Sample records for order phase correction

  1. A new phase correction method in NMR imaging based on autocorrelation and histogram analysis.

    PubMed

    Ahn, C B; Cho, Z H

    1987-01-01

    A new statistical approach to phase correction in NMR imaging is proposed. The proposed scheme consists of first-and zero-order phase corrections each by the inverse multiplication of estimated phase error. The first-order error is estimated by the phase of autocorrelation calculated from the complex valued phase distorted image while the zero-order correction factor is extracted from the histogram of phase distribution of the first-order corrected image. Since all the correction procedures are performed on the spatial domain after completion of data acquisition, no prior adjustments or additional measurements are required. The algorithm can be applicable to most of the phase-involved NMR imaging techniques including inversion recovery imaging, quadrature modulated imaging, spectroscopic imaging, and flow imaging, etc. Some experimental results with inversion recovery imaging as well as quadrature spectroscopic imaging are shown to demonstrate the usefulness of the algorithm.

  2. Fringe order correction for the absolute phase recovered by two selected spatial frequency fringe projections in fringe projection profilometry.

    PubMed

    Ding, Yi; Peng, Kai; Yu, Miao; Lu, Lei; Zhao, Kun

    2017-08-01

    The performance of the two selected spatial frequency phase unwrapping methods is limited by a phase error bound beyond which errors will occur in the fringe order leading to a significant error in the recovered absolute phase map. In this paper, we propose a method to detect and correct the wrong fringe orders. Two constraints are introduced during the fringe order determination of two selected spatial frequency phase unwrapping methods. A strategy to detect and correct the wrong fringe orders is also described. Compared with the existing methods, we do not need to estimate the threshold associated with absolute phase values to determine the fringe order error, thus making it more reliable and avoiding the procedure of search in detecting and correcting successive fringe order errors. The effectiveness of the proposed method is validated by the experimental results.

  3. An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization

    NASA Astrophysics Data System (ADS)

    Chen, Li; Weng, Zhiqiang; Goh, LaiYoong; Garland, Marc

    2002-09-01

    A new algorithm for automatic phase correction of NMR spectra based on entropy minimization is proposed. The optimal zero-order and first-order phase corrections for a NMR spectrum are determined by minimizing entropy. The objective function is constructed using a Shannon-type information entropy measure. Entropy is defined as the normalized derivative of the NMR spectral data. The algorithm has been successfully applied to experimental 1H NMR spectra. The results of automatic phase correction are found to be comparable to, or perhaps better than, manual phase correction. The advantages of this automatic phase correction algorithm include its simple mathematical basis and the straightforward, reproducible, and efficient optimization procedure. The algorithm is implemented in the Matlab program ACME—Automated phase Correction based on Minimization of Entropy.

  4. Device and method for creating Gaussian aberration-corrected electron beams

    DOEpatents

    McMorran, Benjamin; Linck, Martin

    2016-01-19

    Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.

  5. Quantum corrections for the phase diagram of systems with competing order.

    PubMed

    Silva, N L; Continentino, Mucio A; Barci, Daniel G

    2018-06-06

    We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu 2 Si 2 . Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

  6. Quantum corrections for the phase diagram of systems with competing order

    NASA Astrophysics Data System (ADS)

    Silva, N. L., Jr.; Continentino, Mucio A.; Barci, Daniel G.

    2018-06-01

    We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu2Si2. Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

  7. Design and fabrication of a freeform phase plate for high-order ocular aberration correction

    NASA Astrophysics Data System (ADS)

    Yi, Allen Y.; Raasch, Thomas W.

    2005-11-01

    In recent years it has become possible to measure and in some instances to correct the high-order aberrations of human eyes. We have investigated the correction of wavefront error of human eyes by using phase plates designed to compensate for that error. The wavefront aberrations of the four eyes of two subjects were experimentally determined, and compensating phase plates were machined with an ultraprecision diamond-turning machine equipped with four independent axes. A slow-tool servo freeform trajectory was developed for the machine tool path. The machined phase-correction plates were measured and compared with the original design values to validate the process. The position of the phase-plate relative to the pupil is discussed. The practical utility of this mode of aberration correction was investigated with visual acuity testing. The results are consistent with the potential benefit of aberration correction but also underscore the critical positioning requirements of this mode of aberration correction. This process is described in detail from optical measurements, through machining process design and development, to final results.

  8. Zero-field magnetic response functions in Landau levels

    PubMed Central

    Gao, Yang; Niu, Qian

    2017-01-01

    We present a fresh perspective on the Landau level quantization rule; that is, by successively including zero-field magnetic response functions at zero temperature, such as zero-field magnetization and susceptibility, the Onsager’s rule can be corrected order by order. Such a perspective is further reinterpreted as a quantization of the semiclassical electron density in solids. Our theory not only reproduces Onsager’s rule at zeroth order and the Berry phase and magnetic moment correction at first order but also explains the nature of higher-order corrections in a universal way. In applications, those higher-order corrections are expected to curve the linear relation between the level index and the inverse of the magnetic field, as already observed in experiments. Our theory then provides a way to extract the correct value of Berry phase as well as the magnetic susceptibility at zero temperature from Landau level fan diagrams in experiments. Moreover, it can be used theoretically to calculate Landau levels up to second-order accuracy for realistic models. PMID:28655849

  9. Human eyes do not need monochromatic aberrations for dynamic accommodation.

    PubMed

    Bernal-Molina, Paula; Marín-Franch, Iván; Del Águila-Carrasco, Antonio J; Esteve-Taboada, Jose J; López-Gil, Norberto; Kruger, Philip B; Montés-Micó, Robert

    2017-09-01

    To determine if human accommodation uses the eye's own monochromatic aberrations to track dynamic accommodative stimuli. Wavefront aberrations were measured while subjects monocularly viewed a monochromatic Maltese cross moving sinusoidally around 2D of accommodative demand with 1D amplitude at 0.2 Hz. The amplitude and phase (delay) of the accommodation response were compared to the actual vergence of the stimulus to obtain gain and temporal phase, calculated from wavefront aberrations recorded over time during experimental trials. The tested conditions were as follows: Correction of all the subject's aberrations except defocus (C); Correction of all the subject's aberrations except defocus and habitual second-order astigmatism (AS); Correction of all the subject's aberrations except defocus and odd higher-order aberrations (HOAs); Correction of all the subject's aberrations except defocus and even HOAs (E); Natural aberrations of the subject's eye, i.e., the adaptive-optics system only corrected the optical system's aberrations (N); Correction of all the subject's aberrations except defocus and fourth-order spherical aberration (SA). The correction was performed at 20 Hz and each condition was repeated six times in randomised order. Average gain (±2 standard errors of the mean) varied little across conditions; between 0.55 ± 0.06 (SA), and 0.62 ± 0.06 (AS). Average phase (±2 standard errors of the mean) also varied little; between 0.41 ± 0.02 s (E), and 0.47 ± 0.02 s (O). After Bonferroni correction, no statistically significant differences in gain or phase were found in the presence of specific monochromatic aberrations or in their absence. These results show that the eye's monochromatic aberrations are not necessary for accommodation to track dynamic accommodative stimuli. © 2017 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.

  10. Gluon fragmentation into quarkonium at next-to-leading order

    DOE PAGES

    Artoisenet, Pierre; Braaten, Eric

    2015-04-22

    Here, we present the first calculation at next-to-leading order (NLO) in α s of a fragmentation function into quarkonium whose form at leading order is a nontrivial function of z, namely the fragmentation function for a gluon into a spin-singlet S-wave state at leading order in the relative velocity. To calculate the real NLO corrections, we introduce a new subtraction scheme that allows the phase-space integrals to be evaluated in 4 dimensions. We extract all ultraviolet and infrared divergences in the real NLO corrections analytically by calculating the phase-space integrals of the subtraction terms in 4 – 2ϵ dimensions. Wemore » also extract the divergences in the virtual NLO corrections analytically, and detail the cancellation of all divergences after renormalization. The NLO corrections have a dramatic effect on the shape of the fragmentation function, and they significantly increase the fragmentation probability.« less

  11. Assessing Vocational Needs in a Female Correctional Institution.

    ERIC Educational Resources Information Center

    Koppel, Sheree P.

    A three-phase study was conducted at a female correctional institution in the Midwest to determine inmates' occupational aspirations and educational needs. In the first phase of the study, 121 of the 167 inmates participated in 9 forums in which they voiced their career choices and ranked them in priority order. In the second phase, a panel of…

  12. Digital Mirror Device Application in Reduction of Wave-front Phase Errors

    PubMed Central

    Zhang, Yaping; Liu, Yan; Wang, Shuxue

    2009-01-01

    In order to correct the image distortion created by the mixing/shear layer, creative and effectual correction methods are necessary. First, a method combining adaptive optics (AO) correction with a digital micro-mirror device (DMD) is presented. Second, performance of an AO system using the Phase Diverse Speckle (PDS) principle is characterized in detail. Through combining the DMD method with PDS, a significant reduction in wavefront phase error is achieved in simulations and experiments. This kind of complex correction principle can be used to recovery the degraded images caused by unforeseen error sources. PMID:22574016

  13. 78 FR 12269 - Wireline Competition Bureau Seeks Updates and Corrections to TelcoMaster Table for Connect...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Competition Bureau Seeks Updates and Corrections to TelcoMaster Table for Connect America Cost Model AGENCY... centers to particular holding companies for purposes of Connect America Phase II implementation. DATES... companies for purposes of Connect America Phase II implementation. 2. The USF/ICC Transformation Order, 76...

  14. A simple but fully nonlocal correction to the random phase approximation

    NASA Astrophysics Data System (ADS)

    Ruzsinszky, Adrienn; Perdew, John P.; Csonka, Gábor I.

    2011-03-01

    The random phase approximation (RPA) stands on the top rung of the ladder of ground-state density functional approximations. The simple or direct RPA has been found to predict accurately many isoelectronic energy differences. A nonempirical local or semilocal correction to this direct RPA leaves isoelectronic energy differences almost unchanged, while improving total energies, ionization energies, etc., but fails to correct the RPA underestimation of molecular atomization energies. Direct RPA and its semilocal correction may miss part of the middle-range multicenter nonlocality of the correlation energy in a molecule. Here we propose a fully nonlocal, hybrid-functional-like addition to the semilocal correction. The added full nonlocality is important in molecules, but not in atoms. Under uniform-density scaling, this fully nonlocal correction scales like the second-order-exchange contribution to the correlation energy, an important part of the correction to direct RPA, and like the semilocal correction itself. For the atomization energies of ten molecules, and with the help of one fit parameter, it performs much better than the elaborate second-order screened exchange correction.

  15. Improved phase shift approach to the energy correction of the infinite order sudden approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, B.; Eno, L.; Rabitz, H.

    1980-07-15

    A new method is presented for obtaining energy corrections to the infinite order sudden (IOS) approximation by incorporating the effect of the internal molecular Hamiltonian into the IOS wave function. This is done by utilizing the JWKB approximation to transform the Schroedinger equation into a differential equation for the phase. It is found that the internal Hamiltonian generates an effective potential from which a new improved phase shift is obtained. This phase shift is then used in place of the IOS phase shift to generate new transition probabilities. As an illustration the resulting improved phase shift (IPS) method is appliedmore » to the Secrest--Johnson model for the collinear collision of an atom and diatom. In the vicinity of the sudden limit, the IPS method gives results for transition probabilities, P/sub n/..-->..n+..delta..n, in significantly better agreement with the 'exact' close coupling calculations than the IOS method, particularly for large ..delta..n. However, when the IOS results are not even qualitatively correct, the IPS method is unable to satisfactorily provide improvements.« less

  16. A simple second-order digital phase-locked loop.

    NASA Technical Reports Server (NTRS)

    Tegnelia, C. R.

    1972-01-01

    A simple second-order digital phase-locked loop has been designed for the Viking Orbiter 1975 command system. Excluding analog-to-digital conversion, implementation of the loop requires only an adder/subtractor, two registers, and a correctable counter with control logic. The loop considers only the polarity of phase error and corrects system clocks according to a filtered sequence of this polarity. The loop is insensitive to input gain variation, and therefore offers the advantage of stable performance over long life. Predictable performance is guaranteed by extreme reliability of acquisition, yet in the steady state the loop produces only a slight degradation with respect to analog loop performance.

  17. Expanding wave solutions of the Einstein equations that induce an anomalous acceleration into the Standard Model of Cosmology.

    PubMed

    Temple, Blake; Smoller, Joel

    2009-08-25

    We derive a system of three coupled equations that implicitly defines a continuous one-parameter family of expanding wave solutions of the Einstein equations, such that the Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology is embedded as a single point in this family. By approximating solutions near the center to leading order in the Hubble length, the family reduces to an explicit one-parameter family of expanding spacetimes, given in closed form, that represents a perturbation of the Standard Model. By introducing a comoving coordinate system, we calculate the correction to the Hubble constant as well as the exact leading order quadratic correction to the redshift vs. luminosity relation for an observer at the center. The correction to redshift vs. luminosity entails an adjustable free parameter that introduces an anomalous acceleration. We conclude (by continuity) that corrections to the redshift vs. luminosity relation observed after the radiation phase of the Big Bang can be accounted for, at the leading order quadratic level, by adjustment of this free parameter. The next order correction is then a prediction. Since nonlinearities alone could actuate dissipation and decay in the conservation laws associated with the highly nonlinear radiation phase and since noninteracting expanding waves represent possible time-asymptotic wave patterns that could result, we propose to further investigate the possibility that these corrections to the Standard Model might be the source of the anomalous acceleration of the galaxies, an explanation not requiring the cosmological constant or dark energy.

  18. Fully relativistic form factor for Thomson scattering.

    PubMed

    Palastro, J P; Ross, J S; Pollock, B; Divol, L; Froula, D H; Glenzer, S H

    2010-03-01

    We derive a fully relativistic form factor for Thomson scattering in unmagnetized plasmas valid to all orders in the normalized electron velocity, beta[over ]=v[over ]/c. The form factor is compared to a previously derived expression where the lowest order electron velocity, beta[over], corrections are included [J. Sheffield, (Academic Press, New York, 1975)]. The beta[over ] expansion approach is sufficient for electrostatic waves with small phase velocities such as ion-acoustic waves, but for electron-plasma waves the phase velocities can be near luminal. At high phase velocities, the electron motion acquires relativistic corrections including effective electron mass, relative motion of the electrons and electromagnetic wave, and polarization rotation. These relativistic corrections alter the scattered emission of thermal plasma waves, which manifest as changes in both the peak power and width of the observed Thomson-scattered spectra.

  19. Permutation glass.

    PubMed

    Williams, Mobolaji

    2018-01-01

    The field of disordered systems in statistical physics provides many simple models in which the competing influences of thermal and nonthermal disorder lead to new phases and nontrivial thermal behavior of order parameters. In this paper, we add a model to the subject by considering a disordered system where the state space consists of various orderings of a list. As in spin glasses, the disorder of such "permutation glasses" arises from a parameter in the Hamiltonian being drawn from a distribution of possible values, thus allowing nominally "incorrect orderings" to have lower energies than "correct orderings" in the space of permutations. We analyze a Gaussian, uniform, and symmetric Bernoulli distribution of energy costs, and, by employing Jensen's inequality, derive a simple condition requiring the permutation glass to always transition to the correctly ordered state at a temperature lower than that of the nondisordered system, provided that this correctly ordered state is accessible. We in turn find that in order for the correctly ordered state to be accessible, the probability that an incorrectly ordered component is energetically favored must be less than the inverse of the number of components in the system. We show that all of these results are consistent with a replica symmetric ansatz of the system. We conclude by arguing that there is no distinct permutation glass phase for the simplest model considered here and by discussing how to extend the analysis to more complex Hamiltonians capable of novel phase behavior and replica symmetry breaking. Finally, we outline an apparent correspondence between the presented system and a discrete-energy-level fermion gas. In all, the investigation introduces a class of exactly soluble models into statistical mechanics and provides a fertile ground to investigate statistical models of disorder.

  20. Certified dual-corrected radiation patterns of phased antenna arrays by offline–online order reduction of finite-element models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, A., E-mail: a.sommer@lte.uni-saarland.de; Farle, O., E-mail: o.farle@lte.uni-saarland.de; Dyczij-Edlinger, R., E-mail: edlinger@lte.uni-saarland.de

    2015-10-15

    This paper presents a fast numerical method for computing certified far-field patterns of phased antenna arrays over broad frequency bands as well as wide ranges of steering and look angles. The proposed scheme combines finite-element analysis, dual-corrected model-order reduction, and empirical interpolation. To assure the reliability of the results, improved a posteriori error bounds for the radiated power and directive gain are derived. Both the reduced-order model and the error-bounds algorithm feature offline–online decomposition. A real-world example is provided to demonstrate the efficiency and accuracy of the suggested approach.

  1. Vibration signal correction of unbalanced rotor due to angular speed fluctuation

    NASA Astrophysics Data System (ADS)

    Cao, Hongrui; He, Dong; Xi, Songtao; Chen, Xuefeng

    2018-07-01

    The rotating speed of a rotor is hardly constant in practice due to angular speed fluctuation, which affects the balancing accuracy of the rotor. In this paper, the effect of angular speed fluctuation on vibration responses of the unbalanced rotor is analyzed quantitatively. Then, a vibration signal correction method based on zoom synchrosqueezing transform (ZST) and tacholess order tracking is proposed. The instantaneous angular speed (IAS) of the rotor is extracted by the ZST firstly and then used to calculate the instantaneous phase. The vibration signal is further resampled in angular domain to reduce the effect of angular speed fluctuation. The signal obtained in angular domain is transformed into order domain using discrete Fourier transform (DFT) to estimate the amplitude and phase of the vibration signal. Simulated and experimental results show that the proposed method can successfully correct the amplitude and phase of the vibration signal due to angular speed fluctuation.

  2. Wavefront-guided correction of ocular aberrations: Are phase plate and refractive surgery solutions equal?

    NASA Astrophysics Data System (ADS)

    Marchese, Linda E.; Munger, Rejean; Priest, David

    2005-08-01

    Wavefront-guided laser eye surgery has been recently introduced and holds the promise of correcting not only defocus and astigmatism in patients but also higher-order aberrations. Research is just beginning on the implementation of wavefront-guided methods in optical solutions, such as phase-plate-based spectacles, as alternatives to surgery. We investigate the theoretical differences between the implementation of wavefront-guided surgical and phase plate corrections. The residual aberrations of 43 model eyes are calculated after simulated refractive surgery and also after a phase plate is placed in front of the untreated eye. In each case, the current wavefront-guided paradigm that applies a direct map of the ocular aberrations to the correction zone is used. The simulation results demonstrate that an ablation map that is a Zernike fit of a direct transform of the ocular wavefront phase error is not as efficient in correcting refractive errors of sphere, cylinder, spherical aberration, and coma as when the same Zernike coefficients are applied to a phase plate, with statistically significant improvements from 2% to 6%.

  3. On entropy change measurements around first order phase transitions in caloric materials.

    PubMed

    Caron, Luana; Ba Doan, Nguyen; Ranno, Laurent

    2017-02-22

    In this work we discuss the measurement protocols for indirect determination of the isothermal entropy change associated with first order phase transitions in caloric materials. The magneto-structural phase transitions giving rise to giant magnetocaloric effects in Cu-doped MnAs and FeRh are used as case studies to exemplify how badly designed protocols may affect isothermal measurements and lead to incorrect entropy change estimations. Isothermal measurement protocols which allow correct assessment of the entropy change around first order phase transitions in both direct and inverse cases are presented.

  4. Effects of time ordering in quantum nonlinear optics

    NASA Astrophysics Data System (ADS)

    Quesada, Nicolás; Sipe, J. E.

    2014-12-01

    We study time-ordering corrections to the description of spontaneous parametric down-conversion (SPDC), four-wave mixing (SFWM), and frequency conversion using the Magnus expansion. Analytic approximations to the evolution operator that are unitary are obtained. They are Gaussian preserving, and allow us to understand order-by-order the effects of time ordering. We show that the corrections due to time ordering vanish exactly if the phase-matching function is sufficiently broad. The calculation of the effects of time ordering on the joint spectral amplitude of the photons generated in SPDC and SFWM are reduced to quadrature.

  5. Accuracy of topological entanglement entropy on finite cylinders.

    PubMed

    Jiang, Hong-Chen; Singh, Rajiv R P; Balents, Leon

    2013-09-06

    Topological phases are unique states of matter which support nonlocal excitations which behave as particles with fractional statistics. A universal characterization of gapped topological phases is provided by the topological entanglement entropy (TEE). We study the finite size corrections to the TEE by focusing on systems with a Z2 topological ordered state using density-matrix renormalization group and perturbative series expansions. We find that extrapolations of the TEE based on the Renyi entropies with a Renyi index of n≥2 suffer from much larger finite size corrections than do extrapolations based on the von Neumann entropy. In particular, when the circumference of the cylinder is about ten times the correlation length, the TEE obtained using von Neumann entropy has an error of order 10(-3), while for Renyi entropies it can even exceed 40%. We discuss the relevance of these findings to previous and future searches for topological ordered phases, including quantum spin liquids.

  6. Recovery of phase inconsistencies in continuously moving table extended field of view magnetic resonance imaging acquisitions.

    PubMed

    Kruger, David G; Riederer, Stephen J; Rossman, Phillip J; Mostardi, Petrice M; Madhuranthakam, Ananth J; Hu, Houchun H

    2005-09-01

    MR images formed using extended FOV continuously moving table data acquisition can have signal falloff and loss of lateral spatial resolution at localized, periodic positions along the direction of table motion. In this work we identify the origin of these artifacts and provide a means for correction. The artifacts are due to a mismatch of the phase of signals acquired from contiguous sampling fields of view and are most pronounced when the central k-space views are being sampled. Correction can be performed using the phase information from a periodically sampled central view to adjust the phase of all other views of that view cycle, making the net phase uniform across each axial plane. Results from experimental phantom and contrast-enhanced peripheral MRA studies show that the correction technique substantially eliminates the artifact for a variety of phase encode orders. Copyright (c) 2005 Wiley-Liss, Inc.

  7. A Novel Method of High Accuracy, Wavefront Phase and Amplitude Correction for Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bowers, Charles W.; Woodgate, Bruce E.; Lyon, Richard G.

    2003-01-01

    Detection of extra-solar, and especially terrestrial-like planets, using coronagraphy requires an extremely high level of wavefront correction. For example, the study of Woodruff et al. (2002) has shown that phase uniformity of order 10(exp -4)lambda(rms) must be achieved over the critical range of spatial frequencies to produce the approx. 10(exp 10) contrast needed for the Terrestrial Planet Finder (TPF) mission. Correction of wavefront phase errors to this level may be accomplished by using a very high precision deformable mirror (DM). However, not only phase but also amplitude uniformity of the same scale (approx. 10(exp -4)) and over the same spatial frequency range must be simultaneously obtained to remove all residual speckle in the image plane. We present a design for producing simultaneous wavefront phase and amplitude uniformity to high levels from an input wavefront of lower quality. The design uses a dual Michelson interferometer arrangement incorporating two DM and a single, fixed mirror (all at pupils) and two beamsplitters: one with unequal (asymmetric) beam splitting and one with symmetric beam splitting. This design allows high precision correction of both phase and amplitude using DM with relatively coarse steps and permits a simple correction algorithm.

  8. Fringe-period selection for a multifrequency fringe-projection phase unwrapping method

    NASA Astrophysics Data System (ADS)

    Zhang, Chunwei; Zhao, Hong; Jiang, Kejian

    2016-08-01

    The multi-frequency fringe-projection phase unwrapping method (MFPPUM) is a typical phase unwrapping algorithm for fringe projection profilometry. It has the advantage of being capable of correctly accomplishing phase unwrapping even in the presence of surface discontinuities. If the fringe frequency ratio of the MFPPUM is too large, fringe order error (FOE) may be triggered. FOE will result in phase unwrapping error. It is preferable for the phase unwrapping to be kept correct while the fewest sets of lower frequency fringe patterns are used. To achieve this goal, in this paper a parameter called fringe order inaccuracy (FOI) is defined, dominant factors which may induce FOE are theoretically analyzed, a method to optimally select the fringe periods for the MFPPUM is proposed with the aid of FOI, and experiments are conducted to research the impact of the dominant factors in phase unwrapping and demonstrate the validity of the proposed method. Some novel phenomena are revealed by these experiments. The proposed method helps to optimally select the fringe periods and detect the phase unwrapping error for the MFPPUM.

  9. Modeling the physisorption of graphene on metals

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Tang, Hong; Patra, Abhirup; Bhattarai, Puskar; Perdew, John P.

    2018-04-01

    Many processes of technological and fundamental importance occur on surfaces. Adsorption is one of these phenomena that has received the most attention. However, it presents a great challenge to conventional density functional theory. Starting with the Lifshitz-Zaremba-Kohn second-order perturbation theory, here we develop a long-range van der Waals (vdW) correction for physisorption of graphene on metals. The model importantly includes quadrupole-surface interaction and screening effects. The results show that, when the vdW correction is combined with the Perdew-Burke-Enzerhof functional, it yields adsorption energies in good agreement with the random-phase approximation, significantly improving upon other vdW methods. We also find that, compared with the leading-order interaction, the higher-order quadrupole-surface correction accounts for about 25 % of the total vdW correction, suggesting the importance of the higher-order term.

  10. Effects of upstream-biased third-order space correction terms on multidimensional Crowley advection schemes

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.

    1985-01-01

    The impact of upstream-biased corrections for third-order spatial truncation error on the stability and phase error of the two-dimensional Crowley combined advective scheme with the cross-space term included is analyzed, putting primary emphasis on phase error reduction. The various versions of the Crowley scheme are formally defined, and their stability and phase error characteristics are intercompared using a linear Fourier component analysis patterned after Fromm (1968, 1969). The performances of the schemes under prototype simulation conditions are tested using time-dependent numerical experiments which advect an initially cone-shaped passive scalar distribution in each of three steady nondivergent flows. One such flow is solid rotation, while the other two are diagonal uniform flow and a strongly deformational vortex.

  11. Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar

    DOEpatents

    Doerry, Armin W [Albuquerque, NM; Heard, Freddie E [Albuquerque, NM; Cordaro, J Thomas [Albuquerque, NM

    2008-06-24

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  12. Thermodynamics of higher dimensional black holes with higher order thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Pourhassan, B.; Kokabi, K.; Rangyan, S.

    2017-12-01

    In this paper, we consider higher order corrections of the entropy, which coming from thermal fluctuations, and find their effect on the thermodynamics of higher dimensional charged black holes. Leading order thermal fluctuation is logarithmic term in the entropy while higher order correction is proportional to the inverse of original entropy. We calculate some thermodynamics quantities and obtain the effect of logarithmic and higher order corrections of entropy on them. Validity of the first law of thermodynamics investigated and Van der Waals equation of state of dual picture studied. We find that five-dimensional black hole behaves as Van der Waals, but higher dimensional case have not such behavior. We find that thermal fluctuations are important in stability of black hole hence affect unstable/stable black hole phase transition.

  13. Combining states without scale hierarchies with ordered parton showers

    DOE PAGES

    Fischer, Nadine; Prestel, Stefan

    2017-09-12

    Here, we present a parameter-free scheme to combine fixed-order multi-jet results with parton-shower evolution. The scheme produces jet cross sections with leading-order accuracy in the complete phase space of multiple emissions, resumming large logarithms when appropriate, while not arbitrarily enforcing ordering on momentum configurations beyond the reach of the parton-shower evolution equation. This then requires the development of a matrix-element correction scheme for complex phase-spaces including ordering conditions as well as a systematic scale-setting procedure for unordered phase-space points. Our algorithm does not require a merging-scale parameter. We implement the new method in the Vincia framework and compare to LHCmore » data.« less

  14. LOCSET Phase Locking: Operation, Diagnostics, and Applications

    NASA Astrophysics Data System (ADS)

    Pulford, Benjamin N.

    The aim of this dissertation is to discuss the theoretical and experimental work recently done with the Locking of Optical Coherence via Single-detector Electronic-frequency Tagging (LOCSET) phase locking technique developed and employed here are AFRL. The primary objectives of this effort are to detail the fundamental operation of the LOCSET phase locking technique, recognize the conditions in which the LOCSET control electronics optimally operate, demonstrate LOCSET phase locking with higher channel counts than ever before, and extend the LOCSET technique to correct for low order, atmospherically induced, phase aberrations introduced to the output of a tiled array of coherently combinable beams. The experimental work performed for this effort resulted in the coherent combination of 32 low power optical beams operating with unprecedented LOCSET phase error performance of lambda/71 RMS in a local loop beam combination configuration. The LOCSET phase locking technique was also successfully extended, for the first time, into an Object In the Loop (OIL) configuration by utilizing light scattered off of a remote object as the optical return signal for the LOCSET phase control electronics. Said LOCSET-OIL technique is capable of correcting for low order phase aberrations caused by atmospheric turbulence disturbances applied across a tiled array output.

  15. Rocksalt or cesium chloride: Investigating the relative stability of the cesium halide structures with random phase approximation based methods

    NASA Astrophysics Data System (ADS)

    Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.

    2018-03-01

    The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.

  16. Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders

    NASA Astrophysics Data System (ADS)

    Dittmaier, Stefan; Huss, Alexander; Knippen, Gernot

    2017-09-01

    Triple-W-boson production in proton-proton collisions allows for a direct access to the triple and quartic gauge couplings and provides a window to the mechanism of electroweak symmetry breaking. It is an important process to test the Standard Model (SM) and might be background to physics beyond the SM. We present a calculation of the next-to-leading order (NLO) electroweak corrections to the production of WWW final states at proton-proton colliders with on-shell W bosons and combine the electroweak with the NLO QCD corrections. We study the impact of the corrections to the integrated cross sections and to kinematic distributions of the W bosons. The electroweak corrections are generically of the size of 5-10% for integrated cross sections and become more pronounced in specific phase-space regions. The real corrections induced by quark-photon scattering turn out to be as important as electroweak loops and photon bremsstrahlung corrections, but can be reduced by phase-space cuts. Considering that prior determinations of the photon parton distribution function (PDF) involve rather large uncertainties, we compare the results obtained with different photon PDFs and discuss the corresponding uncertainties in the NLO predictions. Moreover, we determine the scale and total PDF uncertainties at the LHC and a possible future 100 TeV pp collider.

  17. Self-dual random-plaquette gauge model and the quantum toric code

    NASA Astrophysics Data System (ADS)

    Takeda, Koujin; Nishimori, Hidetoshi

    2004-05-01

    We study the four-dimensional Z2 random-plaquette lattice gauge theory as a model of topological quantum memory, the toric code in particular. In this model, the procedure of quantum error correction works properly in the ordered (Higgs) phase, and phase boundary between the ordered (Higgs) and disordered (confinement) phases gives the accuracy threshold of error correction. Using self-duality of the model in conjunction with the replica method, we show that this model has exactly the same mathematical structure as that of the two-dimensional random-bond Ising model, which has been studied very extensively. This observation enables us to derive a conjecture on the exact location of the multicritical point (accuracy threshold) of the model, pc=0.889972…, and leads to several nontrivial results including bounds on the accuracy threshold in three dimensions.

  18. Decreasing range resolution of a SAR image to permit correction of motion measurement errors beyond the SAR range resolution

    DOEpatents

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2010-07-20

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  19. Comparing range data across the slow-time dimension to correct motion measurement errors beyond the range resolution of a synthetic aperture radar

    DOEpatents

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2010-08-17

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  20. Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential: Two-loop corrections

    NASA Astrophysics Data System (ADS)

    Maelger, J.; Reinosa, U.; Serreau, J.

    2018-04-01

    We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.

  1. First-order curvature corrections to the surface tension of multicomponent systems.

    PubMed

    Boltachev, Grey Sh; Baidakov, Vladimir G; Schmelzer, Jürn W P

    2003-08-01

    The dependence of surface tension on curvature is investigated for the case of an equilibrium phase coexistence in multicomponent systems. Employing Gibbs's method of description of heterogeneous systems, an equation is derived to determine the dependence of surface tension on curvature for widely arbitrary paths of variation of the independent thermodynamic parameters. It is supposed hereby merely that the temperature is kept constant and that the variations of the different molar fractions are such that the radius of the dividing surface varies monotonically in dependence on the change of the state parameters of the ambient phase along any of the chosen paths. In the analysis, an approach developed by Blokhuis and Bedeaux for one-component systems is utilized. It relies on the expansion of the surface free energy on curvature of the dividing surface. An equation is derived that connects the first-order correction term in the expansion with the interaction potential of the particles in the multicomponent solution and with the two-particle distribution functions in the planar interfacial layer between the two phases coexisting in equilibrium at planar interfaces. The connection of the first-order curvature correction to the surface tension and the first moment of the pressure tensor at a planar interface is analyzed as well.

  2. B0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils.

    PubMed

    Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Frigo, Louis M; Shu, Yunhong; Frick, Matthew A; Lee, Seung-Kyun; Foo, Thomas K-F; Bernstein, Matt A

    2018-03-01

    Imaging gradients result in the generation of concomitant fields, or Maxwell fields, which are of increasing importance at higher gradient amplitudes. These time-varying fields cause additional phase accumulation, which must be compensated for to avoid image artifacts. In the case of gradient systems employing symmetric design, the concomitant fields are well described with second-order spatial variation. Gradient systems employing asymmetric design additionally generate concomitant fields with global (zeroth-order or B 0 ) and linear (first-order) spatial dependence. This work demonstrates a general solution to eliminate the zeroth-order concomitant field by applying the correct B 0 frequency shift in real time to counteract the concomitant fields. Results are demonstrated for phase contrast, spiral, echo-planar imaging (EPI), and fast spin-echo imaging. A global phase offset is reduced in the phase-contrast exam, and blurring is virtually eliminated in spiral images. The bulk image shift in the phase-encode direction is compensated for in EPI, whereas signal loss, ghosting, and blurring are corrected in the fast-spin echo images. A user-transparent method to compensate the zeroth-order concomitant field term by center frequency shifting is proposed and implemented. This solution allows all the existing pulse sequences-both product and research-to be retained without any modifications. Magn Reson Med 79:1538-1544, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Synthesis of a correcting filter with phase stabilization of the angular velocity of a synchronous motor by the feedback system method

    NASA Technical Reports Server (NTRS)

    Kazlauskas, K. A.; Kurlavichus, A. I.

    1973-01-01

    The operating characteristics of a synchronous electric motor are discussed. A system of phase stabilization of the instantaneous angular velocity of rotation of a synchronous-reaction motor is diagrammed. A mathematical model is developed to show the parameters which affect the operation of the motor. The selection of a correcting filter to use with the motor in order to reduce the reaction of the system to interference is explained.

  4. Free energy and phase transition of the matrix model on a plane wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.

    2005-03-15

    It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedornmore » temperature to order two loops.« less

  5. Optimum resonance control knobs for sextupoles

    NASA Astrophysics Data System (ADS)

    Ögren, J.; Ziemann, V.

    2018-06-01

    We discuss the placement of extra sextupoles in a magnet lattice that allows to correct third-order geometric resonances, driven by the chromaticity-compensating sextupoles, in a way that requires the least excitation of the correction sextupoles. We consider a simplified case, without momentum-dependent effects or other imperfections, where suitably chosen phase advances between the correction sextupoles leads to orthogonal knobs with equal treatment of the different resonance driving terms.

  6. Transient resonances in the inspirals

    NASA Astrophysics Data System (ADS)

    Hinderer, Tanja; Flanagan, Eanna

    2009-05-01

    We show that the two body problem in general relativity in the highly relativistic regime has a qualitatively new feature: the occurence of transient resonances. The resonances occur when the ratio of polar and radial orbital frequencies, which is slowly evolving under the influence of gravitational radiation reaction, passes through a low order rational number. The resonances make the orbit more sensitive to changes in the initial data (though not quite chaotic), and are genuine non-perturbative effects that are not seen at any order in the standard post-Newtonian expansion used for two body systems at large separation. Our results directly apply to an important potential source of gravitational waves, namely the gradual inspiral of compact objects into much more massive black holes. Exploiting observations of these gravitational waves to map the spacetime geometry of black holes is contingent upon accurate theoretical models (templates) of the binary dynamics. At present, only the leading order in the mass ratio gravitational waveforms can be computed. Corrections to the waveform's phase due to resonance effects scale as the square root of the inverse of the mass ratio and are characterized by sudden jumps in the time derivatives of the phase. We numerically estimate the net size of these corrections and find indications that the phase error is of order a few cycles for mass ratios ˜10^- 3 but will be significant (of order tens of cycles) for mass ratios ˜10-6. Computations of these corrections will require the computation of pieces of the forcing terms in the equations of motion which are currently unknown.

  7. Phase-field modeling of two-dimensional crystal growth with anisotropic diffusion.

    PubMed

    Meca, Esteban; Shenoy, Vivek B; Lowengrub, John

    2013-11-01

    In the present article, we introduce a phase-field model for thin-film growth with anisotropic step energy, attachment kinetics, and diffusion, with second-order (thin-interface) corrections. We are mainly interested in the limit in which kinetic anisotropy dominates, and hence we study how the expected shape of a crystallite, which in the long-time limit is the kinetic Wulff shape, is modified by anisotropic diffusion. We present results that prove that anisotropic diffusion plays an important, counterintuitive role in the evolving crystal shape, and we add second-order corrections to the model that provide a significant increase in accuracy for small supersaturations. We also study the effect of different crystal symmetries and discuss the influence of the deposition rate.

  8. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms I

    NASA Astrophysics Data System (ADS)

    Somogyi, Gábor; Trócsányi, Zoltán

    2008-08-01

    In previous articles we outlined a subtraction scheme for regularizing doubly-real emission and real-virtual emission in next-to-next-to-leading order (NNLO) calculations of jet cross sections in electron-positron annihilation. In order to find the NNLO correction these subtraction terms have to be integrated over the factorized unresolved phase space and combined with the two-loop corrections. In this paper we perform the integration of all one-parton unresolved subtraction terms.

  9. Single-Inclusive Jet Production In Electron-Nucleon Collisions Through Next-To-Next-To-Leading Order In Perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abelof, Gabriel; Boughezal, Radja; Liu, Xiaohui

    2016-10-17

    We compute the Oσ 2σ 2 s perturbative corrections to inclusive jet production in electron-nucleon collisions. This process is of particular interest to the physics program of a future Electron Ion Collider (EIC). We include all relevant partonic processes, including deep-inelastic scattering contributions, photon-initiated corrections, and parton-parton scattering terms that first appear at this order. Upon integration over the final-state hadronic phase space we validate our results for the deep-inelastic corrections against the known next-to-next-to-leading order (NNLO) structure functions. Our calculation uses the N-jettiness subtraction scheme for performing higher-order computations, and allows for a completely differential description of the deep-inelasticmore » scattering process. We describe the application of this method to inclusive jet production in detail, and present phenomenological results for the proposed EIC. The NNLO corrections have a non-trivial dependence on the jet kinematics and arise from an intricate interplay between all contributing partonic channels.« less

  10. Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction.

    PubMed

    Sun, Fuyu; Hou, Dong; Zhang, Danian; Tian, Jie; Hu, Jianguo; Huang, Xianhe; Chen, Shijun

    2017-09-04

    We demonstrate femtosecond-level timing fluctuation suppression in indoor atmospheric comb-based frequency transfer with a passive phase conjunction correction technique. Timing fluctuations and Allan deviations are both measured to characterize the excess frequency instability incurred during the frequency transfer process. By transferring a 2 GHz microwave over a 52-m long free-space link in 5000 s, the total root-mean-square (RMS) timing fluctuation was measured to be about 280 fs with a fractional frequency instability on the order of 3 × 10 -13 at 1 s and 6 × 10 -17 at 1000 s. This atmospheric comb-based frequency transfer with passive phase conjunction correction can be used to build an atomic clock-based free-space frequency transmission link because its instability is less than that of a commercial Cs or H-master clock.

  11. Correcting highly aberrated eyes using large-stroke adaptive optics.

    PubMed

    Sabesan, Ramkumar; Ahmad, Kamran; Yoon, Geunyoung

    2007-11-01

    To investigate the optical performance of a large-stroke deformable mirror in correcting large aberrations in highly aberrated eyes. A large-stroke deformable mirror (Mirao 52D; Imagine Eyes) and a Shack-Hartmann wavefront sensor were used in an adaptive optics system. Closed-loop correction of the static aberrations of a phase plate designed for an advanced keratoconic eye was performed for a 6-mm pupil. The same adaptive optics system was also used to correct the aberrations in one eye each of two moderate keratoconic and three normal human eyes for a 6-mm pupil. With closed-loop correction of the phase plate, the total root-mean-square (RMS) over a 6-mm pupil was reduced from 3.54 to 0.04 microm in 30 to 40 iterations, corresponding to 3 to 4 seconds. Adaptive optics closed-loop correction reduced an average total RMS of 1.73+/-0.998 to 0.10+/-0.017 microm (higher order RMS of 0.39+/-0.124 to 0.06+/-0.004 microm) in the three normal eyes and 2.73+/-1.754 to 0.10+/-0.001 microm (higher order RMS of 1.82+/-1.058 to 0.05+/-0.017 microm) in the two keratoconic eyes. Aberrations in both normal and highly aberrated eyes were successfully corrected using the large-stroke deformable mirror to provide almost perfect optical quality. This mirror can be a powerful tool to assess the limit of visual performance achievable after correcting the aberrations, especially in eyes with abnormal corneal profiles.

  12. Raman spectral evidence of methyl rotation in liquid toluene.

    PubMed

    Kapitán, Josef; Hecht, Lutz; Bour, Petr

    2008-02-21

    In order to rationalize subtle details in the liquid phase toluene Raman backscattering spectra, an analysis was performed based on a quantum-mechanical Hamiltonian operator comprising rotation of the methyl group and the angular dependence of vibrational frequencies and polarizability derivatives. The separation of the methyl torsion from the other vibrational motions appears to be necessary in order to explain relative intensity ratios of several bands and an anomalous broadening of spectral intensity observed at 1440 cm(-1). These results suggest that the CH3 group in the liquid phase rotates almost freely, similarly as in the gaseous phase, and that the molecule consequently exhibits effectively C(2v) point group symmetry. A classical description and an adiabatic separation of the methyl rotation from other molecular motion previously used in peptide models is not applicable to toluene because of a strong coupling with other vibrational motions. Density functional computations, particularly the BPW91 functional, provide reasonable estimates of harmonic frequencies and spectral intensities, as well as qualitatively correct fourth-order anharmonic corrections to the vibrational potential.

  13. Short-range second order screened exchange correction to RPA correlation energies

    NASA Astrophysics Data System (ADS)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-01

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  14. Short-range second order screened exchange correction to RPA correlation energies.

    PubMed

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-28

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  15. Consistent Long-Time Series of GPS Satellite Antenna Phase Center Corrections

    NASA Astrophysics Data System (ADS)

    Steigenberger, P.; Schmid, R.; Rothacher, M.

    2004-12-01

    The current IGS processing strategy disregards satellite antenna phase center variations (pcvs) depending on the nadir angle and applies block-specific phase center offsets only. However, the transition from relative to absolute receiver antenna corrections presently under discussion necessitates the consideration of satellite antenna pcvs. Moreover, studies of several groups have shown that the offsets are not homogeneous within a satellite block. Manufacturer specifications seem to confirm this assumption. In order to get best possible antenna corrections, consistent ten-year time series (1994-2004) of satellite-specific pcvs and offsets were generated. This challenging effort became possible as part of the reprocessing of a global GPS network currently performed by the Technical Universities of Munich and Dresden. The data of about 160 stations since the official start of the IGS in 1994 have been reprocessed, as today's GPS time series are mostly inhomogeneous and inconsistent due to continuous improvements in the processing strategies and modeling of global GPS solutions. An analysis of the signals contained in the time series of the phase center offsets demonstrates amplitudes on the decimeter level, at least one order of magnitude worse than the desired accuracy. The periods partly arise from the GPS orbit configuration, as the orientation of the orbit planes with regard to the inertial system repeats after about 350 days due to the rotation of the ascending nodes. In addition, the rms values of the X- and Y-offsets show a high correlation with the angle between the orbit plane and the direction to the sun. The time series of the pcvs mainly point at the correlation with the global terrestrial scale. Solutions with relative and absolute phase center corrections, with block- and satellite-specific satellite antenna corrections demonstrate the effect of this parameter group on other global GPS parameters such as the terrestrial scale, station velocities, the geocenter position or the tropospheric delays. Thus, deeper insight into the so-called `Bermuda triangle' of several highly correlated parameters is given.

  16. Entanglement entropy for the long-range Ising chain in a transverse field.

    PubMed

    Koffel, Thomas; Lewenstein, M; Tagliacozzo, Luca

    2012-12-28

    We consider the Ising model in a transverse field with long-range antiferromagnetic interactions that decay as a power law with their distance. We study both the phase diagram and the entanglement properties as a function of the exponent of the interaction. The phase diagram can be used as a guide for future experiments with trapped ions. We find two gapped phases, one dominated by the transverse field, exhibiting quasi-long-range order, and one dominated by the long-range interaction, with long-range Néel ordered ground states. We determine the location of the quantum critical points separating those two phases. We determine their critical exponents and central charges. In the phase with quasi-long-range order the ground states exhibit exotic corrections to the area law for the entanglement entropy coexisting with gapped entanglement spectra.

  17. Photometric normalization of LROC WAC images

    NASA Astrophysics Data System (ADS)

    Sato, H.; Denevi, B.; Robinson, M. S.; Hapke, B. W.; McEwen, A. S.; LROC Science Team

    2010-12-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) acquires near global coverage on a monthly basis. The WAC is a push frame sensor with a 90° field of view (FOV) in BW mode and 60° FOV in 7-color mode (320 nm to 689 nm). WAC images are acquired during each orbit in 10° latitude segments with cross track coverage of ~50 km. Before mosaicking, WAC images are radiometrically calibrated to remove instrumental artifacts and to convert at sensor radiance to I/F. Images are also photometrically normalized to common viewing and illumination angles (30° phase), a challenge due to the wide angle nature of the WAC where large differences in phase angle are observed in a single image line (±30°). During a single month the equatorial incidence angle drifts about 28° and over the course of ~1 year the lighting completes a 360° cycle. The light scattering properties of the lunar surface depend on incidence(i), emission(e), and phase(p) angles as well as soil properties such as single-scattering albedo and roughness that vary with terrain type and state of maturity [1]. We first tested a Lommel-Seeliger Correction (LSC) [cos(i)/(cos(i) + cos(e))] [2] with a phase function defined by an exponential decay plus 4th order polynomial term [3] which did not provide an adequate solution. Next we employed a LSC with an exponential 2nd order decay phase correction that was an improvement, but still exhibited unacceptable frame-to-frame residuals. In both cases we fitted the LSC I/F vs. phase angle to derive the phase corrections. To date, the best results are with a lunar-lambert function [4] with exponential 2nd order decay phase correction (LLEXP2) [(A1exp(B1p)+A2exp(B2p)+A3) * cos(i)/(cos(e) + cos(i)) + B3cos(i)]. We derived the parameters for the LLEXP2 from repeat imaging of a small region and then corrected that region with excellent results. When this correction was applied to the whole Moon the results were less than optimal - no surprise given the variability of the regolith from region to region. As the fitting area increases, the accuracy of curve fitting decreases due to the larger variety of albedo, topography, and composition. Thus we have adopted an albedo-dependent photometric normalization routine. Phase curves are derived for discreet bins of preliminary normalized reflectance calculated from Clementine global mosaic in a fitting area that is composed of predominantly mare in Oceanus Procellarum. The global WAC mosaic was then corrected pixel-by-pixel according to its preliminary reflectance map with satisfactory results. We observed that the phase curves per normalized-reflectance bins become steeper as the reflectance value increases. Further filtering by using FeO, TiO2, or optical maturity [5] for parameter calculations may help elucidate the effects of surface composition and maturity on photometric properties of the surface. [1] Hapke, B.W. (1993) Theory of Reflectance and Emittance Spectroscopy, Cambridge Univ. Press. [2] Schoenberg (1925) Ada. Soc. Febb., vol. 50. [3] Hillier et al. (1999) Icarus 141, 205-225. [4] McEwen (1991) Icarus 92, 298-311. [5] Lucey et al. (2000) JGR, v105, no E8, p20377-20386.

  18. Zweig-rule-satisfying inelastic rescattering in B decays to pseudoscalar mesons

    NASA Astrophysics Data System (ADS)

    Łach, P.; Żenczykowski, P.

    2002-09-01

    We discuss all contributions from Zweig-rule-satisfying SU(3)-symmetric inelastic final state interaction (FSI)-induced corrections in B decays to ππ, πK, KK¯, πη(η'), and Kη(η'). We show how all of these FSI corrections lead to a simple redefinition of the amplitudes, permitting the use of a simple diagram-based description, in which, however, weak phases may enter in a modified way. The inclusion of FSI corrections admitted by the present data allows an arbitrary relative phase between the penguin and tree short-distance amplitudes. The FSI-induced error of the method, in which the value of the weak phase γ is to be determined by combining future results from B+,B0d,B0s decays to Kπ, is estimated to be of the order of 5° for γ~50°-60°.

  19. Many-Body Interactions in Ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, C. Huy; Reddy, Sandeep K.; Chen, Karl

    Many-body effects in ice are investigated through a systematic analysis of the lattice energies of several proton ordered and disordered phases, which are calculated with different flexible water models, ranging from pairwise additive (q-TIP4P/F) to polarizable (TTM3-F and AMOE-BA BA) and explicit many-body (MB-pol) potential energy functions. Comparisons with available experimental and diffusion Monte Carlo data emphasize the importance of an accurate description of the individual terms of the many-body expansion of the interaction energy between water molecules for the correct prediction of the energy ordering of the ice phases. Further analysis of the MB-pol results, in terms of fundamentalmore » energy contributions, demonstrates that the differences in lattice energies between different ice phases are sensitively dependent on the subtle balance between short-range two-body and three-body interactions, many-body induction, and dispersion energy. Here, by correctly reproducing many-body effects at both short range and long range, it is found that MB-pol accurately predicts the energetics of different ice phases, which provides further support for the accuracy of MB-pol in representing the properties of water from the gas to the condensed phase.« less

  20. Many-Body Interactions in Ice

    DOE PAGES

    Pham, C. Huy; Reddy, Sandeep K.; Chen, Karl; ...

    2017-02-28

    Many-body effects in ice are investigated through a systematic analysis of the lattice energies of several proton ordered and disordered phases, which are calculated with different flexible water models, ranging from pairwise additive (q-TIP4P/F) to polarizable (TTM3-F and AMOE-BA BA) and explicit many-body (MB-pol) potential energy functions. Comparisons with available experimental and diffusion Monte Carlo data emphasize the importance of an accurate description of the individual terms of the many-body expansion of the interaction energy between water molecules for the correct prediction of the energy ordering of the ice phases. Further analysis of the MB-pol results, in terms of fundamentalmore » energy contributions, demonstrates that the differences in lattice energies between different ice phases are sensitively dependent on the subtle balance between short-range two-body and three-body interactions, many-body induction, and dispersion energy. Here, by correctly reproducing many-body effects at both short range and long range, it is found that MB-pol accurately predicts the energetics of different ice phases, which provides further support for the accuracy of MB-pol in representing the properties of water from the gas to the condensed phase.« less

  1. Analytical treatment of self-phase-modulation beyond the slowly varying envelope approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syrchin, M.S.; Zheltikov, A.M.; International Laser Center, M.V. Lomonosov Moscow State University, 119899 Moscow

    Analytical treatment of the self-phase-modulation of an ultrashort light pulse is extended beyond the slowly varying envelope approximation. The resulting wave equation is modified to include corrections to self-phase-modulation due to higher-order spatial and temporal derivatives. Analytical solutions are found in the limiting regimes of high nonlinearities and very short pulses. Our results reveal features that can significantly impact both pulse shape and the evolution of the phase.

  2. Leading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole Showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulat, Falko; Höche, Stefan; Prestel, Stefan

    We compute the next-to-leading order corrections to soft-gluon radiation differentially in the one-emission phase space. We show that their contribution to the evolution of color dipoles can be obtained in a modified subtraction scheme, such that both one- and two-emission terms are amenable to Monte-Carlo integration. The two-loop cusp anomalous dimension is recovered naturally upon integration over the full phase space. We present two independent implementations of the new algorithm in the two event generators Pythia and Sherpa, and we compare the resulting fully differential simulation to the CMW scheme.

  3. A new insight into the phase transition in the early Universe with two Higgs doublets

    NASA Astrophysics Data System (ADS)

    Bernon, Jérémy; Bian, Ligong; Jiang, Yun

    2018-05-01

    We study the electroweak phase transition in the alignment limit of the CP-conserving two-Higgs-doublet model (2HDM) of Type I and Type II. The effective potential is evaluated at one-loop, where the thermal potential includes Daisy corrections and is reliably approximated by means of a sum of Bessel functions. Both 1-stage and 2-stage electroweak phase transitions are shown to be possible, depending on the pattern of the vacuum development as the Universe cools down. For the 1-stage case focused on in this paper, we analyze the properties of phase transition and discover that the field value of the electroweak symmetry breaking vacuum at the critical temperature at which the first order phase transition occurs is largely correlated with the vacuum depth of the 1-loop potential at zero temperature. We demonstrate that a strong first order electroweak phase transition (SFOEWPT) in the 2HDM is achievable and establish benchmark scenarios leading to different testable signatures at colliders. In addition, we verify that an enhanced triple Higgs coupling (including loop corrections) is a typical feature of the SFOPT driven by the additional doublet. As a result, SFOEWPT might be able to be probed at the LHC and future lepton colliders through Higgs pair production.

  4. Detecting magnetic ordering with atomic size electron probes

    DOE PAGES

    Idrobo, Juan Carlos; Rusz, Ján; Spiegelberg, Jakob; ...

    2016-05-27

    While magnetism originates at the atomic scale, the existing spectroscopic techniques sensitive to magnetic signals only produce spectra with spatial resolution on a larger scale. However, recently, it has been theoretically argued that atomic size electron probes with customized phase distributions can detect magnetic circular dichroism. Here, we report a direct experimental real-space detection of magnetic circular dichroism in aberration-corrected scanning transmission electron microscopy (STEM). Using an atomic size-aberrated electron probe with a customized phase distribution, we reveal the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The novel experimental setupmore » presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution.« less

  5. Satellite clock corrections estimation to accomplish real time ppp: experiments for brazilian real time network

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo; Monico, João; Aquino, Marcio; Melo, Weyller

    2014-05-01

    The real time PPP method requires the availability of real time precise orbits and satellites clocks corrections. Currently, it is possible to apply the solutions of clocks and orbits available by BKG within the context of IGS Pilot project or by using the operational predicted IGU ephemeris. The accuracy of the satellite position available in the IGU is enough for several applications requiring good quality. However, the satellites clocks corrections do not provide enough accuracy (3 ns ~ 0.9 m) to accomplish real time PPP with the same level of accuracy. Therefore, for real time PPP application it is necessary to further research and develop appropriated methodologies for estimating the satellite clock corrections in real time with better accuracy. Currently, it is possible to apply the real time solutions of clocks and orbits available by Federal Agency for Cartography and Geodesy (BKG) within the context of IGS Pilot project. The BKG corrections are disseminated by a new proposed format of the RTCM 3.x and can be applied in the broadcasted orbits and clocks. Some investigations have been proposed for the estimation of the satellite clock corrections using GNSS code and phase observable at the double difference level between satellites and epochs (MERVAT, DOUSA, 2007). Another possibility consists of applying a Kalman Filter in the PPP network mode (HAUSCHILD, 2010) and it is also possible the integration of both methods, using network PPP and observables at double difference level in specific time intervals (ZHANG; LI; GUO, 2010). For this work the methodology adopted consists in the estimation of the satellite clock corrections based on the data adjustment in the PPP mode, but for a network of GNSS stations. The clock solution can be solved by using two types of observables: code smoothed by carrier phase or undifferenced code together with carrier phase. In the former, we estimate receiver clock error; satellite clock correction and troposphere, considering that the phase ambiguities are eliminated when applying differences between consecutive epochs. However, when using undifferenced code and phase, the ambiguities may be estimated together with receiver clock errors, satellite clock corrections and troposphere parameters. In both strategies it is also possible to correct the troposphere delay from a Numerical Weather Forecast Model instead of estimating it. The prediction of the satellite clock correction can be performed using a straight line or a second degree polynomial using the time series of the estimated satellites clocks. To estimate satellite clock correction and to accomplish real time PPP two pieces of software have been developed, respectively, "RT_PPP" and "RT_SAT_CLOCK". The system (RT_PPP) is able to process GNSS code and phase data using precise ephemeris and precise satellites clocks corrections together with several corrections required for PPP. In the software RT_SAT_CLOCK we apply a Kalman filter algorithm to estimate satellite clock correction in the network PPP mode. In this case, all PPP corrections must be applied for each station. The experiments were generated in real time and post-processed mode (simulating real time) considering data from the Brazilian continuous GPS network and also from the IGS network in a global satellite clock solution. We have used IGU ephemeris for satellite position and estimated the satellite clock corrections, performing the updates as soon as new ephemeris files were available. Experiments were accomplished in order to assess the accuracy of the estimated clocks when using the Brazilian Numerical Weather Forecast Model (BNWFM) from CPTEC/INPE and also using the ZTD from European Centre for Medium-Range Weather Forecasts (ECMWF) together with Vienna Mapping Function VMF or estimating troposphere with clocks and ambiguities in the Kalman Filter. The daily precision of the estimated satellite clock corrections reached the order of 0.15 nanoseconds. The clocks were applied in the Real Time PPP for Brazilian network stations and also for flight test of the Brazilian airplanes and the results show that it is possible to accomplish real time PPP in the static and kinematic modes with accuracy of the order of 10 to 20 cm, respectively.

  6. Nonergodicity of microfine binary systems

    NASA Astrophysics Data System (ADS)

    Son, L. D.; Sidorov, V. E.; Popel', P. S.; Shul'gin, D. B.

    2016-02-01

    The correction to the equation of state that is related to the nonergodicity of diffusion dynamics is discussed for a binary solid solution with a limited solubility. It is asserted that, apart from standard thermodynamic variables (temperature, volume, concentration), this correction should be taken into account in the form of the average local chemical potential fluctuations associated with microheterogeneity in order to plot a phase diagram. It is shown that a low value of this correction lowers the miscibility gap and that this gap splits when this correction increases. This situation is discussed for eutectic systems and Ga-Pb, Fe-Cu, and Cu-Zr alloys.

  7. Methods for Using Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules

    DTIC Science & Technology

    2014-08-20

    including zero-point energy ( ZPE ) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can...CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of

  8. General post-Minkowskian expansion and application of the phase function

    NASA Astrophysics Data System (ADS)

    Qin, Cheng-Gang; Shao, Cheng-Gang

    2017-07-01

    The phase function is a useful tool to study all observations of space missions, since it can give all the information about light propagation in a gravitational field. For the extreme accuracy of the modern space missions, a precise relativistic modeling of observations is required. So, we develop a recursive procedure enabling us to expand the phase function into a perturbative series of ascending powers of the Newtonian gravitational constant. Any n th-order perturbation of the phase function can be determined by the integral along the straight line connecting two point events. To illustrate the result, we carry out the calculation of the phase function outside a static, spherically symmetric body up to the order of G2. Then, we develop a precise relativistic model that is able to calculate the phase function and the derivatives of the phase function in the gravitational field of rotating and uniformly moving bodies. This model allows the computing of the Doppler, radio science, and astrometric observables of the space missions in the Solar System. With the development of space technology, the relativistic corrections due to the motion of a planet's spin must be considered in the high-precision space missions in the near future. As an example, we give the estimates of the relativistic corrections on the observables about the space missions TianQin and BEACON.

