Sample records for order polynomial function

  1. Charactering baseline shift with 4th polynomial function for portable biomedical near-infrared spectroscopy device

    NASA Astrophysics Data System (ADS)

    Zhao, Ke; Ji, Yaoyao; Pan, Boan; Li, Ting

    2018-02-01

    The continuous-wave Near-infrared spectroscopy (NIRS) devices have been highlighted for its clinical and health care applications in noninvasive hemodynamic measurements. The baseline shift of the deviation measurement attracts lots of attentions for its clinical importance. Nonetheless current published methods have low reliability or high variability. In this study, we found a perfect polynomial fitting function for baseline removal, using NIRS. Unlike previous studies on baseline correction for near-infrared spectroscopy evaluation of non-hemodynamic particles, we focused on baseline fitting and corresponding correction method for NIRS and found that the polynomial fitting function at 4th order is greater than the function at 2nd order reported in previous research. Through experimental tests of hemodynamic parameters of the solid phantom, we compared the fitting effect between the 4th order polynomial and the 2nd order polynomial, by recording and analyzing the R values and the SSE (the sum of squares due to error) values. The R values of the 4th order polynomial function fitting are all higher than 0.99, which are significantly higher than the corresponding ones of 2nd order, while the SSE values of the 4th order are significantly smaller than the corresponding ones of the 2nd order. By using the high-reliable and low-variable 4th order polynomial fitting function, we are able to remove the baseline online to obtain more accurate NIRS measurements.

  2. On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2003-05-01

    A formula expressing the Laguerre coefficients of a general-order derivative of an infinitely differentiable function in terms of its original coefficients is proved, and a formula expressing explicitly the derivatives of Laguerre polynomials of any degree and for any order as a linear combination of suitable Laguerre polynomials is deduced. A formula for the Laguerre coefficients of the moments of one single Laguerre polynomial of certain degree is given. Formulae for the Laguerre coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Laguerre coefficients are also obtained. A simple approach in order to build and solve recursively for the connection coefficients between Jacobi-Laguerre and Hermite-Laguerre polynomials is described. An explicit formula for these coefficients between Jacobi and Laguerre polynomials is given, of which the ultra-spherical polynomials of the first and second kinds and Legendre polynomials are important special cases. An analytical formula for the connection coefficients between Hermite and Laguerre polynomials is also obtained.

  3. Development of Fast Deterministic Physically Accurate Solvers for Kinetic Collision Integral for Applications of Near Space Flight and Control Devices

    DTIC Science & Technology

    2015-08-31

    following functions were used: where are the Legendre polynomials of degree . It is assumed that the coefficient standing with has the form...enforce relaxation rates of high order moments, higher order polynomial basis functions are used. The use of high order polynomials results in strong...enforced while only polynomials up to second degree were used in the representation of the collision frequency. It can be seen that the new model

  4. On the Existence of Non-Oscillatory Phase Functions for Second Order Ordinary Differential Equations in the High-Frequency Regime

    DTIC Science & Technology

    2014-08-04

    Chebyshev coefficients of both r and q decay exponentially, although those of r decay at a slightly slower rate. 10.2. Evaluation of Legendre polynomials ...In this experiment, we compare the cost of evaluating Legendre polynomials of large order using the standard recurrence relation with the cost of...doing so with a nonoscillatory phase function. For any integer n ě 0, the Legendre polynomial Pnpxq of order n is a solution of the second order

  5. Development and Evaluation of a Hydrostatic Dynamical Core Using the Spectral Element/Discontinuous Galerkin Methods

    DTIC Science & Technology

    2014-04-01

    The CG and DG horizontal discretization employs high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto- Legendre ...and DG horizontal discretization employs high-order nodal basis functions 29 associated with Lagrange polynomials based on Gauss-Lobatto- Legendre ...Inside 235 each element we build ( 1)N + Gauss-Lobatto- Legendre (GLL) quadrature points, where N 236 indicate the polynomial order of the basis

  6. On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2004-01-01

    Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.

  7. Riemann-Liouville Fractional Calculus of Certain Finite Class of Classical Orthogonal Polynomials

    NASA Astrophysics Data System (ADS)

    Malik, Pradeep; Swaminathan, A.

    2010-11-01

    In this work we consider certain class of classical orthogonal polynomials defined on the positive real line. These polynomials have their weight function related to the probability density function of F distribution and are finite in number up to orthogonality. We generalize these polynomials for fractional order by considering the Riemann-Liouville type operator on these polynomials. Various properties like explicit representation in terms of hypergeometric functions, differential equations, recurrence relations are derived.

  8. Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2004-08-01

    A formula expressing explicitly the derivatives of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another explicit formula, which expresses the Bessel expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of its original Bessel coefficients, is also given. A formula for the Bessel coefficients of the moments of one single Bessel polynomial of certain degree is proved. A formula for the Bessel coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Bessel coefficients is also obtained. Application of these formulae for solving ordinary differential equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Bessel-Bessel polynomials is described. An explicit formula for these coefficients between Jacobi and Bessel polynomials is given, of which the ultraspherical polynomial and its consequences are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Bessel and Hermite-Bessel are also developed.

  9. Approximating smooth functions using algebraic-trigonometric polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharapudinov, Idris I

    2011-01-14

    The problem under consideration is that of approximating classes of smooth functions by algebraic-trigonometric polynomials of the form p{sub n}(t)+{tau}{sub m}(t), where p{sub n}(t) is an algebraic polynomial of degree n and {tau}{sub m}(t)=a{sub 0}+{Sigma}{sub k=1}{sup m}a{sub k} cos k{pi}t + b{sub k} sin k{pi}t is a trigonometric polynomial of order m. The precise order of approximation by such polynomials in the classes W{sup r}{sub {infinity}(}M) and an upper bound for similar approximations in the class W{sup r}{sub p}(M) with 4/3

  10. Coherent orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es

    2013-08-15

    We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relatemore » these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the corresponding OP family. •Generalized coherent polynomials are obtained from OP.« less

  11. Impacts of Sigma Coordinates on the Euler and Navier-Stokes Equations using Continuous Galerkin Methods

    DTIC Science & Technology

    2009-03-01

    the 1- D local basis functions. The 1-D Lagrange polynomial local basis function, using Legendre -Gauss-Lobatto interpolation points, was defined by...cases were run using 10th order polynomials , with contours from -0.05 to 0.525 K with an interval of 0.025 K...after 700 s for reso- lutions: (a) 20, (b) 10, and (c) 5 m. All cases were run using 10th order polynomials , with contours from -0.05 to 0.525 K

  12. Recurrence approach and higher order polynomial algebras for superintegrable monopole systems

    NASA Astrophysics Data System (ADS)

    Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong

    2018-05-01

    We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.

  13. New Formulae for the High-Order Derivatives of Some Jacobi Polynomials: An Application to Some High-Order Boundary Value Problems

    PubMed Central

    Abd-Elhameed, W. M.

    2014-01-01

    This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomials of third and fourth kinds of any degree and of any order in terms of their corresponding Chebyshev polynomials are deduced as special cases. Some new reduction formulae for summing some terminating hypergeometric functions of unit argument are also deduced. As an application, and with the aid of the new introduced derivatives formulae, an algorithm for solving special sixth-order boundary value problems are implemented with the aid of applying Galerkin method. A numerical example is presented hoping to ascertain the validity and the applicability of the proposed algorithms. PMID:25386599

  14. Effects of Air Drag and Lunar Third-Body Perturbations on Motion Near a Reference KAM Torus

    DTIC Science & Technology

    2011-03-01

    body m 1) mass of satellite; 2) order of associated Legendre polynomial n 1) mean motion; 2) degree of associated Legendre polynomial n3 mean motion...physical momentum pi ith physical momentum Pmn associated Legendre polynomial of order m and degree n q̇ physical coordinate derivatives vector, [q̇1...are constants specifying the shape of the gravitational field; and Pmn are associated Legendre polynomials . When m = n = 0, the geopotential function

  15. Genetic parameters of legendre polynomials for first parity lactation curves.

    PubMed

    Pool, M H; Janss, L L; Meuwissen, T H

    2000-11-01

    Variance components of the covariance function coefficients in a random regression test-day model were estimated by Legendre polynomials up to a fifth order for first-parity records of Dutch dairy cows using Gibbs sampling. Two Legendre polynomials of equal order were used to model the random part of the lactation curve, one for the genetic component and one for permanent environment. Test-day records from cows registered between 1990 to 1996 and collected by regular milk recording were available. For the data set, 23,700 complete lactations were selected from 475 herds sired by 262 sires. Because the application of a random regression model is limited by computing capacity, we investigated the minimum order needed to fit the variance structure in the data sufficiently. Predictions of genetic and permanent environmental variance structures were compared with bivariate estimates on 30-d intervals. A third-order or higher polynomial modeled the shape of variance curves over DIM with sufficient accuracy for the genetic and permanent environment part. Also, the genetic correlation structure was fitted with sufficient accuracy by a third-order polynomial, but, for the permanent environmental component, a fourth order was needed. Because equal orders are suggested in the literature, a fourth-order Legendre polynomial is recommended in this study. However, a rank of three for the genetic covariance matrix and of four for permanent environment allows a simpler covariance function with a reduced number of parameters based on the eigenvalues and eigenvectors.

  16. Stability analysis of fuzzy parametric uncertain systems.

    PubMed

    Bhiwani, R J; Patre, B M

    2011-10-01

    In this paper, the determination of stability margin, gain and phase margin aspects of fuzzy parametric uncertain systems are dealt. The stability analysis of uncertain linear systems with coefficients described by fuzzy functions is studied. A complexity reduced technique for determining the stability margin for FPUS is proposed. The method suggested is dependent on the order of the characteristic polynomial. In order to find the stability margin of interval polynomials of order less than 5, it is not always necessary to determine and check all four Kharitonov's polynomials. It has been shown that, for determining stability margin of FPUS of order five, four, and three we require only 3, 2, and 1 Kharitonov's polynomials respectively. Only for sixth and higher order polynomials, a complete set of Kharitonov's polynomials are needed to determine the stability margin. Thus for lower order systems, the calculations are reduced to a large extent. This idea has been extended to determine the stability margin of fuzzy interval polynomials. It is also shown that the gain and phase margin of FPUS can be determined analytically without using graphical techniques. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Symmetric polynomials in information theory: Entropy and subentropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozsa, Richard; Mitchison, Graeme

    2015-06-15

    Entropy and other fundamental quantities of information theory are customarily expressed and manipulated as functions of probabilities. Here we study the entropy H and subentropy Q as functions of the elementary symmetric polynomials in the probabilities and reveal a series of remarkable properties. Derivatives of all orders are shown to satisfy a complete monotonicity property. H and Q themselves become multivariate Bernstein functions and we derive the density functions of their Levy-Khintchine representations. We also show that H and Q are Pick functions in each symmetric polynomial variable separately. Furthermore, we see that H and the intrinsically quantum informational quantitymore » Q become surprisingly closely related in functional form, suggesting a special significance for the symmetric polynomials in quantum information theory. Using the symmetric polynomials, we also derive a series of further properties of H and Q.« less

  18. A recursive algorithm for Zernike polynomials

    NASA Technical Reports Server (NTRS)

    Davenport, J. W.

    1982-01-01

    The analysis of a function defined on a rotationally symmetric system, with either a circular or annular pupil is discussed. In order to numerically analyze such systems it is typical to expand the given function in terms of a class of orthogonal polynomials. Because of their particular properties, the Zernike polynomials are especially suited for numerical calculations. Developed is a recursive algorithm that can be used to generate the Zernike polynomials up to a given order. The algorithm is recursively defined over J where R(J,N) is the Zernike polynomial of degree N obtained by orthogonalizing the sequence R(J), R(J+2), ..., R(J+2N) over (epsilon, 1). The terms in the preceding row - the (J-1) row - up to the N+1 term is needed for generating the (J,N)th term. Thus, the algorith generates an upper left-triangular table. This algorithm was placed in the computer with the necessary support program also included.

  19. Frequency domain system identification methods - Matrix fraction description approach

    NASA Technical Reports Server (NTRS)

    Horta, Luca G.; Juang, Jer-Nan

    1993-01-01

    This paper presents the use of matrix fraction descriptions for least-squares curve fitting of the frequency spectra to compute two matrix polynomials. The matrix polynomials are intermediate step to obtain a linearized representation of the experimental transfer function. Two approaches are presented: first, the matrix polynomials are identified using an estimated transfer function; second, the matrix polynomials are identified directly from the cross/auto spectra of the input and output signals. A set of Markov parameters are computed from the polynomials and subsequently realization theory is used to recover a minimum order state space model. Unevenly spaced frequency response functions may be used. Results from a simple numerical example and an experiment are discussed to highlight some of the important aspect of the algorithm.

  20. Exponential-fitted methods for integrating stiff systems of ordinary differential equations: Applications to homogeneous gas-phase chemical kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.

  1. Parametric correlation functions to model the structure of permanent environmental (co)variances in milk yield random regression models.

    PubMed

    Bignardi, A B; El Faro, L; Cardoso, V L; Machado, P F; Albuquerque, L G

    2009-09-01

    The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.

  2. Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion.

    PubMed

    Coelho, Rodrigo C V; Ilha, Anderson; Doria, Mauro M; Pereira, R M; Aibe, Valter Yoshihiko

    2014-04-01

    The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried to the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by Yang et al. [Shi and Yang, J. Comput. Phys. 227, 9389 (2008); Yang and Hung, Phys. Rev. E 79, 056708 (2009)] through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded to fourth order in the Hermite polynomials.

  3. Online Removal of Baseline Shift with a Polynomial Function for Hemodynamic Monitoring Using Near-Infrared Spectroscopy.

    PubMed

    Zhao, Ke; Ji, Yaoyao; Li, Yan; Li, Ting

    2018-01-21

    Near-infrared spectroscopy (NIRS) has become widely accepted as a valuable tool for noninvasively monitoring hemodynamics for clinical and diagnostic purposes. Baseline shift has attracted great attention in the field, but there has been little quantitative study on baseline removal. Here, we aimed to study the baseline characteristics of an in-house-built portable medical NIRS device over a long time (>3.5 h). We found that the measured baselines all formed perfect polynomial functions on phantom tests mimicking human bodies, which were identified by recent NIRS studies. More importantly, our study shows that the fourth-order polynomial function acted to distinguish performance with stable and low-computation-burden fitting calibration (R-square >0.99 for all probes) among second- to sixth-order polynomials, evaluated by the parameters R-square, sum of squares due to error, and residual. This study provides a straightforward, efficient, and quantitatively evaluated solution for online baseline removal for hemodynamic monitoring using NIRS devices.

  4. On the coefficients of integrated expansions of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2006-03-01

    A new formula expressing explicitly the integrals of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another new explicit formula relating the Bessel coefficients of an expansion for infinitely differentiable function that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion of the function is also established. An application of these formulae for solving ordinary differential equations with varying coefficients is discussed.

  5. Discrete Tchebycheff orthonormal polynomials and applications

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    Discrete Tchebycheff orthonormal polynomials offer a convenient way to make least squares polynomial fits of uniformly spaced discrete data. Computer programs to do so are simple and fast, and appear to be less affected by computer roundoff error, for the higher order fits, than conventional least squares programs. They are useful for any application of polynomial least squares fits: approximation of mathematical functions, noise analysis of radar data, and real time smoothing of noisy data, to name a few.

  6. Constructing general partial differential equations using polynomial and neural networks.

    PubMed

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Minimum Sobolev norm interpolation of scattered derivative data

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, S.; Gorman, C. H.; Mhaskar, H. N.

    2018-07-01

    We study the problem of reconstructing a function on a manifold satisfying some mild conditions, given data of the values and some derivatives of the function at arbitrary points on the manifold. While the problem of finding a polynomial of two variables with total degree ≤n given the values of the polynomial and some of its derivatives at exactly the same number of points as the dimension of the polynomial space is sometimes impossible, we show that such a problem always has a solution in a very general situation if the degree of the polynomials is sufficiently large. We give estimates on how large the degree should be, and give explicit constructions for such a polynomial even in a far more general case. As the number of sampling points at which the data is available increases, our polynomials converge to the target function on the set where the sampling points are dense. Numerical examples in single and double precision show that this method is stable, efficient, and of high-order.

  8. Random regression models using different functions to model milk flow in dairy cows.

    PubMed

    Laureano, M M M; Bignardi, A B; El Faro, L; Cardoso, V L; Tonhati, H; Albuquerque, L G

    2014-09-12

    We analyzed 75,555 test-day milk flow records from 2175 primiparous Holstein cows that calved between 1997 and 2005. Milk flow was obtained by dividing the mean milk yield (kg) of the 3 daily milking by the total milking time (min) and was expressed as kg/min. Milk flow was grouped into 43 weekly classes. The analyses were performed using a single-trait Random Regression Models that included direct additive genetic, permanent environmental, and residual random effects. In addition, the contemporary group and linear and quadratic effects of cow age at calving were included as fixed effects. Fourth-order orthogonal Legendre polynomial of days in milk was used to model the mean trend in milk flow. The additive genetic and permanent environmental covariance functions were estimated using random regression Legendre polynomials and B-spline functions of days in milk. The model using a third-order Legendre polynomial for additive genetic effects and a sixth-order polynomial for permanent environmental effects, which contained 7 residual classes, proved to be the most adequate to describe variations in milk flow, and was also the most parsimonious. The heritability in milk flow estimated by the most parsimonious model was of moderate to high magnitude.

  9. Perceptually informed synthesis of bandlimited classical waveforms using integrated polynomial interpolation.

    PubMed

    Välimäki, Vesa; Pekonen, Jussi; Nam, Juhan

    2012-01-01

    Digital subtractive synthesis is a popular music synthesis method, which requires oscillators that are aliasing-free in a perceptual sense. It is a research challenge to find computationally efficient waveform generation algorithms that produce similar-sounding signals to analog music synthesizers but which are free from audible aliasing. A technique for approximately bandlimited waveform generation is considered that is based on a polynomial correction function, which is defined as the difference of a non-bandlimited step function and a polynomial approximation of the ideal bandlimited step function. It is shown that the ideal bandlimited step function is equivalent to the sine integral, and that integrated polynomial interpolation methods can successfully approximate it. Integrated Lagrange interpolation and B-spline basis functions are considered for polynomial approximation. The polynomial correction function can be added onto samples around each discontinuity in a non-bandlimited waveform to suppress aliasing. Comparison against previously known methods shows that the proposed technique yields the best tradeoff between computational cost and sound quality. The superior method amongst those considered in this study is the integrated third-order B-spline correction function, which offers perceptually aliasing-free sawtooth emulation up to the fundamental frequency of 7.8 kHz at the sample rate of 44.1 kHz. © 2012 Acoustical Society of America.

  10. The sensitivity of catchment hypsometry and hypsometric properties to DEM resolution and polynomial order

    NASA Astrophysics Data System (ADS)

    Liffner, Joel W.; Hewa, Guna A.; Peel, Murray C.

    2018-05-01

    Derivation of the hypsometric curve of a catchment, and properties relating to that curve, requires both use of topographical data (commonly in the form of a Digital Elevation Model - DEM), and the estimation of a functional representation of that curve. An early investigation into catchment hypsometry concluded 3rd order polynomials sufficiently describe the hypsometric curve, without the consideration of higher order polynomials, or the sensitivity of hypsometric properties relating to the curve. Another study concluded the hypsometric integral (HI) is robust against changes in DEM resolution, a conclusion drawn from a very limited sample size. Conclusions from these earlier studies have resulted in the adoption of methods deemed to be "sufficient" in subsequent studies, in addition to assumptions that the robustness of the HI extends to other hypsometric properties. This study investigates and demonstrates the sensitivity of hypsometric properties to DEM resolution, DEM type and polynomial order through assessing differences in hypsometric properties derived from 417 catchments and sub-catchments within South Australia. The sensitivity of hypsometric properties across DEM types and polynomial orders is found to be significant, which suggests careful consideration of the methods chosen to derive catchment hypsometric information is required.

  11. Concentration of the L{sub 1}-norm of trigonometric polynomials and entire functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malykhin, Yu V; Ryutin, K S

    2014-11-30

    For any sufficiently large n, the minimal measure of a subset of [−π,π] on which some nonzero trigonometric polynomial of order ≤n gains half of the L{sub 1}-norm is shown to be π/(n+1). A similar result for entire functions of exponential type is established. Bibliography: 13 titles.

  12. Statistically generated weighted curve fit of residual functions for modal analysis of structures

    NASA Technical Reports Server (NTRS)

    Bookout, P. S.

    1995-01-01

    A statistically generated weighting function for a second-order polynomial curve fit of residual functions has been developed. The residual flexibility test method, from which a residual function is generated, is a procedure for modal testing large structures in an external constraint-free environment to measure the effects of higher order modes and interface stiffness. This test method is applicable to structures with distinct degree-of-freedom interfaces to other system components. A theoretical residual function in the displacement/force domain has the characteristics of a relatively flat line in the lower frequencies and a slight upward curvature in the higher frequency range. In the test residual function, the above-mentioned characteristics can be seen in the data, but due to the present limitations in the modal parameter evaluation (natural frequencies and mode shapes) of test data, the residual function has regions of ragged data. A second order polynomial curve fit is required to obtain the residual flexibility term. A weighting function of the data is generated by examining the variances between neighboring data points. From a weighted second-order polynomial curve fit, an accurate residual flexibility value can be obtained. The residual flexibility value and free-free modes from testing are used to improve a mathematical model of the structure. The residual flexibility modal test method is applied to a straight beam with a trunnion appendage and a space shuttle payload pallet simulator.

  13. Venus radar mapper attitude reference quaternion

    NASA Technical Reports Server (NTRS)

    Lyons, D. T.

    1986-01-01

    Polynomial functions of time are used to specify the components of the quaternion which represents the nominal attitude of the Venus Radar mapper spacecraft during mapping. The following constraints must be satisfied in order to obtain acceptable synthetic array radar data: the nominal attitude function must have a large dynamic range, the sensor orientation must be known very accurately, the attitude reference function must use as little memory as possible, and the spacecraft must operate autonomously. Fitting polynomials to the components of the desired quaternion function is a straightforward method for providing a very dynamic nominal attitude using a minimum amount of on-board computer resources. Although the attitude from the polynomials may not be exactly the one requested by the radar designers, the polynomial coefficients are known, so they do not contribute to the attitude uncertainty. Frequent coefficient updates are not required, so the spacecraft can operate autonomously.

  14. Efficient algorithms for construction of recurrence relations for the expansion and connection coefficients in series of Al-Salam Carlitz I polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2005-12-01

    Two formulae expressing explicitly the derivatives and moments of Al-Salam-Carlitz I polynomials of any degree and for any order in terms of Al-Salam-Carlitz I themselves are proved. Two other formulae for the expansion coefficients of general-order derivatives Dpqf(x), and for the moments xellDpqf(x), of an arbitrary function f(x) in terms of its original expansion coefficients are also obtained. Application of these formulae for solving q-difference equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Al-Salam-Carlitz I polynomials and any system of basic hypergeometric orthogonal polynomials, belonging to the q-Hahn class, is described.

  15. More on rotations as spin matrix polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtright, Thomas L.

    2015-09-15

    Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.

  16. Learning polynomial feedforward neural networks by genetic programming and backpropagation.

    PubMed

    Nikolaev, N Y; Iba, H

    2003-01-01

    This paper presents an approach to learning polynomial feedforward neural networks (PFNNs). The approach suggests, first, finding the polynomial network structure by means of a population-based search technique relying on the genetic programming paradigm, and second, further adjustment of the best discovered network weights by an especially derived backpropagation algorithm for higher order networks with polynomial activation functions. These two stages of the PFNN learning process enable us to identify networks with good training as well as generalization performance. Empirical results show that this approach finds PFNN which outperform considerably some previous constructive polynomial network algorithms on processing benchmark time series.

  17. A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations

    DOE PAGES

    Teichert, Gregory H.; Gunda, N. S. Harsha; Rudraraju, Shiva; ...

    2016-12-18

    Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability, accuracy and robustness of numerical methods to solve these PDEs are sensitive to the particular functional representations of the free energy. In this communication we investigate the influence of different representations of thermodynamic data on phase field computations of diffusion and two-phase reactions in the solid state. First-principles statistical mechanics methods were used to generate realistic free energymore » data for HCP titanium with interstitially dissolved oxygen. While Redlich-Kister polynomials have formed the mainstay of thermodynamic descriptions of multi-component solids, they require high order terms to fit oscillations in chemical potentials around phase transitions. Here, we demonstrate that high fidelity fits to rapidly fluctuating free energy functions are obtained with spline functions. As a result, spline functions that are many degrees lower than Redlich-Kister polynomials provide equal or superior fits to chemical potential data and, when used in phase field computations, result in solution times approaching an order of magnitude speed up relative to the use of Redlich-Kister polynomials.« less

  18. Wilson polynomials/functions and intertwining operators for the generic quantum superintegrable system on the 2-sphere

    NASA Astrophysics Data System (ADS)

    Miller, W., Jr.; Li, Q.

    2015-04-01

    The Wilson and Racah polynomials can be characterized as basis functions for irreducible representations of the quadratic symmetry algebra of the quantum superintegrable system on the 2-sphere, HΨ = EΨ, with generic 3-parameter potential. Clearly, the polynomials are expansion coefficients for one eigenbasis of a symmetry operator L2 of H in terms of an eigenbasis of another symmetry operator L1, but the exact relationship appears not to have been made explicit. We work out the details of the expansion to show, explicitly, how the polynomials arise and how the principal properties of these functions: the measure, 3-term recurrence relation, 2nd order difference equation, duality of these relations, permutation symmetry, intertwining operators and an alternate derivation of Wilson functions - follow from the symmetry of this quantum system. This paper is an exercise to show that quantum mechancal concepts and recurrence relations for Gausian hypergeometrc functions alone suffice to explain these properties; we make no assumptions about the structure of Wilson polynomial/functions, but derive them from quantum principles. There is active interest in the relation between multivariable Wilson polynomials and the quantum superintegrable system on the n-sphere with generic potential, and these results should aid in the generalization. Contracting function space realizations of irreducible representations of this quadratic algebra to the other superintegrable systems one can obtain the full Askey scheme of orthogonal hypergeometric polynomials. All of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2,C). All of the polynomials produced are interpretable as quantum expansion coefficients. It is important to extend this process to higher dimensions.

  19. Spline function approximation techniques for image geometric distortion representation. [for registration of multitemporal remote sensor imagery

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1975-01-01

    Least squares approximation techniques were developed for use in computer aided correction of spatial image distortions for registration of multitemporal remote sensor imagery. Polynomials were first used to define image distortion over the entire two dimensional image space. Spline functions were then investigated to determine if the combination of lower order polynomials could approximate a higher order distortion with less computational difficulty. Algorithms for generating approximating functions were developed and applied to the description of image distortion in aircraft multispectral scanner imagery. Other applications of the techniques were suggested for earth resources data processing areas other than geometric distortion representation.

  20. Piecewise polynomial representations of genomic tracks.

    PubMed

    Tarabichi, Maxime; Detours, Vincent; Konopka, Tomasz

    2012-01-01

    Genomic data from micro-array and sequencing projects consist of associations of measured values to chromosomal coordinates. These associations can be thought of as functions in one dimension and can thus be stored, analyzed, and interpreted as piecewise-polynomial curves. We present a general framework for building piecewise polynomial representations of genome-scale signals and illustrate some of its applications via examples. We show that piecewise constant segmentation, a typical step in copy-number analyses, can be carried out within this framework for both array and (DNA) sequencing data offering advantages over existing methods in each case. Higher-order polynomial curves can be used, for example, to detect trends and/or discontinuities in transcription levels from RNA-seq data. We give a concrete application of piecewise linear functions to diagnose and quantify alignment quality at exon borders (splice sites). Our software (source and object code) for building piecewise polynomial models is available at http://sourceforge.net/projects/locsmoc/.

  1. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu

    2013-11-28

    A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resultingmore » in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.« less

  2. Generalized Freud's equation and level densities with polynomial potential

    NASA Astrophysics Data System (ADS)

    Boobna, Akshat; Ghosh, Saugata

    2013-08-01

    We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.

  3. On Using Homogeneous Polynomials To Design Anisotropic Yield Functions With Tension/Compression Symmetry/Assymetry

    NASA Astrophysics Data System (ADS)

    Soare, S.; Yoon, J. W.; Cazacu, O.

    2007-05-01

    With few exceptions, non-quadratic homogeneous polynomials have received little attention as possible candidates for yield functions. One reason might be that not every such polynomial is a convex function. In this paper we show that homogeneous polynomials can be used to develop powerful anisotropic yield criteria, and that imposing simple constraints on the identification process leads, aposteriori, to the desired convexity property. It is shown that combinations of such polynomials allow for modeling yielding properties of metallic materials with any crystal structure, i.e. both cubic and hexagonal which display strength differential effects. Extensions of the proposed criteria to 3D stress states are also presented. We apply these criteria to the description of the aluminum alloy AA2090T3. We prove that a sixth order orthotropic homogeneous polynomial is capable of a satisfactory description of this alloy. Next, applications to the deep drawing of a cylindrical cup are presented. The newly proposed criteria were implemented as UMAT subroutines into the commercial FE code ABAQUS. We were able to predict six ears on the AA2090T3 cup's profile. Finally, we show that a tension/compression asymmetry in yielding can have an important effect on the earing profile.

  4. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.

    PubMed

    Petrović, Nikola Z; Belić, Milivoj; Zhong, Wei-Ping

    2011-02-01

    We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity. ©2011 American Physical Society

  5. The expression and comparison of healthy and ptotic upper eyelid contours using a polynomial mathematical function.

    PubMed

    Mocan, Mehmet C; Ilhan, Hacer; Gurcay, Hasmet; Dikmetas, Ozlem; Karabulut, Erdem; Erdener, Ugur; Irkec, Murat

    2014-06-01

    To derive a mathematical expression for the healthy upper eyelid (UE) contour and to use this expression to differentiate the normal UE curve from its abnormal configuration in the setting of blepharoptosis. The study was designed as a cross-sectional study. Fifty healthy subjects (26M/24F) and 50 patients with blepharoptosis (28M/22F) with a margin-reflex distance (MRD1) of ≤2.5 mm were recruited. A polynomial interpolation was used to approximate UE curve. The polynomial coefficients were calculated from digital eyelid images of all participants using a set of operator defined points along the UE curve. Coefficients up to the fourth-order polynomial, iris area covered by the UE, iris area covered by the lower eyelid and total iris area covered by both the upper and the lower eyelids were defined using the polynomial function and used in statistical comparisons. The t-test, Mann-Whitney U test and the Spearman's correlation test were used for statistical comparisons. The mathematical expression derived from the data of 50 healthy subjects aged 24.1 ± 2.6 years was defined as y = 22.0915 + (-1.3213)x + 0.0318x(2 )+ (-0.0005x)(3). The fifth and the consecutive coefficients were <0.00001 in all cases and were not included in the polynomial function. None of the first fourth-order coefficients of the equation were found to be significantly different in male versus female subjects. In normal subjects, the percentage of the iris area covered by upper and lower lids was 6.46 ± 5.17% and 0.66% ± 1.62%, respectively. All coefficients and mean iris area covered by the UE were significantly different between healthy and ptotic eyelids. The healthy and abnormal eyelid contour can be defined and differentiated using a polynomial mathematical function.

  6. A two-step, fourth-order method with energy preserving properties

    NASA Astrophysics Data System (ADS)

    Brugnano, Luigi; Iavernaro, Felice; Trigiante, Donato

    2012-09-01

    We introduce a family of fourth-order two-step methods that preserve the energy function of canonical polynomial Hamiltonian systems. As is the case with linear mutistep and one-leg methods, a prerogative of the new formulae is that the associated nonlinear systems to be solved at each step of the integration procedure have the very same dimension of the underlying continuous problem. The key tools in the new methods are the line integral associated with a conservative vector field (such as the one defined by a Hamiltonian dynamical system) and its discretization obtained by the aid of a quadrature formula. Energy conservation is equivalent to the requirement that the quadrature is exact, which turns out to be always the case in the event that the Hamiltonian function is a polynomial and the degree of precision of the quadrature formula is high enough. The non-polynomial case is also discussed and a number of test problems are finally presented in order to compare the behavior of the new methods to the theoretical results.

  7. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Jerrad; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2015-01-01

    Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ{sub 1}-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence onmore » the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.« less

  8. Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils.

    PubMed

    Mahajan, Virendra N

    2010-12-20

    The classical aberrations of an anamorphic optical imaging system, representing the terms of a power-series expansion of its aberration function, are separable in the Cartesian coordinates of a point on its pupil. We discuss the balancing of a classical aberration of a certain order with one or more such aberrations of lower order to minimize its variance across a rectangular pupil of such a system. We show that the balanced aberrations are the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point. The compound Legendre polynomials are orthogonal across a rectangular pupil and, like the classical aberrations, are inherently separable in the Cartesian coordinates of the pupil point. They are different from the balanced aberrations and the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil.

  9. Algebraic calculations for spectrum of superintegrable system from exceptional orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong

    2018-04-01

    We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.

  10. Experimental Modal Analysis and Dynamic Component Synthesis. Volume 6. Software User’s Guide.

    DTIC Science & Technology

    1987-12-01

    generate a Complex Mode Indication Function ( CMIF ) from the measurement directory, including modifications from the measurement selection option. This...reference measurements are - included in the data set to be analyzed. The peaks in the CMIF chart indicate existing modes. Thus, the order of the the...polynomials is determined by the number of peaks found in the CMIF chart. Then, the order of the polynomials can be determined before the estimation process

  11. Probing baryogenesis through the Higgs boson self-coupling

    NASA Astrophysics Data System (ADS)

    Reichert, M.; Eichhorn, A.; Gies, H.; Pawlowski, J. M.; Plehn, T.; Scherer, M. M.

    2018-04-01

    The link between a modified Higgs self-coupling and the strong first-order phase transition necessary for baryogenesis is well explored for polynomial extensions of the Higgs potential. We broaden this argument beyond leading polynomial expansions of the Higgs potential to higher polynomial terms and to nonpolynomial Higgs potentials. For our quantitative analysis we resort to the functional renormalization group, which allows us to evolve the full Higgs potential to higher scales and finite temperature. In all cases we find that a strong first-order phase transition manifests itself in an enhancement of the Higgs self-coupling by at least 50%, implying that such modified Higgs potentials should be accessible at the LHC.

  12. Fast beampattern evaluation by polynomial rooting

    NASA Astrophysics Data System (ADS)

    Häcker, P.; Uhlich, S.; Yang, B.

    2011-07-01

    Current automotive radar systems measure the distance, the relative velocity and the direction of objects in their environment. This information enables the car to support the driver. The direction estimation capabilities of a sensor array depend on its beampattern. To find the array configuration leading to the best angle estimation by a global optimization algorithm, a huge amount of beampatterns have to be calculated to detect their maxima. In this paper, a novel algorithm is proposed to find all maxima of an array's beampattern fast and reliably, leading to accelerated array optimizations. The algorithm works for arrays having the sensors on a uniformly spaced grid. We use a general version of the gcd (greatest common divisor) function in order to write the problem as a polynomial. We differentiate and root the polynomial to get the extrema of the beampattern. In addition, we show a method to reduce the computational burden even more by decreasing the order of the polynomial.

  13. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    NASA Astrophysics Data System (ADS)

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  14. Kurtosis Approach Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation Keywords: Independent Component Analysis, Kurtosis, Higher order statistics.

  15. On Using Homogeneous Polynomials To Design Anisotropic Yield Functions With Tension/Compression Symmetry/Assymetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soare, S.; Cazacu, O.; Yoon, J. W.

