where ge≈ 2.0023) for W5+ centers in crystals are due to the large spin-orbit parameter of free W5+ ion.

  12. An uncertainty model of acoustic metamaterials with random parameters

    NASA Astrophysics Data System (ADS)

    He, Z. C.; Hu, J. Y.; Li, Eric

    2018-01-01

    Acoustic metamaterials (AMs) are man-made composite materials. However, the random uncertainties are unavoidable in the application of AMs due to manufacturing and material errors which lead to the variance of the physical responses of AMs. In this paper, an uncertainty model based on the change of variable perturbation stochastic finite element method (CVPS-FEM) is formulated to predict the probability density functions of physical responses of AMs with random parameters. Three types of physical responses including the band structure, mode shapes and frequency response function of AMs are studied in the uncertainty model, which is of great interest in the design of AMs. In this computation, the physical responses of stochastic AMs are expressed as linear functions of the pre-defined random parameters by using the first-order Taylor series expansion and perturbation technique. Then, based on the linear function relationships of parameters and responses, the probability density functions of the responses can be calculated by the change-of-variable technique. Three numerical examples are employed to demonstrate the effectiveness of the CVPS-FEM for stochastic AMs, and the results are validated by Monte Carlo method successfully.

  13. Quantification of the impact of precipitation spatial distribution uncertainty on predictive uncertainty of a snowmelt runoff model

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.

    2012-04-01

    This study is intended to quantify the impact of uncertainty about precipitation spatial distribution on predictive uncertainty of a snowmelt runoff model. This problem is especially relevant in mountain catchments with a sparse precipitation observation network and relative short precipitation records. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment's glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation at a station and a precipitation factor FPi. If other precipitation data are not available, these precipitation factors must be adjusted during the calibration process and are thus seen as parameters of the model. In the case of the fifth zone, glaciers are seen as an inexhaustible source of water that melts when the snow cover is depleted.The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. The model's predictive uncertainty is measured in terms of the output variance of the mean squared error of the Box-Cox transformed discharge, the relative volumetric error, and the weighted average of snow water equivalent in the elevation zones at the end of the simulation period. Sobol's variance decomposition (SVD) method is used for assessing the impact of precipitation spatial distribution, represented by the precipitation factors FPi, on the models' predictive uncertainty. In the SVD method, the first order effect of a parameter (or group of parameters) indicates the fraction of predictive uncertainty that could be reduced if the true value of this parameter (or group) was known. Similarly, the total effect of a parameter (or group) measures the fraction of predictive uncertainty that would remain if the true value of this parameter (or group) was unknown, but all the remaining model parameters could be fixed. In this study, first order and total effects of the group of precipitation factors FP1- FP4, and the precipitation factor FP5, are calculated separately. First order and total effects of the group FP1- FP4 are much higher than first order and total effects of the factor FP5, which are negligible This situation is due to the fact that the actual value taken by FP5 does not have much influence in the contribution of the glacier zone to the catchment's output discharge, mainly limited by incident solar radiation. In addition to this, first order effects indicate that, in average, nearly 25% of predictive uncertainty could be reduced if the true values of the precipitation factors FPi could be known, but no information was available on the appropriate values for the remaining model parameters. Finally, the total effects of the precipitation factors FP1- FP4 are close to 41% in average, implying that even if the appropriate values for the remaining model parameters could be fixed, predictive uncertainty would be still quite high if the spatial distribution of precipitation remains unknown. Acknowledgements: This research was funded by FONDECYT, Research Project 1110279.

  14. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morelli, D.; Imme, G.; Catalano, R.

    2011-12-13

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected tomore » a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.« less

  15. Recharge characteristics of an unconfined aquifer from the rainfall-water table relationship

    NASA Astrophysics Data System (ADS)

    Viswanathan, M. N.

    1984-02-01

    The determination of recharge levels of unconfined aquifers, recharged entirely by rainfall, is done by developing a model for the aquifer that estimates the water-table levels from the history of rainfall observations and past water-table levels. In the present analysis, the model parameters that influence the recharge were not only assumed to be time dependent but also to have varying dependence rates for various parameters. Such a model is solved by the use of a recursive least-squares method. The variable-rate parameter variation is incorporated using a random walk model. From the field tests conducted at Tomago Sandbeds, Newcastle, Australia, it was observed that the assumption of variable rates of time dependency of recharge parameters produced better estimates of water-table levels compared to that with constant-recharge parameters. It was observed that considerable recharge due to rainfall occurred on the very same day of rainfall. The increase in water-table level was insignificant for subsequent days of rainfall. The level of recharge very much depends upon the intensity and history of rainfall. Isolated rainfalls, even of the order of 25 mm day -1, had no significant effect on the water-table levels.

  16. SU-G-IeP4-13: PET Image Noise Variability and Its Consequences for Quantifying Tumor Hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueng, R; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Manser, P

    Purpose: The values in a PET image which represent activity concentrations of a radioactive tracer are influenced by a large number of parameters including patient conditions as well as image acquisition and reconstruction. This work investigates noise characteristics in PET images for various image acquisition and image reconstruction parameters. Methods: Different phantoms with homogeneous activity distributions were scanned using several acquisition parameters and reconstructed with numerous sets of reconstruction parameters. Images from six PET scanners from different vendors were analyzed and compared with respect to quantitative noise characteristics. Local noise metrics, which give rise to a threshold value defining themore » metric of hypoxic fraction, as well as global noise measures in terms of noise power spectra (NPS) were computed. In addition to variability due to different reconstruction parameters, spatial variability of activity distribution and its noise metrics were investigated. Patient data from clinical trials were mapped onto phantom scans to explore the impact of the scanner’s intrinsic noise variability on quantitative clinical analysis. Results: Local noise metrics showed substantial variability up to an order of magnitude for different reconstruction parameters. Investigations of corresponding NPS revealed reconstruction dependent structural noise characteristics. For the acquisition parameters, noise metrics were guided by Poisson statistics. Large spatial non-uniformity of the noise was observed in both axial and radial direction of a PET image. In addition, activity concentrations in PET images of homogeneous phantom scans showed intriguing spatial fluctuations for most scanners. The clinical metric of the hypoxic fraction was shown to be considerably influenced by the PET scanner’s spatial noise characteristics. Conclusion: We showed that a hypoxic fraction metric based on noise characteristics requires careful consideration of the various dependencies in order to justify its quantitative validity. This work may result in recommendations for harmonizing QA of PET imaging for multi-institutional clinical trials.« less

  17. Phase separation and second-order phase transition in the phenomenological model for a Coulomb-frustrated two-dimensional system

    NASA Astrophysics Data System (ADS)

    Mamin, R. F.; Shaposhnikova, T. S.; Kabanov, V. V.

    2018-03-01

    We have considered the model of the phase transition of the second order for the Coulomb frustrated 2D charged system. The coupling of the order parameter with the charge was considered as the local temperature. We have found that in such a system, an appearance of the phase-separated state is possible. By numerical simulation, we have obtained different types ("stripes," "rings," "snakes") of phase-separated states and determined the parameter ranges for these states. Thus the system undergoes a series of phase transitions when the temperature decreases. First, the system moves from the homogeneous state with a zero order parameter to the phase-separated state with two phases in one of which the order parameter is zero and, in the other, it is nonzero (τ >0 ). Then a first-order transition occurs to another phase-separated state, in which both phases have different and nonzero values of the order parameter (for τ <0 ). Only a further decrease of temperature leads to a transition to a homogeneous ordered state.

  18. Plaquette order in a dimerized frustrated spin ladder

    NASA Astrophysics Data System (ADS)

    Shlagman, Ofer; Shimshoni, Efrat

    2014-11-01

    We study the effect of dimerization (due to, e.g., spin-Peierls instability) on the phase diagram of a frustrated antiferromagnetic spin-1/2 ladder, with weak transverse and diagonal rung coupling. Our analysis focuses on a one-dimensional version of the model (i.e., a single two-leg ladder) where we consider two forms of dimerization on the legs: columnar dimers (CDs) and staggered dimers (SDs). We examine in particular the regime of parameters (corresponding to an intermediate X X Z anisotropy) in which the leg dimerization and the rung coupling terms are equally relevant. In both the CD and SD cases, we find that the effective field theory describing the system is a self-dual sine-Gordon model, which favors ordering and the opening of a gap to excitations. The order parameter, which reflects the interplay between the leg and rung dimerization interactions, represents a crystal of 4-spin plaquettes on which longitudinal and transverse dimers are in a coherent superposition. Depending on the leg dimerization mode, these plaquettes are closed or open, however both types spontaneously break reflection symmetry across the ladder. The closed plaquettes are stable, while the open plaquette order is relatively fragile and the corresponding gap may be tuned to zero under extreme conditions. We further find that a first-order transition occurs from the plaquette order to a valence bond crystal (VBC) of dimers on the legs. This suggests that in a higher-dimensional version of this system, this variety of distinct VBC states with comparable energies leads to the formation of domains. Effectively one-dimensional gapless spinon modes on domain boundaries may account for the experimental observation of spin-liquid behavior in a physical realization of the model.

  19. Estimation of real-time runway surface contamination using flight data recorder parameters

    NASA Astrophysics Data System (ADS)

    Curry, Donovan

    Within this research effort, the development of an analytic process for friction coefficient estimation is presented. Under static equilibrium, the sum of forces and moments acting on the aircraft, in the aircraft body coordinate system, while on the ground at any instant is equal to zero. Under this premise the longitudinal, lateral and normal forces due to landing are calculated along with the individual deceleration components existent when an aircraft comes to a rest during ground roll. In order to validate this hypothesis a six degree of freedom aircraft model had to be created and landing tests had to be simulated on different surfaces. The simulated aircraft model includes a high fidelity aerodynamic model, thrust model, landing gear model, friction model and antiskid model. Three main surfaces were defined in the friction model; dry, wet and snow/ice. Only the parameters recorded by an FDR are used directly from the aircraft model all others are estimated or known a priori. The estimation of unknown parameters is also presented in the research effort. With all needed parameters a comparison and validation with simulated and estimated data, under different runway conditions, is performed. Finally, this report presents results of a sensitivity analysis in order to provide a measure of reliability of the analytic estimation process. Linear and non-linear sensitivity analysis has been performed in order to quantify the level of uncertainty implicit in modeling estimated parameters and how they can affect the calculation of the instantaneous coefficient of friction. Using the approach of force and moment equilibrium about the CG at landing to reconstruct the instantaneous coefficient of friction appears to be a reasonably accurate estimate when compared to the simulated friction coefficient. This is also true when the FDR and estimated parameters are introduced to white noise and when crosswind is introduced to the simulation. After the linear analysis the results show the minimum frequency at which the algorithm still provides moderately accurate data is at 2Hz. In addition, the linear analysis shows that with estimated parameters increased and decreased up to 25% at random, high priority parameters have to be accurate to within at least +/-5% to have an effect of less than 1% change in the average coefficient of friction. Non-linear analysis results show that the algorithm can be considered reasonably accurate for all simulated cases when inaccuracies in the estimated parameters vary randomly and simultaneously up to +/-27%. At worst-case the maximum percentage change in average coefficient of friction is less than 10% for all surfaces.

  20. Linking aquifer spatial properties and non-Fickian transport in mobile-immobile like alluvial settings

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; Baeumer, Boris

    2014-01-01

    Time-nonlocal transport models can describe non-Fickian diffusion observed in geological media, but the physical meaning of parameters can be ambiguous, and most applications are limited to curve-fitting. This study explores methods for predicting the parameters of a temporally tempered Lévy motion (TTLM) model for transient sub-diffusion in mobile–immobile like alluvial settings represented by high-resolution hydrofacies models. The TTLM model is a concise multi-rate mass transfer (MRMT) model that describes a linear mass transfer process where the transfer kinetics and late-time transport behavior are controlled by properties of the host medium, especially the immobile domain. The intrinsic connection between the MRMT and TTLM models helps to estimate the main time-nonlocal parameters in the TTLM model (which are the time scale index, the capacity coefficient, and the truncation parameter) either semi-analytically or empirically from the measurable aquifer properties. Further applications show that the TTLM model captures the observed solute snapshots, the breakthrough curves, and the spatial moments of plumes up to the fourth order. Most importantly, the a priori estimation of the time-nonlocal parameters outside of any breakthrough fitting procedure provides a reliable “blind” prediction of the late-time dynamics of subdiffusion observed in a spectrum of alluvial settings. Predictability of the time-nonlocal parameters may be due to the fact that the late-time subdiffusion is not affected by the exact location of each immobile zone, but rather is controlled by the time spent in immobile blocks surrounding the pathway of solute particles. Results also show that the effective dispersion coefficient has to be fitted due to the scale effect of transport, and the mean velocity can differ from local measurements or volume averages. The link between medium heterogeneity and time-nonlocal parameters will help to improve model predictability for non-Fickian transport in alluvial settings.

  1. Nd-ordering-driven Mn spin reorientation and magnetization reversal in the magnetostructurally coupled compound NdMn O3

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Yusuf, S. M.; Ritter, C.

    2017-07-01

    A detailed neutron diffraction study on NdMn O3 infers that the low temperature transition at 15 K is due to the ordering of Nd sublattice moment with a (0 ,-Fy,0 ) type spin arrangement. Interestingly, the ordering of the Nd sublattice drives a reorientation (by 180∘) of the net ferromagnetic moment of the Mn sublattice along the b axis. Such a Mn spin reorientation from (Ax,Fy,0 ) (with an antiferromagnetic ordering temperature of 73 K) to (Ax,-Fy,0 ) at 15 K, explains the magnetization reversal phenomenon present in this perovskite compound at 15 K. Moreover at 15 K, significant crystallographic structural distortions in terms of temperature variations of lattice parameters and bond angles are found. A sign change in the temperature variation of magnetic entropy is also found at 15 K. The present study signifies the role of rare-earth (Nd) moment ordering in tuning various physical properties, such as magnetocaloric and magnetoelastic of the larger size (>0.912 Å ) R ion based R Mn O3 compounds.

  2. The AMBRE Project: Stellar parameterisation of the ESO:FEROS archived spectra

    NASA Astrophysics Data System (ADS)

    Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.; Ordenovic, C.

    2012-06-01

    Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established in order to carry out the determination of stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the FEROS archived spectra for their stellar parameters (effective temperatures, surface gravities, global metallicities, alpha element to iron ratios and radial velocities) has been completed in the first phase of the AMBRE Project. From the complete ESO:FEROS archive dataset that was received, a total of 21 551 scientific spectra have been identified, covering the period 2005 to 2010. These spectra correspond to 6285 stars. Methods: The determination of the stellar parameters was carried out using the stellar parameterisation algorithm, MATISSE (MATrix Inversion for Spectral SynthEsis), which has been developed at OCA to be used in the analysis of large scale spectroscopic studies in galactic archaeology. An analysis pipeline has been constructed that integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the FEROS spectra could be analysed automatically with MATISSE to obtain the stellar parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters, effective temperature, surface gravity, metallicity and alpha element abundances, were determined for 6508 (30.2%) of the FEROS archived spectra (~3087 stars). Radial velocities were determined for 11 963 (56%) of the archived spectra. 2370 (11%) spectra could not be analysed within the pipeline due to very low signal-to-noise ratios or missing spectral orders. 12 673 spectra (58.8%) were analysed in the pipeline but their parameters were discarded based on quality criteria and error analysis determined within the automated process. The majority of these rejected spectra were found to have broad spectral features, as probed both by the direct measurement of the features and cross-correlation function breadths, indicating that they may be hot and/or fast rotating stars, which are not considered within the adopted reference synthetic spectra grid. The current configuration of the synthetic spectra grid is devoted to slow-rotating FGKM stars. Hence non-standard spectra (binaries, chemically peculiar stars etc.) that could not be identified may pollute the analysis.

  3. Reliable before-fabrication forecasting of normal and touch mode MEMS capacitive pressure sensor: modeling and simulation

    NASA Astrophysics Data System (ADS)

    Jindal, Sumit Kumar; Mahajan, Ankush; Raghuwanshi, Sanjeev Kumar

    2017-10-01

    An analytical model and numerical simulation for the performance of MEMS capacitive pressure sensors in both normal and touch modes is required for expected behavior of the sensor prior to their fabrication. Obtaining such information should be based on a complete analysis of performance parameters such as deflection of diaphragm, change of capacitance when the diaphragm deflects, and sensitivity of the sensor. In the literature, limited work has been carried out on the above-stated issue; moreover, due to approximation factors of polynomials, a tolerance error cannot be overseen. Reliable before-fabrication forecasting requires exact mathematical calculation of the parameters involved. A second-order polynomial equation is calculated mathematically for key performance parameters of both modes. This eliminates the approximation factor, and an exact result can be studied, maintaining high accuracy. The elimination of approximation factors and an approach of exact results are based on a new design parameter (δ) that we propose. The design parameter gives an initial hint to the designers on how the sensor will behave once it is fabricated. The complete work is aided by extensive mathematical detailing of all the parameters involved. Next, we verified our claims using MATLAB® simulation. Since MATLAB® effectively provides the simulation theory for the design approach, more complicated finite element method is not used.

  4. Iterative integral parameter identification of a respiratory mechanics model.

    PubMed

    Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey

    2012-07-18

    Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.

  5. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems

    PubMed Central

    Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R

    2006-01-01

    Background We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. Results We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Conclusion Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems. PMID:17081289

  6. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems.

    PubMed

    Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R

    2006-11-02

    We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems.

  7. Influence of elastic parameters on the evolution of elasticity modulus of thin films

    NASA Astrophysics Data System (ADS)

    Gacem, A.; Doghmane, A.; Hadjoub, Z.; Beldi, I.; Doghmane, M.

    2012-09-01

    In recent years, it appears many structures in the form of thin films or multilayers, used as coatings for surface protection, or to provide materials with new properties different from those of substrates. These properties are the subject of a growing number of studies in order to produce Nano or micro structures with different degrees of quality, and cost as well as the manufacture of thin film properties more functional and more controllable. As the thicknesses are close to micrometric or nanometric scales, the modulus of elasticity are difficult to measure and experimental results are rarely published in the literature. In this context, we propose an analytical qualitative methodology to describe the influence of acoustic parameters of thin films on the evolution of elastic moduli the most used. This method is based on the determination of the acoustic signature V(z) of several thin layers deposited on different substrates, as well the information on the propagation velocity of ultrasonic waves are obtained. Thus, the dispersion curves representing the variation of the modulus of elasticity (Young and the shear), were determined. We have noticed that, according to the type of substrate (light, medium or heavy), we observed the appearance of some anomalies in curves that are generally associated with changes in the acoustic properties of each of the examined layers. We have shown that these anomalies are mainly due to the effect loading, and represent one of the fundamental parameters determining the appearance or disappearance of a phenomenon and represent one of the basic parameters determining the appearance or disappearance of phenomena. Finally, we determine the Poisson ratio of thin films in order to calculate other elastic parameters such as the compressor modulus.

  8. Achieving mask order processing automation, interoperability and standardization based on P10

    NASA Astrophysics Data System (ADS)

    Rodriguez, B.; Filies, O.; Sadran, D.; Tissier, Michel; Albin, D.; Stavroulakis, S.; Voyiatzis, E.

    2007-02-01

    Last year the MUSCLE (Masks through User's Supply Chain: Leadership by Excellence) project was presented. Here is the project advancement. A key process in mask supply chain management is the exchange of technical information for ordering masks. This process is large, complex, company specific and error prone, and leads to longer cycle times and higher costs due to missing or wrong inputs. Its automation and standardization could produce significant benefits. We need to agree on the standard for mandatory and optional parameters, and also a common way to describe parameters when ordering. A system was created to improve the performance in terms of Key Performance Indicators (KPIs) such as cycle time and cost of production. This tool allows us to evaluate and measure the effect of factors, as well as the effect of implementing the improvements of the complete project. Next, a benchmark study and a gap analysis were performed. These studies show the feasibility of standardization, as there is a large overlap in requirements. We see that the SEMI P10 standard needs enhancements. A format supporting the standard is required, and XML offers the ability to describe P10 in a flexible way. Beyond using XML for P10, the semantics of the mask order should also be addressed. A system design and requirements for a reference implementation for a P10 based management system are presented, covering a mechanism for the evolution and for version management and a design for P10 editing and data validation.

  9. Switching of the Spin-Density-Wave in CeCoIn5 probed by Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Kim, Duk Y.; Lin, Shi-Zeng; Weickert, Franziska; Bauer, Eric D.; Ronning, Filip; Thompson, Joe D.; Movshovich, Roman

    Unconventional superconductor CeCoIn5 orders magnetically in a spin-density-wave (SDW) in the low-temperature and high-field corner of the superconducting phase. Recent neutron scattering experiment revealed that the single-domain SDW's ordering vector Q depends strongly on the direction of the magnetic field, switching sharply as the field is rotated through the anti-nodal direction. This switching may be manifestation of a pair-density-wave (PDW) p-wave order parameter, which develops in addition to the well-established d-wave order parameter due to the SDW formation. We have investigated the hypersensitivity of the magnetic domain with a thermal conductivity measurement. The heat current (J) was applied along the [110] direction such that the Q vector is either perpendicular or parallel to J, depending on the magnetic field direction. A discontinuous change of the thermal conductivity was observed when the magnetic field is rotated around the [100] direction within 0 . 2° . The thermal conductivity with the Q parallel to the heat current (J ∥Q) is approximately 15% lager than that with the Q perpendicular to the heat current (J ⊥Q). This result is consistent with additional gapping of the nodal quasiparticle by the p-wave PDW coupled to SDW. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

  10. An unscaled parameter to measure the order of surfaces: a new surface elaboration to increase cells adhesion.

    PubMed

    Bigerelle, M; Anselme, K; Dufresne, E; Hardouin, P; Iost, A

    2002-08-01

    We present a new parameter to quantify the order of a surface. This parameter is scale-independent and can be used to compare the organization of a surface at different scales of range and amplitude. To test the accuracy of this roughness parameter versus a hundred existing ones, we created an original statistical bootstrap method. In order to assess the physical relevance of this new parameter, we elaborated a great number of surfaces with various roughness amplitudes on titanium and titanium-based alloys using different physical processes. Then we studied the influence of the roughness amplitude on in vitro adhesion and proliferation of human osteoblasts. It was then shown that our new parameter best discriminates among the cell adhesion phenomena than others' parameters (Average roughness (Ra em leader )): cells adhere better on isotropic surfaces with a low order, provided this order is quantified on a scale that is more important than that of the cells. Additionally, on these low ordered metallic surfaces, the shape of the cells presents the same morphological aspect as that we can see on the human bone trabeculae. The method used to prepare these isotropic surfaces (electroerosion) could be undoubtedly and easily applied to prepare most biomaterials with complex geometries and to improve bone implant integration. Moreover, the new order parameter we developed may be particularly useful for the fundamental understanding of the mechanism of bone cell installation on a relief and of the formation of bone cell-material interface.

  11. Local and nonlocal order parameters in the Kitaev chain

    NASA Astrophysics Data System (ADS)

    Chitov, Gennady Y.