  9. Entanglement scaling at first order quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Yuste, A.; Cartwright, C.; De Chiara, G.; Sanpera, A.

    2018-04-01

    First order quantum phase transitions (1QPTs) are signalled, in the thermodynamic limit, by discontinuous changes in the ground state properties. These discontinuities affect expectation values of observables, including spatial correlations. When a 1QPT is crossed in the vicinity of a second order one, due to the correlation length divergence of the latter, the corresponding ground state is modified and it becomes increasingly difficult to determine the order of the transition when the size of the system is finite. Here we show that, in such situations, it is possible to apply finite size scaling (FSS) to entanglement measures, as it has recently been done for the order parameters and the energy gap, in order to recover the correct thermodynamic limit (Campostrini et al 2014 Phys. Rev. Lett. 113 070402). Such a FSS can unambiguously discriminate between first and second order phase transitions in the vicinity of multicritical points even when the singularities displayed by entanglement measures lead to controversial results.

  10. Thermodynamic phase transition of a black hole in rainbow gravity

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Wen; Yang, Shu-Zheng

    2017-09-01

    In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking-Page-type phase transitions in the framework of rainbow gravity theory.

  11. Guide-star-based computational adaptive optics for broadband interferometric tomography

    PubMed Central

    Adie, Steven G.; Shemonski, Nathan D.; Graf, Benedikt W.; Ahmad, Adeel; Scott Carney, P.; Boppart, Stephen A.

    2012-01-01

    We present a method for the numerical correction of optical aberrations based on indirect sensing of the scattered wavefront from point-like scatterers (“guide stars”) within a three-dimensional broadband interferometric tomogram. This method enables the correction of high-order monochromatic and chromatic aberrations utilizing guide stars that are revealed after numerical compensation of defocus and low-order aberrations of the optical system. Guide-star-based aberration correction in a silicone phantom with sparse sub-resolution-sized scatterers demonstrates improvement of resolution and signal-to-noise ratio over a large isotome. Results in highly scattering muscle tissue showed improved resolution of fine structure over an extended volume. Guide-star-based computational adaptive optics expands upon the use of image metrics for numerically optimizing the aberration correction in broadband interferometric tomography, and is analogous to phase-conjugation and time-reversal methods for focusing in turbid media. PMID:23284179

  12. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  13. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  14. Relative phase noise induced impairment in M-ary phase-shift-keying coherent optical communication system using distributed fiber Raman amplifier.

    PubMed

    Cheng, Jingchi; Tang, Ming; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2013-04-01

    We show for the first time, to the best of our knowledge, that, in a coherent communication system that employs a phase-shift-keying signal and Raman amplification, besides the pump relative intensity noise (RIN) transfer to the amplitude, the signal's phase will also be affected by pump RIN through the pump-signal cross-phase modulation. Although the average pump power induced linear phase change can be compensated for by the phase-correction algorithm, a relative phase noise (RPN) parameter has been found to characterize pump RIN induced stochastic phase noise. This extra phase noise brings non-negligible system impairments in terms of the Q-factor penalty. The calculation shows that copumping leads to much more stringent requirements to pump RIN, and relatively larger fiber dispersion helps to suppress the RPN induced impairment. A higher-order phase-shift keying (PSK) signal is less tolerant to noise than a lower-order PSK.

  15. Thermodynamic variables of first-order entropy corrected Lovelock-AdS black holes: P{-}V criticality analysis

    NASA Astrophysics Data System (ADS)

    Haldar, Amritendu; Biswas, Ritabrata

    2018-06-01

    We investigate the effect of thermal fluctuations on the thermodynamics of a Lovelock-AdS black hole. Taking the first order logarithmic correction term in entropy we analyze the thermodynamic potentials like Helmholtz free energy, enthalpy and Gibbs free energy. We find that all the thermodynamic potentials are decreasing functions of correction coefficient α . We also examined this correction coefficient must be positive by analysing P{-}V diagram. Further we study the P{-}V criticality and stability and find that presence of logarithmic correction in it is necessary to have critical points and stable phases. When P{-}V criticality appears, we calculate the critical volume V_c, critical pressure P_c and critical temperature T_c using different equations and show that there is no critical point for this black hole without thermal fluctuations. We also study the geometrothermodynamics of this kind of black holes. The Ricci scalar of the Ruppeiner metric is graphically analysed.

  16. Bulk viscous corrections to screening and damping in QCD at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Qianqian; Dumitru, Adrian; Guo, Yun

    2017-01-01

    Non-equilibrium corrections to the distribution functions of quarks and gluons in a hot and dense QCD medium modify the \\hard thermal loops" (HTL). The HTLs determine the retarded, advanced, and symmetric (time-ordered) propagators for gluons with soft momenta as well as the Debye screening and Landau damping mass scales. Here, we compute such corrections to a thermal as well as to a non-thermal fixed point. The screening and damping mass scales are sensitive to the bulk pressure and hence to (pseudo-) critical dynamical scaling of the bulk viscosity in the vicinity of a second-order critical point. This could be reectedmore » in the properties of quarkonium bound states in the deconfined phase and in the dynamics of soft gluon fields.« less

  17. Compensating amplitude-dependent tune-shift without driving fourth-order resonances

    NASA Astrophysics Data System (ADS)

    Ögren, J.; Ziemann, V.

    2017-10-01

    If octupoles are used in a ring to correct the amplitude-dependent tune-shift one normally tries to avoid that the octupoles drive additional resonances. Here we consider the optimum placement of octupoles that only affects the amplitude-dependent tune-shift, but does not drive fourth-order resonances. The simplest way turns out to place three equally powered octupoles with 60 ° phase advance between adjacent magnets. Using two such octupole triplets separated by a suitable phase advance cancels all fourth-order resonance driving terms and forms a double triplet we call a six-pack. Using three six-packs at places with different ratios of the beta functions allows to independently control all amplitude-dependent tune-shift terms without exciting additional fourth-order resonances in first order of the octupole excitation.

  18. Kosterlitz-Thouless transitions and phase diagrams of the interacting monomer-dimer model on a checkerboard lattice

    NASA Astrophysics Data System (ADS)

    Li, Sazi; Li, Wei; Chen, Ziyu

    2014-11-01

    Using the tensor network approach, we investigate the monomer-dimer models on a checkerboard lattice, in which there are interactions (with strength v ) between the parallel dimers on half of the plaquettes. For the fully packed interacting dimer model, we observe a Kosterlitz-Thouless (KT) transition between the low-temperature symmetry breaking and the high-temperature critical phases; for the doped monomer-dimer case with finite chemical potential μ , we also find an order-disorder phase transition which is of second order instead. We use the boundary matrix product state approach to detect the KT and second-order phase transitions and obtain the phase diagrams v -T and μ -T . Moreover, for the noninteracting monomer-dimer model (setting μ =ν =0 ), we get an extraordinarily accurate determination of the free energy per site (negative of the monomer-dimer constant h2) as f =-0.662 798 972 833 746 with the dimer density n =0.638 123 109 228 547 , both of 15 correct digits.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, X.; Rungger, I.; Zapol, P.

    Understanding electronic properties of substoichiometric phases of titanium oxide such as Magneli phase Ti 4O 7 is crucial in designing and modeling resistive switching devices. Here we present our study on Magneli phase Ti 4O 7 together with rutile TiO 2 and Ti 2O 3 using density functional theory methods with atomic-orbital-based self-interaction correction (ASIC). We predict a new antiferromagnetic (AF) ground state in the low temperature (LT) phase, and we explain energy difference with a competing AF state using a Heisenberg model. The predicted energy ordering of these states in the LT phase is calculated to be robust inmore » a wide range of modeled isotropic strain. We have also investigated the dependence of the electronic structures of the Ti-O phases on stoichiometry. The splitting of titanium t 2g orbitals is enhanced with increasing oxygen deficiency as Ti-O is reduced. Furthermore, the electronic properties of all these phases can be reasonably well described by applying ASIC with a "standard" value for transition metal oxides of the empirical parameter alpha of 0.5 representing the magnitude of the applied self-interaction correction.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, X.; Rungger, I.; Zapol, P.

    Understanding electronic properties of substoichiometric phases of titanium oxide such as Magneli phase Ti4O7 is crucial in designing and modeling resistive switching devices. Here we present our study on Magneli phase Ti4O7 together with rutile TiO2 and Ti2O3 using density functional theory methods with atomic-orbital-based self-interaction correction (ASIC). We predict a new antiferromagnetic (AF) ground state in the low temperature (LT) phase, and we explain energy difference with a competing AF state using a Heisenberg model. The predicted energy ordering of these states in the LT phase is calculated to be robust in a wide range of modeled isotropic strain.more » We have also investigated the dependence of the electronic structures of the Ti-O phases on stoichiometry. The splitting of titanium t(2g) orbitals is enhanced with increasing oxygen deficiency as Ti-O is reduced. The electronic properties of all these phases can be reasonably well described by applying ASIC with a "standard" value for transition metal oxides of the empirical parameter alpha of 0.5 representing the magnitude of the applied self-interaction correction.« less

  1. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.

    PubMed

    Schwertner, M; Booth, M J; Neil, M A A; Wilson, T

    2004-01-01

    Confocal or multiphoton microscopes, which deliver optical sections and three-dimensional (3D) images of thick specimens, are widely used in biology. These techniques, however, are sensitive to aberrations that may originate from the refractive index structure of the specimen itself. The aberrations cause reduced signal intensity and the 3D resolution of the instrument is compromised. It has been suggested to correct for aberrations in confocal microscopes using adaptive optics. In order to define the design specifications for such adaptive optics systems, one has to know the amount of aberrations present for typical applications such as with biological samples. We have built a phase stepping interferometer microscope that directly measures the aberration of the wavefront. The modal content of the wavefront is extracted by employing Zernike mode decomposition. Results for typical biological specimens are presented. It was found for all samples investigated that higher order Zernike modes give only a small contribution to the overall aberration. Therefore, these higher order modes can be neglected in future adaptive optics sensing and correction schemes implemented into confocal or multiphoton microscopes, leading to more efficient designs.

  2. Phase transition in NK-Kauffman networks and its correction for Boolean irreducibility

    NASA Astrophysics Data System (ADS)

    Zertuche, Federico

    2014-05-01

    In a series of articles published in 1986, Derrida and his colleagues studied two mean field treatments (the quenched and the annealed) for NK-Kauffman networks. Their main results lead to a phase transition curve Kc 2 pc(1-pc)=1 (0

  3. Corrective Action Investigation Plan for Corrective Action Unit 165: Areas 25 and 26 Dry Well and Washdown Areas, Nevada Test Site, Nevada (including Record of Technical Change Nos. 1, 2, and 3) (January 2002, Rev. 0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 165 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 165 consists of eight Corrective Action Sites (CASs): CAS 25-20-01, Lab Drain Dry Well; CAS 25-51-02, Dry Well; CAS 25-59-01, Septic System; CAS 26-59-01, Septic System; CAS 25-07-06, Train Decontamination Area; CAS 25-07-07, Vehicle Washdown; CAS 26-07-01, Vehicle Washdown Station; and CAS 25-47-01, Reservoir and French Drain. All eight CASsmore » are located in the Nevada Test Site, Nevada. Six of these CASs are located in Area 25 facilities and two CASs are located in Area 26 facilities. The eight CASs at CAU 165 consist of dry wells, septic systems, decontamination pads, and a reservoir. The six CASs in Area 25 are associated with the Nuclear Rocket Development Station that operated from 1958 to 1973. The two CASs in Area 26 are associated with facilities constructed for Project Pluto, a series of nuclear reactor tests conducted between 1961 to 1964 to develop a nuclear-powered ramjet engine. Based on site history, the scope of this plan will be a two-phased approach to investigate the possible presence of hazardous and/or radioactive constituents at concentrations that could potentially pose a threat to human health and the environment. The Phase I analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. If laboratory data obtained from the Phase I investigation indicates the presence of contaminants of concern, the process will continue with a Phase II investigation to define the extent of contamination. Based on the results of Phase I sampling, the analytical program for Phase II investigation may be reduced. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.« less

  4. Multiple reentrant phase transitions and triple points in Lovelock thermodynamics

    NASA Astrophysics Data System (ADS)

    Frassino, Antonia M.; Kubizňák, David; Mann, Robert B.; Simovic, Fil

    2014-09-01

    We investigate the effects of higher curvature corrections from Lovelock gravity on the phase structure of asymptotically AdS black holes, treating the cosmological constant as a thermodynamic pressure. We examine how various thermodynamic phenomena, such as Van der Waals behaviour, reentrant phase transitions (RPT), and tricritical points are manifest for U(1) charged black holes in Gauss-Bonnet and 3rd-order Lovelock gravities. We furthermore observe a new phenomenon of `multiple RPT' behaviour, in which for fixed pressure the small/large/small/large black hole phase transition occurs as the temperature of the system increases. We also find that when the higher-order Lovelock couplings are related in a particular way, a peculiar isolated critical point emerges for hyperbolic black holes and is characterized by non-standard critical exponents.

  5. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-02

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%.

  6. Critical phenomena at the complex tensor ordering phase transition

    NASA Astrophysics Data System (ADS)

    Boettcher, Igor; Herbut, Igor F.

    2018-02-01

    We investigate the critical properties of the phase transition towards complex tensor order that has been proposed to occur in spin-orbit-coupled superconductors. For this purpose, we formulate the bosonic field theory for fluctuations of the complex irreducible second-rank tensor order parameter close to the transition. We then determine the scale dependence of the couplings of the theory by means of the perturbative renormalization group (RG). For the isotropic system, we generically detect a fluctuation-induced first-order phase transition. The initial values for the running couplings are determined by the underlying microscopic model for the tensorial order. As an example, we study three-dimensional Luttinger semimetals with electrons at a quadratic band-touching point. Whereas the strong-coupling transition of the model receives substantial fluctuation corrections, the weak-coupling transition at low temperatures is rendered only weakly first order due to the presence of a fixed point in the vicinity of the RG trajectory. If the number of fluctuating complex components of the order parameter is reduced by cubic anisotropy, the theory maps onto the field theory for frustrated magnetism.

  7. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaime, E-mail: jaime.haro@upc.edu

    2013-11-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce providedmore » by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.« less

  8. The Effect of Concomitant Fields in Fast Spin Echo Acquisition on Asymmetric MRI Gradient Systems

    PubMed Central

    Tao, Shengzhen; Weavers, Paul T.; Trzasko, Joshua D.; Huston, John; Shu, Yunhong; Gray, Erin M.; Foo, Thomas K.F.; Bernstein, Matt A.

    2017-01-01

    Purpose To investigate the effect of the asymmetric gradient concomitant fields (CF) with zeroth and first-order spatial dependence on fast/turbo spin-echo acquisitions, and to demonstrate the effectiveness of their real-time compensation. Methods After briefly reviewing the CF produced by asymmetric gradients, the effects of the additional zeroth and first-order CFs on these systems are investigated using extended-phase graph simulations. Phantom and in vivo experiments are performed to corroborate the simulation. Experiments are performed before and after the real-time compensations using frequency tracking and gradient pre-emphasis to demonstrate their effectiveness in correcting the additional CFs. The interaction between the CFs and prescan-based correction to compensate for eddy currents is also investigated. Results It is demonstrated that, unlike the second-order CFs on conventional gradients, the additional zeroth/first-order CFs on asymmetric gradients cause substantial signal loss and dark banding in fast spin-echo acquisitions within a typical brain-scan field of view. They can confound the prescan correction for eddy currents and degrade image quality. Performing real-time compensation successfully eliminates the artifacts. Conclusions We demonstrate that the zeroth/first-order CFs specific to asymmetric gradients can cause substantial artifacts, including signal loss and dark bands for brain imaging. These effects can be corrected using real-time compensation. PMID:28643408

  9. Next-to-leading-order electroweak corrections to the production of three charged leptons plus missing energy at the LHC

    NASA Astrophysics Data System (ADS)

    Biedermann, Benedikt; Denner, Ansgar; Hofer, Lars

    2017-10-01

    The production of a neutral and a charged vector boson with subsequent decays into three charged leptons and a neutrino is a very important process for precision tests of the Standard Model of elementary particles and in searches for anomalous triple-gauge-boson couplings. In this article, the first computation of next-to-leading-order electroweak corrections to the production of the four-lepton final states μ + μ -e+ ν e, {μ}+{μ}-{e}-{\\overline{ν}}e , μ + μ - μ + ν μ , and {μ}+{μ}-{μ}-{\\overline{ν}}_{μ } at the Large Hadron Collider is presented. We use the complete matrix elements at leading and next-to-leading order, including all off-shell effects of intermediate massive vector bosons and virtual photons. The relative electroweak corrections to the fiducial cross sections from quark-induced partonic processes vary between -3% and -6%, depending significantly on the event selection. At the level of differential distributions, we observe large negative corrections of up to -30% in the high-energy tails of distributions originating from electroweak Sudakov logarithms. Photon-induced contributions at next-to-leading order raise the leading-order fiducial cross section by +2%. Interference effects in final states with equal-flavour leptons are at the permille level for the fiducial cross section, but can lead to sizeable effects in off-shell sensitive phase-space regions.

  10. Lattice model theory of the equation of state covering the gas, liquid, and solid phases

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Tanaka, T.; Chan, E. M.; Horiguchi, T.; Foreman, J. C.

    1975-01-01

    The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon.

  11. Physical uniqueness of higher-order Korteweg-de Vries theory for continuously stratified fluids without background shear

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji

    2017-10-01

    The 2nd-order Korteweg-de Vries (KdV) equation and the Gardner (or extended KdV) equation are often used to investigate internal solitary waves, commonly observed in oceans and lakes. However, application of these KdV-type equations for continuously stratified fluids to geophysical problems is hindered by nonuniqueness of the higher-order coefficients and the associated correction functions to the wave fields. This study proposes to reduce arbitrariness of the higher-order KdV theory by considering its uniqueness in the following three physical senses: (i) consistency of the nonlinear higher-order coefficients and correction functions with the corresponding phase speeds, (ii) wavenumber-independence of the vertically integrated available potential energy, and (iii) its positive definiteness. The spectral (or generalized Fourier) approach based on vertical modes in the isopycnal coordinate is shown to enable an alternative derivation of the 2nd-order KdV equation, without encountering nonuniqueness. Comparison with previous theories shows that Parseval's theorem naturally yields a unique set of special conditions for (ii) and (iii). Hydrostatic fully nonlinear solutions, derived by combining the spectral approach and simple-wave analysis, reveal that both proposed and previous 2nd-order theories satisfy (i), provided that consistent definitions are used for the wave amplitude and the nonlinear correction. This condition reduces the arbitrariness when higher-order KdV-type theories are compared with observations or numerical simulations. The coefficients and correction functions that satisfy (i)-(iii) are given by explicit formulae to 2nd order and by algebraic recurrence relationships to arbitrary order for hydrostatic fully nonlinear and linear fully nonhydrostatic effects.

  12. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, Marie-Pierre; Lasserre, Cécile; Peltzer, Gilles; Cavalié, Olivier; Doubre, Cécile

    2010-05-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.

  13. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C.

    2009-09-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/ T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.

  14. Dynamic testbed demonstration of WFIRST coronagraph low order wavefront sensing and control (LOWFS/C)

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Cady, Eric; Seo, Byoung-Joon; An, Xin; Balasubramanian, Kunjithapatham; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Mejia Prada, Camilo; Patterson, Keith; Poberezhskiy, Ilya; Shields, Joel; Sidick, Erkin; Tang, Hong; Trauger, John; Truong, Tuan; White, Victor; Wilson, Daniel; Zhou, Hanying

    2017-09-01

    To maintain the required performance of WFIRST Coronagraph in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C uses a Zernike wavefront sensor (ZWFS) with the phase shifting disk combined with the starlight rejecting occulting mask. For wavefront error corrections, WFIRST LOWFS/C uses a fast steering mirror (FSM) for line-of-sight (LoS) correction, a focusing mirror for focus drift correction, and one of the two deformable mirrors (DM) for other low order wavefront error (WFE) correction. As a part of technology development and demonstration for WFIRST Coronagraph, a dedicated Occulting Mask Coronagraph (OMC) testbed has been built and commissioned. With its configuration similar to the WFIRST flight coronagraph instrument the OMC testbed consists of two coronagraph modes, Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC), a low order wavefront sensor (LOWFS), and an optical telescope assembly (OTA) simulator which can generate realistic LoS drift and jitter as well as low order wavefront error that would be induced by the WFIRST telescope's vibration and thermal changes. In this paper, we will introduce the concept of WFIRST LOWFS/C, describe the OMC testbed, and present the testbed results of LOWFS sensor performance. We will also present our recent results from the dynamic coronagraph tests in which we have demonstrated of using LOWFS/C to maintain the coronagraph contrast with the presence of WFIRST-like line-of-sight and low order wavefront disturbances.

  15. A new high pressure and temperature equation of state of fcc cobalt

    DOE PAGES

    Armentrout, Matthew M.; Kavner, Abby

    2015-11-20

    The high pressure and temperature equation of state of cobalt metal in the face-centered cubic phase was measured up to 57 GPa and 2400 K using the laser heated diamond anvil cell in conjunction with synchrotron X-ray diffraction. The measured region is bisected by a ferromagnetic to paramagnetic transition across the Curie temperature necessitating use of an equation of state that incorporates a 2nd order phase transition within its formalism. A third order Birch-Murnaghan equation of state with a Mie-Grüneisen-Debye thermal correction and a Hillert-Jarl magnetic correction is employed to describe the data above and below the Curie temperature. Furthermore,more » we find best fit parameters of V 0 = 6.753 (fixed) cm 3/mol, K 0 – 196 (3) GPa, K' – 4.7 (2), γ 0 – 2.00 (11), q – 1.3 (5), and θ 0 – 385 K (fixed).« less

  16. Interservice Procedures for Instructional Systems Development. Phase 2. Design

    DTIC Science & Technology

    1975-08-01

    interesting challenge to the trainees. EXAMPLE At the end of two weeks of senior life saving Instruction, a physically fit graduate must swim one mile...does a military person need toanswsr correctly in order to advance in rank, havea successful career, perform his primary mission, orbe a credit to the... advanced training phases. 2, Qualified, not enlisted (QNE): a. Identification of new leads. b. Determine reason for not enlisting. c. Get the

  17. Effective Algorithm for Detection and Correction of the Wave Reconstruction Errors Caused by the Tilt of Reference Wave in Phase-shifting Interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Xianfeng; Cai, Luzhong; Li, Dailin; Mao, Jieying

    2010-04-01

    In phase-shifting interferometry (PSI) the reference wave is usually supposed to be an on-axis plane wave. But in practice a slight tilt of reference wave often occurs, and this tilt will introduce unexpected errors of the reconstructed object wave-front. Usually the least-square method with iterations, which is time consuming, is employed to analyze the phase errors caused by the tilt of reference wave. Here a simple effective algorithm is suggested to detect and then correct this kind of errors. In this method, only some simple mathematic operation is used, avoiding using least-square equations as needed in most methods reported before. It can be used for generalized phase-shifting interferometry with two or more frames for both smooth and diffusing objects, and the excellent performance has been verified by computer simulations. The numerical simulations show that the wave reconstruction errors can be reduced by 2 orders of magnitude.

  18. Quintessence background for 5D Einstein-Gauss-Bonnet black holes

    NASA Astrophysics Data System (ADS)

    Ghosh, Sushant G.; Amir, Muhammed; Maharaj, Sunil D.

    2017-08-01

    As we know that the Lovelock theory is an extension of the general relativity to the higher-dimensions, in this theory the first- and the second-order terms correspond to general relativity and the Einstein-Gauss-Bonnet gravity, respectively. We obtain a 5D black hole solution in Einstein-Gauss-Bonnet gravity surrounded by the quintessence matter, and we also analyze their thermodynamical properties. Owing to the quintessence corrected black hole, the thermodynamic quantities have also been corrected except for the black hole entropy, and a phase transition is achievable. The phase transition for the thermodynamic stability is characterized by a discontinuity in the specific heat at r=r_C, with the stable (unstable) branch for r < (>) r_C.

  19. Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NNSA /NV

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located withinmore » Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive residues, herbicides, pesticides, polychlorinated biphenyls, metals, and radionuclides. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.« less

  20. Analysis of elliptically polarized maximally entangled states for bell inequality tests

    NASA Astrophysics Data System (ADS)

    Martin, A.; Smirr, J.-L.; Kaiser, F.; Diamanti, E.; Issautier, A.; Alibart, O.; Frey, R.; Zaquine, I.; Tanzilli, S.

    2012-06-01

    When elliptically polarized maximally entangled states are considered, i.e., states having a non random phase factor between the two bipartite polarization components, the standard settings used for optimal violation of Bell inequalities are no longer adapted. One way to retrieve the maximal amount of violation is to compensate for this phase while keeping the standard Bell inequality analysis settings. We propose in this paper a general theoretical approach that allows determining and adjusting the phase of elliptically polarized maximally entangled states in order to optimize the violation of Bell inequalities. The formalism is also applied to several suggested experimental phase compensation schemes. In order to emphasize the simplicity and relevance of our approach, we also describe an experimental implementation using a standard Soleil-Babinet phase compensator. This device is employed to correct the phase that appears in the maximally entangled state generated from a type-II nonlinear photon-pair source after the photons are created and distributed over fiber channels.

  1. Electroweak baryogenesis and the standard model effective field theory

    NASA Astrophysics Data System (ADS)

    de Vries, Jordy; Postma, Marieke; van de Vis, Jorinde; White, Graham

    2018-01-01

    We investigate electroweak baryogenesis within the framework of the Standard Model Effective Field Theory. The Standard Model Lagrangian is supplemented by dimension-six operators that facilitate a strong first-order electroweak phase transition and provide sufficient CP violation. Two explicit scenarios are studied that are related via the classical equations of motion and are therefore identical at leading order in the effective field theory expansion. We demonstrate that formally higher-order dimension-eight corrections lead to large modifications of the matter-antimatter asymmetry. The effective field theory expansion breaks down in the modified Higgs sector due to the requirement of a first-order phase transition. We investigate the source of the breakdown in detail and show how it is transferred to the CP-violating sector. We briefly discuss possible modifications of the effective field theory framework.

  2. Horizontal Line-of-Sight Turbulence Over Near-Ground Paths and Implications for Adaptive Optics Corrections in Laser Communications.

    PubMed

    Levine, B M; Martinsen, E A; Wirth, A; Jankevics, A; Toledo-Quinones, M; Landers, F; Bruno, T L

    1998-07-20

    Atmospheric turbulence over long horizontal paths perturbs phase and can also cause severe intensity scintillation in the pupil of an optical communications receiver, which limits the data rate over which intensity-based modulation schemes can operate. The feasibility of using low-order adaptive optics by applying phase-only corrections over horizontal propagation paths is investigated. A Shack-Hartmann wave-front sensor was built and data were gathered on paths 1 m above ground and between a 1- and 2.5-km range. Both intensity fluctuations and optical path fluctuation statistics were gathered within a single frame, and the wave-front reconstructor was modified to allow for scintillated data. The temporal power spectral density for various Zernike polynomial modes was used to determine the effects of the expected corrections by adaptive optics. The slopes of the inertial subrange of turbulence were found to be less than predicted by Kolmogorov theory with an infinite outer scale, and the distribution of variance explained by increasing order was also found to be different. Statistical analysis of these data in the 1-km range indicates that at communications wavelengths of 1.3 mum, a significant improvement in transmitted beam quality could be expected most of the time, to a performance of 10% Strehl ratio or better.

  3. Analytical guidance law development for aerocapture at Mars

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1992-01-01

    During the first part of this reporting period research has concentrated on performing a detailed evaluation, to zero order, of the guidance algorithm developed in the first period taking the numerical approach developed in the third period. A zero order matched asymptotic expansion (MAE) solution that closely satisfies a set of 6 implicit equations in 6 unknowns to an accuracy of 10(exp -10), was evaluated. Guidance law implementation entails treating the current state as a new initial state and repetitively solving the MAE problem to obtain the feedback controls. A zero order guided solution was evaluated and compared with optimal solution that was obtained by numerical methods. Numerical experience shows that the zero order guided solution is close to optimal solution, and that the zero order MAE outer solution plays a critical role in accounting for the variations in Loh's term near the exit phase of the maneuver. However, the deficiency that remains in several of the critical variables indicates the need for a first order correction. During the second part of this period, methods for computing a first order correction were explored.

  4. Impact of a CP-violating Higgs sector: from LHC to baryogenesis.

    PubMed

    Shu, Jing; Zhang, Yue

    2013-08-30

    We observe a generic connection between LHC Higgs data and electroweak baryogenesis: the particle that contributes to the CP-odd hgg or hγγ vertex would provide the CP-violating source during a first-order phase transition. It is illustrated in the two Higgs doublet model that a common complex phase controls the lightest Higgs properties at the LHC, electric dipole moments, and the CP-violating source for electroweak baryogenesis. We perform a general parametrization of Higgs effective couplings and a global fit to the LHC Higgs data. Current LHC measurements prefer a nonzero phase for tanβ≲1 and electric dipole moment constraints still allow an order-one phase for tanβ∼1, which gives sufficient room to generate the correct cosmic baryon asymmetry. We also give some prospects in the direct measurements of CP violation in the Higgs sector at the LHC.

  5. Complex Langevin simulation of a random matrix model at nonzero chemical potential

    NASA Astrophysics Data System (ADS)

    Bloch, J.; Glesaaen, J.; Verbaarschot, J. J. M.; Zafeiropoulos, S.

    2018-03-01

    In this paper we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass is inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling solves the convergence problems as was shown before in the literature.

  6. Nonlinear adaptive optics: aberration correction in three photon fluorescence microscopy for mouse brain imaging

    NASA Astrophysics Data System (ADS)

    Sinefeld, David; Paudel, Hari P.; Wang, Tianyu; Wang, Mengran; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2017-02-01

    Multiphoton fluorescence microscopy is a well-established technique for deep-tissue imaging with subcellular resolution. Three-photon microscopy (3PM) when combined with long wavelength excitation was shown to allow deeper imaging than two-photon microscopy (2PM) in biological tissues, such as mouse brain, because out-of-focus background light can be further reduced due to the higher order nonlinear excitation. As was demonstrated in 2PM systems, imaging depth and resolution can be improved by aberration correction using adaptive optics (AO) techniques which are based on shaping the scanning beam using a spatial light modulator (SLM). In this way, it is possible to compensate for tissue low order aberration and to some extent, to compensate for tissue scattering. Here, we present a 3PM AO microscopy system for brain imaging. Soliton self-frequency shift is used to create a femtosecond source at 1675 nm and a microelectromechanical (MEMS) SLM serves as the wavefront shaping device. We perturb the 1020 segment SLM using a modified nonlinear version of three-point phase shifting interferometry. The nonlinearity of the fluorescence signal used for feedback ensures that the signal is increasing when the spot size decreases, allowing compensation of phase errors in an iterative optimization process without direct phase measurement. We compare the performance for different orders of nonlinear feedback, showing an exponential growth in signal improvement as the nonlinear order increases. We demonstrate the impact of the method by applying the 3PM AO system for in-vivo mouse brain imaging, showing improvement in signal at 1-mm depth inside the brain.

  7. [Study on phase correction method of spatial heterodyne spectrometer].

    PubMed

    Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei

    2013-05-01

    Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.

  8. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zimmermann, E.; Huisman, J. A.; Treichel, A.; Wolters, B.; van Waasen, S.; Kemna, A.

    2013-08-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now be made in the mHz to kHz frequency range. This increased accuracy in the kHz range will allow a more accurate field characterization of the complex electrical conductivity of soils and sediments, which may lead to the improved estimation of saturated hydraulic conductivity from electrical properties. Although the correction methods have been developed for a custom-made EIT system, they also have potential to improve the phase accuracy of EIT measurements made with commercial systems relying on multicore cables.

  9. Feed-forward digital phase and amplitude correction system

    DOEpatents

    Yu, D.U.L.; Conway, P.H.

    1994-11-15

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.

  10. Feed-forward digital phase and amplitude correction system

    DOEpatents

    Yu, David U. L.; Conway, Patrick H.

    1994-01-01

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.

  11. Subluminous phase velocity regions of an accurately described Gaussian laser field and laser-driven acceleration

    NASA Astrophysics Data System (ADS)

    Xie, Y. J.; Ho, Y. K.; Cao, N.; Shao, L.; Pang, J.; Chen, Z.; Zhang, S. Y.; Liu, J. R.

    2003-11-01

    By taking account of the high-order corrections to the paraxial approximation of a Gaussian beam, it has been verified that for a focused laser beam propagating in vacuum, there indeed exists a subluminous wave phase velocity region surrounding the laser beam axis. The magnitude of the phase velocity scales as Vϕm∼ c(1+ b/( kw0) 2), where Vϕm is the phase velocity of the wave, c is the speed of light in vacuum, w0 is the beam width at focus. This feature gives a reasonable explanation for the mechanism of capture and acceleration scenario.

  12. Predicting Statistical Response and Extreme Events in Uncertainty Quantification through Reduced-Order Models

    NASA Astrophysics Data System (ADS)

    Qi, D.; Majda, A.

    2017-12-01

    A low-dimensional reduced-order statistical closure model is developed for quantifying the uncertainty in statistical sensitivity and intermittency in principal model directions with largest variability in high-dimensional turbulent system and turbulent transport models. Imperfect model sensitivity is improved through a recent mathematical strategy for calibrating model errors in a training phase, where information theory and linear statistical response theory are combined in a systematic fashion to achieve the optimal model performance. The idea in the reduced-order method is from a self-consistent mathematical framework for general systems with quadratic nonlinearity, where crucial high-order statistics are approximated by a systematic model calibration procedure. Model efficiency is improved through additional damping and noise corrections to replace the expensive energy-conserving nonlinear interactions. Model errors due to the imperfect nonlinear approximation are corrected by tuning the model parameters using linear response theory with an information metric in a training phase before prediction. A statistical energy principle is adopted to introduce a global scaling factor in characterizing the higher-order moments in a consistent way to improve model sensitivity. Stringent models of barotropic and baroclinic turbulence are used to display the feasibility of the reduced-order methods. Principal statistical responses in mean and variance can be captured by the reduced-order models with accuracy and efficiency. Besides, the reduced-order models are also used to capture crucial passive tracer field that is advected by the baroclinic turbulent flow. It is demonstrated that crucial principal statistical quantities like the tracer spectrum and fat-tails in the tracer probability density functions in the most important large scales can be captured efficiently with accuracy using the reduced-order tracer model in various dynamical regimes of the flow field with distinct statistical structures.

  13. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence

    PubMed Central

    Sinefeld, David; Paudel, Hari P.; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2015-01-01

    We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity. PMID:26698772

  14. Phase Adaptation and Correction by Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Tiziani, Hans J.

    2010-04-01

    Adaptive optical elements and systems for imaging or laser beam propagation are used for some time in particular in astronomy, where the image quality is degraded by atmospheric turbulence. In astronomical telescopes a deformable mirror is frequently used to compensate wavefront-errors due to deformations of the large mirror, vibrations as well as turbulence and hence to increase the image quality. In the last few years interesting elements like Spatial Light Modulators, SLM's, such as photorefractive crystals, liquid crystals and micro mirrors and membrane mirrors were introduced. The development of liquid crystals and micro mirrors was driven by data projectors as consumer products. They contain typically a matrix of individually addressable pixels of liquid crystals and flip mirrors respectively or more recently piston mirrors for special applications. Pixel sizes are in the order of a few microns and therefore also appropriate as active diffractive elements in digital holography or miniature masks. Although liquid crystals are mainly optimized for intensity modulation; they can be used for phase modulation. Adaptive optics is a technology for beam shaping and wavefront adaptation. The application of spatial light modulators for wavefront adaptation and correction and defect analysis as well as sensing will be discussed. Dynamic digital holograms are generated with liquid crystal devices (LCD) and used for wavefront correction as well as for beam shaping and phase manipulation, for instance. Furthermore, adaptive optics is very useful to extend the measuring range of wavefront sensors and for the wavefront adaptation in order to measure and compare the shape of high precision aspherical surfaces.

  15. Linearization of the longitudinal phase space without higher harmonic field

    NASA Astrophysics Data System (ADS)

    Zeitler, Benno; Floettmann, Klaus; Grüner, Florian

    2015-12-01

    Accelerator applications like free-electron lasers, time-resolved electron diffraction, and advanced accelerator concepts like plasma acceleration desire bunches of ever shorter longitudinal extent. However, apart from space charge repulsion, the internal bunch structure and its development along the beam line can limit the achievable compression due to nonlinear phase space correlations. In order to improve such a limited longitudinal focus, a correction by properly linearizing the phase space is required. At large scale facilities like Flash at Desy or the European Xfel, a higher harmonic cavity is installed for this purpose. In this paper, another method is described and evaluated: Expanding the beam after the electron source enables a higher order correction of the longitudinal focus by a subsequent accelerating cavity which is operated at the same frequency as the electron gun. The elaboration of this idea presented here is based on a ballistic bunching scheme, but can be extended to bunch compression based on magnetic chicanes. The core of this article is an analytic model describing this approach, which is verified by simulations, predicting possible bunch length below 1 fs at low bunch charge. Minimizing the energy spread down to σE/E <1 0-5 while keeping the bunch long is another interesting possibility, which finds applications, e.g., in time resolved transmission electron microscopy concepts.

  16. Optical components of adaptive systems for improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.

    2008-10-01

    The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.

  17. National Dam Safety Program. Lake Caroline Dam (Inventory Number VA 03324), Mattaponi River Basin, Caroline County, Virginia. Phase I Inspection Report.

    DTIC Science & Technology

    1981-04-01

    NAM ANDADONS I. PRGRAM ELEMENT. PROJECT, TASKCARA a WORKC UNINUER Lbnabe1 Engineering Associates, P.C. I UBR J. K. Tirmns and Associates, Inc. It...inspections can unsafe conditions be detected and only throug ontinued care and maintenance can these conditions be prevented or corrected. Phase I...downstream toe should be monitored during routine maintenance. It is also recomnended that attempts be made to halt shoreline erosion in order to prevent

  18. Comparable change in stromal refractive index of cat and human corneas following blue-IRIS.

    PubMed

    Wozniak, Kaitlin T; Gearhart, Sara M; Savage, Daniel E; Ellis, Jonathan D; Knox, Wayne H; Huxlin, Krystel R

    2017-05-01

    Blue intratissue refractive index shaping (blue-IRIS) is a method with potential to correct ocular refraction noninvasively in humans. To date, blue-IRIS has only ever been applied to cat corneas and hydrogels. To test the comparability of refractive index change achievable in cat and human tissues, we used blue-IRIS to write identical phase gratings in ex vivo feline and human corneas. Femtosecond pulses (400 nm) were focused ? 300 ?? ? m below the epithelial surface of excised cat and human corneas and scanned to write phase gratings with lines ? 1 ?? ? m wide, spaced 5 ?? ? m apart, using a scan speed of 5 ?? mm / s . Additional cat corneas were used to test writing at 3 and 7 ?? mm / s in order to document speed dependence of the refractive index change magnitude. The first-order diffraction efficiency was immediately measured and used to calculate the refractive index change attained. Our data show that blue-IRIS induces comparable refractive index changes in feline and human corneas, an essential requirement for further developing its use as a clinical vision correction technique.

  19. Comparable change in stromal refractive index of cat and human corneas following blue-IRIS

    NASA Astrophysics Data System (ADS)

    Wozniak, Kaitlin T.; Gearhart, Sara M.; Savage, Daniel E.; Ellis, Jonathan D.; Knox, Wayne H.; Huxlin, Krystel R.

    2017-05-01

    Blue intratissue refractive index shaping (blue-IRIS) is a method with potential to correct ocular refraction noninvasively in humans. To date, blue-IRIS has only ever been applied to cat corneas and hydrogels. To test the comparability of refractive index change achievable in cat and human tissues, we used blue-IRIS to write identical phase gratings in ex vivo feline and human corneas. Femtosecond pulses (400 nm) were focused ˜300 μm below the epithelial surface of excised cat and human corneas and scanned to write phase gratings with lines ˜1 μm wide, spaced 5 μm apart, using a scan speed of 5 mm/s. Additional cat corneas were used to test writing at 3 and 7 mm/s in order to document speed dependence of the refractive index change magnitude. The first-order diffraction efficiency was immediately measured and used to calculate the refractive index change attained. Our data show that blue-IRIS induces comparable refractive index changes in feline and human corneas, an essential requirement for further developing its use as a clinical vision correction technique.

  20. Segment phasing experiments on the High Order Test bench

    NASA Astrophysics Data System (ADS)

    Aller-Carpentier, E.; Kasper, M.; Martinez, P.

    The segmented primary mirror of the E-ELT imposes particular requirements on an Extreme Adaptive Optics (XAO) system. At present, there are already several AO systems working on segmented telescopes but the achieved performances are too low to draw conclusions for XAO systems aiming at some 90% Strehl ratio in the NIR. On other hand, several analytical studies and simulations were done, but laboratory studies are required to confirm the corrections expected. The goal of the present study is to determina the capability of XAO systems to deal with segmentation piston errors. In particular, the effects on the AO performance and the ability of the AO system to correct the segmentation piston errors were studied. The experiments were carried out on the High Order Test Bench at ESO (Munich) using a Shack-Hartmann wave front sensor and under most realistic conditions with phase screens simulating atmospheric turbulence and segmentation piston errors. Segment geometry was chosen such that about 6 actuators of the XAO DM cover one segment representing the design of EPICS at the EELT.

  1. Numerical correction of the phase error due to electromagnetic coupling effects in 1D EIT borehole measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zimmermann, E.; Huisman, J. A.; Treichel, A.; Wolters, B.; van Waasen, S.; Kemna, A.

    2012-12-01

    Spectral Electrical Impedance Tomography (EIT) allows obtaining images of the complex electrical conductivity for a broad frequency range (mHz to kHz). It has recently received increased interest in the field of near-surface geophysics and hydrogeophysics because of the relationships between complex electrical properties and hydrogeological and biogeochemical properties and processes observed in the laboratory with Spectral Induced Polarization (SIP). However, these laboratory results have also indicated that a high phase accuracy is required for surface and borehole EIT measurements because many soils and sediments are only weakly polarizable and show phase angles between 1 and 20 mrad. In the case of borehole EIT measurements, long cables and electrode chains (>10 meters) are typically used, which leads to undesired inductive coupling between the electric loops for current injection and potential measurement and capacitive coupling between the electrically conductive cable shielding and the soil. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurement to the mHz to Hz range. The aim of this study is i) to develop correction procedures for these coupling effects to extend the applicability of EIT to the kHz range and ii) to validate these corrections using controlled laboratory measurements and field measurements. In order to do so, the inductive coupling effect was modeled using electronic circuit models and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 2 mrad in the frequency range up to 10 kHz was achieved. In a field demonstration using a 25 m borehole chain with 8 electrodes with 1 m electrode separation, the corrections were also applied within a 1D inversion of the borehole EIT measurements. The results show that the correction methods increased the measurement accuracy considerably.

  2. Convergence behavior of the random phase approximation renormalized correlation energy

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn

    2017-05-01

    Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.

  3. Solvent effect on the intermolecular proton transfer of the Watson and Crick guanine-cytosine and adenine-thymine base pairs: a polarizable continuum model study.

    PubMed

    Romero, Eduardo E; Hernandez, Florencio E

    2018-01-03

    Herein we present our results on the study of the double proton transfer (DPT) mechanism in the adenine-thymine (AT) and guanine-cytosine (GC) base pairs, both in gas phase and in solution. The latter was modeled using the polarizable continuum method (PCM) in different solvents. According to our DFT calculations, the DPT may occur for both complexes in a stepwise mechanism in condensate phase. In gas phase only the GC base pair exhibits a concerted DPT mechanism. Using the Wigner's tunneling corrections to the transition state theory we demonstrate that such corrections are important for the prediction of the rate constants of both systems in gas and in condensate phase. We also show that (i) as the polarity of the medium decreases the equilibrium constant of the DPT reaction increases in both complexes, and (ii) that the equilibrium constant in the GC complex is four orders of magnitude larger than in AT. This observation suggests that the spontaneous mutations in DNA base pairs are more probable in GC than in AT.

  4. Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization.

    PubMed

    Repp, B H

    2001-06-01

    Recent studies of synchronized finger tapping have shown that perceptually subliminal phase shifts in an auditory sequence are rapidly compensated for in the motor activity (B. H. Repp, 2000a). Experiment 1 used a continuation-tapping task to confirm that this compensation is indeed a phase correction, not an adjustment of the central timekeeper period. Experiments 2-5 revealed that this phase correction occurs even when there is no ordinary sensorimotor asynchrony--when the finger taps are in antiphase or arbitrary phase relative to the auditory sequence (Experiments 2 and 3) or when the tap coinciding with the sequence phase shift is withheld (Experiments 4 and 5). The phase correction observed in the latter conditions was instantaneous, which suggests that phase resetting occurs when the motor activity is discontinuous. A prolonged phase shift suggestive of overcompensation was observed in some conditions, which poses a challenge to pure phase correction models.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bin; Wang, Xue -Peng; Shen, Zhen -Ju

    Ge-Sb-Te alloys have been widely used in optical/electrical memory storage. Because of the extremely fast crystalline-amorphous transition, they are also expected to play a vital role in next generation nonvolatile microelectronic memory devices. However, the distribution and structural properties of vacancies have been one of the key issues in determining the speed of melting (or amorphization), phase-stability, and heat-dissipation of rock-salt GeSbTe, which is crucial for its technological breakthrough in memory devices. Using spherical aberration-aberration corrected scanning transmission electron microscopy and atomic scale energy-dispersive X-ray mapping, we observe a new rock-salt structure with high-degree vacancy ordering (or layered-like ordering) atmore » an elevated temperature, which is a result of phase transition from the rock-salt phase with randomly distributed vacancies. First-principles calculations reveal that the phase transition is an energetically favored process. Furthermore, molecular dynamics studies suggest that the melting of the cubic rock-salt phases is initiated at the vacancies, which propagate to nearby regions. The observation of multi-rock-salt phases suggests another route for multi-level data storage using GeSbTe.« less

  6. The Gibbs free energy of nukundamite (Cu3.38Fe0.62S4): A correction and implications for phase equilibria

    USGS Publications Warehouse

    Seal, R.R.; Inan, E.E.; Hemingway, B.S.

    2001-01-01

    The Gibbs free energy of formation of nukundamite (Cu3.38Fe0.62S4) was calculated from published experimental studies of the reaction 3.25 Cu3.38Fe0.62S4 + S2 = 11 CuS + 2 FeS2 in order to correct an erroneous expression in the published record. The correct expression describing the Gibbs free energy of formation (kJ???mol-1) of nukundamite relative to the elements and ideal S2 gas is ??fG?? nukundamite T(K) = -549.75 + 0.23242 T + 3.1284 T0.5, with an uncertainty of 0.6%. An evaluation of the phase equilibria of nukundamite with associated phases in the system Cu-Fe-S as a function of temperature and sulfur fugacity indicates that nukundamite is stable from 224 to 501??C at high sulfidation states. At its greatest extent, at 434??C, the stability field of nukundamite is only 0.4 log f(S2) units wide, which explains its rarity. Equilibria between nukundamite and bornite, which limit the stability of both phases, involve bornite compositions that deviate significantly from stoichiometric Cu5FeS4. Under equilibrium conditions in the system Cu-Fe-S, nukundamite + chalcopyrite is not a stable assemblage at any temperature.

  7. Reliable two-dimensional phase unwrapping method using region growing and local linear estimation.

    PubMed

    Zhou, Kun; Zaitsev, Maxim; Bao, Shanglian

    2009-10-01

    In MRI, phase maps can provide useful information about parameters such as field inhomogeneity, velocity of blood flow, and the chemical shift between water and fat. As phase is defined in the (-pi,pi] range, however, phase wraps often occur, which complicates image analysis and interpretation. This work presents a two-dimensional phase unwrapping algorithm that uses quality-guided region growing and local linear estimation. The quality map employs the variance of the second-order partial derivatives of the phase as the quality criterion. Phase information from unwrapped neighboring pixels is used to predict the correct phase of the current pixel using a linear regression method. The algorithm was tested on both simulated and real data, and is shown to successfully unwrap phase images that are corrupted by noise and have rapidly changing phase. (c) 2009 Wiley-Liss, Inc.

  8. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices

    NASA Astrophysics Data System (ADS)

    Lee, Yoju; Verstraete, Frank; Gendiar, Andrej

    2016-08-01

    The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.

  9. Reliable Channel-Adapted Error Correction: Bacon-Shor Code Recovery from Amplitude Damping

    NASA Astrophysics Data System (ADS)

    Piedrafita, Álvaro; Renes, Joseph M.

    2017-12-01

    We construct two simple error correction schemes adapted to amplitude damping noise for Bacon-Shor codes and investigate their prospects for fault-tolerant implementation. Both consist solely of Clifford gates and require far fewer qubits, relative to the standard method, to achieve exact correction to a desired order in the damping rate. The first, employing one-bit teleportation and single-qubit measurements, needs only one-fourth as many physical qubits, while the second, using just stabilizer measurements and Pauli corrections, needs only half. The improvements stem from the fact that damping events need only be detected, not corrected, and that effective phase errors arising due to undamped qubits occur at a lower rate than damping errors. For error correction that is itself subject to damping noise, we show that existing fault-tolerance methods can be employed for the latter scheme, while the former can be made to avoid potential catastrophic errors and can easily cope with damping faults in ancilla qubits.

  10. Thermal properties of nuclear matter in a variational framework with relativistic corrections

    NASA Astrophysics Data System (ADS)

    Zaryouni, S.; Hassani, M.; Moshfegh, H. R.

    2014-01-01

    The properties of hot symmetric nuclear matter for a wide range of densities and temperatures are investigated by employing the AV14 potential within the lowest order constrained variational (LOCV) method with the inclusion of a phenomenological three-body force as well as relativistic corrections. The relativistic corrections of many-body kinetic energies as well as the boot interaction corrections are presented for a wide range of densities and temperatures. The free energy, pressure, incompressibility, and other thermodynamic quantities of symmetric nuclear matter are obtained and discussed. The critical temperature is found, and the liquid-gas phase transition is analyzed both with and without the inclusion of three-body forces and relativistic corrections in the LOCV approach. It is shown that the critical temperature is strongly affected by the three-body forces but does not depend on the relativistic corrections. Finally, the results obtained in the present study are compared with other many-body calculations and experimental predictions.

  11. Bending and breaking of stripes in a charge ordered manganite.

    PubMed

    Savitzky, Benjamin H; El Baggari, Ismail; Admasu, Alemayehu S; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F

    2017-12-01

    In charge-ordered phases, broken translational symmetry emerges from couplings between charge, spin, lattice, or orbital degrees of freedom, giving rise to remarkable phenomena such as colossal magnetoresistance and metal-insulator transitions. The role of the lattice in charge-ordered states remains particularly enigmatic, soliciting characterization of the microscopic lattice behavior. Here we directly map picometer scale periodic lattice displacements at individual atomic columns in the room temperature charge-ordered manganite Bi 0.35 Sr 0.18 Ca 0.47 MnO 3 using aberration-corrected scanning transmission electron microscopy. We measure transverse, displacive lattice modulations of the cations, distinct from existing manganite charge-order models. We reveal locally unidirectional striped domains as small as ~5 nm, despite apparent bidirectionality over larger length scales. Further, we observe a direct link between disorder in one lattice modulation, in the form of dislocations and shear deformations, and nascent order in the perpendicular modulation. By examining the defects and symmetries of periodic lattice displacements near the charge ordering phase transition, we directly visualize the local competition underpinning spatial heterogeneity in a complex oxide.

  12. Predictions of nucleation theory applied to Ehrenfest thermodynamic transitions

    NASA Technical Reports Server (NTRS)

    Barker, R. E., Jr.; Campbell, K. W.

    1984-01-01

    A modified nucleation theory is used to determine a critical nucleus size and a critical activation-energy barrier for second-order Ehrenfest thermodynamic transitions as functions of the degree of undercooling, the interfacial energy, the heat-capacity difference, the specific volume of the transformed phase, and the equilibrium transition temperature. The customary approximations of nucleation theory are avoided by expanding the Gibbs free energy in a Maclaurin series and applying analytical thermodynamic expressions to evaluate the expansion coefficients. Nonlinear correction terms for first-order-transition calculations are derived, and numerical results are presented graphically for water and polystyrene as examples of first-order and quasi-second-order transitions, respectively.

  13. Mermin-Wagner physics, (H ,T ) phase diagram, and candidate quantum spin-liquid phase in the spin-1/2 triangular-lattice antiferromagnet Ba8CoNb6O24

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Dai, J.; Zhou, P.; Wang, P. S.; Li, T. R.; Song, W. H.; Wang, J. C.; Ma, L.; Zhang, Z.; Li, S. Y.; Luke, G. M.; Normand, B.; Xiang, T.; Yu, W.

    2018-04-01

    Ba8CoNb6O24 presents a system whose Co2 + ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the S =1 /2 TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend toward zero-temperature order. Below 0.1 K, however, our low-field measurements show an unexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the (H ,T ) phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear "up-up-down" state. Ba8CoNb6O24 , therefore, offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the S =1 /2 Heisenberg TLAFM.

  14. Minimum Entropy Autofocus Correction of Residual Range Cell Migration

    DTIC Science & Technology

    2017-03-02

    reduced the residual to effectively a slowly varying bias on the order of a wavelength ( ∼ 3 cm ) which has negligible impact on the image focus. Fig...Fitzgerrell, and J. Beaver , “Two- dimensional phase gradient autofocus,” Proc. SPIE, vol. 4123, pp. 162– 173, 2000. [6] D. H. Brandwood, “A complex gradient

  15. Experimental verification of the minimum number of diffractive zones for effective chromatic correction in the LWIR

    NASA Astrophysics Data System (ADS)

    Ramsey, J. L.; Walsh, K. F.; Smith, M.; Deegan, J.

    2016-05-01

    With the move to smaller pixel sizes in the longwave IR region there has been a push for shorter focal length lenses that are smaller, cheaper and lighter and that resolve lower spatial frequencies. As a result lenses must have better correction for both chromatic and monochromatic aberrations. This leads to the increased use of aspheres and diffractive optical elements (kinoforms). With recent developments in the molding of chalcogenide materials these aspheres and kinoforms are more cost effective to manufacture. Without kinoforms the axial color can be on the order of 15 μm which degrades the performance of the lens at the Nyquist frequency. The kinoforms are now on smaller elements and are correcting chromatic aberration which is on the order of the design wavelength. This leads to kinoform structures that do not require large phase changes and therefore have 1.5 to just over 2 zones. The question becomes how many zones are required to correct small amounts of chromatic aberration in the system and are they functioning as predicted by the lens design software? We investigate both the design performance and the as-built performance of two designs that incorporate kinoforms for the correction of axial chromatic aberration.

  16. GPS/INS Sensor Fusion Using GPS Wind up Model

    NASA Technical Reports Server (NTRS)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  17. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide.

    PubMed

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J; Schlom, Darrell G; Alem, Nasim; Gopalan, Venkatraman

    2016-08-31

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.

  18. Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide

    PubMed Central

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman

    2016-01-01

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden–Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure. PMID:27578622

  19. Complex Langevin simulation of a random matrix model at nonzero chemical potential

    DOE PAGES

    Bloch, Jacques; Glesaaen, Jonas; Verbaarschot, Jacobus J. M.; ...

    2018-03-06

    In this study we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass ismore » inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling solves the convergence problems as was shown before in the literature.« less

  20. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide

    NASA Astrophysics Data System (ADS)

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman

    2016-08-01

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.

  1. Floating phase in the one-dimensional transverse axial next-nearest-neighbor Ising model.

    PubMed

    Chandra, Anjan Kumar; Dasgupta, Subinay

    2007-02-01

    To study the ground state of an axial next-nearest-neighbor Ising chain under transverse field as a function of frustration parameter kappa and field strength Gamma, we present here two different perturbative analyses. In one, we consider the (known) ground state at kappa=0.5 and Gamma=0 as the unperturbed state and treat an increase of the field from 0 to Gamma coupled with an increase of kappa from 0.5 to 0.5+rGamma/J as perturbation. The first-order perturbation correction to eigenvalue can be calculated exactly and we could conclude that there are only two phase-transition lines emanating from the point kappa=0.5, Gamma=0. In the second perturbation scheme, we consider the number of domains of length 1 as the perturbation and obtain the zeroth-order eigenfunction for the perturbed ground state. From the longitudinal spin-spin correlation, we conclude that floating phase exists for small values of transverse field over the entire region intermediate between the ferromagnetic phase and antiphase.

  2. Complex Langevin simulation of a random matrix model at nonzero chemical potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloch, Jacques; Glesaaen, Jonas; Verbaarschot, Jacobus J. M.

    In this study we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass ismore » inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling solves the convergence problems as was shown before in the literature.« less

  3. Predicting synchrony in heterogeneous pulse coupled oscillators

    NASA Astrophysics Data System (ADS)

    Talathi, Sachin S.; Hwang, Dong-Uk; Miliotis, Abraham; Carney, Paul R.; Ditto, William L.

    2009-08-01

    Pulse coupled oscillators (PCOs) represent an ubiquitous model for a number of physical and biological systems. Phase response curves (PRCs) provide a general mathematical framework to analyze patterns of synchrony generated within these models. A general theoretical approach to account for the nonlinear contributions from higher-order PRCs in the generation of synchronous patterns by the PCOs is still lacking. Here, by considering a prototypical example of a PCO network, i.e., two synaptically coupled neurons, we present a general theory that extends beyond the weak-coupling approximation, to account for higher-order PRC corrections in the derivation of an approximate discrete map, the stable fixed point of which can predict the domain of 1:1 phase locked synchronous states generated by the PCO network.

  4. Adaptive Optics Analysis of Visual Benefit with Higher-order Aberrations Correction of Human Eye - Poster Paper

    NASA Astrophysics Data System (ADS)

    Xue, Lixia; Dai, Yun; Rao, Xuejun; Wang, Cheng; Hu, Yiyun; Liu, Qian; Jiang, Wenhan

    2008-01-01

    Higher-order aberrations correction can improve visual performance of human eye to some extent. To evaluate how much visual benefit can be obtained with higher-order aberrations correction we developed an adaptive optics vision simulator (AOVS). Dynamic real time optimized modal compensation was used to implement various customized higher-order ocular aberrations correction strategies. The experimental results indicate that higher-order aberrations correction can improve visual performance of human eye comparing with only lower-order aberration correction but the improvement degree and higher-order aberration correction strategy are different from each individual. Some subjects can acquire great visual benefit when higher-order aberrations were corrected but some subjects acquire little visual benefit even though all higher-order aberrations were corrected. Therefore, relative to general lower-order aberrations correction strategy, customized higher-order aberrations correction strategy is needed to obtain optimal visual improvement for each individual. AOVS provides an effective tool for higher-order ocular aberrations optometry for customized ocular aberrations correction.