    With few exceptions, non-quadratic homogeneous polynomials have received little attention as possible candidates for yield functions. One reason might be that not every such polynomial is a convex function. In this paper we show that homogeneous polynomials can be used to develop powerful anisotropic yield criteria, and that imposing simple constraints on the identification process leads, aposteriori, to the desired convexity property. It is shown that combinations of such polynomials allow for modeling yielding properties of metallic materials with any crystal structure, i.e. both cubic and hexagonal which display strength differential effects. Extensions of the proposed criteria to 3D stressmore » states are also presented. We apply these criteria to the description of the aluminum alloy AA2090T3. We prove that a sixth order orthotropic homogeneous polynomial is capable of a satisfactory description of this alloy. Next, applications to the deep drawing of a cylindrical cup are presented. The newly proposed criteria were implemented as UMAT subroutines into the commercial FE code ABAQUS. We were able to predict six ears on the AA2090T3 cup's profile. Finally, we show that a tension/compression asymmetry in yielding can have an important effect on the earing profile.« less

  16. Model-based estimates of long-term persistence of induced HPV antibodies: a flexible subject-specific approach.

    PubMed

    Aregay, Mehreteab; Shkedy, Ziv; Molenberghs, Geert; David, Marie-Pierre; Tibaldi, Fabián

    2013-01-01

    In infectious diseases, it is important to predict the long-term persistence of vaccine-induced antibodies and to estimate the time points where the individual titers are below the threshold value for protection. This article focuses on HPV-16/18, and uses a so-called fractional-polynomial model to this effect, derived in a data-driven fashion. Initially, model selection was done from among the second- and first-order fractional polynomials on the one hand and from the linear mixed model on the other. According to a functional selection procedure, the first-order fractional polynomial was selected. Apart from the fractional polynomial model, we also fitted a power-law model, which is a special case of the fractional polynomial model. Both models were compared using Akaike's information criterion. Over the observation period, the fractional polynomials fitted the data better than the power-law model; this, of course, does not imply that it fits best over the long run, and hence, caution ought to be used when prediction is of interest. Therefore, we point out that the persistence of the anti-HPV responses induced by these vaccines can only be ascertained empirically by long-term follow-up analysis.

  17. A new order-theoretic characterisation of the polytime computable functions☆

    PubMed Central

    Avanzini, Martin; Eguchi, Naohi; Moser, Georg

    2015-01-01

    We propose a new order-theoretic characterisation of the class of polytime computable functions. To this avail we define the small polynomial path order (sPOP⁎ for short). This termination order entails a new syntactic method to analyse the innermost runtime complexity of term rewrite systems fully automatically: for any rewrite system compatible with sPOP⁎ that employs recursion up to depth d, the (innermost) runtime complexity is polynomially bounded of degree d. This bound is tight. Thus we obtain a direct correspondence between a syntactic (and easily verifiable) condition of a program and the asymptotic worst-case complexity of the program. PMID:26412933

  18. Mathematics of Zernike polynomials: a review.

    PubMed

    McAlinden, Colm; McCartney, Mark; Moore, Jonathan

    2011-11-01

    Monochromatic aberrations of the eye principally originate from the cornea and the crystalline lens. Aberrometers operate via differing principles but function by either analysing the reflected wavefront from the retina or by analysing an image on the retina. Aberrations may be described as lower order or higher order aberrations with Zernike polynomials being the most commonly employed fitting method. The complex mathematical aspects with regards the Zernike polynomial expansion series are detailed in this review. Refractive surgery has been a key clinical application of aberrometers; however, more recently aberrometers have been used in a range of other areas ophthalmology including corneal diseases, cataract and retinal imaging. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.

  19. Comparison of volatility function technique for risk-neutral densities estimation

    NASA Astrophysics Data System (ADS)

    Bahaludin, Hafizah; Abdullah, Mimi Hafizah

    2017-08-01

    Volatility function technique by using interpolation approach plays an important role in extracting the risk-neutral density (RND) of options. The aim of this study is to compare the performances of two interpolation approaches namely smoothing spline and fourth order polynomial in extracting the RND. The implied volatility of options with respect to strike prices/delta are interpolated to obtain a well behaved density. The statistical analysis and forecast accuracy are tested using moments of distribution. The difference between the first moment of distribution and the price of underlying asset at maturity is used as an input to analyze forecast accuracy. RNDs are extracted from the Dow Jones Industrial Average (DJIA) index options with a one month constant maturity for the period from January 2011 until December 2015. The empirical results suggest that the estimation of RND using a fourth order polynomial is more appropriate to be used compared to a smoothing spline in which the fourth order polynomial gives the lowest mean square error (MSE). The results can be used to help market participants capture market expectations of the future developments of the underlying asset.

  20. Non-axisymmetric Aberration Patterns from Wide-field Telescopes Using Spin-weighted Zernike Polynomials

    DOE PAGES

    Kent, Stephen M.

    2018-02-15

    If the optical system of a telescope is perturbed from rotational symmetry, the Zernike wavefront aberration coefficients describing that system can be expressed as a function of position in the focal plane using spin-weighted Zernike polynomials. Methodologies are presented to derive these polynomials to arbitrary order. This methodology is applied to aberration patterns produced by a misaligned Ritchey Chretian telescope and to distortion patterns at the focal plane of the DESI optical corrector, where it is shown to provide a more efficient description of distortion than conventional expansions.

  1. Polynomial probability distribution estimation using the method of moments

    PubMed Central

    Mattsson, Lars; Rydén, Jesper

    2017-01-01

    We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram–Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation. PMID:28394949

  2. Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.

    PubMed

    Kulkarni, Rishikesh; Rastogi, Pramod

    2018-02-01

    A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.

  3. Polynomial probability distribution estimation using the method of moments.

    PubMed

    Munkhammar, Joakim; Mattsson, Lars; Rydén, Jesper

    2017-01-01

    We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram-Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation.

  4. Covariance functions for body weight from birth to maturity in Nellore cows.

    PubMed

    Boligon, A A; Mercadante, M E Z; Forni, S; Lôbo, R B; Albuquerque, L G

    2010-03-01

    The objective of this study was to estimate (co)variance functions using random regression models on Legendre polynomials for the analysis of repeated measures of BW from birth to adult age. A total of 82,064 records from 8,145 females were analyzed. Different models were compared. The models included additive direct and maternal effects, and animal and maternal permanent environmental effects as random terms. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of animal age (cubic regression) were considered as random covariables. Eight models with polynomials of third to sixth order were used to describe additive direct and maternal effects, and animal and maternal permanent environmental effects. Residual effects were modeled using 1 (i.e., assuming homogeneity of variances across all ages) or 5 age classes. The model with 5 classes was the best to describe the trajectory of residuals along the growth curve. The model including fourth- and sixth-order polynomials for additive direct and animal permanent environmental effects, respectively, and third-order polynomials for maternal genetic and maternal permanent environmental effects were the best. Estimates of (co)variance obtained with the multi-trait and random regression models were similar. Direct heritability estimates obtained with the random regression models followed a trend similar to that obtained with the multi-trait model. The largest estimates of maternal heritability were those of BW taken close to 240 d of age. In general, estimates of correlation between BW from birth to 8 yr of age decreased with increasing distance between ages.

  5. Polynomial expressions of electron depth dose as a function of energy in various materials: application to thermoluminescence (TL) dosimetry

    NASA Astrophysics Data System (ADS)

    Deogracias, E. C.; Wood, J. L.; Wagner, E. C.; Kearfott, K. J.

    1999-02-01

    The CEPXS/ONEDANT code package was used to produce a library of depth-dose profiles for monoenergetic electrons in various materials for energies ranging from 500 keV to 5 MeV in 10 keV increments. The various materials for which depth-dose functions were derived include: lithium fluoride (LiF), aluminum oxide (Al 2O 3), beryllium oxide (BeO), calcium sulfate (CaSO 4), calcium fluoride (CaF 2), lithium boron oxide (LiBO), soft tissue, lens of the eye, adiopose, muscle, skin, glass and water. All materials data sets were fit to five polynomials, each covering a different range of electron energies, using a least squares method. The resultant three dimensional, fifth-order polynomials give the dose as a function of depth and energy for the monoenergetic electrons in each material. The polynomials can be used to describe an energy spectrum by summing the doses at a given depth for each energy, weighted by the spectral intensity for that energy. An application of the polynomial is demonstrated by explaining the energy dependence of thermoluminescent detectors (TLDs) and illustrating the relationship between TLD signal and actual shallow dose due to beta particles.

  6. Advances in Highly Constrained Multi-Phase Trajectory Generation using the General Pseudospectral Optimization Software (GPOPS)

    DTIC Science & Technology

    2013-08-01

    release; distribution unlimited. PA Number 412-TW-PA-13395 f generic function g acceleration due to gravity h altitude L aerodynamic lift force L Lagrange...cost m vehicle mass M Mach number n number of coefficients in polynomial regression p highest order of polynomial regression Q dynamic pressure R...Method (RPM); the collocation points are defined by the roots of Legendre -Gauss- Radau (LGR) functions.9 GPOPS also automatically refines the “mesh” by

  7. A frequency domain global parameter estimation method for multiple reference frequency response measurements

    NASA Astrophysics Data System (ADS)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.

  8. The NonConforming Virtual Element Method for the Stokes Equations

    DOE PAGES

    Cangiani, Andrea; Gyrya, Vitaliy; Manzini, Gianmarco

    2016-01-01

    In this paper, we present the nonconforming virtual element method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable nonpolynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functionsmore » is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two- and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the nonconforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Finally, numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cangiani, Andrea; Gyrya, Vitaliy; Manzini, Gianmarco

    In this paper, we present the nonconforming virtual element method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable nonpolynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functionsmore » is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two- and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the nonconforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Finally, numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.« less

  10. Eshelby's problem of polygonal inclusions with polynomial eigenstrains in an anisotropic magneto-electro-elastic full plane

    PubMed Central

    Lee, Y.-G.; Zou, W.-N.; Pan, E.

    2015-01-01

    This paper presents a closed-form solution for the arbitrary polygonal inclusion problem with polynomial eigenstrains of arbitrary order in an anisotropic magneto-electro-elastic full plane. The additional displacements or eigendisplacements, instead of the eigenstrains, are assumed to be a polynomial with general terms of order M+N. By virtue of the extended Stroh formulism, the induced fields are expressed in terms of a group of basic functions which involve boundary integrals of the inclusion domain. For the special case of polygonal inclusions, the boundary integrals are carried out explicitly, and their averages over the inclusion are also obtained. The induced fields under quadratic eigenstrains are mostly analysed in terms of figures and tables, as well as those under the linear and cubic eigenstrains. The connection between the present solution and the solution via the Green's function method is established and numerically verified. The singularity at the vertices of the arbitrary polygon is further analysed via the basic functions. The general solution and the numerical results for the constant, linear, quadratic and cubic eigenstrains presented in this paper enable us to investigate the features of the inclusion and inhomogeneity problem concerning polynomial eigenstrains in semiconductors and advanced composites, while the results can further serve as benchmarks for future analyses of Eshelby's inclusion problem. PMID:26345141

  11. Hypergeometric Series Solution to a Class of Second-Order Boundary Value Problems via Laplace Transform with Applications to Nanofluids

    NASA Astrophysics Data System (ADS)

    Ebaid, Abdelhalim; Wazwaz, Abdul-Majid; Alali, Elham; Masaedeh, Basem S.

    2017-03-01

    Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.

  12. A point-value enhanced finite volume method based on approximate delta functions

    NASA Astrophysics Data System (ADS)

    Xuan, Li-Jun; Majdalani, Joseph

    2018-02-01

    We revisit the concept of an approximate delta function (ADF), introduced by Huynh (2011) [1], in the form of a finite-order polynomial that holds identical integral properties to the Dirac delta function when used in conjunction with a finite-order polynomial integrand over a finite domain. We show that the use of generic ADF polynomials can be effective at recovering and generalizing several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements saves the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Here, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to the linear wave and nonlinear Burgers' equations in one-dimensional space.

  13. Non-axisymmetric Aberration Patterns from Wide-field Telescopes Using Spin-weighted Zernike Polynomials

    NASA Astrophysics Data System (ADS)

    Kent, Stephen M.

    2018-04-01

    If the optical system of a telescope is perturbed from rotational symmetry, the Zernike wavefront aberration coefficients describing that system can be expressed as a function of position in the focal plane using spin-weighted Zernike polynomials. Methodologies are presented to derive these polynomials to arbitrary order. This methodology is applied to aberration patterns produced by a misaligned Ritchey–Chrétien telescope and to distortion patterns at the focal plane of the DESI optical corrector, where it is shown to provide a more efficient description of distortion than conventional expansions.

  14. High degree interpolation polynomial in Newton form

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, Hillel

    1988-01-01

    Polynomial interpolation is an essential subject in numerical analysis. Dealing with a real interval, it is well known that even if f(x) is an analytic function, interpolating at equally spaced points can diverge. On the other hand, interpolating at the zeroes of the corresponding Chebyshev polynomial will converge. Using the Newton formula, this result of convergence is true only on the theoretical level. It is shown that the algorithm which computes the divided differences is numerically stable only if: (1) the interpolating points are arranged in a different order, and (2) the size of the interval is 4.

  15. Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters

    PubMed Central

    Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua

    2012-01-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094

  16. A Subspace Semi-Definite programming-based Underestimation (SSDU) method for stochastic global optimization in protein docking*

    PubMed Central

    Nan, Feng; Moghadasi, Mohammad; Vakili, Pirooz; Vajda, Sandor; Kozakov, Dima; Ch. Paschalidis, Ioannis

    2015-01-01

    We propose a new stochastic global optimization method targeting protein docking problems. The method is based on finding a general convex polynomial underestimator to the binding energy function in a permissive subspace that possesses a funnel-like structure. We use Principal Component Analysis (PCA) to determine such permissive subspaces. The problem of finding the general convex polynomial underestimator is reduced into the problem of ensuring that a certain polynomial is a Sum-of-Squares (SOS), which can be done via semi-definite programming. The underestimator is then used to bias sampling of the energy function in order to recover a deep minimum. We show that the proposed method significantly improves the quality of docked conformations compared to existing methods. PMID:25914440

  17. Genetic evaluation and selection response for growth in meat-type quail through random regression models using B-spline functions and Legendre polynomials.

    PubMed

    Mota, L F M; Martins, P G M A; Littiere, T O; Abreu, L R A; Silva, M A; Bonafé, C M

    2018-04-01

    The objective was to estimate (co)variance functions using random regression models (RRM) with Legendre polynomials, B-spline function and multi-trait models aimed at evaluating genetic parameters of growth traits in meat-type quail. A database containing the complete pedigree information of 7000 meat-type quail was utilized. The models included the fixed effects of contemporary group and generation. Direct additive genetic and permanent environmental effects, considered as random, were modeled using B-spline functions considering quadratic and cubic polynomials for each individual segment, and Legendre polynomials for age. Residual variances were grouped in four age classes. Direct additive genetic and permanent environmental effects were modeled using 2 to 4 segments and were modeled by Legendre polynomial with orders of fit ranging from 2 to 4. The model with quadratic B-spline adjustment, using four segments for direct additive genetic and permanent environmental effects, was the most appropriate and parsimonious to describe the covariance structure of the data. The RRM using Legendre polynomials presented an underestimation of the residual variance. Lesser heritability estimates were observed for multi-trait models in comparison with RRM for the evaluated ages. In general, the genetic correlations between measures of BW from hatching to 35 days of age decreased as the range between the evaluated ages increased. Genetic trend for BW was positive and significant along the selection generations. The genetic response to selection for BW in the evaluated ages presented greater values for RRM compared with multi-trait models. In summary, RRM using B-spline functions with four residual variance classes and segments were the best fit for genetic evaluation of growth traits in meat-type quail. In conclusion, RRM should be considered in genetic evaluation of breeding programs.

  18. Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle.

    PubMed

    Pereira, R J; Bignardi, A B; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G

    2013-01-01

    Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Breeding value accuracy estimates for growth traits using random regression and multi-trait models in Nelore cattle.

    PubMed

    Boligon, A A; Baldi, F; Mercadante, M E Z; Lobo, R B; Pereira, R J; Albuquerque, L G

    2011-06-28

    We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.

  20. Measurement of distributions of temperature and wavelength-dependent emissivity of a laminar diffusion flame using hyper-spectral imaging technique

    NASA Astrophysics Data System (ADS)

    Liu, Huawei; Zheng, Shu; Zhou, Huaichun; Qi, Chaobo

    2016-02-01

    A generalized method to estimate a two-dimensional (2D) distribution of temperature and wavelength-dependent emissivity in a sooty flame with spectroscopic radiation intensities is proposed in this paper. The method adopts a Newton-type iterative method to solve the unknown coefficients in the polynomial relationship between the emissivity and the wavelength, as well as the unknown temperature. Polynomial functions with increasing order are examined, and final results are determined as the result converges. Numerical simulation on a fictitious flame with wavelength-dependent absorption coefficients shows a good performance with relative errors less than 0.5% in the average temperature. What’s more, a hyper-spectral imaging device is introduced to measure an ethylene/air laminar diffusion flame with the proposed method. The proper order for the polynomial function is selected to be 2, because every one order increase in the polynomial function will only bring in a temperature variation smaller than 20 K. For the ethylene laminar diffusion flame with 194 ml min-1 C2H4 and 284 L min-1 air studied in this paper, the 2D distribution of average temperature estimated along the line of sight is similar to, but smoother than that of the local temperature given in references, and the 2D distribution of emissivity shows a cumulative effect of the absorption coefficient along the line of sight. It also shows that emissivity of the flame decreases as the wavelength increases. The emissivity under wavelength 400 nm is about 2.5 times as much as that under wavelength 1000 nm for a typical line-of-sight in the flame, with the same trend for the absorption coefficient of soot varied with the wavelength.

  1. An efficient algorithm for building locally refined hp - adaptive H-PCFE: Application to uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Chakraborty, Souvik; Chowdhury, Rajib

    2017-12-01

    Hybrid polynomial correlated function expansion (H-PCFE) is a novel metamodel formulated by coupling polynomial correlated function expansion (PCFE) and Kriging. Unlike commonly available metamodels, H-PCFE performs a bi-level approximation and hence, yields more accurate results. However, till date, it is only applicable to medium scaled problems. In order to address this apparent void, this paper presents an improved H-PCFE, referred to as locally refined hp - adaptive H-PCFE. The proposed framework computes the optimal polynomial order and important component functions of PCFE, which is an integral part of H-PCFE, by using global variance based sensitivity analysis. Optimal number of training points are selected by using distribution adaptive sequential experimental design. Additionally, the formulated model is locally refined by utilizing the prediction error, which is inherently obtained in H-PCFE. Applicability of the proposed approach has been illustrated with two academic and two industrial problems. To illustrate the superior performance of the proposed approach, results obtained have been compared with those obtained using hp - adaptive PCFE. It is observed that the proposed approach yields highly accurate results. Furthermore, as compared to hp - adaptive PCFE, significantly less number of actual function evaluations are required for obtaining results of similar accuracy.

  2. Shock Capturing with PDE-Based Artificial Viscosity for an Adaptive, Higher-Order Discontinuous Galerkin Finite Element Method

    DTIC Science & Technology

    2008-06-01

    Geometry Interpolation The function space , VpH , consists of discontinuous, piecewise-polynomials. This work used a polynomial basis for VpH such...between a piecewise-constant and smooth variation of viscosity in both a one- dimensional and multi- dimensional setting. Before continuing with the ...inviscid, transonic flow past a NACA 0012 at zero angle of attack and freestream Mach number of M∞ = 0.95. The

  3. Higher-order Fourier analysis over finite fields and applications

    NASA Astrophysics Data System (ADS)

    Hatami, Pooya

    Higher-order Fourier analysis is a powerful tool in the study of problems in additive and extremal combinatorics, for instance the study of arithmetic progressions in primes, where the traditional Fourier analysis comes short. In recent years, higher-order Fourier analysis has found multiple applications in computer science in fields such as property testing and coding theory. In this thesis, we develop new tools within this theory with several new applications such as a characterization theorem in algebraic property testing. One of our main contributions is a strong near-equidistribution result for regular collections of polynomials. The densities of small linear structures in subsets of Abelian groups can be expressed as certain analytic averages involving linear forms. Higher-order Fourier analysis examines such averages by approximating the indicator function of a subset by a function of bounded number of polynomials. Then, to approximate the average, it suffices to know the joint distribution of the polynomials applied to the linear forms. We prove a near-equidistribution theorem that describes these distributions for the group F(n/p) when p is a fixed prime. This fundamental fact was previously known only under various extra assumptions about the linear forms or the field size. We use this near-equidistribution theorem to settle a conjecture of Gowers and Wolf on the true complexity of systems of linear forms. Our next application is towards a characterization of testable algebraic properties. We prove that every locally characterized affine-invariant property of functions f : F(n/p) → R with n∈ N, is testable. In fact, we prove that any such property P is proximity-obliviously testable. More generally, we show that any affine-invariant property that is closed under subspace restrictions and has "bounded complexity" is testable. We also prove that any property that can be described as the property of decomposing into a known structure of low-degree polynomials is locally characterized and is, hence, testable. We discuss several notions of regularity which allow us to deduce algorithmic versions of various regularity lemmas for polynomials by Green and Tao and by Kaufman and Lovett. We show that our algorithmic regularity lemmas for polynomials imply algorithmic versions of several results relying on regularity, such as decoding Reed-Muller codes beyond the list decoding radius (for certain structured errors), and prescribed polynomial decompositions. Finally, motivated by the definition of Gowers norms, we investigate norms defined by different systems of linear forms. We give necessary conditions on the structure of systems of linear forms that define norms. We prove that such norms can be one of only two types, and assuming that |F p| is sufficiently large, they essentially are equivalent to either a Gowers norm or Lp norms.

  4. Computational aspects of pseudospectral Laguerre approximations

    NASA Technical Reports Server (NTRS)

    Funaro, Daniele

    1989-01-01

    Pseudospectral approximations in unbounded domains by Laguerre polynomials lead to ill-conditioned algorithms. Introduced are a scaling function and appropriate numerical procedures in order to limit these unpleasant phenomena.

  5. Approximating exponential and logarithmic functions using polynomial interpolation

    NASA Astrophysics Data System (ADS)

    Gordon, Sheldon P.; Yang, Yajun

    2017-04-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is analysed. The results of interpolating polynomials are compared with those of Taylor polynomials.

  6. Spectral/ hp element methods: Recent developments, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.

    2018-02-01

    The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.

  7. Application of Statistic Experimental Design to Assess the Effect of Gammairradiation Pre-Treatment on the Drying Characteristics and Qualities of Wheat

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Wang, Jun

    Wheat, pretreated by 60Co gamma irradiation, was dried by hot-air with irradiation dosage 0-3 kGy, drying temperature 40-60 °C, and initial moisture contents 19-25% (drying basis). The drying characteristics and dried qualities of wheat were evaluated based on drying time, average dehydration rate, wet gluten content (WGC), moisture content of wet gluten (MCWG)and titratable acidity (TA). A quadratic rotation-orthogonal composite experimental design, with three variables (at five levels) and five response functions, and analysis method were employed to study the effect of three variables on the individual response functions. The five response functions (drying time, average dehydration rate, WGC, MCWG, TA) correlated with these variables by second order polynomials consisting of linear, quadratic and interaction terms. A high correlation coefficient indicated the suitability of the second order polynomial to predict these response functions. The linear, interaction and quadratic effects of three variables on the five response functions were all studied.

  8. Kurtosis Approach for Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation.

  9. Finding Limit Cycles in self-excited oscillators with infinite-series damping functions

    NASA Astrophysics Data System (ADS)

    Das, Debapriya; Banerjee, Dhruba; Bhattacharjee, Jayanta K.

    2015-03-01

    In this paper we present a simple method for finding the location of limit cycles of self excited oscillators whose damping functions can be represented by some infinite convergent series. We have used standard results of first-order perturbation theory to arrive at amplitude equations. The approach has been kept pedagogic by first working out the cases of finite polynomials using elementary algebra. Then the method has been extended to various infinite polynomials, where the fixed points of the corresponding amplitude equations cannot be found out. Hopf bifurcations for systems with nonlinear powers in velocities have also been discussed.

  10. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    PubMed

    Papadopoulos, Anthony

    2009-01-01

    The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  11. Disconjugacy, regularity of multi-indexed rationally extended potentials, and Laguerre exceptional polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandati, Y.; Quesne, C.

    2013-07-15

    The power of the disconjugacy properties of second-order differential equations of Schrödinger type to check the regularity of rationally extended quantum potentials connected with exceptional orthogonal polynomials is illustrated by re-examining the extensions of the isotonic oscillator (or radial oscillator) potential derived in kth-order supersymmetric quantum mechanics or multistep Darboux-Bäcklund transformation method. The function arising in the potential denominator is proved to be a polynomial with a nonvanishing constant term, whose value is calculated by induction over k. The sign of this term being the same as that of the already known highest degree term, the potential denominator has themore » same sign at both extremities of the definition interval, a property that is shared by the seed eigenfunction used in the potential construction. By virtue of disconjugacy, such a property implies the nodeless character of both the eigenfunction and the resulting potential.« less

  12. Classical Dynamics of Fullerenes

    NASA Astrophysics Data System (ADS)

    Sławianowski, Jan J.; Kotowski, Romuald K.

    2017-06-01

    The classical mechanics of large molecules and fullerenes is studied. The approach is based on the model of collective motion of these objects. The mixed Lagrangian (material) and Eulerian (space) description of motion is used. In particular, the Green and Cauchy deformation tensors are geometrically defined. The important issue is the group-theoretical approach to describing the affine deformations of the body. The Hamiltonian description of motion based on the Poisson brackets methodology is used. The Lagrange and Hamilton approaches allow us to formulate the mechanics in the canonical form. The method of discretization in analytical continuum theory and in classical dynamics of large molecules and fullerenes enable us to formulate their dynamics in terms of the polynomial expansions of configurations. Another approach is based on the theory of analytical functions and on their approximations by finite-order polynomials. We concentrate on the extremely simplified model of affine deformations or on their higher-order polynomial perturbations.

  13. Graph characterization via Ihara coefficients.

    PubMed

    Ren, Peng; Wilson, Richard C; Hancock, Edwin R

    2011-02-01

    The novel contributions of this paper are twofold. First, we demonstrate how to characterize unweighted graphs in a permutation-invariant manner using the polynomial coefficients from the Ihara zeta function, i.e., the Ihara coefficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi characteristic polynomial of the adjacency matrix of the associated oriented line graph. Since the Ihara zeta function has poles that give rise to infinities, the most convenient numerically stable representation is to work with the coefficients of the quasi characteristic polynomial. Moreover, the polynomial coefficients are invariant to vertex order permutations and also convey information concerning the cycle structure of the graph. To generalize the representation to edge-weighted graphs, we make use of the reduced Bartholdi zeta function. We prove that the computation of the Ihara coefficients for unweighted graphs is a special case of our proposed method for unit edge weights. We also present a spectral analysis of the Ihara coefficients and indicate their advantages over other graph spectral methods. We apply the proposed graph characterization method to capturing graph-class structure and clustering graphs. Experimental results reveal that the Ihara coefficients are more effective than methods based on Laplacian spectra.

  14. Statistics of Data Fitting: Flaws and Fixes of Polynomial Analysis of Channeled Spectra

    NASA Astrophysics Data System (ADS)

    Karstens, William; Smith, David

    2013-03-01

    Starting from general statistical principles, we have critically examined Baumeister's procedure* for determining the refractive index of thin films from channeled spectra. Briefly, the method assumes that the index and interference fringe order may be approximated by polynomials quadratic and cubic in photon energy, respectively. The coefficients of the polynomials are related by differentiation, which is equivalent to comparing energy differences between fringes. However, we find that when the fringe order is calculated from the published IR index for silicon* and then analyzed with Baumeister's procedure, the results do not reproduce the original index. This problem has been traced to 1. Use of unphysical powers in the polynomials (e.g., time-reversal invariance requires that the index is an even function of photon energy), and 2. Use of insufficient terms of the correct parity. Exclusion of unphysical terms and addition of quartic and quintic terms to the index and order polynomials yields significantly better fits with fewer parameters. This represents a specific example of using statistics to determine if the assumed fitting model adequately captures the physics contained in experimental data. The use of analysis of variance (ANOVA) and the Durbin-Watson statistic to test criteria for the validity of least-squares fitting will be discussed. *D.F. Edwards and E. Ochoa, Appl. Opt. 19, 4130 (1980). Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.

  15. Lyapunov functions for a class of nonlinear systems using Caputo derivative

    NASA Astrophysics Data System (ADS)

    Fernandez-Anaya, G.; Nava-Antonio, G.; Jamous-Galante, J.; Muñoz-Vega, R.; Hernández-Martínez, E. G.

    2017-02-01

    This paper presents an extension of recent results that allow proving the stability of Caputo nonlinear and time-varying systems, by means of the fractional order Lyapunov direct method, using quadratic Lyapunov functions. This article introduces a new way of building polynomial Lyapunov functions of any positive integer order as a way of determining the stability of a greater variety of systems when the order of the derivative is 0 < α < 1. Some examples are given to validate these results.

  16. On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Freund, Roland W.

    1992-01-01

    The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This information is then used to construct a weight function for a suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of Bernstein-Szego weights.

  17. Quantum solvability of a general ordered position dependent mass system: Mathews-Lakshmanan oscillator

    NASA Astrophysics Data System (ADS)

    Karthiga, S.; Chithiika Ruby, V.; Senthilvelan, M.; Lakshmanan, M.

    2017-10-01

    In position dependent mass (PDM) problems, the quantum dynamics of the associated systems have been understood well in the literature for particular orderings. However, no efforts seem to have been made to solve such PDM problems for general orderings to obtain a global picture. In this connection, we here consider the general ordered quantum Hamiltonian of an interesting position dependent mass problem, namely, the Mathews-Lakshmanan oscillator, and try to solve the quantum problem for all possible orderings including Hermitian and non-Hermitian ones. The other interesting point in our study is that for all possible orderings, although the Schrödinger equation of this Mathews-Lakshmanan oscillator is uniquely reduced to the associated Legendre differential equation, their eigenfunctions cannot be represented in terms of the associated Legendre polynomials with integral degree and order. Rather the eigenfunctions are represented in terms of associated Legendre polynomials with non-integral degree and order. We here explore such polynomials and represent the discrete and continuum states of the system. We also exploit the connection between associated Legendre polynomials with non-integral degree with other orthogonal polynomials such as Jacobi and Gegenbauer polynomials.

  18. An Efficient Spectral Method for Ordinary Differential Equations with Rational Function Coefficients

    NASA Technical Reports Server (NTRS)

    Coutsias, Evangelos A.; Torres, David; Hagstrom, Thomas

    1994-01-01

    We present some relations that allow the efficient approximate inversion of linear differential operators with rational function coefficients. We employ expansions in terms of a large class of orthogonal polynomial families, including all the classical orthogonal polynomials. These families obey a simple three-term recurrence relation for differentiation, which implies that on an appropriately restricted domain the differentiation operator has a unique banded inverse. The inverse is an integration operator for the family, and it is simply the tridiagonal coefficient matrix for the recurrence. Since in these families convolution operators (i.e. matrix representations of multiplication by a function) are banded for polynomials, we are able to obtain a banded representation for linear differential operators with rational coefficients. This leads to a method of solution of initial or boundary value problems that, besides having an operation count that scales linearly with the order of truncation N, is computationally well conditioned. Among the applications considered is the use of rational maps for the resolution of sharp interior layers.

  19. From sequences to polynomials and back, via operator orderings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amdeberhan, Tewodros, E-mail: tamdeber@tulane.edu; Dixit, Atul, E-mail: adixit@tulane.edu; Moll, Victor H., E-mail: vhm@tulane.edu

    2013-12-15

    Bender and Dunne [“Polynomials and operator orderings,” J. Math. Phys. 29, 1727–1731 (1988)] showed that linear combinations of words q{sup k}p{sup n}q{sup n−k}, where p and q are subject to the relation qp − pq = ı, may be expressed as a polynomial in the symbol z=1/2 (qp+pq). Relations between such polynomials and linear combinations of the transformed coefficients are explored. In particular, examples yielding orthogonal polynomials are provided.

  20. Maximum Marginal Likelihood Estimation of a Monotonic Polynomial Generalized Partial Credit Model with Applications to Multiple Group Analysis.

    PubMed

    Falk, Carl F; Cai, Li

    2016-06-01

    We present a semi-parametric approach to estimating item response functions (IRF) useful when the true IRF does not strictly follow commonly used functions. Our approach replaces the linear predictor of the generalized partial credit model with a monotonic polynomial. The model includes the regular generalized partial credit model at the lowest order polynomial. Our approach extends Liang's (A semi-parametric approach to estimate IRFs, Unpublished doctoral dissertation, 2007) method for dichotomous item responses to the case of polytomous data. Furthermore, item parameter estimation is implemented with maximum marginal likelihood using the Bock-Aitkin EM algorithm, thereby facilitating multiple group analyses useful in operational settings. Our approach is demonstrated on both educational and psychological data. We present simulation results comparing our approach to more standard IRF estimation approaches and other non-parametric and semi-parametric alternatives.

  1. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images.

    PubMed

    Lavoie, Benjamin R; Okoniewski, Michal; Fear, Elise C

    2016-01-01

    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range.

  2. Numerical Solutions of the Nonlinear Fractional-Order Brusselator System by Bernstein Polynomials

    PubMed Central

    Khan, Rahmat Ali; Tajadodi, Haleh; Johnston, Sarah Jane

    2014-01-01

    In this paper we propose the Bernstein polynomials to achieve the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. We use operational matrices of fractional integration and multiplication of Bernstein polynomials, which turns the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques. PMID:25485293

  3. The s-Ordered Fock Space Projectors Gained by the General Ordering Theorem

    NASA Astrophysics Data System (ADS)

    Farid, Shähandeh; Mohammad, Reza Bazrafkan; Mahmoud, Ashrafi

    2012-09-01

    Employing the general ordering theorem (GOT), operational methods and incomplete 2-D Hermite polynomials, we derive the t-ordered expansion of Fock space projectors. Using the result, the general ordered form of the coherent state projectors is obtained. This indeed gives a new integration formula regarding incomplete 2-D Hermite polynomials. In addition, the orthogonality relation of the incomplete 2-D Hermite polynomials is derived to resolve Dattoli's failure.

  4. New algorithms for solving third- and fifth-order two point boundary value problems based on nonsymmetric generalized Jacobi Petrov–Galerkin method

    PubMed Central

    Doha, E.H.; Abd-Elhameed, W.M.; Youssri, Y.H.

    2014-01-01

    Two families of certain nonsymmetric generalized Jacobi polynomials with negative integer indexes are employed for solving third- and fifth-order two point boundary value problems governed by homogeneous and nonhomogeneous boundary conditions using a dual Petrov–Galerkin method. The idea behind our method is to use trial functions satisfying the underlying boundary conditions of the differential equations and the test functions satisfying the dual boundary conditions. The resulting linear systems from the application of our method are specially structured and they can be efficiently inverted. The use of generalized Jacobi polynomials simplify the theoretical and numerical analysis of the method and also leads to accurate and efficient numerical algorithms. The presented numerical results indicate that the proposed numerical algorithms are reliable and very efficient. PMID:26425358

  5. Comparison Between Polynomial, Euler Beta-Function and Expo-Rational B-Spline Bases

    NASA Astrophysics Data System (ADS)

    Kristoffersen, Arnt R.; Dechevsky, Lubomir T.; Laksa˚, Arne; Bang, Børre

    2011-12-01

    Euler Beta-function B-splines (BFBS) are the practically most important instance of generalized expo-rational B-splines (GERBS) which are not true expo-rational B-splines (ERBS). BFBS do not enjoy the full range of the superproperties of ERBS but, while ERBS are special functions computable by a very rapidly converging yet approximate numerical quadrature algorithms, BFBS are explicitly computable piecewise polynomial (for integer multiplicities), similar to classical Schoenberg B-splines. In the present communication we define, compute and visualize for the first time all possible BFBS of degree up to 3 which provide Hermite interpolation in three consecutive knots of multiplicity up to 3, i.e., the function is being interpolated together with its derivatives of order up to 2. We compare the BFBS obtained for different degrees and multiplicities among themselves and versus the classical Schoenberg polynomial B-splines and the true ERBS for the considered knots. The results of the graphical comparison are discussed from analytical point of view. For the numerical computation and visualization of the new B-splines we have used Maple 12.

  6. Very high order discontinuous Galerkin method in elliptic problems

    NASA Astrophysics Data System (ADS)

    Jaśkowiec, Jan

    2017-09-01

    The paper deals with high-order discontinuous Galerkin (DG) method with the approximation order that exceeds 20 and reaches 100 and even 1000 with respect to one-dimensional case. To achieve such a high order solution, the DG method with finite difference method has to be applied. The basis functions of this method are high-order orthogonal Legendre or Chebyshev polynomials. These polynomials are defined in one-dimensional space (1D), but they can be easily adapted to two-dimensional space (2D) by cross products. There are no nodes in the elements and the degrees of freedom are coefficients of linear combination of basis functions. In this sort of analysis the reference elements are needed, so the transformations of the reference element into the real one are needed as well as the transformations connected with the mesh skeleton. Due to orthogonality of the basis functions, the obtained matrices are sparse even for finite elements with more than thousands degrees of freedom. In consequence, the truncation errors are limited and very high-order analysis can be performed. The paper is illustrated with a set of benchmark examples of 1D and 2D for the elliptic problems. The example presents the great effectiveness of the method that can shorten the length of calculation over hundreds times.