    2018-02-01

    We have calculated order parameters for the phases of the Kitaev chain with interaction and dimerization at a special symmetric point applying the Jordan-Wigner and other duality transformations. We use string order parameters (SOPs) defined via the correlation functions of the Majorana string operators. The SOPs are mapped onto the local order parameters of some dual Hamiltonians and easily calculated. We have shown that the phase diagram of the interacting dimerized chain comprises the phases with the conventional local order as well as the phases with nonlocal SOPs. From the results for the critical indices, we infer the two-dimensional Ising universality class of criticality at the particular symmetry point where the model is exactly solvable.

  12. Why some plant species are rare.

    PubMed

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.

  13. Bayes Analysis and Reliability Implications of Stress-Rupture Testing a Kevlar/Epoxy COPV using Temperature and Pressure Acceleration

    NASA Technical Reports Server (NTRS)

    Phoenix, S. Leigh; Kezirian, Michael T.; Murthy, Pappu L. N.

    2009-01-01

    Composite Overwrapped Pressure Vessel (COPVs) that have survived a long service time under pressure generally must be recertified before service is extended. Sometimes lifetime testing is performed on an actual COPV in service in an effort to validate the reliability model that is the basis for certifying the continued flight worthiness of its sisters. Currently, testing of such a Kevlar49(registered TradeMark)/epoxy COPV is nearing completion. The present paper focuses on a Bayesian statistical approach to analyze the possible failure time results of this test and to assess the implications in choosing between possible model parameter values that in the past have had significant uncertainty. The key uncertain parameters in this case are the actual fiber stress ratio at operating pressure, and the Weibull shape parameter for lifetime; the former has been uncertain due to ambiguities in interpreting the original and a duplicate burst test. The latter has been uncertain due to major differences between COPVs in the data base and the actual COPVs in service. Any information obtained that clarifies and eliminates uncertainty in these parameters will have a major effect on the predicted reliability of the service COPVs going forward. The key result is that the longer the vessel survives, the more likely the more optimistic stress ratio is correct. At the time of writing, the resulting effect on predicted future reliability is dramatic, increasing it by about one nine , that is, reducing the probability of failure by an order of magnitude. However, testing one vessel does not change the uncertainty on the Weibull shape parameter for lifetime since testing several would be necessary.

  14. Damage characterization on human femur bone by means of ultrasonics and acoustic emission

    NASA Astrophysics Data System (ADS)

    Strantza, M.; Polyzos, D.; Louis, O.; Boulpaep, F.; Van Hemelrijck, D.; Aggelis, D. G.

    2015-07-01

    Human bone tissue is characterized as a material with high brittleness. Due to this nature, visible signs of cracking are not easy to be detected before final failure. The main objective of this work is to investigate if the acoustic emission (AE) technique can offer valuable insight to the fracture process of human femur specimens as in other engineering materials characterization. This study describes the AE activity during fracture of whole femur bones under flexural load. Before fracture, broadband AE sensors were used in order to measure parameters like wave velocity dispersion and attenuation. Waveform parameters like the duration, rise time and average frequency, were also examined relatively to the propagation distance as a preparation for the AE monitoring during fracture. After the ultrasonic study, the samples were partly cast in concrete and fixed as cantilevers. A point load was applied on the femur head, which due to the test geometry resulted in a combination of two different patterns of fracture, bending and torsion. Two AE broadband sensors were placed in different points of the sample, one near the fixing end and the other near the femur head. Preliminary analysis shows that parameters like the number of acquired AE signals and their amplitude are well correlated with the load history. Furthermore, the parameters of rise time and frequency can differentiate the two fracture patterns. Additionally, AE allows the detection of the load at the onset of fracture from the micro-cracking events that occur at the early loading stages, allowing monitoring of the whole fracture process. Parameters that have been used extensively for monitoring and characterization of fracture modes of engineering materials seem to poses characterization power in the case of bone tissue monitoring as well.

  15. Assessment and Reduction of Model Parametric Uncertainties: A Case Study with A Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    Gan, Y.; Liang, X. Z.; Duan, Q.; Xu, J.; Zhao, P.; Hong, Y.

    2017-12-01

    The uncertainties associated with the parameters of a hydrological model need to be quantified and reduced for it to be useful for operational hydrological forecasting and decision support. An uncertainty quantification framework is presented to facilitate practical assessment and reduction of model parametric uncertainties. A case study, using the distributed hydrological model CREST for daily streamflow simulation during the period 2008-2010 over ten watershed, was used to demonstrate the performance of this new framework. Model behaviors across watersheds were analyzed by a two-stage stepwise sensitivity analysis procedure, using LH-OAT method for screening out insensitive parameters, followed by MARS-based Sobol' sensitivity indices for quantifying each parameter's contribution to the response variance due to its first-order and higher-order effects. Pareto optimal sets of the influential parameters were then found by the adaptive surrogate-based multi-objective optimization procedure, using MARS model for approximating the parameter-response relationship and SCE-UA algorithm for searching the optimal parameter sets of the adaptively updated surrogate model. The final optimal parameter sets were validated against the daily streamflow simulation of the same watersheds during the period 2011-2012. The stepwise sensitivity analysis procedure efficiently reduced the number of parameters that need to be calibrated from twelve to seven, which helps to limit the dimensionality of calibration problem and serves to enhance the efficiency of parameter calibration. The adaptive MARS-based multi-objective calibration exercise provided satisfactory solutions to the reproduction of the observed streamflow for all watersheds. The final optimal solutions showed significant improvement when compared to the default solutions, with about 65-90% reduction in 1-NSE and 60-95% reduction in |RB|. The validation exercise indicated a large improvement in model performance with about 40-85% reduction in 1-NSE, and 35-90% reduction in |RB|. Overall, this uncertainty quantification framework is robust, effective and efficient for parametric uncertainty analysis, the results of which provide useful information that helps to understand the model behaviors and improve the model simulations.

  16. Comparison of existing models to simulate anaerobic digestion of lipid-rich waste.

    PubMed

    Béline, F; Rodriguez-Mendez, R; Girault, R; Bihan, Y Le; Lessard, P

    2017-02-01

    Models for anaerobic digestion of lipid-rich waste taking inhibition into account were reviewed and, if necessary, adjusted to the ADM1 model framework in order to compare them. Experimental data from anaerobic digestion of slaughterhouse waste at an organic loading rate (OLR) ranging from 0.3 to 1.9kgVSm -3 d -1 were used to compare and evaluate models. Experimental data obtained at low OLRs were accurately modeled whatever the model thereby validating the stoichiometric parameters used and influent fractionation. However, at higher OLRs, although inhibition parameters were optimized to reduce differences between experimental and simulated data, no model was able to accurately simulate accumulation of substrates and intermediates, mainly due to the wrong simulation of pH. A simulation using pH based on experimental data showed that acetogenesis and methanogenesis were the most sensitive steps to LCFA inhibition and enabled identification of the inhibition parameters of both steps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Model predictive control of attitude maneuver of a geostationary flexible satellite based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    TayyebTaher, M.; Esmaeilzadeh, S. Majid

    2017-07-01

    This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.

  18. Polarization-correlation optical microscopy of anisotropic biological layers

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Y.; Balazyuk, V. N.; Khukhlina, O.; Viligorska, K.; Bykov, A.; Doronin, A.; Meglinski, I.

    2016-09-01

    The theoretical background of azimuthally stable method of Jones-matrix mapping of histological sections of biopsy of myocardium tissue on the basis of spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of myocardium tissue histological sections are found. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin fibrils of myocardium tissue of different necrotic states - dead due to coronary heart disease and acute coronary insufficiency are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of differentiation of cause of death are determined.

  19. In orbit adiabatic demagnetization refrigeration for bolometric and microcalorimetric detectors

    NASA Astrophysics Data System (ADS)

    Hepburn, I. D.; Ade, P. A. R.; Davenport, I.; Smith, A.; Sumner, T. J.

    1992-12-01

    The new generation of photon detectors for satellite based mm/submm and X-ray astronomical observations require cooling to temperatures in the range 60 to 300 mK. At present Adiabatic Demagnetization Refrigeration (ADR) is the best proposed technique for producing these temperatures in orbit due to its inherent simplicity and gravity independent operation. For the efficient utilization of an ADR it is important to realize long operational times at base temperature with short recycle times. These criteria are dependent on several parameters; the required operating temperature, the cryogen bath temperature, the amount of heat leakage to the paramagnetic salt, the volume and type of salt and the maximum obtainable magnetic field. For space application these parameters are restricted by the limitations imposed on the physical size, the mass, the available electrical power and the cooling power available. The design considerations required in order to match these parameters are described and test data from a working laboratory system is presented.

  20. Corrections to MODIS Terra Calibration and Polarization Trending Derived from Ocean Color Products

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Eplee, Robert E.; Franz, Bryan A.

    2014-01-01

    Remotely sensed ocean color products require highly accurate top-of-atmosphere (TOA) radiances, on the order of 0.5% or better. Due to incidents both prelaunch and on-orbit, meeting this requirement has been a consistent problem for the MODIS instrument on the Terra satellite, especially in the later part of the mission. The NASA Ocean Biology Processing Group (OBPG) has developed an approach to correct the TOA radiances of MODIS Terra using spatially and temporally averaged ocean color products from other ocean color sensors (such as the SeaWiFS instrument on Orbview-2 or the MODIS instrument on the Aqua satellite). The latest results suggest that for MODIS Terra, both linear polarization parameters of the Mueller matrix are temporally evolving. A change to the functional form of the scan angle dependence improved the quality of the derived coefficients. Additionally, this paper demonstrates that simultaneously retrieving polarization and gain parameters improves the gain retrieval (versus retrieving the gain parameter only).

  1. Intensification of the Reverse Cationic Flotation of Hematite Ores with Optimization of Process and Hydrodynamic Parameters of Flotation Cell

    NASA Astrophysics Data System (ADS)

    Poperechnikova, O. Yu; Filippov, L. O.; Shumskaya, E. N.; Filippova, I. V.

    2017-07-01

    The demand of high grade iron ore concentrates is a major issue due to the depletion of rich iron-bearing ores and high competitiveness in the iron ore market. Iron ore production is forced out to upgrade flowsheets to decrease the silica content in the pelettes. Different types of ore have different mineral composition and texture-structural features which require different mineral processing methods and technologies. The paper presents a comparative study of the cationic and anionic flotation routes to process a fine-grain oxidized iron ore. The modified carboxymethyl cellulose was found as the most efficient depressant in reverse cationic flotation. The results of flotation optimization of hematite ores using matrix of second-order center rotatable uniform design allowed to define the collector concentration, impeller rotation speed and air flowrate as the main flotation parameters impacting on the iron ore concentrate quality and iron recovery in a laboratory flotation machine. These parameters have been selected as independent during the experiments.

  2. An approach to design controllers for MIMO fractional-order plants based on parameter optimization algorithm.

    PubMed

    Xue, Dingyü; Li, Tingxue

    2017-04-27

    The parameter optimization method for multivariable systems is extended to the controller design problems for multiple input multiple output (MIMO) square fractional-order plants. The algorithm can be applied to search for the optimal parameters of integer-order controllers for fractional-order plants with or without time delays. Two examples are given to present the controller design procedures for MIMO fractional-order systems. Simulation studies show that the integer-order controllers designed are robust to plant gain variations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Role of dimensionality in Axelrod's model for the dissemination of culture

    NASA Astrophysics Data System (ADS)

    Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; Miguel, Maxi San

    2003-09-01

    We analyze a model of social interaction in one- and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second-order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first-order transition between an ordered and a disordered state.

  4. Avalanches and scaling collapse in the large-N Kuramoto model

    NASA Astrophysics Data System (ADS)

    Coleman, J. Patrick; Dahmen, Karin A.; Weaver, Richard L.

    2018-04-01

    We study avalanches in the Kuramoto model, defined as excursions of the order parameter due to ephemeral episodes of synchronization. We present scaling collapses of the avalanche sizes, durations, heights, and temporal profiles, extracting scaling exponents, exponent relations, and scaling functions that are shown to be consistent with the scaling behavior of the power spectrum, a quantity independent of our particular definition of an avalanche. A comprehensive scaling picture of the noise in the subcritical finite-N Kuramoto model is developed, linking this undriven system to a larger class of driven avalanching systems.

  5. Manufacturing of hybrid aluminum copper joints by electromagnetic pulse welding - Identification of quantitative process windows

    NASA Astrophysics Data System (ADS)

    Psyk, Verena; Scheffler, Christian; Linnemann, Maik; Landgrebe, Dirk

    2017-10-01

    Compared to conventional joining techniques, electromagnetic pulse welding offers important advantages especially when it comes to dissimilar material connections as e.g. copper aluminum welds. However, due to missing guidelines and tools for process design, the process has not been widely implemented in industrial production, yet. In order to contribute to overcoming this obstacle, a combined numerical and experimental process analysis for electromagnetic pulse welding of Cu-DHP and EN AW-1050 was carried out and the results were consolidated in a quantitative collision parameter based process window.

  6. Thermal effects in nano-sized adsorbate islands growth processes at vapor deposition

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Dvornichenko, Alina V.

    2016-02-01

    We study a model of pattern formation in adsorptive systems with a local change in the surface temperature due to adsorption/desorption processes. It is found that thermal effects shrink the domain of main system parameters, when pattern formation is possible. It is shown that an increase in a surface reheat efficiency delays ordering processes. We have found that a distribution of adsorbate islands over sizes depends on relaxation and reheat processes. We have shown that the mean linear size of stationary adsorbate islands is of nano-meter range.

  7. Using GLONASS signal for clock synchronization

    NASA Technical Reports Server (NTRS)

    Gouzhva, Yuri G.; Gevorkyan, Arvid G.; Bogdanov, Pyotr P.; Ovchinnikov, Vitaly V.

    1994-01-01

    Although in accuracy parameters GLONASS is correlated with GPS, using GLONASS signals for high-precision clock synchronization was, up to the recent time, of limited utility due to the lack of specialized time receivers. In order to improve this situation, in late 1992 the Russian Institute of Radionavigation and Time (RMT) began to develop a GLONASS time receiver using as a basis the airborne ASN-16 receiver. This paper presents results of estimating user clock synchronization accuracy via GLONASS signals using ASN-16 receiver in the direct synchronization and common-view modes.

  8. Not Fully Developed Turbulence in the Dow Jones Index

    NASA Astrophysics Data System (ADS)

    Trincado, Estrella; Vindel, Jose María

    2013-08-01

    The shape of the curves relating the scaling exponents of the structure functions to the order of these functions is shown to distinguish the Dow Jones index from other stock market indices. We conclude from the shape differences that the information-loss rate for the Dow Jones index is reduced at smaller time scales, while it grows for other indices. This anomaly is due to the construction of the index, in particular to its dependence on a single market parameter: price. Prices are subject to turbulence bursts, which act against full development of turbulence.

  9. Little-Parks oscillations in superconducting ring with Josephson junctions

    NASA Astrophysics Data System (ADS)

    Sharon, Omri J.; Sharoni, Amos; Berger, Jorge; Shaulov, Avner; Yeshurun, Yosi

    2018-03-01

    Nb nano-rings connected serially by Nb wires exhibit, at low bias currents, the typical parabolic Little-Parks magnetoresistance oscillations. As the bias current increases, these oscillations become sinusoidal. This result is ascribed to the generation of Josephson junctions caused by the combined effect of current-induced phase slips and the non-uniformity of the order parameter along each ring due to the Nb wires attached to it. This interpretation is validated by further increasing the bias current, which results in magnetoresistance oscillations typical of a SQUID.

  10. Air Vehicle Integration and Technology Research (AVIATR). Task Order 0003: Condition-Based Maintenance Plus Structural Integrity (CBM+SI) Demonstration (September 2011 to March 2012)

    DTIC Science & Technology

    2012-03-01

    the potential maintenance plans are compared via the TPMs , which are related to the cost of ownership of the fleet and to aircraft availability. 7...due to maintenance of the wing system is reported because this measure has a straightforward interpretation. This TPM is referred to as Fleet DT...3.2.2. Maintenance Parameters The F-15 Program has indicated that, in practice , maintenance actions are generally performed on multiples of 200 FH. For

  11. Nailfold capillaroscopy in leprosy.

    PubMed

    Lima, Adma Silva de; Pizzol, Vanessa Irusta Dal; Fritsch, Scheila; Fonseca, Gabriela Poglia; Mulinari-Brenner, Fabiane Andrade; Muller, Carolina de Souza; Ottoboni, Vanessa Cristhine Dalombo

    2016-01-01

    Due to mounting evidences of interaction between Hansen's bacilli with endothelial cells and the paucity of studies addressing the presence of nailfold capillaroscopic alterations in patients with Hansen's disease, a study was carried out in order to verify the presence of capillaroscopic alterations in patients with leprosy in its various forms and its correlation with clinical parameters. Ten patients were evaluated at a specialized university service. Sixty percent of those had some capillaroscopic change, such as micro-hemorrhages, ectatic, bushy and corkscrew capillaries. Such changes were unspecific, which suggests there is not a specific pattern for this disease.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, Helmut Matthias; Vogel, Sven C.

    New in situ data for the U-C system are presented, with the goal of improving knowledge of the phase diagram to enable production of new ceramic fuels. The none quenchable, cubic, δ-phase, which in turn is fundamental to computational methods, was identified. Rich datasets of the formation synthesis of uranium carbide yield kinetics data which allow the benchmarking of modeling, thermodynamic parameters etc. The order-disorder transition (carbon sublattice melting) was observed due to equal sensitivity of neutrons to both elements. This dynamic has not been accurately described in some recent simulation-based publications.

  13. The influence of operational and environmental loads on the process of assessing damages in beams

    NASA Astrophysics Data System (ADS)

    Furdui, H.; Muntean, F.; Minda, A. A.; Praisach, Z. I.; Gillich, N.

    2015-07-01

    Damage detection methods based on vibration analysis make use of the modal parameter changes. Natural frequencies are the features that can be acquired most simply and inexpensively. But this parameter is influenced by environmental conditions, e.g. temperature and operational loads as additional masses or axial loads induced by restraint displacements. The effect of these factors is not completely known, but in the numerous actual research it is considered that they affect negatively the damage assessment process. This is justified by the small frequency changes occurring due to damage, which can be masked by the frequency shifts due to external loads. The paper intends to clarify the effect of external loads on the natural frequencies of beams and truss elements, and to show in which manner the damage detection process is affected by these loads. The finite element analysis, performed on diverse structures for a large range of temperature values, has shown that the temperature itself has a very limited effect on the frequency changes. Thus, axial forces resulted due to obstructed displacements can influence more substantially the frequency changes. These facts are demonstrated by experimental and theoretical studies. Finally, we succeed to adapt a prior contrived relation providing the frequency changes due to damage in order to fit the case of known external loads. Whereas a new baseline for damage detection was found, considering the effect of temperature and external loads, this process can be performed without other complication.

  14. Simulating Bilayers of Nonionic Surfactants with the GROMOS-Compatible 2016H66 Force Field.

    PubMed

    Senac, Caroline; Urbach, Wladimir; Kurtisovski, Erol; Hünenberger, Philippe H; Horta, Bruno A C; Taulier, Nicolas; Fuchs, Patrick F J

    2017-10-03

    Polyoxyethylene glycol alkyl ether amphiphiles (C i E j ) are important nonionic surfactants, often used for biophysical and membrane protein studies. In this work, we extensively test the GROMOS-compatible 2016H66 force field in molecular dynamics simulations involving the lamellar phase of a series of C i E j surfactants, namely C 12 E 2 , C 12 E 3 , C 12 E 4 , C 12 E 5 , and C 14 E 4 . The simulations reproduce qualitatively well the monitored structural properties and their experimental trends along the surfactant series, although some discrepancies remain, in particular in terms of the area per surfactant, the equilibrium phase of C 12 E 5 , and the order parameters of C 12 E 3 , C 12 E 4 , and C 12 E 5 . The polar head of the C i E j surfactants is highly hydrated, almost like a single polyethyleneoxide (PEO) molecule at full hydration, resulting in very compact conformations. Within the bilayer, all C i E j surfactants flip-flop spontaneously within tens of nanoseconds. Water-permeation is facilitated, and the bending rigidity is 4 to 5 times lower than that of typical phospholipid bilayers. In line with another recent theoretical study, the simulations show that the lamellar phase of C i E j contains large hydrophilic pores. These pores should be abundant in order to reproduce the comparatively low NMR order parameters. We show that their contour length is directly correlated to the order parameters, and we estimate that they should occupy approximately 7-10% of the total membrane area. Due to their highly dynamic nature (rapid flip-flops, high water permeability, observed pore formation), C i E j surfactant bilayers are found to represent surprisingly challenging systems in terms of modeling. Given this difficulty, the results presented here show that the 2016H66 parameters, optimized independently considering pure-liquid as well as polar and nonpolar solvation properties of small organic molecules, represent a good starting point for simulating these systems.

  15. Single neuron modeling and data assimilation in BNST neurons

    NASA Astrophysics Data System (ADS)

    Farsian, Reza

    Neurons, although tiny in size, are vastly complicated systems, which are responsible for the most basic yet essential functions of any nervous system. Even the most simple models of single neurons are usually high dimensional, nonlinear, and contain many parameters and states which are unobservable in a typical neurophysiological experiment. One of the most fundamental problems in experimental neurophysiology is the estimation of these parameters and states, since knowing their values is essential in identification, model construction, and forward prediction of biological neurons. Common methods of parameter and state estimation do not perform well for neural models due to their high dimensionality and nonlinearity. In this dissertation, two alternative approaches for parameters and state estimation of biological neurons have been demonstrated: dynamical parameter estimation (DPE) and a Markov Chain Monte Carlo (MCMC) method. The first method uses elements of chaos control and synchronization theory for parameter and state estimation. MCMC is a statistical approach which uses a path integral formulation to evaluate a mean and an error bound for these unobserved parameters and states. These methods have been applied to biological system of neurons in Bed Nucleus of Stria Termialis neurons (BNST) of rats. State and parameters of neurons in both systems were estimated, and their value were used for recreating a realistic model and predicting the behavior of the neurons successfully. The knowledge of biological parameters can ultimately provide a better understanding of the internal dynamics of a neuron in order to build robust models of neuron networks.

  16. Physico-Chemical Alternatives in Lignocellulosic Materials in Relation to the Kind of Component for Fermenting Purposes

    PubMed Central

    Coz, Alberto; Llano, Tamara; Cifrián, Eva; Viguri, Javier; Maican, Edmond; Sixta, Herbert

    2016-01-01

    The complete bioconversion of the carbohydrate fraction is of great importance for a lignocellulosic-based biorefinery. However, due to the structure of the lignocellulosic materials, and depending basically on the main parameters within the pretreatment steps, numerous byproducts are generated and they act as inhibitors in the fermentation operations. In this sense, the impact of inhibitory compounds derived from lignocellulosic materials is one of the major challenges for a sustainable biomass-to-biofuel and -bioproduct industry. In order to minimise the negative effects of these compounds, numerous methodologies have been tested including physical, chemical, and biological processes. The main physical and chemical treatments have been studied in this work in relation to the lignocellulosic material and the inhibitor in order to point out the best mechanisms for fermenting purposes. In addition, special attention has been made in the case of lignocellulosic hydrolysates obtained by chemical processes with SO2, due to the complex matrix of these materials and the increase in these methodologies in future biorefinery markets. Recommendations of different detoxification methods have been given. PMID:28773700

  17. On the Interplay between Order Parameter Dynamics and System Parameter Dynamics in Human Perceptual-Cognitive-Behavioral Systems.