  5. Quantification by aberration corrected (S)TEM of boundaries formed by symmetry breaking phase transformations.

    PubMed

    Schryvers, D; Salje, E K H; Nishida, M; De Backer, A; Idrissi, H; Van Aert, S

    2017-05-01

    The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Forest Resource Information System. Phase 3: System transfer report

    NASA Technical Reports Server (NTRS)

    Mroczynski, R. P. (Principal Investigator)

    1981-01-01

    Transfer of the forest reserve information system (FRIS) from the Laboratory for Applications of Remote Sensing to St. Regis Paper Company is described. Modifications required for the transfer of the LARYS image processing software are discussed. The reformatting, geometric correction, image registration, and documentation performed for preprocessing transfer are described. Data turnaround was improved and geometrically corrected and ground-registered CCT LANDSAT 3 data provided to the user. The technology transfer activities are summarized. An application test performed in order to assess a Florida land acquisition is described. A benefit/cost analysis of FRIS is presented.

  7. A study of fault prediction and reliability assessment in the SEL environment

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Patnaik, Debabrata

    1986-01-01

    An empirical study on estimation and prediction of faults, prediction of fault detection and correction effort, and reliability assessment in the Software Engineering Laboratory environment (SEL) is presented. Fault estimation using empirical relationships and fault prediction using curve fitting method are investigated. Relationships between debugging efforts (fault detection and correction effort) in different test phases are provided, in order to make an early estimate of future debugging effort. This study concludes with the fault analysis, application of a reliability model, and analysis of a normalized metric for reliability assessment and reliability monitoring during development of software.

  8. X-ray fluorescence holography studies for a Cu3Au crystal

    NASA Astrophysics Data System (ADS)

    Dąbrowski, K. M.; Dul, D. T.; Jaworska-Gołąb, T.; Rysz, J.; Korecki, P.

    2015-12-01

    In this work we show that performing a numerical correction for beam attenuation and indirect excitation allows one to fully restore element sensitivity in the three-dimensional reconstruction of the atomic structure. This is exemplified by a comparison of atomic images reconstructed from holograms measured for ordered and disordered phases of a Cu3Au crystal that clearly show sensitivity to changes in occupancy of the atomic sites. Moreover, the numerical correction, which is based on quantitative methods of X-ray fluorescence spectroscopy, was extended to take into account the influence of a disturbed overlayer in the sample.

  9. Extended FDD-WT method based on correcting the errors due to non-synchronous sensing of sensors

    NASA Astrophysics Data System (ADS)

    Tarinejad, Reza; Damadipour, Majid

    2016-05-01

    In this research, a combinational non-parametric method called frequency domain decomposition-wavelet transform (FDD-WT) that was recently presented by the authors, is extended for correction of the errors resulting from asynchronous sensing of sensors, in order to extend the application of the algorithm for different kinds of structures, especially for huge structures. Therefore, the analysis process is based on time-frequency domain decomposition and is performed with emphasis on correcting time delays between sensors. Time delay estimation (TDE) methods are investigated for their efficiency and accuracy for noisy environmental records and the Phase Transform - β (PHAT-β) technique was selected as an appropriate method to modify the operation of traditional FDD-WT in order to achieve the exact results. In this paper, a theoretical example (3DOF system) has been provided in order to indicate the non-synchronous sensing effects of the sensors on the modal parameters; moreover, the Pacoima dam subjected to 13 Jan 2001 earthquake excitation was selected as a case study. The modal parameters of the dam obtained from the extended FDD-WT method were compared with the output of the classical signal processing method, which is referred to as 4-Spectral method, as well as other literatures relating to the dynamic characteristics of Pacoima dam. The results comparison indicates that values are correct and reliable.

  10. An accurate cost effective DFT approach to study the sensing behaviour of polypyrrole towards nitrate ions in gas and aqueous phases.

    PubMed

    Wasim, Fatima; Mahmood, Tariq; Ayub, Khurshid

    2016-07-28

    Density functional theory (DFT) calculations have been performed to study the response of polypyrrole towards nitrate ions in gas and aqueous phases. First, an accurate estimate of interaction energies is obtained by methods calibrated against the gold standard CCSD(T) method. Then, a number of low cost DFT methods are also evaluated for their ability to accurately estimate the binding energies of polymer-nitrate complexes. The low cost methods evaluated here include dispersion corrected potential (DCP), Grimme's D3 correction, counterpoise correction of the B3LYP method, and Minnesota functionals (M05-2X). The interaction energies calculated using the counterpoise (CP) correction and DCP methods at the B3LYP level are in better agreement with the interaction energies calculated using the calibrated methods. The interaction energies of an infinite polymer (polypyrrole) with nitrate ions are calculated by a variety of low cost methods in order to find the associated errors. The electronic and spectroscopic properties of polypyrrole oligomers nPy (where n = 1-9) and nPy-NO3(-) complexes are calculated, and then extrapolated for an infinite polymer through a second degree polynomial fit. Charge analysis, frontier molecular orbital (FMO) analysis and density of state studies also reveal the sensing ability of polypyrrole towards nitrate ions. Interaction energies, charge analysis and density of states analyses illustrate that the response of polypyrrole towards nitrate ions is considerably reduced in the aqueous medium (compared to the gas phase).

  11. Harmonic Chain with Velocity Flips: Thermalization and Kinetic Theory

    NASA Astrophysics Data System (ADS)

    Lukkarinen, Jani; Marcozzi, Matteo; Nota, Alessia

    2016-12-01

    We consider the detailed structure of correlations in harmonic chains with pinning and a bulk velocity flip noise during the heat relaxation phase which occurs on diffusive time scales, for t=O(L^2) where L is the chain length. It has been shown earlier that for non-degenerate harmonic interactions these systems thermalize, and the dominant part of the correlations is given by local thermal equilibrium determined by a temperature profile which satisfies a linear heat equation. Here we are concerned with two new aspects about the thermalization process: the first order corrections in 1 / L to the local equilibrium correlations and the applicability of kinetic theory to study the relaxation process. Employing previously derived explicit uniform estimates for the temperature profile, we first derive an explicit form for the first order corrections to the particle position-momentum correlations. By suitably revising the definition of the Wigner transform and the kinetic scaling limit we derive a phonon Boltzmann equation whose predictions agree with the explicit computation. Comparing the two results, the corrections can be understood as arising from two different sources: a current-related term and a correction to the position-position correlations related to spatial changes in the phonon eigenbasis.

  12. Improved Use of Satellite Imagery to Forecast Hurricanes

    NASA Technical Reports Server (NTRS)

    Louis, Jean-Francois

    2001-01-01

    This project tested a novel method that uses satellite imagery to correct phase errors in the initial state for numerical weather prediction, applied to hurricane forecasts. The system was tested on hurricanes Guillermo (1997), Felicia (1997) and Iniki (1992). We compared the performance of the system with and without phase correction to a procedure that uses bogus data in the initial state, similar to current operational procedures. The phase correction keeps the hurricane on track in the analysis and is far superior to a system without phase correction. Compared to operational procedure, phase correction generates somewhat worse 3-day forecast of the hurricane track, but better forecast of intensity. It is believed that the phase correction module would work best in the context of 4-dimensional variational data assimilation. Very little modification to 4DVar would be required.

  13. Motor cortical encoding of serial order in a context-recall task.

    PubMed

    Carpenter, A F; Georgopoulos, A P; Pellizzer, G

    1999-03-12

    The neural encoding of serial order was studied in the motor cortex of monkeys performing a context-recall memory scanning task. Up to five visual stimuli were presented successively on a circle (list presentation phase), and then one of them (test stimulus) changed color; the monkeys had to make a single motor response toward the stimulus that immediately followed the test stimulus in the list. Correct performance in this task depends on memorization of the serial order of the stimuli during their presentation. It was found that changes in neural activity during the list presentation phase reflected the serial order of the stimuli; the effect on cell activity of the serial order of stimuli during their presentation was at least as strong as the effect of motor direction on cell activity during the execution of the motor response. This establishes the serial order of stimuli in a motor task as an important determinant of motor cortical activity during stimulus presentation and in the absence of changes in peripheral motor events, in contrast to the commonly held view of the motor cortex as just an "upper motor neuron."

  14. Rejuvenation of a ten-year old AO curvature sensor: combining obsolescence correction and performance upgrade of MACAO

    NASA Astrophysics Data System (ADS)

    Haguenauer, P.; Fedrigo, E.; Pettazzi, L.; Reinero, C.; Gonte, F.; Pallanca, L.; Frahm, R.; Woillez, J.; Lilley, P.

    2016-07-01

    The MACAO curvature wavefront sensors have been designed as a generic adaptive optics sensor for the Very Large Telescope. Six systems have been manufactured and implemented on sky: four installed in the UTs Coudé train as an AO facility for the VLTI, and two in UT's instruments, SINFONI and CRIRES. The MACAO-VLTI have now been in use for scientific operation for more than a decade and are planned to be operated for at least ten more years. As second generation instruments for the VLTI were planned to start implementation in end of 2015, accompanied with a major upgrade of the VLTI infrastructure, we saw it as a good time for a rejuvenation project of these systems, correcting the obsolete components. This obsolescence correction also gave us the opportunity to implement improved capabilities: the correction frequency was pushed from 420 Hz to 1050 Hz, and an automatic vibrations compensation algorithm was added. The implementation on the first MACAO was done in October 2014 and the first phase of obsolescence correction was completed in all four MACAO-VLTI systems in October 2015 with the systems delivered back to operation. The resuming of the scientific operation of the VLTI on the UTs in November 2015 allowed to gather statistics in order to evaluate the improvement of the performances through this upgrade. A second phase of obsolescence correction has now been started, together with a global reflection on possible further improvements to secure observations with the VLTI.

  15. Structures, phase transitions and microwave dielectric properties of the 6H perovskites Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba

    NASA Astrophysics Data System (ADS)

    Ling, Chris D.; Rowda, Budwy; Avdeev, Maxim; Pullar, Robert

    2009-03-01

    We present a complete temperature-composition phase diagram for Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba, along with their electrical behavior as a function of B. These compounds have long been recognized as 6H-type perovskites, but (with the exception of B=Mg) their exact structures and properties were unknown due to their low symmetries, temperature-dependent phase transitions, and difficulties in synthesizing pure samples. The full range of possible space group symmetries is observed, from ideal hexagonal P6 3/ mmc to monoclinic C2/ c to triclinic P1¯. Direct second-order transitions between these phases are plausible according to group theory, and no evidence was seen for any further intermediate phases. The phase diagram with respect to temperature and the effective ionic radius of B is remarkably symmetrical for B=Mg, Ca, and Sr. For B=Ba, a first-order phase transition to a locally distorted phase allows a metastable hexagonal phase to persist to lower temperatures than expected before decomposing around 600 K. Electrical measurements revealed that dielectric permittivity corrected for porosity does not change significantly as a function of B and is in a good agreement with the values predicted by the Clausius-Mossotti equation.

  16. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.

    PubMed

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-12

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  17. RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naoz, Smadar; Kocsis, Bence; Loeb, Abraham

    2013-08-20

    We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effectsmore » suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.« less

  18. Conditions and Linear Stability Analysis at the Transition to Synchronization of Three Coupled Phase Oscillators in a Ring

    NASA Astrophysics Data System (ADS)

    El-Nashar, Hassan F.

    2017-06-01

    We consider a system of three nonidentical coupled phase oscillators in a ring topology. We explore the conditions that must be satisfied in order to obtain the phases at the transition to a synchrony state. These conditions lead to the correct mathematical expressions of phases that aid to find a simple analytic formula for critical coupling when the oscillators transit to a synchronization state having a common frequency value. The finding of a simple expression for the critical coupling allows us to perform a linear stability analysis at the transition to the synchronization stage. The obtained analytic forms of the eigenvalues show that the three coupled phase oscillators with periodic boundary conditions transit to a synchrony state when a saddle-node bifurcation occurs.

  19. High speed phase retrieval of in-line holograms by the assistance of corresponding off-axis holograms.

    PubMed

    Orzó, László

    2015-06-29

    Retrieving correct phase information from an in-line hologram is difficult as the object wave field and the diffractions of the zero order and the conjugate object term overlap. The existing iterative numerical phase retrieval methods are slow, especially in the case of high Fresnel number systems. Conversely, the reconstruction of the object wave field from an off-axis hologram is simple, but due to the applied spatial frequency filtering the achievable resolution is confined. Here, a new, high-speed algorithm is introduced that efficiently incorporates the data of an auxiliary off-axis hologram in the phase retrieval of the corresponding in-line hologram. The efficiency of the introduced combined phase retrieval method is demonstrated by simulated and measured holograms.

  20. Quantitative, Comparable Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy: Correcting Errors in Phase Retrieval

    PubMed Central

    Camp, Charles H.; Lee, Young Jong; Cicerone, Marcus T.

    2017-01-01

    Coherent anti-Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample-to-sample comparability. The primary limitation stems from the need to accurately measure the so-called nonresonant background (NRB) that is used to extract the chemically-sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel-by-pixel basis is a nontrivial task; thus, reference NRB from glass or water are typically utilized, resulting in error between the actual and estimated amplitude and phase. In this manuscript, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending and scaling. Classic methods of error-correction, such as baseline detrending, are demonstrated to be inaccurate and to simply mask the underlying errors. The theoretical justification is presented by re-developing the theory of phase retrieval via the Kramers-Kronig relation, and we demonstrate that these results are also applicable to maximum entropy method-based phase retrieval. This new error-correction approach is experimentally applied to glycerol spectra and tissue images, demonstrating marked consistency between spectra obtained using different NRB estimates, and between spectra obtained on different instruments. Additionally, in order to facilitate implementation of these approaches, we have made many of the tools described herein available free for download. PMID:28819335

  1. Modelling Metamorphism by Abstract Interpretation

    NASA Astrophysics Data System (ADS)

    Dalla Preda, Mila; Giacobazzi, Roberto; Debray, Saumya; Coogan, Kevin; Townsend, Gregg M.

    Metamorphic malware apply semantics-preserving transformations to their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extract metamorphic signatures from these malware. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics, and that regular metamorphism can be modelled as finite state automata abstraction of the phase semantics.

  2. Electronic origins of the magnetic phase transitions in zinc-blende Mn chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, S.; Zunger, A.

    1993-09-01

    Precise first-principles spin-polarized total-energy and band-structure calculations have been performed for the zinc-blende Mn chalcogenides with the use of the local-spin-density (LSD) approach. We find that the LSD is capable of identifying the correct magnetic-ground-state structure, but it overestimates the ordering temperature [ital T][sub [ital N

  3. Ab initio study for the IR spectroscopy of PbTiO3 and PbZrO3, primary blocks of PbZr1‑x Ti x O3

    NASA Astrophysics Data System (ADS)

    Peperstraete, Yoann; Amzallag, Emilie; Tétot, Robert; Roy, Pascale

    2018-05-01

    PbTiO3 (PT) and PbZrO3 (PZ) are the two primary blocks of the solid solution PbZr1‑x Ti x O3 (PZT). They can be modelled in different ways; but, in order to do comparable DFT calculations on PZT, with different values of x, one must find a unique method that can be used for both PT and PZ. In particular, we want to evaluate their vibrational properties to compare them with experimental data. Density functional theory (DFT) is used to perform structure geometry optimizations and electronic structure calculations, both on low- and high-temperature phase. Then, harmonic vibrational frequencies of their low-temperature phase are determined for transverse and longitudinal optical (TO & LO) phonons. Moreover, a detailed study of the eigenvectors shows that accurate calculations are necessary to correctly interpret and understand the IR spectra. In the end, the comparison of our theoretical results with previous experimental and theoretical data confirm the strong potential of the SOGGA (second-order generalized gradient approximation) functional to correctly describe PT, PZ and, hopefully, PZT; especially their structural and vibrational properties.

  4. Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuanhang; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu

    2015-07-28

    Three-body and higher intermolecular interactions can play an important role in molecular condensed phases. Recent benchmark calculations found problematic behavior for many widely used density functional approximations in treating 3-body intermolecular interactions. Here, we demonstrate that the combination of second-order Møller-Plesset (MP2) perturbation theory plus short-range damped Axilrod-Teller-Muto (ATM) dispersion accurately describes 3-body interactions with reasonable computational cost. The empirical damping function used in the ATM dispersion term compensates both for the absence of higher-order dispersion contributions beyond the triple-dipole ATM term and non-additive short-range exchange terms which arise in third-order perturbation theory and beyond. Empirical damping enables this simplemore » model to out-perform a non-expanded coupled Kohn-Sham dispersion correction for 3-body intermolecular dispersion. The MP2 plus ATM dispersion model approaches the accuracy of O(N{sup 6}) methods like MP2.5 or even spin-component-scaled coupled cluster models for 3-body intermolecular interactions with only O(N{sup 5}) computational cost.« less

  5. Viability of the matter bounce scenario in F(T) gravity and Loop Quantum Cosmology for general potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume; Amorós, Jaume, E-mail: jaime.haro@upc.edu, E-mail: jaume.amoros@upc.edu

    2014-12-01

    We consider the matter bounce scenario in F(T) gravity and Loop Quantum Cosmology (LQC) for phenomenological potentials that at early times provide a nearly matter dominated Universe in the contracting phase, having a reheating mechanism in the expanding or contracting phase, i.e., being able to release the energy of the scalar field creating particles that thermalize in order to match with the hot Friedmann Universe, and finally at late times leading to the current cosmic acceleration. For these potentials, numerically solving the dynamical perturbation equations we have seen that, for the particular F(T) model that we will name teleparallel versionmore » of LQC, and whose modified Friedmann equation coincides with the corresponding one in holonomy corrected LQC when one deals with the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, the corresponding equations obtained from the well-know perturbed equations in F(T) gravity lead to theoretical results that fit well with current observational data. More precisely, in this teleparallel version of LQC there is a set of solutions which leads to theoretical results that match correctly with last BICEP2 data, and there is another set whose theoretical results fit well with Planck's experimental data. On the other hand, in the standard holonomy corrected LQC, using the perturbed equations obtained replacing the Ashtekar connection by a suitable sinus function and inserting some counter-terms in order to preserve the algebra of constrains, the theoretical value of the tensor/scalar ratio is smaller than in the teleparallel version, which means that there is always a set of solutions that matches with Planck's data, but for some potentials BICEP2 experimental results disfavours holonomy corrected LQC.« less

  6. Conditions where random phase approximation becomes exact in the high-density limit

    NASA Astrophysics Data System (ADS)

    Morawetz, Klaus; Ashokan, Vinod; Bala, Renu; Pathak, Kare Narain

    2018-04-01

    It is shown that, in d -dimensional systems, the vertex corrections beyond the random phase approximation (RPA) or G W approximation scales with the power d -β -α of the Fermi momentum if the relation between Fermi energy and Fermi momentum is ɛf˜pfβ and the interacting potential possesses a momentum power law of ˜p-α . The condition d -β -α <0 specifies systems where RPA is exact in the high-density limit. The one-dimensional structure factor is found to be the interaction-free one in the high-density limit for contact interaction. A cancellation of RPA and vertex corrections render this result valid up to second order in contact interaction. For finite-range potentials of cylindrical wires a large-scale cancellation appears and is found to be independent of the width parameter of the wire. The proposed high-density expansion agrees with the quantum Monte Carlo simulations.

  7. Vacancy structures and melting behavior in rock-salt GeSbTe

    DOE PAGES

    Zhang, Bin; Wang, Xue -Peng; Shen, Zhen -Ju; ...

    2016-05-03

    Ge-Sb-Te alloys have been widely used in optical/electrical memory storage. Because of the extremely fast crystalline-amorphous transition, they are also expected to play a vital role in next generation nonvolatile microelectronic memory devices. However, the distribution and structural properties of vacancies have been one of the key issues in determining the speed of melting (or amorphization), phase-stability, and heat-dissipation of rock-salt GeSbTe, which is crucial for its technological breakthrough in memory devices. Using spherical aberration-aberration corrected scanning transmission electron microscopy and atomic scale energy-dispersive X-ray mapping, we observe a new rock-salt structure with high-degree vacancy ordering (or layered-like ordering) atmore » an elevated temperature, which is a result of phase transition from the rock-salt phase with randomly distributed vacancies. First-principles calculations reveal that the phase transition is an energetically favored process. Furthermore, molecular dynamics studies suggest that the melting of the cubic rock-salt phases is initiated at the vacancies, which propagate to nearby regions. The observation of multi-rock-salt phases suggests another route for multi-level data storage using GeSbTe.« less

  8. Vacancy Structures and Melting Behavior in Rock-Salt GeSbTe

    PubMed Central

    Zhang, Bin; Wang, Xue-Peng; Shen, Zhen-Ju; Li, Xian-Bin; Wang, Chuan-Shou; Chen, Yong-Jin; Li, Ji-Xue; Zhang, Jin-Xing; Zhang, Ze; Zhang, Sheng-Bai; Han, Xiao-Dong

    2016-01-01

    Ge-Sb-Te alloys have been widely used in optical/electrical memory storage. Because of the extremely fast crystalline-amorphous transition, they are also expected to play a vital role in next generation nonvolatile microelectronic memory devices. However, the distribution and structural properties of vacancies have been one of the key issues in determining the speed of melting (or amorphization), phase-stability, and heat-dissipation of rock-salt GeSbTe, which is crucial for its technological breakthrough in memory devices. Using spherical aberration-aberration corrected scanning transmission electron microscopy and atomic scale energy-dispersive X-ray mapping, we observe a new rock-salt structure with high-degree vacancy ordering (or layered-like ordering) at an elevated temperature, which is a result of phase transition from the rock-salt phase with randomly distributed vacancies. First-principles calculations reveal that the phase transition is an energetically favored process. Moreover, molecular dynamics studies suggest that the melting of the cubic rock-salt phases is initiated at the vacancies, which propagate to nearby regions. The observation of multi-rock-salt phases suggests another route for multi-level data storage using GeSbTe. PMID:27140674

  9. Two-peak structure in the K-edge RIXS spectra of a spatially frustrated Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Datta, Trinanjan; Luo, Cheng; Yao, Dao-Xin

    2014-03-01

    Quantum fluctuations due to spatial anisotropy and strong magnetic frustration lead to the formation of a two-peak structure in the K-edge bimagnon RIXS intensity spectra of a Jx-Jy-J2 Heisenberg model on a square lattice. We compute the RIXS intensity, including up to first order 1/S spin wave expansion correction, using the Bethe-Salpeter equation within the ladder approximation scheme. The two-peak feature occurs in both the antiferromagnetic phase and the collinear antiferromagnetic phase. A knowledge of the peak splitting energy from both magnetically ordered regime can provide experimentalists with an alternative means to measure and study the effects of local microscopic exchange constants. Cottrell Research Corporation, NSFC-11074310, NSFC-11275279, Specialized Research Fund for the Doctoral Program of Higher Education.

  10. Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature

    PubMed Central

    MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard

    2016-01-01

    Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600

  11. Top quark forward-backward asymmetry in e+ e- annihilation at next-to-next-to-leading order in QCD.

    PubMed

    Gao, Jun; Zhu, Hua Xing

    2014-12-31

    We report on a complete calculation of electroweak production of top-quark pairs in e+ e- annihilation at next-to-next-to-leading order in quantum chromodynamics. Our setup is fully differential in phase space and can be used to calculate any infrared-safe observable. Especially we calculated the next-to-next-to-leading-order corrections to the top-quark forward-backward asymmetry and found sizable effects. Our results show a large reduction of the theoretical uncertainties in predictions of the forward-backward asymmetry, and allow for a precision determination of the top-quark electroweak couplings at future e+ e- colliders.

  12. Effect of lensing non-Gaussianity on the CMB power spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Antony; Pratten, Geraint, E-mail: antony@cosmologist.info, E-mail: geraint.pratten@gmail.com

    2016-12-01

    Observed CMB anisotropies are lensed, and the lensed power spectra can be calculated accurately assuming the lensing deflections are Gaussian. However, the lensing deflections are actually slightly non-Gaussian due to both non-linear large-scale structure growth and post-Born corrections. We calculate the leading correction to the lensed CMB power spectra from the non-Gaussianity, which is determined by the lensing bispectrum. Assuming no primordial non-Gaussianity, the lowest-order result gives ∼ 0.3% corrections to the BB and EE polarization spectra on small-scales. However we show that the effect on EE is reduced by about a factor of two by higher-order Gaussian lensing smoothing,more » rendering the total effect safely negligible for the foreseeable future. We give a simple analytic model for the signal expected from skewness of the large-scale lensing field; the effect is similar to a net demagnification and hence a small change in acoustic scale (and therefore out of phase with the dominant lensing smoothing that predominantly affects the peaks and troughs of the power spectrum).« less

  13. Application of ALOS and Envisat Data in Improving Multi-Temporal InSAR Methods for Monitoring Damavand Volcano and Landslide Deformation in the Center of Alborz Mountains, North Iran

    NASA Astrophysics Data System (ADS)

    Vajedian, S.; Motagh, M.; Nilfouroushan, F.

    2013-09-01

    InSAR capacity to detect slow deformation over terrain areas is limited by temporal and geometric decorrelations. Multitemporal InSAR techniques involving Persistent Scatterer (Ps-InSAR) and Small Baseline (SBAS) are recently developed to compensate the decorrelation problems. Geometric decorrelation in mountainous areas especially for Envisat images makes phase unwrapping process difficult. To improve this unwrapping problem, we first modified phase filtering to make the wrapped phase image as smooth as possible. In addition, in order to improve unwrapping results, a modified unwrapping method has been developed. This method includes removing possible orbital and tropospheric effects. Topographic correction is done within three-dimensional unwrapping, Orbital and tropospheric corrections are done after unwrapping process. To evaluate the effectiveness of our improved method we tested the proposed algorithm by Envisat and ALOS dataset and compared our results with recently developed PS software (StaMAPS). In addition we used GPS observations for evaluating the modified method. The results indicate that our method improves the estimated deformation significantly.

  14. [Burn scars: rehabilitation and skin care].

    PubMed

    Rochet, Jean-Michel; Zaoui, Affif

    2002-12-15

    Burn rehabilitation main goal is to minimize the consequences of hypertrophic scars and concomitant contractures. The treatment principles rely on the association of joint posture, continuous pressure completed with range of motion to prevent joint fusion (which happens to adults but not to children). Throughout the different treatment phases and wound evolution, reassessment is necessary to review rehabilitation goals and activities. During the acute phase the alternance of positioning is prioritized in order to keep the affected extremities in antideformity position using splint or other devices. At the rehabilitation phase, treatment is focussed on active/passive range of motion (skin posture) strengthening exercises and use of dynamic splint is introduced to correct contractures. After their discharge home, patients benefit from outpatient rehab until scar maturation (approximately 18 months). The treatment consists mainly on active/passive range of motion, scar massage, strengthening exercise and endurance retraining. Also modalities (such as thermal bath and high pressure water spray) are used to address itching problems and for scar softening. Finally, reconstructive surgery can be performed to correct excessive scarring or joint contracture for better functional or cosmetic outcome.

  15. Time-dependent phase error correction using digital waveform synthesis

    DOEpatents

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  16. Phased array ghost elimination.

    PubMed

    Kellman, Peter; McVeigh, Elliot R

    2006-05-01

    Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme similar to the autocalibrating TSENSE method. This scheme is a generalization of the UNFOLD method used for removing aliasing in undersampled acquisitions. The more general scheme may be used to modulate each EPI ghost image to a separate temporal frequency as described in this paper. Copyright (c) 2006 John Wiley & Sons, Ltd.

  17. Phased array ghost elimination

    PubMed Central

    Kellman, Peter; McVeigh, Elliot R.

    2007-01-01

    Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme similar to the autocalibrating TSENSE method. This scheme is a generalization of the UNFOLD method used for removing aliasing in undersampled acquisitions. The more general scheme may be used to modulate each EPI ghost image to a separate temporal frequency as described in this paper. PMID:16705636

  18. Multipath noise reduction spread spectrum signals

    NASA Technical Reports Server (NTRS)

    Meehan, Thomas K. (Inventor)

    1994-01-01

    The concepts of early-prompt delay tracking, multipath correction of early-prompt delay tracking from correlation shape, and carrier phase multipath correction are addressed. In early-prompt delay tracking, since multipath is always delayed with respect to the direct signals, the system derives phase and pseudorange observables from earlier correlation lags. In multipath correction of early-prompt delay tracking from correlation shape, the system looks for relative variations of amplitude across the code correlation function that do not match the predicted multipath-free code cross-correlation shape. The system then uses deviations from the multipath-free shape to infer the magnitude of multipath, and to generate corrections pseudorange observables. In carrier phase multipath correction, the system looks for variations of phase among plural early and prompt lags. The system uses the measured phase variations, along with the general principle that the multipath errors are larger for later lags, to infer the presence of multipath, and to generate corrections for carrier-phase observables.

  19. Higher order Larmor radius corrections to guiding-centre equations and application to fast ion equilibrium distributions

    NASA Astrophysics Data System (ADS)

    Lanthaler, S.; Pfefferlé, D.; Graves, J. P.; Cooper, W. A.

    2017-04-01

    An improved set of guiding-centre equations, expanded to one order higher in Larmor radius than usually written for guiding-centre codes, are derived for curvilinear flux coordinates and implemented into the orbit following code VENUS-LEVIS. Aside from greatly improving the correspondence between guiding-centre and full particle trajectories, the most important effect of the additional Larmor radius corrections is to modify the definition of the guiding-centre’s parallel velocity via the so-called Baños drift. The correct treatment of the guiding-centre push-forward with the Baños term leads to an anisotropic shift in the phase-space distribution of guiding-centres, consistent with the well-known magnetization term. The consequence of these higher order terms are quantified in three cases where energetic ions are usually followed with standard guiding-centre equations: (1) neutral beam injection in a MAST-like low aspect-ratio spherical equilibrium where the fast ion driven current is significantly larger with respect to previous calculations, (2) fast ion losses due to resonant magnetic perturbations where a lower lost fraction and a better confinement is confirmed, (3) alpha particles in the ripple field of the European DEMO where the effect is found to be marginal.

  20. Adaptive Nulling for the Terrestrial Planet Finder Interferometer

    NASA Technical Reports Server (NTRS)

    Peters, Robert D.; Lay, Oliver P.; Jeganathan, Muthu; Hirai, Akiko

    2006-01-01

    A description of adaptive nulling for Terrestrial Planet Finder Interferometer (TPFI) is presented. The topics include: 1) Nulling in TPF-I; 2) Why Do Adaptive Nulling; 3) Parallel High-Order Compensator Design; 4) Phase and Amplitude Control; 5) Development Activates; 6) Requirements; 7) Simplified Experimental Setup; 8) Intensity Correction; and 9) Intensity Dispersion Stability. A short summary is also given on adaptive nulling for the TPFI.

  1. Spiral magnetic order, non-uniform states and electron correlations in the conducting transition metal systems

    NASA Astrophysics Data System (ADS)

    Igoshev, P. A.; Timirgazin, M. A.; Arzhnikov, A. K.; Antipin, T. V.; Irkhin, V. Yu.

    2017-10-01

    The ground-state magnetic phase diagram is calculated within the Hubbard and s-d exchange (Kondo) models for square and simple cubic lattices vs. band filling and interaction parameter. The difference of the results owing to the presence of localized moments in the latter model is discussed. We employ a generalized Hartree-Fock approximation (HFA) to treat commensurate ferromagnetic (FM), antiferromagnetic (AFM), and incommensurate (spiral) magnetic phases. The electron correlations are taken into account within the Hubbard model by using the Kotliar-Ruckenstein slave boson approximation (SBA). The main advantage of this approach is a correct qualitative description of the paramagnetic phase: its energy becomes considerably lower as compared with HFA, and the gain in the energy of magnetic phases is substantially reduced.

  2. Determination of the Mg/Mn ratio in foraminiferal coatings: An approach to correct Mg/Ca temperatures for Mn-rich contaminant phases

    NASA Astrophysics Data System (ADS)

    Hasenfratz, Adam P.; Martínez-García, Alfredo; Jaccard, Samuel L.; Vance, Derek; Wälle, Markus; Greaves, Mervyn; Haug, Gerald H.

    2017-01-01

    The occurrence of manganese-rich coatings on foraminifera can have a significant effect on their bulk Mg/Ca ratios thereby biasing seawater temperature reconstructions. The removal of this Mn phase requires a reductive cleaning step, but this has been suggested to preferentially dissolve Mg-rich biogenic carbonate, potentially introducing an analytical bias in paleotemperature estimates. In this study, the geochemical composition of foraminifera tests from Mn-rich sediments from the Antarctic Southern Ocean (ODP Site 1094) was investigated using solution-based and laser ablation ICP-MS in order to determine the amount of Mg incorporated into the coatings. The analysis of planktonic and benthic foraminifera revealed a nearly constant Mg/Mn ratio in the Mn coating of ∼0.2 mol/mol. Consequently, the coating Mg/Mn ratio can be used to correct for the Mg incorporated into the Mn phase by using the down core Mn/Ca values of samples that have not been reductively cleaned. The consistency of the coating Mg/Mn ratio obtained in this study, as well as that found in samples from the Panama Basin, suggests that spatial variation of Mg/Mn in foraminiferal Mn overgrowths may be smaller than expected from Mn nodules and Mn-Ca carbonates. However, a site-specific assessment of the Mg/Mn ratio in foraminiferal coatings is recommended to improve the accuracy of the correction.

  3. Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide

    DOE PAGES

    Stone, Greg; Ophus, Colin; Birol, Turan; ...

    2016-08-31

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), A n+1 B n O 3n+1 , thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Sr n+1 Ti n O 3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases.more » We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.« less

  4. Atmospheric corrections in interferometric synthetic aperture radar surface deformation - a case study of the city of Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Balbarani, S.; Euillades, P. A.; Euillades, L. D.; Casu, F.; Riveros, N. C.

    2013-09-01

    Differential interferometry is a remote sensing technique that allows studying crustal deformation produced by several phenomena like earthquakes, landslides, land subsidence and volcanic eruptions. Advanced techniques, like small baseline subsets (SBAS), exploit series of images acquired by synthetic aperture radar (SAR) sensors during a given time span. Phase propagation delay in the atmosphere is the main systematic error of interferometric SAR measurements. It affects differently images acquired at different days or even at different hours of the same day. So, datasets acquired during the same time span from different sensors (or sensor configuration) often give diverging results. Here we processed two datasets acquired from June 2010 to December 2011 by COSMO-SkyMed satellites. One of them is HH-polarized, and the other one is VV-polarized and acquired on different days. As expected, time series computed from these datasets show differences. We attributed them to non-compensated atmospheric artifacts and tried to correct them by using ERA-Interim global atmospheric model (GAM) data. With this method, we were able to correct less than 50% of the scenes, considering an area where no phase unwrapping errors were detected. We conclude that GAM-based corrections are not enough for explaining differences in computed time series, at least in the processed area of interest. We remark that no direct meteorological data for the GAM-based corrections were employed. Further research is needed in order to understand under what conditions this kind of data can be used.

  5. 78 FR 8104 - First Phase of the Forest Planning Process for the Bio-Region; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... DEPARTMENT OF AGRICULTURE Forest Service First Phase of the Forest Planning Process for the Bio-Region; Correction AGENCY: USDA, Forest Service. ACTION: Notice; correction. SUMMARY: The Department of... rule entitled First Phase of the Forest Planning Process for the Bio-Region. The document contained...

  6. Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs.

    PubMed

    Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador

    2010-12-06

    We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation.

  7. Stepping to phase-perturbed metronome cues: multisensory advantage in movement synchrony but not correction

    PubMed Central

    Wright, Rachel L.; Spurgeon, Laura C.; Elliott, Mark T.

    2014-01-01

    Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task—correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself. PMID:25309397

  8. Stepping to phase-perturbed metronome cues: multisensory advantage in movement synchrony but not correction.

    PubMed

    Wright, Rachel L; Elliott, Mark T

    2014-01-01

    Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task-correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself.

  9. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    NASA Astrophysics Data System (ADS)

    Zhao, Hao-Xin; Xu, Bing; Xue, Li-Xia; Dai, Yun; Liu, Qian; Rao, Xue-Jun

    2008-04-01

    Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We calculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are difficult to accomplish in practice, and gives confidence to correct high-order aberrations out of the laboratory.

  10. Higher-Order Corrections to Timelike Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giele, W.T.; /Fermilab; Kosower, D.A.

    2011-02-01

    We present a simple formalism for the evolution of timelike jets in which tree-level matrix element corrections can be systematically incorporated, up to arbitrary parton multiplicities and over all of phase space, in a way that exponentiates the matching corrections. The scheme is cast as a shower Markov chain which generates one single unweighted event sample, that can be passed to standard hadronization models. Remaining perturbative uncertainties are estimated by providing several alternative weight sets for the same events, at a relatively modest additional overhead. As an explicit example, we consider Z {yields} q{bar q} evolution with unpolarized, massless quarksmore » and include several formally subleading improvements as well as matching to tree-level matrix elements through {alpha}{sub s}{sup 4}. The resulting algorithm is implemented in the publicly available VINCIA plugin to the PYTHIA8 event generator.« less

  11. Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media

    NASA Astrophysics Data System (ADS)

    Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong

    2017-10-01

    Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.

  12. Correction of phase errors in quantitative water-fat imaging using a monopolar time-interleaved multi-echo gradient echo sequence.

    PubMed

    Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Diefenbach, Maximilian N; Baum, Thomas; Haase, Axel; Rummeny, Ernst J; Hu, Houchun H; Karampinos, Dimitrios C

    2017-09-01

    To propose a phase error correction scheme for monopolar time-interleaved multi-echo gradient echo water-fat imaging that allows accurate and robust complex-based quantification of the proton density fat fraction (PDFF). A three-step phase correction scheme is proposed to address a) a phase term induced by echo misalignments that can be measured with a reference scan using reversed readout polarity, b) a phase term induced by the concomitant gradient field that can be predicted from the gradient waveforms, and c) a phase offset between time-interleaved echo trains. Simulations were carried out to characterize the concomitant gradient field-induced PDFF bias and the performance estimating the phase offset between time-interleaved echo trains. Phantom experiments and in vivo liver and thigh imaging were performed to study the relevance of each of the three phase correction steps on PDFF accuracy and robustness. The simulation, phantom, and in vivo results showed in agreement with the theory an echo time-dependent PDFF bias introduced by the three phase error sources. The proposed phase correction scheme was found to provide accurate PDFF estimation independent of the employed echo time combination. Complex-based time-interleaved water-fat imaging was found to give accurate and robust PDFF measurements after applying the proposed phase error correction scheme. Magn Reson Med 78:984-996, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Portable Ultrasound Imaging of the Brain for Use in Forward Battlefield Areas

    DTIC Science & Technology

    2011-03-01

    ultrasound measurement of skull thickness and sound speed, phase correction of beam distortion, the tomographic reconstruction algorithm, and the final...produce a coherent imaging source. We propose a corrective technique that will use ultrasound-based phased -array beam correction [3], optimized...not expected to be a significant factor in the ability to phase -correct the imaging beam . In addition to planning (2.2.1), the data is also be used

  14. Investigation of Fiber Optics Based Phased Locked Diode Lasers

    NASA Technical Reports Server (NTRS)

    Burke, Paul D.; Gregory, Don A.

    1997-01-01

    Optical power beaming requires a high intensity source and a system to address beam phase and location. A synthetic aperture array of phased locked sources can provide the necessary power levels as well as a means to correct for phase errors. A fiber optic phase modulator with a master oscillator and power amplifier (MOPA) using an injection-locking semiconductor optical amplifier has proven to be effective in correcting phase errors as large as 4pi in an interferometer system. Phase corrections with the piezoelectric fiber stretcher were made from 0 - 10 kHz, with most application oriented corrections requiring only 1 kHz. The amplifier did not lose locked power output while the phase was changed, however its performance was below expectation. Results of this investigation indicate fiber stretchers and amplifiers can be incorporated into a MOPA system to achieve successful earth based power beaming.

  15. A compensation method for the full phase retardance nonuniformity in phase-only liquid crystal on silicon spatial light modulators.

    PubMed

    Teng, Long; Pivnenko, Mike; Robertson, Brian; Zhang, Rong; Chu, Daping

    2014-10-20

    A simple and efficient compensation method for the full correction of both the anisotropic and isotropic nonuniformity of the light phase retardance in a liquid crystal (LC) layer is presented. This is achieved by accurate measurement of the spatial variation of the LC layer's thickness with the help of a calibrated liquid crystal wedge, rather than solely relying on the light intensity profile recorded using two crossed polarizers. Local phase retardance as a function of the applied voltage is calculated with its LC thickness and a set of reference data measured from the intensity of the reflected light using two crossed polarizers. Compensation of the corresponding phase nonuniformity is realized by applying adjusted local voltage signals for different grey levels. To demonstrate its effectiveness, the proposed method is applied to improve the performance of a phase-only liquid crystal on silicon (LCOS) spatial light modulator (SLM). The power of the first diffraction order measured with the binary phase gratings compensated by this method is compared with that compensated by the conventional crossed-polarizer method. The results show that the phase compensation method proposed here can increase the dynamic range of the first order diffraction power significantly from 15~21 dB to over 38 dB, while the crossed-polarizer method can only increase it to 23 dB.

  16. ALMA Long Baseline Campaigns: Phase Characteristics of Atmosphere at Long Baselines in the Millimeter and Submillimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Matsushita, Satoki; Asaki, Yoshiharu; Fomalont, Edward B.; Morita, Koh-Ichiro; Barkats, Denis; Hills, Richard E.; Kawabe, Ryohei; Maud, Luke T.; Nikolic, Bojan; Tilanus, Remo P. J.; Vlahakis, Catherine; Whyborn, Nicholas D.

    2017-03-01

    We present millimeter- and submillimeter-wave phase characteristics measured between 2012 and 2014 of Atacama Large Millimeter/submillimeter Array long baseline campaigns. This paper presents the first detailed investigation of the characteristics of phase fluctuation and phase correction methods obtained with baseline lengths up to ˜15 km. The basic phase fluctuation characteristics can be expressed with the spatial structure function (SSF). Most of the SSFs show that the phase fluctuation increases as a function of baseline length, with a power-law slope of ˜0.6. In many cases, we find that the slope becomes shallower (average of ˜0.2-0.3) at baseline lengths longer than ˜1 km, namely showing a turn-over in SSF. These power law slopes do not change with the amount of precipitable water vapor (PWV), but the fitted constants have a weak correlation with PWV, so that the phase fluctuation at a baseline length of 10 km also increases as a function of PWV. The phase correction method using water vapor radiometers (WVRs) works well, especially for the cases where PWV > 1 {mm}, which reduces the degree of phase fluctuations by a factor of two in many cases. However, phase fluctuations still remain after the WVR phase correction, suggesting the existence of other turbulent constituent that cause the phase fluctuation. This is supported by occasional SSFs that do not exhibit any turn-over; these are only seen when the PWV is low (i.e., when the WVR phase correction works less effectively) or after WVR phase correction. This means that the phase fluctuation caused by this turbulent constituent is inherently smaller than that caused by water vapor. Since in these rare cases there is no turn-over in the SSF up to the maximum baseline length of ˜15 km, this turbulent constituent must have scale height of 10 km or more, and thus cannot be water vapor, whose scale height is around 1 km. Based on the characteristics, this large scale height turbulent constituent is likely to be water ice or a dry component. Excess path length fluctuation after the WVR phase correction at a baseline length of 10 km is large (≳ 200 μ {{m}}), which is significant for high frequency (> 450 {GHz} or < 700 μ {{m}}) observations. These results suggest the need for an additional phase correction method to reduce the degree of phase fluctuation, such as fast switching, in addition to the WVR phase correction. We simulated the fast switching phase correction method using observations of single quasars, and the result suggests that it works well, with shorter cycle times linearly improving the coherence.

  17. An analytical SMASH procedure (ASP) for sensitivity-encoded MRI.

    PubMed

    Lee, R F; Westgate, C R; Weiss, R G; Bottomley, P A

    2000-05-01

    The simultaneous acquisition of spatial harmonics (SMASH) method of imaging with detector arrays can reduce the number of phase-encoding steps, and MRI scan time several-fold. The original approach utilized numerical gradient-descent fitting with the coil sensitivity profiles to create a set of composite spatial harmonics to replace the phase-encoding steps. Here, an analytical approach for generating the harmonics is presented. A transform is derived to project the harmonics onto a set of sensitivity profiles. A sequence of Fourier, Hilbert, and inverse Fourier transform is then applied to analytically eliminate spatially dependent phase errors from the different coils while fully preserving the spatial-encoding. By combining the transform and phase correction, the original numerical image reconstruction method can be replaced by an analytical SMASH procedure (ASP). The approach also allows simulation of SMASH imaging, revealing a criterion for the ratio of the detector sensitivity profile width to the detector spacing that produces optimal harmonic generation. When detector geometry is suboptimal, a group of quasi-harmonics arises, which can be corrected and restored to pure harmonics. The simulation also reveals high-order harmonic modulation effects, and a demodulation procedure is presented that enables application of ASP to a large numbers of detectors. The method is demonstrated on a phantom and humans using a standard 4-channel phased-array MRI system. Copyright 2000 Wiley-Liss, Inc.

  18. Phase structure of completely asymptotically free SU(Nc) models with quarks and scalar quarks

    NASA Astrophysics Data System (ADS)

    Hansen, F. F.; Janowski, T.; Langæble, K.; Mann, R. B.; Sannino, F.; Steele, T. G.; Wang, Z. W.

    2018-03-01

    We determine the phase diagram of completely asymptotically free SU (Nc) gauge theories featuring Ns complex scalars and Nf Dirac quarks transforming according to the fundamental representation of the gauge group. The analysis is performed at the maximum known order in perturbation theory. We unveil a very rich dynamics and associated phase structure. Intriguingly, we discover that the completely asymptotically free conditions guarantee that the infrared dynamics displays long-distance conformality, and in a regime when perturbation theory is applicable. We conclude our analysis by determining the quantum corrected potential of the model and summarizing the possible patterns of radiative symmetry breaking. These models are of potential phenomenological interest as either elementary or composite ultraviolet finite extensions of the standard model.

  19. Effect of initial phase on error in electron energy obtained using paraxial approximation for a focused laser pulse in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kunwar Pal, E-mail: k-psingh@yahoo.com; Department of Physics, Shri Venkateshwara University, Gajraula, Amroha, Uttar Pradesh 244236; Arya, Rashmi

    2015-09-14

    We have investigated the effect of initial phase on error in electron energy obtained using paraxial approximation to study electron acceleration by a focused laser pulse in vacuum using a three dimensional test-particle simulation code. The error is obtained by comparing the energy of the electron for paraxial approximation and seventh-order correction description of the fields of Gaussian laser. The paraxial approximation predicts wrong laser divergence and wrong electron escape time from the pulse which leads to prediction of higher energy. The error shows strong phase dependence for the electrons lying along the axis of the laser for linearly polarizedmore » laser pulse. The relative error may be significant for some specific values of initial phase even at moderate values of laser spot sizes. The error does not show initial phase dependence for a circularly laser pulse.« less

  20. Searching for Supersolidity in Ultracold Atomic Bose Condensates with Rashba Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Liao, Renyuan

    2018-04-01

    We developed a functional integral formulation for the stripe phase of spinor Bose-Einstein condensates with Rashba spin-orbit coupling. The excitation spectrum is found to exhibit double gapless band structures, identified to be two Goldstone modes resulting from spontaneously broken internal gauge symmetry and translational invariance symmetry. The sound velocities display anisotropic behavior with the lower branch vanishing in the direction perpendicular to the stripe in the x -y plane. At the transition point between the plane-wave phase and the stripe phase, physical quantities such as fluctuation correction to the ground-state energy and quantum depletion of the condensates exhibit discontinuity, characteristic of the first-order phase transition. Despite strong quantum fluctuations induced by Rashba spin-orbit coupling, we show that the supersolid phase is stable against quantum depletion. Finally, we extend our formulation to finite temperatures to account for interactions between excitations.

  1. Selected plantar pressure characteristics associated with the skating performance of national in-line speed skaters.

    PubMed

    Wu, Wen-Lan; Hsu, Hsiu-Tao; Chu, I-Hua; Tsai, Feng-Hua; Liang, Jing-Min

    2017-06-01

    In order to help coaches analyse the techniques of professional in-line speed skaters for making the required fine adjustments and corrections in their push-off work, this study analysed the specific plantar pressure characteristics during a 300-m time-trial test. Fourteen elite in-line speed skaters from the national team were recruited in this study. The total completion time of the 300-m time-trial test, duration of each skating phase, and plantar pressure distribution were measured. The correlation between plantar pressure distribution and skating performance was assessed using Pearson correlation analyses. The results showed that the contact time of the total foot and force-time integral (FTI) in the medial forefoot were significantly correlated with the duration of the start phase, and the FTIs in the medial forefoot of the gliding (left) leg and lateral forefoot of the pushing (right) leg were significantly correlated with the duration of the turning phase. The maximum force in the medial heel, medial forefoot, and median forefoot and the FTI in the medial heel and medial forefoot were significantly correlated with the duration of the linear acceleration phase. The results suggest that a correct plantar loading area and push-off strategy can enhance the skating performance.

  2. Molecular-dynamics evaluation of fluid-phase equilibrium properties by a novel free-energy perturbation approach: Application to gas solubility and vapor pressure of liquid hexane

    NASA Astrophysics Data System (ADS)

    Kuwajima, Satoru; Kikuchi, Hiroaki; Fukuda, Mitsuhiro

    2006-03-01

    A novel free-energy perturbation method is developed for the computation of the free energy of transferring a molecule between fluid phases. The methodology consists in drawing a free-energy profile of the target molecule moving across a binary-phase structure built in the computer. The novelty of the method lies in the difference of the definition of the free-energy profile from the common definition. As an important element of the method, the process of making a correction to the transfer free energy with respect to the cutoff of intermolecular forces is elucidated. In order to examine the performance of the method in the application to fluid-phase equilibrium properties, molecular-dynamics computations are carried out for the evaluation of gas solubility and vapor pressure of liquid n-hexane at 298.15K. The gas species treated are methane, ethane, propane, and n-butane, with the gas solubility expressed as Henry's constant. It is shown that the method works fine and calculated results are generally in good agreement with experiments. It is found that the cutoff correction is strikingly large, constituting a dominant part of the calculated transfer free energy at the cutoff of 8Å.

  3. Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregg Ruskuaff

    This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) andmore » National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).« less

  4. Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert E.; Hofmann, Johannes; Barnes, Edwin; Das Sarma, S.

    2015-09-01

    We develop a theory for electron-electron interaction-induced many-body effects in three-dimensional Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine-structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies nonmonotonically as the low-energy, noninteracting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number (the multiplicity of electron species, e.g. ground-state valley degeneracy arising from the band structure) relative to the leading-order result. Thus, for materials with a larger multiplicity, the regime of velocity nonmonotonicity is reached for modest values of the coupling strength. This is in stark contrast to an approach based on a large-N expansion or the random phase approximation (RPA), where higher-order corrections are strongly suppressed for larger values of the Dirac cone multiplicity. This suggests that perturbation theory in the coupling constant (i.e., the loop expansion) and the RPA/large-N expansion are complementary in the sense that they are applicable in different parameter regimes of the theory. We show how our results for the ultraviolet renormalization of quasiparticle properties can be tested experimentally through measurements of quantities such as the optical conductivity or dielectric function (with carrier density or temperature acting as the scale being varied to induce the running coupling). Although experiments typically access the finite-density regime, we show that our zero-density results still capture clear many-body signatures that should be visible at higher temperatures even in real systems with disorder and finite doping.

  5. Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri

    2018-05-01

    The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.

  6. Phase aberration simulation study of MRgFUS breast treatments

    PubMed Central

    Farrer, Alexis I.; Almquist, Scott; Dillon, Christopher R.; Neumayer, Leigh A.; Parker, Dennis L.; Christensen, Douglas A.; Payne, Allison

    2016-01-01

    Purpose: This simulation study evaluates the effects of phase aberration in breast MR-guided focused ultrasound (MRgFUS) ablation treatments performed with a phased-array transducer positioned laterally to the breast. A quantification of these effects in terms of thermal dose delivery and the potential benefits of phase correction is demonstrated in four heterogeneous breast numerical models. Methods: To evaluate the effects of varying breast tissue properties on the quality of the focus, four female volunteers with confirmed benign fibroadenomas were imaged using 3T MRI. These images were segmented into numerical models with six tissue types, with each tissue type assigned standard acoustic properties from the literature. Simulations for a single-plane 16-point raster-scan treatment trajectory centered in a fibroadenoma in each modeled breast were performed for a breast-specific MRgFUS system. At each of the 16 points, pressure patterns both with and without applying a phase correction technique were determined with the hybrid-angular spectrum method. Corrected phase patterns were obtained using a simulation-based phase aberration correction technique to adjust each element’s transmit phase to obtain maximized constructive interference at the desired focus. Thermal simulations were performed for both the corrected and uncorrected pressure patterns using a finite-difference implementation of the Pennes bioheat equation. The effect of phase correction was evaluated through comparison of thermal dose accumulation both within and outside a defined treatment volume. Treatment results using corrected and uncorrected phase aberration simulations were compared by evaluating the power required to achieve a 20 °C temperature rise at the first treatment location. The extent of the volumes that received a minimum thermal dose of 240 CEM at 43 °C inside the intended treatment volume as well as the volume in the remaining breast tissues was also evaluated in the form of a dose volume ratio (DVR), a DVR percent change between corrected and uncorrected phases, and an additional metric that measured phase spread. Results: With phase aberration correction applied, there was an improvement in the focus for all breast anatomies as quantified by a reduction in power required (13%–102%) to reach 20 °C when compared to uncorrected simulations. Also, the DVR percent change increased by 5%–77% in seven out of eight cases, indicating an improvement to the treatment as measured by a reduction in thermal dose deposited to the nontreatment tissues. Breast compositions with a higher degree of heterogeneity along the ultrasound beam path showed greater reductions in thermal dose delivered outside of the treatment volume with correction applied than beam trajectories that propagated through more homogeneous breast compositions. An increasing linear trend was observed between the DVR percent change and the phase-spread metric (R2 = 0.68). Conclusions: These results indicate that performing phase aberration correction for breast MRgFUS treatments is beneficial for the small-aperture transducer (14.4 × 9.8 cm) evaluated in this work. While all breast anatomies could benefit from phase aberration correction, greater benefits are observed in more heterogeneous anatomies. PMID:26936722

  7. Spin-wave energy dispersion of a frustrated spin-½ Heisenberg antiferromagnet on a stacked square lattice.

    PubMed

    Majumdar, Kingshuk

    2011-03-23

    The effects of interlayer coupling and spatial anisotropy on the spin-wave excitation spectra of a three-dimensional spatially anisotropic, frustrated spin-½ Heisenberg antiferromagnet (HAFM) are investigated for the two ordered phases using second-order spin-wave expansion. We show that the second-order corrections to the spin-wave energies are significant and find that the energy spectra of the three-dimensional HAFM have similar qualitative features to the energy spectra of the two-dimensional HAFM on a square lattice. We also discuss the features that can provide experimental measures for the strength of the interlayer coupling, spatial anisotropy parameter, and magnetic frustration.

  8. Anticipatory phase correction in sensorimotor synchronization.

    PubMed

    Repp, Bruno H; Moseley, Gordon P

    2012-10-01

    Studies of phase correction in sensorimotor synchronization often introduce timing perturbations that are unpredictable with regard to direction, magnitude, and position in the stimulus sequence. If participants knew any or all of these parameters in advance, would they be able to anticipate perturbations and thus regain synchrony more quickly? In Experiment 1, we asked musically trained participants to tap in synchrony with short isochronous tone sequences containing a phase shift (PS) of -100, -40, 40, or 100 ms and provided advance information about its direction, position, or both (but not about its magnitude). The first two conditions had little effect, but in the third condition participants shifted their tap in anticipation of the PS, though only by about ±40 ms on average. The phase correction response to the residual PS was also enhanced. In Experiment 2, we provided complete advance information about PSs of various magnitudes either at the time of the immediately preceding tone ("late") or at the time of the tone one position back ("early") while also varying sequence tempo. Anticipatory phase correction was generally conservative and was impeded by fast tempo in the "late" condition. At fast tempi in both conditions, advancing a tap was more difficult than delaying a tap. The results indicate that temporal constraints on anticipatory phase correction resemble those on reactive phase correction. While the latter is usually automatic, this study shows that phase correction can also be controlled consciously for anticipatory purposes. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. A simplification of the fractional Hartley transform applied to image security system in phase

    NASA Astrophysics Data System (ADS)

    Jimenez, Carlos J.; Vilardy, Juan M.; Perez, Ronal

    2017-01-01

    In this work we develop a new encryption system for encoded image in phase using the fractional Hartley transform (FrHT), truncation operations and random phase masks (RPMs). We introduce a simplification of the FrHT with the purpose of computing this transform in an efficient and fast way. The security of the encryption system is increased by using nonlinear operations, such as the phase encoding and the truncation operations. The image to encrypt (original image) is encoded in phase and the truncation operations applied in the encryption-decryption system are the amplitude and phase truncations. The encrypted image is protected by six keys, which are the two fractional orders of the FrHTs, the two RPMs and the two pseudorandom code images generated by the amplitude and phase truncation operations. All these keys have to be correct for a proper recovery of the original image in the decryption system. We present digital results that confirm our approach.

  10. Measurement-free implementations of small-scale surface codes for quantum-dot qubits

    NASA Astrophysics Data System (ADS)

    Ercan, H. Ekmel; Ghosh, Joydip; Crow, Daniel; Premakumar, Vickram N.; Joynt, Robert; Friesen, Mark; Coppersmith, S. N.

    2018-01-01

    The performance of quantum-error-correction schemes depends sensitively on the physical realizations of the qubits and the implementations of various operations. For example, in quantum-dot spin qubits, readout is typically much slower than gate operations, and conventional surface-code implementations that rely heavily on syndrome measurements could therefore be challenging. However, fast and accurate reset of quantum-dot qubits, without readout, can be achieved via tunneling to a reservoir. Here we propose small-scale surface-code implementations for which syndrome measurements are replaced by a combination of Toffoli gates and qubit reset. For quantum-dot qubits, this enables much faster error correction than measurement-based schemes, but requires additional ancilla qubits and non-nearest-neighbor interactions. We have performed numerical simulations of two different coding schemes, obtaining error thresholds on the orders of 10-2 for a one-dimensional architecture that only corrects bit-flip errors and 10-4 for a two-dimensional architecture that corrects bit- and phase-flip errors.

  11. Challenges Facing Early Phase Trials Sponsored by the National Cancer Institute: An Analysis of Corrective Action Plans to Improve Accrual

    PubMed Central

    Massett, Holly A.; Mishkin, Grace; Rubinstein, Larry; Ivy, S. Percy; Denicoff, Andrea; Godwin, Elizabeth; DiPiazza, Kate; Bolognese, Jennifer; Zwiebel, James A.; Abrams, Jeffrey S.

    2016-01-01

    Accruing patients in a timely manner represents a significant challenge to early phase cancer clinical trials. The NCI Cancer Therapy Evaluation Program analyzed 19 months of corrective action plans (CAPs) received for slow-accruing Phase 1 and 2 trials to identify slow accrual reasons, evaluate whether proposed corrective actions matched these reasons, and assess the CAP impact on trial accrual, duration, and likelihood of meeting primary scientific objectives. Of the 135 CAPs analyzed, 69 were for Phase 1 trials and 66 for Phase 2 trials. Primary reasons cited for slow accrual were safety/toxicity (Phase 1: 48%), design/protocol concerns (Phase 1: 42%, Phase 2: 33%), and eligibility criteria (Phase 1: 41%, Phase 2: 35%). The most commonly proposed corrective actions were adding institutions (Phase 1: 43%, Phase 2: 85%) and amending the trial to change eligibility or design (Phase 1: 55%, Phase 2: 44%). Only 40% of CAPs provided proposed corrective actions that matched the reasons given for slow accrual. Seventy percent of trials were closed to accrual at time of analysis (Phase 1=48; Phase 2=46). Of these, 67% of Phase 1 and 70% of Phase 2 trials met their primary objectives, but they were active three times longer than projected. Among closed trials, 24% had an accrual rate increase associated with a greater likelihood of meeting their primary scientific objectives. Ultimately, trials receiving CAPs saw improved accrual rates. Future trials may benefit from implementing CAPs early in trial lifecycles, but it may be more beneficial to invest in earlier accrual planning. PMID:27401246

  12. Generalizing the ADM computation to quantum field theory

    NASA Astrophysics Data System (ADS)

    Mora, P. J.; Tsamis, N. C.; Woodard, R. P.