  7. Very high order discontinuous Galerkin method in elliptic problems

    NASA Astrophysics Data System (ADS)

    Jaśkowiec, Jan

    2018-07-01

    The paper deals with high-order discontinuous Galerkin (DG) method with the approximation order that exceeds 20 and reaches 100 and even 1000 with respect to one-dimensional case. To achieve such a high order solution, the DG method with finite difference method has to be applied. The basis functions of this method are high-order orthogonal Legendre or Chebyshev polynomials. These polynomials are defined in one-dimensional space (1D), but they can be easily adapted to two-dimensional space (2D) by cross products. There are no nodes in the elements and the degrees of freedom are coefficients of linear combination of basis functions. In this sort of analysis the reference elements are needed, so the transformations of the reference element into the real one are needed as well as the transformations connected with the mesh skeleton. Due to orthogonality of the basis functions, the obtained matrices are sparse even for finite elements with more than thousands degrees of freedom. In consequence, the truncation errors are limited and very high-order analysis can be performed. The paper is illustrated with a set of benchmark examples of 1D and 2D for the elliptic problems. The example presents the great effectiveness of the method that can shorten the length of calculation over hundreds times.

  8. a Unified Matrix Polynomial Approach to Modal Identification

    NASA Astrophysics Data System (ADS)

    Allemang, R. J.; Brown, D. L.

    1998-04-01

    One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.

  9. Study on the mapping of dark matter clustering from real space to redshift space

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Song, Yong-Seon

    2016-08-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.

  10. Gabor-based kernel PCA with fractional power polynomial models for face recognition.

    PubMed

    Liu, Chengjun

    2004-05-01

    This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.

  11. Robust control with structured perturbations

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1988-01-01

    Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.

  12. Classes of exact Einstein Maxwell solutions

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  13. An analytical technique for approximating unsteady aerodynamics in the time domain

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1980-01-01

    An analytical technique is presented for approximating unsteady aerodynamic forces in the time domain. The order of elements of a matrix Pade approximation was postulated, and the resulting polynomial coefficients were determined through a combination of least squares estimates for the numerator coefficients and a constrained gradient search for the denominator coefficients which insures stable approximating functions. The number of differential equations required to represent the aerodynamic forces to a given accuracy tends to be smaller than that employed in certain existing techniques where the denominator coefficients are chosen a priori. Results are shown for an aeroelastic, cantilevered, semispan wing which indicate a good fit to the aerodynamic forces for oscillatory motion can be achieved with a matrix Pade approximation having fourth order numerator and second order denominator polynomials.

  14. Construction of Response Surface with Higher Order Continuity and Its Application to Reliability Engineering

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, T.; Romero, V. J.

    2002-01-01

    The usefulness of piecewise polynomials with C1 and C2 derivative continuity for response surface construction method is examined. A Moving Least Squares (MLS) method is developed and compared with four other interpolation methods, including kriging. First the selected methods are applied and compared with one another in a two-design variables problem with a known theoretical response function. Next the methods are tested in a four-design variables problem from a reliability-based design application. In general the piecewise polynomial with higher order derivative continuity methods produce less error in the response prediction. The MLS method was found to be superior for response surface construction among the methods evaluated.

  15. Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E.; Bhrawy, A.

    2006-06-01

    It is well known that spectral methods (tau, Galerkin, collocation) have a condition number of ( is the number of retained modes of polynomial approximations). This paper presents some efficient spectral algorithms, which have a condition number of , based on the Jacobi?Galerkin methods of second-order elliptic equations in one and two space variables. The key to the efficiency of these algorithms is to construct appropriate base functions, which lead to systems with specially structured matrices that can be efficiently inverted. The complexities of the algorithms are a small multiple of operations for a -dimensional domain with unknowns, while the convergence rates of the algorithms are exponentials with smooth solutions.

  16. Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.; Yang, Yajun

    2017-01-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…

  17. Hybrid High-Order methods for finite deformations of hyperelastic materials

    NASA Astrophysics Data System (ADS)

    Abbas, Mickaël; Ern, Alexandre; Pignet, Nicolas

    2018-01-01

    We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite deformations. The HHO methods use as discrete unknowns piecewise polynomials of order k≥1 on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order k and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids. We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior in the quasi-incompressible regime.

  18. Luigi Gatteschi's work on asymptotics of special functions and their zeros

    NASA Astrophysics Data System (ADS)

    Gautschi, Walter; Giordano, Carla

    2008-12-01

    A good portion of Gatteschi's research publications-about 65%-is devoted to asymptotics of special functions and their zeros. Most prominently among the special functions studied figure classical orthogonal polynomials, notably Jacobi polynomials and their special cases, Laguerre polynomials, and Hermite polynomials by implication. Other important classes of special functions dealt with are Bessel functions of the first and second kind, Airy functions, and confluent hypergeometric functions, both in Tricomi's and Whittaker's form. This work is reviewed here, and organized along methodological lines.

  19. Application of KAM Theorem to Earth Orbiting Satellites

    DTIC Science & Technology

    2009-03-01

    P m n are the associated Legendre Polynomials, and r, δ and λ are the radius, geocentric latitude and east longitude of the of the satellite...Laskar shows that the cost -to-benefit drops off after windows of order 3-5 [11]. Higher order functions also result in wider peaks, which leads to

  20. Higher order derivatives of R-Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Das, Sourav; Swaminathan, A.

    2016-06-01

    In this work, the R-Jacobi polynomials defined on the nonnegative real axis related to F-distribution are considered. Using their Sturm-Liouville system higher order derivatives are constructed. Orthogonality property of these higher ordered R-Jacobi polynomials are obtained besides their normal form, self-adjoint form and hypergeometric representation. Interesting results on the Interpolation formula and Gaussian quadrature formulae are obtained with numerical examples.

  1. Inferring genetic parameters of lactation in Tropical Milking Criollo cattle with random regression test-day models.

    PubMed

    Santellano-Estrada, E; Becerril-Pérez, C M; de Alba, J; Chang, Y M; Gianola, D; Torres-Hernández, G; Ramírez-Valverde, R

    2008-11-01

    This study inferred genetic and permanent environmental variation of milk yield in Tropical Milking Criollo cattle and compared 5 random regression test-day models using Wilmink's function and Legendre polynomials. Data consisted of 15,377 test-day records from 467 Tropical Milking Criollo cows that calved between 1974 and 2006 in the tropical lowlands of the Gulf Coast of Mexico and in southern Nicaragua. Estimated heritabilities of test-day milk yields ranged from 0.18 to 0.45, and repeatabilities ranged from 0.35 to 0.68 for the period spanning from 6 to 400 d in milk. Genetic correlation between days in milk 10 and 400 was around 0.50 but greater than 0.90 for most pairs of test days. The model that used first-order Legendre polynomials for additive genetic effects and second-order Legendre polynomials for permanent environmental effects gave the smallest residual variance and was also favored by the Akaike information criterion and likelihood ratio tests.

  2. Differential Galois theory and non-integrability of planar polynomial vector fields

    NASA Astrophysics Data System (ADS)

    Acosta-Humánez, Primitivo B.; Lázaro, J. Tomás; Morales-Ruiz, Juan J.; Pantazi, Chara

    2018-06-01

    We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. The method is systematic starting with the first order variational equation. We illustrate this result with several families of examples. A key point is to check whether a suitable primitive is elementary or not. Using a theorem by Liouville, the problem is equivalent to the existence of a rational solution of a certain first order linear equation, the Risch equation. This is a classical problem studied by Risch in 1969, and the solution is given by the "Risch algorithm". In this way we point out the connection of the non integrability with some higher transcendent functions, like the error function.

  3. Tolerance analysis of optical telescopes using coherent addition of wavefront errors

    NASA Technical Reports Server (NTRS)

    Davenport, J. W.

    1982-01-01

    A near diffraction-limited telescope requires that tolerance analysis be done on the basis of system wavefront error. One method of analyzing the wavefront error is to represent the wavefront error function in terms of its Zernike polynomial expansion. A Ramsey-Korsch ray trace package, a computer program that simulates the tracing of rays through an optical telescope system, was expanded to include the Zernike polynomial expansion up through the fifth-order spherical term. An option to determine a 3 dimensional plot of the wavefront error function was also included in the Ramsey-Korsch package. Several assimulation runs were analyzed to determine the particular set of coefficients in the Zernike expansion that are effected by various errors such as tilt, decenter and despace. A 3 dimensional plot of each error up through the fifth-order spherical term was also included in the study. Tolerance analysis data are presented.

  4. Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Botti, Lorenzo; Di Pietro, Daniele A.

    2018-10-01

    We propose and validate a novel extension of Hybrid High-Order (HHO) methods to meshes featuring curved elements. HHO methods are based on discrete unknowns that are broken polynomials on the mesh and its skeleton. We propose here the use of physical frame polynomials over mesh elements and reference frame polynomials over mesh faces. With this choice, the degree of face unknowns must be suitably selected in order to recover on curved meshes the same convergence rates as on straight meshes. We provide an estimate of the optimal face polynomial degree depending on the element polynomial degree and on the so-called effective mapping order. The estimate is numerically validated through specifically crafted numerical tests. All test cases are conducted considering two- and three-dimensional pure diffusion problems, and include comparisons with discontinuous Galerkin discretizations. The extension to agglomerated meshes with curved boundaries is also considered.

  5. Quantitative Boltzmann-Gibbs Principles via Orthogonal Polynomial Duality

    NASA Astrophysics Data System (ADS)

    Ayala, Mario; Carinci, Gioia; Redig, Frank

    2018-06-01

    We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of the Boltzmann-Gibbs principle. In the context of independent random walkers, we complete this program, including also fluctuation fields in non-stationary context (local equilibrium). For other interacting particle systems with duality such as the symmetric exclusion process, similar results can be obtained, under precise conditions on the n particle dynamics.

  6. Dual exponential polynomials and linear differential equations

    NASA Astrophysics Data System (ADS)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  7. Stabilization of an inverted pendulum-cart system by fractional PI-state feedback.

    PubMed

    Bettayeb, M; Boussalem, C; Mansouri, R; Al-Saggaf, U M

    2014-03-01

    This paper deals with pole placement PI-state feedback controller design to control an integer order system. The fractional aspect of the control law is introduced by a dynamic state feedback as u(t)=K(p)x(t)+K(I)I(α)(x(t)). The closed loop characteristic polynomial is thus fractional for which the roots are complex to calculate. The proposed method allows us to decompose this polynomial into a first order fractional polynomial and an integer order polynomial of order n-1 (n being the order of the integer system). This new stabilization control algorithm is applied for an inverted pendulum-cart test-bed, and the effectiveness and robustness of the proposed control are examined by experiments. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Obesity as a risk factor for developing functional limitation among older adults: A conditional inference tree analysis

    USDA-ARS?s Scientific Manuscript database

    Objective: To examine the risk factors of developing functional decline and make probabilistic predictions by using a tree-based method that allows higher order polynomials and interactions of the risk factors. Methods: The conditional inference tree analysis, a data mining approach, was used to con...

  9. Algorithms for computing solvents of unilateral second-order matrix polynomials over prime finite fields using lambda-matrices

    NASA Astrophysics Data System (ADS)

    Burtyka, Filipp

    2018-01-01

    The paper considers algorithms for finding diagonalizable and non-diagonalizable roots (so called solvents) of monic arbitrary unilateral second-order matrix polynomial over prime finite field. These algorithms are based on polynomial matrices (lambda-matrices). This is an extension of existing general methods for computing solvents of matrix polynomials over field of complex numbers. We analyze how techniques for complex numbers can be adapted for finite field and estimate asymptotic complexity of the obtained algorithms.

  10. Study on the mapping of dark matter clustering from real space to redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown inmore » this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.« less

  11. Geometrical Theory of Spherical Harmonics for Geosciences

    NASA Astrophysics Data System (ADS)

    Svehla, Drazen

    2010-05-01

    Spherical harmonics play a central role in the modelling of spatial and temporal processes in the system Earth. The gravity field of the Earth and its temporal variations, sea surface topography, geomagnetic field, ionosphere etc., are just a few examples where spherical harmonics are used to represent processes in the system Earth. We introduce a novel method for the computation and rotation of spherical harmonics, Legendre polynomials and associated Legendre functions without making use of recursive relations. This novel geometrical approach allows calculation of spherical harmonics without any numerical instability up to an arbitrary degree and order, e.g. up to degree and order 106 and beyond. The algorithm is based on the trigonometric reduction of Legendre polynomials and the geometric rotation in hyperspace. It is shown that Legendre polynomials can be computed using trigonometric series by pre-computing amplitudes and translation terms for all angular arguments. It is shown that they can be treated as vectors in the Hilbert hyperspace leading to unitary hermitian rotation matrices with geometric properties. Thus, rotation of spherical harmonics about e.g. a polar or an equatorial axis can be represented in the similar way. This novel method allows stable calculation of spherical harmonics up to an arbitrary degree and order, i.e. up to degree and order 106 and beyond.

  12. Algebraic solutions of shape-invariant position-dependent effective mass systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amir, Naila, E-mail: naila.amir@live.com, E-mail: naila.amir@seecs.edu.pk; Iqbal, Shahid, E-mail: sic80@hotmail.com, E-mail: siqbal@sns.nust.edu.pk

    2016-06-15

    Keeping in view the ordering ambiguity that arises due to the presence of position-dependent effective mass in the kinetic energy term of the Hamiltonian, a general scheme for obtaining algebraic solutions of quantum mechanical systems with position-dependent effective mass is discussed. We quantize the Hamiltonian of the pertaining system by using symmetric ordering of the operators concerning momentum and the spatially varying mass, initially proposed by von Roos and Lévy-Leblond. The algebraic method, used to obtain the solutions, is based on the concepts of supersymmetric quantum mechanics and shape invariance. In order to exemplify the general formalism a class ofmore » non-linear oscillators has been considered. This class includes the particular example of a one-dimensional oscillator with different position-dependent effective mass profiles. Explicit expressions for the eigenenergies and eigenfunctions in terms of generalized Hermite polynomials are presented. Moreover, properties of these modified Hermite polynomials, like existence of generating function and recurrence relations among the polynomials have also been studied. Furthermore, it has been shown that in the harmonic limit, all the results for the linear harmonic oscillator are recovered.« less

  13. An extended UTD analysis for the scattering and diffraction from cubic polynomial strips

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1993-01-01

    Spline and polynomial type surfaces are commonly used in high frequency modeling of complex structures such as aircraft, ships, reflectors, etc. It is therefore of interest to develop an efficient and accurate solution to describe the scattered fields from such surfaces. An extended Uniform Geometrical Theory of Diffraction (UTD) solution for the scattering and diffraction from perfectly conducting cubic polynomial strips is derived and involves the incomplete Airy integrals as canonical functions. This new solution is universal in nature and can be used to effectively describe the scattered fields from flat, strictly concave or convex, and concave convex boundaries containing edges. The classic UTD solution fails to describe the more complicated field behavior associated with higher order phase catastrophes and therefore a new set of uniform reflection and first-order edge diffraction coefficients is derived. Also, an additional diffraction coefficient associated with a zero-curvature (inflection) point is presented. Higher order effects such as double edge diffraction, creeping waves, and whispering gallery modes are not examined. The extended UTD solution is independent of the scatterer size and also provides useful physical insight into the various scattering and diffraction processes. Its accuracy is confirmed via comparison with some reference moment method results.

  14. Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach

    NASA Astrophysics Data System (ADS)

    Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer

    2018-02-01

    This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.

  15. Theoretical effect of modifications to the upper surface of two NACA airfoils using smooth polynomial additional thickness distributions which emphasize leading edge profile and which vary quadratically at the trailing edge. [using flow equations and a CDC 7600 computer

    NASA Technical Reports Server (NTRS)

    Merz, A. W.; Hague, D. S.

    1975-01-01

    An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of the NACA 64-206 and 64 sub 1 - 212 airfoils. The additional thickness distribution had the form of a continuous mathematical function which disappears at both the leading edge and the trailing edge. The function behaves as a polynomial of order epsilon sub 1 at the leading edge, and a polynomial of order epsilon sub 2 at the trailing edge. Epsilon sub 2 is a constant and epsilon sub 1 is varied over a range of practical interest. The magnitude of the additional thickness, y, is a second input parameter, and the effect of varying epsilon sub 1 and y on the aerodynamic performance of the airfoil was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic airfoils, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.

  16. Real-time adaptive aircraft scheduling

    NASA Technical Reports Server (NTRS)

    Kolitz, Stephan E.; Terrab, Mostafa

    1990-01-01

    One of the most important functions of any air traffic management system is the assignment of ground-holding times to flights, i.e., the determination of whether and by how much the take-off of a particular aircraft headed for a congested part of the air traffic control (ATC) system should be postponed in order to reduce the likelihood and extent of airborne delays. An analysis is presented for the fundamental case in which flights from many destinations must be scheduled for arrival at a single congested airport; the formulation is also useful in scheduling the landing of airborne flights within the extended terminal area. A set of approaches is described for addressing a deterministic and a probabilistic version of this problem. For the deterministic case, where airport capacities are known and fixed, several models were developed with associated low-order polynomial-time algorithms. For general delay cost functions, these algorithms find an optimal solution. Under a particular natural assumption regarding the delay cost function, an extremely fast (O(n ln n)) algorithm was developed. For the probabilistic case, using an estimated probability distribution of airport capacities, a model was developed with an associated low-order polynomial-time heuristic algorithm with useful properties.

  17. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  18. An approximation technique for predicting the transient response of a second order nonlinear equation

    NASA Technical Reports Server (NTRS)

    Laurenson, R. M.; Baumgarten, J. R.

    1975-01-01

    An approximation technique has been developed for determining the transient response of a nonlinear dynamic system. The nonlinearities in the system which has been considered appear in the system's dissipation function. This function was expressed as a second order polynomial in the system's velocity. The developed approximation is an extension of the classic Kryloff-Bogoliuboff technique. Two examples of the developed approximation are presented for comparative purposes with other approximation methods.

  19. Analysis of Adaptive Mesh Refinement for IMEX Discontinuous Galerkin Solutions of the Compressible Euler Equations with Application to Atmospheric Simulations

    DTIC Science & Technology

    2013-01-01

    ξi be the Legendre -Gauss-Lobatto (LGL) points defined as the roots of (1 − ξ2)P ′N (ξ) = 0, where PN (ξ) is the N th order Legendre polynomial . The...mesh refinement. By expanding the solution in a basis of high order polynomials in each element, one can dynamically adjust the order of these basis...on refining the mesh while keeping the polynomial order constant across the elements. If we choose to allow non-conforming elements, the challenge in

  20. Interpolation and Polynomial Curve Fitting

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2014-01-01

    Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…

  1. A note on the zeros of Freud-Sobolev orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Moreno-Balcazar, Juan J.

    2007-10-01

    We prove that the zeros of a certain family of Sobolev orthogonal polynomials involving the Freud weight function e-x4 on are real, simple, and interlace with the zeros of the Freud polynomials, i.e., those polynomials orthogonal with respect to the weight function e-x4. Some numerical examples are shown.

  2. Credible Set Estimation, Analysis, and Applications in Synthetic Aperture Radar Canonical Feature Extraction

    DTIC Science & Technology

    2015-03-26

    depicting the CSE implementation for use with CV Domes data. . . 88 B.1 Validation results for N = 1 observation at 1.0 interval. Legendre polynomial of... Legendre polynomial of order Nl = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 B.3 Validation results for N = 1 observation at...0.01 interval. Legendre polynomial of order Nl = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 B.4 Validation results for N

  3. Robust stability of fractional order polynomials with complicated uncertainty structure

    PubMed Central

    Şenol, Bilal; Pekař, Libor

    2017-01-01

    The main aim of this article is to present a graphical approach to robust stability analysis for families of fractional order (quasi-)polynomials with complicated uncertainty structure. More specifically, the work emphasizes the multilinear, polynomial and general structures of uncertainty and, moreover, the retarded quasi-polynomials with parametric uncertainty are studied. Since the families with these complex uncertainty structures suffer from the lack of analytical tools, their robust stability is investigated by numerical calculation and depiction of the value sets and subsequent application of the zero exclusion condition. PMID:28662173

  4. A comparison between space-time video descriptors

    NASA Astrophysics Data System (ADS)

    Costantini, Luca; Capodiferro, Licia; Neri, Alessandro

    2013-02-01

    The description of space-time patches is a fundamental task in many applications such as video retrieval or classification. Each space-time patch can be described by using a set of orthogonal functions that represent a subspace, for example a sphere or a cylinder, within the patch. In this work, our aim is to investigate the differences between the spherical descriptors and the cylindrical descriptors. In order to compute the descriptors, the 3D spherical and cylindrical Zernike polynomials are employed. This is important because both the functions are based on the same family of polynomials, and only the symmetry is different. Our experimental results show that the cylindrical descriptor outperforms the spherical descriptor. However, the performances of the two descriptors are similar.

  5. Functional Form of the Radiometric Equation for the SNPP VIIRS Reflective Solar Bands: An Initial Study

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a passive scanning radiometer and an imager, observing radiative energy from the Earth in 22 spectral bands from 0.41 to 12 microns which include 14 reflective solar bands (RSBs). Extending the formula used by the Moderate Resolution Imaging Spectroradiometer instruments, currently the VIIRS determines the sensor aperture spectral radiance through a quadratic polynomial of its detector digital count. It has been known that for the RSBs the quadratic polynomial is not adequate in the design specified spectral radiance region and using a quadratic polynomial could drastically increase the errors in the polynomial coefficients, leading to possible large errors in the determined aperture spectral radiance. In addition, it is very desirable to be able to extend the radiance calculation formula to correctly retrieve the aperture spectral radiance with the level beyond the design specified range. In order to more accurately determine the aperture spectral radiance from the observed digital count, we examine a few polynomials of the detector digital count to calculate the sensor aperture spectral radiance.

  6. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrixmore » is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10 different input distributions or histograms.« less

  7. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    NASA Astrophysics Data System (ADS)

    Ahlfeld, R.; Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10 different input distributions or histograms.

  8. Two-dimensional orthonormal trend surfaces for prospecting

    NASA Astrophysics Data System (ADS)

    Sarma, D. D.; Selvaraj, J. B.

    Orthonormal polynomials have distinct advantages over conventional polynomials: the equations for evaluating trend coefficients are not ill-conditioned and the convergence power of this method is greater compared to the least-squares approximation and therefore the approach by orthonormal functions provides a powerful alternative to the least-squares method. In this paper, orthonormal polynomials in two dimensions are obtained using the Gram-Schmidt method for a polynomial series of the type: Z = 1 + x + y + x2 + xy + y2 + … + yn, where x and y are the locational coordinates and Z is the value of the variable under consideration. Trend-surface analysis, which has wide applications in prospecting, has been carried out using the orthonormal polynomial approach for two sample sets of data from India concerned with gold accumulation from the Kolar Gold Field, and gravity data. A comparison of the orthonormal polynomial trend surfaces with those obtained by the classical least-squares method has been made for the two data sets. In both the situations, the orthonormal polynomial surfaces gave an improved fit to the data. A flowchart and a FORTRAN-IV computer program for deriving orthonormal polynomials of any order and for using them to fit trend surfaces is included. The program has provision for logarithmic transformation of the Z variable. If log-transformation is performed the predicted Z values are reconverted to the original units and the trend-surface map generated for use. The illustration of gold assay data related to the Champion lode system of Kolar Gold Fields, for which a 9th-degree orthonormal trend surface was fit, could be used for further prospecting the area.

  9. Short communication: Genetic variation of saturated fatty acids in Holsteins in the Walloon region of Belgium.

    PubMed

    Arnould, V M-R; Hammami, H; Soyeurt, H; Gengler, N

    2010-09-01

    Random regression test-day models using Legendre polynomials are commonly used for the estimation of genetic parameters and genetic evaluation for test-day milk production traits. However, some researchers have reported that these models present some undesirable properties such as the overestimation of variances at the edges of lactation. Describing genetic variation of saturated fatty acids expressed in milk fat might require the testing of different models. Therefore, 3 different functions were used and compared to take into account the lactation curve: (1) Legendre polynomials with the same order as currently applied for genetic model for production traits; 2) linear splines with 10 knots; and 3) linear splines with the same 10 knots reduced to 3 parameters. The criteria used were Akaike's information and Bayesian information criteria, percentage square biases, and log-likelihood function. These criteria indentified Legendre polynomials and linear splines with 10 knots reduced to 3 parameters models as the most useful. Reducing more complex models using eigenvalues seemed appealing because the resulting models are less time demanding and can reduce convergence difficulties, because convergence properties also seemed to be improved. Finally, the results showed that the reduced spline model was very similar to the Legendre polynomials model. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. An efficient higher order family of root finders

    NASA Astrophysics Data System (ADS)

    Petkovic, Ljiljana D.; Rancic, Lidija; Petkovic, Miodrag S.

    2008-06-01

    A one parameter family of iterative methods for the simultaneous approximation of simple complex zeros of a polynomial, based on a cubically convergent Hansen-Patrick's family, is studied. We show that the convergence of the basic family of the fourth order can be increased to five and six using Newton's and Halley's corrections, respectively. Since these corrections use the already calculated values, the computational efficiency of the accelerated methods is significantly increased. Further acceleration is achieved by applying the Gauss-Seidel approach (single-step mode). One of the most important problems in solving nonlinear equations, the construction of initial conditions which provide both the guaranteed and fast convergence, is considered for the proposed accelerated family. These conditions are computationally verifiable; they depend only on the polynomial coefficients, its degree and initial approximations, which is of practical importance. Some modifications of the considered family, providing the computation of multiple zeros of polynomials and simple zeros of a wide class of analytic functions, are also studied. Numerical examples demonstrate the convergence properties of the presented family of root-finding methods.

  11. Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs. NBER Working Paper No. 20405

    ERIC Educational Resources Information Center

    Gelman, Andrew; Imbens, Guido

    2014-01-01

    It is common in regression discontinuity analysis to control for high order (third, fourth, or higher) polynomials of the forcing variable. We argue that estimators for causal effects based on such methods can be misleading, and we recommend researchers do not use them, and instead use estimators based on local linear or quadratic polynomials or…

  12. Growth curves for ostriches (Struthio camelus) in a Brazilian population.

    PubMed

    Ramos, S B; Caetano, S L; Savegnago, R P; Nunes, B N; Ramos, A A; Munari, D P

    2013-01-01

    The objective of this study was to fit growth curves using nonlinear and linear functions to describe the growth of ostriches in a Brazilian population. The data set consisted of 112 animals with BW measurements from hatching to 383 d of age. Two nonlinear growth functions (Gompertz and logistic) and a third-order polynomial function were applied. The parameters for the models were estimated using the least-squares method and Gauss-Newton algorithm. The goodness-of-fit of the models was assessed using R(2) and the Akaike information criterion. The R(2) calculated for the logistic growth model was 0.945 for hens and 0.928 for cockerels and for the Gompertz growth model, 0.938 for hens and 0.924 for cockerels. The third-order polynomial fit gave R(2) of 0.938 for hens and 0.924 for cockerels. Among the Akaike information criterion calculations, the logistic growth model presented the lowest values in this study, both for hens and for cockerels. Nonlinear models are more appropriate for describing the sigmoid nature of ostrich growth.

  13. Nonlinear Fourier transform—towards the construction of nonlinear Fourier modes

    NASA Astrophysics Data System (ADS)

    Saksida, Pavle

    2018-01-01

    We study a version of the nonlinear Fourier transform associated with ZS-AKNS systems. This version is suitable for the construction of nonlinear analogues of Fourier modes, and for the perturbation-theoretic study of their superposition. We provide an iterative scheme for computing the inverse of our transform. The relevant formulae are expressed in terms of Bell polynomials and functions related to them. In order to prove the validity of our iterative scheme, we show that our transform has the necessary analytic properties. We show that up to order three of the perturbation parameter, the nonlinear Fourier mode is a complex sinusoid modulated by the second Bernoulli polynomial. We describe an application of the nonlinear superposition of two modes to a problem of transmission through a nonlinear medium.

  14. Polynomial expansions of single-mode motions around equilibrium points in the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Lei, Hanlun; Xu, Bo; Circi, Christian

    2018-05-01

    In this work, the single-mode motions around the collinear and triangular libration points in the circular restricted three-body problem are studied. To describe these motions, we adopt an invariant manifold approach, which states that a suitable pair of independent variables are taken as modal coordinates and the remaining state variables are expressed as polynomial series of them. Based on the invariant manifold approach, the general procedure on constructing polynomial expansions up to a certain order is outlined. Taking the Earth-Moon system as the example dynamical model, we construct the polynomial expansions up to the tenth order for the single-mode motions around collinear libration points, and up to order eight and six for the planar and vertical-periodic motions around triangular libration point, respectively. The application of the polynomial expansions constructed lies in that they can be used to determine the initial states for the single-mode motions around equilibrium points. To check the validity, the accuracy of initial states determined by the polynomial expansions is evaluated.

  15. Second Order Boltzmann-Gibbs Principle for Polynomial Functions and Applications

    NASA Astrophysics Data System (ADS)

    Gonçalves, Patrícia; Jara, Milton; Simon, Marielle

    2017-01-01

    In this paper we give a new proof of the second order Boltzmann-Gibbs principle introduced in Gonçalves and Jara (Arch Ration Mech Anal 212(2):597-644, 2014). The proof does not impose the knowledge on the spectral gap inequality for the underlying model and it relies on a proper decomposition of the antisymmetric part of the current of the system in terms of polynomial functions. In addition, we fully derive the convergence of the equilibrium fluctuations towards (1) a trivial process in case of super-diffusive systems, (2) an Ornstein-Uhlenbeck process or the unique energy solution of the stochastic Burgers equation, as defined in Gubinelli and Jara (SPDEs Anal Comput (1):325-350, 2013) and Gubinelli and Perkowski (Arxiv:1508.07764, 2015), in case of weakly asymmetric diffusive systems. Examples and applications are presented for weakly and partial asymmetric exclusion processes, weakly asymmetric speed change exclusion processes and hamiltonian systems with exponential interactions.

  16. Testing of next-generation nonlinear calibration based non-uniformity correction techniques using SWIR devices

    NASA Astrophysics Data System (ADS)

    Lovejoy, McKenna R.; Wickert, Mark A.

    2017-05-01

    A known problem with infrared imaging devices is their non-uniformity. This non-uniformity is the result of dark current, amplifier mismatch as well as the individual photo response of the detectors. To improve performance, non-uniformity correction (NUC) techniques are applied. Standard calibration techniques use linear, or piecewise linear models to approximate the non-uniform gain and off set characteristics as well as the nonlinear response. Piecewise linear models perform better than the one and two-point models, but in many cases require storing an unmanageable number of correction coefficients. Most nonlinear NUC algorithms use a second order polynomial to improve performance and allow for a minimal number of stored coefficients. However, advances in technology now make higher order polynomial NUC algorithms feasible. This study comprehensively tests higher order polynomial NUC algorithms targeted at short wave infrared (SWIR) imagers. Using data collected from actual SWIR cameras, the nonlinear techniques and corresponding performance metrics are compared with current linear methods including the standard one and two-point algorithms. Machine learning, including principal component analysis, is explored for identifying and replacing bad pixels. The data sets are analyzed and the impact of hardware implementation is discussed. Average floating point results show 30% less non-uniformity, in post-corrected data, when using a third order polynomial correction algorithm rather than a second order algorithm. To maximize overall performance, a trade off analysis on polynomial order and coefficient precision is performed. Comprehensive testing, across multiple data sets, provides next generation model validation and performance benchmarks for higher order polynomial NUC methods.

  17. Trajectory Optimization for Helicopter Unmanned Aerial Vehicles (UAVs)

    DTIC Science & Technology

    2010-06-01

    the Nth-order derivative of the Legendre Polynomial ( )NL t . Using this method, the range of integration is transformed universally to [-1,+1...which is the interval for Legendre Polynomials . Although the LGL interpolation points are not evenly spaced, they are symmetric about the midpoint 0...the vehicle’s kinematic constraints are parameterized in terms of polynomials of sufficient order, (2) A collision-free criterion is developed and

  18. Recursive formulas for determining perturbing accelerations in intermediate satellite motion

    NASA Astrophysics Data System (ADS)

    Stoianov, L.

    Recursive formulas for Legendre polynomials and associated Legendre functions are used to obtain recursive relationships for determining acceleration components which perturb intermediate satellite motion. The formulas are applicable in all cases when the perturbation force function is presented as a series in spherical functions (gravitational, tidal, thermal, geomagnetic, and other perturbations of intermediate motion). These formulas can be used to determine the order of perturbing accelerations.

  19. New template family for the detection of gravitational waves from comparable-mass black hole binaries

    NASA Astrophysics Data System (ADS)

    Porter, Edward K.

    2007-11-01

    In order to improve the phasing of the comparable-mass waveform as we approach the last stable orbit for a system, various resummation methods have been used to improve the standard post-Newtonian waveforms. In this work we present a new family of templates for the detection of gravitational waves from the inspiral of two comparable-mass black hole binaries. These new adiabatic templates are based on reexpressing the derivative of the binding energy and the gravitational wave flux functions in terms of shifted Chebyshev polynomials. The Chebyshev polynomials are a useful tool in numerical methods as they display the fastest convergence of any of the orthogonal polynomials. In this case they are also particularly useful as they eliminate one of the features that plagues the post-Newtonian expansion. The Chebyshev binding energy now has information at all post-Newtonian orders, compared to the post-Newtonian templates which only have information at full integer orders. In this work, we compare both the post-Newtonian and Chebyshev templates against a fiducially exact waveform. This waveform is constructed from a hybrid method of using the test-mass results combined with the mass dependent parts of the post-Newtonian expansions for the binding energy and flux functions. Our results show that the Chebyshev templates achieve extremely high fitting factors at all post-Newtonian orders and provide excellent parameter extraction. We also show that this new template family has a faster Cauchy convergence, gives a better prediction of the position of the last stable orbit and in general recovers higher Signal-to-Noise ratios than the post-Newtonian templates.

  20. Element Library for Three-Dimensional Stress Analysis by the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.

    1996-01-01

    The Integrated Force Method, a recently developed method for analyzing structures, is extended in this paper to three-dimensional structural analysis. First, a general formulation is developed to generate the stress interpolation matrix in terms of complete polynomials of the required order. The formulation is based on definitions of the stress tensor components in term of stress functions. The stress functions are written as complete polynomials and substituted into expressions for stress components. Then elimination of the dependent coefficients leaves the stress components expressed as complete polynomials whose coefficients are defined as generalized independent forces. Such derived components of the stress tensor identically satisfy homogenous Navier equations of equilibrium. The resulting element matrices are invariant with respect to coordinate transformation and are free of spurious zero-energy modes. The formulation provides a rational way to calculate the exact number of independent forces necessary to arrive at an approximation of the required order for complete polynomials. The influence of reducing the number of independent forces on the accuracy of the response is also analyzed. The stress fields derived are used to develop a comprehensive finite element library for three-dimensional structural analysis by the Integrated Force Method. Both tetrahedral- and hexahedral-shaped elements capable of modeling arbitrary geometric configurations are developed. A number of examples with known analytical solutions are solved by using the developments presented herein. The results are in good agreement with the analytical solutions. The responses obtained with the Integrated Force Method are also compared with those generated by the standard displacement method. In most cases, the performance of the Integrated Force Method is better overall.

  1. Stochastic Estimation via Polynomial Chaos

    DTIC Science & Technology

    2015-10-01

    AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic

  2. Degenerate r-Stirling Numbers and r-Bell Polynomials

    NASA Astrophysics Data System (ADS)

    Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.

    2018-01-01

    The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.

  3. Simulation of Shallow Water Jets with a Unified Element-based Continuous/Discontinuous Galerkin Model with Grid Flexibility on the Sphere

    DTIC Science & Technology

    2013-01-01

    is the derivative of the N th-order Legendre polynomial . Given these definitions, the one-dimensional Lagrange polynomials hi(ξ) are hi(ξ) = − 1 N(N...2. Detail of one interface patch in the northern hemisphere. The high-order Legendre -Gauss-Lobatto (LGL) points are added to the linear grid by...smaller ones by a Lagrange polynomial of order nI . The number of quadrilateral elements and grid points of the final grid are then given by Np = 6(N

  4. Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network

    NASA Astrophysics Data System (ADS)

    MolaAbasi, H.; Shooshpasha, I.