    PubMed

    Frank, T D

    2015-04-01

    Previous research has demonstrated that perceiving, thinking, and acting are human activities that correspond to self-organized patterns. The emergence of such patterns can be completely described in terms of the dynamics of the pattern amplitudes, which are referred to as order parameters. The patterns emerge at bifurcations points when certain system parameters internal and external to a human agent exceed critical values. At issue is how one might study the order parameter dynamics for sequences of consecutive, emergent perceptual, cognitive, or behavioral activities. In particular, these activities may in turn impact the system parameters that have led to the emergence of the activities in the first place. This interplay between order parameter dynamics and system parameter dynamics is discussed in general and formulated in mathematical terms. Previous work that has made use of this two-tiered framework of order parameter and system parameter dynamics are briefly addressed. As an application, a model for perception under functional fixedness is presented. Finally, it is argued that the phenomena that emerge in this framework and can be observed when human agents perceive, think, and act are just as likely to occur in pattern formation systems of the inanimate world. Consequently, these phenomena do not necessarily have a neurophysiological basis but should instead be understood from the perspective of the theory of self-organization.

  18. Reduction and Uncertainty Analysis of Chemical Mechanisms Based on Local and Global Sensitivities

    NASA Astrophysics Data System (ADS)

    Esposito, Gaetano

    Numerical simulations of critical reacting flow phenomena in hypersonic propulsion devices require accurate representation of finite-rate chemical kinetics. The chemical kinetic models available for hydrocarbon fuel combustion are rather large, involving hundreds of species and thousands of reactions. As a consequence, they cannot be used in multi-dimensional computational fluid dynamic calculations in the foreseeable future due to the prohibitive computational cost. In addition to the computational difficulties, it is also known that some fundamental chemical kinetic parameters of detailed models have significant level of uncertainty due to limited experimental data available and to poor understanding of interactions among kinetic parameters. In the present investigation, local and global sensitivity analysis techniques are employed to develop a systematic approach of reducing and analyzing detailed chemical kinetic models. Unlike previous studies in which skeletal model reduction was based on the separate analysis of simple cases, in this work a novel strategy based on Principal Component Analysis of local sensitivity values is presented. This new approach is capable of simultaneously taking into account all the relevant canonical combustion configurations over different composition, temperature and pressure conditions. Moreover, the procedure developed in this work represents the first documented inclusion of non-premixed extinction phenomena, which is of great relevance in hypersonic combustors, in an automated reduction algorithm. The application of the skeletal reduction to a detailed kinetic model consisting of 111 species in 784 reactions is demonstrated. The resulting reduced skeletal model of 37--38 species showed that the global ignition/propagation/extinction phenomena of ethylene-air mixtures can be predicted within an accuracy of 2% of the full detailed model. The problems of both understanding non-linear interactions between kinetic parameters and identifying sources of uncertainty affecting relevant reaction pathways are usually addressed by resorting to Global Sensitivity Analysis (GSA) techniques. In particular, the most sensitive reactions controlling combustion phenomena are first identified using the Morris Method and then analyzed under the Random Sampling -- High Dimensional Model Representation (RS-HDMR) framework. The HDMR decomposition shows that 10% of the variance seen in the extinction strain rate of non-premixed flames is due to second-order effects between parameters, whereas the maximum concentration of acetylene, a key soot precursor, is affected by mostly only first-order contributions. Moreover, the analysis of the global sensitivity indices demonstrates that improving the accuracy of the reaction rates including the vinyl radical, C2H3, can drastically reduce the uncertainty of predicting targeted flame properties. Finally, the back-propagation of the experimental uncertainty of the extinction strain rate to the parameter space is also performed. This exercise, achieved by recycling the numerical solutions of the RS-HDMR, shows that some regions of the parameter space have a high probability of reproducing the experimental value of the extinction strain rate between its own uncertainty bounds. Therefore this study demonstrates that the uncertainty analysis of bulk flame properties can effectively provide information on relevant chemical reactions.

  19. Evidence for different accretion regimes in GRO J1008-57

    NASA Astrophysics Data System (ADS)

    Kühnel, Matthias; Fürst, Felix; Pottschmidt, Katja; Kreykenbohm, Ingo; Ballhausen, Ralf; Falkner, Sebastian; Rothschild, Richard E.; Klochkov, Dmitry; Wilms, Jörn

    2017-11-01

    We present a comprehensive spectral analysis of the BeXRB GRO J1008-57 over a luminosity range of three orders of magnitude using NuSTAR, Suzaku, and RXTE data. We find significant evolution of the spectral parameters with luminosity. In particular, the photon index hardens with increasing luminosity at intermediate luminosities in the range 1036-1037 erg s-1. This evolution is stable and repeatedly observed over different outbursts. However, at the extreme ends of the observed luminosity range, we find that the correlation breaks down, with a significance level of at least 3.7σ. We conclude that these changes indicate transitions to different accretion regimes, which are characterized by different deceleration processes, such as Coulomb or radiation breaking. We compare our observed luminosity levels of these transitions to theoretical predications and discuss the variation of those theoretical luminosity values with fundamental neutron star parameters. Finally, we present detailed spectroscopy of the unique "triple peaked" outburst in 2014/15 which does not fit in the general parameter evolution with luminosity. The pulse profile on the other hand is consistent with what is expected at this luminosity level, arguing against a change in accretion geometry. In summary, GRO J1008-57 is an ideal target to study different accretion regimes due to the well-constrained evolution of its broad-band spectral continuum over several orders of magnitude in luminosity.

  20. Prediction of Human Pharmacokinetic Profile After Transdermal Drug Application Using Excised Human Skin.

    PubMed

    Yamamoto, Syunsuke; Karashima, Masatoshi; Arai, Yuta; Tohyama, Kimio; Amano, Nobuyuki

    2017-09-01

    Although several mathematical models have been reported for the estimation of human plasma concentration profiles of drug substances after dermal application, the successful cases that can predict human pharmacokinetic profiles are limited. Therefore, the aim of this study is to investigate the prediction of human plasma concentrations after dermal application using in vitro permeation parameters obtained from excised human skin. The in vitro skin permeability of 7 marketed drug products was evaluated. The plasma concentration-time profiles of the drug substances in humans after their dermal application were simulated using compartment models and the clinical pharmacokinetic parameters. The transdermal process was simulated using the in vitro skin permeation rate and lag time assuming a zero-order absorption. These simulated plasma concentration profiles were compared with the clinical data. The result revealed that the steady-state plasma concentration of diclofenac and the maximum concentrations of nicotine, bisoprolol, rivastigmine, and lidocaine after topical application were within 2-fold of the clinical data. Furthermore, the simulated concentration profiles of bisoprolol, nicotine, and rivastigmine reproduced the decrease in absorption due to drug depletion from the formulation. In conclusion, this simple compartment model using in vitro human skin permeation parameters as zero-order absorption predicted the human plasma concentrations accurately. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms.

    PubMed

    Asgharnia, Amirhossein; Shahnazi, Reza; Jamali, Ali

    2018-05-11

    The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Reducing errors in the GRACE gravity solutions using regularization

    NASA Astrophysics Data System (ADS)

    Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron D.

    2012-09-01

    The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth's monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003-Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4 solutions (RL04) from the Center for Space Research (CSR). Post-fit residual analysis shows that the regularized solutions fit the data to within the noise level of GRACE. A time series of filtered hydrological model is used to confirm that signal attenuation for basins in the Total Runoff Integrating Pathways (TRIP) database over 320 km radii is less than 1 cm equivalent water height RMS, which is within the noise level of GRACE.

  3. Magnetic Correlations in URu2Si2 under Chemical and Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Williams, Travis; Aczel, Adam; Broholm, Collin; Buyers, William; Leao, Juscelino; Luke, Graeme; Rodriguez-Riviera, Jose; Stone, Matthew; Wilson, Murray; Yamani, Zahra

    URu2Si2 has been an intense area of study for the last 30 years due to a mysterious hidden order phase that appears below T0 = 17.5 K. The hidden order phase has been shown to be extremely sensitive to perturbations, being destroyed quickly by the application of a magnetic field, hydrostatic or uniaxial pressure, and chemical doping. While attempting to understand the properties of URu2Si2, neutron scattering has found spin correlations that are intimately related to this hidden order phase and which are also suppressed with these perturbations. Here, I will outline some recent neutron scattering work to study these correlations in two exceptional cases where the hidden order phase is enhanced: hydrostatic pressure and chemical pressure using Fe- and Os-doping. In both of these cases, T0 increases before an antiferromagnetic phase emerges. By performing a careful analysis of the neutron data, we show that these two phases are much more related than had been previously appreciated. This implies that the hidden order is likely compatible with an antiferromagnetic ground state, placing constraints on the nature of the missing order parameter.

  4. With-in host dynamics of L. monocytogenes and thresholds for distinct infection scenarios.

    PubMed

    Rahman, Ashrafur; Munther, Daniel; Fazil, Aamir; Smith, Ben; Wu, Jianhong

    2018-05-26

    The case fatality and illness rates associated with L. monocytogenes continue to pose a serious public health burden despite the significant efforts and control protocol administered by private and public sectors. Due to the advance in surveillance and improvement in detection methodology, the knowledge of sources, transmission routes, growth potential in food process units and storage, effect of pH and temperature are well understood. However, the with-in host growth and transmission mechanisms of L. monocytogenes, particularly within the human host, remain unclear, largely due to the limited access to scientific experimentation on the human population. In order to provide insight towards the human immune response to the infection caused by L. monocytogenes, we develop a with-in host mathematical model. The model explains, in terms of biological parameters, the states of asymptomatic infection, mild infection and systemic infection leading to listeriosis. The activation and proliferation of T-cells are found to be critical for the susceptibility of the infection. Utilizing stability analysis and numerical simulation, the ranges of the critical parameters relative to infection states are established. Bifurcation analysis shows the impact of the differences of these parameters on the dynamics of the model. Finally, we present model applications in regards to predicting the risk potential of listeriosis relative to the susceptible human population. Copyright © 2018. Published by Elsevier Ltd.

  5. Interaction between pancreatic β cell and electromagnetic fields: A systematic study toward finding the natural frequency spectrum of β cell system.

    PubMed

    Farashi, Sajjad

    2017-01-01

    Interaction between biological systems and environmental electric or magnetic fields has gained attention during the past few decades. Although there are a lot of studies that have been conducted for investigating such interaction, the reported results are considerably inconsistent. Besides the complexity of biological systems, the important reason for such inconsistent results may arise due to different excitation protocols that have been applied in different experiments. In order to investigate carefully the way that external electric or magnetic fields interact with a biological system, the parameters of excitation, such as intensity or frequency, should be selected purposefully due to the influence of these parameters on the system response. In this study, pancreatic β cell, the main player of blood glucose regulating system, is considered and the study is focused on finding the natural frequency spectrum of the system using modeling approach. Natural frequencies of a system are important characteristics of the system when external excitation is applied. The result of this study can help researchers to select proper frequency parameter for electrical excitation of β cell system. The results show that there are two distinct frequency ranges for natural frequency of β cell system, which consist of extremely low (or near zero) and 100-750 kHz frequency ranges. There are experimental works on β cell exposure to electromagnetic fields that support such finding.

  6. Helicopter Control Energy Reduction Using Moving Horizontal Tail

    PubMed Central

    Oktay, Tugrul; Sal, Firat

    2015-01-01

    Helicopter moving horizontal tail (i.e., MHT) strategy is applied in order to save helicopter flight control system (i.e., FCS) energy. For this intention complex, physics-based, control-oriented nonlinear helicopter models are used. Equations of MHT are integrated into these models and they are together linearized around straight level flight condition. A specific variance constrained control strategy, namely, output variance constrained Control (i.e., OVC) is utilized for helicopter FCS. Control energy savings due to this MHT idea with respect to a conventional helicopter are calculated. Parameters of helicopter FCS and dimensions of MHT are simultaneously optimized using a stochastic optimization method, namely, simultaneous perturbation stochastic approximation (i.e., SPSA). In order to observe improvement in behaviors of classical controls closed loop analyses are done. PMID:26180841

  7. Models of evaluation of public joint-stock property management

    NASA Astrophysics Data System (ADS)

    Yakupova, N. M.; Levachkova, S.; Absalyamova, S. G.; Kvon, G.

    2017-12-01

    The paper deals with the models of evaluation of performance of both the management company and the individual subsidiaries on the basis of a combination of elements and multi-parameter and target approaches. The article shows that due to the power of multi-dimensional and multi-directional indicators of financial and economic activity it is necessary to assess the degree of achievement of the objectives with the use of multivariate ordinal model as a set of indicators, ordered by growth so that the maintenance of this order on a long interval of time will ensure the effective functioning of the enterprise in the long term. It is shown that these models can be regarded as the monitoring tools of implementation of strategies and guide the justification effectiveness of implementation of management decisions.

  8. Itinerant G-type antiferromagnetic order in SrCr 2 As 2

    DOE PAGES

    Das, Pinaki; Sangeetha, N. S.; Lindemann, George R.; ...

    2017-07-07

    Here, neutron-diffraction and magnetic susceptibility studies of polycrystalline SrCr 2As 2 reveal that this compound is an itinerant G-type antiferromagnet below the Néel temperature T N = 590(5) K with the Cr magnetic moments aligned along the tetragonal c axis. The system remains tetragonal to the lowest measured temperature (~12 K). The lattice parameter ratio c/a and the magnetic moment saturate at about the same temperature below ~200 K, indicating a possible magnetoelastic coupling. The ordered moment μ = 1.9(1)μ B/Cr, measured at T = 12 K, is significantly reduced compared to its localized value (4μ B/Cr) due to themore » itinerant character brought about by hybridization between the Cr 3d and As 4p orbitals.« less

  9. Itinerant G-type antiferromagnetic order in SrCr2As2

    NASA Astrophysics Data System (ADS)

    Das, Pinaki; Sangeetha, N. S.; Lindemann, George R.; Heitmann, T. W.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.; Johnston, D. C.; Vaknin, D.

    2017-07-01

    Neutron-diffraction and magnetic susceptibility studies of polycrystalline SrCr2As2 reveal that this compound is an itinerant G-type antiferromagnet below the Néel temperature TN = 590(5) K with the Cr magnetic moments aligned along the tetragonal c axis. The system remains tetragonal to the lowest measured temperature (˜12 K). The lattice parameter ratio c /a and the magnetic moment saturate at about the same temperature below ˜200 K, indicating a possible magnetoelastic coupling. The ordered moment μ =1.9 (1 ) μB /Cr , measured at T =12 K, is significantly reduced compared to its localized value (4 μB /Cr ) due to the itinerant character brought about by hybridization between the Cr 3 d and As 4 p orbitals.

  10. Itinerant G-type antiferromagnetic order in SrCr 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Pinaki; Sangeetha, N. S.; Lindemann, George R.

    Here, neutron-diffraction and magnetic susceptibility studies of polycrystalline SrCr 2As 2 reveal that this compound is an itinerant G-type antiferromagnet below the Néel temperature T N = 590(5) K with the Cr magnetic moments aligned along the tetragonal c axis. The system remains tetragonal to the lowest measured temperature (~12 K). The lattice parameter ratio c/a and the magnetic moment saturate at about the same temperature below ~200 K, indicating a possible magnetoelastic coupling. The ordered moment μ = 1.9(1)μ B/Cr, measured at T = 12 K, is significantly reduced compared to its localized value (4μ B/Cr) due to themore » itinerant character brought about by hybridization between the Cr 3d and As 4p orbitals.« less

  11. CDW order and unconventional s-wave superconductivity in Ba1-xNaxTi2Sb2O

    NASA Astrophysics Data System (ADS)

    Kamusella, Sirko; Doan, Phuong; Goltz, Til; Luetkens, Hubertus; Sarkar, Rajib; Guloy, Arnold; Klauss, Hans-Henning

    2014-12-01

    Due to its anticuprate Ti2O layer and its fascinating phase diagram with a large coexistence area of superconductivity and a density wave phase, the new class of titanium based superconductors attracts great scientific interest. In this paper we report μSR investigation on powder samples of Ba1-xNaxTi2Sb2O (x = 0, 0.15, 0.25). Our results exhibit both the presence of a charge density wave and superconductivity in Ba1-xNaxTi2Sb2O. The superconducting order parameter, extracted from a vortex state analysis using the numeric Ginzburg-Landau model, is compatible with a s-wave symmetry. In the universal Uemura classification of superconductors this compound is at the verge of unconventional superconductivity.

  12. Empirical study on social groups in pedestrian evacuation dynamics

    NASA Astrophysics Data System (ADS)

    von Krüchten, Cornelia; Schadschneider, Andreas

    2017-06-01

    Pedestrian crowds often include social groups, i.e. pedestrians that walk together because of social relationships. They show characteristic configurations and influence the dynamics of the entire crowd. In order to investigate the impact of social groups on evacuations we performed an empirical study with pupils. Several evacuation runs with groups of different sizes and different interactions were performed. New group parameters are introduced which allow to describe the dynamics of the groups and the configuration of the group members quantitatively. The analysis shows a possible decrease of evacuation times for large groups due to self-ordering effects. Social groups can be approximated as ellipses that orientate along their direction of motion. Furthermore, explicitly cooperative behaviour among group members leads to a stronger aggregation of group members and an intermittent way of evacuation.

  13. Latent transition models with latent class predictors: attention deficit hyperactivity disorder subtypes and high school marijuana use

    PubMed Central

    Reboussin, Beth A.; Ialongo, Nicholas S.

    2011-01-01

    Summary Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder which is most often diagnosed in childhood with symptoms often persisting into adulthood. Elevated rates of substance use disorders have been evidenced among those with ADHD, but recent research focusing on the relationship between subtypes of ADHD and specific drugs is inconsistent. We propose a latent transition model (LTM) to guide our understanding of how drug use progresses, in particular marijuana use, while accounting for the measurement error that is often found in self-reported substance use data. We extend the LTM to include a latent class predictor to represent empirically derived ADHD subtypes that do not rely on meeting specific diagnostic criteria. We begin by fitting two separate latent class analysis (LCA) models by using second-order estimating equations: a longitudinal LCA model to define stages of marijuana use, and a cross-sectional LCA model to define ADHD subtypes. The LTM model parameters describing the probability of transitioning between the LCA-defined stages of marijuana use and the influence of the LCA-defined ADHD subtypes on these transition rates are then estimated by using a set of first-order estimating equations given the LCA parameter estimates. A robust estimate of the LTM parameter variance that accounts for the variation due to the estimation of the two sets of LCA parameters is proposed. Solving three sets of estimating equations enables us to determine the underlying latent class structures independently of the model for the transition rates and simplifying assumptions about the correlation structure at each stage reduces the computational complexity. PMID:21461139

  14. Assessing uncertainty in ecological systems using global sensitivity analyses: a case example of simulated wolf reintroduction effects on elk

    USGS Publications Warehouse

    Fieberg, J.; Jenkins, Kurt J.

    2005-01-01

    Often landmark conservation decisions are made despite an incomplete knowledge of system behavior and inexact predictions of how complex ecosystems will respond to management actions. For example, predicting the feasibility and likely effects of restoring top-level carnivores such as the gray wolf (Canis lupus) to North American wilderness areas is hampered by incomplete knowledge of the predator-prey system processes and properties. In such cases, global sensitivity measures, such as Sobola?? indices, allow one to quantify the effect of these uncertainties on model predictions. Sobola?? indices are calculated by decomposing the variance in model predictions (due to parameter uncertainty) into main effects of model parameters and their higher order interactions. Model parameters with large sensitivity indices can then be identified for further study in order to improve predictive capabilities. Here, we illustrate the use of Sobola?? sensitivity indices to examine the effect of parameter uncertainty on the predicted decline of elk (Cervus elaphus) population sizes following a hypothetical reintroduction of wolves to Olympic National Park, Washington, USA. The strength of density dependence acting on survival of adult elk and magnitude of predation were the most influential factors controlling elk population size following a simulated wolf reintroduction. In particular, the form of density dependence in natural survival rates and the per-capita predation rate together accounted for over 90% of variation in simulated elk population trends. Additional research on wolf predation rates on elk and natural compensations in prey populations is needed to reliably predict the outcome of predatora??prey system behavior following wolf reintroductions.

  15. Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk - A numerical approach

    NASA Astrophysics Data System (ADS)

    Ramzan, Muhammad; Chung, Jae Dong; Ullah, Naeem

    The aim of present exploration is to study the flow of micropolar nanofluid due to a rotating disk in the presence of magnetic field and partial slip condition. The governing coupled partial differential equations are reduced to nonlinear ordinary differential equations using appropriate transformations. The differential equations are solved numerically by using Maple dsolve command with option numeric which utilize Runge-Kutta fourth-fifth order Fehlberg technique. A comparison to previous study is also added to validate the present results. Moreover, behavior of different parameters on velocity, microrotation, temperature and concentration of nanofluid are presented via graphs and tables. It is noted that the slip effect and magnetic field decay the velocity and microrotation or spin component.

  16. On chemical reaction and porous medium effect in the MHD flow due to a rotating disk with variable thickness

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Nazar, Hira; Imtiaz, Maria; Alsaedi, Ahmed

    2017-06-01

    The present analysis describes the magnetohydrodynamic (MHD) axisymmetric flow of a viscous fluid due to a rotating disk with variable thickness. An electrically conducting fluid fills the porous space. The first-order chemical reaction is considered. The equations of the present problem representing the flow of a fluid are reduced into nonlinear ordinary differential equations. Convergent series solutions are obtained. The impacts of the various involved dimensionless parameters on fluid flow, temperature, concentration, skin frction coefficient and Nusselt number are examined. The radial, tangential and axial components of velocity are affected in a similar manner on changing the thickness coefficient of the disk. Similar effects of the disk thickness coefficient are observed for both the temperature and concentration profile.

  17. [Abnormal hepatic function tests in pregnancy: causes and consequences].

    PubMed

    Nemesánszky, Elemér

    2013-07-21

    The well-known normal ranges of laboratory parameters are altered due to the broad spectrum of physiological changes as well as proinflammatory and procoagulant effects of pregnancy. Hepatic disorders of any aetiology can cause potential problems during gravidity. Most frequently toxic-effects, hepatotrop viruses (such as hepatitis B and C), metabolic syndrome and diseases with autoimmune background can be observed. When dealing with "pregnancy-specific hepatic syndromes", it is very important to consider the "timing-factors" of pathologic changes and deterioration of clinical pictures as well. Due to the progress in cholestasis management, early termination of pregnancy can be avoided in many cases. As the overlap is really broad between various hepatic disorders, a multidisciplinary cooperation of different sub-disciplines is emphasized in order to achieve proper diagnosis and curative measures at early phase.