    2012-01-01

    The absence of recognizable, low energy quantum gravitational effects requires that some asymptotic series expansion be wonderfully accurate, but the correct expansion might involve logarithms or fractional powers of Newton’s constant. That would explain why conventional perturbation theory shows uncontrollable ultraviolet divergences. We explore this possibility in the context of the mass of a charged, gravitating scalar. The classical limit of this system was solved exactly in 1960 by Arnowitt, Deser and Misner, and their solution does exhibit nonanalytic dependence on Newton’s constant. We derive an exact functional integral representation for the mass of the quantum field theoretic system, and then develop an alternate expansion for it based on a correct implementation of the method of stationary phase. The new expansion entails adding an infinite class of new diagrams to each order and subtracting them from higher orders. The zeroth-order term of the new expansion has the physical interpretation of a first quantized Klein-Gordon scalar which forms a bound state in the gravitational and electromagnetic potentials sourced by its own probability current. We show that such bound states exist and we obtain numerical results for their masses.

  13. Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IT Corporation, Las Vegas, NV

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfillsmore » used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will concentrate on geophysical surveys to confirm the presence or absence of disposed waste within a CAS and verify the boundaries of disposal areas; penetrate disposal feature covers via excavation and/or drilling; perform geodetic surveys; and be used to collect both soil and environmental samples for laboratory analyses. Phase II will deal only with those CASs where a contaminant of concern has been identified. This phase will involve the collection of additional soil and/or environmental samples for laboratory analyses. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.« less

  14. Modified spin-wave theory with ordering vector optimization: spatially anisotropic triangular lattice and J1J2J3 model with Heisenberg interactions

    NASA Astrophysics Data System (ADS)

    Hauke, Philipp; Roscilde, Tommaso; Murg, Valentin; Cirac, J. Ignacio; Schmied, Roman

    2011-07-01

    We study the ground-state phases of the S=1/2 Heisenberg quantum antiferromagnet on the spatially anisotropic triangular lattice (SATL) and on the square lattice with up to next-next-nearest-neighbor coupling (the J1J2J3 model), making use of Takahashi's modified spin-wave (MSW) theory supplemented by ordering vector optimization. We compare the MSW results with exact diagonalization and projected-entangled-pair-states calculations, demonstrating their qualitative and quantitative reliability. We find that the MSW theory correctly accounts for strong quantum effects on the ordering vector of the magnetic phases of the models under investigation: in particular, collinear magnetic order is promoted at the expense of non-collinear (spiral) order, and several spiral states that are stable at the classical level disappear from the quantum phase diagram. Moreover, collinear states and non-collinear ones are never connected continuously, but they are separated by parameter regions in which the MSW theory breaks down, signaling the possible appearance of a non-magnetic ground state. In the case of the SATL, a large breakdown region appears also for weak couplings between the chains composing the lattice, suggesting the possible occurrence of a large non-magnetic region continuously connected with the spin-liquid state of the uncoupled chains. This shows that the MSW theory is—despite its apparent simplicity—a versatile tool for finding candidate regions in the case of spin-liquid phases, which are among prime targets for relevant quantum simulations.

  15. Antiferromagnetism, charge density wave, and d-wave superconductivity in the extended t-J-U model: role of intersite Coulomb interaction and a critical overview of renormalized mean field theory.

    PubMed

    Abram, M; Zegrodnik, M; Spałek, J

    2017-09-13

    In the first part of the paper, we study the stability of antiferromagnetic (AF), charge density wave (CDW), and superconducting (SC) states within the t-J-U-V model of strongly correlated electrons by using the statistically consistent Gutzwiller approximation (SGA). We concentrate on the role of the intersite Coulomb interaction term V in stabilizing the CDW phase. In particular, we show that the charge ordering appears only above a critical value of V in a limited hole-doping range δ. The effect of the V term on SC and AF phases is that a strong interaction suppresses SC, whereas the AF order is not significantly influenced by its presence. In the second part, separate calculations for the case of a pure SC phase have been carried out within an extended approach (the diagrammatic expansion for the Gutzwiller wave function, DE-GWF) in order to analyze the influence of the intersite Coulomb repulsion on the SC phase with the higher-order corrections included beyond the SGA method. The upper concentration for the SC disappearance decreases with increasing V, bringing the results closer to experiment. In appendices A and B we discuss the ambiguity connected with the choice of the Gutzwiller renormalization factors within the renormalized mean filed theory when either AF or CDW orders are considered. At the end, we overview briefly the possible extensions of the current models to put descriptions of the SC, AF, and CDW states on equal footing.

  16. Development of techniques for advanced optical contamination measurement with internal reflection spectroscopy, phase 1, volume 1

    NASA Technical Reports Server (NTRS)

    Hayes, J. D.

    1972-01-01

    The feasibility of monitoring volatile contaminants in a large space simulation chamber using techniques of internal reflection spectroscopy was demonstrated analytically and experimentally. The infrared spectral region was selected as the operational spectral range in order to provide unique identification of the contaminants along with sufficient sensitivity to detect trace contaminant concentrations. It was determined theoretically that a monolayer of the contaminants could be detected and identified using optimized experimental procedures. This ability was verified experimentally. Procedures were developed to correct the attenuated total reflectance spectra for thick sample distortion. However, by using two different element designs the need for such correction can be avoided.

  17. Joint correction of Nyquist artifact and minuscule motion-induced aliasing artifact in interleaved diffusion weighted EPI data using a composite two-dimensional phase correction procedure

    PubMed Central

    Chang, Hing-Chiu; Chen, Nan-kuei

    2016-01-01

    Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI. PMID:27114342

  18. Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities

    NASA Astrophysics Data System (ADS)

    Torre, Emanuele G. Dalla; Diehl, Sebastian; Lukin, Mikhail D.; Sachdev, Subir; Strack, Philipp

    2013-02-01

    We investigate nonequilibrium phase transitions for driven atomic ensembles interacting with a cavity mode and coupled to a Markovian dissipative bath. In the thermodynamic limit and at low frequencies, we show that the distribution function of the photonic mode is thermal, with an effective temperature set by the atom-photon interaction strength. This behavior characterizes the static and dynamic critical exponents of the associated superradiance transition. Motivated by these considerations, we develop a general Keldysh path-integral approach that allows us to study physically relevant nonlinearities beyond the idealized Dicke model. Using standard diagrammatic techniques, we take into account the leading-order corrections due to the finite number N of atoms. For finite N, the photon mode behaves as a damped classical nonlinear oscillator at finite temperature. For the atoms, we propose a Dicke action that can be solved for any N and correctly captures the atoms’ depolarization due to dissipative dephasing.

  19. There are differences in cerebral activation between females in distinct menstrual phases during viewing of erotic stimuli: A fMRI study.

    PubMed

    Gizewski, Elke R; Krause, Eva; Karama, Sherif; Baars, Anneke; Senf, Wolfgang; Forsting, Michael

    2006-09-01

    There is evidence that men experience more sexual arousal than women but also that women in mid-luteal phase experience more sexual arousal than women outside this phase. Recently, a few functional brain imaging studies have tackled the issue of gender differences as pertaining to reactions to erotica. The question of whether or not gender differences in reactions to erotica are maintained with women in different phases has not yet been answered from a functional brain imaging perspective. In order to examine this issue, functional MRI was performed in 22 male and 22 female volunteers. Subjects viewed erotic film excerpts alternating with emotionally neutral excerpts in a standard block-design paradigm. Arousal to erotic stimuli was evaluated using standard rating scales after scanning. Two-sample t-test with uncorrected P < 0.001 values for a priori determined region of interests involved in processing of erotic stimuli and with corrected P < 0.05 revealed gender differences: Comparing women in mid-luteal phase and during their menses, superior activation was revealed for women in mid-luteal phase in the anterior cingulate, left insula, and orbitofrontal cortex. A superior activation for men was found in the left thalamus, the bilateral amygdala, the anterior cingulate, the bilateral orbitofrontal, bilateral parahippocampal, and insular regions, which were maintained at a corrected P in the amygdala, the insula, and thalamus. There were no areas of significant superior activation for women neither in mid-luteal phase nor during their menses. Our results indicate that there are differences between women in the two cycle times in cerebral activity during viewing of erotic stimuli. Furthermore, gender differences with women in mid-luteal phases are similar to those in females outside the mid-luteal phase.

  20. A simple and robust method for artifacts correction on X-ray microtomography images

    NASA Astrophysics Data System (ADS)

    Timofey, Sizonenko; Marina, Karsanina; Dina, Gilyazetdinova; Irina, Bayuk; Kirill, Gerke

    2017-04-01

    X-ray microtomography images of rock material often have some kinds of distortion due to different reasons such as X-ray attenuation, beam hardening, irregularity of distribution of liquid/solid phases. Several kinds of distortion can arise from further image processing and stitching of images from different measurements. Beam-hardening is a well-known and studied distortion which is relative easy to be described, fitted and corrected using a number of equations. However, this is not the case for other grey scale intensity distortions. Shading by irregularity of distribution of liquid phases, incorrect scanner operating/parameters choosing, as well as numerous artefacts from mathematical reconstructions from projections, including stitching from separate scans cannot be described using single mathematical model. To correct grey scale intensities on large 3D images we developed a package Traditional method for removing the beam hardening [1] has been modified in order to find the center of distortion. The main contribution of this work is in development of a method for arbitrary image correction. This method is based on fitting the distortion by Bezier curve using image histogram. The distortion along the image is represented by a number of Bezier curves and one base line that characterizes the natural distribution of gray value along the image. All of these curves are set manually by the operator. We have tested our approaches on different X-ray microtomography images of porous media. Arbitrary correction removes all principal distortion. After correction the images has been binarized with subsequent pore-network extracted. Equal distribution of pore-network elements along the image was the criteria to verify the proposed technique to correct grey scale intensities. [1] Iassonov, P. and Tuller, M., 2010. Application of segmentation for correction of intensity bias in X-ray computed tomography images. Vadose Zone Journal, 9(1), pp.187-191.

  1. A soft decoding algorithm and hardware implementation for the visual prosthesis based on high order soft demodulation.

    PubMed

    Yang, Yuan; Quan, Nannan; Bu, Jingjing; Li, Xueping; Yu, Ningmei

    2016-09-26

    High order modulation and demodulation technology can solve the frequency requirement between the wireless energy transmission and data communication. In order to achieve reliable wireless data communication based on high order modulation technology for visual prosthesis, this work proposed a Reed-Solomon (RS) error correcting code (ECC) circuit on the basis of differential amplitude and phase shift keying (DAPSK) soft demodulation. Firstly, recognizing the weakness of the traditional DAPSK soft demodulation algorithm based on division that is complex for hardware implementation, an improved phase soft demodulation algorithm for visual prosthesis to reduce the hardware complexity is put forward. Based on this new algorithm, an improved RS soft decoding method is hence proposed. In this new decoding method, the combination of Chase algorithm and hard decoding algorithms is used to achieve soft decoding. In order to meet the requirements of implantable visual prosthesis, the method to calculate reliability of symbol-level based on multiplication of bit reliability is derived, which reduces the testing vectors number of Chase algorithm. The proposed algorithms are verified by MATLAB simulation and FPGA experimental results. During MATLAB simulation, the biological channel attenuation property model is added into the ECC circuit. The data rate is 8 Mbps in the MATLAB simulation and FPGA experiments. MATLAB simulation results show that the improved phase soft demodulation algorithm proposed in this paper saves hardware resources without losing bit error rate (BER) performance. Compared with the traditional demodulation circuit, the coding gain of the ECC circuit has been improved by about 3 dB under the same BER of [Formula: see text]. The FPGA experimental results show that under the condition of data demodulation error with wireless coils 3 cm away, the system can correct it. The greater the distance, the higher the BER. Then we use a bit error rate analyzer to measure BER of the demodulation circuit and the RS ECC circuit with different distance of two coils. And the experimental results show that the RS ECC circuit has about an order of magnitude lower BER than the demodulation circuit when under the same coils distance. Therefore, the RS ECC circuit has more higher reliability of the communication in the system. The improved phase soft demodulation algorithm and soft decoding algorithm proposed in this paper enables data communication that is more reliable than other demodulation system, which also provide a significant reference for further study to the visual prosthesis system.

  2. Physiologic noise regression, motion regression, and TOAST dynamic field correction in complex-valued fMRI time series.

    PubMed

    Hahn, Andrew D; Rowe, Daniel B

    2012-02-01

    As more evidence is presented suggesting that the phase, as well as the magnitude, of functional MRI (fMRI) time series may contain important information and that there are theoretical drawbacks to modeling functional response in the magnitude alone, removing noise in the phase is becoming more important. Previous studies have shown that retrospective correction of noise from physiologic sources can remove significant phase variance and that dynamic main magnetic field correction and regression of estimated motion parameters also remove significant phase fluctuations. In this work, we investigate the performance of physiologic noise regression in a framework along with correction for dynamic main field fluctuations and motion regression. Our findings suggest that including physiologic regressors provides some benefit in terms of reduction in phase noise power, but it is small compared to the benefit of dynamic field corrections and use of estimated motion parameters as nuisance regressors. Additionally, we show that the use of all three techniques reduces phase variance substantially, removes undesirable spatial phase correlations and improves detection of the functional response in magnitude and phase. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Correction of Phase Distortion by Nonlinear Optical Techniques

    DTIC Science & Technology

    1981-05-01

    I I I I ifi 00 o o \\] CORRECTION OF PHASE DISTORTION BY NONLINEAR OPTICAL TECHNIQUES op Hughes Research Laboratories 3011 Malibu Canyon...CORRECTION OF PHASE DISTORTION BY NONLINEAR OPTICAL TECHNIQUES • , — •■ FBiMowmln»"Own. we^owr^wwcw n R.C./Lind| W.B./Browne C.R. Giuliano, R.K... phase conjugation. Adaptive optics , Laser compensation, SBS, Four-wave mixing. 20. ABSTRACT (ConllmM on i tmrr and Identity bv block number

  4. New Structured Laves Phase in the Mg-In-Ca System with Nontranslational Symmetry and Two Unit Cells

    NASA Astrophysics Data System (ADS)

    Xie, Hongbo; Pan, Hucheng; Ren, Yuping; Wang, Liqing; He, Yufeng; Qi, Xixi; Qin, Gaowu

    2018-02-01

    All of the A B2 Laves phases discovered so far satisfy the general crystalline structure characteristic of translational symmetry; however, we report here a new structured Laves phase directly precipitated in an aged Mg-In-Ca alloy by using aberration-corrected scanning transmission electron microscopy. The nanoprecipitate is determined to be a (Mg,In ) 2Ca phase, which has a C 14 Laves structure (hcp, space group: P 63/m m c , a =6.25 Å , c =10.31 Å ) but without any translational symmetry on the (0001) p basal plane. The (Mg,In ) 2Ca Laves phase contains two separate unit cells promoting the formation of five tiling patterns. The bonding of these patterns leads to the generation of the present Laves phase, followed by the Penrose geometrical rule. The orientation relationship between the Laves precipitate and Mg matrix is (0001) p//(0001) α and [11 ¯00 ] p//[112 ¯0 ] α . More specifically, in contrast to the traditional view that the third element would orderly replace other atoms in a manner of layer by layer on the close-packed (0001) L plane, the In atoms here have orderly occupied certain position of Mg atomic columns along the [0001] L zone axis. The finding would be interesting and important for understanding the formation mechanism of Laves phases, and even atom stacking behavior in condensed matter.

  5. A theoretical study on the bottlenecks of GPS phase ambiguity resolution in a CORS RTK Network

    NASA Astrophysics Data System (ADS)

    Odijk, D.; Teunissen, P.

    2011-01-01

    Crucial to the performance of GPS Network RTK positioning is that a user receives and applies correction information from a CORS Network. These corrections are necessary for the user to account for the atmospheric (ionospheric and tropospheric) delays and possibly orbit errors between his approximate location and the locations of the CORS Network stations. In order to provide the most precise corrections to users, the CORS Network processing should be based on integer resolution of the carrier phase ambiguities between the network's CORS stations. One of the main challenges is to reduce the convergence time, thus being able to quickly resolve the integer carrier phase ambiguities between the network's reference stations. Ideally, the network ambiguity resolution should be conducted within one single observation epoch, thus truly in real time. Unfortunately, single-epoch CORS Network RTK ambiguity resolution is currently not feasible and in the present contribution we study the bottlenecks preventing this. For current dual-frequency GPS the primary cause of these CORS Network integer ambiguity initialization times is the lack of a sufficiently large number of visible satellites. Although an increase in satellite number shortens the ambiguity convergence times, instantaneous CORS Network RTK ambiguity resolution is not feasible even with 14 satellites. It is further shown that increasing the number of stations within the CORS Network itself does not help ambiguity resolution much, since every new station introduces new ambiguities. The problem with CORS Network RTK ambiguity resolution is the presence of the atmospheric (mainly ionospheric) delays themselves and the fact that there are no external corrections that are sufficiently precise. We also show that external satellite clock corrections hardly contribute to CORS Network RTK ambiguity resolution, despite their quality, since the network satellite clock parameters and the ambiguities are almost completely uncorrelated. One positive is that the foreseen modernized GPS will have a very beneficial effect on CORS ambiguity resolution, because of an additional frequency with improved code precision.

  6. Anisotropic strong-coupling effects on superfluid 3He in aerogels: Conventional spin-fluctuation approach

    NASA Astrophysics Data System (ADS)

    Ikeda, Ryusuke

    2015-05-01

    Motivated by recent experiments on liquid 3He reporting emergence of novel superfluid phases in globally anisotropic aerogels, our previous theory on superfluid 3He in globally anisotropic aerogels is extended to incorporate the effects of anisotropy of the quasiparticle scattering cross section on the strong-coupling (SC) contributions to the Ginzburg-Landau (GL) free energy on the basis of the spin-fluctuation (paramagnon) approach to the SC contributions developed by Brinkman et al. [Phys. Rev. A 10, 2386 (1974), 10.1103/PhysRevA.10.2386]. In the globally isotropic case, impurity effects on the SC correction destabilize the A phase even at higher pressures of about 30 bar and make the B phase the only state in equilibrium, while SC contributions accompanied by a global stretched anisotropy to the GL quartic terms generally tend to broaden the stability region of the A phase compared with that of the B phase. In particular, in contrast to the cases in bulk and in the isotropic aerogel, the SC corrections to the GL quadratic terms are not negligible in the globally anisotropic case but may change the sign of the apparent anisotropy depending on the magnitude of the frequency cutoff of the normal paramagnon propagator. Based on this sign change of the apparent anisotropy, we discuss different strange observations on superfluid 3He in porous media such as the disappearance of the polar superfluid phase at higher pressures seen in nematically ordered aerogels and the absence of B and A phases with planar l ̂ vector in a stretched aerogel.

  7. Revisiting the Langer-Ambegaokar-McCumber-Halperin theory of resistive transitions in one-dimensional superconductors with exact solutions.

    PubMed

    Joshi, Darshan G; Bhattacharyay, A

    2011-08-31

    We present an important correction to the Langer-Ambegaokar-McCumber-Halperin theory for the resistive state of a 1D superconductor. We establish that the identification of the saddle on the free energy surface over which Langer and Ambegaokar had claimed the system to move in order to form thermally excited phase slip centres is wrong. With the help of an exact solution we show that the system has to overcome a similar free energy barrier but can actually have vanishing amplitude of the superconducting phase at a point, unlike the Langer-Ambegaokar solution.

  8. Calculation of electric field–temperature (E, T) phase diagram of a ferroelectric liquid crystal near the SmA–{SmC}}_{\\alpha }^{* } transition

    NASA Astrophysics Data System (ADS)

    Trabelsi, F.; Dhaouadi, H.; Riahi, O.; Othman, T.

    2018-03-01

    In this work we perform a theoretical calculation in order to reconstitute the (E–T) phase diagram of a chiral smectic liquid crystal in the vicinity of the SmA–{SmC}}α * transition. This reconstruction is carried out on the basis of a thermodynamic calculation of the slope of the curve joining the {SmC}}α * domain and the unwound SmC*. An empiric correction of the mean field term of Landau De-Gennes development is necessary to accomplish this reconstruction. Thereafter, an experimental validation is performed to verify our calculations.

  9. Restoring the Pauli principle in the random phase approximation ground state

    NASA Astrophysics Data System (ADS)

    Kosov, D. S.

    2017-12-01

    Random phase approximation ground state contains electronic configurations where two (and more) identical electrons can occupy the same molecular spin-orbital violating the Pauli exclusion principle. This overcounting of electronic configurations happens due to quasiboson approximation in the treatment of electron-hole pair operators. We describe the method to restore the Pauli principle in the RPA wavefunction. The proposed theory is illustrated by the calculations of molecular dipole moments and electronic kinetic energies. The Hartree-Fock based RPA, which is corrected for the Pauli principle, gives the results of comparable accuracy with Møller-Plesset second order perturbation theory and coupled-cluster singles and doubles method.

  10. Coherent control of molecular alignment of homonuclear diatomic molecules by analytically designed laser pulses.

    PubMed

    Zou, Shiyang; Sanz, Cristina; Balint-Kurti, Gabriel G

    2008-09-28

    We present an analytic scheme for designing laser pulses to manipulate the field-free molecular alignment of a homonuclear diatomic molecule. The scheme is based on the use of a generalized pulse-area theorem and makes use of pulses constructed around two-photon resonant frequencies. In the proposed scheme, the populations and relative phases of the rovibrational states of the molecule are independently controlled utilizing changes in the laser intensity and in the carrier-envelope phase difference, respectively. This allows us to create the correct coherent superposition of rovibrational states needed to achieve optimal molecular alignment. The validity and efficiency of the scheme are demonstrated by explicit application to the H(2) molecule. The analytically designed laser pulses are tested by exact numerical solutions of the time-dependent Schrodinger equation including laser-molecule interactions to all orders of the field strength. The design of a sequence of pulses to further enhance molecular alignment is also discussed and tested. It is found that the rotating wave approximation used in the analytic design of the laser pulses leads to small errors in the prediction of the relative phase of the rotational states. It is further shown how these errors may be easily corrected.

  11. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT.

    PubMed

    Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc

    2009-12-01

    Cardiac CT achieves its high temporal resolution by lowering the scan range from 2pi to pi plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the pi range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2pi] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan pn(AF) by projectionwise averaging a set of neighboring partial scans pn(P) from the same perfusion examination (typically N approximately 30 phase-correlated partial scans distributed over 20 s and n = 1, ..., N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans pn(V) from the artificial full scan pn(AF). A standard reconstruction yields the corresponding images fn(P), fn(AF), and fn(V). Subtracting the virtual partial scan image fn(V) from the artificial full scan image fn(AF) yields an artifact image that can be used to correct the original partial scan image: fn(C) = fn(P) - fn(V) + fn(AF), where fn(C) is the corrected image. The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference values. The improvement in the root mean square errors between the full and the partial scans with respect to the errors between the full and the corrected scans is up to 54% for the simulations and 90% for the measurements. The phase-correlated data now appear accurate enough for a quantitative analysis of cardiac perfusion.

  12. Atmospheric Phase Delay Correction of D-Insar Based on SENTINEL-1A

    NASA Astrophysics Data System (ADS)

    Li, X.; Huang, G.; Kong, Q.

    2018-04-01

    In this paper, we used the Generic Atmospheric Correction Online Service for InSAR (GACOS) tropospheric delay maps to correct the atmospheric phase delay of the differential interferometric synthetic aperture radar (D-InSAR) monitoring, and we improved the accuracy of subsidence monitoring using D-InSAR technology. Atmospheric phase delay, as one of the most important errors that limit the monitoring accuracy of InSAR, would lead to the masking of true phase in subsidence monitoring. For the problem, this paper used the Sentinel-1A images and the tropospheric delay maps got from GACOS to monitor the subsidence of the Yellow River Delta in Shandong Province. The conventional D-InSAR processing was performed using the GAMMA software. The MATLAB codes were used to correct the atmospheric delay of the D-InSAR results. The results before and after the atmospheric phase delay correction were verified and analyzed in the main subsidence area. The experimental results show that atmospheric phase influences the deformation results to a certain extent. After the correction, the measurement error of vertical deformation is reduced by about 18 mm, which proves that the removal of atmospheric effects can improve the accuracy of the D-InSAR monitoring.

  13. Single Phase Passive Rectification Versus Active Rectification Applied to High Power Stirling Engines

    NASA Technical Reports Server (NTRS)

    Santiago, Walter; Birchenough, Arthur G.

    2006-01-01

    Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.

  14. Topological quantum error correction in the Kitaev honeycomb model

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.

    2017-08-01

    The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.

  15. Challenges Facing Early Phase Trials Sponsored by the National Cancer Institute: An Analysis of Corrective Action Plans to Improve Accrual.

    PubMed

    Massett, Holly A; Mishkin, Grace; Rubinstein, Larry; Ivy, S Percy; Denicoff, Andrea; Godwin, Elizabeth; DiPiazza, Kate; Bolognese, Jennifer; Zwiebel, James A; Abrams, Jeffrey S

    2016-11-15

    Accruing patients in a timely manner represents a significant challenge to early phase cancer clinical trials. The NCI Cancer Therapy Evaluation Program analyzed 19 months of corrective action plans (CAP) received for slow-accruing phase I and II trials to identify slow accrual reasons, evaluate whether proposed corrective actions matched these reasons, and assess the CAP impact on trial accrual, duration, and likelihood of meeting primary scientific objectives. Of the 135 CAPs analyzed, 69 were for phase I trials and 66 for phase II trials. Primary reasons cited for slow accrual were safety/toxicity (phase I: 48%), design/protocol concerns (phase I: 42%, phase II: 33%), and eligibility criteria (phase I: 41%, phase II: 35%). The most commonly proposed corrective actions were adding institutions (phase I: 43%, phase II: 85%) and amending the trial to change eligibility or design (phase I: 55%, phase II: 44%). Only 40% of CAPs provided proposed corrective actions that matched the reasons given for slow accrual. Seventy percent of trials were closed to accrual at time of analysis (phase I = 48; phase II = 46). Of these, 67% of phase I and 70% of phase II trials met their primary objectives, but they were active three times longer than projected. Among closed trials, 24% had an accrual rate increase associated with a greater likelihood of meeting their primary scientific objectives. Ultimately, trials receiving CAPs saw improved accrual rates. Future trials may benefit from implementing CAPs early in trial life cycles, but it may be more beneficial to invest in earlier accrual planning. Clin Cancer Res; 22(22); 5408-16. ©2016 AACRSee related commentary by Mileham and Kim, p. 5397. ©2016 American Association for Cancer Research.

  16. Optimal superadiabatic population transfer and gates by dynamical phase corrections

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.

    2018-04-01

    In many quantum technologies adiabatic processes are used for coherent quantum state operations, offering inherent robustness to errors in the control parameters. The main limitation is the long operation time resulting from the requirement of adiabaticity. The superadiabatic method allows for faster operation, by applying counterdiabatic driving that corrects for excitations resulting from the violation of the adiabatic condition. In this article we show how to construct the counterdiabatic Hamiltonian in a system with forbidden transitions by using two-photon processes and how to correct for the resulting time-dependent ac-Stark shifts in order to enable population transfer with unit fidelity. We further demonstrate that superadiabatic stimulated Raman passage can realize a robust unitary NOT-gate between the ground state and the second excited state of a three-level system. The results can be readily applied to a three-level transmon with the ladder energy level structure.

  17. Phase-ambiguity resolution for QPSK modulation systems. Part 2: A method to resolve offset QPSK

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien Manh

    1989-01-01

    Part 2 presents a new method to resolve the phase-ambiguity for Offset QPSK modulation systems. When an Offset Quaternary Phase-Shift-Keyed (OQPSK) communications link is utilized, the phase ambiguity of the reference carrier must be resolved. At the transmitter, two different unique words are separately modulated onto the quadrature carriers. At the receiver, the recovered carrier may have one of four possible phases, 0, 90, 180, or 270 degrees, referenced to the nominally correct phase. The IF portion of the channel may cause a phase-sense reversal, i.e., a reversal in the direction of phase rotation for a specified bit pattern. Hence, eight possible phase relationships (the so-called eight ambiguous phase conditions) between input and output of the demodulator must be resolved. Using the In-phase (I)/Quadrature (Q) channel reversal correcting property of an OQPSK Costas loop with integrated symbol synchronization, four ambiguous phase conditions are eliminated. Thus, only four possible ambiguous phase conditions remain. The errors caused by the remaining ambiguous phase conditions can be corrected by monitoring and detecting the polarity of the two unique words. The correction of the unique word polarities results in the complete phase-ambiguity resolution for the OQPSK system.

  18. Assessment of C-band Polarimetric Radar Rainfall Measurements During Strong Attenuation.

    NASA Astrophysics Data System (ADS)

    Paredes-Victoria, P. N.; Rico-Ramirez, M. A.; Pedrozo-Acuña, A.

    2016-12-01

    In the modern hydrological modelling and their applications on flood forecasting systems and climate modelling, reliable spatiotemporal rainfall measurements are the keystone. Raingauges are the foundation in hydrology to collect rainfall data, however they are prone to errors (e.g. systematic, malfunctioning, and instrumental errors). Moreover rainfall data from gauges is often used to calibrate and validate weather radar rainfall, which is distributed in space. Therefore, it is important to apply techniques to control the quality of the raingauge data in order to guarantee a high level of confidence in rainfall measurements for radar calibration and numerical weather modelling. Also, the reliability of radar data is often limited because of the errors in the radar signal (e.g. clutter, variation of the vertical reflectivity profile, beam blockage, attenuation, etc) which need to be corrected in order to increase the accuracy of the radar rainfall estimation. This paper presents a method for raingauge-measurement quality-control correction based on the inverse distance weighted as a function of correlated climatology (i.e. performed by using the reflectivity from weather radar). Also a Clutter Mitigation Decision (CMD) algorithm is applied for clutter filtering process, finally three algorithms based on differential phase measurements are applied for radar signal attenuation correction. The quality-control method proves that correlated climatology is very sensitive in the first 100 kilometres for this area. The results also showed that ground clutter affects slightly the radar measurements due to the low gradient of the terrain in the area. However, strong radar signal attenuation is often found in this data set due to the heavy storms that take place in this region and the differential phase measurements are crucial to correct for attenuation at C-band frequencies. The study area is located in Sabancuy-Campeche, Mexico (Latitude 18.97 N, Longitude 91.17º W) and the radar rainfall measurements are obtained from a C-band polarimetric radar whereas raingauge measurements come from stations with 10-min and 24-hr time resolutions.

  19. Tidal Amplitude Delta Factors and Phase Shifts for an Oceanic Earth

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. A.

    2017-12-01

    M.S. Molodenskiy's problem, which describes the state of an elastic self-gravitating compressible sphere, is generalized to the case of a biaxial hydrostatically equilibrium rotating elliptical inelastic shell. The system of sixth-order equations is supplemented with corrections due to the relative and Coriolis accelerations. The ordinary and load Love numbers of degree 2 are calculated with allowance for their latitude dependence and dissipation for different models of the Earth's structure (the AK135, IASP91, and PREM models). The problem is solved by Love's method. The theoretical amplitude delta factors and phase shifts of second-order tidal waves for an oceanic Earth are compared with their most recent empirical counterparts obtained by the GGP network superconducting gravimeters. In particular, it is shown that a good matching (up to the fourth decimal place) of the theoretical and observed amplitude factors of semidiurnal tides does not require the application of the nonhydrostatic theory.

  20. Boundary condition at a two-phase interface in the lattice Boltzmann method for the convection-diffusion equation.

    PubMed

    Yoshida, Hiroaki; Kobayashi, Takayuki; Hayashi, Hidemitsu; Kinjo, Tomoyuki; Washizu, Hitoshi; Fukuzawa, Kenji

    2014-07-01

    A boundary scheme in the lattice Boltzmann method (LBM) for the convection-diffusion equation, which correctly realizes the internal boundary condition at the interface between two phases with different transport properties, is presented. The difficulty in satisfying the continuity of flux at the interface in a transient analysis, which is inherent in the conventional LBM, is overcome by modifying the collision operator and the streaming process of the LBM. An asymptotic analysis of the scheme is carried out in order to clarify the role played by the adjustable parameters involved in the scheme. As a result, the internal boundary condition is shown to be satisfied with second-order accuracy with respect to the lattice interval, if we assign appropriate values to the adjustable parameters. In addition, two specific problems are numerically analyzed, and comparison with the analytical solutions of the problems numerically validates the proposed scheme.

  1. Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.

    2004-01-01

    The most critical element of an adaptive optics system is its wavefront sensor, which must measure the closed-loop difference between the corrected wavefront and an ideal template at high speed, in real time, over a dense sampling of the pupil. Most high-order systems have used Shack-Hartmann wavefront sensors, but a novel approach based on Zernike's phase contrast principle appears promising. In this paper we discuss a simple way to achromatize such a phase contrast wavefront sensor, using the pi/2 phase difference between reflected and transmitted rays in a thin, symmetric beam splitter. We further model the response at a range of wavelengths to show that the required transverse dimension of the focal-plane phase-shifting spot, nominally lambda/D, may not be very sensitive to wavelength, and so in practice additional optics to introduce wavelength-dependent transverse magnification achromatizing this spot diameter may not be required. A very simple broadband implementation of the phase contrast wavefront sensor results.

  2. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states.

    PubMed

    Zhao, S M; Leach, J; Gong, L Y; Ding, J; Zheng, B Y

    2012-01-02

    The effect of atmosphere turbulence on light's spatial structure compromises the information capacity of photons carrying the Orbital Angular Momentum (OAM) in free-space optical (FSO) communications. In this paper, we study two aberration correction methods to mitigate this effect. The first one is the Shack-Hartmann wavefront correction method, which is based on the Zernike polynomials, and the second is a phase correction method specific to OAM states. Our numerical results show that the phase correction method for OAM states outperforms the Shark-Hartmann wavefront correction method, although both methods improve significantly purity of a single OAM state and the channel capacities of FSO communication link. At the same time, our experimental results show that the values of participation functions go down at the phase correction method for OAM states, i.e., the correction method ameliorates effectively the bad effect of atmosphere turbulence.

  3. Holographic Phase Correction.

    DTIC Science & Technology

    1987-06-01

    functions, so that, for example, the device could function as a.% combined beam splitter /multifocus lens/mirror. Offset against these advantages are...illustrated in Figure 7. Here the reconstructed, phase corrected wave, is interfered with a plane wave introduced ..- after the hologram, via a beam splitter ...the recording medium). c. The phase correction can be combined with other beam forming functions. This can result in further savings in size and weight

  4. Interference effects in phased beam tracing using exact half-space solutions.

    PubMed

    Boucher, Matthew A; Pluymers, Bert; Desmet, Wim

    2016-12-01

    Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.

  5. Installation Restoration Program. Phase II: Stage 1 Problem Confirmation Study, Duluth International Airport, Duluth, Minnesota.

    DTIC Science & Technology

    1984-10-01

    8 iii "i t-. Table of Contents (cont.) Section Title Page -APPENDIX A Acronyms, Definitions, Nomenclature and Units of Measure B Scope of Work, Task...Identification/Records Search Phase II - Problem Confirmation and Quantification Phase III - Technology Base Development Phase IV - Corrective Action Only...Problem Identification/Records Search Phase II - Problem Confirmation and Quantification Phase III - Technology Base Development Phase IV - Corrective

  6. Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)

    2001-01-01

    Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.

  7. Real-Time Phase Correction Based on FPGA in the Beam Position and Phase Measurement System

    NASA Astrophysics Data System (ADS)

    Gao, Xingshun; Zhao, Lei; Liu, Jinxin; Jiang, Zouyi; Hu, Xiaofang; Liu, Shubin; An, Qi

    2016-12-01

    A fully digital beam position and phase measurement (BPPM) system was designed for the linear accelerator (LINAC) in Accelerator Driven Sub-critical System (ADS) in China. Phase information is obtained from the summed signals from four pick-ups of the Beam Position Monitor (BPM). Considering that the delay variations of different analog circuit channels would introduce phase measurement errors, we propose a new method to tune the digital waveforms of four channels before summation and achieve real-time error correction. The process is based on the vector rotation method and implemented within one single Field Programmable Gate Array (FPGA) device. Tests were conducted to evaluate this correction method and the results indicate that a phase correction precision better than ± 0.3° over the dynamic range from -60 dBm to 0 dBm is achieved.

  8. Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.

    PubMed

    Van, Anh T; Hernando, Diego; Sutton, Bradley P

    2011-11-01

    A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method.

  9. Interferogram conditioning for improved Fourier analysis and application to X-ray phase imaging by grating interferometry.

    PubMed

    Montaux-Lambert, Antoine; Mercère, Pascal; Primot, Jérôme

    2015-11-02

    An interferogram conditioning procedure, for subsequent phase retrieval by Fourier demodulation, is presented here as a fast iterative approach aiming at fulfilling the classical boundary conditions imposed by Fourier transform techniques. Interference fringe patterns with typical edge discontinuities were simulated in order to reveal the edge artifacts that classically appear in traditional Fourier analysis, and were consecutively used to demonstrate the correction efficiency of the proposed conditioning technique. Optimization of the algorithm parameters is also presented and discussed. Finally, the procedure was applied to grating-based interferometric measurements performed in the hard X-ray regime. The proposed algorithm enables nearly edge-artifact-free retrieval of the phase derivatives. A similar enhancement of the retrieved absorption and fringe visibility images is also achieved.

  10. Increasing processor utilization during parallel computation rundown

    NASA Technical Reports Server (NTRS)

    Jones, W. H.

    1986-01-01

    Some parallel processing environments provide for asynchronous execution and completion of general purpose parallel computations from a single computational phase. When all the computations from such a phase are complete, a new parallel computational phase is begun. Depending upon the granularity of the parallel computations to be performed, there may be a shortage of available work as a particular computational phase draws to a close (computational rundown). This can result in the waste of computing resources and the delay of the overall problem. In many practical instances, strict sequential ordering of phases of parallel computation is not totally required. In such cases, the beginning of one phase can be correctly computed before the end of a previous phase is completed. This allows additional work to be generated somewhat earlier to keep computing resources busy during each computational rundown. The conditions under which this can occur are identified and the frequency of occurrence of such overlapping in an actual parallel Navier-Stokes code is reported. A language construct is suggested and possible control strategies for the management of such computational phase overlapping are discussed.

  11. Accelerating EPI distortion correction by utilizing a modern GPU-based parallel computation.

    PubMed

    Yang, Yao-Hao; Huang, Teng-Yi; Wang, Fu-Nien; Chuang, Tzu-Chao; Chen, Nan-Kuei

    2013-04-01

    The combination of phase demodulation and field mapping is a practical method to correct echo planar imaging (EPI) geometric distortion. However, since phase dispersion accumulates in each phase-encoding step, the calculation complexity of phase modulation is Ny-fold higher than conventional image reconstructions. Thus, correcting EPI images via phase demodulation is generally a time-consuming task. Parallel computing by employing general-purpose calculations on graphics processing units (GPU) can accelerate scientific computing if the algorithm is parallelized. This study proposes a method that incorporates the GPU-based technique into phase demodulation calculations to reduce computation time. The proposed parallel algorithm was applied to a PROPELLER-EPI diffusion tensor data set. The GPU-based phase demodulation method reduced the EPI distortion correctly, and accelerated the computation. The total reconstruction time of the 16-slice PROPELLER-EPI diffusion tensor images with matrix size of 128 × 128 was reduced from 1,754 seconds to 101 seconds by utilizing the parallelized 4-GPU program. GPU computing is a promising method to accelerate EPI geometric correction. The resulting reduction in computation time of phase demodulation should accelerate postprocessing for studies performed with EPI, and should effectuate the PROPELLER-EPI technique for clinical practice. Copyright © 2011 by the American Society of Neuroimaging.

  12. Fluctuation-induced continuous transition and quantum criticality in Dirac semimetals

    DOE PAGES

    Classen, Laura; Herbut, Igor F.; Scherer, Michael M.

    2017-09-20

    In this paper, we establish a scenario where fluctuations of new degrees of freedom at a quantum phase transition change the nature of a transition beyond the standard Landau-Ginzburg paradigm. To this end, we study the quantum phase transition of gapless Dirac fermions coupled to a Z 3 symmetric order parameter within a Gross-Neveu-Yukawa model in 2+1 dimensions, appropriate for the Kekulé transition in honeycomb lattice materials. For this model, the standard Landau-Ginzburg approach suggests a first-order transition due to the symmetry-allowed cubic terms in the action. At zero temperature, however, quantum fluctuations of the massless Dirac fermions have tomore » be included. We show that they reduce the putative first-order character of the transition and can even render it continuous, depending on the number of Dirac fermions N f. A nonperturbative functional renormalization group approach is employed to investigate the phase transition for a wide range of fermion numbers and we obtain the critical N f, where the nature of the transition changes. Furthermore, it is shown that for large N f the change from the first to second order of the transition as a function of dimension occurs exactly in the physical 2+1 dimensions. Finally, we compute the critical exponents and predict sizable corrections to scaling for N f = 2.« less

  13. Mass counts: ERP correlates of non-adjacent dependency learning under different exposure conditions.

    PubMed

    Citron, Francesca M M; Oberecker, Regine; Friederici, Angela D; Mueller, Jutta L

    2011-01-10

    Miniature language learning can serve to model real language learning as high proficiency can be reached after very little exposure. In a previous study by Mueller et al. [18] German participants acquired non-adjacent syntactic dependencies by mere exposure to correct Italian sentences, but their ERP pattern differed from the one shown by native speakers. The present study follows up on that experiment using a similar design and material and is focused on two important issues: the influence of acoustic cues in the material and the impact of the learning procedure. With respect to the latter we compared alternating learning and test phases to a continuous learning and test phase. In addition, a splicing procedure eliminated prosodic cues in order to ensure that non-adjacent dependencies were learned instead of adjacent ones. Results for the continuous phase design showed a native-like biphasic ERP pattern, an N400 followed by a left-focused positivity. In the alternating design behavioural accuracy was lower and only an N400 was found. The results suggest an advantage of continuous learning phases for adult learners, possibly due to the absence of ungrammatical items present in the test phases in the alternating learning procedure. Furthermore, the replication of the earlier study with prosodically controlled material adds evidence to the general finding that syntactic non-adjacent dependencies can be learned from mere exposure to correct examples. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Characterization of a Compact Water Vapor Radiometer

    NASA Astrophysics Data System (ADS)

    Gill, Ajay; Selina, Rob

    2018-01-01

    We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of < -20 dB is met.For the gain stability test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is < 2 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2 x 10-4 requirement. The observable gain stability is < 2.5 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2.5 x 10-4 requirement.Overall, the test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.

  15. Dynamic online sewer modelling in Helsingborg.

    PubMed

    Hernebring, C; Jönsson, L E; Thorén, U B; Møller, A

    2002-01-01

    Within the last decade, the sewer system in Helsingborg, Sweden has been rehabilitated in many ways along with the reconstruction of the WWTP Oresundsverket in order to obtain a high degree of nitrogen and phosphorus removal. In that context a holistic view has been applied in order to optimise the corrective measures as seen from the effects in the receiving waters. A sewer catchment model has been used to evaluate several operation strategies and the effect of introducing RTC. Recently, a MOUSE ONLINE system was installed. In this phase the objective is to establish a stable communication with the SCADA system and to generate short-term flow forecasts.

  16. Phases of kinky holographic nuclear matter

    NASA Astrophysics Data System (ADS)

    Elliot-Ripley, Matthew; Sutcliffe, Paul; Zamaklar, Marija

    2016-10-01

    Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the sequence of pops suggested by previous approximations. In the kink model the two layers produced by the single pop form the surface of a soliton bag that increases in size as the baryon chemical potential is increased. The interior of the bag is filled with abelian electric potential and the instanton charge density is localized on the surface of the bag. The soliton bag may provide a holographic description of a quarkyonic phase.

  17. Analysis for maladjustment properties of passive confocal unstable resonator by using Hartmann-Shack wavefront sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Xiang, Anping

    2007-12-01

    The effect of intracavity aberration perturbation on output mode structure properties of passive confocal unstable resonator is been experimentally researched by adopting Hartmann-Shack method on the basis of numerical simulation. The results show that intracavity tilt aberration affects the outcoupled intensity distribution, but only a small intracavity tilt perturbation will not obviously augment the high-order aberrations of beam phase properties. The tilt aberration, coma aberration and astigmatism will all be brought, and also tilt aberration is the main component when intracavity mirrors have a vertical movement along the direction of optic axis. When adaptive optical elements such as deformable mirrors are adopted for intracavity aberration correction, the correction for tilt aberration should be considered at first.

  18. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  19. High-Resolution Adaptive Optics Test-Bed for Vision Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Thomspon, C A; Olivier, S S

    2001-09-27

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefrontmore » correction are done at different wavelengths. Issues associated with these techniques will be discussed.« less

  20. Gamma model and its analysis for phase measuring profilometry.

    PubMed

    Liu, Kai; Wang, Yongchang; Lau, Daniel L; Hao, Qi; Hassebrook, Laurence G

    2010-03-01

    Phase measuring profilometry is a method of structured light illumination whose three-dimensional reconstructions are susceptible to error from nonunitary gamma in the associated optical devices. While the effects of this distortion diminish with an increasing number of employed phase-shifted patterns, gamma distortion may be unavoidable in real-time systems where the number of projected patterns is limited by the presence of target motion. A mathematical model is developed for predicting the effects of nonunitary gamma on phase measuring profilometry, while also introducing an accurate gamma calibration method and two strategies for minimizing gamma's effect on phase determination. These phase correction strategies include phase corrections with and without gamma calibration. With the reduction in noise, for three-step phase measuring profilometry, analysis of the root mean squared error of the corrected phase will show a 60x reduction in phase error when the proposed gamma calibration is performed versus 33x reduction without calibration.

  1. Hemiparetic stepping to the beat: asymmetric response to metronome phase shift during treadmill gait.

    PubMed

    Pelton, Trudy A; Johannsen, Leif; Huiya Chen; Wing, Alan M

    2010-06-01

    Walking in time with a metronome is associated with improved spatiotemporal parameters in hemiparetic gait; however, the mechanism linking auditory and motor systems is poorly understood. Hemiparetic cadence control with metronome synchronization was examined to determine specific influences of metronome timing on treadmill walking. A within-participant experiment examined correction processes used to maintain heel strike synchrony with the beat by applying perturbations to the timing of a metronome. Eight chronic hemiparetic participants (mean age = 70 years; standard deviation = 12) were required to synchronize heel strikes with metronome pulses set according to each individual's comfortable speed (mean 0.4 m/s). During five 100-pulse trials, a fixed-phase baseline was followed by 4 unpredictable metronome phase shifts (20% of the interpulse interval), which amounted to 10 phase shifts on each foot. Infrared cameras recorded the motion of bilateral heel markers at 120 Hz. Relative asynchrony between heel strike responses and metronome pulses was used to index compensation for metronome phase shifts. Participants demonstrated compensation for phase shifts with convergence back to pre-phase shift asynchrony. This was significantly slower when the error occurred on the nonparetic side (requiring initial correction with the paretic limb) compared with when the error occurred on the paretic side (requiring initial nonparetic correction). Although phase correction of gait is slowed when the phase shift is delivered to the nonparetic side compared with the paretic side, phase correction is still present. This may underlie the utility of rhythmic auditory cueing in hemiparetic gait rehabilitation.

  2. Alpha phase determines successful lexical decision in noise.

    PubMed

    Strauß, Antje; Henry, Molly J; Scharinger, Mathias; Obleser, Jonas

    2015-02-18

    Psychophysical target detection has been shown to be modulated by slow oscillatory brain phase. However, thus far, only low-level sensory stimuli have been used as targets. The current human electroencephalography (EEG) study examined the influence of neural oscillatory phase on a lexical-decision task performed for stimuli embedded in noise. Neural phase angles were compared for correct versus incorrect lexical decisions using a phase bifurcation index (BI), which quantifies differences in mean phase angles and phase concentrations between correct and incorrect trials. Neural phase angles in the alpha frequency range (8-12 Hz) over right anterior sensors were approximately antiphase in a prestimulus time window, and thus successfully distinguished between correct and incorrect lexical decisions. Moreover, alpha-band oscillations were again approximately antiphase across participants for correct versus incorrect trials during a later peristimulus time window (∼500 ms) at left-central electrodes. Strikingly, lexical decision accuracy was not predicted by either event-related potentials (ERPs) or oscillatory power measures. We suggest that correct lexical decisions depend both on successful sensory processing, which is made possible by the alignment of stimulus onset with an optimal alpha phase, as well as integration and weighting of decisional information, which is coupled to alpha phase immediately following the critical manipulation that differentiated words from pseudowords. The current study constitutes a first step toward characterizing the role of dynamic oscillatory brain states for higher cognitive functions, such as spoken word recognition. Copyright © 2015 the authors 0270-6474/15/353256-07$15.00/0.

  3. Terahertz Technology and Molecular Interactions

    DTIC Science & Technology

    2010-12-16

    numerical identification algorithm, based on a simple threshold model, showed that the probability for false alarm ( PFA ) for the least favorable of...Briefly put, Phase I of MACS was to develop in 18 months a sensor system in a 1 cu ft vol- ume that could correctly identify with a PFA < 10-4 gases in a...observe spectral lines that have fractional ab- sorptions of 10-7 there are six orders of magnitude in sensitivity at stake. If spectral lines have

  4. Tolman lengths and rigidity constants of multicomponent fluids: Fundamental theory and numerical examples

    NASA Astrophysics Data System (ADS)

    Aasen, Ailo; Blokhuis, Edgar M.; Wilhelmsen, Øivind

    2018-05-01

    The curvature dependence of the surface tension can be described by the Tolman length (first-order correction) and the rigidity constants (second-order corrections) through the Helfrich expansion. We present and explain the general theory for this dependence for multicomponent fluids and calculate the Tolman length and rigidity constants for a hexane-heptane mixture by use of square gradient theory. We show that the Tolman length of multicomponent fluids is independent of the choice of dividing surface and present simple formulae that capture the change in the rigidity constants for different choices of dividing surface. For multicomponent fluids, the Tolman length, the rigidity constants, and the accuracy of the Helfrich expansion depend on the choice of path in composition and pressure space along which droplets and bubbles are considered. For the hexane-heptane mixture, we find that the most accurate choice of path is the direction of constant liquid-phase composition. For this path, the Tolman length and rigidity constants are nearly linear in the mole fraction of the liquid phase, and the Helfrich expansion represents the surface tension of hexane-heptane droplets and bubbles within 0.1% down to radii of 3 nm. The presented framework is applicable to a wide range of fluid mixtures and can be used to accurately represent the surface tension of nanoscopic bubbles and droplets.

  5. Wide spectral range multiple orders and half-wave achromatic phase retarders fabricated from two lithium tantalite single crystal plates

    NASA Astrophysics Data System (ADS)

    Emam-Ismail, M.

    2015-11-01

    In a broad spectral range (300-2500 nm), we report the use of channeled spectra formed from the interference of polarized white light to extract the dispersion of the phase birefringence Δnp(λ) of the x- and y-cuts of lithium tantalite (LiTaO3:LT) plates. A new method named as wavenumber difference method is used to extract the spectral behavior of the phase birefringence of the x- and y- cuts of LT plates. The correctness of the obtained birefringence data is confirmed by using Jones vector method through recalculating the plates thicknesses. The spectral variation of the phase birefringence Δnp(λ) of the x- and y-cuts of LT plates is fitted to Cauchy dispersion function with relative error for both x- and y-cuts of order 2.4×10-4. The group birefringence dispersion Δng (λ) of the x- and y-cuts of LT plates is also calculated and fitted to Ghosh dispersion function with relative error for both x- and y-cuts of order 2.83×10-4. Furthermore, the phase retardation introduced by the x- and y-cuts of LT plates is also calculated. It is found that the amount of phase retardation confirms that the x- and y-cuts of LT plates can act as a multiple order half- and quarter-wave plates working at many different wavelengths through the spectral range 300-2500 nm. For the x- and y-cuts of LT plates, a large difference between group and phase birefringence is observed at a short wavelength (λ=300 nm); while such difference progressively diminished at longer wavelength (λ=2000 nm). In the near infrared region (NIR) region (700-2500 nm), a broad spectral full width at half maximum (FWHM) is observed for either x- or y-cut of LT plate which can act as if it is working as a zero order wave plate. Finally, an achromatic half-wave plate working at 598 nm and covering a wide spectral range (300-900 nm) is demonstrated experimentally by combining both x- and y-cuts of LT plates.

  6. A new unequal-weighted triple-frequency first order ionosphere correction algorithm and its application in COMPASS

    NASA Astrophysics Data System (ADS)

    Liu, WenXiang; Mou, WeiHua; Wang, FeiXue

    2012-03-01

    As the introduction of triple-frequency signals in GNSS, the multi-frequency ionosphere correction technology has been fast developing. References indicate that the triple-frequency second order ionosphere correction is worse than the dual-frequency first order ionosphere correction because of the larger noise amplification factor. On the assumption that the variances of three frequency pseudoranges were equal, other references presented the triple-frequency first order ionosphere correction, which proved worse or better than the dual-frequency first order correction in different situations. In practice, the PN code rate, carrier-to-noise ratio, parameters of DLL and multipath effect of each frequency are not the same, so three frequency pseudorange variances are unequal. Under this consideration, a new unequal-weighted triple-frequency first order ionosphere correction algorithm, which minimizes the variance of the pseudorange ionosphere-free combination, is proposed in this paper. It is found that conventional dual-frequency first-order correction algorithms and the equal-weighted triple-frequency first order correction algorithm are special cases of the new algorithm. A new pseudorange variance estimation method based on the three carrier combination is also introduced. Theoretical analysis shows that the new algorithm is optimal. The experiment with COMPASS G3 satellite observations demonstrates that the ionosphere-free pseudorange combination variance of the new algorithm is smaller than traditional multi-frequency correction algorithms.

  7. A Cascaded Approach for Correcting Ionospheric Contamination with Large Amplitude in HF Skywave Radars

    PubMed Central

    Wei, Yinsheng; Guo, Rujiang; Xu, Rongqing; Tang, Xiudong

    2014-01-01

    Ionospheric phase perturbation with large amplitude causes broadening sea clutter's Bragg peaks to overlap each other; the performance of traditional decontamination methods about filtering Bragg peak is poor, which greatly limits the detection performance of HF skywave radars. In view of the ionospheric phase perturbation with large amplitude, this paper proposes a cascaded approach based on improved S-method to correct the ionospheric phase contamination. This approach consists of two correction steps. At the first step, a time-frequency distribution method based on improved S-method is adopted and an optimal detection method is designed to obtain a coarse ionospheric modulation estimation from the time-frequency distribution. At the second correction step, based on the phase gradient algorithm (PGA) is exploited to eliminate the residual contamination. Finally, use the measured data to verify the effectiveness of the method. Simulation results show the time-frequency resolution of this method is high and is not affected by the interference of the cross term; ionospheric phase perturbation with large amplitude can be corrected in low signal-to-noise (SNR); such a cascade correction method has a good effect. PMID:24578656

  8. Competition of density waves and quantum multicritical behavior in Dirac materials from functional renormalization

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.

    2016-03-01

    We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.

  9. Range of validity for perturbative treatments of relativistic sum rules

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2003-10-01

    The range of validity of perturbative calculations of relativistic sum rules is investigated by calculating the second-order relativistic corrections to the Bethe sum rule and its small momentum limit, the Thomas-Reiche-Kuhn (TRK) sum rule. For the TRK sum rule and atomic systems, the second-order correction is found to be less than 0.5% up to about Z=70. The total relativistic corrections should then be accurate at least through this range of Z, and probably beyond this range if the second-order terms are included. For Rn (Z=86), however, the second-order corrections are nearly 1%. The total corrections to the Bethe sum rule are largest at small momentum, never being significantly larger than the corresponding corrections to the TRK sum rule. The first-order corrections to the Bethe sum rule also give better than 0.5% accuracy for Z<70, and inclusion of the second-order corrections should extend this range, as well.

  10. Solar multi-conjugate adaptive optics based on high order ground layer adaptive optics and low order high altitude correction.

    PubMed

    Zhang, Lanqiang; Guo, Youming; Rao, Changhui

    2017-02-20

    Multi-conjugate adaptive optics (MCAO) is the most promising technique currently developed to enlarge the corrected field of view of adaptive optics for astronomy. In this paper, we propose a new configuration of solar MCAO based on high order ground layer adaptive optics and low order high altitude correction, which result in a homogeneous correction effect in the whole field of view. An individual high order multiple direction Shack-Hartmann wavefront sensor is employed in the configuration to detect the ground layer turbulence for low altitude correction. Furthermore, the other low order multiple direction Shack-Hartmann wavefront sensor supplies the wavefront information caused by high layers' turbulence through atmospheric tomography for high altitude correction. Simulation results based on the system design at the 1-meter New Vacuum Solar Telescope show that the correction uniform of the new scheme is obviously improved compared to conventional solar MCAO configuration.

  11. Phase holograms in PMMA with proximity effect correction

    NASA Technical Reports Server (NTRS)

    Maker, Paul D.; Muller, R. E.

    1993-01-01

    Complex computer generated phase holograms (CGPH's) have been fabricated in PMMA by partial e-beam exposure and subsequent partial development. The CGPH was encoded as a sequence of phase delay pixels and written by the JEOL JBX-5D2 E-beam lithography system, a different dose being assigned to each value of phase delay. Following carefully controlled partial development, the pattern appeared rendered in relief in the PMMA, which then acts as the phase-delay medium. The exposure dose was in the range 20-200 micro-C/sq cm, and very aggressive development in pure acetone led to low contrast. This enabled etch depth control to better than plus or minus lambda(sub vis)/60. That result was obtained by exposing isolated 50 micron square patches and measuring resist removal over the central area where the proximity effect dose was uniform and related only to the local exposure. For complex CGPH's with pixel size of the order of the e-beam proximity effect radius, the patterns must be corrected for the extra exposure caused by electrons scattered back up out of the substrate. This has been accomplished by deconvolving the two-dimensional dose deposition function with the desired dose pattern. The deposition function, which plays much the same role as an instrument response function, was carefully measured under the exact conditions used to expose the samples. The devices fabricated were designed with 16 equal phase steps per retardation cycle, were up to 1 cm square, and consisted of up to 100 million 0.3-2.0 micron square pixels. Data files were up to 500 MB long and exposure times ranged to tens of hours. A Fresnel phase lens was fabricated that had diffraction limited optical performance with better than 85 percent efficiency.

  12. A mean-field theory for self-propelled particles interacting by velocity alignment mechanisms

    NASA Astrophysics Data System (ADS)

    Peruani, F.; Deutsch, A.; Bär, M.