    2016-04-01

    The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.

  5. Direct discriminant locality preserving projection with Hammerstein polynomial expansion.

    PubMed

    Chen, Xi; Zhang, Jiashu; Li, Defang

    2012-12-01

    Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.

  6. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos

    DTIC Science & Technology

    2002-07-25

    Some basic hypergeometric polynomials that generalize Jacobi polynomials . Memoirs Amer. Math. Soc., AMS... orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos idea of Wiener (1938). A Galerkin projection...1) by generalized polynomial chaos expansion, where the uncertainties can be introduced through κ, f , or g, or some combinations. It is worth

  7. Higher-order automatic differentiation of mathematical functions

    NASA Astrophysics Data System (ADS)

    Charpentier, Isabelle; Dal Cappello, Claude

    2015-04-01

    Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.

  8. Spatiotemporal accessible solitons in fractional dimensions.

    PubMed

    Zhong, Wei-Ping; Belić, Milivoj R; Malomed, Boris A; Zhang, Yiqi; Huang, Tingwen

    2016-07-01

    We report solutions for solitons of the "accessible" type in globally nonlocal nonlinear media of fractional dimension (FD), viz., for self-trapped modes in the space of effective dimension 2

  9. A Geometric Method for Model Reduction of Biochemical Networks with Polynomial Rate Functions.

    PubMed

    Samal, Satya Swarup; Grigoriev, Dima; Fröhlich, Holger; Weber, Andreas; Radulescu, Ovidiu

    2015-12-01

    Model reduction of biochemical networks relies on the knowledge of slow and fast variables. We provide a geometric method, based on the Newton polytope, to identify slow variables of a biochemical network with polynomial rate functions. The gist of the method is the notion of tropical equilibration that provides approximate descriptions of slow invariant manifolds. Compared to extant numerical algorithms such as the intrinsic low-dimensional manifold method, our approach is symbolic and utilizes orders of magnitude instead of precise values of the model parameters. Application of this method to a large collection of biochemical network models supports the idea that the number of dynamical variables in minimal models of cell physiology can be small, in spite of the large number of molecular regulatory actors.

  10. On the modular structure of the genus-one Type II superstring low energy expansion

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Green, Michael B.; Vanhove, Pierre

    2015-08-01

    The analytic contribution to the low energy expansion of Type II string amplitudes at genus-one is a power series in space-time derivatives with coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet torus. These modular functions are associated with world-sheet vacuum Feynman diagrams and given by multiple sums over the discrete momenta on the torus. In this paper we exhibit exact differential and algebraic relations for a certain infinite class of such modular functions by showing that they satisfy Laplace eigenvalue equations with inhomogeneous terms that are polynomial in non-holomorphic Eisenstein series. Furthermore, we argue that the set of modular functions that contribute to the coefficients of interactions up to order are linear sums of functions in this class and quadratic polynomials in Eisenstein series and odd Riemann zeta values. Integration over the complex structure results in coefficients of the low energy expansion that are rational numbers multiplying monomials in odd Riemann zeta values.

  11. A new basis set for molecular bending degrees of freedom.

    PubMed

    Jutier, Laurent

    2010-07-21

    We present a new basis set as an alternative to Legendre polynomials for the variational treatment of bending vibrational degrees of freedom in order to highly reduce the number of basis functions. This basis set is inspired from the harmonic oscillator eigenfunctions but is defined for a bending angle in the range theta in [0:pi]. The aim is to bring the basis functions closer to the final (ro)vibronic wave functions nature. Our methodology is extended to complicated potential energy surfaces, such as quasilinearity or multiequilibrium geometries, by using several free parameters in the basis functions. These parameters allow several density maxima, linear or not, around which the basis functions will be mainly located. Divergences at linearity in integral computations are resolved as generalized Legendre polynomials. All integral computations required for the evaluation of molecular Hamiltonian matrix elements are given for both discrete variable representation and finite basis representation. Convergence tests for the low energy vibronic states of HCCH(++), HCCH(+), and HCCS are presented.

  12. A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haut, T. S.; Babb, T.; Martinsson, P. G.

    2015-06-16

    Our manuscript demonstrates a technique for efficiently solving the classical wave equation, the shallow water equations, and, more generally, equations of the form ∂u/∂t=Lu∂u/∂t=Lu, where LL is a skew-Hermitian differential operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(τL)exp(τL) for a relatively large time-step ττ. Recently developed techniques for approximating oscillatory scalar functions by rational functions, and accelerated algorithms for computing functions of discretized differential operators are exploited. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large speed-ups over existingmore » methods in situations where simulation over long times are required. Numerical examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomogenous medium are presented, and the method is compared to the 4th order Runge–Kutta (RK4) method and to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals, and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.« less

  13. High-order computer-assisted estimates of topological entropy

    NASA Astrophysics Data System (ADS)

    Grote, Johannes

    The concept of Taylor Models is introduced, which offers highly accurate C0-estimates for the enclosures of functional dependencies, combining high-order Taylor polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified interval arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly nonlinear dynamical systems. A method to obtain sharp rigorous enclosures of Poincare maps for certain types of flows and surfaces is developed and numerical examples are presented. Differential algebraic techniques allow the efficient and accurate computation of polynomial approximations for invariant curves of certain planar maps around hyperbolic fixed points. Subsequently we introduce a procedure to extend these polynomial curves to verified Taylor Model enclosures of local invariant manifolds with C0-errors of size 10-10--10 -14, and proceed to generate the global invariant manifold tangle up to comparable accuracy through iteration in Taylor Model arithmetic. Knowledge of the global manifold structure up to finite iterations of the local manifold pieces enables us to find all homoclinic and heteroclinic intersections in the generated manifold tangle. Combined with the mapping properties of the homoclinic points and their ordering we are able to construct a subshift of finite type as a topological factor of the original planar system to obtain rigorous lower bounds for its topological entropy. This construction is fully automatic and yields homoclinic tangles with several hundred homoclinic points. As an example rigorous lower bounds for the topological entropy of the Henon map are computed, which to the best knowledge of the authors yield the largest such estimates published so far.

  14. Compression of head-related transfer function using autoregressive-moving-average models and Legendre polynomials.

    PubMed

    Shekarchi, Sayedali; Hallam, John; Christensen-Dalsgaard, Jakob

    2013-11-01

    Head-related transfer functions (HRTFs) are generally large datasets, which can be an important constraint for embedded real-time applications. A method is proposed here to reduce redundancy and compress the datasets. In this method, HRTFs are first compressed by conversion into autoregressive-moving-average (ARMA) filters whose coefficients are calculated using Prony's method. Such filters are specified by a few coefficients which can generate the full head-related impulse responses (HRIRs). Next, Legendre polynomials (LPs) are used to compress the ARMA filter coefficients. LPs are derived on the sphere and form an orthonormal basis set for spherical functions. Higher-order LPs capture increasingly fine spatial details. The number of LPs needed to represent an HRTF, therefore, is indicative of its spatial complexity. The results indicate that compression ratios can exceed 98% while maintaining a spectral error of less than 4 dB in the recovered HRTFs.

  15. A gradient-based model parametrization using Bernstein polynomials in Bayesian inversion of surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Gosselin, Jeremy M.; Dosso, Stan E.; Cassidy, John F.; Quijano, Jorge E.; Molnar, Sheri; Dettmer, Jan

    2017-10-01

    This paper develops and applies a Bernstein-polynomial parametrization to efficiently represent general, gradient-based profiles in nonlinear geophysical inversion, with application to ambient-noise Rayleigh-wave dispersion data. Bernstein polynomials provide a stable parametrization in that small perturbations to the model parameters (basis-function coefficients) result in only small perturbations to the geophysical parameter profile. A fully nonlinear Bayesian inversion methodology is applied to estimate shear wave velocity (VS) profiles and uncertainties from surface wave dispersion data extracted from ambient seismic noise. The Bayesian information criterion is used to determine the appropriate polynomial order consistent with the resolving power of the data. Data error correlations are accounted for in the inversion using a parametric autoregressive model. The inversion solution is defined in terms of marginal posterior probability profiles for VS as a function of depth, estimated using Metropolis-Hastings sampling with parallel tempering. This methodology is applied to synthetic dispersion data as well as data processed from passive array recordings collected on the Fraser River Delta in British Columbia, Canada. Results from this work are in good agreement with previous studies, as well as with co-located invasive measurements. The approach considered here is better suited than `layered' modelling approaches in applications where smooth gradients in geophysical parameters are expected, such as soil/sediment profiles. Further, the Bernstein polynomial representation is more general than smooth models based on a fixed choice of gradient type (e.g. power-law gradient) because the form of the gradient is determined objectively by the data, rather than by a subjective parametrization choice.

  16. Random regression models using different functions to model test-day milk yield of Brazilian Holstein cows.

    PubMed

    Bignardi, A B; El Faro, L; Torres Júnior, R A A; Cardoso, V L; Machado, P F; Albuquerque, L G

    2011-10-31

    We analyzed 152,145 test-day records from 7317 first lactations of Holstein cows recorded from 1995 to 2003. Our objective was to model variations in test-day milk yield during the first lactation of Holstein cows by random regression model (RRM), using various functions in order to obtain adequate and parsimonious models for the estimation of genetic parameters. Test-day milk yields were grouped into weekly classes of days in milk, ranging from 1 to 44 weeks. The contemporary groups were defined as herd-test-day. The analyses were performed using a single-trait RRM, including the direct additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. The mean trend of milk yield was modeled with a fourth-order orthogonal Legendre polynomial. The additive genetic and permanent environmental covariance functions were estimated by random regression on two parametric functions, Ali and Schaeffer and Wilmink, and on B-spline functions of days in milk. The covariance components and the genetic parameters were estimated by the restricted maximum likelihood method. Results from RRM parametric and B-spline functions were compared to RRM on Legendre polynomials and with a multi-trait analysis, using the same data set. Heritability estimates presented similar trends during mid-lactation (13 to 31 weeks) and between week 37 and the end of lactation, for all RRM. Heritabilities obtained by multi-trait analysis were of a lower magnitude than those estimated by RRM. The RRMs with a higher number of parameters were more useful to describe the genetic variation of test-day milk yield throughout the lactation. RRM using B-spline and Legendre polynomials as base functions appears to be the most adequate to describe the covariance structure of the data.

  17. The Fixed-Links Model in Combination with the Polynomial Function as a Tool for Investigating Choice Reaction Time Data

    ERIC Educational Resources Information Center

    Schweizer, Karl

    2006-01-01

    A model with fixed relations between manifest and latent variables is presented for investigating choice reaction time data. The numbers for fixation originate from the polynomial function. Two options are considered: the component-based (1 latent variable for each component of the polynomial function) and composite-based options (1 latent…

  18. On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2002-02-01

    An analytical formula expressing the ultraspherical coefficients of an expansion for an infinitely differentiable function that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion of the function is stated in a more compact form and proved in a simpler way than the formula suggested by Phillips and Karageorghis (27 (1990) 823). A new formula expressing explicitly the integrals of ultraspherical polynomials of any degree that has been integrated an arbitrary number of times of ultraspherical polynomials is given. The tensor product of ultraspherical polynomials is used to approximate a function of more than one variable. Formulae expressing the coefficients of differentiated expansions of double and triple ultraspherical polynomials in terms of the original expansion are stated and proved. Some applications of how to use ultraspherical polynomials for solving ordinary and partial differential equations are described.

  19. Uncertainty Quantification in CO 2 Sequestration Using Surrogate Models from Polynomial Chaos Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yan; Sahinidis, Nikolaos V.

    2013-03-06

    In this paper, surrogate models are iteratively built using polynomial chaos expansion (PCE) and detailed numerical simulations of a carbon sequestration system. Output variables from a numerical simulator are approximated as polynomial functions of uncertain parameters. Once generated, PCE representations can be used in place of the numerical simulator and often decrease simulation times by several orders of magnitude. However, PCE models are expensive to derive unless the number of terms in the expansion is moderate, which requires a relatively small number of uncertain variables and a low degree of expansion. To cope with this limitation, instead of using amore » classical full expansion at each step of an iterative PCE construction method, we introduce a mixed-integer programming (MIP) formulation to identify the best subset of basis terms in the expansion. This approach makes it possible to keep the number of terms small in the expansion. Monte Carlo (MC) simulation is then performed by substituting the values of the uncertain parameters into the closed-form polynomial functions. Based on the results of MC simulation, the uncertainties of injecting CO{sub 2} underground are quantified for a saline aquifer. Moreover, based on the PCE model, we formulate an optimization problem to determine the optimal CO{sub 2} injection rate so as to maximize the gas saturation (residual trapping) during injection, and thereby minimize the chance of leakage.« less

  20. Gravity Gradient Tensor of Arbitrary 3D Polyhedral Bodies with up to Third-Order Polynomial Horizontal and Vertical Mass Contrasts

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang

    2018-03-01

    During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.

  1. A quadratic regression modelling on paddy production in the area of Perlis

    NASA Astrophysics Data System (ADS)

    Goh, Aizat Hanis Annas; Ali, Zalila; Nor, Norlida Mohd; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2017-08-01

    Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.

  2. Estimation of Phase in Fringe Projection Technique Using High-order Instantaneous Moments Based Method

    NASA Astrophysics Data System (ADS)

    Gorthi, Sai Siva; Rajshekhar, G.; Rastogi, Pramod

    2010-04-01

    For three-dimensional (3D) shape measurement using fringe projection techniques, the information about the 3D shape of an object is encoded in the phase of a recorded fringe pattern. The paper proposes a high-order instantaneous moments based method to estimate phase from a single fringe pattern in fringe projection. The proposed method works by approximating the phase as a piece-wise polynomial and subsequently determining the polynomial coefficients using high-order instantaneous moments to construct the polynomial phase. Simulation results are presented to show the method's potential.

  3. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials.

    PubMed

    Zhao, Chunyu; Burge, James H

    2007-12-24

    Zernike polynomials provide a well known, orthogonal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. A related set of orthogonal functions is given here which represent vector quantities, such as mapping distortion or wavefront gradient. These functions are generated from gradients of Zernike polynomials, made orthonormal using the Gram- Schmidt technique. This set provides a complete basis for representing vector fields that can be defined as a gradient of some scalar function. It is then efficient to transform from the coefficients of the vector functions to the scalar Zernike polynomials that represent the function whose gradient was fit. These new vector functions have immediate application for fitting data from a Shack-Hartmann wavefront sensor or for fitting mapping distortion for optical testing. A subsequent paper gives an additional set of vector functions consisting only of rotational terms with zero divergence. The two sets together provide a complete basis that can represent all vector distributions in a circular domain.

  4. Investigation of advanced UQ for CRUD prediction with VIPRE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Michael Scott

    2011-09-01

    This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. It demonstrates the application of 'advanced UQ,' in particular dimension-adaptive p-refinement for polynomial chaos and stochastic collocation. The study calculates statistics for several quantities of interest that are indicators for the formation of CRUD (Chalk River unidentified deposit), which can lead to CIPS (CRUD induced power shift). Stochastic expansion methods are attractive methods for uncertainty quantification due to their fast convergence properties. For smooth functions (i.e., analytic, infinitely-differentiable) in L{sup 2} (i.e., possessing finite variance), exponential convergence rates can be obtained under order refinementmore » for integrated statistical quantities of interest such as mean, variance, and probability. Two stochastic expansion methods are of interest: nonintrusive polynomial chaos expansion (PCE), which computes coefficients for a known basis of multivariate orthogonal polynomials, and stochastic collocation (SC), which forms multivariate interpolation polynomials for known coefficients. Within the DAKOTA project, recent research in stochastic expansion methods has focused on automated polynomial order refinement ('p-refinement') of expansions to support scalability to higher dimensional random input spaces [4, 3]. By preferentially refining only in the most important dimensions of the input space, the applicability of these methods can be extended from O(10{sup 0})-O(10{sup 1}) random variables to O(10{sup 2}) and beyond, depending on the degree of anisotropy (i.e., the extent to which randominput variables have differing degrees of influence on the statistical quantities of interest (QOIs)). Thus, the purpose of this study is to investigate the application of these adaptive stochastic expansion methods to the analysis of CRUD using the VIPRE simulation tools for two different plant models of differing random dimension, anisotropy, and smoothness.« less

  5. Tensor tomography on Cartan–Hadamard manifolds

    NASA Astrophysics Data System (ADS)

    Lehtonen, Jere; Railo, Jesse; Salo, Mikko

    2018-04-01

    We study the geodesic x-ray transform on Cartan–Hadamard manifolds, generalizing the x-ray transforms on Euclidean and hyperbolic spaces that arise in medical and seismic imaging. We prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016 arXiv:1612.04800) to dimensions n ≥slant 3 and to the case of tensor fields of any order.

  6. Correlation Structure of Fractional Pearson Diffusions.

    PubMed

    Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla

    2013-09-01

    The stochastic solution to a diffusion equations with polynomial coefficients is called a Pearson diffusion. If the first time derivative is replaced by a Caputo fractional derivative of order less than one, the stochastic solution is called a fractional Pearson diffusion. This paper develops an explicit formula for the covariance function of a fractional Pearson diffusion in steady state, in terms of Mittag-Leffler functions. That formula shows that fractional Pearson diffusions are long range dependent, with a correlation that falls off like a power law, whose exponent equals the order of the fractional derivative.

  7. A solver for General Unilateral Polynomial Matrix Equation with Second-Order Matrices Over Prime Finite Fields

    NASA Astrophysics Data System (ADS)

    Burtyka, Filipp

    2018-03-01

    The paper firstly considers the problem of finding solvents for arbitrary unilateral polynomial matrix equations with second-order matrices over prime finite fields from the practical point of view: we implement the solver for this problem. The solver’s algorithm has two step: the first is finding solvents, having Jordan Normal Form (JNF), the second is finding solvents among the rest matrices. The first step reduces to the finding roots of usual polynomials over finite fields, the second is essentially exhaustive search. The first step’s algorithms essentially use the polynomial matrices theory. We estimate the practical duration of computations using our software implementation (for example that one can’t construct unilateral matrix polynomial over finite field, having any predefined number of solvents) and answer some theoretically-valued questions.

  8. The Translated Dowling Polynomials and Numbers.

    PubMed

    Mangontarum, Mahid M; Macodi-Ringia, Amila P; Abdulcarim, Normalah S

    2014-01-01

    More properties for the translated Whitney numbers of the second kind such as horizontal generating function, explicit formula, and exponential generating function are proposed. Using the translated Whitney numbers of the second kind, we will define the translated Dowling polynomials and numbers. Basic properties such as exponential generating functions and explicit formula for the translated Dowling polynomials and numbers are obtained. Convexity, integral representation, and other interesting identities are also investigated and presented. We show that the properties obtained are generalizations of some of the known results involving the classical Bell polynomials and numbers. Lastly, we established the Hankel transform of the translated Dowling numbers.

  9. Generalized neurofuzzy network modeling algorithms using Bézier-Bernstein polynomial functions and additive decomposition.

    PubMed

    Hong, X; Harris, C J

    2000-01-01

    This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

  10. Alternate forms of the associated Legendre functions for use in geomagnetic modeling.

    USGS Publications Warehouse

    Alldredge, L.R.; Benton, E.R.

    1986-01-01

    An inconvenience attending traditional use of associated Legendre functions in global modeling is that the functions are not separable with respect to the 2 indices (order and degree). In 1973 Merilees suggested a way to avoid the problem by showing that associated Legendre functions of order m and degree m+k can be expressed in terms of elementary functions. This note calls attention to some possible gains in time savings and accuracy in geomagnetic modeling based upon this form. For this purpose, expansions of associated Legendre polynomials in terms of sines and cosines of multiple angles are displayed up to degree and order 10. Examples are also given explaining how some surface spherical harmonics can be transformed into true Fourier series for selected polar great circle paths. -from Authors

  11. Imaging characteristics of Zernike and annular polynomial aberrations.

    PubMed

    Mahajan, Virendra N; Díaz, José Antonio

    2013-04-01

    The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.

  12. Lifting q-difference operators for Askey-Wilson polynomials and their weight function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atakishiyeva, M. K.; Atakishiyev, N. M., E-mail: natig_atakishiyev@hotmail.com

    2011-06-15

    We determine an explicit form of a q-difference operator that transforms the continuous q-Hermite polynomials H{sub n}(x | q) of Rogers into the Askey-Wilson polynomials p{sub n}(x; a, b, c, d | q) on the top level in the Askey q-scheme. This operator represents a special convolution-type product of four one-parameter q-difference operators of the form {epsilon}{sub q}(c{sub q}D{sub q}) (where c{sub q} are some constants), defined as Exton's q-exponential function {epsilon}{sub q}(z) in terms of the Askey-Wilson divided q-difference operator D{sub q}. We also determine another q-difference operator that lifts the orthogonality weight function for the continuous q-Hermite polynomialsH{submore » n}(x | q) up to the weight function, associated with the Askey-Wilson polynomials p{sub n}(x; a, b, c, d | q).« less

  13. Analysis of the impacts of horizontal translation and scaling on wavefront approximation coefficients with rectangular pupils for Chebyshev and Legendre polynomials.

    PubMed

    Sun, Wenqing; Chen, Lei; Tuya, Wulan; He, Yong; Zhu, Rihong

    2013-12-01

    Chebyshev and Legendre polynomials are frequently used in rectangular pupils for wavefront approximation. Ideally, the dataset completely fits with the polynomial basis, which provides the full-pupil approximation coefficients and the corresponding geometric aberrations. However, if there are horizontal translation and scaling, the terms in the original polynomials will become the linear combinations of the coefficients of the other terms. This paper introduces analytical expressions for two typical situations after translation and scaling. With a small translation, first-order Taylor expansion could be used to simplify the computation. Several representative terms could be selected as inputs to compute the coefficient changes before and after translation and scaling. Results show that the outcomes of the analytical solutions and the approximated values under discrete sampling are consistent. With the computation of a group of randomly generated coefficients, we contrasted the changes under different translation and scaling conditions. The larger ratios correlate the larger deviation from the approximated values to the original ones. Finally, we analyzed the peak-to-valley (PV) and root mean square (RMS) deviations from the uses of the first-order approximation and the direct expansion under different translation values. The results show that when the translation is less than 4%, the most deviated 5th term in the first-order 1D-Legendre expansion has a PV deviation less than 7% and an RMS deviation less than 2%. The analytical expressions and the computed results under discrete sampling given in this paper for the multiple typical function basis during translation and scaling in the rectangular areas could be applied in wavefront approximation and analysis.

  14. A class of reduced-order models in the theory of waves and stability.

    PubMed

    Chapman, C J; Sorokin, S V

    2016-02-01

    This paper presents a class of approximations to a type of wave field for which the dispersion relation is transcendental. The approximations have two defining characteristics: (i) they give the field shape exactly when the frequency and wavenumber lie on a grid of points in the (frequency, wavenumber) plane and (ii) the approximate dispersion relations are polynomials that pass exactly through points on this grid. Thus, the method is interpolatory in nature, but the interpolation takes place in (frequency, wavenumber) space, rather than in physical space. Full details are presented for a non-trivial example, that of antisymmetric elastic waves in a layer. The method is related to partial fraction expansions and barycentric representations of functions. An asymptotic analysis is presented, involving Stirling's approximation to the psi function, and a logarithmic correction to the polynomial dispersion relation.

  15. Animating Nested Taylor Polynomials to Approximate a Function

    ERIC Educational Resources Information Center

    Mazzone, Eric F.; Piper, Bruce R.

    2010-01-01

    The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…

  16. Orbifold E-functions of dual invertible polynomials

    NASA Astrophysics Data System (ADS)

    Ebeling, Wolfgang; Gusein-Zade, Sabir M.; Takahashi, Atsushi

    2016-08-01

    An invertible polynomial is a weighted homogeneous polynomial with the number of monomials coinciding with the number of variables and such that the weights of the variables and the quasi-degree are well defined. In the framework of the search for mirror symmetric orbifold Landau-Ginzburg models, P. Berglund and M. Henningson considered a pair (f , G) consisting of an invertible polynomial f and an abelian group G of its symmetries together with a dual pair (f ˜ , G ˜) . We consider the so-called orbifold E-function of such a pair (f , G) which is a generating function for the exponents of the monodromy action on an orbifold version of the mixed Hodge structure on the Milnor fibre of f. We prove that the orbifold E-functions of Berglund-Henningson dual pairs coincide up to a sign depending on the number of variables and a simple change of variables. The proof is based on a relation between monomials (say, elements of a monomial basis of the Milnor algebra of an invertible polynomial) and elements of the whole symmetry group of the dual polynomial.

  17. New formulae between Jacobi polynomials and some fractional Jacobi functions generalizing some connection formulae

    NASA Astrophysics Data System (ADS)

    Abd-Elhameed, W. M.

    2017-07-01

    In this paper, a new formula relating Jacobi polynomials of arbitrary parameters with the squares of certain fractional Jacobi functions is derived. The derived formula is expressed in terms of a certain terminating hypergeometric function of the type _4F3(1) . With the aid of some standard reduction formulae such as Pfaff-Saalschütz's and Watson's identities, the derived formula can be reduced in simple forms which are free of any hypergeometric functions for certain choices of the involved parameters of the Jacobi polynomials and the Jacobi functions. Some other simplified formulae are obtained via employing some computer algebra algorithms such as the algorithms of Zeilberger, Petkovsek and van Hoeij. Some connection formulae between some Jacobi polynomials are deduced. From these connection formulae, some other linearization formulae of Chebyshev polynomials are obtained. As an application to some of the introduced formulae, a numerical algorithm for solving nonlinear Riccati differential equation is presented and implemented by applying a suitable spectral method.

  18. On Nonlinear Functionals of Random Spherical Eigenfunctions

    NASA Astrophysics Data System (ADS)

    Marinucci, Domenico; Wigman, Igor

    2014-05-01

    We prove central limit theorems and Stein-like bounds for the asymptotic behaviour of nonlinear functionals of spherical Gaussian eigenfunctions. Our investigation combines asymptotic analysis of higher order moments for Legendre polynomials and, in addition, recent results on Malliavin calculus and total variation bounds for Gaussian subordinated fields. We discuss applications to geometric functionals like the defect and invariant statistics, e.g., polyspectra of isotropic spherical random fields. Both of these have relevance for applications, especially in an astrophysical environment.

  19. Zernike Basis to Cartesian Transformations

    NASA Astrophysics Data System (ADS)

    Mathar, R. J.

    2009-12-01

    The radial polynomials of the 2D (circular) and 3D (spherical) Zernike functions are tabulated as powers of the radial distance. The reciprocal tabulation of powers of the radial distance in series of radial polynomials is also given, based on projections that take advantage of the orthogonality of the polynomials over the unit interval. They play a role in the expansion of products of the polynomials into sums, which is demonstrated by some examples. Multiplication of the polynomials by the angular bases (azimuth, polar angle) defines the Zernike functions, for which we derive transformations to and from the Cartesian coordinate system centered at the middle of the circle or sphere.

  20. High Dynamic Range Imaging Using Multiple Exposures

    NASA Astrophysics Data System (ADS)

    Hou, Xinglin; Luo, Haibo; Zhou, Peipei; Zhou, Wei

    2017-06-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range (LDR) camera. This paper presents an approach for improving the dynamic range of cameras by using multiple exposure images of same scene taken under different exposure times. First, the camera response function (CRF) is recovered by solving a high-order polynomial in which only the ratios of the exposures are used. Then, the HDR radiance image is reconstructed by weighted summation of the each radiance maps. After that, a novel local tone mapping (TM) operator is proposed for the display of the HDR radiance image. By solving the high-order polynomial, the CRF can be recovered quickly and easily. Taken the local image feature and characteristic of histogram statics into consideration, the proposed TM operator could preserve the local details efficiently. Experimental result demonstrates the effectiveness of our method. By comparison, the method outperforms other methods in terms of imaging quality.

  1. Finding higher order Darboux polynomials for a family of rational first order ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Avellar, J.; Claudino, A. L. G. C.; Duarte, L. G. S.; da Mota, L. A. C. P.

    2015-10-01

    For the Darbouxian methods we are studying here, in order to solve first order rational ordinary differential equations (1ODEs), the most costly (computationally) step is the finding of the needed Darboux polynomials. This can be so grave that it can render the whole approach unpractical. Hereby we introduce a simple heuristics to speed up this process for a class of 1ODEs.

  2. Integrand reduction for two-loop scattering amplitudes through multivariate polynomial division

    NASA Astrophysics Data System (ADS)

    Mastrolia, Pierpaolo; Mirabella, Edoardo; Ossola, Giovanni; Peraro, Tiziano

    2013-04-01

    We describe the application of a novel approach for the reduction of scattering amplitudes, based on multivariate polynomial division, which we have recently presented. This technique yields the complete integrand decomposition for arbitrary amplitudes, regardless of the number of loops. It allows for the determination of the residue at any multiparticle cut, whose knowledge is a mandatory prerequisite for applying the integrand-reduction procedure. By using the division modulo Gröbner basis, we can derive a simple integrand recurrence relation that generates the multiparticle pole decomposition for integrands of arbitrary multiloop amplitudes. We apply the new reduction algorithm to the two-loop planar and nonplanar diagrams contributing to the five-point scattering amplitudes in N=4 super Yang-Mills and N=8 supergravity in four dimensions, whose numerator functions contain up to rank-two terms in the integration momenta. We determine all polynomial residues parametrizing the cuts of the corresponding topologies and subtopologies. We obtain the integral basis for the decomposition of each diagram from the polynomial form of the residues. Our approach is well suited for a seminumerical implementation, and its general mathematical properties provide an effective algorithm for the generalization of the integrand-reduction method to all orders in perturbation theory.

  3. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  4. Local polynomial estimation of heteroscedasticity in a multivariate linear regression model and its applications in economics.

    PubMed

    Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan

    2012-01-01

    Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.

  5. Myocardial strains from 3D displacement encoded magnetic resonance imaging

    PubMed Central

    2012-01-01

    Background The ability to measure and quantify myocardial motion and deformation provides a useful tool to assist in the diagnosis, prognosis and management of heart disease. The recent development of magnetic resonance imaging methods, such as harmonic phase analysis of tagging and displacement encoding with stimulated echoes (DENSE), make detailed non-invasive 3D kinematic analyses of human myocardium possible in the clinic and for research purposes. A robust analysis method is required, however. Methods We propose to estimate strain using a polynomial function which produces local models of the displacement field obtained with DENSE. Given a specific polynomial order, the model is obtained as the least squares fit of the acquired displacement field. These local models are subsequently used to produce estimates of the full strain tensor. Results The proposed method is evaluated on a numerical phantom as well as in vivo on a healthy human heart. The evaluation showed that the proposed method produced accurate results and showed low sensitivity to noise in the numerical phantom. The method was also demonstrated in vivo by assessment of the full strain tensor and to resolve transmural strain variations. Conclusions Strain estimation within a 3D myocardial volume based on polynomial functions yields accurate and robust results when validated on an analytical model. The polynomial field is capable of resolving the measured material positions from the in vivo data, and the obtained in vivo strains values agree with previously reported myocardial strains in normal human hearts. PMID:22533791

  6. Slice regular functions of several Clifford variables

    NASA Astrophysics Data System (ADS)

    Ghiloni, R.; Perotti, A.

    2012-11-01

    We introduce a class of slice regular functions of several Clifford variables. Our approach to the definition of slice functions is based on the concept of stem functions of several variables and on the introduction on real Clifford algebras of a family of commuting complex structures. The class of slice regular functions include, in particular, the family of (ordered) polynomials in several Clifford variables. We prove some basic properties of slice and slice regular functions and give examples to illustrate this function theory. In particular, we give integral representation formulas for slice regular functions and a Hartogs type extension result.

  7. Importance of curvature evaluation scale for predictive simulations of dynamic gas-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Owkes, Mark; Cauble, Eric; Senecal, Jacob; Currie, Robert A.

    2018-07-01

    The effect of the scale used to compute the interfacial curvature on the prediction of dynamic gas-liquid interfaces is investigated. A new interface curvature calculation methodology referred to herein as the Adjustable Curvature Evaluation Scale (ACES) is proposed. ACES leverages a weighted least squares regression to fit a polynomial through points computed on the volume-of-fluid representation of the gas-liquid interface. The interface curvature is evaluated from this polynomial. Varying the least squares weight with distance from the location where the curvature is being computed, adjusts the scale the curvature is evaluated on. ACES is verified using canonical static test cases and compared against second- and fourth-order height function methods. Simulations of dynamic interfaces, including a standing wave and oscillating droplet, are performed to assess the impact of the curvature evaluation scale for predicting interface motions. ACES and the height function methods are combined with two different unsplit geometric volume-of-fluid (VoF) schemes that define the interface on meshes with different levels of refinement. We find that the results depend significantly on curvature evaluation scale. Particularly, the ACES scheme with a properly chosen weight function is accurate, but fails when the scale is too small or large. Surprisingly, the second-order height function method is more accurate than the fourth-order variant for the dynamic tests even though the fourth-order method performs better for static interfaces. Comparing the curvature evaluation scale of the second- and fourth-order height function methods, we find the second-order method is closer to the optimum scale identified with ACES. This result suggests that the curvature scale is driving the accuracy of the dynamics. This work highlights the importance of studying numerical methods with realistic (dynamic) test cases and that the interactions of the various discretizations is as important as the accuracy of one part of the discretization.

  8. High-order regularization in lattice-Boltzmann equations

    NASA Astrophysics Data System (ADS)

    Mattila, Keijo K.; Philippi, Paulo C.; Hegele, Luiz A.

    2017-04-01

    A lattice-Boltzmann equation (LBE) is the discrete counterpart of a continuous kinetic model. It can be derived using a Hermite polynomial expansion for the velocity distribution function. Since LBEs are characterized by discrete, finite representations of the microscopic velocity space, the expansion must be truncated and the appropriate order of truncation depends on the hydrodynamic problem under investigation. Here we consider a particular truncation where the non-equilibrium distribution is expanded on a par with the equilibrium distribution, except that the diffusive parts of high-order non-equilibrium moments are filtered, i.e., only the corresponding advective parts are retained after a given rank. The decomposition of moments into diffusive and advective parts is based directly on analytical relations between Hermite polynomial tensors. The resulting, refined regularization procedure leads to recurrence relations where high-order non-equilibrium moments are expressed in terms of low-order ones. The procedure is appealing in the sense that stability can be enhanced without local variation of transport parameters, like viscosity, or without tuning the simulation parameters based on embedded optimization steps. The improved stability properties are here demonstrated using the perturbed double periodic shear layer flow and the Sod shock tube problem as benchmark cases.

  9. Tachyon inflation in the large-N formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa-Cendejas, Nandinii; De-Santiago, Josue; German, Gabriel

    2015-11-01

    We study tachyon inflation within the large-N formalism, which takes a prescription for the small Hubble flow slow-roll parameter ε{sub 1} as a function of the large number of e-folds N. This leads to a classification of models through their behaviour at large N. In addition to the perturbative N class, we introduce the polynomial and exponential classes for the ε{sub 1} parameter. With this formalism we reconstruct a large number of potentials used previously in the literature for tachyon inflation. We also obtain new families of potentials from the polynomial class. We characterize the realizations of tachyon inflation bymore » computing the usual cosmological observables up to second order in the Hubble flow slow-roll parameters. This allows us to look at observable differences between tachyon and canonical single field inflation. The analysis of observables in light of the Planck 2015 data shows the viability of some of these models, mostly for certain realization of the polynomial and exponential classes.« less

  10. Method for Constructing Composite Response Surfaces by Combining Neural Networks with Polynominal Interpolation or Estimation Techniques

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)

    2007-01-01

    A method and system for data modeling that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The invention partitions the parameters into a first set of s simple parameters, where observable data are expressible as low order polynomials, and c complex parameters that reflect more complicated variation of the observed data. Variation of the data with the simple parameters is modeled using polynomials; and variation of the data with the complex parameters at each vertex is analyzed using a neural network. Variations with the simple parameters and with the complex parameters are expressed using a first sequence of shape functions and a second sequence of neural network functions. The first and second sequences are multiplicatively combined to form a composite response surface, dependent upon the parameter values, that can be used to identify an accurate mode

  11. Polynomial asymptotes of the second kind

    NASA Astrophysics Data System (ADS)

    Dobbs, David E.

    2011-03-01

    This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and conics. Prerequisites include the division algorithm for polynomials with coefficients in the field of real numbers and elementary facts about limits from calculus. This note could be used as enrichment material in courses ranging from Calculus to Real Analysis to Abstract Algebra.