  18. Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary)

    NASA Astrophysics Data System (ADS)

    Kiss, Tímea; Fiala, Károly; Sipos, György

    2008-06-01

    In the last few years an increase in the frequency and magnitude of floods was detected on the Tisza River, endangering large areas of Hungary. The causes of these record floods were complex, including both natural and human induced factors. This paper focuses on river management works and their effect on planimetric and cross-sectional parameters, with special attention to the flood conductivity changes to the river channel. During 19th century river regulation works, half of the total length of the Tisza River was altered by cut-offs, while in the 20th century mostly revetments and groynes were constructed. Subsequently, horizontal and vertical channel parameters have changed considerably due to semi-natural bed processes. In order to reveal changes, hydrological map series (1842, 1890, 1929, 1957, 1976 and 1999) and cross-sectional surveys from the same dates were analysed. Prior to the intensive human interventions (before 1890s) the river's course was highly sinuous with some very sharp bends. Due to cut-offs both the length and sinuosity of the Tisza River decreased by 35%, while the lengths of straight sections and the river's slope doubled. As a consequence the river incised by up to 3.8 m until the 1929 survey, resulting better flood conductivity, which improved flood safety. In the 1920s river management favoured bank stabilisation in order to stop the lateral migration of the channel. Despite these measures, meander development has continued, however, in a distorted manner. This is reflected by the opposing processes of lengthening centre-line on the one hand and gradually decreasing radius of curvature on the other. These processes can be explained by the continuous development of natural point-bars on the convex bank, and the lack of lateral retreat on the concave stabilised bank. The width of the river decreased by 17-45%, while its mean and maximum depth increased by 5-48%. The area of cross-sections influenced by revetments decreased by 6-19%, resulting in a 6-15% decline in flood conductivity. The non-stabilised sections were influenced by upstream revetments. Therefore, their parameters show similar changes, but with a smaller rate. At present, the flood conductivity of the channel is worse than it was in its natural state. In all, it was found that the ongoing process of cross-sectional distortion is a significant factor in increasing flood stage and hazard, and high floods can be expected more frequently in the future partly due to this factor.

  19. Life cycle assessment and residue leaching: The importance of parameter, scenario and leaching data selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allegrini, E., E-mail: elia@env.dtu.dk; Butera, S.; Kosson, D.S.

    Highlights: • Relevance of metal leaching in waste management system LCAs was assessed. • Toxic impacts from leaching could not be disregarded. • Uncertainty of toxicity, due to background activities, determines LCA outcomes. • Parameters such as pH and L/S affect LCA results. • Data modelling consistency and coverage within an LCA are crucial. - Abstract: Residues from industrial processes and waste management systems (WMSs) have been increasingly reutilised, leading to landfilling rate reductions and the optimisation of mineral resource utilisation in society. Life cycle assessment (LCA) is a holistic methodology allowing for the analysis of systems and products andmore » can be applied to waste management systems to identify environmental benefits and critical aspects thereof. From an LCA perspective, residue utilisation provides benefits such as avoiding the production and depletion of primary materials, but it can lead to environmental burdens, due to the potential leaching of toxic substances. In waste LCA studies where residue utilisation is included, leaching has generally been neglected. In this study, municipal solid waste incineration bottom ash (MSWI BA) was used as a case study into three LCA scenarios having different system boundaries. The importance of data quality and parameter selection in the overall LCA results was evaluated, and an innovative method to assess metal transport into the environment was applied, in order to determine emissions to the soil and water compartments for use in an LCA. It was found that toxic impacts as a result of leaching were dominant in systems including only MSWI BA utilisation, while leaching appeared negligible in larger scenarios including the entire waste system. However, leaching could not be disregarded a priori, due to large uncertainties characterising other activities in the scenario (e.g. electricity production). Based on the analysis of relevant parameters relative to leaching, and on general results of the study, recommendations are provided regarding the use of leaching data in LCA studies.« less

  20. Examining a Thermodynamic Order Parameter of Protein Folding.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2018-05-08

    Dimensionality reduction with a suitable choice of order parameters or reaction coordinates is commonly used for analyzing high-dimensional time-series data generated by atomistic biomolecular simulations. So far, geometric order parameters, such as the root mean square deviation, fraction of native amino acid contacts, and collective coordinates that best characterize rare or large conformational transitions, have been prevailing in protein folding studies. Here, we show that the solvent-averaged effective energy, which is a thermodynamic quantity but unambiguously defined for individual protein conformations, serves as a good order parameter of protein folding. This is illustrated through the application to the folding-unfolding simulation trajectory of villin headpiece subdomain. We rationalize the suitability of the effective energy as an order parameter by the funneledness of the underlying protein free energy landscape. We also demonstrate that an improved conformational space discretization is achieved by incorporating the effective energy. The most distinctive feature of this thermodynamic order parameter is that it works in pointing to near-native folded structures even when the knowledge of the native structure is lacking, and the use of the effective energy will also find applications in combination with methods of protein structure prediction.

  1. Consistent Long-Time Series of GPS Satellite Antenna Phase Center Corrections

    NASA Astrophysics Data System (ADS)

    Steigenberger, P.; Schmid, R.; Rothacher, M.

    2004-12-01

    The current IGS processing strategy disregards satellite antenna phase center variations (pcvs) depending on the nadir angle and applies block-specific phase center offsets only. However, the transition from relative to absolute receiver antenna corrections presently under discussion necessitates the consideration of satellite antenna pcvs. Moreover, studies of several groups have shown that the offsets are not homogeneous within a satellite block. Manufacturer specifications seem to confirm this assumption. In order to get best possible antenna corrections, consistent ten-year time series (1994-2004) of satellite-specific pcvs and offsets were generated. This challenging effort became possible as part of the reprocessing of a global GPS network currently performed by the Technical Universities of Munich and Dresden. The data of about 160 stations since the official start of the IGS in 1994 have been reprocessed, as today's GPS time series are mostly inhomogeneous and inconsistent due to continuous improvements in the processing strategies and modeling of global GPS solutions. An analysis of the signals contained in the time series of the phase center offsets demonstrates amplitudes on the decimeter level, at least one order of magnitude worse than the desired accuracy. The periods partly arise from the GPS orbit configuration, as the orientation of the orbit planes with regard to the inertial system repeats after about 350 days due to the rotation of the ascending nodes. In addition, the rms values of the X- and Y-offsets show a high correlation with the angle between the orbit plane and the direction to the sun. The time series of the pcvs mainly point at the correlation with the global terrestrial scale. Solutions with relative and absolute phase center corrections, with block- and satellite-specific satellite antenna corrections demonstrate the effect of this parameter group on other global GPS parameters such as the terrestrial scale, station velocities, the geocenter position or the tropospheric delays. Thus, deeper insight into the so-called `Bermuda triangle' of several highly correlated parameters is given.

  2. Cassini Ion Mass Spectrometer Peak Calibrations from Statistical Analysis of Flight Data

    NASA Astrophysics Data System (ADS)

    Woodson, A. K.; Johnson, R. E.

    2017-12-01

    The Cassini Ion Mass Spectrometer (IMS) is an actuating time-of-flight (TOF) instrument capable of resolving ion mass, energy, and trajectory over a field of view that captures nearly the entire sky. One of three instruments composing the Cassini Plasma Spectrometer, IMS sampled plasma throughout the Kronian magnetosphere from 2004 through 2012 when it was permanently disabled due to an electrical malfunction. Initial calibration of the flight instrument at Southwest Research Institute (SwRI) was limited to a handful of ions and energies due to time constraints, with only about 30% of planned measurements carried out prior to launch. Further calibration measurements were subsequently carried out after launch at SwRI and Goddard Space Flight Center using the instrument prototype and engineering model, respectively. However, logistical differences among the three calibration efforts raise doubts as to how accurately the post-launch calibrations describe the behavior of the flight instrument. Indeed, derived peak parameters for some ion species differ significantly from one calibration to the next. In this study we instead perform a statistical analysis on 8 years of flight data in order to extract ion peak parameters that depend only on the response of the flight instrument itself. This is accomplished by first sorting the TOF spectra based on their apparent compositional similarities (e.g. primarily water group ions, primarily hydrocarbon ions, etc.) and normalizing each spectrum. The sorted, normalized data are then binned according to TOF, energy, and counts in order to generate energy-dependent probability density maps of each ion peak contour. Finally, by using these density maps to constrain a stochastic peak fitting algorithm we extract confidence intervals for the model parameters associated with various measured ion peaks, establishing a logistics-independent calibration of the body of IMS data gathered over the course of the Cassini mission.

  3. Use of the SLW index to calculate growth function in the sea cucumber Isostichopus badionotus

    PubMed Central

    Poot-Salazar, Alicia; Hernández-Flores, Álvaro; Ardisson, Pedro-Luis

    2014-01-01

    Age and growth analysis is essential to fisheries management. Indirect methods to calculate growth are widely used; however, length frequency data analysis in sea cucumbers is complicated by high data variability caused by body wall elasticity. Here we calculated Isostichopus badionotus parameters of the von Bertalanffy growth function. In order to address bias produced by body wall elasticity, we compared the performance of four measurements and one compound index that combines different biometric parameters: the square root of the length-width product (SLW). Results showed that variability in length data due to body wall elasticity was controlled by using body length (Le) from the SLW compound index. Growth in I. badionotus follows a negative allometric tendency. Slow or zero growth periods were observed during October and November, when weather conditions were adverse. PMID:24909262

  4. Probabilistic Analysis of Gas Turbine Field Performance

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2002-01-01

    A gas turbine thermodynamic cycle was computationally simulated and probabilistically evaluated in view of the several uncertainties in the performance parameters, which are indices of gas turbine health. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design, enhance performance, increase system availability and make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in the gas turbine health determination and to the identification of both the most critical measurements and parameters. Probabilistic analysis aims at unifying and improving the control and health monitoring of gas turbine aero-engines by increasing the quality and quantity of information available about the engine's health and performance.

  5. THE HYPERFINE STRUCTURE OF THE ROTATIONAL SPECTRUM OF HDO AND ITS EXTENSION TO THE THz REGION: ACCURATE REST FREQUENCIES AND SPECTROSCOPIC PARAMETERS FOR ASTROPHYSICAL OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina

    2015-06-10

    The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hfmore » splittings in astronomical spectra has been discussed.« less

  6. Parallel stochastic simulation of macroscopic calcium currents.

    PubMed

    González-Vélez, Virginia; González-Vélez, Horacio

    2007-06-01

    This work introduces MACACO, a macroscopic calcium currents simulator. It provides a parameter-sweep framework which computes macroscopic Ca(2+) currents from the individual aggregation of unitary currents, using a stochastic model for L-type Ca(2+) channels. MACACO uses a simplified 3-state Markov model to simulate the response of each Ca(2+) channel to different voltage inputs to the cell. In order to provide an accurate systematic view for the stochastic nature of the calcium channels, MACACO is composed of an experiment generator, a central simulation engine and a post-processing script component. Due to the computational complexity of the problem and the dimensions of the parameter space, the MACACO simulation engine employs a grid-enabled task farm. Having been designed as a computational biology tool, MACACO heavily borrows from the way cell physiologists conduct and report their experimental work.

  7. Antibacterial drugs as corrosion inhibitors for bronze surfaces in acidic solutions

    NASA Astrophysics Data System (ADS)

    Rotaru, Ileana; Varvara, Simona; Gaina, Luiza; Muresan, Liana Maria

    2014-12-01

    The present study is aiming to investigate the effect of four antibiotics (amoxicillin, ciprofloxacin, doxycycline and streptomycin,) belonging to different classes of antibacterial drugs on bronze corrosion in a solution simulating an acid rain (pH 4). Due to their ability to form protective films on the metal surface, the tested antibiotics act as corrosion inhibitors for bronze. The antibiotics were tested at various concentrations in order to determine the optimal concentration range for the best corrosion inhibiting effect. In evaluating the inhibition efficiency, polarization curves, electrochemical impedance spectroscopy, SEM and XPS measurements were used. Moreover, a correlation between the inhibition efficiency of some antibacterial drugs and certain molecular parameters was determined by quantum chemical computations. Parameters like energies EHOMO and ELUMO and HOMO-LUMO energy gap were used for correlation with the corrosion data.

  8. The growth of the tearing mode - Boundary and scaling effects

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Van Hoven, G.

    1983-01-01

    A numerical model of resistive magnetic tearing is developed in order to verify and relate the results of the principal approximations used in analytic analyses and to investigate the solutions and their growth-rate scalings over a large range of primary parameters which include parametric values applicable to the solar atmosphere. The computations cover the linear behavior for a variety of boundary conditions, emphasizing effects which differentiate magnetic tearing in astrophysical situations from that in laboratory devices. Eigenfunction profiles for long and short wavelengths are computed and the applicability of the 'constant psi' approximation is investigated. The growth rate is computed for values of the magnetic Reynolds number up to a trillion and of the dimensionless wavelength parameter down to 0.001. The analysis predicts significant effects due to differing values of the magnetic Reynolds number.

  9. Sensorless Estimation and Nonlinear Control of a Rotational Energy Harvester

    NASA Astrophysics Data System (ADS)

    Nunna, Kameswarie; Toh, Tzern T.; Mitcheson, Paul D.; Astolfi, Alessandro

    2013-12-01

    It is important to perform sensorless monitoring of parameters in energy harvesting devices in order to determine the operating states of the system. However, physical measurements of these parameters is often a challenging task due to the unavailability of access points. This paper presents, as an example application, the design of a nonlinear observer and a nonlinear feedback controller for a rotational energy harvester. A dynamic model of a rotational energy harvester with its power electronic interface is derived and validated. This model is then used to design a nonlinear observer and a nonlinear feedback controller which yield a sensorless closed-loop system. The observer estimates the mechancial quantities from the measured electrical quantities while the control law sustains power generation across a range of source rotation speeds. The proposed scheme is assessed through simulations and experiments.

  10. Auxiliary-fermion approach to critical fluctuations in the two-dimensional quantum antiferromagnetic Heisenberg model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinckmann, Jan; Woelfle, Peter

    2004-11-01

    The nearest-neighbor quantum antiferromagnetic (AF) Heisenberg model for spin-1/2 on a two-dimensional square lattice is studied in the auxiliary-fermion representation. Expressing spin operators by canonical fermionic particles requires a constraint on the fermion charge Q{sub i}=1 on each lattice site i, which is imposed approximately through the thermal average. The resulting interacting fermion system is first treated in mean-field theory (MFT), which yields an AF ordered ground state and spin waves in quantitative agreement with conventional spin-wave theory. At finite temperature a self-consistent approximation beyond mean field is required in order to fulfill the Mermin-Wagner theorem. We first discuss amore » fully self-consistent approximation, where fermions are renormalized due to fluctuations of their spin density, in close analogy to FLEX. While static properties like the correlation length, {xi}(T){proportional_to}exp(aJ/T), come out correctly, the dynamical response lacks the magnon-like peaks which would reflect the appearance of short-range order at low T. This drawback, which is caused by overdamping, is overcome in a 'minimal self-consistent approximation' (MSCA), which we derive from the equations of motion. The MSCA features dynamical scaling at small energy and temperature and is qualitatively correct both in the regime of order-parameter relaxation at long wavelengths {lambda}>{xi} and in the short-range-order regime at {lambda}<{xi}. We also discuss the impact of vertex corrections and the problem of pseudo-gap formation in the single-particle density of states due to long-range fluctuations. Finally we show that the (short-range) magnetic order in MFT and MSCA helps to fulfill the constraint on the local fermion occupancy.« less

  11. Effect of hockey-stick-shaped molecules on the critical behavior at the nematic to isotropic and smectic-A to nematic phase transitions in octylcyanobiphenyl

    NASA Astrophysics Data System (ADS)

    Chakraborty, Anish; Chakraborty, Susanta; Das, Malay Kumar

    2015-03-01

    In the field of soft matter research, the characteristic behavior of both nematic-isotropic (N -I ) and smectic-A nematic (Sm -A N ) phase transitions has gained considerable attention due to their several attractive features. In this work, a high-resolution measurement of optical birefringence (Δ n ) has been performed to probe the critical behavior at the N -I and Sm -A N phase transitions in a binary system comprising the rodlike octylcyanobiphenyl and a laterally methyl substituted hockey-stick-shaped mesogen, 4-(3-n -decyloxy-2-methyl-phenyliminomethyl)phenyl 4-n -dodecyloxycinnamate. For the investigated mixtures, the critical exponent β related to the limiting behavior of the nematic order parameter close to the N -I phase transition has come out to be in good conformity with the tricritical hypothesis. Moreover, the yielded effective critical exponents (α', β', γ') characterizing the critical fluctuation near the Sm -A N phase transition have appeared to be nonuniversal in nature. With increasing hockey-stick-shaped dopant concentration, the Sm -A N phase transition demonstrates a strong tendency to be driven towards a first-order nature. Such a behavior has been accounted for by considering a modification of the effective intermolecular interactions and hence the related coupling between the nematic and smectic order parameters, caused by the introduction of the angular mesogenic molecules.

  12. 2D lattice model of a lipid bilayer: Microscopic derivation and thermodynamic exploration

    NASA Astrophysics Data System (ADS)

    Hakobyan, Davit; Heuer, Andreas

    2017-02-01

    Based on all-atom Molecular Dynamics (MD) simulations of a lipid bilayer we present a systematic mapping on a 2D lattice model. Keeping the lipid type and the chain order parameter as key variables we derive a free energy functional, containing the enthalpic interaction of adjacent lipids as well as the tail entropy. The functional form of both functions is explicitly determined for saturated and polyunsaturated lipids. By studying the lattice model via Monte Carlo simulations it is possible to reproduce the temperature dependence of the distribution of order parameters of the pure lipids, including the prediction of the gel transition. Furthermore, application to a mixture of saturated and polyunsaturated lipids yields the correct phase separation behavior at lower temperatures with a simulation time reduced by approximately 7 orders of magnitude as compared to the corresponding MD simulations. Even the time-dependence of the de-mixing is reproduced on a semi-quantitative level. Due to the generality of the approach we envisage a large number of further applications, ranging from modeling larger sets of lipids, sterols, and solvent proteins to predicting nucleation barriers for the melting of lipids. Particularly, from the properties of the 2D lattice model one can directly read off the enthalpy and entropy change of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine gel-to-liquid transition in excellent agreement with experimental and MD results.

  13. Electronic origin of structural transition in 122 Fe based superconductors

    NASA Astrophysics Data System (ADS)

    Ghosh, Haranath; Sen, Smritijit; Ghosh, Abyay

    2017-03-01

    Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determined doping and temperature dependent structural parameters while the latter (the orthorhombicity) is taken from already established experimental studies; when normalized, both the above quantities quantitatively corresponds to each other in terms of their doping as well as temperature variations. This proves that the structural transition in Fe-based materials is electronic in nature due to orbital ordering. An universal correlations among various structural parameters and electronic structure are also obtained. Most remarkable among them is the mapping of two Fe-Fe distances in the low temperature orthorhombic phase, with the band energies Edxz, Edyz of Fe at the high symmetry points of the Brillouin zone. The fractional co-ordinate zAs of As which essentially determines anion height is inversely (directly) proportional to Fe-As bond distances (with exceptions of K doped BaFe2As2) for hole (electron) doped materials as a function of doping. On the other hand, Fe-As bond-distance is found to be inversely (directly) proportional to the density of states at the Fermi level for hole (electron) doped systems. Implications of these results to current issues of Fe based superconductivity are discussed.

  14. Extended FDD-WT method based on correcting the errors due to non-synchronous sensing of sensors

    NASA Astrophysics Data System (ADS)

    Tarinejad, Reza; Damadipour, Majid

    2016-05-01

    In this research, a combinational non-parametric method called frequency domain decomposition-wavelet transform (FDD-WT) that was recently presented by the authors, is extended for correction of the errors resulting from asynchronous sensing of sensors, in order to extend the application of the algorithm for different kinds of structures, especially for huge structures. Therefore, the analysis process is based on time-frequency domain decomposition and is performed with emphasis on correcting time delays between sensors. Time delay estimation (TDE) methods are investigated for their efficiency and accuracy for noisy environmental records and the Phase Transform - β (PHAT-β) technique was selected as an appropriate method to modify the operation of traditional FDD-WT in order to achieve the exact results. In this paper, a theoretical example (3DOF system) has been provided in order to indicate the non-synchronous sensing effects of the sensors on the modal parameters; moreover, the Pacoima dam subjected to 13 Jan 2001 earthquake excitation was selected as a case study. The modal parameters of the dam obtained from the extended FDD-WT method were compared with the output of the classical signal processing method, which is referred to as 4-Spectral method, as well as other literatures relating to the dynamic characteristics of Pacoima dam. The results comparison indicates that values are correct and reliable.

  15. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.

  16. Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model

    NASA Astrophysics Data System (ADS)

    Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel

    2017-11-01

    The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter ( P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter ( π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 < P < 0.30, whilst π needs to be limited by a very narrow range ( 0.60 < π < 0.66) in order to reproduce aftershocks pattern characteristics which resemble those of observed sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.

  17. Applications of response surface methodology and artificial neural network for decolorization of distillery spent wash by using activated Piper nigrum.

    PubMed

    Arulmathi, P; Elangovan, G

    2016-11-01

    Ethanol production from sugarcane molasses yields large volume of highly colored spent wash as effluent. This color is imparted by the recalcitrant melanoidin pigment produced due to the Maillard reaction. In the present work, decolourization of melanoidin was carried out using activated carbon prepared from pepper stem (Piper nigrum). The interaction effect between parameters were studied by response surface methodology using central composite design and maximum decolourization of 75 % was obtained at pH 7.5, Melanoidin concentration of 32.5 mg l-1 with 1.63 g 100ml-1 of adsorbent for 2hr 75min. Artificial neural networks was also used to optimize the process parameters, giving 74 % decolourization for the same parameters. The Langmuir and Freundich isotherms were applied for describing the biosorption equilibrium. The process was represented by the Langmuir isotherm with a correlation coefficient of 0.94. The first-order, second-order models were implemented for demonstrating the biosorption mechanism and, as a result, Pseudo second order model kinetics fitted best to the experimental data. The estimated enthalpy change (DH) and entropy change (DS) of adsorption were 32.195 kJ mol-1 and 115.44 J mol-1 K which indicates that the adsorption of melanoidin was an endothermic process. Continuous adsorption studies were conducted under optimized condition. The breakthrough curve analysis was determined using the experimental data obtained from continuous adsorption. Continuous column studies gave a breakthrough at 182 mins and 176 ml. It was concluded that column packed with Piper nigrum based activated carbon can be used to remove color from distillery spent wash.