    2008-04-01

    A mean-field approach (MFA) is proposed for the analysis of orientational order in a two-dimensional system of stochastic self-propelled particles interacting by local velocity alignment mechanism. The treatment is applied to the cases of ferromagnetic (F) and liquid-crystal (LC) alignment. In both cases, MFA yields a second order phase transition for a critical noise strength and a scaling exponent of 1/2 for the respective order parameters. We find that the critical noise amplitude ηc at which orientational order emerges in the LC case is smaller than in the F-alignment case, i.e. ηLC C<ηF C. A comparison with simulations of individual-based models with F- resp. LC-alignment shows that the predictions about the critical behavior and the qualitative relation between the respective critical noise amplitudes are correct.

  13. Microscopic Description of Thermodynamics of Lipid Membrane at Liquid-Gel Phase Transition

    NASA Astrophysics Data System (ADS)

    Kheyfets, B.; Galimzyanov, T.; Mukhin, S.

    2018-05-01

    A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid-gel phase transition. We demonstrate that liquid-gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase of lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.

  14. Phase stability of TiO 2 polymorphs from diffusion Quantum Monte Carlo

    DOE PAGES

    Luo, Ye; Benali, Anouar; Shulenburger, Luke; ...

    2016-11-24

    Titanium dioxide, TiO 2, has multiple applications in catalysis, energy conversion and memristive devices because of its electronic structure. Most of applications utilize the naturally existing phases: rutile, anatase and brookite. In spite of the simple form of TiO 2 and its wide uses, there is long- standing disagreement between theory and experiment on the energetic ordering of these phases that has never been resolved. We present the first analysis of phase stability at zero temperature using the highly accurate many-body fixed node diffusion Quantum Monte Carlo (QMC) method. We include temperature effects by calculating the Helmholtz free energy includingmore » both internal energy corrected by QMC and vibrational contributions from phonon calculations within the quasi harmonic approximation via density functional perturbation theory. Our QMC calculations find that anatase is the most stable phase at zero temperature, consistent with many previous mean- field calculations. Furthermore, at elevated temperatures, rutile becomes the most stable phase. For all finite temperatures, brookite is always the least stable phase.« less

  15. A new version of Stochastic-parallel-gradient-descent algorithm (SPGD) for phase correction of a distorted orbital angular momentum (OAM) beam

    NASA Astrophysics Data System (ADS)

    Jiao Ling, LIn; Xiaoli, Yin; Huan, Chang; Xiaozhou, Cui; Yi-Lin, Guo; Huan-Yu, Liao; Chun-YU, Gao; Guohua, Wu; Guang-Yao, Liu; Jin-KUn, Jiang; Qing-Hua, Tian

    2018-02-01

    Atmospheric turbulence limits the performance of orbital angular momentum-based free-space optical communication (FSO-OAM) system. In order to compensate phase distortion induced by atmospheric turbulence, wavefront sensorless adaptive optics (WSAO) has been proposed and studied in recent years. In this paper a new version of SPGD called MZ-SPGD, which combines the Z-SPGD based on the deformable mirror influence function and the M-SPGD based on the Zernike polynomials, is proposed. Numerical simulations show that the hybrid method decreases convergence times markedly but can achieve the same compensated effect compared to Z-SPGD and M-SPGD.

  16. Terahertz adaptive optics with a deformable mirror.

    PubMed

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  17. Performance improvement of a binary quantized all-digital phase-locked loop with a new aided-acquisition technique

    NASA Astrophysics Data System (ADS)

    Sandoz, J.-P.; Steenaart, W.

    1984-12-01

    The nonuniform sampling digital phase-locked loop (DPLL) with sequential loop filter, in which the correction sizes are controlled by the accumulated differences of two additional phase comparators, is graphically analyzed. In the absence of noise and frequency drift, the analysis gives some physical insight into the acquisition and tracking behavior. Taking noise into account, a mathematical model is derived and a random walk technique is applied to evaluate the rms phase error and the mean acquisition time. Experimental results confirm the appropriate simplifying hypotheses used in the numerical analysis. Two related performance measures defined in terms of the rms phase error and the acquisition time for a given SNR are used. These measures provide a common basis for comparing different digital loops and, to a limited extent, also with a first-order linear loop. Finally, the behavior of a modified DPLL under frequency deviation in the presence of Gaussian noise is tested experimentally and by computer simulation.

  18. Finite-size effects in Luther-Emery phases of Holstein and Hubbard models

    NASA Astrophysics Data System (ADS)

    Greitemann, J.; Hesselmann, S.; Wessel, S.; Assaad, F. F.; Hohenadler, M.

    2015-12-01

    The one-dimensional Holstein model and its generalizations have been studied extensively to understand the effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from a metallic phase with a spin gap due to attractive backscattering to a Peierls insulator with charge-density-wave order. Our quantum Monte Carlo results support the existence of a metallic phase with dominant power-law charge correlations, as described by the Luther-Emery fixed point. We demonstrate that for Holstein and also for purely fermionic models the spin gap significantly complicates finite-size numerical studies, and explains inconsistent previous results for Luttinger parameters and phase boundaries. On the other hand, no such complications arise in spinless models. The correct low-energy theory of the spinful Holstein model is argued to be that of singlet bipolarons with a repulsive, mutual interaction. This picture naturally explains the existence of a metallic phase, but also implies that gapless Luttinger liquid theory is not applicable.

  19. Phase derivative method for reconstruction of slightly off-axis digital holograms.

    PubMed

    Guo, Cheng-Shan; Wang, Ben-Yi; Sha, Bei; Lu, Yu-Jie; Xu, Ming-Yuan

    2014-12-15

    A phase derivative (PD) method is proposed for reconstruction of off-axis holograms. In this method, a phase distribution of the tested object wave constrained within 0 to pi radian is firstly worked out by a simple analytical formula; then it is corrected to its right range from -pi to pi according to the sign characteristics of its first-order derivative. A theoretical analysis indicates that this PD method is particularly suitable for reconstruction of slightly off-axis holograms because it only requires the spatial frequency of the reference beam larger than spatial frequency of the tested object wave in principle. In addition, because the PD method belongs to a pure local method with no need of any integral operation or phase shifting algorithm in process of the phase retrieval, it could have some advantages in reducing computer load and memory requirements to the image processing system. Some experimental results are given to demonstrate the feasibility of the method.

  20. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  1. Simulation of co-phase error correction of optical multi-aperture imaging system based on stochastic parallel gradient decent algorithm

    NASA Astrophysics Data System (ADS)

    He, Xiaojun; Ma, Haotong; Luo, Chuanxin

    2016-10-01

    The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.

  2. Regulatory controls on the hydrogeological characterization of a mixed waste disposal site, Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebelmann, K.L.

    1990-01-01

    Following the detection of chlorinated volatile organic compounds in the groundwater beneath the SDA in the summer of 1987, hydrogeological characterization of the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory (INEL) was required by the Resource Conservation and Recovery Act (RCRA). The waste site, the Subsurface Disposal Area (SDA), is the subject of a RCRA Corrective Action Program. Regulatory requirements for the Corrective Action Program dictate a phased approach to evaluation of the SDA. In the first phase of the program, the SDA is the subject of a RCRA Facility Investigation (RIF), which will obtain information to fullymore » characterize the physical properties of the site, determine the nature and extent of contamination, and identify pathways for migration of contaminants. If the need for corrective measures is identified during the RIF, a Corrective Measures Study (CMS) will be performed as second phase. Information generated during the RIF will be used to aid in the selection and implementation of appropriate corrective measures to correct the release. Following the CMS, the final phase is the implementation of the selected corrective measures. 4 refs., 1 fig.« less

  3. Nanoscale Electronic Structure of Cuprate Superconductors Investigated with Scanning Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Williams, Tess Lawanna

    Despite 25 years of intense research activity, high-temperature superconductors remain poorly understood, with the underlying pairing mechanism still unidentified. Efforts are complicated by the remarkably complex phase diagram, rich in energy-dependent charge and spin orders. In this thesis I describe the use of a Scanning Tunneling Microscope (STM) to study energy-dependent charge orders in Bi2-- yPbySr2CuO6+delta , a cuprate high-temperature superconductor. STM, a surface-sensitive probe used to map electronic structure with sub-meV energy resolution and sub-A spatial resolution, has contributed greatly to our current understanding of the cuprate high-temperature superconductors. However, STM data is acquired with a constant-current normalization condition. The measured differential conductance, g(x, y, V), is often taken to be proportional to the density of states at energy eV (where V is the voltage applied between tip and sample). In fact, due to the normalization condition, the measured g(x, y, V) is actually the quotient of the density of states at energy eV and the integrated density of states from the Fermi energy to eV. This unavoidable quotient may fold electronic structure from its true energy range into other energies. I discuss a new method to correct STM differential conductance spectra to remove the constant-current normalization condition. Using local work function measurements and the constant-current topograph, I create a map which does not suffer from the setpoint effect and contains a mixture of topographic information and properly normalized spectroscopic information. I apply this method to the extraction of the incommensurate charge modulation at q⃗˜34 2pa0 . I also extend the study of electronic nematic order, an atomic-lattice-periodic C4 → C2 symmetry breaking, from highly underdoped Bi2 Sr2CaCu2O 8+delta [28] to overdoped Bi2--yPb ySr2CuO6+/-delta. I find that the electronic nematic order parameter is robust to change of scan angle. I define and contrast three different electronic nematic orders with different phases with respect to the crystal. I discuss the effect of the choice of normalization and possible alternate explanations for the source of the calculated nematic order. Finally, I discuss a drift-correction technique, which removes picometer scale drift that is introduced into a spectral map by experimental imperfections, and characterize the optimal algorithm and potential artifacts that drift-correction may introduce.

  4. Application of phase correction to improve the interpretation of crude oil spectra obtained using 7 T Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Cho, Yunju; Qi, Yulin; O'Connor, Peter B; Barrow, Mark P; Kim, Sunghwan

    2014-01-01

    In this study, a phase-correction technique was applied to the study of crude oil spectra obtained using a 7 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). 7 T FT-ICR MS had not been widely used for oil analysis due to the lower resolving power compared with high field FT-ICR MS. For low field instruments, usage of data that has not been phase-corrected results in an inability to resolve critical mass splits of C3 and SH4 (3.4 mDa), and (13)C and CH (4.5 mDa). This results in incorrect assignments of molecular formulae, and discontinuous double bond equivalents (DBE) and carbon number distributions of S1, S2, and hydrocarbon classes are obtained. Application of phase correction to the same data, however, improves the reliability of assignments and produces continuous DBE and carbon number distributions. Therefore, this study clearly demonstrates that phase correction improves data analysis and the reliability of assignments of molecular formulae in crude oil anlayses.

  5. Dual-channel in-line digital holographic double random phase encryption

    PubMed Central

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, D V G L N

    2012-01-01

    We present a robust encryption method for the encoding of 2D/3D objects using digital holography and virtual optics. Using our recently developed dual-plane in-line digital holography technique, two in-line digital holograms are recorded at two different planes and are encrypted using two different double random phase encryption configurations, independently. The process of using two mutually exclusive encryption channels makes the system more robust against attacks since both the channels should be decrypted accurately in order to get a recognizable reconstruction. Results show that the reconstructed object is unrecognizable even when the portion of the correct phase keys used during decryption is close to 75%. The system is verified against blind decryptions by evaluating the SNR and MSE. Validation of the proposed method and sensitivities of the associated parameters are quantitatively analyzed and illustrated. PMID:23471012

  6. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide

    DOE PAGES

    Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan; ...

    2017-11-27

    Here, diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et~al. in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VOmore » $$_2$$, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development.« less

  7. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan

    Here, diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et~al. in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VOmore » $$_2$$, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development.« less

  8. Langevin dynamics encapsulate the microscopic and emergent macroscopic properties of midge swarms

    PubMed Central

    2018-01-01

    In contrast to bird flocks, fish schools and animal herds, midge swarms maintain cohesion but do not possess global order. High-speed imaging techniques are now revealing that these swarms have surprising properties. Here, I show that simple models found on the Langevin equation are consistent with this wealth of recent observations. The models predict correctly that large accelerations, exceeding 10 g, will be common and they predict correctly the coexistence of core condensed phases surrounded by dilute vapour phases. The models also provide new insights into the influence of environmental conditions on swarm dynamics. They predict that correlations between midges increase the strength of the effective force binding the swarm together. This may explain why such correlations are absent in laboratory swarms but present in natural swarms which contend with the wind and other disturbances. Finally, the models predict that swarms have fluid-like macroscopic mechanical properties and will slosh rather than slide back and forth after being abruptly displaced. This prediction offers a promising avenue for future experimentation that goes beyond current quasi-static testing which has revealed solid-like responses. PMID:29298958

  9. Radiative corrections to the quark masses in the ferromagnetic Ising and Potts field theories

    NASA Astrophysics Data System (ADS)

    Rutkevich, Sergei B.

    2017-10-01

    We consider the Ising Field Theory (IFT), and the 3-state Potts Field Theory (PFT), which describe the scaling limits of the two-dimensional lattice q-state Potts model with q = 2, and q = 3, respectively. At zero magnetic field h = 0, both field theories are integrable away from the critical point, have q degenerate vacua in the ferromagnetic phase, and q (q - 1) particles of the same mass - the kinks interpolating between two different vacua. Application of a weak magnetic field induces confinement of kinks into bound states - the "mesons" (for q = 2 , 3) consisting predominantly of two kinks, and "baryons" (for q = 3), which are essentially the three-kink excitations. The kinks in the confinement regime are also called "the quarks". We review and refine the Form Factor Perturbation Theory (FFPT), adapting it to the analysis of the confinement problem in the limit of small h, and apply it to calculate the corrections to the kink (quark) masses induced by the multi-kink fluctuations caused by the weak magnetic field. It is shown that the subleading third-order ∼h3 correction to the kink mass vanishes in the IFT. The leading second order ∼h2 correction to the kink mass in the 3-state PFT is estimated by truncation the infinite form factor expansion at the first term representing contribution of the two-kink fluctuations into the kink self-energy.

  10. DAC-board based X-band EPR spectrometer with arbitrary waveform control

    NASA Astrophysics Data System (ADS)

    Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi

    2013-10-01

    We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ⩽250 ps resolution. The implications and potential applications of these capabilities will be discussed.

  11. Lagrangian and Hamiltonian constraints for guiding-center Hamiltonian theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tronko, Natalia; Brizard, Alain J.

    A consistent guiding-center Hamiltonian theory is derived by Lie-transform perturbation method, with terms up to second order in magnetic-field nonuniformity. Consistency is demonstrated by showing that the guiding-center transformation presented here satisfies separate Jacobian and Lagrangian constraints that have not been explored before. A new first-order term appearing in the guiding-center phase-space Lagrangian is identified through a calculation of the guiding-center polarization. It is shown that this new polarization term also yields a simpler expression of the guiding-center toroidal canonical momentum, which satisfies an exact conservation law in axisymmetric magnetic geometries. Finally, an application of the guiding-center Lagrangian constraint onmore » the guiding-center Hamiltonian yields a natural interpretation for its higher-order corrections.« less

  12. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    NASA Astrophysics Data System (ADS)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  13. On current contribution to Fronsdal equations

    NASA Astrophysics Data System (ADS)

    Misuna, N. G.

    2018-03-01

    We explore a local form of second-order Vasiliev equations proposed in [arxiv:arXiv:1706.03718] and obtain an explicit expression for quadratic corrections to bosonic Fronsdal equations, generated by gauge-invariant higher-spin currents. Our analysis is performed for general phase factor, and for the case of parity-invariant theory we find the agreement with expressions for cubic vertices available in the literature. This provides an additional indication that local frame proposed in [arxiv:arXiv:1706.03718] is the proper one.

  14. Numerical solution of problems concerning the thermal convection of a variable-viscosity liquid

    NASA Astrophysics Data System (ADS)

    Zherebiatev, I. F.; Lukianov, A. T.; Podkopaev, Iu. L.

    A stabilizing-correction scheme is constructed for integrating the fourth-order equation describing the dynamics of a viscous incompressible liquid. As an example, a solution is obtained to the problem of the solidification of a liquid in a rectangular region with allowance for convective energy transfer in the liquid phase as well as temperature-dependent changes of viscosity. It is noted that the proposed method can be used to study steady-state problems of thermal convection in ingots obtained through continuous casting.

  15. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.

    PubMed

    Rocha, Karolinne Maia; Vabre, Laurent; Chateau, Nicolas; Krueger, Ronald R

    2010-01-01

    To evaluate the changes in visual acuity and visual perception generated by correcting higher order aberrations in highly aberrated eyes using a large-stroke adaptive optics visual simulator. A crx1 Adaptive Optics Visual Simulator (Imagine Eyes) was used to correct and modify the wavefront aberrations in 12 keratoconic eyes and 8 symptomatic postoperative refractive surgery (LASIK) eyes. After measuring ocular aberrations, the device was programmed to compensate for the eye's wavefront error from the second order to the fifth order (6-mm pupil). Visual acuity was assessed through the adaptive optics system using computer-generated ETDRS opto-types and the Freiburg Visual Acuity and Contrast Test. Mean higher order aberration root-mean-square (RMS) errors in the keratoconus and symptomatic LASIK eyes were 1.88+/-0.99 microm and 1.62+/-0.79 microm (6-mm pupil), respectively. The visual simulator correction of the higher order aberrations present in the keratoconus eyes improved their visual acuity by a mean of 2 lines when compared to their best spherocylinder correction (mean decimal visual acuity with spherocylindrical correction was 0.31+/-0.18 and improved to 0.44+/-0.23 with higher order aberration correction). In the symptomatic LASIK eyes, the mean decimal visual acuity with spherocylindrical correction improved from 0.54+/-0.16 to 0.71+/-0.13 with higher order aberration correction. The visual perception of ETDRS letters was improved when correcting higher order aberrations. The adaptive optics visual simulator can effectively measure and compensate for higher order aberrations (second to fifth order), which are associated with diminished visual acuity and perception in highly aberrated eyes. The adaptive optics technology may be of clinical benefit when counseling patients with highly aberrated eyes regarding their maximum subjective potential for vision correction. Copyright 2010, SLACK Incorporated.

  16. Impact of Feedback on Three Phases of Performance Monitoring

    PubMed Central

    Appelgren, Alva; Penny, William; Bengtsson, Sara L

    2013-01-01

    We investigated if certain phases of performance monitoring show differential sensitivity to external feedback and thus rely on distinct mechanisms. The phases of interest were: the error phase (FE), the phase of the correct response after errors (FEC), and the phase of correct responses following corrects (FCC). We tested accuracy and reaction time (RT) on 12 conditions of a continuous-choice-response task; the 2-back task. External feedback was either presented or not in FE and FEC, and delivered on 0%, 20%, or 100% of FCC trials. The FCC20 was matched to FE and FEC in the number of sounds received so that we could investigate when external feedback was most valuable to the participants. We found that external feedback led to a reduction in accuracy when presented on all the correct responses. Moreover, RT was significantly reduced for FCC100, which in turn correlated with the accuracy reduction. Interestingly, the correct response after an error was particularly sensitive to external feedback since accuracy was reduced when external feedback was presented during this phase but not for FCC20. Notably, error-monitoring was not influenced by feedback-type. The results are in line with models suggesting that the internal error-monitoring system is sufficient in cognitively demanding tasks where performance is ∼ 80%, as well as theories stipulating that external feedback directs attention away from the task. Our data highlight the first correct response after an error as particularly sensitive to external feedback, suggesting that important consolidation of response strategy takes place here. PMID:24217138

  17. Toward regional corrections of long period CMT inversions using InSAR

    NASA Astrophysics Data System (ADS)

    Shakibay Senobari, N.; Funning, G.; Ferreira, A. M.

    2017-12-01

    One of InSAR's main strengths, with respect to other methods of studying earthquakes, is finding the accurate location of the best point source (or `centroid') for an earthquake. While InSAR data have great advantages for study of shallow earthquakes, the number of earthquakes for which we have InSAR data is low, compared with the number of earthquakes recorded seismically. And though improvements to SAR satellite constellations have enhanced the use of InSAR data during earthquake response, post-event data still have a latency on the order of days. On the other hand, earthquake centroid inversion methods using long period seismic data (e.g. the Global CMT method) are fast but include errors caused by inaccuracies in both the Earth velocity model and in wave propagation assumptions (e.g. Hjörleifsdóttir and Ekström, 2010; Ferreira and Woodhouse, 2006). Here we demonstrate a method that combines the strengths of both methods, calculating regional travel-time corrections for long-period waveforms using accurate centroid locations from InSAR, then applying these to other events that occur in the same region. Our method is based on the observation that synthetic seismograms produced from InSAR source models and locations match the data very well except for some phase shifts (travel time biases) between the two waveforms, likely corresponding to inaccuracies in Earth velocity models (Weston et al., 2014). Our previous work shows that adding such phase shifts to the Green's functions can improve the accuracy of long period seismic CMT inversions by reducing tradeoffs between the moment tensor components and centroid location (e.g. Shakibay Senobari et al., AGU Fall Meeting 2015). Preliminary work on several pairs of neighboring events (e.g. Landers-Hector Mine, the 2000 South Iceland earthquake sequences) shows consistent azimuthal patterns of these phase shifts for nearby events at common stations. These phase shift patterns strongly suggest that it is possible to determine regional corrections for the source regions of these events. The aim of this project is to perform a full CMT inversion using the phase shift corrections, calculated for nearby events, to observe improvement in CMT locations and solutions. We will demonstrate our method on the five M 6 events that occurred in central Italy between 1997 and 2016.

  18. Automatic programming for critical applications

    NASA Technical Reports Server (NTRS)

    Loganantharaj, Raj L.

    1988-01-01

    The important phases of a software life cycle include verification and maintenance. Usually, the execution performance is an expected requirement in a software development process. Unfortunately, the verification and the maintenance of programs are the time consuming and the frustrating aspects of software engineering. The verification cannot be waived for the programs used for critical applications such as, military, space, and nuclear plants. As a consequence, synthesis of programs from specifications, an alternative way of developing correct programs, is becoming popular. The definition, or what is understood by automatic programming, has been changed with our expectations. At present, the goal of automatic programming is the automation of programming process. Specifically, it means the application of artificial intelligence to software engineering in order to define techniques and create environments that help in the creation of high level programs. The automatic programming process may be divided into two phases: the problem acquisition phase and the program synthesis phase. In the problem acquisition phase, an informal specification of the problem is transformed into an unambiguous specification while in the program synthesis phase such a specification is further transformed into a concrete, executable program.

  19. Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics.

    PubMed

    Ellerbroek, B L; Rigaut, F

    2001-10-01

    Multiconjugate adaptive optics (MCAO) is a technique for correcting turbulence-induced phase distortions in three dimensions instead of two, thereby greatly expanding the corrected field of view of an adaptive optics system. This is accomplished with use of multiple deformable mirrors conjugate to distinct ranges in the atmosphere, with actuator commands computed from wave-front sensor (WFS) measurements from multiple guide stars. Laser guide stars (LGSs) must be used (at least for the forseeable future) to achieve a useful degree of sky coverage in an astronomical MCAO system. Much as a single LGS cannot be used to measure overall wave-front tilt, a constellation of multiple LGSs at a common range cannot detect tilt anisoplanatism. This error alone will significantly degrade the performance of a MCAO system based on a single tilt-only natural guide star (NGS) and multiple tilt-removed LGSs at a common altitude. We present a heuristic, low-order model for the principal source of tilt anisoplanatism that suggests four possible approaches to eliminating this defect in LGS MCAO: (i) tip/tilt measurements from multiple NGS, (ii) a solution to the LGS tilt uncertainty problem, (iii) additional higher-order WFS measurements from a single NGS, or (iv) higher-order WFS measurements from both sodium and Rayleigh LGSs at different ranges. Sample numerical results for one particular MCAO system configuration indicate that approach (ii), if feasible, would provide the highest degree of tilt anisoplanatism compensation. Approaches (i) and (iv) also provide very useful levels of performance and do not require unrealistically low levels of WFS measurement noise. For a representative set of parameters for an 8-m telescope, the additional laser power required for approach (iv) is on the order of 2 W per Rayleigh LGS.

  20. Fast conjugate phase image reconstruction based on a Chebyshev approximation to correct for B0 field inhomogeneity and concomitant gradients.

    PubMed

    Chen, Weitian; Sica, Christopher T; Meyer, Craig H

    2008-11-01

    Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method.

  1. The Additional Secondary Phase Correction System for AIS Signals

    PubMed Central

    Wang, Xiaoye; Zhang, Shufang; Sun, Xiaowen

    2017-01-01

    This paper looks at the development and implementation of the additional secondary phase factor (ASF) real-time correction system for the Automatic Identification System (AIS) signal. A large number of test data were collected using the developed ASF correction system and the propagation characteristics of the AIS signal that transmits at sea and the ASF real-time correction algorithm of the AIS signal were analyzed and verified. Accounting for the different hardware of the receivers in the land-based positioning system and the variation of the actual environmental factors, the ASF correction system corrects original measurements of positioning receivers in real time and provides corrected positioning accuracy within 10 m. PMID:28362330

  2. Diffraction effect of the injected beam in axisymmetrical structural CO2 laser

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen; Wang, Shijian; Fan, Qunchao

    2012-07-01

    Diffraction effect of the injected beam in axisymmetrical structural CO2 laser is studied based on the injection-locking principle. The light intensity of the injected beam at the plane where the holophotes lie is derived according to the Huygens-Fresnel diffraction integral equation. And then the main parameters which influence the diffraction light intensity are given. The calculated results indicate that the first-order diffraction signal will play an important role in the phase-locking when the zero-order diffraction cannot reach the folded cavities. The numerical examples are given to confirm the correctness of the results, and the comparisons between the theoretical and the experimental results are illustrated.

  3. Photometric correction of VIR high space resolution data of Ceres

    NASA Astrophysics Data System (ADS)

    Longobardo, Andrea; Palomba, Ernesto; De Sanctis, Maria Cristina; Ciarniello, Mauro; Tosi, Federico; Giacomo Carrozzo, Filippo; Capria, Maria Teresa; Zambon, Francesca; Raponi, Andrea; Ammannito, Eleonora; Zinzi, Angelo; Raymond, Carol; Russell, Christopher T.; VIR-Dawn Team

    2016-10-01

    NASA's Dawn spacecraft [1] has been orbiting Ceres since early 2015. The mission is divided into five stages, characterized by different spacecraft altitudes corresponding to different space resolutions, i.e. Approach (CSA), Rotational Characterization (CSR), Survey (CSS), High Altitude Mapping Orbit (HAMO), and Low Altitude Mapping Orbit (LAMO).Ceres is a dark body (i.e. average albedo at 1.2 um is 0.08 [2]), hence photometric correction is much more important than for brighter asteroids (e.g. S-type and achondritric). Indeed, the negligible role of multiple scattering increases the reflectance dependence on phase angle.A photometric correction of VIR data at low spatial resolution (i.e. CSA, CSR, CSS) has already been applied with different methodologies (e.g. [2], [3]), These techniques highlight a reflectance and band depths dependency on the phase angle which is homogeneous on the entire surface in agreement with C-type taxonomy.However, with increasing spatial resolution (i.e. HAMO and LAMO data), the retrieval of a unique set of parameters for the photometric correction is no longer sufficient to obtain reliable albedo/band depth maps. In this work, a new photometric correction is obtained and applied to all the high resolution VIR data of Ceres, taking into account the reflectance variations observed at small scales. The developed algorithm will be implemented on the MATISSE tool [4] in order to be visualized on the Ceres shape model.Finally, an interpretation of the obtained phase functions is given in terms of optical and physical properties of the Ceres regolith.AcknowledgementsVIR was funded and coordinated by the Italian Space Agency, and built by SELEX ES, with the scientific leadership of IAPS-INAF, Rome, Italy, and is operated by IAPS-INAF, Rome, Italy. Support of the Dawn Science, Instrument, and Operation Teams is gratefully acknowledged.References[1] Russell, C. T. et al., 2012, Science 336, 686[2] Longobardo A., et al., 2016, LPSC, 2239[3] Ciarniello, M. et al., 2016, submitted to A&A[4] Zinzi, A. et al., 2016, A&C, 15, 16-28

  4. van der Waals criticality in AdS black holes: A phenomenological study

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Krishnakanta; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-10-01

    Anti-de Sitter black holes exhibit van der Waals-type phase transition. In the extended phase-space formalism, the critical exponents for any spacetime metric are identical to the standard ones. Motivated by this fact, we give a general expression for the Helmholtz free energy near the critical point, which correctly reproduces these exponents. The idea is similar to the Landau model, which gives a phenomenological description of the usual second-order phase transition. Here, two main inputs are taken into account for the analysis: (a) black holes should have van der Waals-like isotherms, and (b) free energy can be expressed solely as a function of thermodynamic volume and horizon temperature. Resulting analysis shows that the form of Helmholtz free energy correctly encapsulates the features of the Landau function. We also discuss the isolated critical point accompanied by nonstandard values of critical exponents. The whole formalism is then extended to two other criticalities, namely, Y -X and T -S (based on the standard; i.e., nonextended phase space), where X and Y are generalized force and displacement, whereas T and S are the horizon temperature and entropy. We observe that in the former case Gibbs free energy plays the role of Landau function, whereas in the later case, that role is played by the internal energy (here, it is the black hole mass). Our analysis shows that, although the existence of a van der Waals phase transition depends on the explicit form of the black hole metric, the values of the critical exponents are universal in nature.

  5. Adaptive correction procedure for TVL1 image deblurring under impulse noise

    NASA Astrophysics Data System (ADS)

    Bai, Minru; Zhang, Xiongjun; Shao, Qianqian

    2016-08-01

    For the problem of image restoration of observed images corrupted by blur and impulse noise, the widely used TVL1 model may deviate from both the data-acquisition model and the prior model, especially for high noise levels. In order to seek a solution of high recovery quality beyond the reach of the TVL1 model, we propose an adaptive correction procedure for TVL1 image deblurring under impulse noise. Then, a proximal alternating direction method of multipliers (ADMM) is presented to solve the corrected TVL1 model and its convergence is also established under very mild conditions. It is verified by numerical experiments that our proposed approach outperforms the TVL1 model in terms of signal-to-noise ratio (SNR) values and visual quality, especially for high noise levels: it can handle salt-and-pepper noise as high as 90% and random-valued noise as high as 70%. In addition, a comparison with a state-of-the-art method, the two-phase method, demonstrates the superiority of the proposed approach.

  6. High power phased array prototype for clinical high intensity focused ultrasound : applications to transcostal and transcranial therapy.

    PubMed

    Pernot, M; Aubry, J -F; Tanter, M; Marquet, F; Montaldo, G; Boch, A -L; Kujas, M; Seilhean, D; Fink, M

    2007-01-01

    Bursts of focused ultrasound energy three orders of magnitude more intense than diagnostic ultrasound became during the last decade a noninvasive option for treating cancer from breast to prostate or uterine fibroid. However, many challenges remain to be addressed. First, the corrections of distortions induced on the ultrasonic therapy beam during its propagation through defocusing obstacles like skull bone or ribs remain today a technological performance that still need to be validated clinically. Secondly, the problem of motion artifacts particularly important for the treatment of abdominal parts becomes today an important research topic. Finally, the problem of the treatment monitoring is a wide subject of interest in the growing HIFU community. For all these issues, the potential of new ultrasonic therapy devices able to work both in Transmit and Receive modes will be emphasized. A review of the work under achievement at L.O.A. using this new generation of HIFU prototypes on the monitoring, motion correction and aberrations corrections will be presented.

  7. A Phase Correction Technique Based on Spatial Movements of Antennas in Real-Time (S.M.A.R.T.) for Designing Self-Adapting Conformal Array Antennas

    NASA Astrophysics Data System (ADS)

    Roy, Sayan

    This research presents a real-time adaptive phase correction technique for flexible phased array antennas on conformal surfaces of variable shapes. Previously reported pattern correctional methods for flexible phased array antennas require prior knowledge on the possible non-planar shapes in which the array may adapt for conformal applications. For the first time, this initial requirement of shape curvature knowledge is no longer needed and the instantaneous information on the relative location of array elements is used here for developing a geometrical model based on a set of Bezier curves. Specifically, by using an array of inclinometer sensors and an adaptive phase-correctional algorithm, it has been shown that the proposed geometrical model can successfully predict different conformal orientations of a 1-by-4 antenna array in real-time without the requirement of knowing the shape-changing characteristics of the surface the array is attached upon. Moreover, the phase correction technique is validated by determining the field patterns and broadside gain of the 1-by-4 antenna array on four different conformal surfaces with multiple points of curvatures. Throughout this work, measurements are shown to agree with the analytical solutions and full-wave simulations.

  8. Numerical analysis of hybrid adaptive optics system for correcting beacon anisoplanatism and thermal blooming

    NASA Astrophysics Data System (ADS)

    Belen'kii, Mikhail S.; Rye, Vincent; Runyeon, Hope

    2007-09-01

    A concept of a Hybrid Wavefront-based Stochastic Parallel Gradient Decent (WSPGD) Adaptive Optics (AO) system for correcting the combined effects of Beacon Anisoplanatism and Thermal Blooming is introduced. This system integrates a conventional phase conjugate (PC) AO system with a WSPGD AO system. It uses on-axis wavefront measurements of a laser return from an extended beacon to generate initial deformable mirror (DM) commands. Since high frequency phase components are removed from the wavefront of a laser return by a low-pass filter effect of an extended beacon, the system also uses off-axis wavefront measurements to provide feedback for a multi-dithering beam control algorithm in order to generate additional DM commands that account for those missing high frequency phase components. Performance of the Hybrid WSPGD AO system was evaluated in simulation using a wave optics code. Numerical analysis was performed for two tactical scenarios that included ranges of L = 2 km and L = 20 km, ratio of aperture diameter to Fried parameter, D/r 0, of up to 15, ratio of beam spot size at the target to isoplanatic angle, θ B/θ 0, of up to 40, and general distortion number characterizing the strength of Thermal Blooming, N d = 50, 75, and 100. A line-of-sight in the corrected beam was stabilized using a target-plane tracker. The simulation results reveal that the Hybrid WSPGD AO system can efficiently correct the effects of Beacon Anisoplanatism and Thermal Blooming, providing improved compensation of Thermal Blooming in the presence of strong turbulence. Simulation results also indicate that the Hybrid WSPGD AO system outperforms a conventional PC AO system, increasing the Strehl ratio by up to 300% in less than 50 iterations. A follow-on laboratory demonstration performed under a separate program confirmed our theoretical predictions.

  9. SU-F-J-169: A Feasibility Study of Using MRI Alone in Abdominal Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawisza, I; Hsu, S; Peng, Q

    Purpose: To demonstrate the feasibility of a MRI alone workflow to support treatment planning and image guidance for abdominal radiotherapy. Methods: Abdominal MR images (in-phase/out-phase/fat/water) were acquired for a patient with breath-hold using a Dixon pulse sequence. Air masks were created on in-phase images using intensity thresholding and morphological processing methods in order to separate air from bone. Pseudo-CT and DRRs were generated using a published method. To investigate the effect of heterogeneity corrections on dose calculations using pseudo-CT, three different plans (3-field 3D, 5-field IMRT and 2-arc VMAT) were performed to mimic pancreatic treatments (1.8Gy/fraction over 28 fractions). Results:more » The DRRs created from pseudo-CT were of comparable quality as those created from CT. Comparing dose calculations with and without heterogeneity corrections between the 3 different plans, the biggest dosimetric differences were seen in the VMAT plan where modulation must occur across air-tissue interfaces such as those of the stomach and bowel. The DVHs for the VMAT plan showed ∼84cc difference at V50Gy in the small bowel. In terms of pseudo-CT quality, some small volumes of air in the bowel and stomach were misclassified as bone. The VMAT plan was re-optimized on pseudo-CT with 0 HU in the misclassified areas. The V50Gy in the small bowel differed by ∼90cc between the new VMAT plan with and without heterogeneity corrections. Conclusion: We found that the use of MRI alone is feasible for abdominal treatment planning and image guidance. A difference between calculations with and without heterogeneity corrections was found that is most pronounced for VMAT where the traversal of air-tissue interfaces is unavoidable. Future work will be performed to minimize misclassification between bone and air.« less

  10. Vector spherical quasi-Gaussian vortex beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2014-02-01

    Model equations for describing and efficiently computing the radiation profiles of tightly spherically focused higher-order electromagnetic beams of vortex nature are derived stemming from a vectorial analysis with the complex-source-point method. This solution, termed as a high-order quasi-Gaussian (qG) vortex beam, exactly satisfies the vector Helmholtz and Maxwell's equations. It is characterized by a nonzero integer degree and order (n,m), respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and an azimuthal phase dependency in the form of a complex exponential corresponding to a vortex beam. An attractive feature of the high-order solution is the rigorous description of strongly focused (or strongly divergent) vortex wave fields without the need of either the higher-order corrections or the numerically intensive methods. Closed-form expressions and computational results illustrate the analysis and some properties of the high-order qG vortex beams based on the axial and transverse polarization schemes of the vector potentials with emphasis on the beam waist.

  11. Universality from disorder in the random-bond Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Fytas, N. G.; Zierenberg, J.; Theodorakis, P. E.; Weigel, M.; Janke, W.; Malakis, A.

    2018-04-01

    Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior of the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L*≈32 for the chosen parameters.

  12. Corrective Action Investigation Plan for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada (Rev. No.: 0, August 2002)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NNSA /NV

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Offices's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 127 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 127 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of 12 Corrective Action Sites (CASs) located at Test Cell C; the Engine Maintenance, Assembly, and Disassembly (E-MAD) Facility; the X-Tunnel in Area 25; the Pluto Disassembly Facility; themore » Pluto Check Station; and the Port Gaston Training Facility in Area 26. These CASs include: CAS 25-01-05, Aboveground Storage Tank (AST); CAS 25-02-02, Underground Storage Tank (UST); CAS 25-23-11, Contaminated Materials; CAS 25-12-01, Boiler; CAS 25-01-06, AST; CAS 25-01-07, AST; CAS 25-02-13, UST; CAS 26- 01-01, Filter Tank (Rad) and Piping; CAS 26-01-02, Filter Tank (Rad); CAS 26-99-01, Radioactively Contaminated Filters; CAS 26-02-01, UST; CAS 26-23-01, Contaminated Liquids Spreader. Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for CAU 127 include radionuclides, metals, total petroleum hydrocarbons, volatile organic compounds, asbestos, and polychlorinated biphenyls. Additionally, beryllium may be present at some locations. The sources of potential releases are varied, but releases of contaminated liquids may have occurred and may have migrated into and impacted soil below and surrounding storage vessels at some of the CASs. Also, at several CASs, asbestos-containing materials may be present on the aboveground structures and may be friable. Exposure pathways are limited to ingestion, inhalation, and dermal contact (adsorption) of soils/sediments or liquids, or inhalation of contaminants by site workers due to disturbance of contaminated materials. Future land-use scenarios limit subsequent uses of the CASs to various nonresidential (i.e., industrial) activities. Field activities will consist of radiological walkover and screening surveys, and field-screening and collecting of both tank content and soil samples, and further sample testing as appropriate. A two-step data quality objective strategy will be followed: (1) Phase I will be to collect environmental samples for laboratory analysis to confirm the presence or absence of contaminants at concentrations exceeding preliminary action levels; and (2) Phase II will be to collect additional environmental samples for laboratory analysis to determine the extent of contamination identified in Phase I. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.« less

  13. Nonlinear gamma correction via normed bicoherence minimization in optical fringe projection metrology

    NASA Astrophysics Data System (ADS)

    Kamagara, Abel; Wang, Xiangzhao; Li, Sikun

    2018-03-01

    We propose a method to compensate for the projector intensity nonlinearity induced by gamma effect in three-dimensional (3-D) fringe projection metrology by extending high-order spectra analysis and bispectral norm minimization to digital sinusoidal fringe pattern analysis. The bispectrum estimate allows extraction of vital signal information features such as spectral component correlation relationships in fringe pattern images. Our approach exploits the fact that gamma introduces high-order harmonic correlations in the affected fringe pattern image. Estimation and compensation of projector nonlinearity is realized by detecting and minimizing the normed bispectral coherence of these correlations. The proposed technique does not require calibration information and technical knowledge or specification of fringe projection unit. This is promising for developing a modular and calibration-invariant model for intensity nonlinear gamma compensation in digital fringe pattern projection profilometry. Experimental and numerical simulation results demonstrate this method to be efficient and effective in improving the phase measuring accuracies with phase-shifting fringe pattern projection profilometry.

  14. Density and Phase State of a Confined Nonpolar Fluid

    NASA Astrophysics Data System (ADS)

    Kienle, Daniel F.; Kuhl, Tonya L.

    2016-07-01

    Measurements of the mean refractive index of a spherelike nonpolar fluid, octamethytetracylclosiloxane (OMCTS), confined between mica sheets, demonstrate direct and conclusive experimental evidence of the absence of a first-order liquid-to-solid phase transition in the fluid when confined, which has been suggested to occur from previous experimental and simulation results. The results also show that the density remains constant throughout confinement, and that the fluid is incompressible. This, along with the observation of very large increases (many orders of magnitude) in viscosity during confinement from the literature, demonstrate that the molecular motion is limited by the confining wall and not the molecular packing. In addition, the recently developed refractive index profile correction method, which enables the structural perturbation inherent at a solid-liquid interface and that of a liquid in confinement to be determined independently, was used to show that there was no measurable excess or depleted mass of OMCTS near the mica surface in bulk films or confined films of only two molecular layers.

  15. Soft Expansion of Double-Real-Virtual Corrections to Higgs Production at N$^3$LO

    DOE PAGES

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; ...

    2015-05-15

    We present methods to compute higher orders in the threshold expansion for the one-loop production of a Higgs boson in association with two partons at hadron colliders. This process contributes to the N 3LO Higgs production cross section beyond the soft-virtual approximation. We use reverse unitarity to expand the phase-space integrals in the small kinematic parameters and to reduce the coefficients of the expansion to a small set of master integrals. We describe two methods for the calculation of the master integrals. The first was introduced for the calculation of the soft triple-real radiation relevant to N 3LO Higgs production.more » The second uses a particular factorization of the three body phase-space measure and the knowledge of the scaling properties of the integral itself. Our result is presented as a Laurent expansion in the dimensional regulator, although some of the master integrals are computed to all orders in this parameter.« less

  16. Fermion-induced quantum criticality with two length scales in Dirac systems

    NASA Astrophysics Data System (ADS)

    Torres, Emilio; Classen, Laura; Herbut, Igor F.; Scherer, Michael M.

    2018-03-01

    The quantum phase transition to a Z3-ordered Kekulé valence bond solid in two-dimensional Dirac semimetals is governed by a fermion-induced quantum critical point, which renders the putatively discontinuous transition continuous. We study the resulting universal critical behavior in terms of a functional RG approach, which gives access to the scaling behavior on the symmetry-broken side of the phase transition, for general dimensions and number of Dirac fermions. In particular, we investigate the emergence of the fermion-induced quantum critical point for spacetime dimensions 2

  17. 76 FR 4201 - Kiwifruit Grown in California; Order Amending Marketing Order No. 920; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 920 [Doc. No. AO-FV-08-0174; AMS-FV-08-0085; FV08-920-3 C] Kiwifruit Grown in California; Order Amending Marketing Order No. 920; Correction AGENCY: Agricultural Marketing Service, USDA. ACTION: Correcting amendment. SUMMARY: This document...

  18. Station Correction Uncertainty in Multiple Event Location Algorithms and the Effect on Error Ellipses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Jason P.; Carlson, Deborah K.; Ortiz, Anne

    Accurate location of seismic events is crucial for nuclear explosion monitoring. There are several sources of error in seismic location that must be taken into account to obtain high confidence results. Most location techniques account for uncertainties in the phase arrival times (measurement error) and the bias of the velocity model (model error), but they do not account for the uncertainty of the velocity model bias. By determining and incorporating this uncertainty in the location algorithm we seek to improve the accuracy of the calculated locations and uncertainty ellipses. In order to correct for deficiencies in the velocity model, itmore » is necessary to apply station specific corrections to the predicted arrival times. Both master event and multiple event location techniques assume that the station corrections are known perfectly, when in reality there is an uncertainty associated with these corrections. For multiple event location algorithms that calculate station corrections as part of the inversion, it is possible to determine the variance of the corrections. The variance can then be used to weight the arrivals associated with each station, thereby giving more influence to stations with consistent corrections. We have modified an existing multiple event location program (based on PMEL, Pavlis and Booker, 1983). We are exploring weighting arrivals with the inverse of the station correction standard deviation as well using the conditional probability of the calculated station corrections. This is in addition to the weighting already given to the measurement and modeling error terms. We re-locate a group of mining explosions that occurred at Black Thunder, Wyoming, and compare the results to those generated without accounting for station correction uncertainty.« less

  19. ALMA long baseline phase calibration using phase referencing

    NASA Astrophysics Data System (ADS)

    Asaki, Yoshiharu; Matsushita, Satoki; Fomalont, Edward B.; Corder, Stuartt A.; Nyman, Lars-Åke; Dent, William R. F.; Philips, Neil M.; Hirota, Akihiko; Takahashi, Satoko; Vila-Vilaro, Baltasar; Nikolic, Bojan; Hunter, Todd R.; Remijan, Anthony; Vlahakis, Catherine

    2016-08-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is the world's largest millimeter/submillimeter telescope and provides unprecedented sensitivities and spatial resolutions. To achieve the highest imaging capabilities, interferometric phase calibration for the long baselines is one of the most important subjects: The longer the baselines, the worse the phase stability becomes because of turbulent motions of the Earth's atmosphere, especially, the water vapor in the troposphere. To overcome this subject, ALMA adopts a phase correction scheme using a Water Vapor Radiometer (WVR) to estimate the amount of water vapor content along the antenna line of sight. An additional technique is phase referencing, in which a science target and a nearby calibrator are observed by turn by quickly changing the antenna pointing. We conducted feasibility studies of the hybrid technique with the WVR phase correction and the antenna Fast Switching (FS) phase referencing (WVR+FS phase correction) for the ALMA 16 km longest baselines in cases that (1) the same observing frequency both for a target and calibrator is used, and (2) higher and lower frequencies for a target and calibrator, respectively, with a typical switching cycle time of 20 s. It was found that the phase correction performance of the hybrid technique is promising where a nearby calibrator is located within roughly 3◦ from a science target, and that the phase correction with 20 s switching cycle time significantly improves the performance with the above separation angle criterion comparing to the 120 s switching cycle time. The currently trial phase calibration method shows the same performance independent of the observing frequencies. This result is especially important for the higher frequency observations because it becomes difficult to find a bright calibrator close to an arbitrary sky position. In the series of our experiments, it is also found that phase errors affecting the image quality come from not only the water vapor content in the lower troposphere but also a large structure of the atmosphere with a typical cell scale of a few tens of kilometers.

  20. Electronic transport in low dimensions: Carbon nanotubes and mesoscopic silver wires

    NASA Astrophysics Data System (ADS)

    Ghanem, Tarek Khairy

    This thesis explores the physics of low-dimensional electronic conductors using two materials systems, carbon nanotubes (CNTs) and lithographically-defined silver nanowires. In order to understand the intrinsic electronic properties of CNTs, it is important to eliminate the contact effects from the measurements. Here, this is accomplished by using a conductive-tip atomic force microscope cantilever as a local electrode in order to obtain length dependent transport properties. The CNT-movable electrode contact is fully characterized, and is largely independent of voltage bias conditions, and independent of the contact force beyond a certain threshold. The contact is affected by the fine positioning of the cantilever relative to the CNT due to parasitic lateral motion of the cantilever during the loading cycle, which, if not controlled, can lead to non-monotonic behavior of contact resistance vs. force. Length dependent transport measurements are reported for several metallic and semiconducting CNTs. The resistance versus length R(L) of semiconducting CNTs is linear in the on state. For the depleted state R(L) is linear for long channel lengths, but non-linear for short channel lengths due to the long depletion lengths in one-dimensional semiconductors. Transport remains diffusive under all depletion conditions, due to both low disorder and high temperature. The study of quantum corrections to classical conductivity in mesoscopic conductors is an essential tool for understanding phase coherence in these systems. A long standing discrepancy between theory and experiment regards the phase coherence time, which is expected theoretically to grow as a power law at low temperatures, but is experimentally found to saturate. The origins of this saturation have been debated for the last decade, with the main contenders being intrinsic decoherence by zero-point fluctuations of the electrons, and decoherence by dilute magnetic impurities. Here, the phase coherence time in quasi-one-dimensional silver wires is measured. The phase coherence times obtained from the weak localization correction to the conductivity at low magnetic field show saturation, while those obtained from universal conductance fluctuations at high field do not. This indicates that, for these samples, the origin of phase coherence time saturation obtained from weak localization is extrinsic, due to the presence of dilute magnetic impurities.

  1. Symmetry breaking in smectics and surface models of their singularities

    PubMed Central

    Chen, Bryan Gin-ge; Alexander, Gareth P.; Kamien, Randall D.

    2009-01-01

    The homotopy theory of topological defects in ordered media fails to completely characterize systems with broken translational symmetry. We argue that the problem can be understood in terms of the lack of rotational Goldstone modes in such systems and provide an alternate approach that correctly accounts for the interaction between translations and rotations. Dislocations are associated, as usual, with branch points in a phase field, whereas disclinations arise as critical points and singularities in the phase field. We introduce a three-dimensional model for two-dimensional smectics that clarifies the topology of disclinations and geometrically captures known results without the need to add compatibility conditions. Our work suggests natural generalizations of the two-dimensional smectic theory to higher dimensions and to crystals. PMID:19717435

  2. A Refinement of the McMillen (1988) Recursive Digital Filter for the Analysis of Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Falocchi, Marco; Giovannini, Lorenzo; Franceschi, Massimiliano de; Zardi, Dino

    2018-05-01

    We present a refinement of the recursive digital filter proposed by McMillen (Boundary-Layer Meteorol 43:231-245, 1988), for separating surface-layer turbulence from low-frequency fluctuations affecting the mean flow, especially over complex terrain. In fact, a straightforward application of the filter causes both an amplitude attenuation and a forward phase shift in the filtered signal. As a consequence turbulence fluctuations, evaluated as the difference between the original series and the filtered one, as well as higher-order moments calculated from them, may be affected by serious inaccuracies. The new algorithm (i) produces a rigorous zero-phase filter, (ii) restores the amplitude of the low-frequency signal, and (iii) corrects all filter-induced signal distortions.

  3. Investigation of Bandwidth-Efficient Coding and Modulation Techniques

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1992-01-01

    The necessary technology was studied to improve the bandwidth efficiency of the space-to-ground communications network using the current capabilities of that network as a baseline. The study was aimed at making space payloads, for example the Hubble Space Telescope, more capable without the need to completely redesign the link. Particular emphasis was placed on the following concepts: (1) what the requirements are which are necessary to convert an existing standard 4-ary phase shift keying communications link to one that can support, as a minimum, 8-ary phase shift keying with error corrections applied; and (2) to determine the feasibility of using the existing equipment configurations with additional signal processing equipment to realize the higher order modulation and coding schemes.

  4. Quadrature mixture LO suppression via DSW DAC noise dither

    DOEpatents

    Dubbert, Dale F [Cedar Crest, NM; Dudley, Peter A [Albuquerque, NM

    2007-08-21

    A Quadrature Error Corrected Digital Waveform Synthesizer (QECDWS) employs frequency dependent phase error corrections to, in effect, pre-distort the phase characteristic of the chirp to compensate for the frequency dependent phase nonlinearity of the RF and microwave subsystem. In addition, the QECDWS can employ frequency dependent correction vectors to the quadrature amplitude and phase of the synthesized output. The quadrature corrections cancel the radars' quadrature upconverter (mixer) errors to null the unwanted spectral image. A result is the direct generation of an RF waveform, which has a theoretical chirp bandwidth equal to the QECDWS clock frequency (1 to 1.2 GHz) with the high Spurious Free Dynamic Range (SFDR) necessary for high dynamic range radar systems such as SAR. To correct for the problematic upconverter local oscillator (LO) leakage, precision DC offsets can be applied over the chirped pulse using a pseudo-random noise dither. The present dither technique can effectively produce a quadrature DC bias which has the precision required to adequately suppress the LO leakage. A calibration technique can be employed to calculate both the quadrature correction vectors and the LO-nulling DC offsets using the radar built-in test capability.

  5. Optimal spiral phase modulation in Gerchberg-Saxton algorithm for wavefront reconstruction and correction

    NASA Astrophysics Data System (ADS)

    Baránek, M.; Běhal, J.; Bouchal, Z.

    2018-01-01

    In the phase retrieval applications, the Gerchberg-Saxton (GS) algorithm is widely used for the simplicity of implementation. This iterative process can advantageously be deployed in the combination with a spatial light modulator (SLM) enabling simultaneous correction of optical aberrations. As recently demonstrated, the accuracy and efficiency of the aberration correction using the GS algorithm can be significantly enhanced by a vortex image spot used as the target intensity pattern in the iterative process. Here we present an optimization of the spiral phase modulation incorporated into the GS algorithm.

  6. Spectral narrowing of a 980 nm tapered diode laser bar

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Ga"lle; Petersen, Paul Michael; Thestrup, Birgitte

    2011-03-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation, the wavelength spread of the laser could be limited to 0.04 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tuneable in a range of 16 nm.

  7. Local linear approximation of the Jacobian matrix better captures phase resetting of neural limit cycle oscillators.

    PubMed

    Oprisan, Sorinel Adrian

    2014-01-01

    One effect of any external perturbations, such as presynaptic inputs, received by limit cycle oscillators when they are part of larger neural networks is a transient change in their firing rate, or phase resetting. A brief external perturbation moves the figurative point outside the limit cycle, a geometric perturbation that we mapped into a transient change in the firing rate, or a temporal phase resetting. In order to gain a better qualitative understanding of the link between the geometry of the limit cycle and the phase resetting curve (PRC), we used a moving reference frame with one axis tangent and the others normal to the limit cycle. We found that the stability coefficients associated with the unperturbed limit cycle provided good quantitative predictions of both the tangent and the normal geometric displacements induced by external perturbations. A geometric-to-temporal mapping allowed us to correctly predict the PRC while preserving the intuitive nature of this geometric approach.

  8. An exploratory sequential design to validate measures of moral emotions.

    PubMed

    Márquez, Margarita G; Delgado, Ana R

    2017-05-01

    This paper presents an exploratory and sequential mixed methods approach in validating measures of knowledge of the moral emotions of contempt, anger and disgust. The sample comprised 60 participants in the qualitative phase when a measurement instrument was designed. Item stems, response options and correction keys were planned following the results obtained in a descriptive phenomenological analysis of the interviews. In the quantitative phase, the scale was used with a sample of 102 Spanish participants, and the results were analysed with the Rasch model. In the qualitative phase, salient themes included reasons, objects and action tendencies. In the quantitative phase, good psychometric properties were obtained. The model fit was adequate. However, some changes had to be made to the scale in order to improve the proportion of variance explained. Substantive and methodological im-plications of this mixed-methods study are discussed. Had the study used a single re-search method in isolation, aspects of the global understanding of contempt, anger and disgust would have been lost.

  9. Phase structure of NJL model with weak renormalization group

    NASA Astrophysics Data System (ADS)

    Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Yamada, Masatoshi

    2018-06-01

    We analyze the chiral phase structure of the Nambu-Jona-Lasinio model at finite temperature and density by using the functional renormalization group (FRG). The renormalization group (RG) equation for the fermionic effective potential V (σ ; t) is given as a partial differential equation, where σ : = ψ bar ψ and t is a dimensionless RG scale. When the dynamical chiral symmetry breaking (DχSB) occurs at a certain scale tc, V (σ ; t) has singularities originated from the phase transitions, and then one cannot follow RG flows after tc. In this study, we introduce the weak solution method to the RG equation in order to follow the RG flows after the DχSB and to evaluate the dynamical mass and the chiral condensate in low energy scales. It is shown that the weak solution of the RG equation correctly captures vacuum structures and critical phenomena within the pure fermionic system. We show the chiral phase diagram on temperature, chemical potential and the four-Fermi coupling constant.

  10. Long-wavelength macromolecular crystallography - First successful native SAD experiment close to the sulfur edge

    NASA Astrophysics Data System (ADS)

    Aurelius, O.; Duman, R.; El Omari, K.; Mykhaylyk, V.; Wagner, A.

    2017-11-01

    Phasing of novel macromolecular crystal structures has been challenging since the start of structural biology. Making use of anomalous diffraction of natively present elements, such as sulfur and phosphorus, for phasing has been possible for some systems, but hindered by the necessity to access longer X-ray wavelengths in order to make most use of the anomalous scattering contributions of these elements. Presented here are the results from a first successful experimental phasing study of a macromolecular crystal structure at a wavelength close to the sulfur K edge. This has been made possible by the in-vacuum setup and the long-wavelength optimised experimental setup at the I23 beamline at Diamond Light Source. In these early commissioning experiments only standard data collection and processing procedures have been applied, in particular no dedicated absorption correction has been used. Nevertheless the success of the experiment demonstrates that the capability to extract phase information can be even further improved once data collection protocols and data processing have been optimised.

  11. Projection-based estimation and nonuniformity correction of sensitivity profiles in phased-array surface coils.

    PubMed

    Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook

    2007-03-01

    To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.

  12. Statistical physics of multicomponent alloys using KKR-CPA

    DOE PAGES

    Khan, Suffian N.; Staunton, Julie B.; Stocks, George Malcolm

    2016-02-16

    We apply variational principles from statistical physics and the Landau theory of phase transitions to multicomponent alloys using the multiple-scattering theory of Korringa-Kohn-Rostoker (KKR) and the coherent potential approximation (CPA). This theory is a multicomponent generalization of the S( 2) theory of binary alloys developed by G. M. Stocks, J. B. Staunton, D. D. Johnson and others. It is highly relevant to the chemical phase stability of high-entropy alloys as it predicts the kind and size of finite-temperature chemical fluctuations. In doing so it includes effects of rearranging charge and other electronics due to changing site occupancies. When chemical fluctuationsmore » grow without bound an absolute instability occurs and a second-order order-disorder phase transition may be inferred. The S( 2) theory is predicated on the fluctuation-dissipation theorem; thus we derive the linear response of the CPA medium to perturbations in site-dependent chemical potentials in great detail. The theory lends itself to a natural interpretation in terms of competing effects: entropy driving disorder and favorable pair interactions driving atomic ordering. Moreover, to further clarify interpretation we present results for representative ternary alloys CuAgAu, NiPdPt, RhPdAg, and CoNiCu within a frozen charge (or band-only) approximation. These results include the so-called Onsager mean field correction that extends the temperature range for which the theory is valid.« less

  13. Role of zero-point effects in stabilizing the ground state structure of bulk Fe2P

    NASA Astrophysics Data System (ADS)

    Bhat, Soumya S.; Gupta, Kapil; Bhattacharjee, Satadeep; Lee, Seung-Cheol

    2018-05-01

    Structural stability of Fe2P is investigated in detail using first-principles calculations based on density functional theory. While the orthorhombic C23 phase is found to be energetically more stable, the experiments suggest it to be hexagonal C22 phase. In the present study, we show that in order to obtain the correct ground state structure of Fe2P from the first-principles based methods it is utmost necessary to consider the zero-point effects such as zero-point vibrations and spin fluctuations. This study demonstrates an exceptional case where a bulk material is stabilized by quantum effects, which are usually important in low-dimensional materials. Our results also indicate the possibility of magnetic field induced structural quantum phase transition in Fe2P, which should form the basis for further theoretical and experimental efforts.

  14. Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness.