  12. Verifying the error bound of numerical computation implemented in computer systems

    DOEpatents

    Sawada, Jun

    2013-03-12

    A verification tool receives a finite precision definition for an approximation of an infinite precision numerical function implemented in a processor in the form of a polynomial of bounded functions. The verification tool receives a domain for verifying outputs of segments associated with the infinite precision numerical function. The verification tool splits the domain into at least two segments, wherein each segment is non-overlapping with any other segment and converts, for each segment, a polynomial of bounded functions for the segment to a simplified formula comprising a polynomial, an inequality, and a constant for a selected segment. The verification tool calculates upper bounds of the polynomial for the at least two segments, beginning with the selected segment and reports the segments that violate a bounding condition.

  13. Explicit bounds for the positive root of classes of polynomials with applications

    NASA Astrophysics Data System (ADS)

    Herzberger, Jürgen

    2003-03-01

    We consider a certain type of polynomial equations for which there exists--according to Descartes' rule of signs--only one simple positive root. These equations are occurring in Numerical Analysis when calculating or estimating the R-order or Q-order of convergence of certain iterative processes with an error-recursion of special form. On the other hand, these polynomial equations are very common as defining equations for the effective rate of return for certain cashflows like bonds or annuities in finance. The effective rate of interest i* for those cashflows is i*=q*-1, where q* is the unique positive root of such polynomial. We construct bounds for i* for a special problem concerning an ordinary simple annuity which is obtained by changing the conditions of such an annuity with given data applying the German rule (Preisangabeverordnung or short PAngV). Moreover, we consider a number of results for such polynomial roots in Numerical Analysis showing that by a simple variable transformation we can derive several formulas out of earlier results by applying this transformation. The same is possible in finance in order to generalize results to more complicated cashflows.

  14. On computing closed forms for summations. [polynomials and rational functions

    NASA Technical Reports Server (NTRS)

    Moenck, R.

    1977-01-01

    The problem of finding closed forms for a summation involving polynomials and rational functions is considered. A method closely related to Hermite's method for integration of rational functions derived. The method expresses the sum of a rational function as a rational function part and a transcendental part involving derivatives of the gamma function.

  15. Exploring the use of random regression models with legendre polynomials to analyze measures of volume of ejaculate in Holstein bulls.

    PubMed

    Carabaño, M J; Díaz, C; Ugarte, C; Serrano, M

    2007-02-01

    Artificial insemination centers routinely collect records of quantity and quality of semen of bulls throughout the animals' productive period. The goal of this paper was to explore the use of random regression models with orthogonal polynomials to analyze repeated measures of semen production of Spanish Holstein bulls. A total of 8,773 records of volume of first ejaculate (VFE) collected between 12 and 30 mo of age from 213 Spanish Holstein bulls was analyzed under alternative random regression models. Legendre polynomial functions of increasing order (0 to 6) were fitted to the average trajectory, additive genetic and permanent environmental effects. Age at collection and days in production were used as time variables. Heterogeneous and homogeneous residual variances were alternatively assumed. Analyses were carried out within a Bayesian framework. The logarithm of the marginal density and the cross-validation predictive ability of the data were used as model comparison criteria. Based on both criteria, age at collection as a time variable and heterogeneous residuals models are recommended to analyze changes of VFE over time. Both criteria indicated that fitting random curves for genetic and permanent environmental components as well as for the average trajector improved the quality of models. Furthermore, models with a higher order polynomial for the permanent environmental (5 to 6) than for the genetic components (4 to 5) and the average trajectory (2 to 3) tended to perform best. High-order polynomials were needed to accommodate the highly oscillating nature of the phenotypic values. Heritability and repeatability estimates, disregarding the extremes of the studied period, ranged from 0.15 to 0.35 and from 0.20 to 0.50, respectively, indicating that selection for VFE may be effective at any stage. Small differences among models were observed. Apart from the extremes, estimated correlations between ages decreased steadily from 0.9 and 0.4 for measures 1 mo apart to 0.4 and 0.2 for most distant measures for additive genetic and phenotypic components, respectively. Further investigation to account for environmental factors that may be responsible for the oscillating observations of VFE is needed.

  16. Geometrical Method for the Calculation of Spherical Harmonics up to an Arbitrary Degree and Order

    NASA Astrophysics Data System (ADS)

    Svehla, D.

    2009-12-01

    We introduce a novel method for the computation and rotation of spherical harmonics, Legendre polynomials and associated Legendre functions without making use of recursive relations. This novel geometrical approach allows calculation of spherical harmonics without any numerical instability up to an arbitrary degree and order, i.e. up to a degree and order 1e6 and beyond. It is shown, that spherical harmonics can be treated as vectors in Hilbert hyperspace leading to the unitary hermitian rotation matrices with geometric properties.

  17. Analytic complexity of functions of two variables

    NASA Astrophysics Data System (ADS)

    Beloshapka, V. K.

    2007-09-01

    The definition of analytic complexity of an analytic function of two variables is given. It is proved that the class of functions of a chosen complexity is a differentialalgebraic set. A differential polynomial defining the functions of first class is constructed. An algorithm for obtaining relations defining an arbitrary class is described. Examples of functions are given whose order of complexity is equal to zero, one, two, and infinity. It is shown that the formal order of complexity of the Cardano and Ferrari formulas is significantly higher than their analytic complexity. The complexity classes turn out to be invariant with respect to a certain infinite-dimensional transformation pseudogroup. In this connection, we describe the orbits of the action of this pseudogroup in the jets of orders one, two, and three. The notion of complexity order is extended to plane (or “planar”) 3-webs. It is discovered that webs of complexity order one are the hexagonal webs. Some problems are posed.

  18. Pulse transmission transmitter including a higher order time derivate filter

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-23

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  19. Vehicle Sprung Mass Estimation for Rough Terrain

    DTIC Science & Technology

    2011-03-01

    distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended

  20. Well-conditioning global-local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Malekan, Mohammad; Barros, Felicio Bruzzi

    2016-11-01

    Using the locally-enriched strategy to enrich a small/local part of the problem by generalized/extended finite element method (G/XFEM) leads to non-optimal convergence rate and ill-conditioning system of equations due to presence of blending elements. The local enrichment can be chosen from polynomial, singular, branch or numerical types. The so-called stable version of G/XFEM method provides a well-conditioning approach when only singular functions are used in the blending elements. This paper combines numeric enrichment functions obtained from global-local G/XFEM method with the polynomial enrichment along with a well-conditioning approach, stable G/XFEM, in order to show the robustness and effectiveness of the approach. In global-local G/XFEM, the enrichment functions are constructed numerically from the solution of a local problem. Furthermore, several enrichment strategies are adopted along with the global-local enrichment. The results obtained with these enrichments strategies are discussed in detail, considering convergence rate in strain energy, growth rate of condition number, and computational processing. Numerical experiments show that using geometrical enrichment along with stable G/XFEM for global-local strategy improves the convergence rate and the conditioning of the problem. In addition, results shows that using polynomial enrichment for global problem simultaneously with global-local enrichments lead to ill-conditioned system matrices and bad convergence rate.

  1. FIT: Computer Program that Interactively Determines Polynomial Equations for Data which are a Function of Two Independent Variables

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.; Roy, M. L.; Tiffany, S. H.

    1985-01-01

    A computer program for interactively developing least-squares polynomial equations to fit user-supplied data is described. The program is characterized by the ability to compute the polynomial equations of a surface fit through data that are a function of two independent variables. The program utilizes the Langley Research Center graphics packages to display polynomial equation curves and data points, facilitating a qualitative evaluation of the effectiveness of the fit. An explanation of the fundamental principles and features of the program, as well as sample input and corresponding output, are included.

  2. Positivity-preserving High Order Finite Difference WENO Schemes for Compressible Euler Equations

    DTIC Science & Technology

    2011-07-15

    the WENO reconstruction. We assume that there is a polynomial vector qi(x) = (ρi(x), mi(x), Ei(x)) T with degree k which are (k + 1)-th order accurate...i+ 1 2 = qi(xi+ 1 2 ). The existence of such polynomials can be established by interpolation for WENO schemes. For example, for the fifth or- der...WENO scheme, there is a unique vector of polynomials of degree four qi(x) satisfying qi(xi− 1 2 ) = w+ i− 1 2 , qi(xi+ 1 2 ) = w− i+ 1 2 and 1 ∆x ∫ Ij qi

  3. Comparative Analysis of Various Single-tone Frequency Estimation Techniques in High-order Instantaneous Moments Based Phase Estimation Method

    NASA Astrophysics Data System (ADS)

    Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod

    2010-04-01

    For phase estimation in digital holographic interferometry, a high-order instantaneous moments (HIM) based method was recently developed which relies on piecewise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients using the HIM operator. A crucial step in the method is mapping the polynomial coefficient estimation to single-tone frequency determination for which various techniques exist. The paper presents a comparative analysis of the performance of the HIM operator based method in using different single-tone frequency estimation techniques for phase estimation. The analysis is supplemented by simulation results.

  4. Existence of entire solutions of some non-linear differential-difference equations.

    PubMed

    Chen, Minfeng; Gao, Zongsheng; Du, Yunfei

    2017-01-01

    In this paper, we investigate the admissible entire solutions of finite order of the differential-difference equations [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] are two non-zero polynomials, [Formula: see text] is a polynomial and [Formula: see text]. In addition, we investigate the non-existence of entire solutions of finite order of the differential-difference equation [Formula: see text], where [Formula: see text], [Formula: see text] are two non-constant polynomials, [Formula: see text], m , n are positive integers and satisfy [Formula: see text] except for [Formula: see text], [Formula: see text].

  5. Polynomials to model the growth of young bulls in performance tests.

    PubMed

    Scalez, D C B; Fragomeni, B O; Passafaro, T L; Pereira, I G; Toral, F L B

    2014-03-01

    The use of polynomial functions to describe the average growth trajectory and covariance functions of Nellore and MA (21/32 Charolais+11/32 Nellore) young bulls in performance tests was studied. The average growth trajectories and additive genetic and permanent environmental covariance functions were fit with Legendre (linear through quintic) and quadratic B-spline (with two to four intervals) polynomials. In general, the Legendre and quadratic B-spline models that included more covariance parameters provided a better fit with the data. When comparing models with the same number of parameters, the quadratic B-spline provided a better fit than the Legendre polynomials. The quadratic B-spline with four intervals provided the best fit for the Nellore and MA groups. The fitting of random regression models with different types of polynomials (Legendre polynomials or B-spline) affected neither the genetic parameters estimates nor the ranking of the Nellore young bulls. However, fitting different type of polynomials affected the genetic parameters estimates and the ranking of the MA young bulls. Parsimonious Legendre or quadratic B-spline models could be used for genetic evaluation of body weight of Nellore young bulls in performance tests, whereas these parsimonious models were less efficient for animals of the MA genetic group owing to limited data at the extreme ages.

  6. On a Family of Multivariate Modified Humbert Polynomials

    PubMed Central

    Aktaş, Rabia; Erkuş-Duman, Esra

    2013-01-01

    This paper attempts to present a multivariable extension of generalized Humbert polynomials. The results obtained here include various families of multilinear and multilateral generating functions, miscellaneous properties, and also some special cases for these multivariable polynomials. PMID:23935411

  7. Tisserand's polynomials and inclination functions in the theory of artificial earth satellites

    NASA Astrophysics Data System (ADS)

    Aksenov, E. P.

    1986-03-01

    The connection between Tisserand's polynomials and inclination functions in the theory of motion of artificial earth satellites is established in the paper. The most important properties of these special functions of celestial mechanics are presented. The problem of expanding the perturbation function in satellite problems is discussed.

  8. Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Burken, John; Ishihara, Abraham

    2011-01-01

    This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.

  9. Exact Integrations of Polynomials and Symmetric Quadrature Formulas over Arbitrary Polyhedral Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    1997-01-01

    This paper is concerned with two important elements in the high-order accurate spatial discretization of finite volume equations over arbitrary grids. One element is the integration of basis functions over arbitrary domains, which is used in expressing various spatial integrals in terms of discrete unknowns. The other consists of quadrature approximations to those integrals. Only polynomial basis functions applied to polyhedral and polygonal grids are treated here. Non-triangular polygonal faces are subdivided into a union of planar triangular facets, and the resulting triangulated polyhedron is subdivided into a union of tetrahedra. The straight line segment, triangle, and tetrahedron are thus the fundamental shapes that are the building blocks for all integrations and quadrature approximations. Integrals of products up to the fifth order are derived in a unified manner for the three fundamental shapes in terms of the position vectors of vertices. Results are given both in terms of tensor products and products of Cartesian coordinates. The exact polynomial integrals are used to obtain symmetric quadrature approximations of any degree of precision up to five for arbitrary integrals over the three fundamental domains. Using a coordinate-free formulation, simple and rational procedures are developed to derive virtually all quadrature formulas, including some previously unpublished. Four symmetry groups of quadrature points are introduced to derive Gauss formulas, while their limiting forms are used to derive Lobatto formulas. Representative Gauss and Lobatto formulas are tabulated. The relative efficiency of their application to polyhedral and polygonal grids is detailed. The extension to higher degrees of precision is discussed.

  10. An exact general remeshing scheme applied to physically conservative voxelization

    DOE PAGES

    Powell, Devon; Abel, Tom

    2015-05-21

    We present an exact general remeshing scheme to compute analytic integrals of polynomial functions over the intersections between convex polyhedral cells of old and new meshes. In physics applications this allows one to ensure global mass, momentum, and energy conservation while applying higher-order polynomial interpolation. We elaborate on applications of our algorithm arising in the analysis of cosmological N-body data, computer graphics, and continuum mechanics problems. We focus on the particular case of remeshing tetrahedral cells onto a Cartesian grid such that the volume integral of the polynomial density function given on the input mesh is guaranteed to equal themore » corresponding integral over the output mesh. We refer to this as “physically conservative voxelization.” At the core of our method is an algorithm for intersecting two convex polyhedra by successively clipping one against the faces of the other. This algorithm is an implementation of the ideas presented abstractly by Sugihara [48], who suggests using the planar graph representations of convex polyhedra to ensure topological consistency of the output. This makes our implementation robust to geometric degeneracy in the input. We employ a simplicial decomposition to calculate moment integrals up to quadratic order over the resulting intersection domain. We also address practical issues arising in a software implementation, including numerical stability in geometric calculations, management of cancellation errors, and extension to two dimensions. In a comparison to recent work, we show substantial performance gains. We provide a C implementation intended to be a fast, accurate, and robust tool for geometric calculations on polyhedral mesh elements.« less

  11. Beampattern control of a microphone array to minimize secondary source contamination.

    PubMed

    Jordan, Peter; Fitzpatrick, John A; Meskell, Craig

    2003-10-01

    A null-steering technique is adapted and applied to a linear delay-and-sum beamformer in order to measure the noise generated by one of the propellers of a 1/8 scale twin propeller aircraft model. The technique involves shading the linear array using a set of weights, which are calculated according to the locations onto which the nulls need to be steered (in this case onto the second propeller). The technique is based on an established microwave antenna theory, and uses a plane-wave, or far field formulation in order to represent the response of the array by an nth-order polynomial, where n is the number of array elements. The roots of this polynomial correspond to the minima of the array response, and so by an appropriate choice of roots, a polynomial can be generated, the coefficients of which are the weights needed to achieve the prespecified set of null positions. It is shown that, for the technique to work with actual data, the cross-spectral matrix must be conditioned before array shading is implemented. This ensures that the shading function is not distorted by the intrinsic element weighting which can occur as a result of the directional nature of aeroacoustic systems. A difference of 6 dB between measurements before and after null steering shows the technique to have been effective in eliminating the contribution from one of the propellers, thus providing a quantitative measure of the acoustic energy from the other.

  12. Empirical performance of interpolation techniques in risk-neutral density (RND) estimation

    NASA Astrophysics Data System (ADS)

    Bahaludin, H.; Abdullah, M. H.

    2017-03-01

    The objective of this study is to evaluate the empirical performance of interpolation techniques in risk-neutral density (RND) estimation. Firstly, the empirical performance is evaluated by using statistical analysis based on the implied mean and the implied variance of RND. Secondly, the interpolation performance is measured based on pricing error. We propose using the leave-one-out cross-validation (LOOCV) pricing error for interpolation selection purposes. The statistical analyses indicate that there are statistical differences between the interpolation techniques:second-order polynomial, fourth-order polynomial and smoothing spline. The results of LOOCV pricing error shows that interpolation by using fourth-order polynomial provides the best fitting to option prices in which it has the lowest value error.

  13. Limit cycles via higher order perturbations for some piecewise differential systems

    NASA Astrophysics Data System (ADS)

    Buzzi, Claudio A.; Lima, Maurício Firmino Silva; Torregrosa, Joan

    2018-05-01

    A classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x‧ ,y‧) =(- y + εf(x , y , ε) , x + εg(x , y , ε)) . In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n , no more than Nn - 1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Liénard differential systems providing better upper bounds for higher order perturbation in ε, showing also when they are reached. The Poincaré-Pontryagin-Melnikov theory is the main technique used to prove all the results.

  14. Analysis of the numerical differentiation formulas of functions with large gradients

    NASA Astrophysics Data System (ADS)

    Tikhovskaya, S. V.

    2017-10-01

    The solution of a singularly perturbed problem corresponds to a function with large gradients. Therefore the question of interpolation and numerical differentiation of such functions is relevant. The interpolation based on Lagrange polynomials on uniform mesh is widely applied. However, it is known that the use of such interpolation for the function with large gradients leads to estimates that are not uniform with respect to the perturbation parameter and therefore leads to errors of order O(1). To obtain the estimates that are uniform with respect to the perturbation parameter, we can use the polynomial interpolation on a fitted mesh like the piecewise-uniform Shishkin mesh or we can construct on uniform mesh the interpolation formula that is exact on the boundary layer components. In this paper the numerical differentiation formulas for functions with large gradients based on the interpolation formulas on the uniform mesh, which were proposed by A.I. Zadorin, are investigated. The formulas for the first and the second derivatives of the function with two or three interpolation nodes are considered. Error estimates that are uniform with respect to the perturbation parameter are obtained in the particular cases. The numerical results validating the theoretical estimates are discussed.

  15. Independence polynomial and matching polynomial of the Koch network

    NASA Astrophysics Data System (ADS)

    Liao, Yunhua; Xie, Xiaoliang

    2015-11-01

    The lattice gas model and the monomer-dimer model are two classical models in statistical mechanics. It is well known that the partition functions of these two models are associated with the independence polynomial and the matching polynomial in graph theory, respectively. Both polynomials have been shown to belong to the “#P-complete” class, which indicate the problems are computationally “intractable”. We consider these two polynomials of the Koch networks which are scale-free with small-world effects. Explicit recurrences are derived, and explicit formulae are presented for the number of independent sets of a certain type.

  16. Wavefront analysis from its slope data

    NASA Astrophysics Data System (ADS)

    Mahajan, Virendra N.; Acosta, Eva

    2017-08-01

    In the aberration analysis of a wavefront over a certain domain, the polynomials that are orthogonal over and represent balanced wave aberrations for this domain are used. For example, Zernike circle polynomials are used for the analysis of a circular wavefront. Similarly, the annular polynomials are used to analyze the annular wavefronts for systems with annular pupils, as in a rotationally symmetric two-mirror system, such as the Hubble space telescope. However, when the data available for analysis are the slopes of a wavefront, as, for example, in a Shack- Hartmann sensor, we can integrate the slope data to obtain the wavefront data, and then use the orthogonal polynomials to obtain the aberration coefficients. An alternative is to find vector functions that are orthogonal to the gradients of the wavefront polynomials, and obtain the aberration coefficients directly as the inner products of these functions with the slope data. In this paper, we show that an infinite number of vector functions can be obtained in this manner. We show further that the vector functions that are irrotational are unique and propagate minimum uncorrelated additive random noise from the slope data to the aberration coefficients.

  17. On the functional optimization of a certain class of nonstationary spatial functions

    USGS Publications Warehouse

    Christakos, G.; Paraskevopoulos, P.N.

    1987-01-01

    Procedures are developed in order to obtain optimal estimates of linear functionals for a wide class of nonstationary spatial functions. These procedures rely on well-established constrained minimum-norm criteria, and are applicable to multidimensional phenomena which are characterized by the so-called hypothesis of inherentity. The latter requires elimination of the polynomial, trend-related components of the spatial function leading to stationary quantities, and also it generates some interesting mathematics within the context of modelling and optimization in several dimensions. The arguments are illustrated using various examples, and a case study computed in detail. ?? 1987 Plenum Publishing Corporation.

  18. Discrete-time state estimation for stochastic polynomial systems over polynomial observations

    NASA Astrophysics Data System (ADS)

    Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.

    2018-07-01

    This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.

  19. Thermodynamic characterization of networks using graph polynomials

    NASA Astrophysics Data System (ADS)

    Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.

    2015-09-01

    In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.

  20. Extending Romanovski polynomials in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quesne, C.

    2013-12-15

    Some extensions of the (third-class) Romanovski polynomials (also called Romanovski/pseudo-Jacobi polynomials), which appear in bound-state wavefunctions of rationally extended Scarf II and Rosen-Morse I potentials, are considered. For the former potentials, the generalized polynomials satisfy a finite orthogonality relation, while for the latter an infinite set of relations among polynomials with degree-dependent parameters is obtained. Both types of relations are counterparts of those known for conventional polynomials. In the absence of any direct information on the zeros of the Romanovski polynomials present in denominators, the regularity of the constructed potentials is checked by taking advantage of the disconjugacy properties ofmore » second-order differential equations of Schrödinger type. It is also shown that on going from Scarf I to Scarf II or from Rosen-Morse II to Rosen-Morse I potentials, the variety of rational extensions is narrowed down from types I, II, and III to type III only.« less

  1. Solving the interval type-2 fuzzy polynomial equation using the ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim

    2014-07-01

    Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.

  2. Analytic Evolution of Singular Distribution Amplitudes in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandogan Kunkel, Asli

    2014-08-01

    Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standardmore » method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.« less

  3. Direct calculation of modal parameters from matrix orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    El-Kafafy, Mahmoud; Guillaume, Patrick

    2011-10-01

    The object of this paper is to introduce a new technique to derive the global modal parameter (i.e. system poles) directly from estimated matrix orthogonal polynomials. This contribution generalized the results given in Rolain et al. (1994) [5] and Rolain et al. (1995) [6] for scalar orthogonal polynomials to multivariable (matrix) orthogonal polynomials for multiple input multiple output (MIMO) system. Using orthogonal polynomials improves the numerical properties of the estimation process. However, the derivation of the modal parameters from the orthogonal polynomials is in general ill-conditioned if not handled properly. The transformation of the coefficients from orthogonal polynomials basis to power polynomials basis is known to be an ill-conditioned transformation. In this paper a new approach is proposed to compute the system poles directly from the multivariable orthogonal polynomials. High order models can be used without any numerical problems. The proposed method will be compared with existing methods (Van Der Auweraer and Leuridan (1987) [4] Chen and Xu (2003) [7]). For this comparative study, simulated as well as experimental data will be used.

  4. Neck curve polynomials in neck rupture model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurniadi, Rizal; Perkasa, Yudha S.; Waris, Abdul

    2012-06-06

    The Neck Rupture Model is a model that explains the scission process which has smallest radius in liquid drop at certain position. Old fashion of rupture position is determined randomly so that has been called as Random Neck Rupture Model (RNRM). The neck curve polynomials have been employed in the Neck Rupture Model for calculation the fission yield of neutron induced fission reaction of {sup 280}X{sub 90} with changing of order of polynomials as well as temperature. The neck curve polynomials approximation shows the important effects in shaping of fission yield curve.

  5. Polynomial Asymptotes of the Second Kind

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2011-01-01

    This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…

  6. Comparison of random regression test-day models for Polish Black and White cattle.

    PubMed

    Strabel, T; Szyda, J; Ptak, E; Jamrozik, J

    2005-10-01

    Test-day milk yields of first-lactation Black and White cows were used to select the model for routine genetic evaluation of dairy cattle in Poland. The population of Polish Black and White cows is characterized by small herd size, low level of production, and relatively early peak of lactation. Several random regression models for first-lactation milk yield were initially compared using the "percentage of squared bias" criterion and the correlations between true and predicted breeding values. Models with random herd-test-date effects, fixed age-season and herd-year curves, and random additive genetic and permanent environmental curves (Legendre polynomials of different orders were used for all regressions) were chosen for further studies. Additional comparisons included analyses of the residuals and shapes of variance curves in days in milk. The low production level and early peak of lactation of the breed required the use of Legendre polynomials of order 5 to describe age-season lactation curves. For the other curves, Legendre polynomials of order 3 satisfactorily described daily milk yield variation. Fitting third-order polynomials for the permanent environmental effect made it possible to adequately account for heterogeneous residual variance at different stages of lactation.

  7. Generic expansion of the Jastrow correlation factor in polynomials satisfying symmetry and cusp conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüchow, Arne, E-mail: luechow@rwth-aachen.de; Jülich Aachen Research Alliance; Sturm, Alexander

    2015-02-28

    Jastrow correlation factors play an important role in quantum Monte Carlo calculations. Together with an orbital based antisymmetric function, they allow the construction of highly accurate correlation wave functions. In this paper, a generic expansion of the Jastrow correlation function in terms of polynomials that satisfy both the electron exchange symmetry constraint and the cusp conditions is presented. In particular, an expansion of the three-body electron-electron-nucleus contribution in terms of cuspless homogeneous symmetric polynomials is proposed. The polynomials can be expressed in fairly arbitrary scaling function allowing a generic implementation of the Jastrow factor. It is demonstrated with a fewmore » examples that the new Jastrow factor achieves 85%–90% of the total correlation energy in a variational quantum Monte Carlo calculation and more than 90% of the diffusion Monte Carlo correlation energy.« less

  8. LMI-based stability analysis of fuzzy-model-based control systems using approximated polynomial membership functions.

    PubMed

    Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles

    2011-06-01

    Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.

  9. A generalization of algebraic surface drawing

    NASA Technical Reports Server (NTRS)

    Blinn, J. F.

    1982-01-01

    An implicit surface mathematical description of three-dimensional space is defined in terms of all points which satisfy some equation F(x, y, z) equals 0. This form is ideal for space-shaded picture drawing, where the coordinates are substituted for x and y and the equation is solved for z. A new algorithm is presented which is applicable to functional forms other than those of first- and second-order polynomial functions, such as the summation of several Gaussian density distributions. The algorithm was created in order to model electron density maps of molecular structures, but is shown to be capable of generating shapes of esthetic interest.

  10. Adaptive Window Zero-Crossing-Based Instantaneous Frequency Estimation

    NASA Astrophysics Data System (ADS)

    Sekhar, S. Chandra; Sreenivas, TV

    2004-12-01

    We address the problem of estimating instantaneous frequency (IF) of a real-valued constant amplitude time-varying sinusoid. Estimation of polynomial IF is formulated using the zero-crossings of the signal. We propose an algorithm to estimate nonpolynomial IF by local approximation using a low-order polynomial, over a short segment of the signal. This involves the choice of window length to minimize the mean square error (MSE). The optimal window length found by directly minimizing the MSE is a function of the higher-order derivatives of the IF which are not available a priori. However, an optimum solution is formulated using an adaptive window technique based on the concept of intersection of confidence intervals. The adaptive algorithm enables minimum MSE-IF (MMSE-IF) estimation without requiring a priori information about the IF. Simulation results show that the adaptive window zero-crossing-based IF estimation method is superior to fixed window methods and is also better than adaptive spectrogram and adaptive Wigner-Ville distribution (WVD)-based IF estimators for different signal-to-noise ratio (SNR).

  11. Simultaneous estimation of multiple phases in digital holographic interferometry using state space analysis

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2018-05-01

    A new approach is proposed for the multiple phase estimation from a multicomponent exponential phase signal recorded in multi-beam digital holographic interferometry. It is capable of providing multidimensional measurements in a simultaneous manner from a single recording of the exponential phase signal encoding multiple phases. Each phase within a small window around each pixel is appproximated with a first order polynomial function of spatial coordinates. The problem of accurate estimation of polynomial coefficients, and in turn the unwrapped phases, is formulated as a state space analysis wherein the coefficients and signal amplitudes are set as the elements of a state vector. The state estimation is performed using the extended Kalman filter. An amplitude discrimination criterion is utilized in order to unambiguously estimate the coefficients associated with the individual signal components. The performance of proposed method is stable over a wide range of the ratio of signal amplitudes. The pixelwise phase estimation approach of the proposed method allows it to handle the fringe patterns that may contain invalid regions.

  12. Polynomial Chaos Based Acoustic Uncertainty Predictions from Ocean Forecast Ensembles

    NASA Astrophysics Data System (ADS)

    Dennis, S.

    2016-02-01

    Most significant ocean acoustic propagation occurs at tens of kilometers, at scales small compared basin and to most fine scale ocean modeling. To address the increased emphasis on uncertainty quantification, for example transmission loss (TL) probability density functions (PDF) within some radius, a polynomial chaos (PC) based method is utilized. In order to capture uncertainty in ocean modeling, Navy Coastal Ocean Model (NCOM) now includes ensembles distributed to reflect the ocean analysis statistics. Since the ensembles are included in the data assimilation for the new forecast ensembles, the acoustic modeling uses the ensemble predictions in a similar fashion for creating sound speed distribution over an acoustically relevant domain. Within an acoustic domain, singular value decomposition over the combined time-space structure of the sound speeds can be used to create Karhunen-Loève expansions of sound speed, subject to multivariate normality testing. These sound speed expansions serve as a basis for Hermite polynomial chaos expansions of derived quantities, in particular TL. The PC expansion coefficients result from so-called non-intrusive methods, involving evaluation of TL at multi-dimensional Gauss-Hermite quadrature collocation points. Traditional TL calculation from standard acoustic propagation modeling could be prohibitively time consuming at all multi-dimensional collocation points. This method employs Smolyak order and gridding methods to allow adaptive sub-sampling of the collocation points to determine only the most significant PC expansion coefficients to within a preset tolerance. Practically, the Smolyak order and grid sizes grow only polynomially in the number of Karhunen-Loève terms, alleviating the curse of dimensionality. The resulting TL PC coefficients allow the determination of TL PDF normality and its mean and standard deviation. In the non-normal case, PC Monte Carlo methods are used to rapidly establish the PDF. This work was sponsored by the Office of Naval Research

  13. Rows of optical vortices from elliptically perturbing a high-order beam

    NASA Astrophysics Data System (ADS)

    Dennis, Mark R.

    2006-05-01

    An optical vortex (phase singularity) with a high topological strength resides on the axis of a high-order light beam. The breakup of this vortex under elliptic perturbation into a straight row of unit-strength vortices is described. This behavior is studied in helical Ince-Gauss beams and astigmatic, generalized Hermite-Laguerre-Gauss beams, which are perturbations of Laguerre-Gauss beams. Approximations of these beams are derived for small perturbations, in which a neighborhood of the axis can be approximated by a polynomial in the complex plane: a Chebyshev polynomial for Ince-Gauss beams, and a Hermite polynomial for astigmatic beams.

  14. Dispersion relations for a general anisotropic distribution function represented as a sum over Legendre polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaisultanov, Rashid; Eichler, David

    2011-03-15

    The dielectric tensor is obtained for a general anisotropic distribution function that is represented as a sum over Legendre polynomials. The result is valid over all of k-space. We obtain growth rates for the Weibel instability for some basic examples of distribution functions.

  15. Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations

    NASA Astrophysics Data System (ADS)

    Ariznabarreta, Gerardo; García-Ardila, Juan C.; Mañas, Manuel; Marcellán, Francisco

    2018-05-01

    In this paper, Geronimus–Uvarov perturbations for matrix orthogonal polynomials on the real line are studied and then applied to the analysis of non-Abelian integrable hierarchies. The orthogonality is understood in full generality, i.e. in terms of a nondegenerate continuous sesquilinear form, determined by a quasidefinite matrix of bivariate generalized functions with a well-defined support. We derive Christoffel-type formulas that give the perturbed matrix biorthogonal polynomials and their norms in terms of the original ones. The keystone for this finding is the Gauss–Borel factorization of the Gram matrix. Geronimus–Uvarov transformations are considered in the context of the 2D non-Abelian Toda lattice and noncommutative KP hierarchies. The interplay between transformations and integrable flows is discussed. Miwa shifts, τ-ratio matrix functions and Sato formulas are given. Bilinear identities, involving Geronimus–Uvarov transformations, first for the Baker functions, then secondly for the biorthogonal polynomials and its second kind functions, and finally for the τ-ratio matrix functions, are found.

  16. Correlations of RMT characteristic polynomials and integrability: Hermitean matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, Vladimir Al., E-mail: Vladimir.Osipov@uni-due.d; Kanzieper, Eugene, E-mail: Eugene.Kanzieper@hit.ac.i; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100

    Integrable theory is formulated for correlation functions of characteristic polynomials associated with invariant non-Gaussian ensembles of Hermitean random matrices. By embedding the correlation functions of interest into a more general theory of {tau} functions, we (i) identify a zoo of hierarchical relations satisfied by {tau} functions in an abstract infinite-dimensional space and (ii) present a technology to translate these relations into hierarchically structured nonlinear differential equations describing the correlation functions of characteristic polynomials in the physical, spectral space. Implications of this formalism for fermionic, bosonic, and supersymmetric variations of zero-dimensional replica field theories are discussed at length. A particular emphasismore » is placed on the phenomenon of fermionic-bosonic factorisation of random-matrix-theory correlation functions.« less

  17. Interpolation Hermite Polynomials For Finite Element Method

    NASA Astrophysics Data System (ADS)

    Gusev, Alexander; Vinitsky, Sergue; Chuluunbaatar, Ochbadrakh; Chuluunbaatar, Galmandakh; Gerdt, Vladimir; Derbov, Vladimir; Góźdź, Andrzej; Krassovitskiy, Pavel

    2018-02-01

    We describe a new algorithm for analytic calculation of high-order Hermite interpolation polynomials of the simplex and give their classification. A typical example of triangle element, to be built in high accuracy finite element schemes, is given.

  18. On the Numerical Formulation of Parametric Linear Fractional Transformation (LFT) Uncertainty Models for Multivariate Matrix Polynomial Problems

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    1998-01-01

    Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.

  19. Pseudo spectral collocation with Maxwell polynomials for kinetic equations with energy diffusion

    NASA Astrophysics Data System (ADS)

    Sánchez-Vizuet, Tonatiuh; Cerfon, Antoine J.

    2018-02-01

    We study the approximation and stability properties of a recently popularized discretization strategy for the speed variable in kinetic equations, based on pseudo-spectral collocation on a grid defined by the zeros of a non-standard family of orthogonal polynomials called Maxwell polynomials. Taking a one-dimensional equation describing energy diffusion due to Fokker-Planck collisions with a Maxwell-Boltzmann background distribution as the test bench for the performance of the scheme, we find that Maxwell based discretizations outperform other commonly used schemes in most situations, often by orders of magnitude. This provides a strong motivation for their use in high-dimensional gyrokinetic simulations. However, we also show that Maxwell based schemes are subject to a non-modal time stepping instability in their most straightforward implementation, so that special care must be given to the discrete representation of the linear operators in order to benefit from the advantages provided by Maxwell polynomials.

  20. Automatic differentiation for Fourier series and the radii polynomial approach

    NASA Astrophysics Data System (ADS)

    Lessard, Jean-Philippe; Mireles James, J. D.; Ransford, Julian

    2016-11-01

    In this work we develop a computer-assisted technique for proving existence of periodic solutions of nonlinear differential equations with non-polynomial nonlinearities. We exploit ideas from the theory of automatic differentiation in order to formulate an augmented polynomial system. We compute a numerical Fourier expansion of the periodic orbit for the augmented system, and prove the existence of a true solution nearby using an a-posteriori validation scheme (the radii polynomial approach). The problems considered here are given in terms of locally analytic vector fields (i.e. the field is analytic in a neighborhood of the periodic orbit) hence the computer-assisted proofs are formulated in a Banach space of sequences satisfying a geometric decay condition. In order to illustrate the use and utility of these ideas we implement a number of computer-assisted existence proofs for periodic orbits of the Planar Circular Restricted Three-Body Problem (PCRTBP).