  18. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Thor, Jasper J.; Madsen, Anders

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  19. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE PAGES

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  20. Stereoisomeric effects on dynamic viscosity versus pressure and temperature for the system cis- + trans-decalin

    NASA Astrophysics Data System (ADS)

    Miyake, Yasufumi; Boned, Christian; Baylaucq, Antoine; Bessières, David; Zéberg-Mikkelsen, Claus K.; Galliéro, Guillaume; Ushiki, Hideharu

    2007-07-01

    In order to study the influence of stereoisomeric effects on the dynamic viscosity, an extensive experimental study of the viscosity of the binary system composed of the two stereoisomeric molecular forms of decalin - cis and trans - has been carried out for five different mixtures at three temperatures (303.15, 323.15 and 343.15) K and six isobars up to 100 MPa with a falling-body viscometer (a total of 90 points). The experimental relative uncertainty is estimated to be 2%. The variations of dynamic viscosity versus composition are discussed with respect to their behavior due to stereoisomerism. Four different models with a physical and theoretical background are studied in order to investigate how they take the stereoisomeric effect into account through their required model parameters. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. Overall, a satisfactory representation of the viscosity of this binary system is found for the different models within the considered ( T, p) range taken into account their simplicity. All the models are able to distinguish between the two stereoisomeric decalin compounds. Further, based on the analysis of the model parameters performed on the pure compounds, it has been found that the use of simple mixing rules without introducing any binary interaction parameters are sufficient in order to predict the viscosity of cis + trans-decalin mixtures with the same accuracy in comparison with the experimental values as obtained for the pure compounds. In addition to these models, a semi-empirical self-referencing model and the simple mixing laws of Grunberg-Nissan and Katti-Chaudhri are also applied in the representation of the viscosity behavior of these systems.

  1. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    PubMed Central

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse. PMID:26798786

  2. Verification of the test stand for microbolometer camera in accredited laboratory

    NASA Astrophysics Data System (ADS)

    Krupiński, Michal; Bareła, Jaroslaw; Chmielewski, Krzysztof; Kastek, Mariusz

    2017-10-01

    Microbolometer belongs to the group of thermal detectors and consist of temperature sensitive resistor which is exposed to measured radiation flux. Bolometer array employs a pixel structure prepared in silicon technology. The detecting area is defined by a size of thin membrane, usually made of amorphous silicon (a-Si) or vanadium oxide (VOx). FPAs are made of a multitude of detector elements (for example 384 × 288 ), where each individual detector has different sensitivity and offset due to detector-to-detector spread in the FPA fabrication process, and additionally can change with sensor operating temperature, biasing voltage variation or temperature of the observed scene. The difference in sensitivity and offset among detectors (which is called non-uniformity) additionally with its high sensitivity, produces fixed pattern noise (FPN) on produced image. Fixed pattern noise degrades parameters of infrared cameras like sensitivity or NETD. Additionally it degrades image quality, radiometric accuracy and temperature resolution. In order to objectively compare the two infrared cameras ones must measure and compare their parameters on a laboratory test stand. One of the basic parameters for the evaluation of a designed camera is NETD. In order to examine the NETD, parameters such as sensitivity and pixels noise must be measured. To do so, ones should register the output signal from the camera in response to the radiation of black bodies at two different temperatures. The article presets an application and measuring stand for determining the parameters of microbolometers camera. Prepared measurements were compared with the result of the measurements in the Institute of Optoelectronics, MUT on a METS test stand by CI SYSTEM. This test stand consists of IR collimator, IR standard source, rotating wheel with test patterns, a computer with a video grabber card and specialized software. The parameters of thermals cameras were measure according to norms and method described in literature.

  3. Improving Pixel Level Cloud Optical Property Retrieval using Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Marshak, Alexander; Cahalan, Robert F.

    1999-01-01

    The accurate pixel-by-pixel retrieval of cloud optical properties from space is influenced by radiative smoothing due to high order photon scattering and radiative roughening due to low order scattering events. Both are caused by cloud heterogeneity and the three-dimensional nature of radiative transfer and can be studied with the aid of computer simulations. We use Monte Carlo simulations on variable 1-D and 2-D model cloud fields to seek for dependencies of smoothing and roughening phenomena on single scattering albedo, solar zenith angle, and cloud characteristics. The results are discussed in the context of high resolution satellite (such as Landsat) retrieval applications. The current work extends the investigation on the inverse NIPA (Non-local Independent Pixel Approximation) as a tool for removing smoothing and improving retrievals of cloud optical depth. This is accomplished by: (1) Delineating the limits of NIPA applicability; (2) Exploring NIPA parameter dependences on cloud macrostructural features, such as mean cloud optical depth and geometrical thickness, degree of extinction and cloud top height variability. We also compare parameter values from empirical and theoretical considerations; (3) Examining the differences between applying NIPA on radiation quantities vs direct application on optical properties; (4) Studying the radiation budget importance of the NIPA corrections as a function of scale. Finally, we discuss fundamental adjustments that need to be considered for successful radiance inversion at non-conservative wavelengths and oblique Sun angles. These adjustments are necessary to remove roughening signatures which become more prominent with increasing absorption and solar zenith angle.

  4. Prediction Of The Fracture Due To Mannesmann Effect In Tube Piercing

    NASA Astrophysics Data System (ADS)

    Fanini, S.; Ghiotti, A.; Bruschi, S.

    2007-05-01

    Mannesmann piercing process is a well-known hot rolling process used for seamless tube production. Its special feature is the so-called Mannesmann effect, that is the cavity formation in the center of the cylindrical billet and its propagation along the axis due to stress state caused by the rolls in the early stages of the process. The cavity is then expanded and sized in its internal diameter by an incoming plug. The industrial requirement is to know quite precisely the characteristics of the cavity especially in terms of its location along the billet axis in order to minimize the plug wear and the oxidation of the pierced bar. However, the scientific knowledge about the fracture mechanism leading to the Mannesmann effect is still limited, even if several theories have been proposed; this lack makes the design and optimization of the process through numerical simulations still a challenging task. The aim of this work is then to develop a suitably calibrated FE model of the piercing process in its first stage before the plug arrival, in order to investigate the Mannesmann effect using different damage criteria. Hot tensile tests, capable to reproduce the industrial conditions in terms of temperature, strain rate, and stress states, are carried out to investigate the material workability and to determine the parameters of the damage models on specimens machined from continuous-casting steel billets. The calculated parameters are implemented in the numerical model of the process and a sensitivity analysis to the different criteria is carried out, comparing numerical results with non-plug piercing tests conducted in the industrial plant.

  5. Constraining modified theories of gravity with the galaxy bispectrum

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Yokoyama, Shuichiro; Tashiro, Hiroyuki

    2017-12-01

    We explore the use of the galaxy bispectrum induced by the nonlinear gravitational evolution as a possible probe to test general scalar-tensor theories with second-order equations of motion. We find that time dependence of the leading second-order kernel is approximately characterized by one parameter, the second-order index, which is expected to trace the higher-order growth history of the Universe. We show that our new parameter can significantly carry new information about the nonlinear growth of structure. We forecast future constraints on the second-order index as well as the equation-of-state parameter and the growth index.

  6. Kinematic sensitivity of robot manipulators

    NASA Technical Reports Server (NTRS)

    Vuskovic, Marko I.

    1989-01-01

    Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.

  7. Order parameters from image analysis: a honeycomb example

    NASA Astrophysics Data System (ADS)

    Kaatz, Forrest H.; Bultheel, Adhemar; Egami, Takeshi

    2008-11-01

    Honeybee combs have aroused interest in the ability of honeybees to form regular hexagonal geometric constructs since ancient times. Here we use a real space technique based on the pair distribution function (PDF) and radial distribution function (RDF), and a reciprocal space method utilizing the Debye-Waller Factor (DWF) to quantify the order for a range of honeycombs made by Apis mellifera ligustica. The PDFs and RDFs are fit with a series of Gaussian curves. We characterize the order in the honeycomb using a real space order parameter, OP 3 , to describe the order in the combs and a two-dimensional Fourier transform from which a Debye-Waller order parameter, u, is derived. Both OP 3 and u take values from [0, 1] where the value one represents perfect order. The analyzed combs have values of OP 3 from 0.33 to 0.60 and values of u from 0.59 to 0.69. RDF fits of honeycomb histograms show that naturally made comb can be crystalline in a 2D ordered structural sense, yet is more ‘liquid-like’ than cells made on ‘foundation’ wax. We show that with the assistance of man-made foundation wax, honeybees can manufacture highly ordered arrays of hexagonal cells. This is the first description of honeycomb utilizing the Debye-Waller Factor, and provides a complete analysis of the order in comb from a real-space order parameter and a reciprocal space order parameter. It is noted that the techniques used are general in nature and could be applied to any digital photograph of an ordered array.

  8. Influence of heat conducting substrates on explosive crystallization in thin layers

    NASA Astrophysics Data System (ADS)

    Schneider, Wilhelm

    2017-09-01

    Crystallization in a thin, initially amorphous layer is considered. The layer is in thermal contact with a substrate of very large dimensions. The energy equation of the layer contains source and sink terms. The source term is due to liberation of latent heat in the crystallization process, while the sink term is due to conduction of heat into the substrate. To determine the latter, the heat diffusion equation for the substrate is solved by applying Duhamel's integral. Thus, the energy equation of the layer becomes a heat diffusion equation with a time integral as an additional term. The latter term indicates that the heat loss due to the substrate depends on the history of the process. To complete the set of equations, the crystallization process is described by a rate equation for the degree of crystallization. The governing equations are then transformed to a moving co-ordinate system in order to analyze crystallization waves that propagate with invariant properties. Dual solutions are found by an asymptotic expansion for large activation energies of molecular diffusion. By introducing suitable variables, the results can be presented in a universal form that comprises the influence of all non-dimensional parameters that govern the process. Of particular interest for applications is the prediction of a critical heat loss parameter for the existence of crystallization waves with invariant properties.

  9. Numerical study on microbubble-enhanced heating for various parameters in EUS-FUS

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Maezawa, Miyuki; Takagi, Shu; Matsumoto, Yoichiro

    2012-11-01

    Endoscopic ultrasonography guided focused ultrasound surgery (EUS-FUS) have been developed as a less-invasive treatment for pancreatic cancer. In the present study, microbubble-enhanced heating for various parameters in EUS-FUS is investigated numerically. Mass and momentum equations for bubbly mixture are solved to reproduce the propagation of ultrasound of 4.8MHz through the gel containing microbubbles as Sonazoid®. The dynamics of bubble is governed by the equation which considers the elasticity of both shell and surrounding media. Additionally, the heat equation with the time averaged heat source is solved to obtain a temperature distribution. The basic equations are discretized by the 6th-order finite difference method and developed based on FDTD method. The mixture and bubbles are coupled by Euler-Lagrange method. As the results, the temperature around the target increased due to the microbubble oscillation with increasing the initial void fraction fG0 from 10-5 to 10-4%. However, at fG0=10-3%, ultrasounds were too attenuated to heat the target. The heating region moved from the target to the transducer side. By comparing the results with and without shell, the shell of bubble induced the heating around focus. This is because the decrease of the attenuation due to the elasticity of the shell and the increase of the viscous dissipation rate due to the viscosity of the shell.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, D.; Liu, Jian; Freeland, J. W.

    We observed complex materials in electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. We demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. Furthermore, these findings illustrate the utility of heterointerfaces as amore » powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.« less

  11. Pure electronic metal-insulator transition at the interface of complex oxides

    DOE PAGES

    Meyers, D.; Liu, Jian; Freeland, J. W.; ...

    2016-06-21

    We observed complex materials in electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. We demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. Furthermore, these findings illustrate the utility of heterointerfaces as amore » powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.« less

  12. Modal identification of spindle-tool unit in high-speed machining

    NASA Astrophysics Data System (ADS)

    Gagnol, Vincent; Le, Thien-Phu; Ray, Pascal

    2011-10-01

    The accurate knowledge of high-speed motorised spindle dynamic behaviour during machining is important in order to ensure the reliability of machine tools in service and the quality of machined parts. More specifically, the prediction of stable cutting regions, which is a critical requirement for high-speed milling operations, requires the accurate estimation of tool/holder/spindle set dynamic modal parameters. These estimations are generally obtained through Frequency Response Function (FRF) measurements of the non-rotating spindle. However, significant changes in modal parameters are expected to occur during operation, due to high-speed spindle rotation. The spindle's modal variations are highlighted through an integrated finite element model of the dynamic high-speed spindle-bearing system, taking into account rotor dynamics effects. The dependency of dynamic behaviour on speed range is then investigated and determined with accuracy. The objective of the proposed paper is to validate these numerical results through an experiment-based approach. Hence, an experimental setup is elaborated to measure rotating tool vibration during the machining operation in order to determine the spindle's modal frequency variation with respect to spindle speed in an industrial environment. The identification of natural frequencies of the spindle under rotating conditions is challenging, due to the low number of sensors and the presence of many harmonics in the measured signals. In order to overcome these issues and to extract the characteristics of the system, the spindle modes are determined through a 3-step procedure. First, spindle modes are highlighted using the Frequency Domain Decomposition (FDD) technique, with a new formulation at the considered rotating speed. These extracted modes are then analysed through the value of their respective damping ratios in order to separate the harmonics component from structural spindle natural frequencies. Finally, the stochastic properties of the modes are also investigated by considering the probability density of the retained modes. Results show a good correlation between numerical and experiment-based identified frequencies. The identified spindle-tool modal properties during machining allow the numerical model to be considered as representative of the real dynamic properties of the system.

  13. Specific heat and Nernst effect of electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Balci, Hamza

    This thesis consists of two separate studies on Pr2- xCexCuO4 (PCCO), a member of the electron-doped high temperature cuprate superconductor family: specific heat and the Nernst effect. We measured the specific heat of PCCO single crystals in order to probe the symmetry of the superconducting order parameter, to study the effect of oxygen reduction (annealing) on bulk properties of the crystals, and to determine proper ties like the condensation energy and the thermodynamic critical field. The order parameter symmetry has been established to be d-wave in the hole-doped cuprates. Experiments performed on electron-doped cuprates show conflicting results. Different experiments suggest s-wave symmetry, d-wave symmetry, or a transition from d-wave to s-wave symmetry with increasing cerium doping. However, most of these experiments are surface sensitive experiments. Specific heat, as a bulk method of probing the gap symmetry is essential in order to convincingly determine the gap symmetry. Our data proposes a way to reconcile all these conflicting results regarding the gap symmetry. In addition, prior specific heat measurements attempting to determine thermodynamic properties like the condensation energy were not successful due to inefficient methods of data analysis or poor sample quality. With improvements on sample quality and data analysis, we reliably determined these properties. The second part of this thesis is a study of the Nernst effect in PCCO thin films with different cerium dopings. We probed the superconducting fluctuations, studied transport phenomena in the normal state, and accurately measured H c2 by using the Nernst effect. After the discovery of the anomalous Nernst effect in the normal state of the hole-doped cuprates, many alternative explanations have been proposed. Vortex-like excitations above Tc, superconducting fluctuations, AFM fluctuations, and preformed Cooper pairs are some of these proposals. The electron-doped cuprates, due to their significant differences from the hole-doped cuprates in terms of coherence length and the phase stiffness temperature (a measure of superfluid density) are the ideal materials to test these ideas. Our data on the electron-doped cuprates does not show any anomalous Nernst effect, and hence it supports the superconducting fluctuations picture among the various proposals.

  14. Transverse fields to tune an Ising-nematic quantum phase transition

    NASA Astrophysics Data System (ADS)

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; Berg, Erez; Fernandes, Rafael M.; Fisher, Ian R.; Kivelson, Steven A.

    2017-12-01

    The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.

  15. Reduced-order aeroelastic model for limit-cycle oscillations in vortex-dominated unsteady airfoil flows

    NASA Astrophysics Data System (ADS)

    Suresh Babu, Arun Vishnu; Ramesh, Kiran; Gopalarathnam, Ashok

    2017-11-01

    In previous research, Ramesh et al. (JFM,2014) developed a low-order discrete vortex method for modeling unsteady airfoil flows with intermittent leading edge vortex (LEV) shedding using a leading edge suction parameter (LESP). LEV shedding is initiated using discrete vortices (DVs) whenever the Leading Edge Suction Parameter (LESP) exceeds a critical value. In subsequent research, the method was successfully employed by Ramesh et al. (JFS, 2015) to predict aeroelastic limit-cycle oscillations in airfoil flows dominated by intermittent LEV shedding. When applied to flows that require large number of time steps, the computational cost increases due to the increasing vortex count. In this research, we apply an amalgamation strategy to actively control the DV count, and thereby reduce simulation time. A pair each of LEVs and TEVs are amalgamated at every time step. The ideal pairs for amalgamation are identified based on the requirement that the flowfield in the vicinity of the airfoil is least affected (Spalart, 1988). Instead of placing the amalgamated vortex at the centroid, we place it at an optimal location to ensure that the leading-edge suction and the airfoil bound circulation are conserved. Results of the initial study are promising.

  16. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation.

    PubMed

    Ragupathy, S; Raghu, K; Prabu, P

    2015-03-05

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Impurity bound states in d-wave superconductors with subdominant order parameters

    NASA Astrophysics Data System (ADS)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica

    Single magnetic impurity induces intra-gap bound states in conventional s-wave superconductors (SCs) but, in d-wave SCs only virtual bound states can be induced. However, in small cuprate islands a fully gapped spectrum has recently been discovered. In this work, we investigate the real bound states due to potential and magnetic impurities in the two candidate fully gapped states for this system: the topologically trivial d + is -wave state and the topologically non-trivial d + id' -wave (chiral d-wave state). Using the analytic T-matrix formalism and self-consistent numerical tight-binding lattice calculations, we show that potential and magnetic impurities create entirely different intra-gap bound states in d + is -wave and chiral d-wave SCs. Therefore, our results suggest that the bound states mainly depend on the subdominant order parameter. Considering that recent experiments have demonstrated an access to adjustable coupling J, impurities thus offer an intriguing way to clearly distinguish between the chiral d-wave and topologically trivial d + is -wave state. This work was supported by Swedish Research Council, Swedish Foundation for Strategic Research, the Wallenberg Academy Fellows program and the Göran Gustafsson Foundation. The computations were performed on resources provided by SNIC at LUNARC.

  18. Dry Sliding Wear Charactristics of Aluminum 6061-T6, Magnesium AZ31 and Rock Dust Composite

    NASA Astrophysics Data System (ADS)

    Balachandar, R.; Balasundaram, R.; Rajkumar, G.

    2018-02-01

    In recent years, the use of aluminum composite is gaining popularity in a wide range of applications like automobiles, aerospace and constructions (both interior & exterior) panels etc., due to its high strength, low density characteristics. Various reinforcing materials are used with aluminum 6061-T6 in order to have better mechanical properties. The addition of 0.3% of magnesium AZ31 will increase the ultimate tensile strength by 25 %. The reinforcement of rock dust will decrease the density. Hence, in order to have an advantages of magnesium AZ31 and rock dust, in this work, these two constitutes are varied from 1% to 2% on the base material of Al6061-T6 in stir casting. To evaluate the wear characteristics, Pin on disc is used in these composites. The input parameters are speed, time & load. The output response is wear. To minimize the number of experiments, L9 orthogonal array is used. The test results showed that a composite of 97% of Al (6061-T6), 1% Mg (AZ31) & 2 % of rock dust produced less wear. To find the best value of operating parameter for each sample, ANN-GA is used.

  19. Characterizing featureless Mott insulating state by quasiparticle interference: A dynamical mean field theory view

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shantanu; Lee, Wei-Cheng

    2015-12-01

    The quasiparticle interferences (QPIs) of the featureless Mott insulators are investigated by a T -matrix formalism implemented with the dynamical mean field theory (T -DMFT). In the Mott insulating state, due to the singularity at zero frequency in the real part of the electron self-energy [Re Σ (ω )˜η /ω ] predicted by DMFT, where η can be considered as the "order parameter" for the Mott insulating state, QPIs are completely washed out at small bias voltages. However, a further analysis shows that Re Σ (ω ) serves as an energy-dependent chemical potential shift. As a result, the effective bias voltage seen by the system is e V'=e V -Re Σ (e V ) , which leads to a critical bias voltage e Vc˜√{η } satisfying e V'=0 if and only if η is nonzero. Consequently, the same QPI patterns produced by the noninteracting Fermi surfaces appear at this critical bias voltage e Vc in the Mott insulating state. We propose that this reentry of noninteracting QPI patterns at e Vc could serve as an experimental signature of the Mott insulating state, and the order parameter can be experimentally measured as η ˜(eVc) 2 .

  20. Atom probe study of B2 order and A2 disorder of the FeCo matrix in an Fe-Co-Mo-alloy.

    PubMed

    Turk, C; Leitner, H; Schemmel, I; Clemens, H; Primig, S

    2017-07-01

    The physical and mechanical properties of intermetallic alloys can be tailored by controlling the degree of order of the solid solution by means of heat treatments. FeCo alloys with an appropriate composition exhibit an A2-disorder↔B2-order transition during continuous cooling from the disordered bcc region. The study of atomic order in intermetallic alloys by diffraction and its influence on the material properties is well established, however, investigating magnetic FeCo-based alloys by conventional methods such as X-ray diffraction is quite challenging. Thus, the imaging of ordered FeCo-nanostructures needs to be done with high resolution techniques. Transmission electron microscopy investigations of ordered FeCo domains are difficult, due to the chemical and physical similarity of Fe and Co atoms and the ferromagnetism of the samples. In this work it will be demonstrated, that the local atomic arrangement of ordered and disordered regions in an industrial Fe-Co-Mo alloy can be successfully imaged by atom probe measurements supported by field ion microscopy and transmission Kikuchi diffraction. Furthermore, a thorough atom probe parameter study will be presented and field evaporation artefacts as a function of crystallographic orientation in Fe-Co-samples will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field

    NASA Astrophysics Data System (ADS)

    Dubovskii, L. B.

    2018-05-01

    The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.

  2. Motor unit recruitment by size does not provide functional advantages for motor performance

    PubMed Central

    Dideriksen, Jakob L; Farina, Dario

    2013-01-01

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers. PMID:24144879

  3. Motor unit recruitment by size does not provide functional advantages for motor performance.

    PubMed

    Dideriksen, Jakob L; Farina, Dario

    2013-12-15

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.

  4. A Quantitative Study of Oxygen as a Metabolic Regulator

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabrera, Marco E.