    PubMed

    Mangin, B; Siberchicot, A; Nicolas, S; Doligez, A; This, P; Cierco-Ayrolles, C

    2012-03-01

    Among the several linkage disequilibrium measures known to capture different features of the non-independence between alleles at different loci, the most commonly used for diallelic loci is the r(2) measure. In the present study, we tackled the problem of the bias of r(2) estimate, which results from the sample structure and/or the relatedness between genotyped individuals. We derived two novel linkage disequilibrium measures for diallelic loci that are both extensions of the usual r(2) measure. The first one, r(S)(2), uses the population structure matrix, which consists of information about the origins of each individual and the admixture proportions of each individual genome. The second one, r(V)(2), includes the kinship matrix into the calculation. These two corrections can be applied together in order to correct for both biases and are defined either on phased or unphased genotypes.We proved that these novel measures are linked to the power of association tests under the mixed linear model including structure and kinship corrections. We validated them on simulated data and applied them to real data sets collected on Vitis vinifera plants. Our results clearly showed the usefulness of the two corrected r(2) measures, which actually captured 'true' linkage disequilibrium unlike the usual r(2) measure.

  15. Higher-order kinetic expansion of quantum dissipative dynamics: mapping quantum networks to kinetic networks.

    PubMed

    Wu, Jianlan; Cao, Jianshu

    2013-07-28

    We apply a new formalism to derive the higher-order quantum kinetic expansion (QKE) for studying dissipative dynamics in a general quantum network coupled with an arbitrary thermal bath. The dynamics of system population is described by a time-convoluted kinetic equation, where the time-nonlocal rate kernel is systematically expanded of the order of off-diagonal elements of the system Hamiltonian. In the second order, the rate kernel recovers the expression of the noninteracting-blip approximation method. The higher-order corrections in the rate kernel account for the effects of the multi-site quantum coherence and the bath relaxation. In a quantum harmonic bath, the rate kernels of different orders are analytically derived. As demonstrated by four examples, the higher-order QKE can reliably predict quantum dissipative dynamics, comparing well with the hierarchic equation approach. More importantly, the higher-order rate kernels can distinguish and quantify distinct nontrivial quantum coherent effects, such as long-range energy transfer from quantum tunneling and quantum interference arising from the phase accumulation of interactions.

  16. The solvent component of macromolecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine

    2015-04-30

    On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less

  17. Estimating tropospheric phase delay in SAR interferograms using Global Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Doin, M.; Lasserre, C.; Peltzer, G.; Cavalie, O.; Doubre, C.

    2008-12-01

    The main limiting factor on the accuracy of Interferometric SAR (InSAR) measurements comes from phase propagation delays through the Earth's troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal in InSAR data, and a turbulent component. The stratified delay can be expressed as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. We compare the stratified delay computed using results from global atmospheric models with the topography-dependent signal observed in interferograms covering three test areas in different geographic and climatic environments: Lake Mead, Nevada, USA, the Haiyuan fault area, Gansu, China, and Afar, Republic of Djibouti. For each site we compute a multi-year series of interferograms. The phase-elevation ratio is estimated for each interferogram and the series is inverted to form a timeline of delay-elevation ratios characterizing each epoch of data acquisition. InSAR derived ratios are in good agreement with the ratios computed from global atmospheric models. This agreement shows that both estimations of the delay-elevation ratio can be used to perform a first order correction of the InSAR phase. Seasonal variations of the atmosphere significantly affect the phase delay throughout the year, aliasing the results of time series inversions using temporal smoothing or data stacking when the acquisitions are not evenly distributed in time. This is particularly critical when the spatial shape of the signal of interest correlates with topography. In the Lake Mead area, the irregular temporal sampling of our SAR data results in an interannual bias of amplitude ~2~cm on range change estimates. In the Haiyuan Fault area, the coarse and uneven data sampling results in a bias of up to ~0.5~cm/yr on the line of sight velocity across the fault. In the Afar area, the seasonal signal exceeds the deformation signal in the phase time series. In all cases, correcting interferograms from the stratified delay helps removing these biases. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependance to the elevation, as consistent non-linear relationships are observed in many interferograms as well as in global atmospheric models.

  18. Toward polarizable AMOEBA thermodynamics at fixed charge efficiency using a dual force field approach: application to organic crystals.

    PubMed

    Nessler, Ian J; Litman, Jacob M; Schnieders, Michael J

    2016-11-09

    First principles prediction of the structure, thermodynamics and solubility of organic molecular crystals, which play a central role in chemical, material, pharmaceutical and engineering sciences, challenges both potential energy functions and sampling methodologies. Here we calculate absolute crystal deposition thermodynamics using a novel dual force field approach whose goal is to maintain the accuracy of advanced multipole force fields (e.g. the polarizable AMOEBA model) while performing more than 95% of the sampling in an inexpensive fixed charge (FC) force field (e.g. OPLS-AA). Absolute crystal sublimation/deposition phase transition free energies were determined using an alchemical path that grows the crystalline state from a vapor reference state based on sampling with the OPLS-AA force field, followed by dual force field thermodynamic corrections to change between FC and AMOEBA resolutions at both end states (we denote the three step path as AMOEBA/FC). Importantly, whereas the phase transition requires on the order of 200 ns of sampling per compound, only 5 ns of sampling was needed for the dual force field thermodynamic corrections to reach a mean statistical uncertainty of 0.05 kcal mol -1 . For five organic compounds, the mean unsigned error between direct use of AMOEBA and the AMOEBA/FC dual force field path was only 0.2 kcal mol -1 and not statistically significant. Compared to experimental deposition thermodynamics, the mean unsigned error for AMOEBA/FC (1.4 kcal mol -1 ) was more than a factor of two smaller than uncorrected OPLS-AA (3.2 kcal mol -1 ). Overall, the dual force field thermodynamic corrections reduced condensed phase sampling in the expensive force field by a factor of 40, and may prove useful for protein stability or binding thermodynamics in the future.

  19. Note on: 'EMLCLLER-A program for computing the EM response of a large loop source over a layered earth model' by N.P. Singh and T. Mogi, Computers & Geosciences 29 (2003) 1301-1307

    NASA Astrophysics Data System (ADS)

    Jamie, Majid

    2016-11-01

    Singh and Mogi (2003) presented a forward modeling (FWD) program, coded in FORTRAN 77 called "EMLCLLER", which is capable of computing the frequency-domain electromagnetic (EM) response of a large circular loop, in terms of vertical magnetic component (Hz), over 1D layer earth models; computations at this program could be performed by assuming variable transmitter-receiver configurations and incorporating both conduction and displacement currents into computations. Integral equations at this program are computed through digital linear filters based on the Hankel transforms together with analytic solutions based on hyper-geometric functions. Despite capabilities of EMLCLLER, there are some mistakes at this program that make its FWD results unreliable. The mistakes in EMLCLLER arise in using wrong algorithm for computing reflection coefficient of the EM wave in TE-mode (rTE), and using flawed algorithms for computing phase and normalized phase values relating to Hz; in this paper corrected form of these mistakes are presented. Moreover, in order to illustrate how these mistakes can affect FWD results, EMLCLLER and corrected version of this program presented in this paper titled "EMLCLLER_Corr" are conducted on different two- and three-layered earth models; afterwards their FWD results in terms of real and imaginary parts of Hz, its normalized amplitude, and the corresponding normalized phase curves are plotted versus frequency and compared to each other. In addition, in Singh and Mogi (2003) extra derivations for computing radial component of the magnetic field (Hr) and angular component of the electric field (Eϕ) are also presented where the numerical solution presented for Hr is incorrect; in this paper the correct numerical solution for this derivation is also presented.

  20. PHASEGO: A toolkit for automatic calculation and plot of phase diagram

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Li

    2015-06-01

    The PHASEGO package extracts the Helmholtz free energy from the phonon density of states obtained by the first-principles calculations. With the help of equation of states fitting, it reduces the Gibbs free energy as a function of pressure/temperature at fixed temperature/pressure. Based on the quasi-harmonic approximation (QHA), it calculates the possible phase boundaries among all the structures of interest and finally plots the phase diagram automatically. For the single phase analysis, PHASEGO can numerically derive many properties, such as the thermal expansion coefficients, the bulk moduli, the heat capacities, the thermal pressures, the Hugoniot pressure-volume-temperature relations, the Grüneisen parameters, and the Debye temperatures. In order to check its ability of phase transition analysis, I present here two examples: semiconductor GaN and metallic Fe. In the case of GaN, PHASEGO automatically determined and plotted the phase boundaries among the provided zinc blende (ZB), wurtzite (WZ) and rocksalt (RS) structures. In the case of Fe, the results indicate that at high temperature the electronic thermal excitation free energy corrections considerably alter the phase boundaries among the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures.

  1. AC Resonant charger with charge rate unrelated to primary power frequency

    DOEpatents

    Watson, Harold

    1982-01-01

    An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  2. Ac resonant charger with charge rate unrelated to preimary power requency

    DOEpatents

    Not Available

    1979-12-07

    An ac resonant charger for a capacitive load, such as a pulse forming network (PFN), is provided with a variable repetition rate unrelated to the frequency of a multi-phase ac power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  3. Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa

    2005-12-15

    A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into 'bidirectional propagation equations' which are derived directly from Maxwell's equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schroedinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, bothmore » theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6 MW. It is demonstrated that the carrier envelope phase (CEP) causes the difference on the temporal electric-field profile and the intensity spectrum for the initial peak power of the order of megawatts. At the propagation distance longer than the coherence length for third-order harmonics, the difference grows in the spectral components around the third-order and higher-order harmonics. The CEP can be a sensitive marker to monitor the evolution of nonlinear optical process by a few-optical-cycle electric-field wave-packet source.« less

  4. Fast correction approach for wavefront sensorless adaptive optics based on a linear phase diversity technique.

    PubMed

    Yue, Dan; Nie, Haitao; Li, Ye; Ying, Changsheng

    2018-03-01

    Wavefront sensorless (WFSless) adaptive optics (AO) systems have been widely studied in recent years. To reach optimum results, such systems require an efficient correction method. This paper presents a fast wavefront correction approach for a WFSless AO system mainly based on the linear phase diversity (PD) technique. The fast closed-loop control algorithm is set up based on the linear relationship between the drive voltage of the deformable mirror (DM) and the far-field images of the system, which is obtained through the linear PD algorithm combined with the influence function of the DM. A large number of phase screens under different turbulence strengths are simulated to test the performance of the proposed method. The numerical simulation results show that the method has fast convergence rate and strong correction ability, a few correction times can achieve good correction results, and can effectively improve the imaging quality of the system while needing fewer measurements of CCD data.

  5. Two-nucleon S10 amplitude zero in chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Sánchez, M. Sánchez; Yang, C.-J.; Long, Bingwei; van Kolck, U.

    2018-02-01

    We present a new rearrangement of short-range interactions in the S10 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg's scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to the pion-production threshold. An approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.

  6. Design and implementation of grid multi-scroll fractional-order chaotic attractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liping, E-mail: lip-chenhut@126.com; Pan, Wei; Wu, Ranchao

    2016-08-15

    This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most.more » Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.« less

  7. High-order flux correction/finite difference schemes for strand grids

    NASA Astrophysics Data System (ADS)

    Katz, Aaron; Work, Dalon

    2015-02-01

    A novel high-order method combining unstructured flux correction along body surfaces and high-order finite differences normal to surfaces is formulated for unsteady viscous flows on strand grids. The flux correction algorithm is applied in each unstructured layer of the strand grid, and the layers are then coupled together via a source term containing derivatives in the strand direction. Strand-direction derivatives are approximated to high-order via summation-by-parts operators for first derivatives and second derivatives with variable coefficients. We show how this procedure allows for the proper truncation error canceling properties required for the flux correction scheme. The resulting scheme possesses third-order design accuracy, but often exhibits fourth-order accuracy when higher-order derivatives are employed in the strand direction, especially for highly viscous flows. We prove discrete conservation for the new scheme and time stability in the absence of the flux correction terms. Results in two dimensions are presented that demonstrate improvements in accuracy with minimal computational and algorithmic overhead over traditional second-order algorithms.

  8. Fast conjugate phase image reconstruction based on a Chebyshev approximation to correct for B0 field inhomogeneity and concomitant gradients

    PubMed Central

    Chen, Weitian; Sica, Christopher T.; Meyer, Craig H.

    2008-01-01

    Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method. PMID:18956462

  9. Multi-objective optimization for an automated and simultaneous phase and baseline correction of NMR spectral data

    NASA Astrophysics Data System (ADS)

    Sawall, Mathias; von Harbou, Erik; Moog, Annekathrin; Behrens, Richard; Schröder, Henning; Simoneau, Joël; Steimers, Ellen; Neymeyr, Klaus

    2018-04-01

    Spectral data preprocessing is an integral and sometimes inevitable part of chemometric analyses. For Nuclear Magnetic Resonance (NMR) spectra a possible first preprocessing step is a phase correction which is applied to the Fourier transformed free induction decay (FID) signal. This preprocessing step can be followed by a separate baseline correction step. Especially if series of high-resolution spectra are considered, then automated and computationally fast preprocessing routines are desirable. A new method is suggested that applies the phase and the baseline corrections simultaneously in an automated form without manual input, which distinguishes this work from other approaches. The underlying multi-objective optimization or Pareto optimization provides improved results compared to consecutively applied correction steps. The optimization process uses an objective function which applies strong penalty constraints and weaker regularization conditions. The new method includes an approach for the detection of zero baseline regions. The baseline correction uses a modified Whittaker smoother. The functionality of the new method is demonstrated for experimental NMR spectra. The results are verified against gravimetric data. The method is compared to alternative preprocessing tools. Additionally, the simultaneous correction method is compared to a consecutive application of the two correction steps.

  10. Investigation into the propagation of Omega very low frequency signals and techniques for improvement of navigation accuracy including differential and composite omega

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An analysis of Very Low Frequency propagation in the atmosphere in the 10-14 kHz range leads to a discussion of some of the more significant causes of phase perturbation. The method of generating sky-wave corrections to predict the Omega phase is discussed. Composite Omega is considered as a means of lane identification and of reducing Omega navigation error. A simple technique for generating trapezoidal model (T-model) phase prediction is presented and compared with the Navy predictions and actual phase measurements. The T-model prediction analysis illustrates the ability to account for the major phase shift created by the diurnal effects on the lower ionosphere. An analysis of the Navy sky-wave correction table is used to provide information about spatial and temporal correlation of phase correction relative to the differential mode of operation.

  11. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems

    PubMed Central

    Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang

    2016-01-01

    The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality. PMID:26934045

  12. MR-guided adaptive focusing of therapeutic ultrasound beams in the human head

    PubMed Central

    Marsac, Laurent; Chauvet, Dorian; Larrat, Benoît; Pernot, Mathieu; Robert, B.; Fink, Mathias; Boch, Anne-Laure; Aubry, Jean-François; Tanter, Mickaël

    2012-01-01

    Purpose This study aims to demonstrate, using human cadavers the feasibility of energy-based adaptive focusing of ultrasonic waves using Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) in the framework of non-invasive transcranial High Intensity Focused Ultrasound (HIFU) therapy. Methods Energy-based adaptive focusing techniques were recently proposed in order to achieve aberration correction. We evaluate this method on a clinical brain HIFU system composed of 512 ultrasonic elements positioned inside a full body 1.5 T clinical Magnetic Resonance (MR) imaging system. Cadaver heads were mounted onto a clinical Leksell stereotactic frame. The ultrasonic wave intensity at the chosen location was indirectly estimated by the MR system measuring the local tissue displacement induced by the acoustic radiation force of the ultrasound (US) beams. For aberration correction, a set of spatially encoded ultrasonic waves was transmitted from the ultrasonic array and the resulting local displacements were estimated with the MR-ARFI sequence for each emitted beam. A non-iterative inversion process was then performed in order to estimate the spatial phase aberrations induced by the cadaver skull. The procedure was first evaluated and optimized in a calf brain using a numerical aberrator mimicking human skull aberrations. The full method was then demonstrated using a fresh human cadaver head. Results The corrected beam resulting from the direct inversion process was found to focus at the targeted location with an acoustic intensity 2.2 times higher than the conventional non corrected beam. In addition, this corrected beam was found to give an acoustic intensity 1.5 times higher than the focusing pattern obtained with an aberration correction using transcranial acoustic simulation based on X-ray computed tomography (CT) scans. Conclusion The proposed technique achieved near optimal focusing in an intact human head for the first time. These findings confirm the strong potential of energy-based adaptive focusing of transcranial ultrasonic beams for clinical applications. PMID:22320825

  13. Off-resonance artifacts correction with convolution in k-space (ORACLE).

    PubMed

    Lin, Wei; Huang, Feng; Simonotto, Enrico; Duensing, George R; Reykowski, Arne

    2012-06-01

    Off-resonance artifacts hinder the wider applicability of echo-planar imaging and non-Cartesian MRI methods such as radial and spiral. In this work, a general and rapid method is proposed for off-resonance artifacts correction based on data convolution in k-space. The acquired k-space is divided into multiple segments based on their acquisition times. Off-resonance-induced artifact within each segment is removed by applying a convolution kernel, which is the Fourier transform of an off-resonance correcting spatial phase modulation term. The field map is determined from the inverse Fourier transform of a basis kernel, which is calibrated from data fitting in k-space. The technique was demonstrated in phantom and in vivo studies for radial, spiral and echo-planar imaging datasets. For radial acquisitions, the proposed method allows the self-calibration of the field map from the imaging data, when an alternating view-angle ordering scheme is used. An additional advantage for off-resonance artifacts correction based on data convolution in k-space is the reusability of convolution kernels to images acquired with the same sequence but different contrasts. Copyright © 2011 Wiley-Liss, Inc.

  14. An efficient mass-preserving interface-correction level set/ghost fluid method for droplet suspensions under depletion forces

    NASA Astrophysics Data System (ADS)

    Ge, Zhouyang; Loiseau, Jean-Christophe; Tammisola, Outi; Brandt, Luca

    2018-01-01

    Aiming for the simulation of colloidal droplets in microfluidic devices, we present here a numerical method for two-fluid systems subject to surface tension and depletion forces among the suspended droplets. The algorithm is based on an efficient solver for the incompressible two-phase Navier-Stokes equations, and uses a mass-conserving level set method to capture the fluid interface. The four novel ingredients proposed here are, firstly, an interface-correction level set (ICLS) method; global mass conservation is achieved by performing an additional advection near the interface, with a correction velocity obtained by locally solving an algebraic equation, which is easy to implement in both 2D and 3D. Secondly, we report a second-order accurate geometric estimation of the curvature at the interface and, thirdly, the combination of the ghost fluid method with the fast pressure-correction approach enabling an accurate and fast computation even for large density contrasts. Finally, we derive a hydrodynamic model for the interaction forces induced by depletion of surfactant micelles and combine it with a multiple level set approach to study short-range interactions among droplets in the presence of attracting forces.

  15. Handling the satellite inter-frequency biases in triple-frequency observations

    NASA Astrophysics Data System (ADS)

    Zhao, Lewen; Ye, Shirong; Song, Jia

    2017-04-01

    The new generation of GNSS satellites, including BDS, Galileo, modernized GPS, and GLONASS, transmit navigation sdata at more frequencies. Multi-frequency signals open new prospects for precise positioning, but satellite code and phase inter-frequency biases (IFB) induced by the third frequency need to be handled. Satellite code IFB can be corrected using products estimated by different strategies, the theoretical and numerical compatibility of these methods need to be proved. Furthermore, a new type of phase IFB, which changes with the relative sun-spacecraft-earth geometry, has been observed. It is necessary to investigate the cause and possible impacts of phase Time-variant IFB (TIFB). Therefore, we present systematic analysis to illustrate the relevancy between satellite clocks and phase TIFB, and compare the handling strategies of the code and phase IFB in triple-frequency positioning. First, the un-differenced L1/L2 satellite clock corrections considering the hardware delays are derived. And IFB induced by the dual-frequency satellite clocks to triple-frequency PPP model is detailed. The analysis shows that estimated satellite clocks actually contain the time-variant phase hardware delays, which can be compensated in L1/L2 ionosphere-free combinations. However, the time-variant hardware delays will lead to TIFB if the third frequency is used. Then, the methods used to correct the code and phase IFB are discussed. Standard point positioning (SPP) and precise point positioning (PPP) using BDS observations are carried out to validate the improvement of different IFB correction strategies. Experiments show that code IFB derived from DCB or geometry-free and ionosphere-free combination show an agreement of 0.3 ns for all satellites. Positioning results and error distribution with two different code IFB correcting strategies achieve similar tendency, which shows their substitutability. The original and wavelet filtered phase TIFB long-term series show significant periodical characteristic for most GEO and IGSO satellites, with the magnitude varies between - 5 cm and 5 cm. Finally, BDS L1/L3 kinematic PPP is conducted with code IFB corrected with DCB combinations, and TIFB corrected with filtered series. Results show that the IFB corrected L1/L3 PPP can achieve comparable convergence and positioning accuracy as L1/L2 combinations in static and kinematic mode.

  16. Adapting phase-switch Monte Carlo method for flexible organic molecules

    NASA Astrophysics Data System (ADS)

    Bridgwater, Sally; Quigley, David

    2014-03-01

    The role of cholesterol in lipid bilayers has been widely studied via molecular simulation, however, there has been relatively little work on crystalline cholesterol in biological environments. Recent work has linked the crystallisation of cholesterol in the body with heart attacks and strokes. Any attempt to model this process will require new models and advanced sampling methods to capture and quantify the subtle polymorphism of solid cholesterol, in which two crystalline phases are separated by a phase transition close to body temperature. To this end, we have adapted phase-switch Monte Carlo for use with flexible molecules, to calculate the free energy between crystal polymorphs to a high degree of accuracy. The method samples an order parameter , which divides a displacement space for the N molecules, into regions energetically favourable for each polymorph; which is traversed using biased Monte Carlo. Results for a simple model of butane will be presented, demonstrating that conformational flexibility can be correctly incorporated within a phase-switching scheme. Extension to a coarse grained model of cholesterol and the resulting free energies will be discussed.

  17. A Framework for Performing V&V within Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1996-01-01

    Verification and validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In order to provide early detection of errors, V&V is conducted in parallel with system development, often beginning with the concept phase. In reuse-based software engineering, however, decisions on the requirements, design and even implementation of domain assets can be made prior to beginning development of a specific system. In this case, V&V must be performed during domain engineering in order to have an impact on system development. This paper describes a framework for performing V&V within architecture-centric, reuse-based software engineering. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.

  18. Effects of two-loop contributions in the pseudofermion functional renormalization group method for quantum spin systems

    NASA Astrophysics Data System (ADS)

    Rück, Marlon; Reuther, Johannes

    2018-04-01

    We implement an extension of the pseudofermion functional renormalization group method for quantum spin systems that takes into account two-loop diagrammatic contributions. An efficient numerical treatment of the additional terms is achieved within a nested graph construction which recombines different one-loop interaction channels. In order to be fully self-consistent with respect to self-energy corrections, we also include certain three-loop terms of Katanin type. We first apply this formalism to the antiferromagnetic J1-J2 Heisenberg model on the square lattice and benchmark our results against the previous one-loop plus Katanin approach. Even though the renormalization group (RG) equations undergo significant modifications when including the two-loop terms, the magnetic phase diagram, comprising Néel ordered and collinear ordered phases separated by a magnetically disordered regime, remains remarkably unchanged. Only the boundary position between the disordered and the collinear phases is found to be moderately affected by two-loop terms. On the other hand, critical RG scales, which we associate with critical temperatures Tc, are reduced by a factor of ˜2 indicating that the two-loop diagrams play a significant role in enforcing the Mermin-Wagner theorem. Improved estimates for critical temperatures are also obtained for the Heisenberg ferromagnet on the three-dimensional simple cubic lattice where errors in Tc are reduced by ˜34 % . These findings have important implications for the quantum phase diagrams calculated within the previous one-loop plus Katanin approach which turn out to be already well converged.

  19. Correcting spherical aberrations induced by an unknown medium through determination of its refractive index and thickness.

    PubMed

    Iwaniuk, Daniel; Rastogi, Pramod; Hack, Erwin

    2011-09-26

    In imaging and focusing applications, spherical aberration induces axial broadening of the point spread function (PSF). A transparent medium between lens and object of interest induces spherical aberration. We propose a method that first obtains both the physical thickness and the refractive index of the aberration inducing medium in situ by measuring the induced focal shifts for paraxial and large angle rays. Then, the fourth order angle dependence of the optical path difference inside the medium is used to correct the spherical aberration using a phase-only spatial light modulator. The obtained measurement accuracy of 3% is sufficient for a complete compensation as demonstrated in a model microscope with NA 0.3 with glass plate induced axial broadening of the PSF by a factor of 5. © 2011 Optical Society of America

  20. Automatic oscillator frequency control system

    NASA Technical Reports Server (NTRS)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  1. Breakdown of the single-exchange approximation in third-order symmetry-adapted perturbation theory.

    PubMed

    Lao, Ka Un; Herbert, John M

    2012-03-22

    We report third-order symmetry-adapted perturbation theory (SAPT) calculations for several dimers whose intermolecular interactions are dominated by induction. We demonstrate that the single-exchange approximation (SEA) employed to derive the third-order exchange-induction correction (E(exch-ind)((30))) fails to quench the attractive nature of the third-order induction (E(ind)((30))), leading to one-dimensional potential curves that become attractive rather than repulsive at short intermolecular separations. A scaling equation for (E(exch-ind)((30))), based on an exact formula for the first-order exchange correction, is introduced to approximate exchange effects beyond the SEA, and qualitatively correct potential energy curves that include third-order induction are thereby obtained. For induction-dominated systems, our results indicate that a "hybrid" SAPT approach, in which a dimer Hartree-Fock calculation is performed in order to obtain a correction for higher-order induction, is necessary not only to obtain quantitative binding energies but also to obtain qualitatively correct potential energy surfaces. These results underscore the need to develop higher-order exchange-induction formulas that go beyond the SEA. © 2012 American Chemical Society

  2. Active phase correction of high resolution silicon photonic arrayed waveguide gratings

    DOE PAGES

    Gehl, M.; Trotter, D.; Starbuck, A.; ...

    2017-03-10

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Thus, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. We present the design and fabrication of compact siliconmore » photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm 2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. In addition, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.« less

  3. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    PubMed

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  4. Correlation processing for correction of phase distortions in subaperture imaging.

    PubMed

    Tavh, B; Karaman, M

    1999-01-01

    Ultrasonic subaperture imaging combines synthetic aperture and phased array approaches and permits low-cost systems with improved image quality. In subaperture processing, a large array is synthesized using echo signals collected from a number of receive subapertures by multiple firings of a phased transmit subaperture. Tissue inhomogeneities and displacements in subaperture imaging may cause significant phase distortions on received echo signals. Correlation processing on reference echo signals can be used for correction of the phase distortions, for which the accuracy and robustness are critically limited by the signal correlation. In this study, we explore correlation processing techniques for adaptive subaperture imaging with phase correction for motion and tissue inhomogeneities. The proposed techniques use new subaperture data acquisition schemes to produce reference signal sets with improved signal correlation. The experimental test results were obtained using raw radio frequency (RF) data acquired from two different phantoms with 3.5 MHz, 128-element transducer array. The results show that phase distortions can effectively be compensated by the proposed techniques in real-time adaptive subaperture imaging.

  5. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound.

    PubMed

    Kaye, Elena A; Hertzberg, Yoni; Marx, Michael; Werner, Beat; Navon, Gil; Levoy, Marc; Pauly, Kim Butts

    2012-10-01

    To study the phase aberrations produced by human skulls during transcranial magnetic resonance imaging guided focused ultrasound surgery (MRgFUS), to demonstrate the potential of Zernike polynomials (ZPs) to accelerate the adaptive focusing process, and to investigate the benefits of using phase corrections obtained in previous studies to provide the initial guess for correction of a new data set. The five phase aberration data sets, analyzed here, were calculated based on preoperative computerized tomography (CT) images of the head obtained during previous transcranial MRgFUS treatments performed using a clinical prototype hemispherical transducer. The noniterative adaptive focusing algorithm [Larrat et al., "MR-guided adaptive focusing of ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(8), 1734-1747 (2010)] was modified by replacing Hadamard encoding with Zernike encoding. The algorithm was tested in simulations to correct the patients' phase aberrations. MR acoustic radiation force imaging (MR-ARFI) was used to visualize the effect of the phase aberration correction on the focusing of a hemispherical transducer. In addition, two methods for constructing initial phase correction estimate based on previous patient's data were investigated. The benefits of the initial estimates in the Zernike-based algorithm were analyzed by measuring their effect on the ultrasound intensity at the focus and on the number of ZP modes necessary to achieve 90% of the intensity of the nonaberrated case. Covariance of the pairs of the phase aberrations data sets showed high correlation between aberration data of several patients and suggested that subgroups can be based on level of correlation. Simulation of the Zernike-based algorithm demonstrated the overall greater correction effectiveness of the low modes of ZPs. The focal intensity achieves 90% of nonaberrated intensity using fewer than 170 modes of ZPs. The initial estimates based on using the average of the phase aberration data from the individual subgroups of subjects was shown to increase the intensity at the focal spot for the five subjects. The application of ZPs to phase aberration correction was shown to be beneficial for adaptive focusing of transcranial ultrasound. The skull-based phase aberrations were found to be well approximated by the number of ZP modes representing only a fraction of the number of elements in the hemispherical transducer. Implementing the initial phase aberration estimate together with Zernike-based algorithm can be used to improve the robustness and can potentially greatly increase the viability of MR-ARFI-based focusing for a clinical transcranial MRgFUS therapy.

  6. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound

    PubMed Central

    Kaye, Elena A.; Hertzberg, Yoni; Marx, Michael; Werner, Beat; Navon, Gil; Levoy, Marc; Pauly, Kim Butts

    2012-01-01

    Purpose: To study the phase aberrations produced by human skulls during transcranial magnetic resonance imaging guided focused ultrasound surgery (MRgFUS), to demonstrate the potential of Zernike polynomials (ZPs) to accelerate the adaptive focusing process, and to investigate the benefits of using phase corrections obtained in previous studies to provide the initial guess for correction of a new data set. Methods: The five phase aberration data sets, analyzed here, were calculated based on preoperative computerized tomography (CT) images of the head obtained during previous transcranial MRgFUS treatments performed using a clinical prototype hemispherical transducer. The noniterative adaptive focusing algorithm [Larrat , “MR-guided adaptive focusing of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(8), 1734–1747 (2010)]10.1109/TUFFC.2010.1612 was modified by replacing Hadamard encoding with Zernike encoding. The algorithm was tested in simulations to correct the patients’ phase aberrations. MR acoustic radiation force imaging (MR-ARFI) was used to visualize the effect of the phase aberration correction on the focusing of a hemispherical transducer. In addition, two methods for constructing initial phase correction estimate based on previous patient's data were investigated. The benefits of the initial estimates in the Zernike-based algorithm were analyzed by measuring their effect on the ultrasound intensity at the focus and on the number of ZP modes necessary to achieve 90% of the intensity of the nonaberrated case. Results: Covariance of the pairs of the phase aberrations data sets showed high correlation between aberration data of several patients and suggested that subgroups can be based on level of correlation. Simulation of the Zernike-based algorithm demonstrated the overall greater correction effectiveness of the low modes of ZPs. The focal intensity achieves 90% of nonaberrated intensity using fewer than 170 modes of ZPs. The initial estimates based on using the average of the phase aberration data from the individual subgroups of subjects was shown to increase the intensity at the focal spot for the five subjects. Conclusions: The application of ZPs to phase aberration correction was shown to be beneficial for adaptive focusing of transcranial ultrasound. The skull-based phase aberrations were found to be well approximated by the number of ZP modes representing only a fraction of the number of elements in the hemispherical transducer. Implementing the initial phase aberration estimate together with Zernike-based algorithm can be used to improve the robustness and can potentially greatly increase the viability of MR-ARFI-based focusing for a clinical transcranial MRgFUS therapy. PMID:23039661

  7. On the Fluctuations that Order and Frustrate Liquid Water

    NASA Astrophysics Data System (ADS)

    Limmer, David Tyler

    At ambient conditions, water sits close to phase coexistence with its crystal. More so than in many other materials, this fact is manifested in the fluctuations that maintain a large degree of local order in the liquid. These fluctuations and how they result in long-ranged order, or its absence, are emergent features of many interacting molecules. Their study therefore requires using the tools of statistical mechanics for their their systematic understanding. In this dissertation we develop such an understanding. In particular, we focus on collective behavior that emerges in liquid and solid water. At room temperatures, the thermophysical properties of water are quantified and rationalized with simple molecular models. A key feature of these models is the correct characterization of the competition between entropic forces of packing and the energetic preference for tetrahedral order. At cold temperatures, the properties of ice surfaces are studied with statistical field theory. The theory we develop for the long wavelength features of ice interfaces allows us to explain the existence of a premelting layer on the surface of ice and the stability of ice in confinement. In between these extremes, the dynamics of supercooled water are considered. A detailed theory for the early stages of coarsening is developed and used to explain the peculiar observation of a transient second liquid state of water. When coarsening dynamics are arrested, the result is the formation of a glassy states of water. We show that out-of-equilibrium the phase diagram for supercooled water exhibits a rich amount of structure, including a triple point between two glass phases of water and the liquid. At the end, we explore possible technological implications for the interplay between ordering and frustration in studies of water at metal interfaces.

  8. Experimental testing of four correction algorithms for the forward scattering spectrometer probe

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Oldenburg, John R.; Lock, James A.

    1992-01-01

    Three number density correction algorithms and one size distribution correction algorithm for the Forward Scattering Spectrometer Probe (FSSP) were compared with data taken by the Phase Doppler Particle Analyzer (PDPA) and an optical number density measuring instrument (NDMI). Of the three number density correction algorithms, the one that compared best to the PDPA and NDMI data was the algorithm developed by Baumgardner, Strapp, and Dye (1985). The algorithm that corrects sizing errors in the FSSP that was developed by Lock and Hovenac (1989) was shown to be within 25 percent of the Phase Doppler measurements at number densities as high as 3000/cc.

  9. High level waste storage tank farms/242-A evaporator standards/requirements identification document phase 1 assessment corrective actions/compliance schedule approval report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biebesheimer, E.

    This document, the Standards/Requirements Identification Document (S/RID) Phase I Assessment Corrective Actions/Compliance Schedule Approval Report for the subject facility, contains the corrective actions required to bring the facility into compliance as a result of an Administrative Assessment to determine whether S/RID requirements are fully addressed by existing policies, plans or procedures. These actions are delineated in the Compliance Schedule Approvals which also contain; noncompliances, risks, compensatory measures, schedules for corrective actions, justifications for approval, and resource impacts.

  10. Analysis of ionospheric refraction error corrections for GRARR systems

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A. J.; Parker, H. C.; Berbert, J. H.

    1971-01-01

    A determination is presented of the ionospheric refraction correction requirements for the Goddard range and range rate (GRARR) S-band, modified S-band, very high frequency (VHF), and modified VHF systems. The relation ships within these four systems are analyzed to show that the refraction corrections are the same for all four systems and to clarify the group and phase nature of these corrections. The analysis is simplified by recognizing that the range rate is equivalent to a carrier phase range change measurement. The equation for the range errors are given.

  11. CC, CS, and IOS generalized phenomenological cross sections for atom--diatom mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitz, D.E.; Kouri, D.J.; Evans, D.

    1981-05-01

    Close coupled expressions for phenomenological cross sections which describe transport properties of atom--diatom mixtures are obtained in the total-J coupling scheme and are related to the bracket integrals of kinetic theory. Coupled states and infinite order sudden expressions for the generalized phenomenological cross sections using initial, final, and average l-labeling are also given. Particular care is taken to use a phase convention for the CS and IOS approximations which is consistent with the Arthurs--Dalgarno formalism and which gives the correct behavior of degeneracy averaged differential cross sections.

  12. National Dam Safety Program. Silver Lake Dam (Inventory Number VA 16508). Potomac River Basin, Rockingham County, Virginia. Phase I Inspection Report.

    DTIC Science & Technology

    1980-07-01

    NATIONAL DAM SAFETY PRGRAM .. For Aldc S f~ ’,/~ / ZTXS GRIA&I’ ’ ’, ’-t ’ lIncedI Jsti ficatio "--- - . - .’i -, ! Aval and/or Dist.I special...Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented ...the dam and modify as necessary. 3) The eroded area located at the right abutment should be corrected in order to prevent continual or increased flow of

  13. A general higher-order remap algorithm for ALE calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiravalle, Vincent P

    2011-01-05

    A numerical technique for solving the equations of fluid dynamics with arbitrary mesh motion is presented. The three phases of the Arbitrary Lagrangian Eulerian (ALE) methodology are outlined: the Lagrangian phase, grid relaxation phase and remap phase. The Lagrangian phase follows a well known approach from the HEMP code; in addition the strain rate andflow divergence are calculated in a consistent manner according to Margolin. A donor cell method from the SALE code forms the basis of the remap step, but unlike SALE a higher order correction based on monotone gradients is also added to the remap. Four test problemsmore » were explored to evaluate the fidelity of these numerical techniques, as implemented in a simple test code, written in the C programming language, called Cercion. Novel cell-centered data structures are used in Cercion to reduce the complexity of the programming and maximize the efficiency of memory usage. The locations of the shock and contact discontinuity in the Riemann shock tube problem are well captured. Cercion demonstrates a high degree of symmetry when calculating the Sedov blast wave solution, with a peak density at the shock front that is similar to the value determined by the RAGE code. For a flyer plate test problem both Cercion and FLAG give virtually the same velocity temporal profile at the target-vacuum interface. When calculating a cylindrical implosion of a steel shell, Cercion and FLAG agree well and the Cercion results are insensitive to the use of ALE.« less

  14. Influence of eddy current, Maxwell and gradient field corrections on 3D flow visualization of 3D CINE PC-MRI data.

    PubMed

    Lorenz, Ramona; Bock, Jelena; Snyder, Jeff; Korvink, Jan G; Jung, Bernd A; Markl, Michael

    2014-07-01

    The measurement of velocities based on phase contrast MRI can be subject to different phase offset errors which can affect the accuracy of velocity data. The purpose of this study was to determine the impact of these inaccuracies and to evaluate different correction strategies on three-dimensional visualization. Phase contrast MRI was performed on a 3 T system (Siemens Trio) for in vitro (curved/straight tube models; venc: 0.3 m/s) and in vivo (aorta/intracranial vasculature; venc: 1.5/0.4 m/s) data. For comparison of the impact of different magnetic field gradient designs, in vitro data was additionally acquired on a wide bore 1.5 T system (Siemens Espree). Different correction methods were applied to correct for eddy currents, Maxwell terms, and gradient field inhomogeneities. The application of phase offset correction methods lead to an improvement of three-dimensional particle trace visualization and count. The most pronounced differences were found for in vivo/in vitro data (68%/82% more particle traces) acquired with a low venc (0.3 m/s/0.4 m/s, respectively). In vivo data acquired with high venc (1.5 m/s) showed noticeable but only minor improvement. This study suggests that the correction of phase offset errors can be important for a more reliable visualization of particle traces but is strongly dependent on the velocity sensitivity, object geometry, and gradient coil design. Copyright © 2013 Wiley Periodicals, Inc.

  15. GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations.

    PubMed

    Cutsuridis, Vassilis; Hasselmo, Michael

    2012-07-01

    Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta oscillations paced by intra- and extrahippocampal areas. Much is known about the anatomical, physiological, and molecular characteristics as well as the connectivity and synaptic properties of various cell types in the hippocampal microcircuits, but how these detailed properties of individual neurons give rise to temporal organization of spatial memories remains unclear. We present a model of the hippocampal CA1 microcircuit based on observed biophysical properties of pyramidal cells and six types of inhibitory interneurons: axo-axonic, basket, bistratistified, neurogliaform, ivy, and oriens lacunosum-moleculare cells. The model simulates a virtual rat running on a linear track. Excitatory transient inputs come from the entorhinal cortex (EC) and the CA3 Schaffer collaterals and impinge on both the pyramidal cells and inhibitory interneurons, whereas inhibitory inputs from the medial septum impinge only on the inhibitory interneurons. Dopamine operates as a gate-keeper modulating the spatial memory flow to the PC distal dendrites in a frequency-dependent manner. A mechanism for spike-timing-dependent plasticity in distal and proximal PC dendrites consisting of three calcium detectors, which responds to the instantaneous calcium level and its time course in the dendrite, is used to model the plasticity effects. The model simulates the timing of firing of different hippocampal cell types relative to theta oscillations, and proposes functional roles for the different classes of the hippocampal and septal inhibitory interneurons in the correct ordering of spatial memories as well as in the generation and maintenance of theta phase precession of pyramidal cells (place cells) in CA1. The model leads to a number of experimentally testable predictions that may lead to a better understanding of the biophysical computations in the hippocampus and medial septum. Copyright © 2011 Wiley Periodicals, Inc.

  16. Battery charging and discharging research based on the interactive technology of smart grid and electric vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyang

    2018-06-01

    To further study the bidirectional flow problem of V2G (Vehicle to Grid) charge and discharge motor, the mathematical model of AC/DC converter and bi-directional DC/DC converter was established. Then, lithium battery was chosen as the battery of electric vehicle and its mathematical model was established. In order to improve the service life of lithium battery, bidirectional DC/DC converter adopted constant current and constant voltage control strategy. In the initial stage of charging, constant current charging was adopted with current single closed loop control. After reaching a certain value, voltage was switched to constant voltage charging controlled by voltage and current. Subsequently, the V2G system simulation model was built in MATLAB/Simulink. The simulation results verified the correctness of the control strategy and showed that when charging, constant current and constant voltage charging was achieved, the grid side voltage and current were in the same phase, and the power factor was about 1. When discharging, the constant current discharge was applied, and the grid voltage and current phase difference was r. To sum up, the simulation results are correct and helpful.

  17. Finite temperature corrections and embedded strings in noncommutative geometry and the standard model with neutrino mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, R. A.

    The recent extension of the standard model to include massive neutrinos in the framework of noncommutative geometry and the spectral action principle involves new scalar fields and their interactions with the usual complex scalar doublet. After ensuring that they bring no unphysical consequences, we address the question of how these fields affect the physics predicted in the Weinberg-Salam theory, particularly in the context of the electroweak phase transition. Applying the Dolan-Jackiw procedure, we calculate the finite temperature corrections, and find that the phase transition is first order. The new scalar interactions significantly improve the stability of the electroweak Z string,more » through the 'bag' phenomenon described by Vachaspati and Watkins ['Bound states can stabilize electroweak strings', Phys. Lett. B 318, 163-168 (1993)]. (Recently, cosmic strings have climbed back into interest due to a new evidence.) Sourced by static embedded strings, an internal space analogy of Cartan's torsion is drawn, and a possible Higgs-force-like 'gravitational' effect of this nonpropagating torsion on the fermion masses is described. We also check that the field generating the Majorana mass for the {nu}{sub R} is nonzero in the physical vacuum.« less

  18. Extensive regularization of the coupled cluster methods based on the generating functional formalism: application to gas-phase benchmarks and to the S(N)2 reaction of CHCl3 and OH- in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, Karol; Valiev, Marat

    2009-12-21

    The recently introduced energy expansion based on the use of generating functional (GF) [K. Kowalski, P.D. Fan, J. Chem. Phys. 130, 084112 (2009)] provides a way of constructing size-consistent non-iterative coupled-cluster (CC) corrections in terms of moments of the CC equations. To take advantage of this expansion in a strongly interacting regime, the regularization of the cluster amplitudes is required in order to counteract the effect of excessive growth of the norm of the CC wavefunction. Although proven to be effcient, the previously discussed form of the regularization does not lead to rigorously size-consistent corrections. In this paper we addressmore » the issue of size-consistent regularization of the GF expansion by redefning the equations for the cluster amplitudes. The performance and basic features of proposed methodology is illustrated on several gas-phase benchmark systems. Moreover, the regularized GF approaches are combined with QM/MM module and applied to describe the SN2 reaction of CHCl3 and OH- in aqueous solution.« less

  19. Figures of Merit for Magnetic Recording Media

    NASA Astrophysics Data System (ADS)

    Skomski, Ralph; Sellmyer, D. J.

    2007-03-01

    Since the first nucleation-field calculations for hard-soft nanostructures with multilayered [1] and arbitrary [2] geometries, exchange-spring magnets have attracted much attention in various areas of magnetism, including magnetic recording. Ultrahigh storage densities correspond to the strong-coupling limit, realized on small length scales and described by volume-averaged anisotropies. Second-order perturbation theory yields finite-size corrections that describe a partial decoupling of the phases. Since soft phases reduce the nucleation field, nanostructuring can be used to reduce the coercivity Hc while maintaining the energy barrier EB. However, the ratio EB/Hc is an ill-defined figure of merit, because the comparison with the Stoner-Wohlfarth model requires the introduction of a particle volume, as contrasted to an area. By using elongated particles with a continuous anisotropy gradient, it is possible to reduce the coercivity by a factor scaling as the bit size divided by the domain-wall width of the hard phase. However, with decreasing bit size this effect becomes less pronounced. In the strong-coupling limit, thermal stability yields a maximum storage density of order γ/kBT, where γ is the domain-wall energy of the hard phase. - This research is supported by NSF MRSEC, INSIC, and NCMN. [1] S. Nieber and H. Kronm"uller, phys. stat. sol. (b) 153, 367 (1989). [2] R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993).

  20. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  1. A mass-balanced definition of corrected retention volume in gas chromatography.

    PubMed

    Kurganov, A

    2007-05-25

    The mass balance equation of a chromatographic system using a compressible moving phase has been compiled for mass flow of the mobile phase instead of traditional volumetric flow allowing solution of the equation in an analytical form. The relation obtained correlates retention volume measured under ambient conditions with the partition coefficient of the solute. Compared to the relation in the ideal chromatographic system the equation derived contains an additional correction term accounting for the compressibility of the moving phase. When the retention volume is measured under the mean column pressure and column temperature the correction term is reduced to unit and the relation is simplified to those known for the ideal system. This volume according to International Union of Pure and Applied Chemistry (IUPAC) is called the corrected retention volume.

  2. Characterization and correction of eddy-current artifacts in unipolar and bipolar diffusion sequences using magnetic field monitoring.

    PubMed

    Chan, Rachel W; von Deuster, Constantin; Giese, Daniel; Stoeck, Christian T; Harmer, Jack; Aitken, Andrew P; Atkinson, David; Kozerke, Sebastian

    2014-07-01

    Diffusion tensor imaging (DTI) of moving organs is gaining increasing attention but robust performance requires sequence modifications and dedicated correction methods to account for system imperfections. In this study, eddy currents in the "unipolar" Stejskal-Tanner and the velocity-compensated "bipolar" spin-echo diffusion sequences were investigated and corrected for using a magnetic field monitoring approach in combination with higher-order image reconstruction. From the field-camera measurements, increased levels of second-order eddy currents were quantified in the unipolar sequence relative to the bipolar diffusion sequence while zeroth and linear orders were found to be similar between both sequences. Second-order image reconstruction based on field-monitoring data resulted in reduced spatial misalignment artifacts and residual displacements of less than 0.43 mm and 0.29 mm (in the unipolar and bipolar sequences, respectively) after second-order eddy-current correction. Results demonstrate the need for second-order correction in unipolar encoding schemes but also show that bipolar sequences benefit from second-order reconstruction to correct for incomplete intrinsic cancellation of eddy-currents. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Adaptive optics for peripheral vision

    NASA Astrophysics Data System (ADS)

    Rosén, R.; Lundström, L.; Unsbo, P.

    2012-07-01

    Understanding peripheral optical errors and their impact on vision is important for various applications, e.g. research on myopia development and optical correction of patients with central visual field loss. In this study, we investigated whether correction of higher order aberrations with adaptive optics (AO) improve resolution beyond what is achieved with best peripheral refractive correction. A laboratory AO system was constructed for correcting peripheral aberrations. The peripheral low contrast grating resolution acuity in the 20° nasal visual field of the right eye was evaluated for 12 subjects using three types of correction: refractive correction of sphere and cylinder, static closed loop AO correction and continuous closed loop AO correction. Running AO in continuous closed loop improved acuity compared to refractive correction for most subjects (maximum benefit 0.15 logMAR). The visual improvement from aberration correction was highly correlated with the subject's initial amount of higher order aberrations (p = 0.001, R 2 = 0.72). There was, however, no acuity improvement from static AO correction. In conclusion, correction of peripheral higher order aberrations can improve low contrast resolution, provided refractive errors are corrected and the system runs in continuous closed loop.

  4. Who's My Doctor? Using an Electronic Tool to Improve Team Member Identification on an Inpatient Pediatrics Team.

    PubMed

    Singh, Amit; Rhee, Kyung E; Brennan, Jesse J; Kuelbs, Cynthia; El-Kareh, Robert; Fisher, Erin S

    2016-03-01

    Increase parent/caregiver ability to correctly identify the attending in charge and define terminology of treatment team members (TTMs). We hypothesized that correct TTM identification would increase with use of an electronic communication tool. Secondary aims included assessing subjects' satisfaction with and trust of TTM and interest in computer activities during hospitalization. Two similar groups of parents/legal guardians/primary caregivers of children admitted to the Pediatric Hospital Medicine teaching service with an unplanned first admission were surveyed before (Phase 1) and after (Phase 2) implementation of a novel electronic medical record (EMR)-based tool with names, photos, and definitions of TTMs. Physicians were also surveyed only during Phase 1. Surveys assessed TTM identification, satisfaction, trust, and computer use. More subjects in Phase 2 correctly identified attending physicians by name (71% vs. 28%, P < .001) and correctly defined terms intern, resident, and attending (P ≤ .03) compared with Phase 1. Almost all subjects (>79%) and TTMs (>87%) reported that subjects' ability to identify TTMs moderately or strongly impacted satisfaction and trust. The majority of subjects expressed interest in using computers to understand TTMs in each phase. Subjects' ability to correctly identify attending physicians and define TTMs was significantly greater for those who used our tool. In our study, subjects reported that TTM identification impacted aspects of the TTM relationship, yet few could correctly identify TTMs before tool use. This pilot study showed early success in engaging subjects with the EMR in the hospital and suggests that families would engage in computer-based activities in this setting. Copyright © 2016 by the American Academy of Pediatrics.

  5. Phase quality map based on local multi-unwrapped results for two-dimensional phase unwrapping.

    PubMed

    Zhong, Heping; Tang, Jinsong; Zhang, Sen

    2015-02-01

    The efficiency of a phase unwrapping algorithm and the reliability of the corresponding unwrapped result are two key problems in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) or interferometric synthetic aperture sonar (InSAS) data. In this paper, a new phase quality map is designed and implemented in a graphic processing unit (GPU) environment, which greatly accelerates the unwrapping process of the quality-guided algorithm and enhances the correctness of the unwrapped result. In a local wrapped phase window, the center point is selected as the reference point, and then two unwrapped results are computed by integrating in two different simple ways. After the two local unwrapped results are computed, the total difference of the two unwrapped results is regarded as the phase quality value of the center point. In order to accelerate the computing process of the new proposed quality map, we have implemented it in a GPU environment. The wrapped phase data are first uploaded to the memory of a device, and then the kernel function is called in the device to compute the phase quality in parallel by blocks of threads. Unwrapping tests performed on the simulated and real InSAS data confirm the accuracy and efficiency of the proposed method.

  6. Fractionalized Fermi liquid in a Kondo-Heisenberg model

    DOE PAGES

    Tsvelik, A. M.

    2016-10-10

    The Kondo-Heisenberg model is used as a controllable tool to demonstrate the existence of a peculiar metallic state with unbroken translational symmetry where the Fermi surface volume is not controlled by the total electron density. Here, I use a nonperturbative approach where the strongest interactions are taken into account by means of exact solution, and corrections are controllable. The resulting metallic state represents a fractionalized Fermi liquid where well defined quasiparticles coexist with gapped fractionalized collective excitations, in agreement with the general requirements formulated by T. Senthil et al. [Phys. Rev. Lett. 90, 216403 (2003)]. Furthermore, the system undergoes amore » phase transition to an ordered phase (charge density wave or superconducting), at the transition temperature which is parametrically small in comparison to the quasiparticle Fermi energy.« less

  7. The knowledge and understanding of preanalytical phase among biomedicine students at the University of Zagreb.

    PubMed

    Dukic, Lora; Jokic, Anja; Kules, Josipa; Pasalic, Daria

    2016-01-01

    The educational program for health care personnel is important for reducing preanalytical errors and improving quality of laboratory test results. The aim of our study was to assess the level of knowledge on preanalytical phase in population of biomedicine students through a cross-sectional survey. A survey was sent to students on penultimate and final year of Faculty of Pharmacy and Biochemistry--study of medical biochemistry (FPB), Faculty of Veterinary Medicine (FVM) and School of Medicine (SM), University of Zagreb, Croatia, using the web tool SurveyMonkey. Survey was composed of demographics and 14 statements regarding the preanalytical phase of laboratory testing. Comparison of frequencies and proportions of correct answers was done with Fisher's exact test and test of comparison of proportions, respectively. Study included 135 participants, median age 24 (23-40) years. Students from FPB had higher proportion of correct answers (86%) compared to students from other biomedical faculties 62%, P < 0.001. Students from FPB were more conscious of the importance of specimen mixing (P = 0.027), prevalence of preanalytical errors (P = 0.001), impact of hemolysis (P = 0.032) and lipemia interferences (P = 0.010), proper choice of anticoagulants (P = 0.001), transport conditions for ammonia sample (P < 0.001) and order of draw during blood specimen collection (P < 0.001), in comparison with students from SM and FVM. Students from FPB are more conscious of the importance of preanalytical phase of testing in comparison with their colleagues from other biomedical faculties. No difference in knowledge between penultimate and final year of the same faculty was found.

  8. Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts

    NASA Astrophysics Data System (ADS)

    Li, Mingjun; Kuribayashi, Kazuhiko

    2003-12-01

    Co-20.5 at. pct Sn and Ni-21.4 at. pct Si eutectic alloys have been levitated and undercooled in an electromagnetic levitator (EML) and then solidified spontaneously at different undercoolings. The original surface and cross-sectional morphologies of these solidified samples consist of separate eutectic colonies regardless of melt undercooling, indicating that microstructures in the free solidification of the eutectic systems are nucleation controlled. Regular lamellae always grow from the periphery of an independent anomalous eutectic grain in each eutectic colony. This typical morphology shows that the basic unit should be a single eutectic colony, when discussing the solidification behavior. Special emphasis is focused on the anomalous eutectic formation after a significant difference in linear kinetic coefficients is recognized for terminal eutectic phases, in particular when a eutectic reaction contains a nonfaceted disordered solid solution and a faceted ordered intermetallic compound as the terminal eutectic phases. It is this remarkable difference in the linear kinetic coefficients that leads to a pronounced difference in kinetic undercoolings. The sluggish kinetics in the interface atomic attachment of the intermetallic compound originates the occurrence of the decoupled growth of two eutectic phases. Hence, the current eutectic models are modified to incorporate kinetic undercooling, in order to account for the competitive growth behavior of eutectic phases in a single eutectic colony. The critical condition for generating the decoupled growth of eutectic phases is proposed. Further analysis reveals that a dimensionless critical undercooling may be appropriate to show the tendency for the anomalous eutectic-forming ability when considering the difference in linear kinetic coefficients of terminal eutectic phases. This qualitative criterion, albeit crude with several approximations and assumptions, can elucidate most of the published experimental results with the correct order of magnitude. Solidification modes in some eutectic alloys are predicted on the basis of the present criterion. Future work that may result in some probable errors is briefly directed to improve the model.

  9. A density functional theory study on the effect of zero-point energy corrections on the methanation profile on Fe(100).

    PubMed

    Govender, Ashriti; Ferré, Daniel Curulla; Niemantsverdriet, J W Hans

    2012-04-23

    The thermodynamics and kinetics of the surface hydrogenation of adsorbed atomic carbon to methane, following the reaction sequence C+4H(-->/<--)CH+3H(-->/<--)CH(2)+2H(-->/<--)CH(3)+H(-->/<--)CH(4), are studied on Fe(100) by means of density functional theory. An assessment is made on whether the adsorption energies and overall energy profile are affected when zero-point energy (ZPE) corrections are included. The C, CH and CH(2) species are most stable at the fourfold hollow site, while CH(3) prefers the twofold bridge site. Atomic hydrogen is adsorbed at both the twofold bridge and fourfold hollow sites. Methane is physisorbed on the surface and shows neither orientation nor site preference. It is easily desorbed to the gas phase once formed. The incorporation of ZPE corrections has a very slight, if any, effect on the adsorption energies and does not alter the trends with regards to the most stable adsorption sites. The successive addition of hydrogen to atomic carbon is endothermic up to the addition of the third hydrogen atom resulting in the methyl species, but exothermic in the final hydrogenation step, which leads to methane. The overall methanation reaction is endothermic when starting from atomic carbon and hydrogen on the surface. Zero-point energy corrections are rarely provided in the literature. Since they are derived from C-H bonds with characteristic vibrations on the order of 2500-3000 cm(-1), the equivalent ZPE of 1/2 hν is on the order of 0.2-0.3 eV and its effect on adsorption energy can in principle be significant. Particularly in reactions between CH(x) and H, the ZPE correction is expected to be significant, as additional C-H bonds are formed. In this instance, the methanation reaction energy of +0.77 eV increased to +1.45 eV with the inclusion of ZPE corrections, that is, less favourable. Therefore, it is crucial to include ZPE corrections when reporting reactions involving hydrogen-containing species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Anemia, tumor hypoxemia, and the cancer patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varlotto, John; Stevenson, Mary Ann; Department of Radiation Oncology, Beth Israel/Deaconess Medical Center, Harvard Medical School, Boston, MA

    2005-09-01

    Purpose: To review the impact of anemia/tumor hypoxemia on the quality of life and survival in cancer patients, and to assess the problems associated with the correction of this difficulty. Methods: MEDLINE searches were performed to find relevant literature regarding anemia and/or tumor hypoxia in cancer patients. Articles were evaluated in order to assess the epidemiology, adverse patient effects, anemia correction guidelines, and mechanisms of hypoxia-induced cancer cell growth and/or therapeutic resistance. Past and current clinical studies of radiosensitization via tumor oxygenation/hypoxic cell sensitization were reviewed. All clinical studies using multi-variate analysis were analyzed to show whether or not anemiamore » and/or tumor hypoxemia affected tumor control and patient survival. Articles dealing with the correction of anemia via transfusion and/or erythropoietin were reviewed in order to show the impact of the rectification on the quality of life and survival of cancer patients. Results: Approximately 40-64% of patients presenting for cancer therapy are anemic. The rate of anemia rises with the use of chemotherapy, radiotherapy, and hormonal therapy for prostate cancer. Anemia is associated with reductions both in quality of life and survival. Tumor hypoxemia has been hypothesized to lead to tumor growth and resistance to therapy because it leads to angiogenesis, genetic mutations, resistance to apoptosis, and a resistance to free radicals from chemotherapy and radiotherapy. Nineteen clinical studies of anemia and eight clinical studies of tumor hypoxemia were found that used multi-variate analysis to determine the effect of these conditions on the local control and/or survival of cancer patients. Despite differing definitions of anemia and hypoxemia, all studies have shown a correlation between low hemoglobin levels and/or higher amounts of tumor hypoxia with poorer prognosis. Radiosensitization through improvements in tumor oxygenation/hypoxic cell sensitization has met with limited success via the use of hyperbaric oxygen, electron-affinic radiosensitizers, and mitomycin. Improvements in tumor oxygenation via the use of carbogen and nicotinamide, RSR13, and tirapazamine have shown promising clinical results and are all currently being tested in Phase III trials. The National Comprehensive Cancer Network (NCCN) guidelines recommend transfusion or erythropoietin for symptomatic patients with a hemoglobin of 10-11 g/dl and state that erythropoietin should strongly be considered if hemoglobin falls to less than 10 g/dl. These recommendations were based on studies that revealed an improvement in the quality of life of cancer patients, but not patient survival with anemia correction. Phase III studies evaluating the correction of anemia via erythropoietin have shown mixed results with some studies reporting a decrease in patient survival despite an improvement in hemoglobin levels. Diverse functions of erythropoietin are reviewed, including its potential to inhibit apoptosis via the JAK2/STAT5/BCL-X pathway. Correction of anemia by the use of blood transfusions has also shown a decrement in patient survival, possibly through inflammatory and/or immunosuppressive pathways. Conclusions: Anemia is a prevalent condition associated with cancer and its therapies. Proper Phase III trials are necessary to find the best way to correct anemia for specific patients. Future studies of erythropoietin must evaluate the possible anti-apoptotic effects by directly assessing the tumor for erythropoietin receptors or the presence of the JAK2/STAT5/BCL-X pathway. Due to the ability of transfusions to cause immunosuppression, most probably through inflammatory pathways, it may be best to study the effects of transfusion with the prolonged use of anti-inflammatory medications.« less

  11. The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques

    NASA Astrophysics Data System (ADS)

    Tang, Chao

    Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The results show that the correction significantly reduces the errors due to the partial volume effect. We apply the correction method to the data of in vivo studies. Because the blood flow is not known, the results of correction are tested according to the common knowledge (such as cardiac output) and conservation of flow. For example, the volume of blood flowing to the brain should be equal to the volume of blood flowing from the brain. Our measurement results are very convincing.