  1. Ferroic phase transition of tetragonal Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics: Factors determining Curie temperature

    NASA Astrophysics Data System (ADS)

    Yu, Jian; An, Fei-fei; Cao, Fei

    2014-05-01

    In this paper, ferroelectric phase transitions of Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 with x ≤ 0.20 ceramics were experimentally measured and a change from first-order to relaxor was found at a critical composition x ˜ 0.19. With increasing Ca content of x ≤ 0.18, Curie temperature and tetragonality was found decrease but piezoelectric constant and dielectric constant increase in a quadratic polynomial relationship as a function of x, while the ferroic Curie temperature and ferroelastic ordering parameter of tetragonality are correlated in a quadratic polynomial relationship. Near the critical composition of ferroic phase transition from first-order to relaxor, the Pb0.42Ca0.18Bi0.4(Ti0.75Zn0.15Fe0.1)O3 and 1 mol % Nb + 0.5 mol % Mg co-doped Pb0.44Ca0.16Bi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics exhibit a better anisotropic piezoelectric properties than those commercial piezoceramics of modified-PbTiO3 and PbNb2O6. At last, those factors including reduced mass of unit cell, mismatch between cation size and anion cage size, which affect ferroic Curie temperature and ferroelastic ordering parameter (tetragonality) of tetragonal ABO3 perovskites, are analyzed on the basis of first principle effective Hamiltonian and the reduced mass of unit cell is argued a more universal variable than concentration to determine Curie temperature in a quadratic polynomial relationship over various perovskite-structured solid solutions.

  2. Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

    NASA Astrophysics Data System (ADS)

    Tang, Kunkun; Congedo, Pietro M.; Abgrall, Rémi

    2016-06-01

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

  3. Roots of polynomials by ratio of successive derivatives

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Putt, C. W.

    1972-01-01

    An order of magnitude study of the ratios of successive polynomial derivatives yields information about the number of roots at an approached root point and the approximate location of a root point from a nearby point. The location approximation improves as a root is approached, so a powerful convergence procedure becomes available. These principles are developed into a computer program which finds the roots of polynomials with real number coefficients.

  4. Characteristic of entire corneal topography and tomography for the detection of sub-clinical keratoconus with Zernike polynomials using Pentacam.

    PubMed

    Xu, Zhe; Li, Weibo; Jiang, Jun; Zhuang, Xiran; Chen, Wei; Peng, Mei; Wang, Jianhua; Lu, Fan; Shen, Meixiao; Wang, Yuanyuan

    2017-11-28

    The study aimed to characterize the entire corneal topography and tomography for the detection of sub-clinical keratoconus (KC) with a Zernike application method. Normal subjects (n = 147; 147 eyes), sub-clinical KC patients (n = 77; 77 eyes), and KC patients (n = 139; 139 eyes) were imaged with the Pentacam HR system. The entire corneal data of pachymetry and elevation of both the anterior and posterior surfaces were exported from the Pentacam HR software. Zernike polynomials fitting was used to quantify the 3D distribution of the corneal thickness and surface elevation. The root mean square (RMS) values for each order and the total high-order irregularity were calculated. Multimeric discriminant functions combined with individual indices were built using linear step discriminant analysis. Receiver operating characteristic curves determined the diagnostic accuracy (area under the curve, AUC). The 3rd-order RMS of the posterior surface (AUC: 0.928) obtained the highest discriminating capability in sub-clinical KC eyes. The multimeric function, which consisted of the Zernike fitting indices of corneal posterior elevation, showed the highest discriminant ability (AUC: 0.951). Indices generated from the elevation of posterior surface and thickness measurements over the entire cornea using the Zernike method based on the Pentacam HR system were able to identify very early KC.

  5. Deformed oscillator algebra approach of some quantum superintegrable Lissajous systems on the sphere and of their rational extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be

    2015-06-15

    We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less

  6. On method of solving third-order ordinary differential equations directly using Bernstein polynomials

    NASA Astrophysics Data System (ADS)

    Khataybeh, S. N.; Hashim, I.

    2018-04-01

    In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.

  7. Random regression analyses using B-splines functions to model growth from birth to adult age in Canchim cattle.

    PubMed

    Baldi, F; Alencar, M M; Albuquerque, L G

    2010-12-01

    The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.

  8. Umbral Calculus and Holonomic Modules in Positive Characteristic

    NASA Astrophysics Data System (ADS)

    Kochubei, Anatoly N.

    2006-03-01

    In the framework of analysis over local fields of positive characteristic, we develop algebraic tools for introducing and investigating various polynomial systems. In this survey paper we describe a function field version of umbral calculus developed on the basis of a relation of binomial type satisfied by the Carlitz polynomials. We consider modules over the Weyl-Carlitz ring, a function field counterpart of the Weyl algebra. It is shown that some basic objects of function field arithmetic, like the Carlitz module, Thakur's hypergeometric polynomials, and analogs of binomial coefficients arising in the positive characteristic version of umbral calculus, generate holonomic modules.

  9. Polynomial solution of quantum Grassmann matrices

    NASA Astrophysics Data System (ADS)

    Tierz, Miguel

    2017-05-01

    We study a model of quantum mechanical fermions with matrix-like index structure (with indices N and L) and quartic interactions, recently introduced by Anninos and Silva. We compute the partition function exactly with q-deformed orthogonal polynomials (Stieltjes-Wigert polynomials), for different values of L and arbitrary N. From the explicit evaluation of the thermal partition function, the energy levels and degeneracies are determined. For a given L, the number of states of different energy is quadratic in N, which implies an exponential degeneracy of the energy levels. We also show that at high-temperature we have a Gaussian matrix model, which implies a symmetry that swaps N and L, together with a Wick rotation of the spectral parameter. In this limit, we also write the partition function, for generic L and N, in terms of a single generalized Hermite polynomial.

  10. Asymptotic safety of quantum gravity beyond Ricci scalars

    NASA Astrophysics Data System (ADS)

    Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph

    2018-04-01

    We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.

  11. Polynomials for crystal frameworks and the rigid unit mode spectrum

    PubMed Central

    Power, S. C.

    2014-01-01

    To each discrete translationally periodic bar-joint framework in , we associate a matrix-valued function defined on the d-torus. The rigid unit mode (RUM) spectrum of is defined in terms of the multi-phases of phase-periodic infinitesimal flexes and is shown to correspond to the singular points of the function and also to the set of wavevectors of harmonic excitations which have vanishing energy in the long wavelength limit. To a crystal framework in Maxwell counting equilibrium, which corresponds to being square, the determinant of gives rise to a unique multi-variable polynomial . For ideal zeolites, the algebraic variety of zeros of on the d-torus coincides with the RUM spectrum. The matrix function is related to other aspects of idealized framework rigidity and flexibility, and in particular leads to an explicit formula for the number of supercell-periodic floppy modes. In the case of certain zeolite frameworks in dimensions two and three, direct proofs are given to show the maximal floppy mode property (order N). In particular, this is the case for the cubic symmetry sodalite framework and some other idealized zeolites. PMID:24379422

  12. Optimization of Cubic Polynomial Functions without Calculus

    ERIC Educational Resources Information Center

    Taylor, Ronald D., Jr.; Hansen, Ryan

    2008-01-01

    In algebra and precalculus courses, students are often asked to find extreme values of polynomial functions in the context of solving an applied problem; but without the notion of derivative, something is lost. Either the functions are reduced to quadratics, since students know the formula for the vertex of a parabola, or solutions are…

  13. A Stochastic Mixed Finite Element Heterogeneous Multiscale Method for Flow in Porous Media

    DTIC Science & Technology

    2010-08-01

    applicable for flow in porous media has drawn significant interest in the last few years. Several techniques like generalized polynomial chaos expansions (gPC...represents the stochastic solution as a polynomial approxima- tion. This interpolant is constructed via independent function calls to the de- terministic...of orthogonal polynomials [34,38] or sparse grid approximations [39–41]. It is well known that the global polynomial interpolation cannot resolve lo

  14. A Set of Orthogonal Polynomials That Generalize the Racah Coefficients or 6 - j Symbols.

    DTIC Science & Technology

    1978-03-01

    Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966. [11] D. Stanton, Some basic hypergeometric polynomials arising from... Some bas ic hypergeometr ic an a logues of the classical orthogonal polynomials and applications , to appear. [3] C. de Boor and G. H. Golub , The...Report #1833 A SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE THE RACAR COEFFICIENTS OR 6 — j SYMBOLS Richard Askey and James Wilson •

  15. Experimental determination of the particle motions associated with the low order acoustic modes in enclosures

    NASA Technical Reports Server (NTRS)

    Byrne, K. P.; Marshall, S. E.

    1983-01-01

    A procedure for experimentally determining, in terms of the particle motions, the shapes of the low order acoustic modes in enclosures is described. The procedure is based on finding differentiable functions which approximate the shape functions of the low order acoustic modes when these modes are defined in terms of the acoustic pressure. The differentiable approximating functions are formed from polynomials which are fitted by a least squares procedure to experimentally determined values which define the shapes of the low order acoustic modes in terms of the acoustic pressure. These experimentally determined values are found by a conventional technique in which the transfer functions, which relate the acoustic pressures at an array of points in the enclosure to the volume velocity of a fixed point source, are measured. The gradient of the function which approximates the shape of a particular mode in terms of the acoustic pressure is evaluated to give the mode shape in terms of the particle motion. The procedure was tested by using it to experimentally determine the shapes of the low order acoustic modes in a small rectangular enclosure.

  16. Gaussian quadrature for multiple orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Coussement, Jonathan; van Assche, Walter

    2005-06-01

    We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.

  17. Constant-Round Concurrent Zero Knowledge From Falsifiable Assumptions

    DTIC Science & Technology

    2013-01-01

    assumptions (e.g., [DS98, Dam00, CGGM00, Gol02, PTV12, GJO+12]), or in alternative models (e.g., super -polynomial-time simulation [Pas03b, PV10]). In the...T (·)-time computations, where T (·) is some “nice” (slightly) super -polynomial function (e.g., T (n) = nlog log logn). We refer to such proof...put a cap on both using a (slightly) super -polynomial function, and thus to guarantee soundness of the concurrent zero-knowledge protocol, we need

  18. Orthogonal Polynomials Associated with Complementary Chain Sequences

    NASA Astrophysics Data System (ADS)

    Behera, Kiran Kumar; Sri Ranga, A.; Swaminathan, A.

    2016-07-01

    Using the minimal parameter sequence of a given chain sequence, we introduce the concept of complementary chain sequences, which we view as perturbations of chain sequences. Using the relation between these complementary chain sequences and the corresponding Verblunsky coefficients, the para-orthogonal polynomials and the associated Szegő polynomials are analyzed. Two illustrations, one involving Gaussian hypergeometric functions and the other involving Carathéodory functions are also provided. A connection between these two illustrations by means of complementary chain sequences is also observed.

  19. Asymptotically extremal polynomials with respect to varying weights and application to Sobolev orthogonality

    NASA Astrophysics Data System (ADS)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2008-10-01

    We study the asymptotic behavior of the zeros of a sequence of polynomials whose weighted norms, with respect to a sequence of weight functions, have the same nth root asymptotic behavior as the weighted norms of certain extremal polynomials. This result is applied to obtain the (contracted) weak zero distribution for orthogonal polynomials with respect to a Sobolev inner product with exponential weights of the form e-[phi](x), giving a unified treatment for the so-called Freud (i.e., when [phi] has polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) cases. In addition, we provide a new proof for the bound of the distance of the zeros to the convex hull of the support for these Sobolev orthogonal polynomials.

  20. A study of the orthogonal polynomials associated with the quantum harmonic oscillator on constant curvature spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vignat, C.; Lamberti, P. W.

    2009-10-15

    Recently, Carinena, et al. [Ann. Phys. 322, 434 (2007)] introduced a new family of orthogonal polynomials that appear in the wave functions of the quantum harmonic oscillator in two-dimensional constant curvature spaces. They are a generalization of the Hermite polynomials and will be called curved Hermite polynomials in the following. We show that these polynomials are naturally related to the relativistic Hermite polynomials introduced by Aldaya et al. [Phys. Lett. A 156, 381 (1991)], and thus are Jacobi polynomials. Moreover, we exhibit a natural bijection between the solutions of the quantum harmonic oscillator on negative curvature spaces and on positivemore » curvature spaces. At last, we show a maximum entropy property for the ground states of these oscillators.« less

  1. New Families of Skewed Higher-Order Kernel Estimators to Solve the BSS/ICA Problem for Multimodal Sources Mixtures.

    PubMed

    Jabbar, Ahmed Najah

    2018-04-13

    This letter suggests two new types of asymmetrical higher-order kernels (HOK) that are generated using the orthogonal polynomials Laguerre (positive or right skew) and Bessel (negative or left skew). These skewed HOK are implemented in the blind source separation/independent component analysis (BSS/ICA) algorithm. The tests for these proposed HOK are accomplished using three scenarios to simulate a real environment using actual sound sources, an environment of mixtures of multimodal fast-changing probability density function (pdf) sources that represent a challenge to the symmetrical HOK, and an environment of an adverse case (near gaussian). The separation is performed by minimizing the mutual information (MI) among the mixed sources. The performance of the skewed kernels is compared to the performance of the standard kernels such as Epanechnikov, bisquare, trisquare, and gaussian and the performance of the symmetrical HOK generated using the polynomials Chebyshev1, Chebyshev2, Gegenbauer, Jacobi, and Legendre to the tenth order. The gaussian HOK are generated using the Hermite polynomial and the Wand and Schucany procedure. The comparison among the 96 kernels is based on the average intersymbol interference ratio (AISIR) and the time needed to complete the separation. In terms of AISIR, the skewed kernels' performance is better than that of the standard kernels and rivals most of the symmetrical kernels' performance. The importance of these new skewed HOK is manifested in the environment of the multimodal pdf mixtures. In such an environment, the skewed HOK come in first place compared with the symmetrical HOK. These new families can substitute for symmetrical HOKs in such applications.

  2. Improved Potential Energy Surface of Ozone Constructed Using the Fitting by Permutationally Invariant Polynomial Function

    DOE PAGES

    Ayouz, Mehdi; Babikov, Dmitri

    2012-01-01

    New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are added tomore » the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less

  3. Fast and accurate fitting and filtering of noisy exponentials in Legendre space.

    PubMed

    Bao, Guobin; Schild, Detlev

    2014-01-01

    The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally, filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift characteristic for conventional lowpass filters.

  4. Polynomial dual energy inverse functions for bone Calcium/Phosphorus ratio determination and experimental evaluation.

    PubMed

    Sotiropoulou, P; Fountos, G; Martini, N; Koukou, V; Michail, C; Kandarakis, I; Nikiforidis, G

    2016-12-01

    An X-ray dual energy (XRDE) method was examined, using polynomial nonlinear approximation of inverse functions for the determination of the bone Calcium-to-Phosphorus (Ca/P) mass ratio. Inverse fitting functions with the least-squares estimation were used, to determine calcium and phosphate thicknesses. The method was verified by measuring test bone phantoms with a dedicated dual energy system and compared with previously published dual energy data. The accuracy in the determination of the calcium and phosphate thicknesses improved with the polynomial nonlinear inverse function method, introduced in this work, (ranged from 1.4% to 6.2%), compared to the corresponding linear inverse function method (ranged from 1.4% to 19.5%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Analytic Development of a Reference Profile for the First Entry in a Skip Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Garcia-Llama, Eduardo

    2010-01-01

    This note shows that a feasible reference drag profile for the first entry portion of a skip entry can be generated as a polynomial expression of the velocity. The coefficients of that polynomial are found through the resolution of a system composed of m + 1 equations, where m is the degree of the drag polynomial. It has been shown that a minimum of five equations (m = 4) are required to establish the range and the initial and final conditions on velocity and flight path angle. It has been shown that at least one constraint on the trajectory can be imposed through the addition of one extra equation in the system, which must be accompanied by the increase in the degree of the drag polynomial. In order to simplify the resolution of the system of equations, the drag was considered as being a probability density function of the velocity, with the velocity as a distribution function of the drag. Combining this notion with the introduction of empirically derived constants, it has been shown that the system of equations required to generate the drag profile can be successfully reduced to a system of linear algebraic equations. For completeness, the resulting drag profiles have been flown using the feedback linearization method of differential geometric control as a guidance law with the error dynamics of a second order homogeneous equation in the form of a damped oscillator. Satisfactory results were achieved when the gains in the error dynamics were changed at a certain point along the trajectory that is dependent on the velocity and the curvature of the drag as a function of the velocity. Future work should study the capacity to update the drag profile in flight when dispersions are introduced. Also, future studies should attempt to link the first entry, as presented and controlled in this note, with a more standard control concept for the second entry, such as the Apollo entry guidance, to try to assess the overall skip entry performance. A guidance law that includes an integral feedback term, as is the case in the actual Space Shuttle entry guidance and as is proposed in Ref 29, could be tried in future studies to assess whether its use results in an improvement of the tracking performance, and to evaluate the design needs when determining the control gains.

  6. Bicubic uniform B-spline wavefront fitting technology applied in computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Cao, Hui; Sun, Jun-qiang; Chen, Guo-jie

    2006-02-01

    This paper presented a bicubic uniform B-spline wavefront fitting technology to figure out the analytical expression for object wavefront used in Computer-Generated Holograms (CGHs). In many cases, to decrease the difficulty of optical processing, off-axis CGHs rather than complex aspherical surface elements are used in modern advanced military optical systems. In order to design and fabricate off-axis CGH, we have to fit out the analytical expression for object wavefront. Zernike Polynomial is competent for fitting wavefront of centrosymmetric optical systems, but not for axisymmetrical optical systems. Although adopting high-degree polynomials fitting method would achieve higher fitting precision in all fitting nodes, the greatest shortcoming of this method is that any departure from the fitting nodes would result in great fitting error, which is so-called pulsation phenomenon. Furthermore, high-degree polynomials fitting method would increase the calculation time in coding computer-generated hologram and solving basic equation. Basing on the basis function of cubic uniform B-spline and the character mesh of bicubic uniform B-spline wavefront, bicubic uniform B-spline wavefront are described as the product of a series of matrices. Employing standard MATLAB routines, four kinds of different analytical expressions for object wavefront are fitted out by bicubic uniform B-spline as well as high-degree polynomials. Calculation results indicate that, compared with high-degree polynomials, bicubic uniform B-spline is a more competitive method to fit out the analytical expression for object wavefront used in off-axis CGH, for its higher fitting precision and C2 continuity.

  7. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials.

    PubMed

    Mafusire, Cosmas; Krüger, Tjaart P J

    2018-06-01

    The concept of orthonormal vector circle polynomials is revisited by deriving a set from the Cartesian gradient of Zernike polynomials in a unit circle using a matrix-based approach. The heart of this model is a closed-form matrix equation of the gradient of Zernike circle polynomials expressed as a linear combination of lower-order Zernike circle polynomials related through a gradient matrix. This is a sparse matrix whose elements are two-dimensional standard basis transverse Euclidean vectors. Using the outer product form of the Cholesky decomposition, the gradient matrix is used to calculate a new matrix, which we used to express the Cartesian gradient of the Zernike circle polynomials as a linear combination of orthonormal vector circle polynomials. Since this new matrix is singular, the orthonormal vector polynomials are recovered by reducing the matrix to its row echelon form using the Gauss-Jordan elimination method. We extend the model to derive orthonormal vector general polynomials, which are orthonormal in a general pupil by performing a similarity transformation on the gradient matrix to give its equivalent in the general pupil. The outer form of the Gram-Schmidt procedure and the Gauss-Jordan elimination method are then applied to the general pupil to generate the orthonormal vector general polynomials from the gradient of the orthonormal Zernike-based polynomials. The performance of the model is demonstrated with a simulated wavefront in a square pupil inscribed in a unit circle.

  8. POLYNOMIAL AND RATIONAL APPROXIMATION OF FUNCTIONS OF SEVERAL VARIABLES WITH CONVEX DERIVATIVES IN THE L_p-METRIC (0 < p\\leqslant\\infty)

    NASA Astrophysics Data System (ADS)

    Khatamov, A.

    1995-02-01

    Let \\operatorname{Conv}_n^{(l)}(\\mathscr{G}) be the set of all functions f such that for every n-dimensional unit vector \\mathbf{e} the lth derivative in the direction of \\mathbf{e}, D^{(l)}(\\mathbf{e})f, is continuous on a convex bounded domain \\mathscr{G}\\subset\\mathbf{R}^n ( n \\geqslant 2) and convex (upwards or downwards) on the nonempty intersection of every line L\\subset\\mathbf{R}^n with the domain \\mathscr{G}, and let M^{(l)}(f,\\mathscr{G}):= \\sup \\bigl\\{\\bigl\\Vert D^{(l)}(\\mathbf{e})f\\bigr\\Ve......})}\\colon\\mathbf{e}\\in\\mathbf{R}^n,\\,\\,\\Vert\\mathbf{e}\\Vert=1\\bigr\\} < \\infty. Sharp, in the sense of order of smallness, estimates of best simultaneous polynomial approximations of the functions f\\in\\operatorname{Conv}_n^{(l)}(\\mathscr{G}) for which D^{(l)}(\\mathbf{e})f\\in\\operatorname{Lip}_K 1 for every \\mathbf{e}, and their derivatives in the metrics of L_p(\\mathscr{G}) (0 < p\\leqslant\\infty) are obtained. It is proved that the corresponding parts of these estimates are preserved for best rational approximations, on any n-dimensional parallelepiped Q, of functions f\\in\\operatorname{Conv}_n^{(l)}(Q) in the metrics of L_p(Q) (0 < p < \\infty) and it is shown that they are sharp in the sense of order of smallness for 0 < p\\leqslant1.

  9. Combinatorial theory of Macdonald polynomials I: proof of Haglund's formula.

    PubMed

    Haglund, J; Haiman, M; Loehr, N

    2005-02-22

    Haglund recently proposed a combinatorial interpretation of the modified Macdonald polynomials H(mu). We give a combinatorial proof of this conjecture, which establishes the existence and integrality of H(mu). As corollaries, we obtain the cocharge formula of Lascoux and Schutzenberger for Hall-Littlewood polynomials, a formula of Sahi and Knop for Jack's symmetric functions, a generalization of this result to the integral Macdonald polynomials J(mu), a formula for H(mu) in terms of Lascoux-Leclerc-Thibon polynomials, and combinatorial expressions for the Kostka-Macdonald coefficients K(lambda,mu) when mu is a two-column shape.

  10. Entropy solutions for a nonlinear parabolic problems with lower order term in Orlicz spaces

    NASA Astrophysics Data System (ADS)

    Mabdaoui, M.; Moussa, H.; Rhoudaf, M.

    2017-03-01

    We shall give the proof of existence results for the entropy solutions of the following nonlinear parabolic problem ... where A is a Leray-Lions operator having a growth not necessarily of polynomial type. The lower order term Φ :Ω × (0,T)× R→ R^N is a Carathéodory function, for a.e. (x,t)in Q_T and for all sin R, satisfying only a growth condition and the right hand side f belongs to L^1(Q_T).

  11. Nonlinear Viscoelastic Analysis of Orthotropic Beams Using a General Third-Order Theory

    DTIC Science & Technology

    2012-06-20

    Kirchhoff stress tensor, denoted by r and reduced strain tensor E e is given by rxx rzz rxz 8><>: 9>=>;¼ Q11ð0Þ Q13ð0Þ 0 Q13ð0Þ Q33ð0Þ 0 0 0 Q55ð0Þ...0.5 1 −0.5 0 0.5 1 (a) (b) Fig. 1. Graphs of (a) equi-spaced and (b) spectral lagrange interpolation functions for polynomial order of p = 11. 3762 V

  12. High Order Accuracy Methods for Supersonic Reactive Flows

    DTIC Science & Technology

    2008-06-25

    k = 0, · · · , N and N is the polynomial order used. The positive constant M is chosen such that σ(N) becomes machine zero. Typically M ∼ 32. Table...function used in this study is the Exponential filter given by σ(η) = exp(−αηp), (38) where α = − ln() and is the machine zero. The spectral...respectively. All numerical experiments were run 49 on a 667 MHz Compaq Alpha machine with 1GB memory and with an Alpha internal floating point processor. 9.1

  13. Polynomial Graphs and Symmetry

    ERIC Educational Resources Information Center

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  14. Numeric Function Generators Using Decision Diagrams for Discrete Functions

    DTIC Science & Technology

    2009-05-01

    Taylor series and Chebyshev series. Since polynomial functions can be realized with multipliers and adders, any numeric functions can be realized in...NFGs from the decision diagrams. Since nu- meric functions can be expanded into polynomial functions, such as a Taylor series, in this section, we use...pp. 107–114, July 1995. [13] T. Kam, T. Villa, R. K. Brayton , and A. L. Sangiovanni- Vincentelli, “Multi-valued decision diagrams: Theory and appli

  15. Partial-fraction expansion and inverse Laplace transform of a rational function with real coefficients

    NASA Technical Reports Server (NTRS)

    Chang, F.-C.; Mott, H.

    1974-01-01

    This paper presents a technique for the partial-fraction expansion of functions which are ratios of polynomials with real coefficients. The expansion coefficients are determined by writing the polynomials as Taylor's series and obtaining the Laurent series expansion of the function. The general formula for the inverse Laplace transform is also derived.

  16. Derivatives of random matrix characteristic polynomials with applications to elliptic curves

    NASA Astrophysics Data System (ADS)

    Snaith, N. C.

    2005-12-01

    The value distribution of derivatives of characteristic polynomials of matrices from SO(N) is calculated at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. We consider subsets of matrices from SO(N) that are constrained to have at least n eigenvalues equal to 1 and investigate the first non-zero derivative of the characteristic polynomial at that point. The connection between the values of random matrix characteristic polynomials and values of L-functions in families has been well established. The motivation for this work is the expectation that through this connection with L-functions derived from families of elliptic curves, and using the Birch and Swinnerton-Dyer conjecture to relate values of the L-functions to the rank of elliptic curves, random matrix theory will be useful in probing important questions concerning these ranks.

  17. An Introduction to Lagrangian Differential Calculus.

    ERIC Educational Resources Information Center

    Schremmer, Francesca; Schremmer, Alain

    1990-01-01

    Illustrates how Lagrange's approach applies to the differential calculus of polynomial functions when approximations are obtained. Discusses how to obtain polynomial approximations in other cases. (YP)

  18. Magnetic Resonance Imaging-derived Flow Parameters for the Analysis of Cardiovascular Diseases and Drug Development.

    PubMed

    Michael, Dada O; Bamidele, Awojoyogbe O; Adewale, Adesola O; Karem, Boubaker

    2013-01-01

    Nuclear magnetic resonance (NMR) allows for fast, accurate and noninvasive measurement of fluid flow in restricted and non-restricted media. The results of such measurements may be possible for a very small B 0 field and can be enhanced through detailed examination of generating functions that may arise from polynomial solutions of NMR flow equations in terms of Legendre polynomials and Boubaker polynomials. The generating functions of these polynomials can present an array of interesting possibilities that may be useful for understanding the basic physics of extracting relevant NMR flow information from which various hemodynamic problems can be carefully studied. Specifically, these results may be used to develop effective drugs for cardiovascular-related diseases.

  19. Magnetic Resonance Imaging-derived Flow Parameters for the Analysis of Cardiovascular Diseases and Drug Development

    PubMed Central

    Michael, Dada O.; Bamidele, Awojoyogbe O.; Adewale, Adesola O.; Karem, Boubaker

    2013-01-01

    Nuclear magnetic resonance (NMR) allows for fast, accurate and noninvasive measurement of fluid flow in restricted and non-restricted media. The results of such measurements may be possible for a very small B0 field and can be enhanced through detailed examination of generating functions that may arise from polynomial solutions of NMR flow equations in terms of Legendre polynomials and Boubaker polynomials. The generating functions of these polynomials can present an array of interesting possibilities that may be useful for understanding the basic physics of extracting relevant NMR flow information from which various hemodynamic problems can be carefully studied. Specifically, these results may be used to develop effective drugs for cardiovascular-related diseases. PMID:25114546

  20. Kinetic rate laws of Cd, Pb, and Zn vaporization during municipal solid waste incineration.

    PubMed

    Falcoz, Quentin; Gauthier, Daniel; Abanades, Stéphane; Flamant, Gilles; Patisson, Fabrice

    2009-03-15

    The kinetic rate laws of heavy metal (HM) vaporization from municipal solid waste during its incineration were studied. Realistic artificial waste (RAW) samples spiked with Pb, Zn, and Cd were injected into a fluidized bed reactor. Metal vaporization wastracked by continuous measure ofthe above metals in exhaust gases. An inverse model of the reactor was used to calculate the metal vaporization rates from the concentration vs time profiles in the outlet gas. For each metal, experiments were carried out at several temperatures in order to determine the kinetic parameters and to obtain specific rate laws as functions of temperature. Temperature has a strong influence on the HM vaporization dynamics, especially on the vaporization kinetics profile. This phenomenon was attributed to internal diffusion control of the HM release. Two types of kinetic rate laws were established based on temperature: a fourth- or fifth-order polynomial rate law (r(x) = k0e(-E(A)/RT)p(x)) for temperatures lower than 740 degrees C and a first-order polynomial (r(x) = k0e(-E(A)/ RT(q-q(f) for temperatures higher than 740 degrees C.

  1. Functionals of Gegenbauer polynomials and D-dimensional hydrogenic momentum expectation values

    NASA Astrophysics Data System (ADS)

    Van Assche, W.; Yáñez, R. J.; González-Férez, R.; Dehesa, Jesús S.

    2000-09-01

    The system of Gegenbauer or ultraspherical polynomials {Cnλ(x);n=0,1,…} is a classical family of polynomials orthogonal with respect to the weight function ωλ(x)=(1-x2)λ-1/2 on the support interval [-1,+1]. Integral functionals of Gegenbauer polynomials with integrand f(x)[Cnλ(x)]2ωλ(x), where f(x) is an arbitrary function which does not depend on n or λ, are considered in this paper. First, a general recursion formula for these functionals is obtained. Then, the explicit expression for some specific functionals of this type is found in a closed and compact form; namely, for the functionals with f(x) equal to (1-x)α(1+x)β, log(1-x2), and (1+x)log(1+x), which appear in numerous physico-mathematical problems. Finally, these functionals are used in the explicit evaluation of the momentum expectation values and of the D-dimensional hydrogenic atom with nuclear charge Z⩾1. The power expectation values are given by means of a terminating 5F4 hypergeometric function with unit argument, which is a considerable improvement with respect to Hey's expression (the only one existing up to now) which requires a double sum.

  2. Exploiting structure: Introduction and motivation

    NASA Technical Reports Server (NTRS)

    Xu, Zhong Ling

    1994-01-01

    This annual report summarizes the research activities that were performed from 26 Jun. 1993 to 28 Feb. 1994. We continued to investigate the Robust Stability of Systems where transfer functions or characteristic polynomials are affine multilinear functions of parameters. An approach that differs from 'Stability by Linear Process' and that reduces the computational burden of checking the robust stability of the system with multilinear uncertainty was found for low order, 2-order, and 3-order cases. We proved a crucial theorem, the so-called Face Theorem. Previously, we have proven Kharitonov's Vertex Theorem and the Edge Theorem by Bartlett. The detail of this proof is contained in the Appendix. This Theorem provides a tool to describe the boundary of the image of the affine multilinear function. For SPR design, we have developed some new results. The third objective for this period is to design a controller for IHM by the H-infinity optimization technique. The details are presented in the Appendix.

  3. Wilson-Racah quantum system

    NASA Astrophysics Data System (ADS)

    Alhaidari, A. D.; Taiwo, T. J.

    2017-02-01

    Using a recent formulation of quantum mechanics without a potential function, we present a four-parameter system associated with the Wilson and Racah polynomials. The continuum scattering states are written in terms of the Wilson polynomials whose asymptotics give the scattering amplitude and phase shift. On the other hand, the finite number of discrete bound states are associated with the Racah polynomials.

  4. Evaluation of Piecewise Polynomial Equations for Two Types of Thermocouples

    PubMed Central

    Chen, Andrew; Chen, Chiachung

    2013-01-01

    Thermocouples are the most frequently used sensors for temperature measurement because of their wide applicability, long-term stability and high reliability. However, one of the major utilization problems is the linearization of the transfer relation between temperature and output voltage of thermocouples. The linear calibration equation and its modules could be improved by using regression analysis to help solve this problem. In this study, two types of thermocouple and five temperature ranges were selected to evaluate the fitting agreement of different-order polynomial equations. Two quantitative criteria, the average of the absolute error values |e|ave and the standard deviation of calibration equation estd, were used to evaluate the accuracy and precision of these calibrations equations. The optimal order of polynomial equations differed with the temperature range. The accuracy and precision of the calibration equation could be improved significantly with an adequate higher degree polynomial equation. The technique could be applied with hardware modules to serve as an intelligent sensor for temperature measurement. PMID:24351627

  5. An integral conservative gridding--algorithm using Hermitian curve interpolation.

    PubMed

    Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K

    2008-11-07

    The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).

  6. Spatial complexity of solutions of higher order partial differential equations

    NASA Astrophysics Data System (ADS)

    Kukavica, Igor

    2004-03-01

    We address spatial oscillation properties of solutions of higher order parabolic partial differential equations. In the case of the Kuramoto-Sivashinsky equation ut + uxxxx + uxx + u ux = 0, we prove that for solutions u on the global attractor, the quantity card {x epsi [0, L]:u(x, t) = lgr}, where L > 0 is the spatial period, can be bounded by a polynomial function of L for all \\lambda\\in{\\Bbb R} . A similar property is proven for a general higher order partial differential equation u_t+(-1)^{s}\\partial_x^{2s}u+ \\sum_{k=0}^{2s-1}v_k(x,t)\\partial_x^k u =0 .

  7. Reference hypernetted chain theory for ferrofluid bilayer: Distribution functions compared with Monte Carlo

    NASA Astrophysics Data System (ADS)

    Polyakov, Evgeny A.; Vorontsov-Velyaminov, Pavel N.

    2014-08-01

    Properties of ferrofluid bilayer (modeled as a system of two planar layers separated by a distance h and each layer carrying a soft sphere dipolar liquid) are calculated in the framework of inhomogeneous Ornstein-Zernike equations with reference hypernetted chain closure (RHNC). The bridge functions are taken from a soft sphere (1/r12) reference system in the pressure-consistent closure approximation. In order to make the RHNC problem tractable, the angular dependence of the correlation functions is expanded into special orthogonal polynomials according to Lado. The resulting equations are solved using the Newton-GRMES algorithm as implemented in the public-domain solver NITSOL. Orientational densities and pair distribution functions of dipoles are compared with Monte Carlo simulation results. A numerical algorithm for the Fourier-Hankel transform of any positive integer order on a uniform grid is presented.

  8. An analysis of value function learning with piecewise linear control

    NASA Astrophysics Data System (ADS)

    Tutsoy, Onder; Brown, Martin

    2016-05-01

    Reinforcement learning (RL) algorithms attempt to learn optimal control actions by iteratively estimating a long-term measure of system performance, the so-called value function. For example, RL algorithms have been applied to walking robots to examine the connection between robot motion and the brain, which is known as embodied cognition. In this paper, RL algorithms are analysed using an exemplar test problem. A closed form solution for the value function is calculated and this is represented in terms of a set of basis functions and parameters, which is used to investigate parameter convergence. The value function expression is shown to have a polynomial form where the polynomial terms depend on the plant's parameters and the value function's discount factor. It is shown that the temporal difference error introduces a null space for the differenced higher order basis associated with the effects of controller switching (saturated to linear control or terminating an experiment) apart from the time of the switch. This leads to slow convergence in the relevant subspace. It is also shown that badly conditioned learning problems can occur, and this is a function of the value function discount factor and the controller switching points. Finally, a comparison is performed between the residual gradient and TD(0) learning algorithms, and it is shown that the former has a faster rate of convergence for this test problem.

  9. Design of an essentially non-oscillatory reconstruction procedure in finite-element type meshes

    NASA Technical Reports Server (NTRS)

    Abgrall, Remi

    1992-01-01

    An essentially non oscillatory reconstruction for functions defined on finite element type meshes is designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitary meshes and the reconstruction of a function from its averages in the control volumes surrounding the nodes of the mesh. Concerning the first problem, the behavior of the highest coefficients of two polynomial interpolations of a function that may admit discontinuities of locally regular curves is studied: the Lagrange interpolation and an approximation such that the mean of the polynomial on any control volume is equal to that of the function to be approximated. This enables the best stencil for the approximation to be chosen. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, two methods were studied: one based on an adaptation of the so called reconstruction via deconvolution method to irregular meshes and one that lies on the approximation on the mean as defined above. The first method is conservative up to a quadrature formula and the second one is exactly conservative. The two methods have the expected order of accuracy, but the second one is much less expensive than the first one. Some numerical examples are given which demonstrate the efficiency of the reconstruction.