    1999-01-01

    An acute reduction in oxygen (O2) delivery to a tissue is generally associated with a decrease in phosphocreatine, increases in ADP, NADH/NAD, and inorganic phosphate, increased rates of glycolysis and lactate production, and reduced rates of pyruvate and fatty acid oxidation. However, given the complexity of the human bioenergetic system and its components, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in tissue O2 availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study, we extend a previously developed mathematical model of human bioenergetics to provide a physicochemical framework that permits quantitative understanding of O2 as a metabolic regulator. Specifically, the enhancement permits studying the effects of variations in tissue oxygenation and in parameters controlling the rate of cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The whole body is described as a bioenergetic system consisting of metabolically distinct tissue/organ subsystems that exchange materials with the blood. In order to study the dynamic response of each subsystem to stimuli, we solve the ordinary differential equations describing the temporal evolution of metabolite levels, given the initial concentrations. The solver used in the present study is the packaged code LSODE, as implemented in the NASA Lewis kinetics and sensitivity analysis code, LSENS. A major advantage of LSENS is the efficient procedures supporting systematic sensitivity analysis, which provides the basic methods for studying parameter sensitivities (i.e., changes in model behavior due to parameter variation). Sensitivity analysis establishes relationships between model predictions and problem parameters (i.e., initial concentrations, rate coefficients, etc). It helps determine the effects of uncertainties or changes in these input parameters on the predictions, which ultimately are compared with experimental observations in order to validate the model. Sensitivity analysis can identify parameters that must be determined accurately because of their large effect on the model predictions and parameters that need not be known with great precision because they have little or no effect on the solution. This capability may prove to be important in optimizing the design of experiments, thereby reducing the use of animals. This approach can be applied to study the metabolic effects of reduced oxygen delivery to cardiac muscle due to local myocardial ischemia and the effects of acute hypoxia on brain metabolism. Other important applications of sensitivity analysis include identification of quantitatively relevant pathways and biochemical species within an overall mechanism, when examining the effects of a genetic anomaly or pathological state on energetic system components and whole system behavior.

  5. The Influence of Injection Molding Parameter on Properties of Thermally Conductive Plastic

    NASA Astrophysics Data System (ADS)

    Hafizah Azis, N.; Zulafif Rahim, M.; Sa'ude, Nasuha; Rafai, N.; Yusof, M. S.; Tobi, ALM; Sharif, ZM; Rasidi Ibrahim, M.; Ismail, A. E.

    2017-05-01

    Thermally conductive plastic is the composite between metal-plastic material that is becoming popular because if it special characteristic. Injection moulding was regarded as the best process for mass manufacturing of the plastic composite due to its low production cost. The objective of this research is to find the best combination of the injection parameter setting and to find the most significant factor that effect the strength and thermal conductivity of the composite. Several parameter such as the volume percentage of copper powder, nozzle temperature and injection pressure of injection moulding machine were investigated. The analysis was done using Design Expert Software by implementing design of experiment method. From the analysis, the significant effects were determined and mathematical models of only significant effect were established. In order to ensure the validity of the model, confirmation run was done and percentage errors were calculated. It was found that the best combination parameter setting to maximize the value of tensile strength is volume percentage of copper powder of 3.00%, the nozzle temperature of 195°C and the injection pressure of 65%, and the best combination parameter settings to maximize the value of thermal conductivity is volume percentage of copper powder of 7.00%, the nozzle temperature of 195°C and the injection pressure of 65% as recommended..

  6. Carbofuran biodegradation in brackish groundwater and its effect on the hydraulic properties of the porous medium

    NASA Astrophysics Data System (ADS)

    Amiaz, Yanai; Ronen, Zeev; Adar, Eilon; Weisbrod, Noam

    2015-04-01

    A chalk fractured aquitard beneath an industrial site is subjected to intense contamination due to percolation of contaminants from the different facilities operating at the site. In order to reduce further contamination, draining trenches were excavated and filled with coarse gravel (3-4 cm in diameter) forming a porous medium, to which the contaminated groundwater discharges from the fractures surrounding the trenches. This research is aimed at establishing a biodegrading process of high efficiency and performance within the draining trenches. The research includes both field and laboratory experiments. An experimental setup of five columns (50 cm length and 4.5 cm in diameter) was constructed under highly controlled conditions. Over the course of the experiments, the columns were filled with different particle sizes and placed in a temperature controlled chamber. Filtered groundwater (0.2 µm) from the site groundwater, enriched by a model contaminant carbofuran (CRF), was injected to the columns; as two of the columns were inoculated by CRF degrading microorganisms native in the site's groundwater, two columns were inoculated by CRF degrading bacteria from the external environment, and one column was used as a control. During the experiment, measurements were taken from different locations along each column. These include: (a) CRF concentration and (b) hydraulic pressure and solution viscosity (in order to obtain the changes in permeability). A tracer test using uranine was carried out in parallel, in order to obtain the changes in hydraulic parameters. Correlating CRF concentration variations to changes of hydraulic parameters enable the deduction due to the effect that biological activity (under different temperature regimes) has on the hydraulic properties of the porous medium and its effect on the process of contaminant groundwater bodies' remediation. Preliminary results suggest that although biodegradation occurs, microbial activity has minor effect on the hydraulic properties of the porous medium under the explored conditions.

  7. Influence of life-history parameters on organochlorine concentrations in free-ranging killer whales (Orcinus orca) from Prince William Sound, AK.

    PubMed

    Ylitalo, G M; Matkin, C O; Buzitis, J; Krahn, M M; Jones, L L; Rowles, T; Stein, J E

    2001-12-17

    Certain populations of killer whales (Orcinus orca) have been extensively studied over the past 30 years, including populations that use Puget Sound, WA, the inside waters of British Columbia, Southeastern Alaska and Kenai Fjords/Prince William Sound, Alaska. Two eco-types of killer whales, 'transient' and 'resident', occur in all of these regions. These eco-types are genetically distinct and differ in various aspects of morphology, vocalization patterns, diet and habitat use. Various genetic and photo-identification studies of eastern North Pacific killer whales have provided information on the male-female composition of most of these resident pods and transient groups, as well as the approximate ages, reproductive status and putative recruitment order (birth order) of the individual whales. Biopsy blubber samples of free-ranging resident and transient killer whales from the Kenai Fjords/Prince William Sound, AK region were acquired during the 1994-1999 field seasons and analyzed for selected organochlorines (OCs), including dioxin-like CB congeners and DDTs. Concentrations of OCs in transient killer whales (marine mammal-eating) were much higher than those found in resident animals (fish-eating) apparently due to differences in diets of these two killer whale eco-types. Certain life-history parameters such as sex, age and reproductive status also influenced the concentrations of OCs in the Alaskan killer whales. Reproductive female whales contained much lower levels of OCs than sexually immature whales or mature male animals in the same age class likely due to transfer of OCs from the female to her offspring during gestation and lactation. Recruitment order also influenced the concentrations of OCs in the Alaskan killer whales. In adult male residents, first-recruited whales contained much higher OC concentrations than those measured in non-first-recruited (e.g. second recruited, third recruited) resident animals in the same age group. This study provides baseline OC data for free ranging Alaskan killer whales for which there is little contaminant information.

  8. Correlations between the resonant frequency shifts and the thermodynamic quantities for the α-β transition in quartz

    NASA Astrophysics Data System (ADS)

    Lider, M. C.; Yurtseven, H.

    2018-05-01

    The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.

  9. The auxetic behavior of an expanded periodic cellular structure

    NASA Astrophysics Data System (ADS)

    Ciolan, Mihaela A.; Lache, Simona; Velea, Marian N.

    2018-02-01

    Within nowadays research, when it comes to lightweight sandwich panels, periodic cellular structures are considered real trendsetters. One of the most used type of core in producing sandwich panels is the honeycomb. However, due to its relatively high manufacturing cost, this structure has limited applications; therefore, research has been carried out in order to develop alternative solutions. An example in this sense is the ExpaAsym cellular structure, developed at the Transilvania University of Braşov; it represents a periodic cellular structure manufactured through a mechanically expansion process of a previously cut and perforated sheet material. The relative density of the structure was proven to be significantly lower than the one of the honeycomb. This gives a great advantage to the structure, due to the fact that when the internal angle A of the unit cell is 60°, after the mechanical expansion it results a hexagonal structure. The main objective of this paper is to estimate the in-plane Poisson ratios of the structure, in terms of its geometrical parameters. It is therefore analytically shown that for certain values of the geometric parameters, the in-plane Poisson ratios have negative values when the internal angle exceeds 90°, which determines its auxetic behavior.

  10. Delivery of Cisplatin Anti-Cancer Drug from Carbon, Boron Nitride, and Silicon Carbide Nanotubes Forced by Ag-Nanowire: A Comprehensive Molecular Dynamics Study.

    PubMed

    Mehrjouei, Esmat; Akbarzadeh, Hamed; Shamkhali, Amir Nasser; Abbaspour, Mohsen; Salemi, Sirous; Abdi, Pooya

    2017-07-03

    In this work, liberation of cisplatin molecules from interior of a nanotube due to entrance of an Ag-nanowire inside it was simulated by classical molecular dynamics method. The aim of this simulation was investigation on the effects of diameter, chirality, and composition of the nanotube, as well as the influence of temperature on this process. For this purpose, single walled carbon, boron nitride, and silicon carbide nanotube were considered. In order for a more concise comparison of the results, a new parameter namely efficiency of drug release, was introduced. The results demonstrated that the efficiency of drug release is sensitive to its adsorption on outer surface of the nanotube. Moreover, this efficiency is also sensitive to the nanotube composition and its diameter. For the effect of nanotube composition, the results indicated that silicon carbide nanotube has the least efficiency for drug release, due to its strong drug-nanotube. Also, the most important acting forces on drug delivery are van der Waals interactions. Finally, the kinetic of drug release is fast and is not related to the structural parameters of the nanotube and temperature, significantly.

  11. Investigation of the complex electroviscous effects on electrolyte (single and multiphase) flow in porous medi.

    NASA Astrophysics Data System (ADS)

    Bolet, A. J. S.; Linga, G.; Mathiesen, J.

    2017-12-01

    Surface charge is an important control parameter for wall-bounded flow of electrolyte solution. The electroviscous effect has been studied theoretically in model geometries such as infinite capillaries. However, in more complex geometries a quantification of the electroviscous effect is a non-trival task due to strong non-linarites of the underlying equations. In general, one has to rely on numerical methods. Here we present numerical studies of the full three-dimensional steady state Stokes-Poisson-Nernst-Planck problem in order to model electrolyte transport in artificial porous samples. The simulations are performed using the finite element method. From the simulation, we quantity how the electroviscous effect changes the general flow permeability in complex three-dimensional porous media. The porous media we consider are mostly generated artificially by connecting randomly dispersed cylindrical pores. Furthermore, we present results of electric driven two-phase immiscible flow in two dimensions. The simulations are performed by augmenting the above equations with a phase field model to handle and track the interaction between the two fluids (using parameters corresponding to oil-water interfaces, where oil non-polar). In particular, we consider the electro-osmotic effect on imbibition due to charged walls and electrolyte-solution.

  12. Calculation of Optical Parameters of Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Kumar, A.

    2007-12-01

    Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.

  13. Order parameters in lanthanum gallate lightly doped with manganese and paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Guseva, V. B.

    2010-09-01

    The Cr3+ centers have been revealed, transitions at room temperature have been identified, and spin Hamiltonian parameters have been determined for the Cr3+ and Fe3+ triclinic centers in lanthanum gallate lightly doped with manganese. The principal axes of the fourth-rank fine-structure tensor for the Fe3+ triclinic centers have been established and used to determine the order parameters, i.e., the angles of rotation of oxygen octahedra of lanthanum gallate with respect to the perovskite structure. The order parameter in the rhombohedral phase has been estimated.

  14. A general model for attitude determination error analysis

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Seidewitz, ED; Nicholson, Mark

    1988-01-01

    An overview is given of a comprehensive approach to filter and dynamics modeling for attitude determination error analysis. The models presented include both batch least-squares and sequential attitude estimation processes for both spin-stabilized and three-axis stabilized spacecraft. The discussion includes a brief description of a dynamics model of strapdown gyros, but it does not cover other sensor models. Model parameters can be chosen to be solve-for parameters, which are assumed to be estimated as part of the determination process, or consider parameters, which are assumed to have errors but not to be estimated. The only restriction on this choice is that the time evolution of the consider parameters must not depend on any of the solve-for parameters. The result of an error analysis is an indication of the contributions of the various error sources to the uncertainties in the determination of the spacecraft solve-for parameters. The model presented gives the uncertainty due to errors in the a priori estimates of the solve-for parameters, the uncertainty due to measurement noise, the uncertainty due to dynamic noise (also known as process noise or measurement noise), the uncertainty due to the consider parameters, and the overall uncertainty due to all these sources of error.

  15. Estimability of geodetic parameters from space VLBI observables

    NASA Technical Reports Server (NTRS)

    Adam, Jozsef

    1990-01-01

    The feasibility of space very long base interferometry (VLBI) observables for geodesy and geodynamics is investigated. A brief review of space VLBI systems from the point of view of potential geodetic application is given. A selected notational convention is used to jointly treat the VLBI observables of different types of baselines within a combined ground/space VLBI network. The basic equations of the space VLBI observables appropriate for convariance analysis are derived and included. The corresponding equations for the ground-to-ground baseline VLBI observables are also given for a comparison. The simplified expression of the mathematical models for both space VLBI observables (time delay and delay rate) include the ground station coordinates, the satellite orbital elements, the earth rotation parameters, the radio source coordinates, and clock parameters. The observation equations with these parameters were examined in order to determine which of them are separable or nonseparable. Singularity problems arising from coordinate system definition and critical configuration are studied. Linear dependencies between partials are analytically derived. The mathematical models for ground-space baseline VLBI observables were tested with simulation data in the frame of some numerical experiments. Singularity due to datum defect is confirmed.

  16. Evolutionary Tradeoffs between Economy and Effectiveness in Biological Homeostasis Systems

    PubMed Central

    Szekely, Pablo; Sheftel, Hila; Mayo, Avi; Alon, Uri

    2013-01-01

    Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this feature, even if one is able to measure only a small fraction of the system's parameters, one can infer the rest. We applied this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in bacteria, and calcium homeostasis in mammals. PMID:23950698

  17. Evolutionary tradeoffs between economy and effectiveness in biological homeostasis systems.

    PubMed

    Szekely, Pablo; Sheftel, Hila; Mayo, Avi; Alon, Uri

    2013-01-01

    Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this feature, even if one is able to measure only a small fraction of the system's parameters, one can infer the rest. We applied this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in bacteria, and calcium homeostasis in mammals.

  18. A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions

    NASA Astrophysics Data System (ADS)

    Lienert, Sebastian; Joos, Fortunat

    2018-05-01

    A dynamic global vegetation model (DGVM) is applied in a probabilistic framework and benchmarking system to constrain uncertain model parameters by observations and to quantify carbon emissions from land-use and land-cover change (LULCC). Processes featured in DGVMs include parameters which are prone to substantial uncertainty. To cope with these uncertainties Latin hypercube sampling (LHS) is used to create a 1000-member perturbed parameter ensemble, which is then evaluated with a diverse set of global and spatiotemporally resolved observational constraints. We discuss the performance of the constrained ensemble and use it to formulate a new best-guess version of the model (LPX-Bern v1.4). The observationally constrained ensemble is used to investigate historical emissions due to LULCC (ELUC) and their sensitivity to model parametrization. We find a global ELUC estimate of 158 (108, 211) PgC (median and 90 % confidence interval) between 1800 and 2016. We compare ELUC to other estimates both globally and regionally. Spatial patterns are investigated and estimates of ELUC of the 10 countries with the largest contribution to the flux over the historical period are reported. We consider model versions with and without additional land-use processes (shifting cultivation and wood harvest) and find that the difference in global ELUC is on the same order of magnitude as parameter-induced uncertainty and in some cases could potentially even be offset with appropriate parameter choice.

  19. Effects of process parameters on the molding quality of the micro-needle array

    NASA Astrophysics Data System (ADS)

    Qiu, Z. J.; Ma, Z.; Gao, S.

    2016-07-01

    Micro-needle array, which is used in medical applications, is a kind of typical injection molded products with microstructures. Due to its tiny micro-features size and high aspect ratios, it is more likely to produce short shots defects, leading to poor molding quality. The injection molding process of the micro-needle array was studied in this paper to find the effects of the process parameters on the molding quality of the micro-needle array and to provide theoretical guidance for practical production of high-quality products. With the shrinkage ratio and warpage of micro needles as the evaluation indices of the molding quality, the orthogonal experiment was conducted and the analysis of variance was carried out. According to the results, the contribution rates were calculated to determine the influence of various process parameters on molding quality. The single parameter method was used to analyse the main process parameter. It was found that the contribution rate of the holding pressure on shrinkage ratio and warpage reached 83.55% and 94.71% respectively, far higher than that of the other parameters. The study revealed that the holding pressure is the main factor which affects the molding quality of micro-needle array so that it should be focused on in order to obtain plastic parts with high quality in the practical production.

  20. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels

    PubMed Central

    2014-01-01

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined. Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production. PMID:25060583

  1. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels.

    PubMed

    Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin

    2014-07-25

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.

  2. Optimization of Process Parameters of Pulsed Electro Deposition Technique for Nanocrystalline Nickel Coating Using Gray Relational Analysis (GRA)

    NASA Astrophysics Data System (ADS)

    Venkatesh, C.; Sundara Moorthy, N.; Venkatesan, R.; Aswinprasad, V.

    The moving parts of any mechanism and machine parts are always subjected to a significant wear due to the development of friction. It is an utmost important aspect to address the wear problems in present environment. But the complexity goes on increasing to replace the worn out parts if they are very precise. Technology advancement in surface engineering ensures the minimum surface wear with the introduction of polycrystalline nano nickel coating. The enhanced tribological property of the nano nickel coating was achieved by the development of grain size and hardness of the surface. In this study, it has been decided to focus on the optimized parameters of the pulsed electro deposition to develop such a coating. Taguchi’s method coupled gray relational analysis was employed by considering the pulse frequency, average current density and duty cycle as the chief process parameters. The grain size and hardness were considered as responses. Totally, nine experiments were conducted as per L9 design of experiment. Additionally, response graph method has been applied to determine the most significant parameter to influence both the responses. In order to improve the degree of validation, confirmation test and predicted gray grade were carried out with the optimized parameters. It has been observed that there was significant improvement in gray grade for the optimal parameters.

  3. Probabilistic biosphere modeling for the long-term safety assessment of geological disposal facilities for radioactive waste using first- and second-order Monte Carlo simulation.

    PubMed

    Ciecior, Willy; Röhlig, Klaus-Jürgen; Kirchner, Gerald

    2018-10-01

    In the present paper, deterministic as well as first- and second-order probabilistic biosphere modeling approaches are compared. Furthermore, the sensitivity of the influence of the probability distribution function shape (empirical distribution functions and fitted lognormal probability functions) representing the aleatory uncertainty (also called variability) of a radioecological model parameter as well as the role of interacting parameters are studied. Differences in the shape of the output distributions for the biosphere dose conversion factor from first-order Monte Carlo uncertainty analysis using empirical and fitted lognormal distribution functions for input parameters suggest that a lognormal approximation is possibly not always an adequate representation of the aleatory uncertainty of a radioecological parameter. Concerning the comparison of the impact of aleatory and epistemic parameter uncertainty on the biosphere dose conversion factor, the latter here is described using uncertain moments (mean, variance) while the distribution itself represents the aleatory uncertainty of the parameter. From the results obtained, the solution space of second-order Monte Carlo simulation is much larger than that from first-order Monte Carlo simulation. Therefore, the influence of epistemic uncertainty of a radioecological parameter on the output result is much larger than that one caused by its aleatory uncertainty. Parameter interactions are only of significant influence in the upper percentiles of the distribution of results as well as only in the region of the upper percentiles of the model parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A model study of tunneling conductance spectra of ferromagnetically ordered manganites

    NASA Astrophysics Data System (ADS)

    Panda, Saswati; Kar, J. K.; Rout, G. C.

    2018-02-01

    We report here the interplay of ferromagnetism (FM) and charge density wave (CDW) in manganese oxide systems through the study of tunneling conductance spectra. The model Hamiltonian consists of strong Heisenberg coupling in core t2g band electrons within mean-field approximation giving rise to ferromagnetism. Ferromagnetism is induced in the itinerant eg electrons due to Kubo-Ohata type double exchange (DE) interaction among the t2g and eg electrons. The charge ordering (CO) present in the eg band giving rise to CDW interaction is considered as the extra-mechanism to explain the colossal magnetoresistance (CMR) property of manganites. The magnetic and CDW order parameters are calculated using Zubarev's Green's function technique and solved self-consistently and numerically. The eg electron density of states (DOS) calculated from the imaginary part of the Green's function explains the experimentally observed tunneling conductance spectra. The DOS graph exhibits a parabolic gap near the Fermi energy as observed in tunneling conductance spectra experiments.

  5. International journal of computational fluid dynamics real-time prediction of unsteady flow based on POD reduced-order model and particle filter

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ryota; Misaka, Takashi; Obayashi, Shigeru

    2016-04-01

    An integrated method consisting of a proper orthogonal decomposition (POD)-based reduced-order model (ROM) and a particle filter (PF) is proposed for real-time prediction of an unsteady flow field. The proposed method is validated using identical twin experiments of an unsteady flow field around a circular cylinder for Reynolds numbers of 100 and 1000. In this study, a PF is employed (ROM-PF) to modify the temporal coefficient of the ROM based on observation data because the prediction capability of the ROM alone is limited due to the stability issue. The proposed method reproduces the unsteady flow field several orders faster than a reference numerical simulation based on Navier-Stokes equations. Furthermore, the effects of parameters, related to observation and simulation, on the prediction accuracy are studied. Most of the energy modes of the unsteady flow field are captured, and it is possible to stably predict the long-term evolution with ROM-PF.

  6. Nonlinear isotherm and kinetics of adsorption of copper from aqueous solutions on bentonite

    NASA Astrophysics Data System (ADS)

    Sadeghalvad, Bahareh; Khosravi, Sara; Azadmehr, Amir Reza

    2016-11-01

    Bentonite is one of the most significant of clay minerals that has been studied extensively due to its potential applications in removal of various environmental pollutants. This ability is related to its high ionic exchange capacity and high specific surface area. Copper is one of the important elements of non-ferrous metals found in industrial waste waters. In the present work, the removal of copper from aqueous solutions with Iranian bentonite (from Birjand area, southeastern Iran) used without any chemical pretreatment, was studied. The experimental results were fitted by adsorption isotherms equations with two or three parameters, which include Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Redlich-Peterson, Khan, and Toth models. The best correlation coefficient ( r 2) is 0.9879 observed for Langmuir model, maximum adsorption capacity of bentonite was 55.71 mg/g. The first-order and pseudo-second-order kinetic equations were used to describe the kinetics of adsorption. The experimental data were well fitted by the pseudo-second-order kinetics.

  7. MWAHCA: a multimedia wireless ad hoc cluster architecture.

    PubMed

    Diaz, Juan R; Lloret, Jaime; Jimenez, Jose M; Sendra, Sandra

    2014-01-01

    Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.