  12. Optimized distortion correction technique for echo planar imaging.

    PubMed

    Chen , N K; Wyrwicz, A M

    2001-03-01

    A new phase-shifted EPI pulse sequence is described that encodes EPI phase errors due to all off-resonance factors, including B(o) field inhomogeneity, eddy current effects, and gradient waveform imperfections. Combined with the previously proposed multichannel modulation postprocessing algorithm (Chen and Wyrwicz, MRM 1999;41:1206-1213), the encoded phase error information can be used to effectively remove geometric distortions in subsequent EPI scans. The proposed EPI distortion correction technique has been shown to be effective in removing distortions due to gradient waveform imperfections and phase gradient-induced eddy current effects. In addition, this new method retains advantages of the earlier method, such as simultaneous correction of different off-resonance factors without use of a complicated phase unwrapping procedure. The effectiveness of this technique is illustrated with EPI studies on phantoms and animal subjects. Implementation to different versions of EPI sequences is also described. Magn Reson Med 45:525-528, 2001. Copyright 2001 Wiley-Liss, Inc.

  13. An automated subtraction of NLO EW infrared divergences

    NASA Astrophysics Data System (ADS)

    Schönherr, Marek

    2018-02-01

    In this paper a generalisation of the Catani-Seymour dipole subtraction method to next-to-leading order electroweak calculations is presented. All singularities due to photon and gluon radiation off both massless and massive partons in the presence of both massless and massive spectators are accounted for. Particular attention is paid to the simultaneous subtraction of singularities of both QCD and electroweak origin which are present in the next-to-leading order corrections to processes with more than one perturbative order contributing at Born level. Similarly, embedding non-dipole-like photon splittings in the dipole subtraction scheme discussed. The implementation of the formulated subtraction scheme in the framework of the Sherpa Monte-Carlo event generator, including the restriction of the dipole phase space through the α -parameters and expanding its existing subtraction for NLO QCD calculations, is detailed and numerous internal consistency checks validating the obtained results are presented.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Enrique; Anero, Jesus; Gonzalez-Martin, Sergio, E-mail: enrique.alvarez@uam.es, E-mail: jesusanero@gmail.com, E-mail: sergio.gonzalez.martin@uam.es

    We consider the most general action for gravity which is quadratic in curvature. In this case first order and second order formalisms are not equivalent. This framework is a good candidate for a unitary and renormalizable theory of the gravitational field; in particular, there are no propagators falling down faster than 1/ p {sup 2}. The drawback is of course that the parameter space of the theory is too big, so that in many cases will be far away from a theory of gravity alone. In order to analyze this issue, the interaction between external sources was examined in somemore » detail. We find that this interaction is conveyed mainly by propagation of the three-index connection field. At any rate the theory as it stands is in the conformal invariant phase; only when Weyl invariance is broken through the coupling to matter can an Einstein-Hilbert term (and its corresponding Planck mass scale) be generated by quantum corrections.« less

  15. Two-nucleon S 0 1 amplitude zero in chiral effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, M. Sanchez; Yang, C. -J.; Long, Bingwei

    We present a new rearrangement of short-range interactions in the 1S 0 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg’s scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to themore » pion-production threshold. As a result, an approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.« less

  16. Two-nucleon S 0 1 amplitude zero in chiral effective field theory

    DOE PAGES

    Sanchez, M. Sanchez; Yang, C. -J.; Long, Bingwei; ...

    2018-02-05

    We present a new rearrangement of short-range interactions in the 1S 0 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg’s scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to themore » pion-production threshold. As a result, an approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.« less

  17. The Effects of L2C Signal Tracking on High-Precision Carrier Phase GPS Positioning: Implications for the Next Generation of GNSS Systems

    NASA Astrophysics Data System (ADS)

    Blume, F.; Berglund, H.; Estey, L.

    2012-12-01

    In December 2005, the L2C signal was introduced to improve the accuracy, tracking and redundancy of the GPS system for civilian users. The L2C signal also provides improved SNR data when compared with the L2P(Y) legacy signal. However, GNSS network operators have been hesitant to use the new signal as it is not well determined how positions derived from L2 carrier phase measurements are affected. L2C carrier phase is in quadrature with L2P(Y); some manufacturers correct for this when logging L2C phase while others do not. In cases where both L2C and L2P(Y) are logged simultaneously, translation software must be used carefully in order to select which phase is used in positioning. Modifications were made to UNAVCO's teqc pre-processing software to eliminate confusion, however GNSS networks such as the IGS still suffer occasional data loss due to improperly configured GPS receivers or data flow routines. To date L2C analyses have been restricted to special applications such as snow depth and soil moisture using SNR data, as some high-precision data analysis packages are not compatible with L2C. We use several different methods to determine the effect that tracking and logging L2C has on carrier phase measurements and positioning for various receiver models and configurations. Twenty-four hour zero-length baseline solutions using L2 show sub- millimeter differences in mean positions for both horizontal and vertical components. Direct comparisons of the L2 phase observable from RINEX files with and without the L2C observable show sub-millicycle differences. The magnitude of the variations increased at low elevations. The behavior of the L2P(Y) phase observations or positions from a given receiver were not affected by the enabling of L2C tracking. We find that the use of the L2C-derived carrier phase in real-time applications can be disastrous in cases where receiver brands are mixed between those that correct for quadrature and those that do not (Figure 1). Until standards are implemented for universal phase corrections in either receivers or software the use of L2C should be avoided by real-time network operators. The complexity involved in the adoption of a single new signal on an existing GPS frequency over a period of 7 years has implications for the use of multi-GNSS systems and modernized GPS in geodetic networks.

  18. Effects of motion and b-matrix correction for high resolution DTI with short-axis PROPELLER-EPI

    PubMed Central

    Aksoy, Murat; Skare, Stefan; Holdsworth, Samantha; Bammer, Roland

    2010-01-01

    Short-axis PROPELLER-EPI (SAP-EPI) has been proven to be very effective in providing high-resolution diffusion-weighted and diffusion tensor data. The self-navigation capabilities of SAP-EPI allow one to correct for motion, phase errors, and geometric distortion. However, in the presence of patient motion, the change in the effective diffusion-encoding direction (i.e. the b-matrix) between successive PROPELLER ‘blades’ can decrease the accuracy of the estimated diffusion tensors, which might result in erroneous reconstruction of white matter tracts in the brain. In this study, we investigate the effects of alterations in the b-matrix as a result of patient motion on the example of SAP-EPI DTI and eliminate these effects by incorporating our novel single-step non-linear diffusion tensor estimation scheme into the SAP-EPI post-processing procedure. Our simulations and in-vivo studies showed that, in the presence of patient motion, correcting the b-matrix is necessary in order to get more accurate diffusion tensor and white matter pathway reconstructions. PMID:20222149

  19. Phase I Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada with Errata Sheet 1, 2, 3, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greg Ruskauff

    2009-02-01

    As prescribed in the Pahute Mesa Corrective Action Investigation Plan (CAIP) (DOE/NV, 1999) and Appendix VI of the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008), the ultimate goal of transport analysis is to develop stochastic predictions of a contaminant boundary at a specified level of uncertainty. However, because of the significant uncertainty of the model results, the primary goal of this report was modified through mutual agreement between the DOE and the State of Nevada to assess the primary model components that contribute to this uncertainty and to postpone defining the contaminant boundary until additionalmore » model refinement is completed. Therefore, the role of this analysis has been to understand the behavior of radionuclide migration in the Pahute Mesa (PM) Corrective Action Unit (CAU) model and to define, both qualitatively and quantitatively, the sensitivity of such behavior to (flow) model conceptualization and (flow and transport) parameterization.« less

  20. Characterization methodology for lead zirconate titanate thin films with interdigitated electrode structures

    NASA Astrophysics Data System (ADS)

    Nigon, R.; Raeder, T. M.; Muralt, P.

    2017-05-01

    The accurate evaluation of ferroelectric thin films operated with interdigitated electrodes is quite a complex task. In this article, we show how to correct the electric field and the capacitance in order to obtain identical polarization and CV loops for all geometrical variants. The simplest model is compared with corrections derived from Schwartz-Christoffel transformations, and with finite element simulations. The correction procedure is experimentally verified, giving almost identical curves for a variety of gaps and electrode widths. It is shown that the measured polarization change corresponds to the average polarization change in the center plane between the electrode fingers, thus at the position where the electric field is most homogeneous with respect to the direction and size. The question of maximal achievable polarization in the various possible textures, and compositional types of polycrystalline lead zirconate titanate thin films is revisited. In the best case, a soft (110) textured thin film with the morphotropic phase boundary composition should yield a value of 0.95Ps, and in the worst case, a rhombohedral (100) textured thin film should deliver a polarization of 0.74Ps.

  1. Improved control of the betatron coupling in the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Persson, T.; Tomás, R.

    2014-05-01

    The control of the betatron coupling is of importance for safe beam operation in the LHC. In this article we show recent advancements in methods and algorithms to measure and correct coupling. The benefit of using a more precise formula relating the resonance driving term f1001 to the ΔQmin is presented. The quality of the coupling measurements is increased, with about a factor 3, by selecting beam position monitor (BPM) pairs with phase advances close to π/2 and through data cleaning using singular value decomposition with an optimal number of singular values. These improvements are beneficial for the implemented automatic coupling correction, which is based on injection oscillations, presented in the article. Furthermore, a proposed coupling feedback for the LHC is presented. The system will rely on the measurements from BPMs equipped with a new type of high resolution electronics, diode orbit and oscillation, which will be operational when the LHC restarts in 2015. The feedback will combine the coupling measurements from the available BPMs in order to calculate the best correction.

  2. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures

    NASA Astrophysics Data System (ADS)

    Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.

    2013-05-01

    An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.

  3. Estimate of higher order ionospheric errors in GNSS positioning

    NASA Astrophysics Data System (ADS)

    Hoque, M. Mainul; Jakowski, N.

    2008-10-01

    Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.

  4. Learning and generalization from reward and punishment in opioid addiction

    PubMed Central

    Myers, Catherine E.; Rego, Janice; Haber, Paul; Morley, Kirsten; Beck, Kevin D.; Hogarth, Lee; Moustafa, Ahmed A.

    2016-01-01

    This study adapts a widely-used acquired equivalence paradigm to investigate how opioid-addicted individuals learn from positive and negative feedback, and how they generalize this learning. The opioid-addicted group consisted of 33 participants with a history of heroin dependency currently in a methadone maintenance program; the control group consisted of 32 healthy participants without a history of drug addiction. All participants performed a novel variant of the acquired equivalence task, where they learned to map some stimuli to correct outcomes in order to obtain reward, and to map other stimuli to correct outcomes in order to avoid punishment; some stimuli were implicitly “equivalent” in the sense of being paired with the same outcome. On the initial training phase, both groups performed similarly on learning to obtain reward, but as memory load grew, the control group outperformed the addicted group on learning to avoid punishment. On a subsequent testing phase, the addicted and control groups performed similarly on retention trials involving previously-trained stimulus-outcome pairs, as well as on generalization trials to assess acquired equivalence. Since prior work with acquired equivalence tasks has associated stimulus-outcome learning with the nigrostriatal dopamine system, and generalization with the hippocampal region, the current results are consistent with basal ganglia dysfunction in the opioid-addicted patients. Further, a selective deficit in learning from punishment could contribute to processes by which addicted individuals continue to pursue drug use even at the cost of negative consequences such as loss of income and the opportunity to engage in other life activities. PMID:27641323

  5. Learning and generalization from reward and punishment in opioid addiction.

    PubMed

    Myers, Catherine E; Rego, Janice; Haber, Paul; Morley, Kirsten; Beck, Kevin D; Hogarth, Lee; Moustafa, Ahmed A

    2017-01-15

    This study adapts a widely-used acquired equivalence paradigm to investigate how opioid-addicted individuals learn from positive and negative feedback, and how they generalize this learning. The opioid-addicted group consisted of 33 participants with a history of heroin dependency currently in a methadone maintenance program; the control group consisted of 32 healthy participants without a history of drug addiction. All participants performed a novel variant of the acquired equivalence task, where they learned to map some stimuli to correct outcomes in order to obtain reward, and to map other stimuli to correct outcomes in order to avoid punishment; some stimuli were implicitly "equivalent" in the sense of being paired with the same outcome. On the initial training phase, both groups performed similarly on learning to obtain reward, but as memory load grew, the control group outperformed the addicted group on learning to avoid punishment. On a subsequent testing phase, the addicted and control groups performed similarly on retention trials involving previously-trained stimulus-outcome pairs, as well as on generalization trials to assess acquired equivalence. Since prior work with acquired equivalence tasks has associated stimulus-outcome learning with the nigrostriatal dopamine system, and generalization with the hippocampal region, the current results are consistent with basal ganglia dysfunction in the opioid-addicted patients. Further, a selective deficit in learning from punishment could contribute to processes by which addicted individuals continue to pursue drug use even at the cost of negative consequences such as loss of income and the opportunity to engage in other life activities. Published by Elsevier B.V.

  6. Loop corrections to primordial fluctuations from inflationary phase transitions

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Peng; Yokoyama, Jun'ichi

    2018-05-01

    We investigate loop corrections to the primordial fluctuations in the single-field inflationary paradigm from spectator fields that experience a smooth transition of their vacuum expectation values. We show that when the phase transition involves a classical evolution effectively driven by a negative mass term from the potential, important corrections to the curvature perturbation can be generated by field perturbations that are frozen outside the horizon by the time of the phase transition, yet the correction to tensor perturbation is naturally suppressed by the spatial derivative couplings between spectator fields and graviton. At one-loop level, the dominant channel for the production of primordial fluctuations comes from a pair-scattering of free spectator fields that decay into the curvature perturbations, and this decay process is only sensitive to field masses comparable to the Hubble scale of inflation.

  7. On the light massive flavor dependence of the large order asymptotic behavior and the ambiguity of the pole mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, André H.; Lepenik, Christopher; Preisser, Moritz

    Here, we provide a systematic renormalization group formalism for the mass effects in the relation of the pole mass m Q pole and short-distance masses such as themore » $$—\\atop{MS}$$ mass $$—\\atop{m}$$ Q of a heavy quark Q, coming from virtual loop insertions of massive quarks lighter than Q. The formalism reflects the constraints from heavy quark symmetry and entails a combined matching and evolution procedure that allows to disentangle and successively integrate out the corrections coming from the lighter massive quarks and the momentum regions between them and to precisely control the large order asymptotic behavior. With the formalism we systematically sum logarithms of ratios of the lighter quark masses and m Q , relate the QCD corrections for different external heavy quarks to each other, predict the O(α$$4\\atop{s}$$) virtual quark mass corrections in the pole-$$—\\atop{MS}$$ mass relation, calculate the pole mass differences for the top, bottom and charm quarks with a precision of around 20 MeV and analyze the decoupling of the lighter massive quark flavors at large orders. The summation of logarithms is most relevant for the top quark pole mass m t pole, where the hierarchy to the bottom and charm quarks is large. We determine the ambiguity of the pole mass for top, bottom and charm quarks in different scenarios with massive or massless bottom and charm quarks in a way consistent with heavy quark symmetry, and we find that it is 250 MeV. The ambiguity is larger than current projections for the precision of top quark mass measurements in the high-luminosity phase of the LHC.« less

  8. On the light massive flavor dependence of the large order asymptotic behavior and the ambiguity of the pole mass

    DOE PAGES

    Hoang, André H.; Lepenik, Christopher; Preisser, Moritz

    2017-09-20

    Here, we provide a systematic renormalization group formalism for the mass effects in the relation of the pole mass m Q pole and short-distance masses such as themore » $$—\\atop{MS}$$ mass $$—\\atop{m}$$ Q of a heavy quark Q, coming from virtual loop insertions of massive quarks lighter than Q. The formalism reflects the constraints from heavy quark symmetry and entails a combined matching and evolution procedure that allows to disentangle and successively integrate out the corrections coming from the lighter massive quarks and the momentum regions between them and to precisely control the large order asymptotic behavior. With the formalism we systematically sum logarithms of ratios of the lighter quark masses and m Q , relate the QCD corrections for different external heavy quarks to each other, predict the O(α$$4\\atop{s}$$) virtual quark mass corrections in the pole-$$—\\atop{MS}$$ mass relation, calculate the pole mass differences for the top, bottom and charm quarks with a precision of around 20 MeV and analyze the decoupling of the lighter massive quark flavors at large orders. The summation of logarithms is most relevant for the top quark pole mass m t pole, where the hierarchy to the bottom and charm quarks is large. We determine the ambiguity of the pole mass for top, bottom and charm quarks in different scenarios with massive or massless bottom and charm quarks in a way consistent with heavy quark symmetry, and we find that it is 250 MeV. The ambiguity is larger than current projections for the precision of top quark mass measurements in the high-luminosity phase of the LHC.« less

  9. New physics in the visible final states of B → D(*) τν

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ligeti, Zoltan; Papucci, Michele; Robinson, Dean J.

    We derive compact expressions for the helicity amplitudes of the many-body B → D (*) (→ DY)τ(→ Xν)ν decays, specifically for X = ℓν or π and Y = π or γ. We include contributions from all ten possible new physics four-Fermi operators with arbitrary couplings. Our results capture interference effects in the full phase space of the visible τ and D * decay products which are missed in analyses that treat the τ or D * or both as stable. The τ interference effects are sizable, formally of order m τ/m B for the standard model, and may bemore » of order unity in the presence of new physics. Treating interference correctly is essential when considering kinematic distributions of the τ or D * decay products, and when including experimentally unavoidable phase space cuts. Our amplitude-level results also allow for efficient exploration of new physics effects in the fully differential phase space, by enabling experiments to perform such studies on fully simulated Monte Carlo datasets via efficient event reweighing. As an example, we explore a class of new physics interactions that can fit the observed R(D (*) ) ratios, and show that analyses including more differential kinematic information can provide greater discriminating power for new physics, than single kinematic variables alone.« less

  10. New physics in the visible final states of B → D(*) τν

    DOE PAGES

    Ligeti, Zoltan; Papucci, Michele; Robinson, Dean J.

    2017-01-18

    We derive compact expressions for the helicity amplitudes of the many-body B → D (*) (→ DY)τ(→ Xν)ν decays, specifically for X = ℓν or π and Y = π or γ. We include contributions from all ten possible new physics four-Fermi operators with arbitrary couplings. Our results capture interference effects in the full phase space of the visible τ and D * decay products which are missed in analyses that treat the τ or D * or both as stable. The τ interference effects are sizable, formally of order m τ/m B for the standard model, and may bemore » of order unity in the presence of new physics. Treating interference correctly is essential when considering kinematic distributions of the τ or D * decay products, and when including experimentally unavoidable phase space cuts. Our amplitude-level results also allow for efficient exploration of new physics effects in the fully differential phase space, by enabling experiments to perform such studies on fully simulated Monte Carlo datasets via efficient event reweighing. As an example, we explore a class of new physics interactions that can fit the observed R(D (*) ) ratios, and show that analyses including more differential kinematic information can provide greater discriminating power for new physics, than single kinematic variables alone.« less

  11. Processing TES Level-1B Data

    NASA Technical Reports Server (NTRS)

    DeBaca, Richard C.; Sarkissian, Edwin; Madatyan, Mariyetta; Shepard, Douglas; Gluck, Scott; Apolinski, Mark; McDuffie, James; Tremblay, Dennis

    2006-01-01

    TES L1B Subsystem is a computer program that performs several functions for the Tropospheric Emission Spectrometer (TES). The term "L1B" (an abbreviation of "level 1B"), refers to data, specific to the TES, on radiometric calibrated spectral radiances and their corresponding noise equivalent spectral radiances (NESRs), plus ancillary geolocation, quality, and engineering data. The functions performed by TES L1B Subsystem include shear analysis, monitoring of signal levels, detection of ice build-up, and phase correction and radiometric and spectral calibration of TES target data. Also, the program computes NESRs for target spectra, writes scientific TES level-1B data to hierarchical- data-format (HDF) files for public distribution, computes brightness temperatures, and quantifies interpixel signal variability for the purpose of first-order cloud and heterogeneous land screening by the level-2 software summarized in the immediately following article. This program uses an in-house-developed algorithm, called "NUSRT," to correct instrument line-shape factors.

  12. Exact Derivation of a Finite-Size Scaling Law and Corrections to Scaling in the Geometric Galton-Watson Process

    PubMed Central

    Corral, Álvaro; Garcia-Millan, Rosalba; Font-Clos, Francesc

    2016-01-01

    The theory of finite-size scaling explains how the singular behavior of thermodynamic quantities in the critical point of a phase transition emerges when the size of the system becomes infinite. Usually, this theory is presented in a phenomenological way. Here, we exactly demonstrate the existence of a finite-size scaling law for the Galton-Watson branching processes when the number of offsprings of each individual follows either a geometric distribution or a generalized geometric distribution. We also derive the corrections to scaling and the limits of validity of the finite-size scaling law away the critical point. A mapping between branching processes and random walks allows us to establish that these results also hold for the latter case, for which the order parameter turns out to be the probability of hitting a distant boundary. PMID:27584596

  13. Blind equalization and automatic modulation classification based on subspace for subcarrier MPSK optical communications

    NASA Astrophysics Data System (ADS)

    Chen, Dan; Guo, Lin-yuan; Wang, Chen-hao; Ke, Xi-zheng

    2017-07-01

    Equalization can compensate channel distortion caused by channel multipath effects, and effectively improve convergent of modulation constellation diagram in optical wireless system. In this paper, the subspace blind equalization algorithm is used to preprocess M-ary phase shift keying (MPSK) subcarrier modulation signal in receiver. Mountain clustering is adopted to get the clustering centers of MPSK modulation constellation diagram, and the modulation order is automatically identified through the k-nearest neighbor (KNN) classifier. The experiment has been done under four different weather conditions. Experimental results show that the convergent of constellation diagram is improved effectively after using the subspace blind equalization algorithm, which means that the accuracy of modulation recognition is increased. The correct recognition rate of 16PSK can be up to 85% in any kind of weather condition which is mentioned in paper. Meanwhile, the correct recognition rate is the highest in cloudy and the lowest in heavy rain condition.

  14. On the representation of many-body interactions in water

    DOE PAGES

    Medders, Gregory R.; Gotz, Andreas W.; Morales, Miguel A.; ...

    2015-09-09

    Our recent work has shown that the many-body expansion of the interactionenergy can be used to develop analytical representations of global potential energy surfaces (PESs) for water. In this study, the role of short- and long-range interactions at different orders is investigated by analyzing water potentials that treat the leading terms of the many-body expansion through implicit (i.e., TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) representations. Moreover, it is found that explicit short-range representations of 2-body and 3-body interactions along with a physically correct incorporation of short- and long-range contributions are necessary for an accurate representationmore » of the waterinteractions from the gas to the condensed phase. Likewise, a complete many-body representation of the dipole moment surface is found to be crucial to reproducing the correct intensities of the infrared spectrum of liquid water.« less

  15. Implementation of a MFAC based position sensorless drive for high speed BLDC motors with nonideal back EMF.

    PubMed

    Li, Haitao; Ning, Xin; Li, Wenzhuo

    2017-03-01

    In order to improve the reliability and reduce power consumption of the high speed BLDC motor system, this paper presents a model free adaptive control (MFAC) based position sensorless drive with only a dc-link current sensor. The initial commutation points are obtained by detecting the phase of EMF zero-crossing point and then delaying 30 electrical degrees. According to the commutation error caused by the low pass filter (LPF) and other factors, the relationship between commutation error angle and dc-link current is analyzed, a corresponding MFAC based control method is proposed, and the commutation error can be corrected by the controller in real time. Both the simulation and experimental results show that the proposed correction method can achieve ideal commutation effect within the entire operating speed range. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Simplified Phase Diversity algorithm based on a first-order Taylor expansion.

    PubMed

    Zhang, Dong; Zhang, Xiaobin; Xu, Shuyan; Liu, Nannan; Zhao, Luoxin

    2016-10-01

    We present a simplified solution to phase diversity when the observed object is a point source. It utilizes an iterative linearization of the point spread function (PSF) at two or more diverse planes by first-order Taylor expansion to reconstruct the initial wavefront. To enhance the influence of the PSF in the defocal plane which is usually very dim compared to that in the focal plane, we build a new model with the Tikhonov regularization function. The new model cannot only increase the computational speed, but also reduce the influence of the noise. By using the PSFs obtained from Zemax, we reconstruct the wavefront of the Hubble Space Telescope (HST) at the edge of the field of view (FOV) when the telescope is in either the nominal state or the misaligned state. We also set up an experiment, which consists of an imaging system and a deformable mirror, to validate the correctness of the presented model. The result shows that the new model can improve the computational speed with high wavefront detection accuracy.

  17. Realtime speckle sensing and suppression with project 1640 at Palomar

    NASA Astrophysics Data System (ADS)

    Vasisht, Gautam; Cady, Eric; Zhai, Chengxing; Lockhart, Thomas; Oppenheimer, Ben

    2014-08-01

    Palomar's Project 1640 (P1640) is the first stellar coronagraph to regularly use active coronagraphic wavefront control (CWFC). For this it has a hierarchy of offset wavefront sensors (WFS), the most important of which is the higher-order WFS (called CAL), which tracks quasi-static modes between 2-35 cycles-per-aperture. The wavefront is measured in the coronagraph at 0.01 Hz rates, providing slope targets to the upstream Palm 3000 adaptive optics (AO) system. The CWFC handles all non-common path distortions up to the coronagraphic focal plane mask, but does not sense second order modes between the WFSs and the science integral field unit (IFU); these modes determine the system's current limit. We have two CWFC operating modes: (1) P-mode, where we only control phases, generating double-sided darkholes by correcting to the largest controllable spatial frequencies, and (2) E-mode, where we can control amplitudes and phases, generating single-sided dark-holes in specified regions-of-interest. We describe the performance and limitations of both these modes, and discuss the improvements we are considering going forward.

  18. Quantum Monte Carlo analysis of a charge ordered insulating antiferromagnet: The Ti 4O 7 Magneli phase

    DOE PAGES

    Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T.; ...

    2016-06-07

    The Magneli phase Ti 4O 7 is an important transition metal oxide with a wide range of applications because of its interplay between charge, spin, and lattice degrees of freedom. At low temperatures, it has non-trivial magnetic states very close in energy, driven by electronic exchange and correlation interactions. We have examined three low- lying states, one ferromagnetic and two antiferromagnetic, and calculated their energies as well as Ti spin moment distributions using highly accurate Quantum Monte Carlo methods. We compare our results to those obtained from density functional theory- based methods that include approximate corrections for exchange and correlation.more » Our results confirm the nature of the states and their ordering in energy, as compared with density-functional theory methods. However, the energy differences and spin distributions differ. Here, a detailed analysis suggests that non-local exchange-correlation functionals, in addition to other approximations such as LDA+U to account for correlations, are needed to simultaneously obtain better estimates for spin moments, distributions, energy differences and energy gaps.« less

  19. Ionospheric Correction in Using ALOS PALSAR InSAR Data for Monitoring Permafrost Subsidence associated with an Arctic Tundra Fire

    NASA Astrophysics Data System (ADS)

    Liao, H.; Meyer, F. J.; Liu, L.

    2017-12-01

    Tundra fires have important ecological impacts on vegetation succession, carbon cycling, and permafrost dynamics. Recent research has demonstrated that SAR Interferometry (InSAR) is a useful tool for quantifying surface subsidence caused by permafrost degradation and tundra fires. Many of these studies have relied on L-band SAR data due to its ability to remain relatively high coherence in the changing Arctic environment. L-band SAR data, however, are susceptive to ionospheric effects. Traditionally, permafrost-related InSAR studies dealt with ionospheric artifacts by either throwing away ionosphere-contaminated data or by fitting and removing low-order polynomial surfaces from affected images. Discarding data samples is always luxurious and risky, as the number of SAR images is limited and the incurred reduction of temporal sampling might hinder the retrieval of important short-term dynamics in active layer and permafrost. Baseline fitting relies on the assumption that ionospheric signals large spatial scales, an assumption that is often violated in polar regions. To improve upon this situation, we propose the integration of the split-spectrum ionospheric correction technique into permafrost-related InSAR processing workflows. We demonstrate its performance for correcting L-band SAR data in permafrost zones. For the Anaktuvuk River fire area, Alaska, 6 out of 15 ALOS-1 PALSAR scenes used by Liu et al. 2014 were found to be contaminated by ionospheric signals. We extracted the ionospheric phase screens for all contaminated data. We derive their power spectra and provide information on the typical magnitudes and spatial structures of identified phase screens. With the ionosphere corrected data we revisit a model that was developed by Liu et.al (2014) to estimate pre-fire and post-fire thaw-season subsidence for the Anaktuvuk River fire region. We will demonstrate that for our area of interest ionospheric correction leads to improvements of the InSAR-based permafrost deformation estimates. We will also show that ionospheric correction increases the number of usable InSAR data, which improves the accuracy in the retrieved permafrost variables such as subsidence rates and active layer thickness and allows for the detection of shorter-term variations in elevation changes over permafrost areas.

  20. Correction of Motion Artifacts From Shuttle Mode Computed Tomography Acquisitions for Body Perfusion Imaging Applications.

    PubMed

    Ghosh, Payel; Chandler, Adam G; Altinmakas, Emre; Rong, John; Ng, Chaan S

    2016-01-01

    The aim of this study was to investigate the feasibility of shuttle-mode computed tomography (CT) technology for body perfusion applications by quantitatively assessing and correcting motion artifacts. Noncontrast shuttle-mode CT scans (10 phases, 2 nonoverlapping bed locations) were acquired from 4 patients on a GE 750HD CT scanner. Shuttling effects were quantified using Euclidean distances (between-phase and between-bed locations) of corresponding fiducial points on the shuttle and reference phase scans (prior to shuttle mode). Motion correction with nonrigid registration was evaluated using sum-of-squares differences and distances between centers of segmented volumes of interest on shuttle and references images. Fiducial point analysis showed an average shuttling motion of 0.85 ± 1.05 mm (between-bed) and 1.18 ± 1.46 mm (between-phase), respectively. The volume-of-interest analysis of the nonrigid registration results showed improved sum-of-squares differences from 2950 to 597, between-bed distance from 1.64 to 1.20 mm, and between-phase distance from 2.64 to 1.33 mm, respectively, averaged over all cases. Shuttling effects introduced during shuttle-mode CT acquisitions can be computationally corrected for body perfusion applications.

  1. White-Light Phase-Conjugate Mirrors as Distortion Correctors

    NASA Technical Reports Server (NTRS)

    Frazier, Donald; Smith, W. Scott; Abdeldayem, Hossin; Banerjee, Partha

    2010-01-01

    White-light phase-conjugate mirrors would be incorporated into some optical systems, according to a proposal, as means of correcting for wavefront distortions caused by imperfections in large optical components. The proposal was given impetus by a recent demonstration that white, incoherent light can be made to undergo phase conjugation, whereas previously, only coherent light was known to undergo phase conjugation. This proposal, which is potentially applicable to almost any optical system, was motivated by a need to correct optical aberrations of the primary mirror of the Hubble Space telescope. It is difficult to fabricate large optical components like the Hubble primary mirror and to ensure the high precision typically required of such components. In most cases, despite best efforts, the components as fabricated have small imperfections that introduce optical aberrations that adversely affect imaging quality. Correcting for such aberrations is difficult and costly. The proposed use of white-light phase conjugate mirrors offers a relatively simple and inexpensive solution of the aberration-correction problem. Indeed, it should be possible to simplify the entire approach to making large optical components because there would be no need to fabricate those components with extremely high precision in the first place: A white-light phase-conjugate mirror could correct for all the distortions and aberrations in an optical system. The use of white-light phase-conjugate mirrors would be essential for ensuring high performance in optical systems containing lightweight membrane mirrors, which are highly deformable. As used here, "phase-conjugate mirror" signifies, more specifically, an optical component in which incident light undergoes time-reversal phase conjugation. In practice, a phase-conjugate mirror would typically be implemented by use of a suitably positioned and oriented photorefractive crystal. In the case of a telescope comprising a primary and secondary mirror (see figure) white light from a distant source would not be brought to initial focus on one or more imaging scientific instrument(s) as in customary practice. Instead, the light would be brought to initial focus on a phase-conjugate mirror. The phase-conjugate mirror would send a phase-conjugate image back, along the path of the incoming light, to the primary mirror. A transparent, highly efficient diffractive thin film deposited on the primary mirror would direct the phase-conjugate image to the imaging instrument(s).

  2. Order and Disorder in Short Block Polymers

    NASA Astrophysics Data System (ADS)

    Bates, Frank S.

    2015-03-01

    Block polymers have captivated the interest of scientists and engineers for more than half a century. The phase behavior of this class of self-assembling soft material is well understood in the limit of infinite molecular weight, based on the self-consistent mean-field theory pioneered by Leibler. At practical molecular sizes, typically around N ~ 1000 repeat units, fluctuation effects become highly significant in the vicinity of the order disorder transition. One-loop corrections to mean-field theory, first described by Brazovski and applied to block polymers by Fredrickson and Helfand, are not expected to be applicable in this limit. Moreover, the drive towards ever smaller domain dimensions, and the opportunity to circumvent transport limitations associated with entanglements, have motivated experiments with yet lower molecular weight block polymers, N less than 100. This presentation will describe the consequences of fluctuations and the equilibrium structural properties of short model AB diblock polymers in the symmetric (f = 1/2) and asymmetric (f --> 0) regimes above and below the order-disorder transition. The consequences of fluctuations and access to equilibrium states will be described in the 1-dimensional stripped (lamellar) phase and the ordering of point particles in 3-dimensions, respectively. As N --> 1 computer simulation with realistic molecular detail becomes feasible presenting exciting opportunities to compliment the associated theoretical challenges. Research in collaboration with Sangwoo Lee, Chris Leighton and Timothy Gillard and Supported by NSF-DMR-1104368.

  3. Robust tissue-air volume segmentation of MR images based on the statistics of phase and magnitude: Its applications in the display of susceptibility-weighted imaging of the brain.

    PubMed

    Du, Yiping P; Jin, Zhaoyang

    2009-10-01

    To develop a robust algorithm for tissue-air segmentation in magnetic resonance imaging (MRI) using the statistics of phase and magnitude of the images. A multivariate measure based on the statistics of phase and magnitude was constructed for tissue-air volume segmentation. The standard deviation of first-order phase difference and the standard deviation of magnitude were calculated in a 3 x 3 x 3 kernel in the image domain. To improve differentiation accuracy, the uniformity of phase distribution in the kernel was also calculated and linear background phase introduced by field inhomogeneity was corrected. The effectiveness of the proposed volume segmentation technique was compared to a conventional approach that uses the magnitude data alone. The proposed algorithm was shown to be more effective and robust in volume segmentation in both synthetic phantom and susceptibility-weighted images of human brain. Using our proposed volume segmentation method, veins in the peripheral regions of the brain were well depicted in the minimum-intensity projection of the susceptibility-weighted images. Using the additional statistics of phase, tissue-air volume segmentation can be substantially improved compared to that using the statistics of magnitude data alone. (c) 2009 Wiley-Liss, Inc.

  4. Power corrections in the N -jettiness subtraction scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boughezal, Radja; Liu, Xiaohui; Petriello, Frank

    We discuss the leading-logarithmic power corrections in the N-jettiness subtraction scheme for higher-order perturbative QCD calculations. We compute the next-to-leading order power corrections for an arbitrary N-jet process, and we explicitly calculate the power correction through next-to-next-to-leading order for color-singlet production for bothmore » $$q\\bar{q}$$ and gg initiated processes. Our results are compact and simple to implement numerically. Including the leading power correction in the N-jettiness subtraction scheme substantially improves its numerical efficiency. Finally, we discuss what features of our techniques extend to processes containing final-state jets.« less

  5. Power corrections in the N -jettiness subtraction scheme

    DOE PAGES

    Boughezal, Radja; Liu, Xiaohui; Petriello, Frank

    2017-03-30

    We discuss the leading-logarithmic power corrections in the N-jettiness subtraction scheme for higher-order perturbative QCD calculations. We compute the next-to-leading order power corrections for an arbitrary N-jet process, and we explicitly calculate the power correction through next-to-next-to-leading order for color-singlet production for bothmore » $$q\\bar{q}$$ and gg initiated processes. Our results are compact and simple to implement numerically. Including the leading power correction in the N-jettiness subtraction scheme substantially improves its numerical efficiency. Finally, we discuss what features of our techniques extend to processes containing final-state jets.« less

  6. Cosmology of the closed string tachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Ian

    2008-09-15

    The spacetime physics of bulk closed string tachyon condensation is studied at the level of a two-derivative effective action. We derive the unique perturbative tachyon potential consistent with a full class of linearized tachyonic deformations of supercritical string theory. The solutions of interest deform a general linear dilaton background by the insertion of purely exponential tachyon vertex operators. In spacetime, the evolution of the tachyon drives an accelerated contraction of the universe and, absent higher-order corrections, the theory collapses to a cosmological singularity in finite time, at arbitrarily weak string coupling. When the tachyon exhibits a null symmetry, the worldsheetmore » dynamics is known to be exact and well defined at tree level. We prove that if the two-derivative effective action is free of nongravitational singularities, higher-order corrections always resolve the spacetime curvature singularity of the null tachyon. The resulting theory provides an explicit mechanism by which tachyon condensation can generate or terminate the flow of cosmological time in string theory. Additional particular solutions can resolve an initial singularity with a tachyonic phase at weak coupling, or yield solitonic configurations that localize the universe along spatial directions.« less

  7. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    DOE PAGES

    Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; ...

    2015-04-03

    In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can bemore » utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O 3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less

  8. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    DOE PAGES

    Herklotz, Andreas; Dorr, Kathrin; Ward, Thomas Zac; ...

    2015-04-03

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determinemore » the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n+1Ti nO 3 n+1 Ruddlesden-Popper phases are grown with good long-range order. Furthermore, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Nicolas; Höche, Stefan; Luisoni, Gionata

    The first computation of Higgs production in association with three jets at NLO in QCD has recently been performed using the effective theory, where the top quark is treated as an infinitely heavy particle and integrated out. This approach is restricted to the regions in phase space where the typical scales are not larger than the top quark mass. Here we investigate this statement at a quantitative level by calculating the leading-order contributions to the production of a Standard Model Higgs boson in association with up to three jets taking full top-quark and bottom-quark mass dependence into account. We findmore » that the transverse momentum of the hardest particle or jet plays a key role in the breakdown of the effective theory predictions, and that discrepancies can easily reach an order of magnitude for transverse momenta of about 1 TeV. The impact of bottom-quark loops is found to be visible in the small transverse momentum region, leading to corrections of up to 5 percent. Lastly, we further study the impact of mass corrections when VBF selection cuts are applied and when the center-of-mass energy is increased to 100 TeV.« less

  10. Dynamic 2D self-phase-map Nyquist ghost correction for simultaneous multi-slice echo planar imaging.

    PubMed

    Yarach, Uten; Tung, Yi-Hang; Setsompop, Kawin; In, Myung-Ho; Chatnuntawech, Itthi; Yakupov, Renat; Godenschweger, Frank; Speck, Oliver

    2018-02-09

    To develop a reconstruction pipeline that intrinsically accounts for both simultaneous multislice echo planar imaging (SMS-EPI) reconstruction and dynamic slice-specific Nyquist ghosting correction in time-series data. After 1D slice-group average phase correction, the separate polarity (i.e., even and odd echoes) SMS-EPI data were unaliased by slice GeneRalized Autocalibrating Partial Parallel Acquisition. Both the slice-unaliased even and odd echoes were jointly reconstructed using a model-based framework, extended for SMS-EPI reconstruction that estimates a 2D self-phase map, corrects dynamic slice-specific phase errors, and combines data from all coils and echoes to obtain the final images. The percentage ghost-to-signal ratios (%GSRs) and its temporal variations for MB3R y 2 with a field of view/4 shift in a human brain obtained by the proposed dynamic 2D and standard 1D phase corrections were 1.37 ± 0.11 and 2.66 ± 0.16, respectively. Even with a large regularization parameter λ applied in the proposed reconstruction, the smoothing effect in fMRI activation maps was comparable to a very small Gaussian kernel size 1 × 1 × 1 mm 3 . The proposed reconstruction pipeline reduced slice-specific phase errors in SMS-EPI, resulting in reduction of GSR. It is applicable for functional MRI studies because the smoothing effect caused by the regularization parameter selection can be minimal in a blood-oxygen-level-dependent activation map. © 2018 International Society for Magnetic Resonance in Medicine.

  11. FOG: Fighting the Achilles' Heel of Gossip Protocols with Fountain Codes

    NASA Astrophysics Data System (ADS)

    Champel, Mary-Luc; Kermarrec, Anne-Marie; Le Scouarnec, Nicolas

    Gossip protocols are well known to provide reliable and robust dissemination protocols in highly dynamic systems. Yet, they suffer from high redundancy in the last phase of the dissemination. In this paper, we combine fountain codes (rateless erasure-correcting codes) together with gossip protocols for a robust and fast content dissemination in large-scale dynamic systems. The use of fountain enables to eliminate the unnecessary redundancy of gossip protocols. We propose the design of FOG, which fully exploits the first exponential growth phase (where the data is disseminated exponentially fast) of gossip protocols while avoiding the need for the shrinking phase by using fountain codes. FOG voluntarily increases the number of disseminations but limits those disseminations to the exponential growth phase. In addition, FOG creates a split-graph overlay that splits the peers between encoders and forwarders. Forwarder peers become encoders as soon as they have received the whole content. In order to benefit even further and quicker from encoders, FOG biases the dissemination towards the most advanced peers to make them complete earlier.

  12. Machine learning vortices at the Kosterlitz-Thouless transition

    NASA Astrophysics Data System (ADS)

    Beach, Matthew J. S.; Golubeva, Anna; Melko, Roger G.

    2018-01-01

    Efficient and automated classification of phases from minimally processed data is one goal of machine learning in condensed-matter and statistical physics. Supervised algorithms trained on raw samples of microstates can successfully detect conventional phase transitions via learning a bulk feature such as an order parameter. In this paper, we investigate whether neural networks can learn to classify phases based on topological defects. We address this question on the two-dimensional classical XY model which exhibits a Kosterlitz-Thouless transition. We find significant feature engineering of the raw spin states is required to convincingly claim that features of the vortex configurations are responsible for learning the transition temperature. We further show a single-layer network does not correctly classify the phases of the XY model, while a convolutional network easily performs classification by learning the global magnetization. Finally, we design a deep network capable of learning vortices without feature engineering. We demonstrate the detection of vortices does not necessarily result in the best classification accuracy, especially for lattices of less than approximately 1000 spins. For larger systems, it remains a difficult task to learn vortices.

  13. Interferometry theory for the block 2 processor

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1987-01-01

    Presented is the interferometry theory for the Block 2 processor, including a high-level functional description and a discussion of data structure. The analysis covers the major processing steps: cross-correlation, fringe counter-rotation, transformation to the frequency domain, phase calibration, bandwidth synthesis, and extraction of the observables of amplitude, phase, phase rate, and delay. Also included are analyses for fractional bitshift correction, station clock error, ionosphere correction, and effective frequencies for the observables.

  14. Early vertical correction of the deep curve of Spee.

    PubMed

    Martins, Renato Parsekian

    2017-01-01

    Even though few technological advancements have occurred in Orthodontics recently, the search for more efficient treatments continues. This paper analyses how to accelerate and improve one of the most arduous phases of orthodontic treatment, i.e., correction of the curve of Spee. The leveling of a deep curve of Spee can happen simultaneously with the alignment phase through a method called Early Vertical Correction (EVC). This technique uses two cantilevers affixed to the initial flexible archwire. This paper describes the force system produced by EVC and how to control its side effects. The EVC can reduce treatment time in malocclusions with deep curves of Spee, by combining two phases of the therapy, which clinicians ordinarily pursue sequentially.

  15. Which button will I press? Preference for correctly ordered counting sequences in 18-month-olds.

    PubMed

    Ip, Martin Ho Kwan; Imuta, Kana; Slaughter, Virginia

    2018-04-16

    Correct counting respects the stable order principle whereby the count terms are recited in a fixed order every time. The 4 experiments reported here tested whether precounting infants recognize and prefer correct stable-ordered counting. The authors introduced a novel preference paradigm in which infants could freely press two buttons to activate videos of counting events. In the "correct" counting video, number words were always recited in the canonical order ("1, 2, 3, 4, 5, 6"). The "incorrect" counting video was identical except that the number words were recited in a random order (e.g., "5, 3, 1, 6, 4, 2"). In Experiment 1, 18-month-olds (n = 21), but not 15-month-olds (n = 24), significantly preferred to press the button that activated correct counting events. Experiment 2 revealed that English-learning 18-month-olds' (n = 21) preference for stable-ordered counting disappeared when the counting was done in Japanese. By contrast, Experiment 3 showed that multilingual 18-month-olds (n = 24) preferred correct stable-ordered counting in an unfamiliar foreign language. In Experiment 4, multilingual 18-month-olds (N = 21) showed no preference for stable-ordered alphabet sequences, ruling out some alternative explanations for the Experiment 3 results. Overall these findings are consistent with the idea that implicit recognition of the stable order principle of counting is acquired by 18 months of age, and that learning more than one language may accelerate infants' understanding of abstract counting principles. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. An Improved Source-Scanning Algorithm for Locating Earthquake Clusters or Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Kao, H.; Hsu, S.

    2010-12-01

    The Source-scanning Algorithm (SSA) was originally introduced in 2004 to locate non-volcanic tremors. Its application was later expanded to the identification of earthquake rupture planes and the near-real-time detection and monitoring of landslides and mud/debris flows. In this study, we further improve SSA for the purpose of locating earthquake clusters or aftershock sequences when only a limited number of waveform observations are available. The main improvements include the application of a ground motion analyzer to separate P and S waves, the automatic determination of resolution based on the grid size and time step of the scanning process, and a modified brightness function to utilize constraints from multiple phases. Specifically, the improved SSA (named as ISSA) addresses two major issues related to locating earthquake clusters/aftershocks. The first one is the massive amount of both time and labour to locate a large number of seismic events manually. And the second one is to efficiently and correctly identify the same phase across the entire recording array when multiple events occur closely in time and space. To test the robustness of ISSA, we generate synthetic waveforms consisting of 3 separated events such that individual P and S phases arrive at different stations in different order, thus making correct phase picking nearly impossible. Using these very complicated waveforms as the input, the ISSA scans all model space for possible combination of time and location for the existence of seismic sources. The scanning results successfully associate various phases from each event at all stations, and correctly recover the input. To further demonstrate the advantage of ISSA, we apply it to the waveform data collected by a temporary OBS array for the aftershock sequence of an offshore earthquake southwest of Taiwan. The overall signal-to-noise ratio is inadequate for locating small events; and the precise arrival times of P and S phases are difficult to determine. We use one of the largest aftershocks that can be located by conventional methods as our reference event to calibrate the controlling parameters of ISSA. These parameters include the overall Vp/Vs ratio (because a precise S velocity model was unavailable), the length of scanning time window, and the weighting factor for each station. Our results show that ISSA is not only more efficient in locating earthquake clusters/aftershocks, but also capable of identifying many events missed by conventional phase-picking methods.

  17. Travel-time source-specific station correction improves location accuracy

    NASA Astrophysics Data System (ADS)

    Giuntini, Alessandra; Materni, Valerio; Chiappini, Stefano; Carluccio, Roberto; Console, Rodolfo; Chiappini, Massimo

    2013-04-01

    Accurate earthquake locations are crucial for investigating seismogenic processes, as well as for applications like verifying compliance to the Comprehensive Test Ban Treaty (CTBT). Earthquake location accuracy is related to the degree of knowledge about the 3-D structure of seismic wave velocity in the Earth. It is well known that modeling errors of calculated travel times may have the effect of shifting the computed epicenters far from the real locations by a distance even larger than the size of the statistical error ellipses, regardless of the accuracy in picking seismic phase arrivals. The consequences of large mislocations of seismic events in the context of the CTBT verification is particularly critical in order to trigger a possible On Site Inspection (OSI). In fact, the Treaty establishes that an OSI area cannot be larger than 1000 km2, and its larger linear dimension cannot be larger than 50 km. Moreover, depth accuracy is crucial for the application of the depth event screening criterion. In the present study, we develop a method of source-specific travel times corrections based on a set of well located events recorded by dense national seismic networks in seismically active regions. The applications concern seismic sequences recorded in Japan, Iran and Italy. We show that mislocations of the order of 10-20 km affecting the epicenters, as well as larger mislocations in hypocentral depths, calculated from a global seismic network and using the standard IASPEI91 travel times can be effectively removed by applying source-specific station corrections.

  18. Electroweak and strong penguin diagrams in B+/-,0-->ππ, πK, and KK¯ decays

    NASA Astrophysics Data System (ADS)

    Kramer, G.; Palmer, W. F.

    1995-12-01

    We calculate CP-violating rates and asymmetry parameters in charged and neutral B-->ππ, πK, and K¯K decays arising from the interference of tree and penguin (strong and electroweak) amplitudes with different strong and CKM phases. The perturbative strong (electroweak) phases develop at order αs (αem) from absorptive parts of one-loop matrix elements of the next-to-leading (leading) logarithm corrected effective Hamiltonian. The BSW model is used to estimate the hadronic matrix elements. Based on this model, we find that the effect of strong phases and penguin diagrams is substantial in most channels, drastic in many. However, a measurement of the time dependence parameter aɛ+ɛ' in the π+π- channel is only influenced at the 20% level by the complication of the penguin diagrams. Recent flavor sum rules developed for B0,+/--->ππ, πK, KK¯ amplitudes are tested in this model. Some are well satisfied, others badly violated, when electroweak penguin diagrams are included.

  19. Advanced Controller Developed for the Free-Piston Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.

    2005-01-01

    A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.

  20. A statistical approach to the brittle fracture of a multi-phase solid

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lua, Y. I.; Belytschko, T.

    1991-01-01

    A stochastic damage model is proposed to quantify the inherent statistical distribution of the fracture toughness of a brittle, multi-phase solid. The model, based on the macrocrack-microcrack interaction, incorporates uncertainties in locations and orientations of microcracks. Due to the high concentration of microcracks near the macro-tip, a higher order analysis based on traction boundary integral equations is formulated first for an arbitrary array of cracks. The effects of uncertainties in locations and orientations of microcracks at a macro-tip are analyzed quantitatively by using the boundary integral equations method in conjunction with the computer simulation of the random microcrack array. The short range interactions resulting from surrounding microcracks closet to the main crack tip are investigated. The effects of microcrack density parameter are also explored in the present study. The validity of the present model is demonstrated by comparing its statistical output with the Neville distribution function, which gives correct fits to sets of experimental data from multi-phase solids.

  1. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    PubMed

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  2. Performance of the STIS CCD Dark Rate Temperature Correction

    NASA Astrophysics Data System (ADS)

    Branton, Doug; STScI STIS Team

    2018-06-01

    Since July 2001, the Space Telescope Imaging Spectrograph (STIS) onboard Hubble has operated on its Side-2 electronics due to a failure in the primary Side-1 electronics. While nearly identical, Side-2 lacks a functioning temperature sensor for the CCD, introducing a variability in the CCD operating temperature. Previous analysis utilized the CCD housing temperature telemetry to characterize the relationship between the housing temperature and the dark rate. It was found that a first-order 7%/°C uniform dark correction demonstrated a considerable improvement in the quality of dark subtraction on Side-2 era CCD data, and that value has been used on all Side-2 CCD darks since. In this report, we show how this temperature correction has performed historically. We compare the current 7%/°C value against the ideal first-order correction at a given time (which can vary between ~6%/°C and ~10%/°C) as well as against a more complex second-order correction that applies a unique slope to each pixel as a function of dark rate and time. At worst, the current correction has performed ~1% worse than the second-order correction. Additionally, we present initial evidence suggesting that the variability in pixel temperature-sensitivity is significant enough to warrant a temperature correction that considers pixels individually rather than correcting them uniformly.

  3. Semiclassical excited-state signatures of quantum phase transitions in spin chains with variable-range interactions

    NASA Astrophysics Data System (ADS)

    Gessner, Manuel; Bastidas, Victor Manuel; Brandes, Tobias; Buchleitner, Andreas

    2016-04-01

    We study the excitation spectrum of a family of transverse-field spin chain models with variable interaction range and arbitrary spin S , which in the case of S =1 /2 interpolates between the Lipkin-Meshkov-Glick and the Ising model. For any finite number N of spins, a semiclassical energy manifold is derived in the large-S limit employing bosonization methods, and its geometry is shown to determine not only the leading-order term but also the higher-order quantum fluctuations. Based on a multiconfigurational mean-field ansatz, we obtain the semiclassical backbone of the quantum spectrum through the extremal points of a series of one-dimensional energy landscapes—each one exhibiting a bifurcation when the external magnetic field drops below a threshold value. The obtained spectra become exact in the limit of vanishing or very strong external, transverse magnetic fields. Further analysis of the higher-order corrections in 1 /√{2 S } enables us to analytically study the dispersion relations of spin-wave excitations around the semiclassical energy levels. Within the same model, we are able to investigate quantum bifurcations, which occur in the semiclassical (S ≫1 ) limit, and quantum phase transitions, which are observed in the thermodynamic (N →∞ ) limit.

  4. Method and apparatus for optical phase error correction

    DOEpatents

    DeRose, Christopher; Bender, Daniel A.

    2014-09-02

    The phase value of a phase-sensitive optical device, which includes an optical transport region, is modified by laser processing. At least a portion of the optical transport region is exposed to a laser beam such that the phase value is changed from a first phase value to a second phase value, where the second phase value is different from the first phase value. The portion of the optical transport region that is exposed to the laser beam can be a surface of the optical transport region or a portion of the volume of the optical transport region. In an embodiment of the invention, the phase value of the optical device is corrected by laser processing. At least a portion of the optical transport region is exposed to a laser beam until the phase value of the optical device is within a specified tolerance of a target phase value.

  5. Directivity of a Sparse Array in the Presence of Atmospheric-Induced Phase Fluctuations for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Acosta, Robert J.

    2010-01-01

    Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.

  6. Dual frequency optical carrier technique for transmission of reference frequencies in dispersive media

    NASA Technical Reports Server (NTRS)

    Maleki, Lutfollah (Inventor)

    1993-01-01

    Two different carrier frequencies modulated by a reference frequency are transmitted to each receiver to be synchronized therewith. Each receiver responds to local phase differences between the two received signals to correct the phase of one of them so as to maintain the corrected signal as a reliable synchronization reference.

  7. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Izacard, Olivier

    2016-08-01

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it is shown that (i) the empirical formula for the secondary electron emission is not consistent with a MDF due to the presence of super-thermal particles, (ii) the super-thermal particles can replace a diffusion parameter in the Langmuir probe current formula, and (iii) the entropy can explicitly decrease in presence of sources only for the introduced INMDF without violating the second law of thermodynamics. Moreover, the first order entropy of an infinite number of super-thermal tails stays the same as the entropy of a MDF. The latter demystifies the Maxwell's demon by statistically describing non-isolated systems.

  8. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izacard, Olivier, E-mail: izacard@llnl.gov

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basismore » sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it is shown that (i) the empirical formula for the secondary electron emission is not consistent with a MDF due to the presence of super-thermal particles, (ii) the super-thermal particles can replace a diffusion parameter in the Langmuir probe current formula, and (iii) the entropy can explicitly decrease in presence of sources only for the introduced INMDF without violating the second law of thermodynamics. Moreover, the first order entropy of an infinite number of super-thermal tails stays the same as the entropy of a MDF. The latter demystifies the Maxwell's demon by statistically describing non-isolated systems.« less

  9. Experimental evidence of Cr magnetic moments at low temperature in Cr2A(A=Al, Ge)C.

    PubMed

    Jaouen, M; Bugnet, M; Jaouen, N; Ohresser, P; Mauchamp, V; Cabioc'h, T; Rogalev, A

    2014-04-30

    From x-ray magnetic circular dichroism experiments performed at low temperature on Cr2AlC and Cr2GeC thin films, it is evidenced that Cr atoms carry a net magnetic moment in these ternary phases. It is shown that the Cr magnetization of the Al-based compound nearly vanished at 100 K in agreement with what has been recently observed on bulk. X-ray linear dichroism measurements performed at various angles of incidence and temperatures clearly demonstrate the existence of a charge ordering along the c axis of the structure of Cr2AlC. All these experimental observations support, in part, theoretical calculations claiming that Cr dd correlations have to be considered to correctly describe the structure and properties of these Cr-based ternary phases.

  10. A new effective correlation mean-field theory for the ferromagnetic spin-1 Blume-Capel model in a transverse crystal field

    NASA Astrophysics Data System (ADS)

    Roberto Viana, J.; Rodriguez Salmon, Octavio D.; Neto, Minos A.; Carvalho, Diego C.

    2018-02-01

    A new approximation technique is developed so as to study the quantum ferromagnetic spin-1 Blume-Capel model in the presence of a transverse crystal field in the square lattice. Our proposal consists of approaching the spin system by considering islands of finite clusters whose frontiers are surrounded by noninteracting spins that are treated by the effective-field theory. The resulting phase diagram is qualitatively correct, in contrast to most effective-field treatments, in which the first-order line exhibits spurious behavior by not being perpendicular to the anisotropy axis at low-temperatures. The effect of the transverse anisotropy is also verified by the presence of quantum phase transitions. The possibility of using larger sizes constitutes an advantage to other approaches where the implementation of larger sizes is computationally costly.

  11. Boost-phase discrimination research

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Feiereisen, William J.

    1993-01-01

    The final report describes the combined work of the Computational Chemistry and Aerothermodynamics branches within the Thermosciences Division at NASA Ames Research Center directed at understanding the signatures of shock-heated air. Considerable progress was made in determining accurate transition probabilities for the important band systems of NO that account for much of the emission in the ultraviolet region. Research carried out under this project showed that in order to reproduce the observed radiation from the bow shock region of missiles in their boost phase it is necessary to include the Burnett terms in the constituent equation, account for the non-Boltzmann energy distribution, correctly model the NO formation and rotational excitation process, and use accurate transition probabilities for the NO band systems. This work resulted in significant improvements in the computer code NEQAIR that models both the radiation and fluid dynamics in the shock region.