  10. Characterization of high order spatial discretizations and lumping techniques for discontinuous finite element SN transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, P. G.; Ragusa, J. C.; Morel, J. E.

    2013-07-01

    We examine several possible methods of mass matrix lumping for discontinuous finite element discrete ordinates transport using a Lagrange interpolatory polynomial trial space. Though positive outflow angular flux is guaranteed with traditional mass matrix lumping in a purely absorbing 1-D slab cell for the linear discontinuous approximation, we show that when used with higher degree interpolatory polynomial trial spaces, traditional lumping does yield strictly positive outflows and does not increase in accuracy with an increase in trial space polynomial degree. As an alternative, we examine methods which are 'self-lumping'. Self-lumping methods yield diagonal mass matrices by using numerical quadrature restrictedmore » to the Lagrange interpolatory points. Using equally-spaced interpolatory points, self-lumping is achieved through the use of closed Newton-Cotes formulas, resulting in strictly positive outflows in pure absorbers for odd power polynomials in 1-D slab geometry. By changing interpolatory points from the traditional equally-spaced points to the quadrature points of the Gauss-Legendre or Lobatto-Gauss-Legendre quadratures, it is possible to generate solution representations with a diagonal mass matrix and a strictly positive outflow for any degree polynomial solution representation in a pure absorber medium in 1-D slab geometry. Further, there is no inherent limit to local truncation error order of accuracy when using interpolatory points that correspond to the quadrature points of high order accuracy numerical quadrature schemes. (authors)« less

  11. Volumetric calibration of a plenoptic camera.

    PubMed

    Hall, Elise Munz; Fahringer, Timothy W; Guildenbecher, Daniel R; Thurow, Brian S

    2018-02-01

    The volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.

  12. A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  13. A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions

    DOE PAGES

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    2017-06-22

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  14. Bifurcation of small limit cycles in cubic integrable systems using higher-order analysis

    NASA Astrophysics Data System (ADS)

    Tian, Yun; Yu, Pei

    2018-05-01

    In this paper, we present a method of higher-order analysis on bifurcation of small limit cycles around an elementary center of integrable systems under perturbations. This method is equivalent to higher-order Melinikov function approach used for studying bifurcation of limit cycles around a center but simpler. Attention is focused on planar cubic polynomial systems and particularly it is shown that the system studied by Żoła¸dek (1995) [24] can indeed have eleven limit cycles under perturbations at least up to 7th order. Moreover, the pattern of numbers of limit cycles produced near the center is discussed up to 39th-order perturbations, and no more than eleven limit cycles are found.

  15. Some rules for polydimensional squeezing

    NASA Technical Reports Server (NTRS)

    Manko, Vladimir I.

    1994-01-01

    The review of the following results is presented: For mixed state light of N-mode electromagnetic field described by Wigner function which has generic Gaussian form, the photon distribution function is obtained and expressed explicitly in terms of Hermite polynomials of 2N-variables. The momenta of this distribution are calculated and expressed as functions of matrix invariants of the dispersion matrix. The role of new uncertainty relation depending on photon state mixing parameter is elucidated. New sum rules for Hermite polynomials of several variables are found. The photon statistics of polymode even and odd coherent light and squeezed polymode Schroedinger cat light is given explicitly. Photon distribution for polymode squeezed number states expressed in terms of multivariable Hermite polynomials is discussed.

  16. A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials

    NASA Astrophysics Data System (ADS)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing

    2015-09-01

    The accuracy of metamodelling is determined by both the sampling and approximation. This article proposes a new sampling method based on the zeros of Chebyshev polynomials to capture the sampling information effectively. First, the zeros of one-dimensional Chebyshev polynomials are applied to construct Chebyshev tensor product (CTP) sampling, and the CTP is then used to construct high-order multi-dimensional metamodels using the 'hypercube' polynomials. Secondly, the CTP sampling is further enhanced to develop Chebyshev collocation method (CCM) sampling, to construct the 'simplex' polynomials. The samples of CCM are randomly and directly chosen from the CTP samples. Two widely studied sampling methods, namely the Smolyak sparse grid and Hammersley, are used to demonstrate the effectiveness of the proposed sampling method. Several numerical examples are utilized to validate the approximation accuracy of the proposed metamodel under different dimensions.

  17. Polynomial Similarity Transformation Theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degroote, M.; Henderson, T. M.; Zhao, J.

    We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero.more » Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.« less

  18. Application of overlay modeling and control with Zernike polynomials in an HVM environment

    NASA Astrophysics Data System (ADS)

    Ju, JaeWuk; Kim, MinGyu; Lee, JuHan; Nabeth, Jeremy; Jeon, Sanghuck; Heo, Hoyoung; Robinson, John C.; Pierson, Bill

    2016-03-01

    Shrinking technology nodes and smaller process margins require improved photolithography overlay control. Generally, overlay measurement results are modeled with Cartesian polynomial functions for both intra-field and inter-field models and the model coefficients are sent to an advanced process control (APC) system operating in an XY Cartesian basis. Dampened overlay corrections, typically via exponentially or linearly weighted moving average in time, are then retrieved from the APC system to apply on the scanner in XY Cartesian form for subsequent lot exposure. The goal of the above method is to process lots with corrections that target the least possible overlay misregistration in steady state as well as in change point situations. In this study, we model overlay errors on product using Zernike polynomials with same fitting capability as the process of reference (POR) to represent the wafer-level terms, and use the standard Cartesian polynomials to represent the field-level terms. APC calculations for wafer-level correction are performed in Zernike basis while field-level calculations use standard XY Cartesian basis. Finally, weighted wafer-level correction terms are converted to XY Cartesian space in order to be applied on the scanner, along with field-level corrections, for future wafer exposures. Since Zernike polynomials have the property of being orthogonal in the unit disk we are able to reduce the amount of collinearity between terms and improve overlay stability. Our real time Zernike modeling and feedback evaluation was performed on a 20-lot dataset in a high volume manufacturing (HVM) environment. The measured on-product results were compared to POR and showed a 7% reduction in overlay variation including a 22% terms variation. This led to an on-product raw overlay Mean + 3Sigma X&Y improvement of 5% and resulted in 0.1% yield improvement.

  19. Best uniform approximation to a class of rational functions

    NASA Astrophysics Data System (ADS)

    Zheng, Zhitong; Yong, Jun-Hai

    2007-10-01

    We explicitly determine the best uniform polynomial approximation to a class of rational functions of the form 1/(x-c)2+K(a,b,c,n)/(x-c) on [a,b] represented by their Chebyshev expansion, where a, b, and c are real numbers, n-1 denotes the degree of the best approximating polynomial, and K is a constant determined by a, b, c, and n. Our result is based on the explicit determination of a phase angle [eta] in the representation of the approximation error by a trigonometric function. Moreover, we formulate an ansatz which offers a heuristic strategies to determine the best approximating polynomial to a function represented by its Chebyshev expansion. Combined with the phase angle method, this ansatz can be used to find the best uniform approximation to some more functions.

  20. Quantum Hurwitz numbers and Macdonald polynomials

    NASA Astrophysics Data System (ADS)

    Harnad, J.

    2016-11-01

    Parametric families in the center Z(C[Sn]) of the group algebra of the symmetric group are obtained by identifying the indeterminates in the generating function for Macdonald polynomials as commuting Jucys-Murphy elements. Their eigenvalues provide coefficients in the double Schur function expansion of 2D Toda τ-functions of hypergeometric type. Expressing these in the basis of products of power sum symmetric functions, the coefficients may be interpreted geometrically as parametric families of quantum Hurwitz numbers, enumerating weighted branched coverings of the Riemann sphere. Combinatorially, they give quantum weighted sums over paths in the Cayley graph of Sn generated by transpositions. Dual pairs of bases for the algebra of symmetric functions with respect to the scalar product in which the Macdonald polynomials are orthogonal provide both the geometrical and combinatorial significance of these quantum weighted enumerative invariants.

  1. New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian; Quesne, Christiane

    2013-04-15

    In recent years, many exceptional orthogonal polynomials (EOP) were introduced and used to construct new families of 1D exactly solvable quantum potentials, some of which are shape invariant. In this paper, we construct from Hermite and Laguerre EOP and their related quantum systems new 2D superintegrable Hamiltonians with higher-order integrals of motion and the polynomial algebras generated by their integrals of motion. We obtain the finite-dimensional unitary representations of the polynomial algebras and the corresponding energy spectrum. We also point out a new type of degeneracies of the energy levels of these systems that is associated with holes in sequencesmore » of EOP.« less

  2. Final Shape of Precision Molded Optics: Part 1 - Computational Approach, Material Definitions and the Effect of Lens Shape

    DTIC Science & Technology

    2012-05-15

    subroutine by adding time-dependence to the thermal expansion coefficient. The user subroutine was written in Intel Visual Fortran that is compatible...temperature history dependent expansion and contraction, and the molds were modeled as elastic taking into account both mechanical and thermal strain. In...behavior was approximated by assuming the thermal coefficient of expansion to be a fourth order polynomial function of temperature. The authors

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevast'yanov, E A; Sadekova, E Kh

    The Bulgarian mathematicians Sendov, Popov, and Boyanov have well-known results on the asymptotic behaviour of the least deviations of 2{pi}-periodic functions in the classes H{sup {omega}} from trigonometric polynomials in the Hausdorff metric. However, the asymptotics they give are not adequate to detect a difference in, for example, the rate of approximation of functions f whose moduli of continuity {omega}(f;{delta}) differ by factors of the form (log(1/{delta})){sup {beta}}. Furthermore, a more detailed determination of the asymptotic behaviour by traditional methods becomes very difficult. This paper develops an approach based on using trigonometric snakes as approximating polynomials. The snakes of ordermore » n inscribed in the Minkowski {delta}-neighbourhood of the graph of the approximated function f provide, in a number of cases, the best approximation for f (for the appropriate choice of {delta}). The choice of {delta} depends on n and f and is based on constructing polynomial kernels adjusted to the Hausdorff metric and polynomials with special oscillatory properties. Bibliography: 19 titles.« less

  4. Regression-based reduced-order models to predict transient thermal output for enhanced geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudunuru, Maruti Kumar; Karra, Satish; Harp, Dylan Robert

    Reduced-order modeling is a promising approach, as many phenomena can be described by a few parameters/mechanisms. An advantage and attractive aspect of a reduced-order model is that it is computational inexpensive to evaluate when compared to running a high-fidelity numerical simulation. A reduced-order model takes couple of seconds to run on a laptop while a high-fidelity simulation may take couple of hours to run on a high-performance computing cluster. The goal of this paper is to assess the utility of regression-based reduced-order models (ROMs) developed from high-fidelity numerical simulations for predicting transient thermal power output for an enhanced geothermal reservoirmore » while explicitly accounting for uncertainties in the subsurface system and site-specific details. Numerical simulations are performed based on equally spaced values in the specified range of model parameters. Key sensitive parameters are then identified from these simulations, which are fracture zone permeability, well/skin factor, bottom hole pressure, and injection flow rate. We found the fracture zone permeability to be the most sensitive parameter. The fracture zone permeability along with time, are used to build regression-based ROMs for the thermal power output. The ROMs are trained and validated using detailed physics-based numerical simulations. Finally, predictions from the ROMs are then compared with field data. We propose three different ROMs with different levels of model parsimony, each describing key and essential features of the power production curves. The coefficients in the proposed regression-based ROMs are developed by minimizing a non-linear least-squares misfit function using the Levenberg–Marquardt algorithm. The misfit function is based on the difference between numerical simulation data and reduced-order model. ROM-1 is constructed based on polynomials up to fourth order. ROM-1 is able to accurately reproduce the power output of numerical simulations for low values of permeabilities and certain features of the field-scale data. ROM-2 is a model with more analytical functions consisting of polynomials up to order eight, exponential functions and smooth approximations of Heaviside functions, and accurately describes the field-data. At higher permeabilities, ROM-2 reproduces numerical results better than ROM-1, however, there is a considerable deviation from numerical results at low fracture zone permeabilities. ROM-3 consists of polynomials up to order ten, and is developed by taking the best aspects of ROM-1 and ROM-2. ROM-1 is relatively parsimonious than ROM-2 and ROM-3, while ROM-2 overfits the data. ROM-3 on the other hand, provides a middle ground for model parsimony. Based on R 2-values for training, validation, and prediction data sets we found that ROM-3 is better model than ROM-2 and ROM-1. For predicting thermal drawdown in EGS applications, where high fracture zone permeabilities (typically greater than 10 –15 m 2) are desired, ROM-2 and ROM-3 outperform ROM-1. As per computational time, all the ROMs are 10 4 times faster when compared to running a high-fidelity numerical simulation. In conclusion, this makes the proposed regression-based ROMs attractive for real-time EGS applications because they are fast and provide reasonably good predictions for thermal power output.« less

  5. Regression-based reduced-order models to predict transient thermal output for enhanced geothermal systems

    DOE PAGES

    Mudunuru, Maruti Kumar; Karra, Satish; Harp, Dylan Robert; ...

    2017-07-10

    Reduced-order modeling is a promising approach, as many phenomena can be described by a few parameters/mechanisms. An advantage and attractive aspect of a reduced-order model is that it is computational inexpensive to evaluate when compared to running a high-fidelity numerical simulation. A reduced-order model takes couple of seconds to run on a laptop while a high-fidelity simulation may take couple of hours to run on a high-performance computing cluster. The goal of this paper is to assess the utility of regression-based reduced-order models (ROMs) developed from high-fidelity numerical simulations for predicting transient thermal power output for an enhanced geothermal reservoirmore » while explicitly accounting for uncertainties in the subsurface system and site-specific details. Numerical simulations are performed based on equally spaced values in the specified range of model parameters. Key sensitive parameters are then identified from these simulations, which are fracture zone permeability, well/skin factor, bottom hole pressure, and injection flow rate. We found the fracture zone permeability to be the most sensitive parameter. The fracture zone permeability along with time, are used to build regression-based ROMs for the thermal power output. The ROMs are trained and validated using detailed physics-based numerical simulations. Finally, predictions from the ROMs are then compared with field data. We propose three different ROMs with different levels of model parsimony, each describing key and essential features of the power production curves. The coefficients in the proposed regression-based ROMs are developed by minimizing a non-linear least-squares misfit function using the Levenberg–Marquardt algorithm. The misfit function is based on the difference between numerical simulation data and reduced-order model. ROM-1 is constructed based on polynomials up to fourth order. ROM-1 is able to accurately reproduce the power output of numerical simulations for low values of permeabilities and certain features of the field-scale data. ROM-2 is a model with more analytical functions consisting of polynomials up to order eight, exponential functions and smooth approximations of Heaviside functions, and accurately describes the field-data. At higher permeabilities, ROM-2 reproduces numerical results better than ROM-1, however, there is a considerable deviation from numerical results at low fracture zone permeabilities. ROM-3 consists of polynomials up to order ten, and is developed by taking the best aspects of ROM-1 and ROM-2. ROM-1 is relatively parsimonious than ROM-2 and ROM-3, while ROM-2 overfits the data. ROM-3 on the other hand, provides a middle ground for model parsimony. Based on R 2-values for training, validation, and prediction data sets we found that ROM-3 is better model than ROM-2 and ROM-1. For predicting thermal drawdown in EGS applications, where high fracture zone permeabilities (typically greater than 10 –15 m 2) are desired, ROM-2 and ROM-3 outperform ROM-1. As per computational time, all the ROMs are 10 4 times faster when compared to running a high-fidelity numerical simulation. In conclusion, this makes the proposed regression-based ROMs attractive for real-time EGS applications because they are fast and provide reasonably good predictions for thermal power output.« less

  6. B+ L violation at colliders and new physics

    NASA Astrophysics Data System (ADS)

    Cerdeño, David G.; Reimitz, Peter; Sakurai, Kazuki; Tamarit, Carlos

    2018-04-01

    Chiral electroweak anomalies predict baryon ( B) and lepton ( L) violating fermion interactions, which can be dressed with large numbers of Higgs and gauge bosons. The estimation of the total B + L-violating rate from an initial two-particle state — potentially observable at colliders — has been the subject of an intense discussion, mainly centered on the resummation of boson emission, which is believed to contribute to the cross-section with an exponential function of the energy, yet with an exponent (the "holy-grail" function) which is not fully known in the energy range of interest. In this article we focus instead on the effect of fermions beyond the Standard-Model (SM) in the polynomial contributions to the rate. It is shown that B + L processes involving the new fermions have a polynomial contribution that can be several orders of magnitude greater than in the SM, for high centre-of-mass energies and light enough masses. We also present calculations that hint at a simple dependence of the holy grail function on the heavy fermion masses. Thus, if anomalous B + L violating interactions are ever detected at high-energy colliders, they could be associated with new physics.

  7. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials.

    PubMed

    Janssen, A J E M

    2014-07-01

    The partial derivatives and Laplacians of the Zernike circle polynomials occur in various places in the literature on computational optics. In a number of cases, the expansion of these derivatives and Laplacians in the circle polynomials are required. For the first-order partial derivatives, analytic results are scattered in the literature. Results start as early as 1942 in Nijboer's thesis and continue until present day, with some emphasis on recursive computation schemes. A brief historic account of these results is given in the present paper. By choosing the unnormalized version of the circle polynomials, with exponential rather than trigonometric azimuthal dependence, and by a proper combination of the two partial derivatives, a concise form of the expressions emerges. This form is appropriate for the formulation and solution of a model wavefront sensing problem of reconstructing a wavefront on the level of its expansion coefficients from (measurements of the expansion coefficients of) the partial derivatives. It turns out that the least-squares estimation problem arising here decouples per azimuthal order m, and per m the generalized inverse solution assumes a concise analytic form so that singular value decompositions are avoided. The preferred version of the circle polynomials, with proper combination of the partial derivatives, also leads to a concise analytic result for the Zernike expansion of the Laplacian of the circle polynomials. From these expansions, the properties of the Laplacian as a mapping from the space of circle polynomials of maximal degree N, as required in the study of the Neumann problem associated with the transport-of-intensity equation, can be read off within a single glance. Furthermore, the inverse of the Laplacian on this space is shown to have a concise analytic form.

  8. A first approach to the distortion analysis of nonlinear analog circuits utilizing X-parameters

    NASA Astrophysics Data System (ADS)

    Weber, H.; Widemann, C.; Mathis, W.

    2013-07-01

    In this contribution a first approach to the distortion analysis of nonlinear 2-port-networks with X-parameters1 is presented. The X-parameters introduced by Verspecht and Root (2006) offer the possibility to describe nonlinear microwave 2-port-networks under large signal conditions. On the basis of X-parameter measurements with a nonlinear network analyzer (NVNA) behavioral models can be extracted for the networks. These models can be used to consider the nonlinear behavior during the design process of microwave circuits. The idea of the present work is to extract the behavioral models in order to describe the influence of interfering signals on the output behavior of the nonlinear circuits. Hereby, a simulator is used instead of a NVNA to extract the X-parameters. Assuming that the interfering signals are relatively small compared to the nominal input signal, the output signal can be described as a superposition of the effects of each input signal. In order to determine the functional correlation between the scattering variables, a polynomial dependency is assumed. The required datasets for the approximation of the describing functions are simulated by a directional coupler model in Cadence Design Framework. The polynomial coefficients are obtained by a least-square method. The resulting describing functions can be used to predict the system's behavior under certain conditions as well as the effects of the interfering signal on the output signal. 1 X-parameter is a registered trademark of Agilent Technologies, Inc.

  9. Integration of epidemiology into the genetic analysis of mastitis in Swedish Holstein.

    PubMed

    Windig, Jack J; Urioste, Jorge I; Strandberg, Erling

    2013-04-01

    Heritability of mastitis (and diseases in general) tends to be low. One possible cause is that no clear distinction can be made between resistant and nonresistant animals, because healthy animals include animals that have not been exposed to pathogens and resistant animals. To account for this, we quantified the prevalence of clinical mastitis (CM) and subclinical mastitis (SCM) in 2,069 Swedish Holstein herds as a measure of exposure. Herd prevalence averaged 26.5% for SCM and 6.4% for CM; 61% of the first lactations of 177,309 cows were classified as having at least one case of SCM and 10% as having CM. In a reaction norm approach, heritability of (S)CM was quantified as a function of herd prevalence of (S)CM. The best-fitting model was a second-order polynomial of first-lactation cow SCM as a function of herd prevalence SCM, and a first-order (linear) polynomial of first-lactation cow CM as a function of CM herd prevalence. Heritability for SCM ranged from 0.069 to 0.105 and for CM from 0.016 to 0.032. For both, we found no clear effect of herd prevalence on their heritability. Genetic correlations within traits across herd prevalences were all greater than 0.92. Whether relationships among prevalence, exposure, disease, and genetics were as expected is a matter of discussion, but reaction norm analyses may be a valuable tool for epidemiological genetics. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Theoretical and experimental study of a new algorithm for factoring numbers

    NASA Astrophysics Data System (ADS)

    Tamma, Vincenzo

    The security of codes, for example in credit card and government information, relies on the fact that the factorization of a large integer N is a rather costly process on a classical digital computer. Such a security is endangered by Shor's algorithm which employs entangled quantum systems to find, with a polynomial number of resources, the period of a function which is connected with the factors of N. We can surely expect a possible future realization of such a method for large numbers, but so far the period of Shor's function has been only computed for the number 15. Inspired by Shor's idea, our work aims to methods of factorization based on the periodicity measurement of a given continuous periodic "factoring function" which is physically implementable using an analogue computer. In particular, we have focused on both the theoretical and the experimental analysis of Gauss sums with continuous arguments leading to a new factorization algorithm. The procedure allows, for the first time, to factor several numbers by measuring the periodicity of Gauss sums performing first-order "factoring" interfer ence processes. We experimentally implemented this idea by exploiting polychromatic optical interference in the visible range with a multi-path interferometer, and achieved the factorization of seven digit numbers. The physical principle behind this "factoring" interference procedure can be potentially exploited also on entangled systems, as multi-photon entangled states, in order to achieve a polynomial scaling in the number of resources.

  11. Ricci polynomial gravity

    NASA Astrophysics Data System (ADS)

    Hao, Xin; Zhao, Liu

    2017-12-01

    We study a novel class of higher-curvature gravity models in n spacetime dimensions which we call Ricci polynomial gravity. The action consists purely of a polynomial in Ricci curvature of order N . In the absence of the second-order terms in the action, the models are ghost free around the Minkowski vacuum. By appropriately choosing the coupling coefficients in front of each term in the action, it is shown that the models can have multiple vacua with different effective cosmological constants, and can be made free of ghost and scalar degrees of freedom around at least one of the maximally symmetric vacua for any n >2 and any N ≥4 . We also discuss some of the physical implications of the existence of multiple vacua in the contexts of black hole physics and cosmology.

  12. Polynomial mixture method of solving ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Shahrir, Mohammad Shazri; Nallasamy, Kumaresan; Ratnavelu, Kuru; Kamali, M. Z. M.

    2017-11-01

    In this paper, a numerical solution of fuzzy quadratic Riccati differential equation is estimated using a proposed new approach that provides mixture of polynomials where iteratively the right mixture will be generated. This mixture provide a generalized formalism of traditional Neural Networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). This can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that Polynomial Mixture Method (PMM) shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over Mabood et al, RK-4, Multi-Agent NN and Neuro Method (NM).

  13. Measurement of EUV lithography pupil amplitude and phase variation via image-based methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Zachary; Verduijn, Erik; Wood, Obert R.

    2016-04-01

    Here, an approach to image-based EUV aberration metrology using binary mask targets and iterative model-based solutions to extract both the amplitude and phase components of the aberrated pupil function is presented. The approach is enabled through previously developed modeling, fitting, and extraction algorithms. We seek to examine the behavior of pupil amplitude variation in real-optical systems. Optimized target images were captured under several conditions to fit the resulting pupil responses. Both the amplitude and phase components of the pupil function were extracted from a zone-plate-based EUV mask microscope. The pupil amplitude variation was expanded in three different bases: Zernike polynomials,more » Legendre polynomials, and Hermite polynomials. It was found that the Zernike polynomials describe pupil amplitude variation most effectively of the three.« less

  14. Solution of Fifth-order Korteweg and de Vries Equation by Homotopy perturbation Transform Method using He's Polynomial

    NASA Astrophysics Data System (ADS)

    Sharma, Dinkar; Singh, Prince; Chauhan, Shubha

    2017-06-01

    In this paper, a combined form of the Laplace transform method with the homotopy perturbation method is applied to solve nonlinear fifth order Korteweg de Vries (KdV) equations. The method is known as homotopy perturbation transform method (HPTM). The nonlinear terms can be easily handled by the use of He's polynomials. Two test examples are considered to illustrate the present scheme. Further the results are compared with Homotopy perturbation method (HPM).

  15. High-Order Polynomial Expansions (HOPE) for flux-vector splitting

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Steffen, Chris J., Jr.

    1991-01-01

    The Van Leer flux splitting is known to produce excessive numerical dissipation for Navier-Stokes calculations. Researchers attempt to remedy this deficiency by introducing a higher order polynomial expansion (HOPE) for the mass flux. In addition to Van Leer's splitting, a term is introduced so that the mass diffusion error vanishes at M = 0. Several splittings for pressure are proposed and examined. The effectiveness of the HOPE scheme is illustrated for 1-D hypersonic conical viscous flow and 2-D supersonic shock-wave boundary layer interactions.

  16. On Certain Wronskians of Multiple Orthogonal Polynomials

    NASA Astrophysics Data System (ADS)

    Zhang, Lun; Filipuk, Galina

    2014-11-01

    We consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant sign in some cases, while in some other cases oscillatory behavior appears, which generalizes classical results for orthogonal polynomials due to Karlin and Szegő. There are two applications of our results. The first application arises from the observation that the m-th moment of the average characteristic polynomials for multiple orthogonal polynomial ensembles can be expressed as a Wronskian of the type II multiple orthogonal polynomials. Hence, it is straightforward to obtain the distinct behavior of the moments for odd and even m in a special multiple orthogonal ensemble - the AT ensemble. As the second application, we derive some Turán type inequalities for m! ultiple Hermite and multiple Laguerre polynomials (of two kinds). Finally, we study numerically the geometric configuration of zeros for the Wronskians of these multiple orthogonal polynomials. We observe that the zeros have regular configurations in the complex plane, which might be of independent interest.

  17. (q,{mu}) and (p,q,{zeta})-exponential functions: Rogers-Szego'' polynomials and Fourier-Gauss transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hounkonnou, Mahouton Norbert; Nkouankam, Elvis Benzo Ngompe

    2010-10-15

    From the realization of q-oscillator algebra in terms of generalized derivative, we compute the matrix elements from deformed exponential functions and deduce generating functions associated with Rogers-Szego polynomials as well as their relevant properties. We also compute the matrix elements associated with the (p,q)-oscillator algebra (a generalization of the q-one) and perform the Fourier-Gauss transform of a generalization of the deformed exponential functions.

  18. Using Tutte polynomials to analyze the structure of the benzodiazepines

    NASA Astrophysics Data System (ADS)

    Cadavid Muñoz, Juan José

    2014-05-01

    Graph theory in general and Tutte polynomials in particular, are implemented for analyzing the chemical structure of the benzodiazepines. Similarity analysis are used with the Tutte polynomials for finding other molecules that are similar to the benzodiazepines and therefore that might show similar psycho-active actions for medical purpose, in order to evade the drawbacks associated to the benzodiazepines based medicine. For each type of benzodiazepines, Tutte polynomials are computed and some numeric characteristics are obtained, such as the number of spanning trees and the number of spanning forests. Computations are done using the computer algebra Maple's GraphTheory package. The obtained analytical results are of great importance in pharmaceutical engineering. As a future research line, the usage of the chemistry computational program named Spartan, will be used to extent and compare it with the obtained results from the Tutte polynomials of benzodiazepines.

  19. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.

    PubMed

    Mahajan, Virendra N

    2012-06-20

    In a recent paper, we considered the classical aberrations of an anamorphic optical imaging system with a rectangular pupil, representing the terms of a power series expansion of its aberration function. These aberrations are inherently separable in the Cartesian coordinates (x,y) of a point on the pupil. Accordingly, there is x-defocus and x-coma, y-defocus and y-coma, and so on. We showed that the aberration polynomials orthonormal over the pupil and representing balanced aberrations for such a system are represented by the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point; for example, L(l)(x)L(m)(y), where l and m are positive integers (including zero) and L(l)(x), for example, represents an orthonormal Legendre polynomial of degree l in x. The compound two-dimensional (2D) Legendre polynomials, like the classical aberrations, are thus also inherently separable in the Cartesian coordinates of the pupil point. Moreover, for every orthonormal polynomial L(l)(x)L(m)(y), there is a corresponding orthonormal polynomial L(l)(y)L(m)(x) obtained by interchanging x and y. These polynomials are different from the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil. In this paper, we show that the orthonormal aberration polynomials for an anamorphic system with a circular pupil, obtained by the Gram-Schmidt orthogonalization of the 2D Legendre polynomials, are not separable in the two coordinates. Moreover, for a given polynomial in x and y, there is no corresponding polynomial obtained by interchanging x and y. For example, there are polynomials representing x-defocus, balanced x-coma, and balanced x-spherical aberration, but no corresponding y-aberration polynomials. The missing y-aberration terms are contained in other polynomials. We emphasize that the Zernike circle polynomials, although orthogonal over a circular pupil, are not suitable for an anamorphic system as they do not represent balanced aberrations for such a system.

  20. Static versus Dynamic Disposition: The Role of GeoGebra in Representing Polynomial-Rational Inequalities and Exponential-Logarithmic Functions

    ERIC Educational Resources Information Center

    Caglayan, Günhan

    2014-01-01

    This study investigates prospective secondary mathematics teachers' visual representations of polynomial and rational inequalities, and graphs of exponential and logarithmic functions with GeoGebra Dynamic Software. Five prospective teachers in a university in the United States participated in this research study, which was situated within a…

  1. Computing the Partial Fraction Decomposition of Rational Functions with Irreducible Quadratic Factors in the Denominators

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…

  2. Space Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Rayos, Elonsio M.; Campbell, Charles H.; Rickman, Steven L.; Larsen, Curtis E.

    2007-01-01

    Complex computer codes are used to estimate thermal and structural reentry loads on the Shuttle Orbiter induced by ice and foam debris impact during ascent. Such debris can create cavities in the Shuttle Thermal Protection System. The sizes and shapes of these cavities are approximated to accommodate a code limitation that requires simple "shoebox" geometries to describe the cavities -- rectangular areas and planar walls that are at constant angles with respect to vertical. These approximations induce uncertainty in the code results. The Modern Design of Experiments (MDOE) has recently been applied to develop a series of resource-minimal computational experiments designed to generate low-order polynomial graduating functions to approximate the more complex underlying codes. These polynomial functions were then used to propagate cavity geometry errors to estimate the uncertainty they induce in the reentry load calculations performed by the underlying code. This paper describes a methodological study focused on evaluating the application of MDOE to future operational codes in a rapid and low-cost way to assess the effects of cavity geometry uncertainty.

  3. Zero-multipole summation method for efficiently estimating electrostatic interactions in molecular system.

    PubMed

    Fukuda, Ikuo

    2013-11-07

    The zero-multipole summation method has been developed to efficiently evaluate the electrostatic Coulombic interactions of a point charge system. This summation prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large amounts of energetic noise and significant artifacts. The resulting energy function is represented by a constant term plus a simple pairwise summation, using a damped or undamped Coulombic pair potential function along with a polynomial of the distance between each particle pair. Thus, the implementation is straightforward and enables facile applications to high-performance computations. Any higher-order multipole moment can be taken into account in the neutrality principle, and it only affects the degree and coefficients of the polynomial and the constant term. The lowest and second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole summation scheme, which was previously proposed. Relationships with other non-Ewald methods are discussed, to validate the current method in their contexts. Good numerical efficiencies were easily obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals.

  4. Fast and Accurate Fitting and Filtering of Noisy Exponentials in Legendre Space

    PubMed Central

    Bao, Guobin; Schild, Detlev

    2014-01-01

    The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally, filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift characteristic for conventional lowpass filters. PMID:24603904

  5. A Legendre tau-spectral method for solving time-fractional heat equation with nonlocal conditions.

    PubMed

    Bhrawy, A H; Alghamdi, M A

    2014-01-01

    We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem.

  6. A Legendre tau-Spectral Method for Solving Time-Fractional Heat Equation with Nonlocal Conditions

    PubMed Central

    Bhrawy, A. H.; Alghamdi, M. A.

    2014-01-01

    We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem. PMID:25057507

  7. Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene.

    PubMed

    Oettinger, D; Mendoza, M; Herrmann, H J

    2013-07-01

    We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding that the family of representative wave (2+1)-vectors, which satisfies the quadrature, reconstructs a honeycomb lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent agreement with other numerical models. In addition, we have extended the Riemann problem to the case of different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases its effective viscosity.

  8. Comparison of Response Surface and Kriging Models in the Multidisciplinary Design of an Aerospike Nozzle

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.

    1998-01-01

    The use of response surface models and kriging models are compared for approximating non-random, deterministic computer analyses. After discussing the traditional response surface approach for constructing polynomial models for approximation, kriging is presented as an alternative statistical-based approximation method for the design and analysis of computer experiments. Both approximation methods are applied to the multidisciplinary design and analysis of an aerospike nozzle which consists of a computational fluid dynamics model and a finite element analysis model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations. Four optimization problems are formulated and solved using both approximation models. While neither approximation technique consistently outperforms the other in this example, the kriging models using only a constant for the underlying global model and a Gaussian correlation function perform as well as the second order polynomial response surface models.

  9. Bayesian median regression for temporal gene expression data

    NASA Astrophysics Data System (ADS)

    Yu, Keming; Vinciotti, Veronica; Liu, Xiaohui; 't Hoen, Peter A. C.

    2007-09-01

    Most of the existing methods for the identification of biologically interesting genes in a temporal expression profiling dataset do not fully exploit the temporal ordering in the dataset and are based on normality assumptions for the gene expression. In this paper, we introduce a Bayesian median regression model to detect genes whose temporal profile is significantly different across a number of biological conditions. The regression model is defined by a polynomial function where both time and condition effects as well as interactions between the two are included. MCMC-based inference returns the posterior distribution of the polynomial coefficients. From this a simple Bayes factor test is proposed to test for significance. The estimation of the median rather than the mean, and within a Bayesian framework, increases the robustness of the method compared to a Hotelling T2-test previously suggested. This is shown on simulated data and on muscular dystrophy gene expression data.

  10. Transfer function analysis of thermospheric perturbations

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.; Spencer, N. W.

    1986-01-01

    Applying perturbation theory, a spectral model in terms of vectors spherical harmonics (Legendre polynomials) is used to describe the short term thermospheric perturbations originating in the auroral regions. The source may be Joule heating, particle precipitation or ExB ion drift-momentum coupling. A multiconstituent atmosphere is considered, allowing for the collisional momentum exchange between species including Ar, O2, N2, O, He and H. The coupled equations of energy, mass and momentum conservation are solved simultaneously for the major species N2 and O. Applying homogeneous boundary conditions, the integration is carred out from the Earth's surface up to 700 km. In the analysis, the spherical harmonics are treated as eigenfunctions, assuming that the Earth's rotation (and prevailing circulation) do not significantly affect perturbations with periods which are typically much less than one day. Under these simplifying assumptions, and given a particular source distribution in the vertical, a two dimensional transfer function is constructed to describe the three dimensional response of the atmosphere. In the order of increasing horizontal wave numbers (order of polynomials), this transfer function reveals five components. To compile the transfer function, the numerical computations are very time consuming (about 100 hours on a VAX for one particular vertical source distribution). However, given the transfer function, the atmospheric response in space and time (using Fourier integral representation) can be constructed with a few seconds of a central processing unit. This model is applied in a case study of wind and temperature measurements on the Dynamics Explorer B, which show features characteristic of a ringlike excitation source in the auroral oval. The data can be interpreted as gravity waves which are focused (and amplified) in the polar region and then are reflected to propagate toward lower latitudes.

  11. Transfer function analysis of thermospheric perturbations

    NASA Astrophysics Data System (ADS)

    Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.; Spencer, N. W.