  8. Precision ESR Measurements of Transverse Anisotropy in the Single-molecule Magnet Ni4

    NASA Astrophysics Data System (ADS)

    Friedman, Jonathan; Collett, Charles; Allao Cassaro, Rafael

    We present a method to precisely determine the transverse anisotropy in a single-molecule magnet (SMM) through electron-spin resonance measurements of a tunnel splitting that arises from the anisotropy via first-order perturbation theory. We demonstrate the technique using the SMM Ni4 diluted via co-crystallization in a diamagnetic isostructural analogue. At 5% dilution, we find markedly narrower resonance peaks than are observed in undiluted samples. Ni4 has a zero-field tunnel splitting of 4 GHz, and we measure that transition at several nearby frequencies using custom loop-gap resonators, allowing a precise determination of the tunnel splitting. Because the transition under investigation arises due to a first-order perturbation from the transverse anisotropy, and lies at zero field, we can relate the splitting to the transverse anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with zero-field tunnel splittings arising from first-order transverse anisotropy perturbations. NSF Grant No. DMR-1310135.

  9. Analysis of ionospheric structure influences on residual ionospheric errors in GNSS radio occultation bending angles based on ray tracing simulations

    NASA Astrophysics Data System (ADS)

    Liu, Congliang; Kirchengast, Gottfried; Sun, Yueqiang; Zhang, Kefei; Norman, Robert; Schwaerz, Marc; Bai, Weihua; Du, Qifei; Li, Ying

    2018-04-01

    The Global Navigation Satellite System (GNSS) radio occultation (RO) technique is widely used to observe the atmosphere for applications such as numerical weather prediction and global climate monitoring. The ionosphere is a major error source to RO at upper stratospheric altitudes, and a linear dual-frequency bending angle correction is commonly used to remove the first-order ionospheric effect. However, the higher-order residual ionospheric error (RIE) can still be significant, so it needs to be further mitigated for high-accuracy applications, especially from 35 km altitude upward, where the RIE is most relevant compared to the decreasing magnitude of the atmospheric bending angle. In a previous study we quantified RIEs using an ensemble of about 700 quasi-realistic end-to-end simulated RO events, finding typical RIEs at the 0.1 to 0.5 µrad noise level, but were left with 26 exceptional events with anomalous RIEs at the 1 to 10 µrad level that remained unexplained. In this study, we focused on investigating the causes of the high RIE of these exceptional events, employing detailed along-ray-path analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects - where asymmetric ionospheric conditions play the primary role, more than the ionization level driven by solar activity - and technical ray tracer effects due to occasions of imperfect smoothness in ionospheric refractivity model derivatives. We also found that along-ray impact parameter variations of more than 10 to 20 m are possible due to ionospheric asymmetries and, depending on prevailing horizontal refractivity gradients, are positive or negative relative to the initial impact parameter at the GNSS transmitter. Furthermore, mesospheric RIEs are found generally higher than upper-stratospheric ones, likely due to being closer in tangent point heights to the ionospheric E layer peaking near 105 km, which increases RIE vulnerability. In the future we will further improve the along-ray modeling system to fully isolate technical from physics-based effects and to use it beyond this work for additional GNSS RO signal propagation studies.

  10. Polymer density functional theory approach based on scaling second-order direct correlation function.

    PubMed

    Zhou, Shiqi

    2006-06-01

    A second-order direct correlation function (DCF) from solving the polymer-RISM integral equation is scaled up or down by an equation of state for bulk polymer, the resultant scaling second-order DCF is in better agreement with corresponding simulation results than the un-scaling second-order DCF. When the scaling second-order DCF is imported into a recently proposed LTDFA-based polymer DFT approach, an originally associated adjustable but mathematically meaningless parameter now becomes mathematically meaningful, i.e., the numerical value lies now between 0 and 1. When the adjustable parameter-free version of the LTDFA is used instead of the LTDFA, i.e., the adjustable parameter is fixed at 0.5, the resultant parameter-free version of the scaling LTDFA-based polymer DFT is also in good agreement with the corresponding simulation data for density profiles. The parameter-free version of the scaling LTDFA-based polymer DFT is employed to investigate the density profiles of a freely jointed tangent hard sphere chain near a variable sized central hard sphere, again the predictions reproduce accurately the simulational results. Importance of the present adjustable parameter-free version lies in its combination with a recently proposed universal theoretical way, in the resultant formalism, the contact theorem is still met by the adjustable parameter associated with the theoretical way.

  11. Spontaneous Symmetry Breaking of Domain Walls in Phase-Competing Regions

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hiroaki; Yamada, Yasusada; Nagaosa, Naoto

    2018-05-01

    In this study, we investigate the nature of domain walls in an ordered phase in the phase-competing region of two Ising-type order parameters. We consider a two-component ϕ4 theory and show that the domain wall of the ground-state (primary) order parameter shows a second-order phase transition associated with the secondary order parameter of the competing phase; the effective theory of the phase transition is given by the Landau theory of an Ising-type phase transition. We find that the phase boundary of this phase transition is different from the spinodal line of the competing order. The phase transition is detected experimentally by the divergence of the susceptibility corresponding to the secondary order when the temperature is quenched to introduce the domain walls.

  12. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations

    NASA Astrophysics Data System (ADS)

    Sokoloff, J. B.

    2018-03-01

    Secchi et al. [Nature (London) 537, 210 (2016), 10.1038/nature19315] observed a large enhancement of the permeability and slip length in carbon nanotubes when the tube radius is of the order of 15 nm, but not in boron nitride nanotubes. It will be pointed out that none of the parameters that appear in the usual molecular dynamics treatments of water flow in carbon nanotubes have a length scale comparable to 15 nm, which could account for the observed flow velocity enhancement. It will be demonstrated here, however, that if the friction force between the water and the tube walls in carbon nanotubes is dominated by friction due to electron excitations in the tube walls, the enhanced flow can be accounted for by a reduction in the contribution to the friction due to electron excitations in the wall, resulting from the dependence of the electron energy band gap on the tube radius.

  13. Effective Tree Scattering at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; ONeill, Peggy E.; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.

    2011-01-01

    For routine microwave Soil Moisture (SM) retrieval through vegetation, the tau-omega [1] model [zero-order Radiative Transfer (RT) solution] is attractive due to its simplicity and eases of inversion and implementation. It is the model used in baseline retrieval algorithms for several planned microwave space missions, such as ESA's Soil Moisture Ocean Salinity (SMOS) mission (launched November 2009) and NASA's Soil Moisture Active Passive (SMAP) mission (to be launched 2014/2015) [2 and 3]. These approaches are adapted for vegetated landscapes with effective vegetation parameters tau and omega by fitting experimental data or simulation outputs of a multiple scattering model [4-7]. The model has been validated over grasslands, agricultural crops, and generally light to moderate vegetation. As the density of vegetation increases, sensitivity to the underlying SM begins to degrade significantly and errors in the retrieved SM increase accordingly. The zero-order model also loses its validity when dense vegetation (i.e. forest, mature corn, etc.) includes scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. The tau-omega model (when applied over moderately to densely vegetated landscapes) will need modification (in terms of form or effective parameterization) to enable accurate characterization of vegetation parameters with respect to specific tree types, anisotropic canopy structure, presence of leaves and/or understory. More scattering terms (at least up to first-order at L-band) should be included in the RT solutions for forest canopies [8]. Although not really suitable to forests, a zero-order tau-omega model might be applied to such vegetation canopies with large scatterers, but that equivalent or effective parameters would have to be used [4]. This requires that the effective values (vegetation opacity and single scattering albedo) need to be evaluated (compared) with theoretical definitions of these parameters. In a recent study [9], effective vegetation opacity of coniferous trees was compared with two independent estimates of the same parameter. First, a zero-order RT model was fitted to multiangular microwave emissivity data in a least-square sense to provide effective vegetation optical depth as done in spaceborne retrieval algorithms. Second, a ratio between radar backscatter measurements with a corner reflector under trees and in an open area was calculated to obtain measured tree propagation characteristics. Finally, the theoretical propagation constant was determined by forward scattering theorem using detailed measurements of size/angle distributions and dielectric constants of the tree constituents (trunk, branches, and needles). Results indicated that the effective attenuation values are smaller than but of similar magnitude to both the theoretical and measured values. This study will complement the previous work [9] and will focus on characterization of effective scattering albedo by assuming that effective vegetation opacity is same as theoretical opacity. The resultant effective albedo will not be the albedo of single forest canopy element anymore, but it becomes a global parameter, which depends on all the processes taking place within the canopy including multiple scattering as described.

  14. Effect of rheological parameters on curing rate during NBR injection molding

    NASA Astrophysics Data System (ADS)

    Kyas, Kamil; Stanek, Michal; Manas, David; Skrobak, Adam

    2013-04-01

    In this work, non-isothermal injection molding process for NBR rubber mixture considering Isayev-Deng curing kinetic model, generalized Newtonian model with Carreau-WLF viscosity was modeled by using finite element method in order to understand the effect of volume flow rate, index of non-Newtonian behavior and relaxation time on the temperature profile and curing rate. It was found that for specific geometry and processing conditions, increase in relaxation time or in the index of non-Newtonian behavior increases the curing rate due to viscous dissipation taking place at the flow domain walls.

  15. Hypersonic maneuvering to provide planetary gravity assist

    NASA Technical Reports Server (NTRS)

    Mcronald, Angus D.; Randolph, James E.

    1990-01-01

    This paper examines the potential of aeroassist maneuvers at Mars for missions to the sun and to Pluto, using a high-lift/drag vehicle such as the waverider to perform an atmospheric 'fly-around' of Mars, in order to rotate the planetocentric velocity vector, thus adding to the rather small rotation due to gravity alone. A fly-around in one direction or the other can place the aphelion or the perihelion of the resulting orbit at the Mars distance, for missions toward the sun or toward Pluto, respectively. The parameters of such maneuvers are given as a function of earth launch velocity.

  16. Raman spectroscopy to monitor the effects of temperature regime and medium composition on micro-organism growth

    NASA Astrophysics Data System (ADS)

    Samek, O.; Haroniková, A.; Ježek, J.; Bernatová, S.; Márová, I.; Breierová, E.; Šerý, M.; Šiler, M.; Zemánek, P.

    2016-12-01

    A biomass of yeast strains has been studied using Raman spectroscopy due to their potential applications in the field of biofuel generation, food industry and biotechnological applications. In order to utilize biomass for efficient industrial/biotechnological production, the optimal cultivation parameters have to be determined which in turn lead to high production of desired substances such as oil, carotenoids, and pigments in the selected cell line of yeast. Therefore, we focused on different cultivation conditions (the effects of temperature regime and medium composition) and their influence on microorganisms growth and metabolic changes.

  17. Born-Infeld Gravity Revisited

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Sahraee, M.

    2013-12-01

    In this paper, we investigate the behavior of linearized gravitational excitation in the Born-Infeld gravity in AdS3 space. We obtain the linearized equation of motion and show that this higher-order gravity propagate two gravitons, massless and massive, on the AdS3 background. In contrast to the R2 models, such as TMG or NMG, Born-Infeld gravity does not have a critical point for any regular choice of parameters. So the logarithmic solution is not a solution of this model, due to this one cannot find a logarithmic conformal field theory as a dual model for Born-Infeld gravity.

  18. Object-oriented simulation model of a parabolic trough solar collector: Static and dynamic validation

    NASA Astrophysics Data System (ADS)

    Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana

    2017-06-01

    A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).

  19. Theoretical study on phase-locking of a radial array CO2 laser

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen

    2014-11-01

    The phase-locking of the radial array CO2 laser (RAL) is introduced based on the injection-locking principle. The characteristic parameters of laser beams used in the phase-locking are described, and the coupling coefficient c00 between the injected mode and the eigenmode of RAL is calculated. The laser modes from RAL are the low-order Hermite Gaussian modes due to the diffraction loss. The analytical formula for the output beam through an ABCD optical system is derived according Collins formula. The numerical examples are given to illustrate our analytical results.

  20. Nailfold capillaroscopy in leprosy*

    PubMed Central

    de Lima, Adma Silva; Pizzol, Vanessa Irusta dal; Fritsch, Scheila; Fonseca, Gabriela Poglia; Mulinari-Brenner, Fabiane Andrade; Muller, Carolina de Souza; Ottoboni, Vanessa Cristhine Dalombo

    2016-01-01

    Due to mounting evidences of interaction between Hansen's bacilli with endothelial cells and the paucity of studies addressing the presence of nailfold capillaroscopic alterations in patients with Hansen's disease, a study was carried out in order to verify the presence of capillaroscopic alterations in patients with leprosy in its various forms and its correlation with clinical parameters. Ten patients were evaluated at a specialized university service. Sixty percent of those had some capillaroscopic change, such as micro-hemorrhages, ectatic, bushy and corkscrew capillaries. Such changes were unspecific, which suggests there is not a specific pattern for this disease. PMID:27828654

  1. A New Approach for Identifying Ionospheric Gradients in the Context of the Gagan System

    NASA Astrophysics Data System (ADS)

    Kudala, Ravi Chandra

    2012-10-01

    The Indian Space Research Organization and the Airports Authority of India are jointly implementing the Global Positioning System (GPS) aided GEO Augmented Navigation (GAGAN) system in order to meet the following required navigation performance (RNP) parameters: integrity, continuity, accuracy, and availability (for aircraft operations). Such a system provides the user with orbit, clock, and ionospheric corrections in addition to ranging signals via the geostationary earth orbit satellite (GEOSAT). The equatorial ionization anomaly (EIA), due to rapid non-uniform electron-ion recombination that persists on the Indian subcontinent, causes ionospheric gradients. Ionospheric gradients represent the most severe threat to high-integrity differential GNSS systems such as GAGAN. In order to ensure integrity under conditions of an ionospheric storm, the following three objectives must be met: careful monitoring, error bounding, and sophisticated storm-front modeling. The first objective is met by continuously tracking data due to storms, and, on quiet days, determining precise estimates of the threat parameters from reference monitoring stations. The second objective is met by quantifying the above estimates of threat parameters due to storms through maximum and minimum typical thresholds. In the context GAGAN, this work proposes a new method for identifying ionospheric gradients, in addition to determining an appropriate upper bound, in order to sufficiently understand error during storm days. Initially, carrier phase data of the GAGAN network from Indian TEC stations for both storm and quiet days was used for estimating ionospheric spatial and temporal gradients (the vertical ionospheric gradient (σVIG) and the rate of the TEC index (ROTI), respectively) in multiple viewing directions. Along similar lines, using the carrier to noise ratio (C/N0) for the same data, the carrier to noise ratio index (σCNRI) was derived. Subsequently, the one-toone relationship between σVIG and σCNRI was examined. High values of σVIG were determined for strong noise signals and corresponded to minimal σCNRI, indicating poor phase estimations and, in turn, an erroneous location. On the other hand, low values of σVIG were produced for weak noise signals and corresponded to maximum σCNRI, indicating strong phase estimations and, in turn, accurate locations. In other words, if a gradient persists in the line of sight direction of GEOSAT for aviation users, the down link L- band signal itself becomes erroneous. As a result, the en-route aviation user fails to receive a SBAS correction message leading to deprivation for the main objective of GAGAN. On the other hand, since the proposed approach enhances the receivers of both the aviation user and the reference monitoring station in terms of their performance, based on σCNRI, the integrity of SBAS messages themselves can be analyzed and considered for forward corrections.

  2. Steady boundary layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium.

    PubMed

    Aziz, Asim; Siddique, J I; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile.

  3. Dynamic Modelling under Uncertainty: The Case of Trypanosoma brucei Energy Metabolism

    PubMed Central

    Achcar, Fiona; Kerkhoven, Eduard J.; Bakker, Barbara M.; Barrett, Michael P.; Breitling, Rainer

    2012-01-01

    Kinetic models of metabolism require detailed knowledge of kinetic parameters. However, due to measurement errors or lack of data this knowledge is often uncertain. The model of glycolysis in the parasitic protozoan Trypanosoma brucei is a particularly well analysed example of a quantitative metabolic model, but so far it has been studied with a fixed set of parameters only. Here we evaluate the effect of parameter uncertainty. In order to define probability distributions for each parameter, information about the experimental sources and confidence intervals for all parameters were collected. We created a wiki-based website dedicated to the detailed documentation of this information: the SilicoTryp wiki (http://silicotryp.ibls.gla.ac.uk/wiki/Glycolysis). Using information collected in the wiki, we then assigned probability distributions to all parameters of the model. This allowed us to sample sets of alternative models, accurately representing our degree of uncertainty. Some properties of the model, such as the repartition of the glycolytic flux between the glycerol and pyruvate producing branches, are robust to these uncertainties. However, our analysis also allowed us to identify fragilities of the model leading to the accumulation of 3-phosphoglycerate and/or pyruvate. The analysis of the control coefficients revealed the importance of taking into account the uncertainties about the parameters, as the ranking of the reactions can be greatly affected. This work will now form the basis for a comprehensive Bayesian analysis and extension of the model considering alternative topologies. PMID:22379410

  4. Steady Boundary Layer Slip Flow along with Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

    PubMed Central

    Aziz, Asim; Siddique, J. I.; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile. PMID:25531301

  5. Kinetics and thermodynamics of oxidation mediated reaction in L-cysteine and its methyl and ethyl esters in dimethyl sulfoxide-d6 by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, Ryan J.; Singh, Jaideep; Krishnan, V. V.

    2017-03-01

    L-Cysteine (L-Cys), L-Cysteine methyl ester (L-CysME) or L-Cysteine ethyl ester (L-CysEE), when dissolved in dimethyl sulfoxide, undergoes an oxidation process. This process is slow enough and leads to nuclear magnetic resonance (NMR) spectral changes that could be monitored in real time. The oxidation mediated transition is modeled as a pseudo-first order kinetics and the thermodynamic parameters are estimated using the Eyring's formulation. L-Cysteine and their esters are often used as biological models due to the remarkable thiol group that can be found in different oxidation states. This oxidation mediated transition is due to the combination of thiol oxidation to a disulfide followed by solvent-induced effects may be relevant in designing cysteine-based molecular models.

  6. Nanoparticle discrimination based on wavelength and lifetime-multiplexed cathodoluminescence microscopy.

    PubMed

    Garming, Mathijs W H; Weppelman, I Gerward C; de Boer, Pascal; Martínez, Felipe Perona; Schirhagl, Romana; Hoogenboom, Jacob P; Moerland, Robert J

    2017-08-31

    Nanomaterials can be identified in high-resolution electron microscopy images using spectrally-selective cathodoluminescence. Capabilities for multiplex detection can however be limited, e.g., due to spectral overlap or availability of filters. Also, the available photon flux may be limited due to degradation under electron irradiation. Here, we demonstrate single-pass cathodoluminescence-lifetime based discrimination of different nanoparticles, using a pulsed electron beam. We also show that cathodoluminescence lifetime is a robust parameter even when the nanoparticle cathodoluminescence intensity decays over an order of magnitude. We create lifetime maps, where the lifetime of the cathodoluminescence emission is correlated with the emission intensity and secondary-electron images. The consistency of lifetime-based discrimination is verified by also correlating the emission wavelength and the lifetime of nanoparticles. Our results show how cathodoluminescence lifetime provides an additional channel of information in electron microscopy.

  7. Coupling of order parameters, chirality, and interfacial structures in multiferroic materials.

    PubMed

    Conti, Sergio; Müller, Stefan; Poliakovsky, Arkady; Salje, Ekhard K H

    2011-04-13

    We study optimal interfacial structures in multiferroic materials with a biquadratic coupling between two order parameters. We discover a new duality relation between the strong coupling and the weak coupling regime for the case of isotropic gradient terms. We analyze the phase diagram depending on the coupling constant and anisotropy of the gradient term, and show that in a certain regime the secondary order parameter becomes activated only in the interfacial region.

  8. Transverse fields to tune an Ising-nematic quantum phase transition [Transverse fields to tune an Ising-nematic quantum critical transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.

    Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less

  9. Transverse fields to tune an Ising-nematic quantum phase transition [Transverse fields to tune an Ising-nematic quantum critical transition

    DOE PAGES

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; ...

    2017-12-05

    Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less

  10. Effect of formal and informal likelihood functions on uncertainty assessment in a single event rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Nourali, Mahrouz; Ghahraman, Bijan; Pourreza-Bilondi, Mohsen; Davary, Kamran

    2016-09-01

    In the present study, DREAM(ZS), Differential Evolution Adaptive Metropolis combined with both formal and informal likelihood functions, is used to investigate uncertainty of parameters of the HEC-HMS model in Tamar watershed, Golestan province, Iran. In order to assess the uncertainty of 24 parameters used in HMS, three flood events were used to calibrate and one flood event was used to validate the posterior distributions. Moreover, performance of seven different likelihood functions (L1-L7) was assessed by means of DREAM(ZS)approach. Four likelihood functions, L1-L4, Nash-Sutcliffe (NS) efficiency, Normalized absolute error (NAE), Index of agreement (IOA), and Chiew-McMahon efficiency (CM), is considered as informal, whereas remaining (L5-L7) is represented in formal category. L5 focuses on the relationship between the traditional least squares fitting and the Bayesian inference, and L6, is a hetereoscedastic maximum likelihood error (HMLE) estimator. Finally, in likelihood function L7, serial dependence of residual errors is accounted using a first-order autoregressive (AR) model of the residuals. According to the results, sensitivities of the parameters strongly depend on the likelihood function, and vary for different likelihood functions. Most of the parameters were better defined by formal likelihood functions L5 and L7 and showed a high sensitivity to model performance. Posterior cumulative distributions corresponding to the informal likelihood functions L1, L2, L3, L4 and the formal likelihood function L6 are approximately the same for most of the sub-basins, and these likelihood functions depict almost a similar effect on sensitivity of parameters. 95% total prediction uncertainty bounds bracketed most of the observed data. Considering all the statistical indicators and criteria of uncertainty assessment, including RMSE, KGE, NS, P-factor and R-factor, results showed that DREAM(ZS) algorithm performed better under formal likelihood functions L5 and L7, but likelihood function L5 may result in biased and unreliable estimation of parameters due to violation of the residualerror assumptions. Thus, likelihood function L7 provides posterior distribution of model parameters credibly and therefore can be employed for further applications.

  11. Inflationary spectra with inverse-volume corrections in loop quantum cosmology and their observational constraints from Planck 2015 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Tao; Wang, Anzhong; Wu, Qiang

    We first derive the primordial power spectra, spectral indices and runnings of both scalar and tensor perturbations of a flat inflationary universe to the second-order approximations of the slow-roll parameters, in the framework of loop quantum cosmology with the inverse-volume quantum corrections. This represents an extension of our previous work in which the parameter σ was assumed to be an integer, where σ characterizes the quantum corrections and in general can take any of values from the range σ  element of  (0, 6]. Restricting to the first-order approximations of the slow-roll parameters, we find corrections to the results obtained previously inmore » the literature, and point out the causes for such errors. To our best knowledge, these represent the most accurate calculations of scalar and tensor perturbations given so far in the literature. Then, fitting the perturbations to the recently released data by Planck (2015), we obtain the most severe constraints for various values of σ. Using these constraints as our referring point, we discuss whether these quantum gravitational corrections can lead to measurable signatures in the future cosmological observations. We show that, depending on the value of σ, the scale-dependent contributions to the relativistic inflationary spectra due to the inverse-volume corrections could be well within the range of the detectability of the forthcoming generations of experiments, such as the Stage IV experiments.« less

  12. Field-theoretic simulations of block copolymer nanocomposites in a constant interfacial tension ensemble.

    PubMed

    Koski, Jason P; Riggleman, Robert A

    2017-04-28

    Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (nVγT) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our nVγT approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the nVγT ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.