  12. A New Approach for Identifying Ionospheric Gradients in the Context of the Gagan System

    NASA Astrophysics Data System (ADS)

    Kudala, Ravi Chandra

    2012-10-01

    The Indian Space Research Organization and the Airports Authority of India are jointly implementing the Global Positioning System (GPS) aided GEO Augmented Navigation (GAGAN) system in order to meet the following required navigation performance (RNP) parameters: integrity, continuity, accuracy, and availability (for aircraft operations). Such a system provides the user with orbit, clock, and ionospheric corrections in addition to ranging signals via the geostationary earth orbit satellite (GEOSAT). The equatorial ionization anomaly (EIA), due to rapid non-uniform electron-ion recombination that persists on the Indian subcontinent, causes ionospheric gradients. Ionospheric gradients represent the most severe threat to high-integrity differential GNSS systems such as GAGAN. In order to ensure integrity under conditions of an ionospheric storm, the following three objectives must be met: careful monitoring, error bounding, and sophisticated storm-front modeling. The first objective is met by continuously tracking data due to storms, and, on quiet days, determining precise estimates of the threat parameters from reference monitoring stations. The second objective is met by quantifying the above estimates of threat parameters due to storms through maximum and minimum typical thresholds. In the context GAGAN, this work proposes a new method for identifying ionospheric gradients, in addition to determining an appropriate upper bound, in order to sufficiently understand error during storm days. Initially, carrier phase data of the GAGAN network from Indian TEC stations for both storm and quiet days was used for estimating ionospheric spatial and temporal gradients (the vertical ionospheric gradient (σVIG) and the rate of the TEC index (ROTI), respectively) in multiple viewing directions. Along similar lines, using the carrier to noise ratio (C/N0) for the same data, the carrier to noise ratio index (σCNRI) was derived. Subsequently, the one-toone relationship between σVIG and σCNRI was examined. High values of σVIG were determined for strong noise signals and corresponded to minimal σCNRI, indicating poor phase estimations and, in turn, an erroneous location. On the other hand, low values of σVIG were produced for weak noise signals and corresponded to maximum σCNRI, indicating strong phase estimations and, in turn, accurate locations. In other words, if a gradient persists in the line of sight direction of GEOSAT for aviation users, the down link L- band signal itself becomes erroneous. As a result, the en-route aviation user fails to receive a SBAS correction message leading to deprivation for the main objective of GAGAN. On the other hand, since the proposed approach enhances the receivers of both the aviation user and the reference monitoring station in terms of their performance, based on σCNRI, the integrity of SBAS messages themselves can be analyzed and considered for forward corrections.

  13. Simultaneous correction of large low-order and high-order aberrations with a new deformable mirror technology

    NASA Astrophysics Data System (ADS)

    Rooms, F.; Camet, S.; Curis, J. F.

    2010-02-01

    A new technology of deformable mirror will be presented. Based on magnetic actuators, these deformable mirrors feature record strokes (more than +/- 45μm of astigmatism and focus correction) with an optimized temporal behavior. Furthermore, the development has been made in order to have a large density of actuators within a small clear aperture (typically 52 actuators within a diameter of 9.0mm). We will present the key benefits of this technology for vision science: simultaneous correction of low and high order aberrations, AO-SLO image without artifacts due to the membrane vibration, optimized control, etc. Using recent papers published by Doble, Thibos and Miller, we show the performances that can be achieved by various configurations using statistical approach. The typical distribution of wavefront aberrations (both the low order aberration (LOA) and high order aberration (HOA)) have been computed and the correction applied by the mirror. We compare two configurations of deformable mirrors (52 and 97 actuators) and highlight the influence of the number of actuators on the fitting error, the photon noise error and the effective bandwidth of correction.

  14. Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study.

    PubMed

    Kyriakou, Adamos; Neufeld, Esra; Werner, Beat; Székely, Gábor; Kuster, Niels

    2015-01-01

    Transcranial focused ultrasound (tcFUS) is an attractive noninvasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of tcFUS therapy, as its heterogeneous nature and acoustic characteristics induce significant distortion of the acoustic energy deposition, focal shifts, and thermal gain decrease. Phased-array transducers allow for partial compensation of skull-induced aberrations by application of precalculated phase and amplitude corrections. An integrated numerical framework allowing for 3D full-wave, nonlinear acoustic and thermal simulations has been developed and applied to tcFUS. Simulations were performed to investigate the impact of skull aberrations, the possibility of extending the treatment envelope, and adverse secondary effects. The simulated setup comprised an idealized model of the ExAblate Neuro and a detailed MR-based anatomical head model. Four different approaches were employed to calculate aberration corrections (analytical calculation of the aberration corrections disregarding tissue heterogeneities; a semi-analytical ray-tracing approach compensating for the presence of the skull; two simulation-based time-reversal approaches with and without pressure amplitude corrections which account for the entire anatomy). These impact of these approaches on the pressure and temperature distributions were evaluated for 22 brain-targets. While (semi-)analytical approaches failed to induced high pressure or ablative temperatures in any but the targets in the close vicinity of the geometric focus, simulation-based approaches indicate the possibility of considerably extending the treatment envelope (including targets below the transducer level and locations several centimeters off the geometric focus), generation of sharper foci, and increased targeting accuracy. While the prediction of achievable aberration correction appears to be unaffected by the detailed bone-structure, proper consideration of inhomogeneity is required to predict the pressure distribution for given steering parameters. Simulation-based approaches to calculate aberration corrections may aid in the extension of the tcFUS treatment envelope as well as predict and avoid secondary effects (standing waves, skull heating). Due to their superior performance, simulationbased techniques may prove invaluable in the amelioration of skull-induced aberration effects in tcFUS therapy. The next steps are to investigate shear-wave-induced effects in order to reliably exclude secondary hot-spots, and to develop comprehensive uncertainty assessment and validation procedures.

  15. Report on the Implementation of Homogeneous Nucleation Scheme in MARMOT-based Phase Field Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin

    2013-09-30

    In this report, we summarized our effort in developing mesoscale phase field models for predicting precipitation kinetics in alloys during thermal aging and/or under irradiation in nuclear reactors. The first part focused on developing a method to predict the thermodynamic properties of critical nuclei such as the sizes and concentration profiles of critical nuclei, and nucleation barrier. These properties are crucial for quantitative simulations of precipitate evolution kinetics with phase field models. Fe-Cr alloy was chosen as a model alloy because it has valid thermodynamic and kinetic data as well as it is an important structural material in nuclear reactors.more » A constrained shrinking dimer dynamics (CSDD) method was developed to search for the energy minimum path during nucleation. With the method we are able to predict the concentration profiles of the critical nuclei of Cr-rich precipitates and nucleation energy barriers. Simulations showed that Cr concentration distribution in the critical nucleus strongly depends on the overall Cr concentration as well as temperature. The Cr concentration inside the critical nucleus is much smaller than the equilibrium concentration calculated by the equilibrium phase diagram. This implies that a non-classical nucleation theory should be used to deal with the nucleation of Cr precipitates in Fe-Cr alloys. The growth kinetics of both classical and non-classical nuclei was investigated by the phase field approach. A number of interesting phenomena were observed from the simulations: 1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; 2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics. 3) a critical classical nucleus grows faster at the earlier growth stage than the non-classical nucleus. All of these results demonstrated that it is critical to introduce the correct critical nuclei into phase field modeling in order to correctly capture the kinetics of precipitation. In most alloys the matrix phase and precipitate phase have different concentrations as well as different crystal structures. For example, Cu precipitates in FeCu alloys have fcc crystal structure while the matrix Fe-Cu solid solution has bcc structure at low temperature. The WBM model and KimS model, where both concentrations and order parameters are chosen to describe the microstructures, are commonly used to model precipitations in such alloys. The WBM and KimS models have not been implemented into Marmot yet. In the second part of this report, we focused on implementing the WBM and KimS models into Marmot. The Fe-Cu alloys, which are important structure materials in nuclear reactors, was taken as the model alloys to test the models.« less

  16. Method for attitude determination using GPS carrier phase measurements from nonaligned antennas

    NASA Technical Reports Server (NTRS)

    Lightsey, Edgar Glenn (Inventor)

    1999-01-01

    A correction to a differential phase measurement used for vehicle attitude determination on nonaligned antenna arrays is determined by calculating a carrier phase angle of carrier signals received by each antenna, and correcting the measurement for the right-hand circular polarization effect on the nonaligned antennas. Accordingly, circular polarization effects of the carrier signals are removed from a nonaligned antenna array, allowing the nonaligned antenna array to be used for vehicle attitude determination.

  17. Isotropic resolution diffusion tensor imaging of lumbosacral and sciatic nerves using a phase‐corrected diffusion‐prepared 3D turbo spin echo

    PubMed Central

    Van, Anh T.; Weidlich, Dominik; Kooijman, Hendrick; Hock, Andreas; Rummeny, Ernst J.; Gersing, Alexandra; Kirschke, Jan S.; Karampinos, Dimitrios C.

    2018-01-01

    Purpose To perform in vivo isotropic‐resolution diffusion tensor imaging (DTI) of lumbosacral and sciatic nerves with a phase‐navigated diffusion‐prepared (DP) 3D turbo spin echo (TSE) acquisition and modified reconstruction incorporating intershot phase‐error correction and to investigate the improvement on image quality and diffusion quantification with the proposed phase correction. Methods Phase‐navigated DP 3D TSE included magnitude stabilizers to minimize motion and eddy‐current effects on the signal magnitude. Phase navigation of motion‐induced phase errors was introduced before readout in 3D TSE. DTI of lower back nerves was performed in vivo using 3D TSE and single‐shot echo planar imaging (ss‐EPI) in 13 subjects. Diffusion data were phase‐corrected per k z plane with respect to T2‐weighted data. The effects of motion‐induced phase errors on DTI quantification was assessed for 3D TSE and compared with ss‐EPI. Results Non–phase‐corrected 3D TSE resulted in artifacts in diffusion‐weighted images and overestimated DTI parameters in the sciatic nerve (mean diffusivity [MD] = 2.06 ± 0.45). Phase correction of 3D TSE DTI data resulted in reductions in all DTI parameters (MD = 1.73 ± 0.26) of statistical significance (P ≤ 0.001) and in closer agreement with ss‐EPI DTI parameters (MD = 1.62 ± 0.21). Conclusion DP 3D TSE with phase correction allows distortion‐free isotropic diffusion imaging of lower back nerves with robustness to motion‐induced artifacts and DTI quantification errors. Magn Reson Med 80:609–618, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:29380414

  18. Second-order singular pertubative theory for gravitational lenses

    NASA Astrophysics Data System (ADS)

    Alard, C.

    2018-03-01

    The extension of the singular perturbative approach to the second order is presented in this paper. The general expansion to the second order is derived. The second-order expansion is considered as a small correction to the first-order expansion. Using this approach, it is demonstrated that in practice the second-order expansion is reducible to a first order expansion via a re-definition of the first-order pertubative fields. Even if in usual applications the second-order correction is small the reducibility of the second-order expansion to the first-order expansion indicates a potential degeneracy issue. In general, this degeneracy is hard to break. A useful and simple second-order approximation is the thin source approximation, which offers a direct estimation of the correction. The practical application of the corrections derived in this paper is illustrated by using an elliptical NFW lens model. The second-order pertubative expansion provides a noticeable improvement, even for the simplest case of thin source approximation. To conclude, it is clear that for accurate modelization of gravitational lenses using the perturbative method the second-order perturbative expansion should be considered. In particular, an evaluation of the degeneracy due to the second-order term should be performed, for which the thin source approximation is particularly useful.

  19. Results of application of automatic computation of static corrections on data from the South Banat Terrain

    NASA Astrophysics Data System (ADS)

    Milojević, Slavka; Stojanovic, Vojislav

    2017-04-01

    Due to the continuous development of the seismic acquisition and processing method, the increase of the signal/fault ratio always represents a current target. The correct application of the latest software solutions improves the processing results and justifies their development. A correct computation and application of static corrections represents one of the most important tasks in pre-processing. This phase is of great importance for further processing steps. Static corrections are applied to seismic data in order to compensate the effects of irregular topography, the difference between the levels of source points and receipt in relation to the level of reduction, of close to the low-velocity surface layer (weathering correction), or any reasons that influence the spatial and temporal position of seismic routes. The refraction statics method is the most common method for computation of static corrections. It is successful in resolving of both the long-period statics problems and determining of the difference in the statics caused by abrupt lateral changes in velocity in close to the surface layer. XtremeGeo FlatironsTM is a program whose main purpose is computation of static correction through a refraction statics method and allows the application of the following procedures: picking of first arrivals, checking of geometry, multiple methods for analysis and modelling of statics, analysis of the refractor anisotropy and tomography (Eikonal Tomography). The exploration area is located on the southern edge of the Pannonian Plain, in the plain area with altitudes of 50 to 195 meters. The largest part of the exploration area covers Deliblato Sands, where the geological structure of the terrain and high difference in altitudes significantly affects the calculation of static correction. Software XtremeGeo FlatironsTM has powerful visualization and tools for statistical analysis which contributes to significantly more accurate assessment of geometry close to the surface layers and therefore more accurately computed static corrections.

  20. Turboprop+: enhanced Turboprop diffusion-weighted imaging with a new phase correction.

    PubMed

    Lee, Chu-Yu; Li, Zhiqiang; Pipe, James G; Debbins, Josef P

    2013-08-01

    Faster periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging acquisitions, such as Turboprop and X-prop, remain subject to phase errors inherent to a gradient echo readout, which ultimately limits the applied turbo factor (number of gradient echoes between each pair of radiofrequency refocusing pulses) and, thus, scan time reductions. This study introduces a new phase correction to Turboprop, called Turboprop+. This technique employs calibration blades, which generate 2-D phase error maps and are rotated in accordance with the data blades, to correct phase errors arising from off-resonance and system imperfections. The results demonstrate that with a small increase in scan time for collecting calibration blades, Turboprop+ had a superior immunity to the off-resonance-related artifacts when compared to standard Turboprop and recently proposed X-prop with the high turbo factor (turbo factor = 7). Thus, low specific absorption rate and short scan time can be achieved in Turboprop+ using a high turbo factor, whereas off-resonance related artifacts are minimized. © 2012 Wiley Periodicals, Inc.

  1. 77 FR 76046 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ..., corrective advertising is designed to dissipate or correct erroneous beliefs resulting from a false claim... of corrective messages in the realm of consumer directed prescription drug advertising. Design... brand name exposure. Table 1--Design of Phase 1: Original Exposure by Corrective Exposure Exposure to...

  2. Experimental evaluation of the extended Dytlewski-style dead time correction formalism for neutron multiplicity counting

    NASA Astrophysics Data System (ADS)

    Lockhart, M.; Henzlova, D.; Croft, S.; Cutler, T.; Favalli, A.; McGahee, Ch.; Parker, R.

    2018-01-01

    Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli(DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory and implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. The current paper discusses and presents the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. In order to assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. The DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.

  3. All-electron quasiparticle self-consistent GW band structures for SrTiO 3 including lattice polarization corrections in different phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Churna; van Schilfgaarde, Mark; Kotani, Takao

    The electronic band structure of SrTiO3 is investigated in the all-electron quasiparticle self-consistent GW (QSGW) approximation. Unlike previous pseudopotential-based QSGW or single-shot G0W0 calculations, the gap is found to be significantly overestimated compared to experiment. After putting in a correction for the underestimate of the screening by the random phase approximation in terms of a 0.8Σ approach, the gap is still overestimated. The 0.8Σ approach is discussed and justified in terms of various recent literature results including electron-hole corrections. Adding a lattice polarization correction (LPC) in the q→0 limit for the screening of W, agreement with experiment is recovered. Themore » LPC is alternatively estimated using a polaron model. Here, we apply our approach to the cubic and tetragonal phases as well as a hypothetical layered postperovskite structure and find that the local density approximation (LDA) to GW gap correction is almost independent of structure.« less

  4. All-electron quasiparticle self-consistent GW band structures for SrTiO 3 including lattice polarization corrections in different phases

    DOE PAGES

    Bhandari, Churna; van Schilfgaarde, Mark; Kotani, Takao; ...

    2018-01-23

    The electronic band structure of SrTiO3 is investigated in the all-electron quasiparticle self-consistent GW (QSGW) approximation. Unlike previous pseudopotential-based QSGW or single-shot G0W0 calculations, the gap is found to be significantly overestimated compared to experiment. After putting in a correction for the underestimate of the screening by the random phase approximation in terms of a 0.8Σ approach, the gap is still overestimated. The 0.8Σ approach is discussed and justified in terms of various recent literature results including electron-hole corrections. Adding a lattice polarization correction (LPC) in the q→0 limit for the screening of W, agreement with experiment is recovered. Themore » LPC is alternatively estimated using a polaron model. Here, we apply our approach to the cubic and tetragonal phases as well as a hypothetical layered postperovskite structure and find that the local density approximation (LDA) to GW gap correction is almost independent of structure.« less

  5. The knowledge and understanding of preanalytical phase among biomedicine students at the University of Zagreb

    PubMed Central

    Dukic, Lora; Jokic, Anja; Kules, Josipa; Pasalic, Daria

    2016-01-01

    Introduction The educational program for health care personnel is important for reducing preanalytical errors and improving quality of laboratory test results. The aim of our study was to assess the level of knowledge on preanalytical phase in population of biomedicine students through a cross-sectional survey. Materials and methods A survey was sent to students on penultimate and final year of Faculty of Pharmacy and Biochemistry – study of medical biochemistry (FPB), Faculty of Veterinary Medicine (FVM) and School of Medicine (SM), University of Zagreb, Croatia, using the web tool SurveyMonkey. Survey was composed of demographics and 14 statements regarding the preanalytical phase of laboratory testing. Comparison of frequencies and proportions of correct answers was done with Fisher’s exact test and test of comparison of proportions, respectively. Results Study included 135 participants, median age 24 (23-40) years. Students from FPB had higher proportion of correct answers (86%) compared to students from other biomedical faculties 62%, P < 0.001. Students from FPB were more conscious of the importance of specimen mixing (P = 0.027), prevalence of preanalytical errors (P = 0.001), impact of hemolysis (P = 0.032) and lipemia interferences (P = 0.010), proper choice of anticoagulants (P = 0.001), transport conditions for ammonia sample (P < 0.001) and order of draw during blood specimen collection (P < 0.001), in comparison with students from SM and FVM. Conclusions Students from FPB are more conscious of the importance of preanalytical phase of testing in comparison with their colleagues from other biomedical faculties. No difference in knowledge between penultimate and final year of the same faculty was found. PMID:26981023

  6. The AdS/CFT Correspondence: Classical, Quantum, and Thermodynamical Aspects

    NASA Astrophysics Data System (ADS)

    Young, Donovan

    2007-06-01

    Certain aspects of the AdS/CFT correspondence are studied in detail. We investigate the one-loop mass shift to certain two-impurity string states in light-cone string field theory on a plane wave background. We find that there exist logarithmic divergences in the sums over intermediate mode numbers which cancel between the cubic Hamiltonian and quartic "contact term". We argue that generically, every order in intermediate state impurities contributes to the mass shift at leading perturbative order. The same mass shift is also computed using an improved 3-string vertex proposed by Dobashi and Yoneya. The result is found to agree with gauge theory at leading order and is close but not quite in agreement at subleading order. We extend the analysis to include discrete light-cone quantization, considering states with up to three units of p+. We study the (apparently) first-order phase transition in the weakly coupled plane-wave matrix model at finite temperature. We analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator to three loop order. We show that the phase transition is indeed of first order. We also compute the 2-loop correction to the Hagedorn temperature. Finally, correlation functions of 1/4 BPS Wilson loops with the infinite family of 1/2 BPS chiral primary operators are computed in N=4 super Yang-Mills theory by summing planar ladder diagrams. The correlation functions are also computed in the strong-coupling limit using string theory; the result is found to agree with the extrapolation of the planar ladders. The result is related to similar correlators of 1/2 BPS loops by a simple re-scaling of the coupling constant, discovered by Drukker for the case of the 1/4 BPS loop VEV.

  7. Interplay between magnetic order at Mn and Tm sites alongside the structural distortion in multiferroic films of o -TmMn O3

    NASA Astrophysics Data System (ADS)

    Windsor, Y. W.; Ramakrishnan, M.; Rettig, L.; Alberca, A.; Bothschafter, E. M.; Staub, U.; Shimamoto, K.; Hu, Y.; Lippert, T.; Schneider, C. W.

    2015-06-01

    We employ resonant soft x-ray diffraction to individually study the magnetic ordering of the Mn and the Tm sublattices in single-crystalline films of orthorhombic (o -) TmMn O3 . The same magnetic ordering wave vector of (0 q 0 ) with q ≈0.46 is found for both ionic species, suggesting that the familiar antiferromagnetic order of the Mn ions induces a magnetic order on the Tm unpaired 4 f electrons. Indeed, intensity variations of magnetic reflections with temperature corroborate this scenario. Calculated magnetic fields at the Tm sites are used as a model magnetic structure for the Tm, which correctly predicts intensity variations at the Tm resonance upon azimuthal rotation of the sample. The model allows ruling out a b c -cycloid modulation of the Mn ions as the cause for the incommensurate ordering, as found in TbMn O3 . The structural distortion, which occurs in the ferroelectric phase below TC, was followed through nonresonant diffraction of structural reflections forbidden by the high-temperature crystal symmetry. The (0 q 0 ) magnetic reflection appears at the Mn resonance well above TC, indicating that this reflection is sensitive also to the intermediate sinusoidal magnetic phase. The model presented suggests that the Tm 4 f electrons are polarized well above the ferroelectric transition and are possibly not affected by the transition at TC. The successful description of the induced order observed at the Tm resonance is a promising example for future element-selective studies in which "spectator" ions may allow access to previously unobtainable information about other constituent ions.

  8. Insar Unwrapping Error Correction Based on Quasi-Accurate Detection of Gross Errors (quad)

    NASA Astrophysics Data System (ADS)

    Kang, Y.; Zhao, C. Y.; Zhang, Q.; Yang, C. S.

    2018-04-01

    Unwrapping error is a common error in the InSAR processing, which will seriously degrade the accuracy of the monitoring results. Based on a gross error correction method, Quasi-accurate detection (QUAD), the method for unwrapping errors automatic correction is established in this paper. This method identifies and corrects the unwrapping errors by establishing a functional model between the true errors and interferograms. The basic principle and processing steps are presented. Then this method is compared with the L1-norm method with simulated data. Results show that both methods can effectively suppress the unwrapping error when the ratio of the unwrapping errors is low, and the two methods can complement each other when the ratio of the unwrapping errors is relatively high. At last the real SAR data is tested for the phase unwrapping error correction. Results show that this new method can correct the phase unwrapping errors successfully in the practical application.

  9. A robust automatic phase correction method for signal dense spectra

    NASA Astrophysics Data System (ADS)

    Bao, Qingjia; Feng, Jiwen; Chen, Li; Chen, Fang; Liu, Zao; Jiang, Bin; Liu, Chaoyang

    2013-09-01

    A robust automatic phase correction method for Nuclear Magnetic Resonance (NMR) spectra is presented. In this work, a new strategy combining ‘coarse tuning' with ‘fine tuning' is introduced to correct various spectra accurately. In the ‘coarse tuning' procedure, a new robust baseline recognition method is proposed for determining the positions of the tail ends of the peaks, and then the preliminary phased spectra are obtained by minimizing the objective function based on the height difference of these tail ends. After the ‘coarse tuning', the peaks in the preliminary corrected spectra can be categorized into three classes: positive, negative, and distorted. Based on the classification result, a new custom negative penalty function used in the step of ‘fine tuning' is constructed to avoid the negative peak points in the spectra excluded in the negative peaks and distorted peaks. Finally, the fine phased spectra can be obtained by minimizing the custom negative penalty function. This method is proven to be very robust for it is tolerant to low signal-to-noise ratio, large baseline distortion and independent of the starting search points of phasing parameters. The experimental results on both 1D metabonomics spectra with over-crowded peaks and 2D spectra demonstrate the high efficiency of this automatic method.

  10. High-Resolution Multi-Shot Spiral Diffusion Tensor Imaging with Inherent Correction of Motion-Induced Phase Errors

    PubMed Central

    Truong, Trong-Kha; Guidon, Arnaud

    2014-01-01

    Purpose To develop and compare three novel reconstruction methods designed to inherently correct for motion-induced phase errors in multi-shot spiral diffusion tensor imaging (DTI) without requiring a variable-density spiral trajectory or a navigator echo. Theory and Methods The first method simply averages magnitude images reconstructed with sensitivity encoding (SENSE) from each shot, whereas the second and third methods rely on SENSE to estimate the motion-induced phase error for each shot, and subsequently use either a direct phase subtraction or an iterative conjugate gradient (CG) algorithm, respectively, to correct for the resulting artifacts. Numerical simulations and in vivo experiments on healthy volunteers were performed to assess the performance of these methods. Results The first two methods suffer from a low signal-to-noise ratio (SNR) or from residual artifacts in the reconstructed diffusion-weighted images and fractional anisotropy maps. In contrast, the third method provides high-quality, high-resolution DTI results, revealing fine anatomical details such as a radial diffusion anisotropy in cortical gray matter. Conclusion The proposed SENSE+CG method can inherently and effectively correct for phase errors, signal loss, and aliasing artifacts caused by both rigid and nonrigid motion in multi-shot spiral DTI, without increasing the scan time or reducing the SNR. PMID:23450457

  11. Temporal integration property of stereopsis after higher-order aberration correction

    PubMed Central

    Kang, Jian; Dai, Yun; Zhang, Yudong

    2015-01-01

    Based on a binocular adaptive optics visual simulator, we investigated the effect of higher-order aberration correction on the temporal integration property of stereopsis. Stereo threshold for line stimuli, viewed in 550nm monochromatic light, was measured as a function of exposure duration, with higher-order aberrations uncorrected, binocularly corrected or monocularly corrected. Under all optical conditions, stereo threshold decreased with increasing exposure duration until a steady-state threshold was reached. The critical duration was determined by a quadratic summation model and the high goodness of fit suggested this model was reasonable. For normal subjects, the slope for stereo threshold versus exposure duration was about −0.5 on logarithmic coordinates, and the critical duration was about 200 ms. Both the slope and the critical duration were independent of the optical condition of the eye, showing no significant effect of higher-order aberration correction on the temporal integration property of stereopsis. PMID:26601010

  12. Assessment of ionization chamber correction factors in photon beams using a time saving strategy with PENELOPE code.

    PubMed

    Reis, C Q M; Nicolucci, P

    2016-02-01

    The purpose of this study was to investigate Monte Carlo-based perturbation and beam quality correction factors for ionization chambers in photon beams using a saving time strategy with PENELOPE code. Simulations for calculating absorbed doses to water using full spectra of photon beams impinging the whole water phantom and those using a phase-space file previously stored around the point of interest were performed and compared. The widely used NE2571 ionization chamber was modeled with PENELOPE using data from the literature in order to calculate absorbed doses to the air cavity of the chamber. Absorbed doses to water at reference depth were also calculated for providing the perturbation and beam quality correction factors for that chamber in high energy photon beams. Results obtained in this study show that simulations with phase-space files appropriately stored can be up to ten times shorter than using a full spectrum of photon beams in the input-file. Values of kQ and its components for the NE2571 ionization chamber showed good agreement with published values in the literature and are provided with typical statistical uncertainties of 0.2%. Comparisons to kQ values published in current dosimetry protocols such as the AAPM TG-51 and IAEA TRS-398 showed maximum percentage differences of 0.1% and 0.6% respectively. The proposed strategy presented a significant efficiency gain and can be applied for a variety of ionization chambers and clinical photon beams. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields

    PubMed Central

    Herbert, Eric; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickael

    2009-01-01

    An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized non invasively through the direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows the precise estimation of the phase and amplitude aberrations and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2π). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from σ = 1.89 before correction to σ = 0.53 following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be −7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of −0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus with speckle tracking. This technique could have important implications in the field of High Intensity Focused Ultrasound even in complex configurations such as transcranial, transcostal or deep seated organs. PMID:19942526

  14. Droplet collisions and interaction with the turbulent flow within a two-phase wind tunnel

    NASA Astrophysics Data System (ADS)

    Bordás, Róbert; Hagemeier, Thomas; Wunderlich, Bernd; Thévenin, Dominique

    2011-08-01

    Experiments in wind tunnels concerning meteorological issues are not very frequent in the literature. However, such experiments might be essential, for instance for a careful investigation of droplet-droplet interactions in turbulent flows. This issue is crucial for many configurations, in particular to understand warm rain initiation. It is clearly impossible to completely reproduce cloud turbulence within a wind tunnel due to the enormous length scales involved. Nevertheless, it is not necessary to recover the whole spectrum in order to quantify droplet interactions. It is sufficient for this purpose to account correctly for the relevant properties only. In the present paper, these properties and a methodology for setting those in a two-phase wind tunnel are first described. In particular, droplet size and number density, velocities, turbulent kinetic energy, k, and its dissipation rate, ɛ, are suitably reproduced, as demonstrated by non-intrusive measurement techniques. A complete experimental characterization of the air and droplet properties is freely available in a database accessible at http://www.ovgu.de/isut/lss/metstroem. Finally, quantifications of droplet collision rates and comparisons with theoretical predictions are presented, showing that measured collision rates are higher, typically by a factor of 2 to 5. These results demonstrate that model modifications are needed to estimate correctly droplet collision probabilities in turbulent flows

  15. Axial geometrical aberration correction up to 5th order with N-SYLC.

    PubMed

    Hoque, Shahedul; Ito, Hiroyuki; Takaoka, Akio; Nishi, Ryuji

    2017-11-01

    We present N-SYLC (N-fold symmetric line currents) models to correct 5th order axial geometrical aberrations in electron microscopes. In our previous paper, we showed that 3rd order spherical aberration can be corrected by 3-SYLC doublet. After that, mainly the 5th order aberrations remain to limit the resolution. In this paper, we extend the doublet to quadruplet models also including octupole and dodecapole fields for correcting these higher order aberrations, without introducing any new unwanted ones. We prove the validity of our models by analytical calculations. Also by computer simulations, we show that for beam energy of 5keV and initial angle 10mrad at the corrector object plane, beam size of less than 0.5nm is achieved at the corrector image plane. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 77 FR 65666 - Correction: Proposed Information Collection; Comment Request; Manufacturers' Unfilled Orders Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... DEPARTMENT OF COMMERCE U.S. Census Bureau Correction: Proposed Information Collection; Comment Request; Manufacturers' Unfilled Orders Survey AGENCY: U.S. Census Bureau, Commerce. ACTION: Correction. SUMMARY: On October 16, 2012, a notice was published in the Federal Register (77 FR 63288) on the proposed...

  17. Early vertical correction of the deep curve of Spee

    PubMed Central

    Martins, Renato Parsekian

    2017-01-01

    ABSTRACT Even though few technological advancements have occurred in Orthodontics recently, the search for more efficient treatments continues. This paper analyses how to accelerate and improve one of the most arduous phases of orthodontic treatment, i.e., correction of the curve of Spee. The leveling of a deep curve of Spee can happen simultaneously with the alignment phase through a method called Early Vertical Correction (EVC). This technique uses two cantilevers affixed to the initial flexible archwire. This paper describes the force system produced by EVC and how to control its side effects. The EVC can reduce treatment time in malocclusions with deep curves of Spee, by combining two phases of the therapy, which clinicians ordinarily pursue sequentially. PMID:28658363

  18. Pre-correction of distorted Bessel-Gauss beams without wavefront detection

    NASA Astrophysics Data System (ADS)

    Fu, Shiyao; Wang, Tonglu; Zhang, Zheyuan; Zhai, Yanwang; Gao, Chunqing

    2017-12-01

    By utilizing the property of the phase's rapid solution of the Gerchberg-Saxton algorithm, we experimentally demonstrate a scheme to correct distorted Bessel-Gauss beams resulting from inhomogeneous media as weak turbulent atmosphere with good performance. A probe Gaussian beam is employed and propagates coaxially with the Bessel-Gauss modes through the turbulence. No wavefront sensor but a matrix detector is used to capture the probe Gaussian beams, and then, the correction phase mask is computed through inputting such probe beam into the Gerchberg-Saxton algorithm. The experimental results indicate that both single and multiplexed BG beams can be corrected well, in terms of the improvement in mode purity and the mitigation of interchannel cross talk.

  19. Automated error correction in IBM quantum computer and explicit generalization

    NASA Astrophysics Data System (ADS)

    Ghosh, Debjit; Agarwal, Pratik; Pandey, Pratyush; Behera, Bikash K.; Panigrahi, Prasanta K.

    2018-06-01

    Construction of a fault-tolerant quantum computer remains a challenging problem due to unavoidable noise and fragile quantum states. However, this goal can be achieved by introducing quantum error-correcting codes. Here, we experimentally realize an automated error correction code and demonstrate the nondestructive discrimination of GHZ states in IBM 5-qubit quantum computer. After performing quantum state tomography, we obtain the experimental results with a high fidelity. Finally, we generalize the investigated code for maximally entangled n-qudit case, which could both detect and automatically correct any arbitrary phase-change error, or any phase-flip error, or any bit-flip error, or combined error of all types of error.

  20. Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roald, Line; Misra, Sidhant; Krause, Thilo

    Higher shares of electricity generation from renewable energy sources and market liberalization is increasing uncertainty in power systems operation. At the same time, operation is becoming more flexible with improved control systems and new technology such as phase shifting transformers (PSTs) and high voltage direct current connections (HVDC). Previous studies have shown that the use of corrective control in response to outages contributes to a reduction in operating cost, while maintaining N-1 security. In this work, we propose a method to extend the use of corrective control of PSTs and HVDCs to react to uncertainty. We characterize the uncertainty asmore » continuous random variables, and define the corrective control actions through affine control policies. This allows us to efficiently model control reactions to a large number of uncertainty sources. The control policies are then included in a chance constrained optimal power flow formulation, which guarantees that the system constraints are enforced with a desired probability. Lastly, by applying an analytical reformulation of the chance constraints, we obtain a second-order cone problem for which we develop an efficient solution algorithm. In a case study for the IEEE 118 bus system, we show that corrective control for uncertainty leads to a decrease in operational cost, while maintaining system security. Further, we demonstrate the scalability of the method by solving the problem for the IEEE 300 bus and the Polish system test cases.« less

  1. Handling cycle slips in GPS data during ionospheric plasma bubble events

    NASA Astrophysics Data System (ADS)

    Banville, S.; Langley, R. B.; Saito, S.; Yoshihara, T.

    2010-12-01

    During disturbed ionospheric conditions such as the occurrence of plasma bubbles, the phase and amplitude of the electromagnetic waves transmitted by GPS satellites undergo rapid fluctuations called scintillation. When this phenomenon is observed, GPS receivers are more prone to signal tracking interruptions, which prevent continuous measurement of the total electron content (TEC) between a satellite and the receiver. In order to improve TEC monitoring, a study was conducted with the goal of reducing the effects of signal tracking interruptions by correcting for "cycle slips," an integer number of carrier wavelengths not measured by the receiver during a loss of signal lock. In this paper, we review existing cycle-slip correction methods, showing that the characteristics associated with ionospheric plasma bubbles (rapid ionospheric delay fluctuations, data gaps, increased noise, etc.) prevent reliable correction of cycle slips. Then, a reformulation of the "geometry-free" model conventionally used for ionospheric studies with GPS is presented. Geometric information is used to obtain single-frequency estimates of TEC variations during momentary L2 signal interruptions, which also provides instantaneous cycle-slip correction capabilities. The performance of this approach is assessed using data collected on Okinawa Island in Japan during a plasma bubble event that occurred on 23 March 2004. While an improvement in the continuity of TEC time series is obtained, we question the reliability of any cycle-slip correction technique when discontinuities on both GPS legacy frequencies occur simultaneously for more than a few seconds.

  2. Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow

    DOE PAGES

    Roald, Line; Misra, Sidhant; Krause, Thilo; ...

    2016-08-25

    Higher shares of electricity generation from renewable energy sources and market liberalization is increasing uncertainty in power systems operation. At the same time, operation is becoming more flexible with improved control systems and new technology such as phase shifting transformers (PSTs) and high voltage direct current connections (HVDC). Previous studies have shown that the use of corrective control in response to outages contributes to a reduction in operating cost, while maintaining N-1 security. In this work, we propose a method to extend the use of corrective control of PSTs and HVDCs to react to uncertainty. We characterize the uncertainty asmore » continuous random variables, and define the corrective control actions through affine control policies. This allows us to efficiently model control reactions to a large number of uncertainty sources. The control policies are then included in a chance constrained optimal power flow formulation, which guarantees that the system constraints are enforced with a desired probability. Lastly, by applying an analytical reformulation of the chance constraints, we obtain a second-order cone problem for which we develop an efficient solution algorithm. In a case study for the IEEE 118 bus system, we show that corrective control for uncertainty leads to a decrease in operational cost, while maintaining system security. Further, we demonstrate the scalability of the method by solving the problem for the IEEE 300 bus and the Polish system test cases.« less

  3. 77 FR 12307 - Agency Information Collection Activities; Proposed Collection; Comment Request; Experimental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ..., corrective advertising is designed to dissipate or correct erroneous beliefs resulting from a false claim... how variations in corrective advertising may impact consumers' misleading product beliefs. III. Design... those who see only the original ad, only the corrective ad, and neither ad. Table 1--Design of Phase 1...

  4. A Demonstration of a Versatile Low-order Wavefront Sensor Tested on Multiple Coronographs

    NASA Astrophysics Data System (ADS)

    Singh, Garima; Lozi, Julien; Jovanovic, Nemanja; Guyon, Olivier; Baudoz, Pierre; Martinache, Frantz; Kudo, Tomoyuki

    2017-09-01

    Detecting faint companions in close proximity to stars is one of the major goals of current/planned ground- and space-based high-contrast imaging instruments. High-performance coronagraphs can suppress the diffraction features and gain access to companions at small angular separation. However, the uncontrolled pointing errors degrade the coronagraphic performance by leaking starlight around the coronagraphic focal-plane mask, preventing the detection of companions at small separations. A Lyot-stop low-order wavefront sensor (LLOWFS) was therefore introduced to calibrate and measure these aberrations for focal-plane phase mask coronagraphs. This sensor quantifies the variations in wavefront error decomposed into a few Zernike modes by reimaging the diffracted starlight rejected by a reflective Lyot stop. The technique was tested with several coronagraphs on the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system at the Subaru Telescope. The wavefront was decomposed into 15 and 35 Zernike modes with an occulting and focal-plane phase mask coronagraph, respectively, which were used to drive a closed-loop correction in the laboratory. Using a 2000-actuator deformable mirror, a closed-loop pointing stability between 10-3-10-4 λ/D was achieved in the laboratory in H-band, with sub nanometer residuals for the other Zernike modes (Noll index > 4). On-sky, the low-order control of 10+ Zernike modes for the phase-induced amplitude apodization and the vector vortex coronagraphs was demonstrated, with a closed-loop pointing stability of {10}-4λ /D under good seeing and {10}-3λ /D under moderate seeing conditions readily achievable.

  5. Comparison of orthorhombic and alpha-two titanium aluminides as matrices for continuous SiC-reinforced composites

    NASA Astrophysics Data System (ADS)

    Smith, P. R.; Graves, J. A.; Rhodes, Cg.

    1994-06-01

    The attributes of an orthorhombic Ti aluminide alloy, Ti-21Al-22Nb (at. pct), and an alpha-two Ti aluminide alloy, Ti-24Al-11Nb (at. pct), for use as a matrix with continuous SiC (SCS-6) fiber reinforcement have been compared. Foil-fiber-foil processing was used to produce both unreinforced (“neat”) and unidirectional “SCS-6” reinforced panels. Microstructure of the Ti-24A1-11Nb matrix consisted of ordered Ti3Al ( α 2) + disordered beta (β), while the Ti-21 Al-22Nb matrix contained three phases: α2, ordered beta ( β 0), and ordered orthorhombic (O). Fiber/ matrix interface reaction zone growth kinetics at 982 °C were examined for each composite system. Although both systems exhibited similar interface reaction products (i.e., mixed Ti carbides, silicides, and Ti-Al carbides), growth kinetics in the α 2 + β matrix composite were much more rapid than in the O + β 0 + α 2 matrix composite. Additionally, interfacial reaction in the α 2 + β} composite resulted in a relatively large brittle matrix zone, depleted of beta phase, which was not present in the O + β 0+ α 2 matrix composite. Mechanical property measurements included room and elevated temperature tensile, thermal stability, thermal fatigue, thermo-mechanical fatigue (TMF), and creep. The three-phase orthorhombic-based alloy outperformed the α2+ β alloy in all of these mechanical behavioral areas, on both an absolute and a specific (i.e., density corrected) basis.

  6. Full Modeling of High-Intensity Focused Ultrasound and Thermal Heating in the Kidney Using Realistic Patient Models.

    PubMed

    Suomi, Visa; Jaros, Jiri; Treeby, Bradley; Cleveland, Robin O

    2018-05-01

    High-intensity focused ultrasound (HIFU) therapy can be used for noninvasive treatment of kidney (renal) cancer, but the clinical outcomes have been variable. In this study, the efficacy of renal HIFU therapy was studied using nonlinear acoustic and thermal simulations in three patients. The acoustic simulations were conducted with and without refraction in order to investigate its effect on the shape, size, and pressure distribution at the focus. The values for the attenuation, sound speed, perfusion, and thermal conductivity of the kidney were varied over the reported ranges to determine the effect of variability on heating. Furthermore, the phase aberration was studied in order to quantify the underlying phase shifts using a second-order polynomial function. The ultrasound field intensity was found to drop on average 11.1 dB with refraction and 6.4 dB without refraction. Reflection at tissue interfaces was found to result in a loss less than 0.1 dB. Focal point splitting due to refraction significantly reduced the heating efficacy. Of all the tissue parameters, perfusion was found to affect the heating the most. Small changes in temperature were seen with varying attenuation and thermal conductivity, but no visible changes were present with sound speed variations. The aberration study revealed an underlying trend in the spatial distribution of the phase shifts. The results show that the efficacy of HIFU therapy in the kidney could be improved with aberration correction. A method is proposed by which patient specific pretreatment calculations could be used to overcome the aberration and therefore make ultrasound treatment possible.

  7. Phase correction for three-dimensional (3D) diffusion-weighted interleaved EPI using 3D multiplexed sensitivity encoding and reconstruction (3D-MUSER).

    PubMed

    Chang, Hing-Chiu; Hui, Edward S; Chiu, Pui-Wai; Liu, Xiaoxi; Chen, Nan-Kuei

    2018-05-01

    Three-dimensional (3D) multiplexed sensitivity encoding and reconstruction (3D-MUSER) algorithm is proposed to reduce aliasing artifacts and signal corruption caused by inter-shot 3D phase variations in 3D diffusion-weighted echo planar imaging (DW-EPI). 3D-MUSER extends the original framework of multiplexed sensitivity encoding (MUSE) to a hybrid k-space-based reconstruction, thereby enabling the correction of inter-shot 3D phase variations. A 3D single-shot EPI navigator echo was used to measure inter-shot 3D phase variations. The performance of 3D-MUSER was evaluated by analyses of point-spread function (PSF), signal-to-noise ratio (SNR), and artifact levels. The efficacy of phase correction using 3D-MUSER for different slab thicknesses and b-values were investigated. Simulations showed that 3D-MUSER could eliminate artifacts because of through-slab phase variation and reduce noise amplification because of SENSE reconstruction. All aliasing artifacts and signal corruption in 3D interleaved DW-EPI acquired with different slab thicknesses and b-values were reduced by our new algorithm. A near-whole brain single-slab 3D DTI with 1.3-mm isotropic voxel acquired at 1.5T was successfully demonstrated. 3D phase correction for 3D interleaved DW-EPI data is made possible by 3D-MUSER, thereby improving feasible slab thickness and maximum feasible b-value. Magn Reson Med 79:2702-2712, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. A New Method for Atmospheric Correction of MRO/CRISM Data.

    NASA Astrophysics Data System (ADS)

    Noe Dobrea, Eldar Z.; Dressing, C.; Wolff, M. J.

    2009-09-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) collects hyperspectral images from 0.362 to 3.92 μm at 6.55 nanometers/channel, and at a spatial resolution of 20 m/pixel. The 1-2.6 μm spectral range is often used to identify and map the distribution of hydrous minerals using mineralogically diagnostic bands at 1.4 μm, 1.9 μm, and 2 - 2.5 micron region. Atmospheric correction of the 2-μm CO2 band typically employs the same methodology applied to OMEGA data (Mustard et al., Nature 454, 2008): an atmospheric opacity spectrum, obtained from the ratio of spectra from the base to spectra from the peak of Olympus Mons, is rescaled for each spectrum in the observation to fit the 2-μm CO2 band, and is subsequently used to correct the data. Three important aspects are not considered in this correction: 1) absorptions due to water vapor are improperly accounted for, 2) the band-center of each channel shifts slightly with time, and 3) multiple scattering due to atmospheric aerosols is not considered. The second issue results in miss-registration of the sharp CO2 features in the 2-μm triplet, and hence poor atmospheric correction. This leads to the necessity to ratio all spectra using the spectrum of a spectrally "bland” region in each observation in order to distinguish features 1.9 μm. Here, we present an improved atmospheric correction method, which uses emission phase function (EPF) observations to correct for molecular opacity, and a discrete ordinate radiative transfer algorithm (DISORT - Stamnes et al., Appl. Opt. 27, 1988) to correct for the effects of multiple scattering. This method results in a significant improvement in the correction of the 2-μm CO2 band, allowing us to forgo the use of spectral ratios that affect the spectral shape and preclude the derivation of reflectance values in the data.

  9. Correction of ultrasonic wave aberration with a time delay and amplitude filter.

    PubMed

    Måsøy, Svein-Erik; Johansen, Tonni F; Angelsen, Bjørn

    2003-04-01

    Two-dimensional simulations with propagation through two different heterogeneous human body wall models have been performed to analyze different correction filters for ultrasonic wave aberration due to forward wave propagation. The different models each produce most of the characteristic aberration effects such as phase aberration, relatively strong amplitude aberration, and waveform deformation. Simulations of wave propagation from a point source in the focus (60 mm) of a 20 mm transducer through the body wall models were performed. Center frequency of the pulse was 2.5 MHz. Corrections of the aberrations introduced by the two body wall models were evaluated with reference to the corrections obtained with the optimal filter: a generalized frequency-dependent phase and amplitude correction filter [Angelsen, Ultrasonic Imaging (Emantec, Norway, 2000), Vol. II]. Two correction filters were applied, a time delay filter, and a time delay and amplitude filter. Results showed that correction with a time delay filter produced substantial reduction of the aberration in both cases. A time delay and amplitude correction filter performed even better in both cases, and gave correction close to the ideal situation (no aberration). The results also indicated that the effect of the correction was very sensitive to the accuracy of the arrival time fluctuations estimate, i.e., the time delay correction filter.

  10. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging.

    PubMed

    Viallon, Magalie; Terraz, Sylvain; Roland, Joerg; Dumont, Erik; Becker, Christoph D; Salomir, Rares

    2010-04-01

    MR thermometry based on the proton resonance frequency shift (PRFS) is the most commonly used method for the monitoring of thermal therapies. As the chemical shift of water protons is temperature dependent, the local temperature variation (relative to an initial baseline) may be calculated from time-dependent phase changes in gradient-echo (GRE) MR images. Dynamic phase shift in GRE images is also produced by time-dependent changes in the magnetic bulk susceptibility of tissue. Gas bubbles (known as "white cavitation") are frequently visualized near the RF electrode in ultrasonography-guided radio frequency ablation (RFA). This study aimed to investigate RFA-induced cavitation's effects by using simultaneous ultrasonography and MRI, to both visualize the cavitation and quantify the subsequent magnetic susceptibility-mediated errors in concurrent PRFS MR-thermometry (MRT) as well as to propose a first-order correction for the latter errors. RF heating in saline gels and in ex vivo tissues was performed with MR-compatible bipolar and monopolar electrodes inside a 1.5 T MR clinical scanner. Ultrasonography simultaneous to PRFS MRT was achieved using a MR-compatible phased-array ultrasonic transducer. PRFS MRT was performed interleaved in three orthogonal planes and compared to measurements from fluoroptic sensors, under low and, respectively, high RFA power levels. Control experiments were performed to isolate the main source of errors in standard PRFS thermometry. Ultrasonography, MRI and digital camera pictures clearly demonstrated generation of bubbles every time when operating the radio frequency equipment at therapeutic powers (> or = 30 W). Simultaneous bimodal (ultrasonography and MRI) monitoring of high power RF heating demonstrated a correlation between the onset of the PRFS-thermometry errors and the appearance of bubbles around the applicator. In an ex vivo study using a bipolar RF electrode under low power level (5 W), the MR measured temperature curves accurately matched the reference fluoroptic data. In similar ex vivo studies when applying higher RFA power levels (30 W), the correlation plots of MR thermometry versus fluoroptic data showed large errors in PRFS-derived temperature (up to 45 degrees C absolute deviation, positive or negative) depending not only on fluoroptic tip position but also on the RF electrode orientation relative to the B0 axis. Regions with apparent decrease in the PRFS-derived temperature maps as much as 30 degrees C below the initial baseline were visualized during RFA high power application. Ex vivo data were corrected assuming a Gaussian dynamic source of susceptibility, centered in the anode/cathode gap of the RF bipolar electrode. After correction, the temperature maps recovered the revolution symmetry pattern predicted by theory and matched the fluoroptic data within 4.5 degrees C mean offset. RFA induces dynamic changes in magnetic bulk susceptibility in biological tissue, resulting in large and spatially dependent errors of phase-subtraction-only PRFS MRT and unexploitable thermal dose maps. These thermometry artifacts were strongly correlated with the appearance of transient cavitation. A first-order dynamic model of susceptibility provided a useful method for minimizing these artifacts in phantom and ex vivo experiments.

  11. Pressure-driven phase transition from antiferromagnetic semiconductor to nonmagnetic metal in the two-leg ladders A Fe 2 X 3 ( A = Ba , K ; X = S , Se )

    DOE PAGES

    Zhang, Yang; Lin, Lingfang; Zhang, Jun -Jie; ...

    2017-03-15

    The recent discovery of superconductivity in BaFe 2S 3 has stimulated considerable interest in 123-type iron chalcogenides. This material is the first reported iron-based two-leg ladder superconductor, as opposed to the prevailing two-dimensional layered structures of the iron superconductor family. Once the hydrostatic pressure exceeds 11 GPa, BaFe 2S 3 changes from a semiconductor to a superconductor below 24 K. Although previous calculations correctly explained its ground-state magnetic state and electronic structure, the pressure-induced phase transition was not successfully reproduced. In this work, our first-principles calculations show that with increasing pressure the lattice constants as well as local magnetic momentsmore » are gradually suppressed, followed by a first-order magnetic transition at a critical pressure, with local magnetic moments dropping to zero suddenly. Our calculations suggest that the self-doping caused by electrons transferred from S to Fe may play a key role in this transition. The development of a nonmagnetic metallic phase at high pressure may pave the way to superconductivity. As extensions of this effort, two other 123-type iron chalcogenides, KFe 2S 3 and KFe 2Se 3, have also been investigated. KFe 2S 3 also displays a first-order transition with increasing pressure, but KFe 2Se 3 shows instead a second-order or weakly first-order transition. Here, the required pressures for KFe 2S 3 and KFe 2Se 3 to quench the magnetism are higher than for BaFe 2S 3. Further experiments could confirm the predicted first-order nature of the transition in BaFe 2S 3 and KFe 2S 3, as well as the possible metallic/superconductivity state in other 123-type iron chalcogenides under high pressure.« less

  12. Magnetized black holes and nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-08-01

    A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.

  13. 12 CFR 1236.5 - Failure to submit a corrective plan; noncompliance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., FHFA shall order the regulated entity to correct that deficiency, and may: (1) Prohibit the regulated... corrective plan, also has experienced extraordinary growth, FHFA shall impose at least one of the sanctions...) Orders.—(1) Notice. Except as provided in paragraph (c)(4) of this section, FHFA will notify a regulated...

  14. N3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born method

    NASA Astrophysics Data System (ADS)

    Currie, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.; Niehues, J.; Vogt, A.

    2018-05-01

    Computations of higher-order QCD corrections for processes with exclusive final states require a subtraction method for real-radiation contributions. We present the first-ever generalisation of a subtraction method for third-order (N3LO) QCD corrections. The Projection-to-Born method is used to combine inclusive N3LO coefficient functions with an exclusive second-order (NNLO) calculation for a final state with an extra jet. The input requirements, advantages, and potential applications of the method are discussed, and validations at lower orders are performed. As a test case, we compute the N3LO corrections to kinematical distributions and production rates for single-jet production in deep inelastic scattering in the laboratory frame, and compare them with data from the ZEUS experiment at HERA. The corrections are small in the central rapidity region, where they stabilize the predictions to sub per-cent level. The corrections increase substantially towards forward rapidity where large logarithmic effects are expected, thereby yielding an improved description of the data in this region.

  15. Cosmology, Cosmomicrophysics and Gravitation Properties of the Gravitational Lens Mapping in the Vicinity of a Cusp Caustic

    NASA Astrophysics Data System (ADS)

    Alexandrov, A. N.; Zhdanov, V. I.; Koval, S. M.

    We derive approximate formulas for the coordinates and magnification of critical images of a point source in a vicinity of a cusp caustic arising in the gravitational lens mapping. In the lowest (zero-order) approximation, these formulas were obtained in the classical work by Schneider&Weiss (1992) and then studied by a number of authors; first-order corrections in powers of the proximity parameter were treated by Congdon, Keeton and Nordgren. We have shown that the first-order corrections are solely due to the asymmetry of the cusp. We found expressions for the second-order corrections in the case of general lens potential and for an arbitrary position of the source near a symmetric cusp. Applications to a lensing galaxy model represented by a singular isothermal sphere with an external shear y are studied and the role of the second-order corrections is demonstrated.

  16. Efficient Z gates for quantum computing

    NASA Astrophysics Data System (ADS)

    McKay, David C.; Wood, Christopher J.; Sheldon, Sarah; Chow, Jerry M.; Gambetta, Jay M.

    2017-08-01

    For superconducting qubits, microwave pulses drive rotations around the Bloch sphere. The phase of these drives can be used to generate zero-duration arbitrary virtual Z gates, which, combined with two Xπ /2 gates, can generate any SU(2) gate. Here we show how to best utilize these virtual Z gates to both improve algorithms and correct pulse errors. We perform randomized benchmarking using a Clifford set of Hadamard and Z gates and show that the error per Clifford is reduced versus a set consisting of standard finite-duration X and Y gates. Z gates can correct unitary rotation errors for weakly anharmonic qubits as an alternative to pulse-shaping techniques such as derivative removal by adiabatic gate (DRAG). We investigate leakage and show that a combination of DRAG pulse shaping to minimize leakage and Z gates to correct rotation errors realizes a 13.3 ns Xπ /2 gate characterized by low error [1.95 (3 ) ×10-4] and low leakage [3.1 (6 ) ×10-6] . Ultimately leakage is limited by the finite temperature of the qubit, but this limit is two orders of magnitude smaller than pulse errors due to decoherence.

  17. Adaptive offset correction for intracortical brain-computer interfaces.

    PubMed

    Homer, Mark L; Perge, Janos A; Black, Michael J; Harrison, Matthew T; Cash, Sydney S; Hochberg, Leigh R

    2014-03-01

    Intracortical brain-computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user's ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called multiple offset correction algorithm (MOCA), was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors ( 10.6 ± 10.1% ; p < 0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs.

  18. Separating stages of arithmetic verification: An ERP study with a novel paradigm.

    PubMed

    Avancini, Chiara; Soltész, Fruzsina; Szűcs, Dénes

    2015-08-01

    In studies of arithmetic verification, participants typically encounter two operands and they carry out an operation on these (e.g. adding them). Operands are followed by a proposed answer and participants decide whether this answer is correct or incorrect. However, interpretation of results is difficult because multiple parallel, temporally overlapping numerical and non-numerical processes of the human brain may contribute to task execution. In order to overcome this problem here we used a novel paradigm specifically designed to tease apart the overlapping cognitive processes active during arithmetic verification. Specifically, we aimed to separate effects related to detection of arithmetic correctness, detection of the violation of strategic expectations, detection of physical stimulus properties mismatch and numerical magnitude comparison (numerical distance effects). Arithmetic correctness, physical stimulus properties and magnitude information were not task-relevant properties of the stimuli. We distinguished between a series of temporally highly overlapping cognitive processes which in turn elicited overlapping ERP effects with distinct scalp topographies. We suggest that arithmetic verification relies on two major temporal phases which include parallel running processes. Our paradigm offers a new method for investigating specific arithmetic verification processes in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Transpalatal distraction--state of the art for the individual management of transverse maxillary deficiency--a review of 50 consecutive cases.

    PubMed

    Adolphs, Nicolai; Ernst, Nicole; Menneking, Horst; Hoffmeister, Bodo

    2014-12-01

    Transpalatal distraction has been established as a technique for surgical assisted rapid palatal/maxillary expansion (SARPE/SARME) in order to correct transverse maxillary deficiency. From 2007 until 2013 bone borne transpalatal distraction devices have been inserted in 50 patients affected by transverse maxillary deficiency and transpalatal distraction has been performed by the same surgical team. Patient records were retrospectively evaluated after ending of the active distraction phase with respect to indication, achieved expansion, additional procedures and side effects. In all cases the existing transverse maxillary deficiency was corrected by means of transpalatal distraction according to the individual needs. No complications were observed that interfered with that therapeutic aim. Evaluation of the records showed a wide variance of parameters which impedes evidence based statements. According to that series transpalatal distraction is a safe, powerful and reliable procedure and can be recommended as a state of the art procedure for the individually adapted correction of transverse maxillary deficiency if well known parameters of distraction are respected. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Advanced Dispersed Fringe Sensing Algorithm for Coarse Phasing Segmented Mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Spechler, Joshua A.; Hoppe, Daniel J.; Sigrist, Norbert; Shi, Fang; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.

    2013-01-01

    Segment mirror phasing, a critical step of segment mirror alignment, requires the ability to sense and correct the relative pistons between segments from up to a few hundred microns to a fraction of wavelength in order to bring the mirror system to its full diffraction capability. When sampling the aperture of a telescope, using auto-collimating flats (ACFs) is more economical. The performance of a telescope with a segmented primary mirror strongly depends on how well those primary mirror segments can be phased. One such process to phase primary mirror segments in the axial piston direction is dispersed fringe sensing (DFS). DFS technology can be used to co-phase the ACFs. DFS is essentially a signal fitting and processing operation. It is an elegant method of coarse phasing segmented mirrors. DFS performance accuracy is dependent upon careful calibration of the system as well as other factors such as internal optical alignment, system wavefront errors, and detector quality. Novel improvements to the algorithm have led to substantial enhancements in DFS performance. The Advanced Dispersed Fringe Sensing (ADFS) Algorithm is designed to reduce the sensitivity to calibration errors by determining the optimal fringe extraction line. Applying an angular extraction line dithering procedure and combining this dithering process with an error function while minimizing the phase term of the fitted signal, defines in essence the ADFS algorithm.

Top