  13. Seasonal extreme value statistics for precipitation in Germany

    NASA Astrophysics Data System (ADS)

    Fischer, Madlen; Rust, Henning W.; Ulbrich, Uwe

    2013-04-01

    Extreme precipitation has a strong influence on environment, society and economy. It leads to large damage due to floods, mudslides, increased erosion or hail. While standard annual return levels are important for hydrological structures, seasonaly resolved return levels provide additional information for risk managment, e.g., for the agricultural sector. For 1208 stations in Germany, we calculate monthly resolved return levels. Instead of estimating parameters separately for every month in the year, we use a non-stationary approach and benefit from smoothly varying return levels throughout the year. This natural approach is more suitable to characterise seasonal variability of extreme precipitation and leads to more accurate return level estimates. Harmonic functions of different orders are used to describe the seasonal variation of GEV parameters and crossvalidation is used to determine a suitable model forall stations. Finally particularly vulnerable regions and associated month are investigated in more detail.

  14. Manipulation of optical-pulse-imprinted memory in a Λ system

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Cuevas, Rodrigo; Eberly, Joseph H.

    2015-09-01

    We examine coherent memory manipulation in a Λ -type medium, using the second-order solution presented by Groves, Clader, and Eberly [J. Phys. B: At. Mol. Opt. Phys. 46, 224005 (2013), 10.1088/0953-4075/46/22/224005] as a guide. The analytical solution obtained using the Darboux transformation and a nonlinear superposition principle describes complicated soliton-pulse dynamics which, by an appropriate choice of parameters, can be simplified to a well-defined sequence of pulses interacting with the medium. In this report, this solution is reviewed and put to test by means of a series of numerical simulations, encompassing all the parameter space and adding the effects of homogeneous broadening due to spontaneous emission. We find that even though the decohered results deviate from the analytical prediction they do follow a similar trend that could be used as a guide for future experiments.

  15. Hydrodynamic cavitation in Stokes flow of anisotropic fluids.

    PubMed

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G; Sengupta, Anupam

    2017-05-30

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

  16. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    PubMed Central

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-01-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids. PMID:28555615

  17. A technique for computation of noise temperature due to a beam waveguide shroud

    NASA Technical Reports Server (NTRS)

    Veruttipong, W.; Franco, M. M.

    1993-01-01

    Direct analytical computation of the noise temperature of real beam waveguide (BWG) systems, including all mirrors and the surrounding shroud, is an extremely complex problem and virtually impossible to achieve. Yet the DSN antennas are required to be ultra low-noise in order to be effective, and a reasonably accurate prediction is essential. This article presents a relatively simple technique to compute a real BWG system noise temperature by combining analytical techniques with data from experimental tests. Specific expressions and parameters for X-band (8.45-GHz) BWG noise computation are obtained for DSS 13 and DSS 24, now under construction. These expressions are also valid for various conditions of the BWG feed systems, including horn sizes and positions, and mirror sizes, curvatures, and positions. Parameters for S- and Ka-bands (2.3 and 32.0 GHz) have not been determined; however, those can be obtained following the same procedure as for X-band.

  18. Determination of parameters used to prevent ignition of stored materials and to protect against explosions in food industries.

    PubMed

    Ramírez, Alvaro; García-Torrent, Javier; Aguado, Pedro J

    2009-08-30

    There are always risks associated with silos when the stored material has been characterized as prone to self-ignition or explosion. Further research focused on the characterization of agricultural materials stored in silos is needed due to the lack of data found in the literature. The aim of this study was to determine the ignitability and explosive parameters of several agricultural products commonly stored in silos in order to assess the risk of ignition and dust explosion. Minimum Ignition Temperature, with dust forming a cloud and deposited in a layer, Lower Explosive Limit, Minimum Ignition Energy, Maximum Explosion Pressure and Maximum Explosion Pressure Rise were determined for seven agricultural materials: icing sugar, maize, wheat and barley grain dust, alfalfa, bread-making wheat and soybean dust. Following characterization, these were found to be prone to producing self-ignition when stored in silos under certain conditions.

  19. Assessing performance of flaw characterization methods through uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Miorelli, R.; Le Bourdais, F.; Artusi, X.

    2018-04-01

    In this work, we assess the inversion performance in terms of crack characterization and localization based on synthetic signals associated to ultrasonic and eddy current physics. More precisely, two different standard iterative inversion algorithms are used to minimize the discrepancy between measurements (i.e., the tested data) and simulations. Furthermore, in order to speed up the computational time and get rid of the computational burden often associated to iterative inversion algorithms, we replace the standard forward solver by a suitable metamodel fit on a database built offline. In a second step, we assess the inversion performance by adding uncertainties on a subset of the database parameters and then, through the metamodel, we propagate these uncertainties within the inversion procedure. The fast propagation of uncertainties enables efficiently evaluating the impact due to the lack of knowledge on some parameters employed to describe the inspection scenarios, which is a situation commonly encountered in the industrial NDE context.

  20. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro; Lazanu, Sorina, E-mail: ciurea@infim.ro

    2014-10-06

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increasemore » of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.« less

  1. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    NASA Astrophysics Data System (ADS)

    Ciurea, Magdalena Lidia; Lazanu, Sorina

    2014-10-01

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increase of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.

  2. Cumulative dose 60Co gamma irradiation effects on AlGaN/GaN Schottky diodes and its area dependence

    NASA Astrophysics Data System (ADS)

    Sharma, Chandan; Laishram, Robert; Rawal, Dipendra Singh; Vinayak, Seema; Singh, Rajendra

    2018-04-01

    Cumulative dose gamma radiation effects on current-voltage characteristics of GaN Schottky diodes have been investigated. The different area diodes have been fabricated on AlGaN/GaN high electron mobility transistor (HEMT) epi-layer structure grown over SiC substrate and irradiated with a dose up to the order of 104 Gray (Gy). Post irradiation characterization shows a shift in the turn-on voltage and improvement in reverse leakage current. Other calculated parameters include Schottky barrier height, ideality factor and reverse saturation current. Schottky barrier height has been decreased whereas reverse saturation current shows an increase in the value post irradiation with improvement in the ideality factor. Transfer length measurement (TLM) characterization shows an improvement in the contact resistance. Finally, diodes with larger area have more variation in the calculated parameters due to the induced local heating effect.

  3. Spent fuel pool storage calculations using the ISOCRIT burnup credit tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucukboyaci, Vefa; Marshall, William BJ J

    2012-01-01

    In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse's state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion,more » thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.« less

  4. BIASES IN PHYSICAL PARAMETER ESTIMATES THROUGH DIFFERENTIAL LENSING MAGNIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Er Xinzhong; Ge Junqiang; Mao Shude, E-mail: xer@nao.cas.cn

    2013-06-20

    We study the lensing magnification effect on background galaxies. Differential magnification due to different magnifications of different source regions of a galaxy will change the lensed composite spectra. The derived properties of the background galaxies are therefore biased. For simplicity, we model galaxies as a superposition of an axis-symmetric bulge and a face-on disk in order to study the differential magnification effect on the composite spectra. We find that some properties derived from the spectra (e.g., velocity dispersion, star formation rate, and metallicity) are modified. Depending on the relative positions of the source and the lens, the inferred results canmore » be either over- or underestimates of the true values. In general, for an extended source at strong lensing regions with high magnifications, the inferred physical parameters (e.g., metallicity) can be strongly biased. Therefore, detailed lens modeling is necessary to obtain the true properties of the lensed galaxies.« less

  5. Influence of the temperature on the composites' fusion bonding quality

    NASA Astrophysics Data System (ADS)

    Harkous, Ali; Jurkowski, Tomasz; Bailleul, Jean-Luc; Le Corre, Steven

    2017-10-01

    Thermoplastic composite parts are increasingly used to replace metal pieces in automotive field due to their mechanical properties, chemical properties and recycling potential [1]. To assemble and give them new mechanical functions, fusion bonding is often used. It is a type of welding carried out at a higher temperature than the fusion one [2]. The mechanical quality of the final adhesion depends on the process parameters like pressure, temperature and cycle time [3]. These parameters depend on two phenomena at the origin of the bonding formation: intimate contact [4] and reptation and healing [5]. In this study, we analyze the influence of the temperature on the bonding quality, disregarding in this first steps the pressure influence. For that, two polyamide composite parts are welded using a specific setup. Then, they undergo a mechanical test of peeling in order to quantify the adhesion quality.

  6. Synthesis, structure, and optoelectronic properties of II-IV-V 2 materials

    DOE PAGES

    Martinez, Aaron D.; Fioretti, Angela N.; Toberer, Eric S.; ...

    2017-03-07

    II-IV-V 2 materials offer the promise of enhanced functionality in optoelectronic devices due to their rich ternary chemistry. In this review, we consider the potential for new optoelectronic devices based on nitride, phosphide, and arsenide II-IV-V 2 materials. As ternary analogs to the III-V materials, these compounds share many of the attractive features that have made the III-Vs the basis of modern optoelectronic devices (e.g. high mobility, strong optical absorption). Control of cation order parameter in the II-IV-V 2 materials can produce significant changes in optoelectronic properties at fixed chemical composition, including decoupling band gap from lattice parameter. Recent progressmore » has begun to resolve outstanding questions concerning the structure, dopability, and optical properties of the II-IV-V 2 materials. Furthermore, remaining research challenges include growth optimization and integration into heterostructures and devices.« less

  7. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    NASA Astrophysics Data System (ADS)

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-05-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

  8. Nonlinear gearshifts control of dual-clutch transmissions during inertia phase.

    PubMed

    Hu, Yunfeng; Tian, Lu; Gao, Bingzhao; Chen, Hong

    2014-07-01

    In this paper, a model-based nonlinear gearshift controller is designed by the backstepping method to improve the shift quality of vehicles with a dual-clutch transmission (DCT). Considering easy-implementation, the controller is rearranged into a concise structure which contains a feedforward control and a feedback control. Then, robustness of the closed-loop error system is discussed in the framework of the input to state stability (ISS) theory, where model uncertainties are considered as the additive disturbance inputs. Furthermore, due to the application of the backstepping method, the closed-loop error system is ordered as a linear system. Using the linear system theory, a guideline for selecting the controller parameters is deduced which could reduce the workload of parameters tuning. Finally, simulation results and Hardware in the Loop (HiL) simulation are presented to validate the effectiveness of the designed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. A new method for the identification of non-Gaussian line profiles in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Van Der Marel, Roeland P.; Franx, Marijn

    1993-01-01

    A new parameterization for the line profiles of elliptical galaxies, the Gauss-Hermite series, is proposed. This approach expands the line profile as a sum of orthogonal functions which minimizes the correlations between the errors in the parameters of the fit. This method also make use of the fact that Gaussians provide good low-order fits to observed line profiles. The method yields measurements of the line strength, mean radial velocity, and the velocity dispersion as well as two extra parameters, h3 and h4, that measure asymmetric and symmetric deviations of the line profiles from a Gaussian, respectively. The new method was used to derive profiles for three elliptical galaxies which all have asymmetric line profiles on the major axis with symmetric deviations from a Gaussian. Results confirm that elliptical galaxies have complex structures due to their complex formation history.

  10. Constraints for the thawing and freezing potentials

    NASA Astrophysics Data System (ADS)

    Hara, Tetsuya; Suzuki, Anna; Saka, Shogo; Tanigawa, Takuma

    2018-01-01

    We study the accelerating present universe in terms of the time evolution of the equation of state w(z) (redshift z) due to thawing and freezing scalar potentials in the quintessence model. The values of dw/da and d^2w/da^2 at a scale factor of a = 1 are associated with two parameters of each potential. For five types of scalar potentials, the scalar fields Q and w as functions of time t and/or z are numerically calculated under the fixed boundary condition of w(z=0)=-1+Δ. The observational constraint w_obs (Planck Collaboration, arXiv:1502.01590) is imposed to test whether the numerical w(z) is in w_obs. Some solutions show thawing features in the freezing potentials. Mutually exclusive allowed regions in the dw/da vs. d^2w/da^2 diagram are obtained in order to identify the likely scalar potential and even the potential parameters for future observational tests.

  11. Analyses of a heterogeneous lattice hydrodynamic model with low and high-sensitivity vehicles

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Sharma, Sapna

    2018-06-01

    Basic lattice model is extended to study the heterogeneous traffic by considering the optimal current difference effect on a unidirectional single lane highway. Heterogeneous traffic consisting of low- and high-sensitivity vehicles is modeled and their impact on stability of mixed traffic flow has been examined through linear stability analysis. The stability of flow is investigated in five distinct regions of the neutral stability diagram corresponding to the amount of higher sensitivity vehicles present on road. In order to investigate the propagating behavior of density waves non linear analysis is performed and near the critical point, the kink antikink soliton is obtained by driving mKdV equation. The effect of fraction parameter corresponding to high sensitivity vehicles is investigated and the results indicates that the stability rise up due to the fraction parameter. The theoretical findings are verified via direct numerical simulation.

  12. Structuring Stokes correlation functions using vector-vortex beam

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Anwar, Ali; Singh, R. P.

    2018-01-01

    Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.

  13. The optimisation of electrokinetic remediation for heavy metals and radioactivity contamination on Holyrood-Lunas soil (acrisol species) in Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia.

    PubMed

    Mohamed Johar, S; Embong, Z

    2015-11-01

    The optimisation of electrokinetic remediation of an alluvial soil, locally named as Holyrood-Lunas from Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia, had been conducted in this research. This particular soil was chosen due to its relatively high level of background radiation in a range between 139.2 and 539.4 nGy h(-1). As the background radiation is correlated to the amount of parent nuclides, (238)U and (232)Th, hence, a remediation technique, such as electrokinetic, is very useful in reducing these particular concentrations of heavy metal and radionuclides in soils. Several series of electrokinetics experiments were performed in laboratory scale in order to study the influence of certain electrokinetic parameters in soil. The concentration before (pre-electrokinetic) and after the experiment (post-electrokinetic) was determined via X-ray fluorescence (XRF) analysis technique. The best electrokinetic parameter that contributed to the highest achievable concentration removal of heavy metals and radionuclides on each experimental series was incorporated into a final electrokinetic experiment. Here, High Pure Germanium (HPGe) was used for radioactivity elemental analysis. The XRF results suggested that the most optimised electrokinetic parameters for Cr, Ni, Zn, As, Pb, Th and U were 3.0 h, 90 volts, 22.0 cm, plate-shaped electrode by 8 × 8 cm and in 1-D configuration order whereas the selected optimised electrokinetic parameters gave very low reduction of (238)U and (232)Th at 0.23 ± 2.64 and 2.74 ± 23.78 ppm, respectively. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Mechanical desorption of a single chain: unusual aspects of phase coexistence at a first-order transition.

    PubMed

    Skvortsov, Alexander M; Klushin, Leonid I; Polotsky, Alexey A; Binder, Kurt

    2012-03-01

    The phase transition occurring when a single polymer chain adsorbed at a planar solid surface is mechanically desorbed is analyzed in two statistical ensembles. In the force ensemble, a constant force applied to the nongrafted end of the chain (that is grafted at its other end) is used as a given external control variable. In the z-ensemble, the displacement z of this nongrafted end from the surface is taken as the externally controlled variable. Basic thermodynamic parameters, such as the adsorption energy, exhibit a very different behavior as a function of these control parameters. In the thermodynamic limit of infinite chain length the desorption transition with the force as a control parameter clearly is discontinuous, while in the z-ensemble continuous variations are found. However, one should not be misled by a too-naive application of the Ehrenfest criterion to consider the transition as a continuous transition: rather, one traverses a two-phase coexistence region, where part of the chain is still adsorbed and the other part desorbed and stretched. Similarities with and differences from two-phase coexistence at vapor-liquid transitions are pointed out. The rounding of the singularities due to finite chain length is illustrated by exact calculations for the nonreversal random walk model on the simple cubic lattice. A new concept of local order parameter profiles for the description of the mechanical desorption of adsorbed polymers is suggested. This concept give evidence for both the existence of two-phase coexistence within single polymer chains for this transition and the anomalous character of this two-phase coexistence. Consequences for the proper interpretation of experiments performed in different ensembles are briefly mentioned.

  15. Accounting for Parameter Uncertainty in Complex Atmospheric Models, With an Application to Greenhouse Gas Emissions Evaluation

    NASA Astrophysics Data System (ADS)

    Swallow, B.; Rigby, M. L.; Rougier, J.; Manning, A.; Thomson, D.; Webster, H. N.; Lunt, M. F.; O'Doherty, S.

    2016-12-01

    In order to understand underlying processes governing environmental and physical phenomena, a complex mathematical model is usually required. However, there is an inherent uncertainty related to the parameterisation of unresolved processes in these simulators. Here, we focus on the specific problem of accounting for uncertainty in parameter values in an atmospheric chemical transport model. Systematic errors introduced by failing to account for these uncertainties have the potential to have a large effect on resulting estimates in unknown quantities of interest. One approach that is being increasingly used to address this issue is known as emulation, in which a large number of forward runs of the simulator are carried out, in order to approximate the response of the output to changes in parameters. However, due to the complexity of some models, it is often unfeasible to run large numbers of training runs that is usually required for full statistical emulators of the environmental processes. We therefore present a simplified model reduction method for approximating uncertainties in complex environmental simulators without the need for very large numbers of training runs. We illustrate the method through an application to the Met Office's atmospheric transport model NAME. We show how our parameter estimation framework can be incorporated into a hierarchical Bayesian inversion, and demonstrate the impact on estimates of UK methane emissions, using atmospheric mole fraction data. We conclude that accounting for uncertainties in the parameterisation of complex atmospheric models is vital if systematic errors are to be minimized and all relevant uncertainties accounted for. We also note that investigations of this nature can prove extremely useful in highlighting deficiencies in the simulator that might otherwise be missed.

  16. X-ray-diffraction study of in-plane and interlayer correlations in layered compounds AgxTiS2

    NASA Astrophysics Data System (ADS)

    Kuroiwa, Yoshihiro; Ohshima, Ken-Ichi; Watanabe, Yousuke

    1990-12-01

    X-ray measurements have been performed on the development of in-plane and interplanar correlations of intercalated Ag atoms in stage-2 and -1 AgxTiS2 single crystals. The abrupt change of the c-axis parameter for stage-2 Ag0.15TiS2 at around 250 K, due to the structural transformation of the stacking sequence, was observed, although the a-axis parameter changes continuously. Rodlike diffuse scattering parallel to c* at 1/31/3.0, 2/32/3.0, and their equivalent positions is observed for stage-2 Ag0.15TiS2 above 250 K and shows the two-dimensional (2D) feature of the disordered state. Such a diffuse rod is modulated below 250 K, with maxima appearing at every half-integer. This reveals an enhancement of the three-dimensional nature and a stacking sequence αβαβ... . By analyzing rodlike diffuse scattering at 350, 300, 280, and 250 K for stage-2 Ag0.15TiS2, the 2D short-range-order parameters were determined. By comparing the 2D short-range-order parameters with the 2D Ornstein-Zernike correlation function, it was obtained that the correlation length varies from 4.1+/-0.6 Å at 350 K to 37.1+/-1.6 Å at 250 K. These results can be interpreted with the use of the Daumas-Hérold island model. On the other hand, for stage-1 AgxTiS2, the modulation of the diffuse rod parallel to the c* axis at 1/31/3.0, 2/32/3.0, and their equivalent positions was observed at room temperature, which shows the 3D nature.

  17. Design and analysis of a nuclear reactor core for innovative small light water reactors

    NASA Astrophysics Data System (ADS)

    Soldatov, Alexey I.

    In order to address the energy needs of developing countries and remote communities, Oregon State University has proposed the Multi-Application Small Light Water Reactor (MASLWR) design. In order to achieve five years of operation without refueling, use of 8% enriched fuel is necessary. This dissertation is focused on core design issues related with increased fuel enrichment (8.0%) and specific MASLWR operational conditions (such as lower operational pressure and temperature, and increased leakage due to small core). Neutron physics calculations are performed with the commercial nuclear industry tools CASMO-4 and SIMULATE-3, developed by Studsvik Scandpower Inc. The first set of results are generated from infinite lattice level calculations with CASMO-4, and focus on evaluation of the principal differences between standard PWR fuel and MASLWR fuel. Chapter 4-1 covers aspects of fuel isotopic composition changes with burnup, evaluation of kinetic parameters and reactivity coefficients. Chapter 4-2 discusses gadolinium self-shielding and shadowing effects, and subsequent impacts on power generation peaking and Reactor Control System shadowing. The second aspect of the research is dedicated to core design issues, such as reflector design (chapter 4-3), burnable absorber distribution and programmed fuel burnup and fuel use strategy (chapter 4-4). This section also includes discussion of the parameters important for safety and evaluation of Reactor Control System options for the proposed core design. An evaluation of the sensitivity of the proposed design to uncertainty in calculated parameters is presented in chapter 4-5. The results presented in this dissertation cover a new area of reactor design and operational parameters, and may be applicable to other small and large pressurized water reactor designs.

  18. Manipulation and Investigation of Uniformly-Spaced Nanowire Array on a Substrate via Dielectrophoresis and Electrostatic Interaction.

    PubMed

    Choi, U Hyeok; Park, Ji Hun; Kim, Jaekyun

    2018-06-21

    Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.

  19. Persistent monolayer-scale chemical ordering in Si{sub 1−x}Ge{sub x} heteroepitaxial films during surface roughening and strain relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amatya, J. M.; Floro, J. A.

    2015-12-28

    Chemical ordering in semiconductor alloys could modify thermal and electronic transport, with potential benefits to thermoelectric properties. Here, metastable ordering that occurs during heteroepitaxial growth of Si{sub 1−x}Ge{sub x} thin film alloys on Si(001) and Ge(001) substrates is investigated. A parametric study was performed to study how strain, surface roughness, and growth parameters affect the order parameter during the alloy growth. The order parameter for the alloy films was carefully quantified using x-ray diffraction, taking into account an often-overlooked issue associated with the presence of multiple spatial variants associated with ordering along equivalent <111> directions. Optimal ordering was observed inmore » the films having the smoothest surfaces. Extended strain relaxation is suggested to reduce the apparent order through creation of anti-phase boundaries. Ordering surprisingly persists even when the film surface extensively roughens to form (105) facets. Growth on deliberately miscut Si(001) surfaces does not affect the volume-averaged order parameter but does impact the relative volume fractions of the equivalent ordered variants in a manner consistent with geometrically necessary changes in step populations. These results provide somewhat self-contradictory implications for the role of step edges in controlling the ordering process, indicating that our understanding is still incomplete.« less

  20. The hydraulic capacity of deteriorating sewer systems.

    PubMed

    Pollert, J; Ugarelli, R; Saegrov, S; Schilling, W; Di Federico, V

    2005-01-01

    Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted.

Top