    1986-06-01

    Applying perturbation theory, a spectral model in terms of vectors spherical harmonics (Legendre polynomials) is used to describe the short term thermospheric perturbations originating in the auroral regions. The source may be Joule heating, particle precipitation or ExB ion drift-momentum coupling. A multiconstituent atmosphere is considered, allowing for the collisional momentum exchange between species including Ar, O2, N2, O, He and H. The coupled equations of energy, mass and momentum conservation are solved simultaneously for the major species N2 and O. Applying homogeneous boundary conditions, the integration is carred out from the Earth's surface up to 700 km. In the analysis, the spherical harmonics are treated as eigenfunctions, assuming that the Earth's rotation (and prevailing circulation) do not significantly affect perturbations with periods which are typically much less than one day. Under these simplifying assumptions, and given a particular source distribution in the vertical, a two dimensional transfer function is constructed to describe the three dimensional response of the atmosphere. In the order of increasing horizontal wave numbers (order of polynomials), this transfer function reveals five components. To compile the transfer function, the numerical computations are very time consuming (about 100 hours on a VAX for one particular vertical source distribution). However, given the transfer function, the atmospheric response in space and time (using Fourier integral representation) can be constructed with a few seconds of a central processing unit. This model is applied in a case study of wind and temperature measurements on the Dynamics Explorer B, which show features characteristic of a ringlike excitation source in the auroral oval. The data can be interpreted as gravity waves which are focused (and amplified) in the polar region and then are reflected to propagate toward lower latitudes.

  12. Causality and a -theorem constraints on Ricci polynomial and Riemann cubic gravities

    NASA Astrophysics Data System (ADS)

    Li, Yue-Zhou; Lü, H.; Wu, Jun-Bao

    2018-01-01

    In this paper, we study Einstein gravity extended with Ricci polynomials and derive the constraints on the coupling constants from the considerations of being ghost-free, exhibiting an a -theorem and maintaining causality. The salient feature is that Einstein metrics with appropriate effective cosmological constants continue to be solutions with the inclusion of such Ricci polynomials and the causality constraint is automatically satisfied. The ghost-free and a -theorem conditions can only be both met starting at the quartic order. We also study these constraints on general Riemann cubic gravities.

  13. Volumetric calibration of a plenoptic camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert

    Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less

  14. Volumetric calibration of a plenoptic camera

    DOE PAGES

    Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert; ...

    2018-02-01

    Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less

  15. Wavefront reconstruction algorithm based on Legendre polynomials for radial shearing interferometry over a square area and error analysis.

    PubMed

    Kewei, E; Zhang, Chen; Li, Mengyang; Xiong, Zhao; Li, Dahai

    2015-08-10

    Based on the Legendre polynomials expressions and its properties, this article proposes a new approach to reconstruct the distorted wavefront under test of a laser beam over square area from the phase difference data obtained by a RSI system. And the result of simulation and experimental results verifies the reliability of the method proposed in this paper. The formula of the error propagation coefficients is deduced when the phase difference data of overlapping area contain noise randomly. The matrix T which can be used to evaluate the impact of high-orders Legendre polynomial terms on the outcomes of the low-order terms due to mode aliasing is proposed, and the magnitude of impact can be estimated by calculating the F norm of the T. In addition, the relationship between ratio shear, sampling points, terms of polynomials and noise propagation coefficients, and the relationship between ratio shear, sampling points and norms of the T matrix are both analyzed, respectively. Those research results can provide an optimization design way for radial shearing interferometry system with the theoretical reference and instruction.

  16. Modelling the breeding of Aedes Albopictus species in an urban area in Pulau Pinang using polynomial regression

    NASA Astrophysics Data System (ADS)

    Salleh, Nur Hanim Mohd; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Saad, Ahmad Ramli; Sulaiman, Husna Mahirah; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Polynomial regression is used to model a curvilinear relationship between a response variable and one or more predictor variables. It is a form of a least squares linear regression model that predicts a single response variable by decomposing the predictor variables into an nth order polynomial. In a curvilinear relationship, each curve has a number of extreme points equal to the highest order term in the polynomial. A quadratic model will have either a single maximum or minimum, whereas a cubic model has both a relative maximum and a minimum. This study used quadratic modeling techniques to analyze the effects of environmental factors: temperature, relative humidity, and rainfall distribution on the breeding of Aedes albopictus, a type of Aedes mosquito. Data were collected at an urban area in south-west Penang from September 2010 until January 2011. The results indicated that the breeding of Aedes albopictus in the urban area is influenced by all three environmental characteristics. The number of mosquito eggs is estimated to reach a maximum value at a medium temperature, a medium relative humidity and a high rainfall distribution.

  17. Polynomial sequences for bond percolation critical thresholds

    DOE PAGES

    Scullard, Christian R.

    2011-09-22

    In this paper, I compute the inhomogeneous (multi-probability) bond critical surfaces for the (4, 6, 12) and (3 4, 6) using the linearity approximation described in (Scullard and Ziff, J. Stat. Mech. 03021), implemented as a branching process of lattices. I find the estimates for the bond percolation thresholds, pc(4, 6, 12) = 0.69377849... and p c(3 4, 6) = 0.43437077..., compared with Parviainen’s numerical results of p c = 0.69373383... and p c = 0.43430621... . These deviations are of the order 10 -5, as is standard for this method. Deriving thresholds in this way for a given latticemore » leads to a polynomial with integer coefficients, the root in [0, 1] of which gives the estimate for the bond threshold and I show how the method can be refined, leading to a series of higher order polynomials making predictions that likely converge to the exact answer. Finally, I discuss how this fact hints that for certain graphs, such as the kagome lattice, the exact bond threshold may not be the root of any polynomial with integer coefficients.« less

  18. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    PubMed

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  19. Improving multivariate Horner schemes with Monte Carlo tree search

    NASA Astrophysics Data System (ADS)

    Kuipers, J.; Plaat, A.; Vermaseren, J. A. M.; van den Herik, H. J.

    2013-11-01

    Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For polynomials in one variable, Horner's method provides a scheme for producing a computationally efficient form. For multivariate polynomials it is possible to generalize Horner's method, but this leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring variable first are used. This simple textbook algorithm has given remarkably efficient results. Finding better algorithms has proved difficult. In trying to improve upon the greedy scheme we have implemented Monte Carlo tree search, a recent search method from the field of artificial intelligence. This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by factors up to two.

  20. Theoretical predictions of latitude dependencies in the solar wind

    NASA Technical Reports Server (NTRS)

    Winge, C. R., Jr.; Coleman, P. J., Jr.

    1974-01-01

    Results are presented which were obtained with the Winge-Coleman model for theoretical predictions of latitudinal dependencies in the solar wind. A first-order expansion is described which allows analysis of first-order latitudinal variations in the coronal boundary conditions and results in a second-order partial differential equation for the perturbation stream function. Latitudinal dependencies are analytically separated out in the form of Legendre polynomials and their derivative, and are reduced to the solution of radial differential equations. This analysis is shown to supply an estimate of how large the coronal variation in latitude must be to produce an 11 km/sec/deg gradient in the radial velocity of the solar wind, assuming steady-state processes.

  1. New algorithms for solving high even-order differential equations using third and fourth Chebyshev-Galerkin methods

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Abd-Elhameed, W. M.; Bassuony, M. A.

    2013-03-01

    This paper is concerned with spectral Galerkin algorithms for solving high even-order two point boundary value problems in one dimension subject to homogeneous and nonhomogeneous boundary conditions. The proposed algorithms are extended to solve two-dimensional high even-order differential equations. The key to the efficiency of these algorithms is to construct compact combinations of Chebyshev polynomials of the third and fourth kinds as basis functions. The algorithms lead to linear systems with specially structured matrices that can be efficiently inverted. Numerical examples are included to demonstrate the validity and applicability of the proposed algorithms, and some comparisons with some other methods are made.

  2. Techniques to improve the accuracy of noise power spectrum measurements in digital x-ray imaging based on background trends removal.

    PubMed

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2011-03-01

    Noise characterization through estimation of the noise power spectrum (NPS) is a central component of the evaluation of digital x-ray systems. Extensive works have been conducted to achieve accurate and precise measurement of NPS. One approach to improve the accuracy of the NPS measurement is to reduce the statistical variance of the NPS results by involving more data samples. However, this method is based on the assumption that the noise in a radiographic image is arising from stochastic processes. In the practical data, the artifactuals always superimpose on the stochastic noise as low-frequency background trends and prevent us from achieving accurate NPS. The purpose of this study was to investigate an appropriate background detrending technique to improve the accuracy of NPS estimation for digital x-ray systems. In order to achieve the optimal background detrending technique for NPS estimate, four methods for artifactuals removal were quantitatively studied and compared: (1) Subtraction of a low-pass-filtered version of the image, (2) subtraction of a 2-D first-order fit to the image, (3) subtraction of a 2-D second-order polynomial fit to the image, and (4) subtracting two uniform exposure images. In addition, background trend removal was separately applied within original region of interest or its partitioned sub-blocks for all four methods. The performance of background detrending techniques was compared according to the statistical variance of the NPS results and low-frequency systematic rise suppression. Among four methods, subtraction of a 2-D second-order polynomial fit to the image was most effective in low-frequency systematic rise suppression and variances reduction for NPS estimate according to the authors' digital x-ray system. Subtraction of a low-pass-filtered version of the image led to NPS variance increment above low-frequency components because of the side lobe effects of frequency response of the boxcar filtering function. Subtracting two uniform exposure images obtained the worst result on the smoothness of NPS curve, although it was effective in low-frequency systematic rise suppression. Subtraction of a 2-D first-order fit to the image was also identified effective for background detrending, but it was worse than subtraction of a 2-D second-order polynomial fit to the image according to the authors' digital x-ray system. As a result of this study, the authors verified that it is necessary and feasible to get better NPS estimate by appropriate background trend removal. Subtraction of a 2-D second-order polynomial fit to the image was the most appropriate technique for background detrending without consideration of processing time.

  3. Recurrence relations for orthogonal polynomials for PDEs in polar and cylindrical geometries.

    PubMed

    Richardson, Megan; Lambers, James V

    2016-01-01

    This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian coordinates. The families of orthogonal polynomials are obtained by orthogonalizing short linear combinations of Legendre polynomials that satisfy the same boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is shown that from these recurrence relations, one can efficiently compute the corresponding recurrences for generalized Jacobi polynomials that satisfy the same boundary conditions.

  4. Adaptive optics with a magnetic deformable mirror: applications in the human eye

    NASA Astrophysics Data System (ADS)

    Fernandez, Enrique J.; Vabre, Laurent; Hermann, Boris; Unterhuber, Angelika; Povazay, Boris; Drexler, Wolfgang

    2006-10-01

    A novel deformable mirror using 52 independent magnetic actuators (MIRAO 52, Imagine Eyes) is presented and characterized for ophthalmic applications. The capabilities of the device to reproduce different surfaces, in particular Zernike polynomials up to the fifth order, are investigated in detail. The study of the influence functions of the deformable mirror reveals a significant linear response with the applied voltage. The correcting device also presents a high fidelity in the generation of surfaces. The ranges of production of Zernike polynomials fully cover those typically found in the human eye, even for the cases of highly aberrated eyes. Data from keratoconic eyes are confronted with the obtained ranges, showing that the deformable mirror is able to compensate for these strong aberrations. Ocular aberration correction with polychromatic light, using a near Gaussian spectrum of 130 nm full width at half maximum centered at 800 nm, in five subjects is accomplished by simultaneously using the deformable mirror and an achromatizing lens, in order to compensate for the monochromatic and chromatic aberrations, respectively. Results from living eyes, including one exhibiting 4.66 D of myopia and a near pathologic cornea with notable high order aberrations, show a practically perfect aberration correction. Benefits and applications of simultaneous monochromatic and chromatic aberration correction are finally discussed in the context of retinal imaging and vision.

  5. Soliton excitations and interactions for the three-coupled fourth-order nonlinear Schrödinger equations in the alpha helical proteins

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Rong; Tian, Bo; Wang, Yu-Feng; Zhen, Hui-Ling

    2015-06-01

    Three-coupled fourth-order nonlinear Schrödinger equations describe the dynamics of alpha helical proteins with the interspine coupling at the higher order. Through symbolic computation and binary Bell-polynomial approach, bilinear forms and N-soliton solutions for such equations are constructed. Key point lies in the introduction of auxiliary functions in the Bell-polynomial expression. Asymptotic analysis is applied to investigate the elastic interaction between the two solitons: two solitons keep their original amplitudes, energies and velocities invariant after the interaction except for the phase shifts. Soliton amplitudes are related to the energy distributed in the solitons of the three spines. Overtaking interaction, head-on interaction and bound-state solitons of two solitons are given. Bound states of three bright solitons arise when all of them propagate in parallel. Elastic interaction between the bound-state solitons and one bright soliton is shown. Increase of the lattice parameter can lead to the increase of the soliton velocity, that is, the interaction period becomes shorter. The solitons propagating along the neighbouring spines are found to interact elastically. Those solitons, exhibited in this paper, might be viewed as a possible carrier of bio-energy transport in the protein molecules.

  6. First Instances of Generalized Expo-Rational Finite Elements on Triangulations

    NASA Astrophysics Data System (ADS)

    Dechevsky, Lubomir T.; Zanaty, Peter; Laksa˚, Arne; Bang, Børre

    2011-12-01

    In this communication we consider a construction of simplicial finite elements on triangulated two-dimensional polygonal domains. This construction is, in some sense, dual to the construction of generalized expo-rational B-splines (GERBS). The main result is in the obtaining of new polynomial simplicial patches of the first several lowest possible total polynomial degrees which exhibit Hermite interpolatory properties. The derivation of these results is based on the theory of piecewise polynomial GERBS called Euler Beta-function B-splines. We also provide 3-dimensional visualization of the graphs of the new polynomial simplicial patches and their control polygons.

  7. Near Real-Time Closed-Loop Optimal Control Feedback for Spacecraft Attitude Maneuvers

    DTIC Science & Technology

    2009-03-01

    60 3.8 Positive ωi Static Thrust Fan Characterization Polynomial Coefficients . . 62 3.9 Negative ωi Static Thrust Fan...Characterization Polynomial Coefficients . 62 4.1 Coefficients for SimSAT II’s Air Drag Polynomial Function . . . . . . . . . . . 78 5.1 OLOC Simulation...maneuver. Researchers using OCT identified that naturally occurring aerodynamic drag and gravity forces could be exploited in such a way that the CMGs

  8. On the best mean-square approximations to a planet's gravitational potential

    NASA Astrophysics Data System (ADS)

    Lobkova, N. I.

    1985-02-01

    The continuous problem of approximating the gravitational potential of a planet in the form of polynomials of solid spherical functions is considered. The best mean-square polynomials, referred to different parts of space, are compared with each other. The harmonic coefficients corresponding to the surface of a planet are shown to be unstable with respect to the degree of the polynomial and to differ from the Stokes constants.

  9. On direct theorems for best polynomial approximation

    NASA Astrophysics Data System (ADS)

    Auad, A. A.; AbdulJabbar, R. S.

    2018-05-01

    This paper is to obtain similarity for the best approximation degree of functions, which are unbounded in L p,α (A = [0,1]), which called weighted space by algebraic polynomials. {E}nH{(f)}p,α and the best approximation degree in the same space on the interval [0,2π] by trigonometric polynomials {E}nT{(f)}p,α of direct wellknown theorems in forms the average modules.

  10. High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation

    NASA Astrophysics Data System (ADS)

    Anderson, R.; Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Quezada de Luna, M.; Rieben, R.; Tomov, V.

    2017-04-01

    In this work we present a FCT-like Maximum-Principle Preserving (MPP) method to solve the transport equation. We use high-order polynomial spaces; in particular, we consider up to 5th order spaces in two and three dimensions and 23rd order spaces in one dimension. The method combines the concepts of positive basis functions for discontinuous Galerkin finite element spatial discretization, locally defined solution bounds, element-based flux correction, and non-linear local mass redistribution. We consider a simple 1D problem with non-smooth initial data to explain and understand the behavior of different parts of the method. Convergence tests in space indicate that high-order accuracy is achieved. Numerical results from several benchmarks in two and three dimensions are also reported.

  11. DIFFERENTIAL CROSS SECTION ANALYSIS IN KAON PHOTOPRODUCTION USING ASSOCIATED LEGENDRE POLYNOMIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. T. P. HUTAURUK, D. G. IRELAND, G. ROSNER

    2009-04-01

    Angular distributions of differential cross sections from the latest CLAS data sets,6 for the reaction γ + p→K+ + Λ have been analyzed using associated Legendre polynomials. This analysis is based upon theoretical calculations in Ref. 1 where all sixteen observables in kaon photoproduction can be classified into four Legendre classes. Each observable can be described by an expansion of associated Legendre polynomial functions. One of the questions to be addressed is how many associated Legendre polynomials are required to describe the data. In this preliminary analysis, we used data models with different numbers of associated Legendre polynomials. We thenmore » compared these models by calculating posterior probabilities of the models. We found that the CLAS data set needs no more than four associated Legendre polynomials to describe the differential cross section data. In addition, we also show the extracted coefficients of the best model.« less

  12. Inequalities for majorizing analytic functions and their applications to rational trigonometric functions and polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olesov, A V

    2014-10-31

    New inequalities are established for analytic functions satisfying Meiman's majorization conditions. Estimates for values of and differential inequalities involving rational trigonometric functions with an integer majorant on an interval of length less than the period and with prescribed poles which are symmetrically positioned relative to the real axis, as well as differential inequalities for trigonometric polynomials in some classes, are given as applications. These results improve several theorems due to Meiman, Genchev, Smirnov and Rusak. Bibliography: 27 titles.

  13. The use of rational functions in numerical quadrature

    NASA Astrophysics Data System (ADS)

    Gautschi, Walter

    2001-08-01

    Quadrature problems involving functions that have poles outside the interval of integration can profitably be solved by methods that are exact not only for polynomials of appropriate degree, but also for rational functions having the same (or the most important) poles as the function to be integrated. Constructive and computational tools for accomplishing this are described and illustrated in a number of quadrature contexts. The superiority of such rational/polynomial methods is shown by an analysis of the remainder term and documented by numerical examples.

  14. Orthogonal basis with a conicoid first mode for shape specification of optical surfaces.

    PubMed

    Ferreira, Chelo; López, José L; Navarro, Rafael; Sinusía, Ester Pérez

    2016-03-07

    A rigorous and powerful theoretical framework is proposed to obtain systems of orthogonal functions (or shape modes) to represent optical surfaces. The method is general so it can be applied to different initial shapes and different polynomials. Here we present results for surfaces with circular apertures when the first basis function (mode) is a conicoid. The system for aspheres with rotational symmetry is obtained applying an appropriate change of variables to Legendre polynomials, whereas the system for general freeform case is obtained applying a similar procedure to spherical harmonics. Numerical comparisons with standard systems, such as Forbes and Zernike polynomials, are performed and discussed.

  15. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    NASA Astrophysics Data System (ADS)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  16. Machine learning for many-body physics: The case of the Anderson impurity model

    DOE PAGES

    Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole; ...

    2014-10-31

    We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.

  17. Machine learning for many-body physics: The case of the Anderson impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole

    We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.

  18. A Formally Verified Conflict Detection Algorithm for Polynomial Trajectories

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony; Munoz, Cesar

    2015-01-01

    In air traffic management, conflict detection algorithms are used to determine whether or not aircraft are predicted to lose horizontal and vertical separation minima within a time interval assuming a trajectory model. In the case of linear trajectories, conflict detection algorithms have been proposed that are both sound, i.e., they detect all conflicts, and complete, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory models, it is possible to define detection algorithms that are either sound or complete, but not both. This paper considers the case of nonlinear aircraft trajectory models based on polynomial functions. In particular, it proposes a conflict detection algorithm that precisely determines whether, given a lookahead time, two aircraft flying polynomial trajectories are in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories are modeled as polynomial functions, the proposed algorithm is both sound and complete.

  19. Hilbert's 17th Problem and the Quantumness of States

    NASA Astrophysics Data System (ADS)

    Korbicz, J. K.; Cirac, J. I.; Wehr, Jan; Lewenstein, M.

    2005-04-01

    A state of a quantum system can be regarded as classical (quantum) with respect to measurements of a set of canonical observables if and only if there exists (does not exist) a well defined, positive phase-space distribution, the so called Glauber-Sudarshan P representation. We derive a family of classicality criteria that requires that the averages of positive functions calculated using P representation must be positive. For polynomial functions, these criteria are related to Hilbert’s 17th problem, and have physical meaning of generalized squeezing conditions; alternatively, they may be interpreted as nonclassicality witnesses. We show that every generic nonclassical state can be detected by a polynomial that is a sum-of-squares of other polynomials. We introduce a very natural hierarchy of states regarding their degree of quantumness, which we relate to the minimal degree of a sum-of-squares polynomial that detects them.

  20. An algorithm for the numerical evaluation of the associated Legendre functions that runs in time independent of degree and order

    NASA Astrophysics Data System (ADS)

    Bremer, James

    2018-05-01

    We describe a method for the numerical evaluation of normalized versions of the associated Legendre functions Pν- μ and Qν- μ of degrees 0 ≤ ν ≤ 1, 000, 000 and orders - ν ≤ μ ≤ ν for arguments in the interval (- 1 , 1). Our algorithm, which runs in time independent of ν and μ, is based on the fact that while the associated Legendre functions themselves are extremely expensive to represent via polynomial expansions, the logarithms of certain solutions of the differential equation defining them are not. We exploit this by numerically precomputing the logarithms of carefully chosen solutions of the associated Legendre differential equation and representing them via piecewise trivariate Chebyshev expansions. These precomputed expansions, which allow for the rapid evaluation of the associated Legendre functions over a large swath of parameter domain mentioned above, are supplemented with asymptotic and series expansions in order to cover it entirely. The results of numerical experiments demonstrating the efficacy of our approach are presented, and our code for evaluating the associated Legendre functions is publicly available.

  1. Genetic parameters for test-day yield of milk, fat and protein in buffaloes estimated by random regression models.

    PubMed

    Aspilcueta-Borquis, Rúsbel R; Araujo Neto, Francisco R; Baldi, Fernando; Santos, Daniel J A; Albuquerque, Lucia G; Tonhati, Humberto

    2012-08-01

    The test-day yields of milk, fat and protein were analysed from 1433 first lactations of buffaloes of the Murrah breed, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, born between 1985 and 2007. For the test-day yields, 10 monthly classes of lactation days were considered. The contemporary groups were defined as the herd-year-month of the test day. Random additive genetic, permanent environmental and residual effects were included in the model. The fixed effects considered were the contemporary group, number of milkings (1 or 2 milkings), linear and quadratic effects of the covariable cow age at calving and the mean lactation curve of the population (modelled by third-order Legendre orthogonal polynomials). The random additive genetic and permanent environmental effects were estimated by means of regression on third- to sixth-order Legendre orthogonal polynomials. The residual variances were modelled with a homogenous structure and various heterogeneous classes. According to the likelihood-ratio test, the best model for milk and fat production was that with four residual variance classes, while a third-order Legendre polynomial was best for the additive genetic effect for milk and fat yield, a fourth-order polynomial was best for the permanent environmental effect for milk production and a fifth-order polynomial was best for fat production. For protein yield, the best model was that with three residual variance classes and third- and fourth-order Legendre polynomials were best for the additive genetic and permanent environmental effects, respectively. The heritability estimates for the characteristics analysed were moderate, varying from 0·16±0·05 to 0·29±0·05 for milk yield, 0·20±0·05 to 0·30±0·08 for fat yield and 0·18±0·06 to 0·27±0·08 for protein yield. The estimates of the genetic correlations between the tests varied from 0·18±0·120 to 0·99±0·002; from 0·44±0·080 to 0·99±0·004; and from 0·41±0·080 to 0·99±0·004, for milk, fat and protein production, respectively, indicating that whatever the selection criterion used, indirect genetic gains can be expected throughout the lactation curve.

  2. Application of neural networks with orthogonal activation functions in control of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.

    2016-04-01

    In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.

  3. Sandia Higher Order Elements (SHOE) v 0.5 alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2013-09-24

    SHOE is research code for characterizing and visualizing higher-order finite elements; it contains a framework for defining classes of interpolation techniques and element shapes; methods for interpolating triangular, quadrilateral, tetrahedral, and hexahedral cells using Lagrange and Legendre polynomial bases of arbitrary order; methods to decompose each element into domains of constant gradient flow (using a polynomial solver to identify critical points); and an isocontouring technique that uses this decomposition to guarantee topological correctness. Please note that this is an alpha release of research software and that some time has passed since it was actively developed; build- and run-time issues likelymore » exist.« less

  4. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    NASA Astrophysics Data System (ADS)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  5. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  6. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-04

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  7. A Christoffel function weighted least squares algorithm for collocation approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, Akil; Jakeman, John D.; Zhou, Tao

    Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less

  8. A Christoffel function weighted least squares algorithm for collocation approximations

    DOE PAGES

    Narayan, Akil; Jakeman, John D.; Zhou, Tao

    2016-11-28

    Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Kunkun, E-mail: ktg@illinois.edu; Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence; Congedo, Pietro M.

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable formore » real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.« less

  10. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  11. Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach.

    PubMed

    Tanaka, Kazuo; Ohtake, Hiroshi; Wang, Hua O

    2009-04-01

    This paper presents the guaranteed cost control of polynomial fuzzy systems via a sum of squares (SOS) approach. First, we present a polynomial fuzzy model and controller that are more general representations of the well-known Takagi-Sugeno (T-S) fuzzy model and controller, respectively. Second, we derive a guaranteed cost control design condition based on polynomial Lyapunov functions. Hence, the design approach discussed in this paper is more general than the existing LMI approaches (to T-S fuzzy control system designs) based on quadratic Lyapunov functions. The design condition realizes a guaranteed cost control by minimizing the upper bound of a given performance function. In addition, the design condition in the proposed approach can be represented in terms of SOS and is numerically (partially symbolically) solved via the recent developed SOSTOOLS. To illustrate the validity of the design approach, two design examples are provided. The first example deals with a complicated nonlinear system. The second example presents micro helicopter control. Both the examples show that our approach provides more extensive design results for the existing LMI approach.

  12. On Convergence Aspects of Spheroidal Monogenics

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; Morais, J.

    2011-09-01

    Orthogonal polynomials have found wide applications in mathematical physics, numerical analysis, and other fields. Accordingly there is an enormous amount of variety of such polynomials and relations that describe their properties. The paper's main results are the discussion of approximation properties for monogenic functions over prolate spheroids in R3 in terms of orthogonal monogenic polynomials and their interdependences. Certain results are stated without proof for now. The motivation for the present study stems from the fact that these polynomials play an important role in the calculation of the Bergman kernel and Green's monogenic functions in a spheroid. Once these functions are known, it is possible to solve both basic boundary value and conformal mapping problems. Interestingly, most of the used methods have a n-dimensional counterpart and can be extended to arbitrary ellipsoids. But such a procedure would make the further study of the underlying ellipsoidal monogenics somewhat laborious, and for this reason we shall not discuss these general cases here. To the best of our knowledge, this does not appear to have been done in literature before.

  13. The Maximums and Minimums of a Polnomial or Maximizing Profits and Minimizing Aircraft Losses.

    ERIC Educational Resources Information Center

    Groves, Brenton R.

    1984-01-01

    Plotting a polynomial over the range of real numbers when its derivative contains complex roots is discussed. The polynomials are graphed by calculating the minimums, maximums, and zeros of the function. (MNS)

  14. A Multipixel Time Series Analysis Method Accounting for Ground Motion, Atmospheric Noise, and Orbital Errors

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Simons, M.

    2018-02-01

    Interferometric synthetic aperture radar time series methods aim to reconstruct time-dependent ground displacements over large areas from sets of interferograms in order to detect transient, periodic, or small-amplitude deformation. Because of computational limitations, most existing methods consider each pixel independently, ignoring important spatial covariances between observations. We describe a framework to reconstruct time series of ground deformation while considering all pixels simultaneously, allowing us to account for spatial covariances, imprecise orbits, and residual atmospheric perturbations. We describe spatial covariances by an exponential decay function dependent of pixel-to-pixel distance. We approximate the impact of imprecise orbit information and residual long-wavelength atmosphere as a low-order polynomial function. Tests on synthetic data illustrate the importance of incorporating full covariances between pixels in order to avoid biased parameter reconstruction. An example of application to the northern Chilean subduction zone highlights the potential of this method.

  15. Extension of the root-locus method to a certain class of fractional-order systems.

    PubMed

    Merrikh-Bayat, Farshad; Afshar, Mahdi; Karimi-Ghartemani, Masoud

    2009-01-01

    In this paper, the well-known root-locus method is developed for the special subset of linear time-invariant systems commonly known as fractional-order systems. Transfer functions of these systems are rational functions with polynomials of rational powers of the Laplace variable s. Such systems are defined on a Riemann surface because of their multi-valued nature. A set of rules for plotting the root loci on the first Riemann sheet is presented. The important features of the classical root-locus method such as asymptotes, roots condition on the real axis and breakaway points are extended to the fractional case. It is also shown that the proposed method can assess the closed-loop stability of fractional-order systems in the presence of a varying gain in the loop. Moreover, the effect of perturbation on the root loci is discussed. Three illustrative examples are presented to confirm the effectiveness of the proposed algorithm.

  16. Control Synthesis of Discrete-Time T-S Fuzzy Systems via a Multi-Instant Homogenous Polynomial Approach.

    PubMed

    Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng

    2016-03-01

    This paper deals with the problem of control synthesis of discrete-time Takagi-Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper.

  17. Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fei; Department of Mathematics, University of California, Berkeley; Morzfeld, Matthias, E-mail: mmo@math.lbl.gov

    2015-02-01

    Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior.

  18. Numeric model to predict the location of market demand and economic order quantity for retailers of supply chain

    NASA Astrophysics Data System (ADS)

    Fradinata, Edy; Marli Kesuma, Zurnila

    2018-05-01

    Polynomials and Spline regression are the numeric model where they used to obtain the performance of methods, distance relationship models for cement retailers in Banda Aceh, predicts the market area for retailers and the economic order quantity (EOQ). These numeric models have their difference accuracy for measuring the mean square error (MSE). The distance relationships between retailers are to identify the density of retailers in the town. The dataset is collected from the sales of cement retailer with a global positioning system (GPS). The sales dataset is plotted of its characteristic to obtain the goodness of fitted quadratic, cubic, and fourth polynomial methods. On the real sales dataset, polynomials are used the behavior relationship x-abscissa and y-ordinate to obtain the models. This research obtains some advantages such as; the four models from the methods are useful for predicting the market area for the retailer in the competitiveness, the comparison of the performance of the methods, the distance of the relationship between retailers, and at last the inventory policy based on economic order quantity. The results, the high-density retail relationship areas indicate that the growing population with the construction project. The spline is better than quadratic, cubic, and four polynomials in predicting the points indicating of small MSE. The inventory policy usages the periodic review policy type.

  19. The Extrapolar SWIFT model (version 1.0): fast stratospheric ozone chemistry for global climate models

    NASA Astrophysics Data System (ADS)

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2018-03-01

    The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends.The Extrapolar SWIFT model employs a repro-modelling approach, in which algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equation system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, overhead ozone column and the mixing ratio of ozone and of the ozone-depleting families (Cly, Bry, NOy and HOy). We will show that these nine variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month, which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading).For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model, replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the systematic error is small and does not accumulate during the course of a simulation. In the context of a 10-year simulation, the ozone layer simulated by SWIFT shows a stable annual cycle, with inter-annual variations comparable to the ATLAS model. The application of Extrapolar SWIFT requires the evaluation of polynomial functions with 30-100 terms. Computers can currently calculate such polynomial functions at thousands of model grid points in seconds. SWIFT provides the desired numerical efficiency and computes the ozone layer 104 times faster than the chemistry scheme in the ATLAS CTM.

  20. State-vector formalism and the Legendre polynomial solution for modelling guided waves in anisotropic plates

    NASA Astrophysics Data System (ADS)

    Zheng, Mingfang; He, Cunfu; Lu, Yan; Wu, Bin

    2018-01-01

    We presented a numerical method to solve phase dispersion curve in general anisotropic plates. This approach involves an exact solution to the problem in the form of the Legendre polynomial of multiple integrals, which we substituted into the state-vector formalism. In order to improve the efficiency of the proposed method, we made a special effort to demonstrate the analytical methodology. Furthermore, we analyzed the algebraic symmetries of the matrices in the state-vector formalism for anisotropic plates. The basic feature of the proposed method was the expansion of field quantities by Legendre polynomials. The Legendre polynomial method avoid to solve the transcendental dispersion equation, which can only be solved numerically. This state-vector formalism combined with Legendre polynomial expansion distinguished the adjacent dispersion mode clearly, even when the modes were very close. We then illustrated the theoretical solutions of the dispersion curves by this method for isotropic and anisotropic plates. Finally, we compared the proposed method with the global matrix method (GMM), which shows excellent agreement.

  1. Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard

    NASA Astrophysics Data System (ADS)

    Roquet, F.; Madec, G.; McDougall, Trevor J.; Barker, Paul M.

    2015-06-01

    A new set of approximations to the standard TEOS-10 equation of state are presented. These follow a polynomial form, making it computationally efficient for use in numerical ocean models. Two versions are provided, the first being a fit of density for Boussinesq ocean models, and the second fitting specific volume which is more suitable for compressible models. Both versions are given as the sum of a vertical reference profile (6th-order polynomial) and an anomaly (52-term polynomial, cubic in pressure), with relative errors of ∼0.1% on the thermal expansion coefficients. A 75-term polynomial expression is also presented for computing specific volume, with a better accuracy than the existing TEOS-10 48-term rational approximation, especially regarding the sound speed, and it is suggested that this expression represents a valuable approximation of the TEOS-10 equation of state for hydrographic data analysis. In the last section, practical aspects about the implementation of TEOS-10 in ocean models are discussed.

  2. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation

    PubMed Central

    Cai, Jian-Na; Jung, Ji-Eun; Dang, Minh-Huy; Kim, Mi-Ah; Yi, Ho-Keun; Jeon, Jae-Gyu

    2016-01-01

    Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v) sucrose. The adherence (in 4-hour biofilms) and biofilm composition (in 46-hour biofilms) of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS) content), and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs) of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship. PMID:27275603

  3. Distortion theorems for polynomials on a circle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubinin, V N

    2000-12-31

    Inequalities for the derivatives with respect to {phi}=arg z the functions ReP(z), |P(z)|{sup 2} and arg P(z) are established for an algebraic polynomial P(z) at points on the circle |z|=1. These estimates depend, in particular, on the constant term and the leading coefficient of the polynomial P(z) and improve the classical Bernstein and Turan inequalities. The method of proof is based on the techniques of generalized reduced moduli.

  4. Quadratically Convergent Method for Simultaneously Approaching the Roots of Polynomial Solutions of a Class of Differential Equations

    NASA Astrophysics Data System (ADS)

    Recchioni, Maria Cristina

    2001-12-01

    This paper investigates the application of the method introduced by L. Pasquini (1989) for simultaneously approaching the zeros of polynomial solutions to a class of second-order linear homogeneous ordinary differential equations with polynomial coefficients to a particular case in which these polynomial solutions have zeros symmetrically arranged with respect to the origin. The method is based on a family of nonlinear equations which is associated with a given class of differential equations. The roots of the nonlinear equations are related to the roots of the polynomial solutions of differential equations considered. Newton's method is applied to find the roots of these nonlinear equations. In (Pasquini, 1994) the nonsingularity of the roots of these nonlinear equations is studied. In this paper, following the lines in (Pasquini, 1994), the nonsingularity of the roots of these nonlinear equations is studied. More favourable results than the ones in (Pasquini, 1994) are proven in the particular case of polynomial solutions with symmetrical zeros. The method is applied to approximate the roots of Hermite-Sobolev type polynomials and Freud polynomials. A lower bound for the smallest positive root of Hermite-Sobolev type polynomials is given via the nonlinear equation. The quadratic convergence of the method is proven. A comparison with a classical method that uses the Jacobi matrices is carried out. We show that the algorithm derived by the proposed method is sometimes preferable to the classical QR type algorithms for computing the eigenvalues of the Jacobi matrices even if these matrices are real and symmetric.

  5. Solution of the nonlinear mixed Volterra-Fredholm integral equations by hybrid of block-pulse functions and Bernoulli polynomials.

    PubMed

    Mashayekhi, S; Razzaghi, M; Tripak, O

    2014-01-01

    A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.

  6. Solution of the Nonlinear Mixed Volterra-Fredholm Integral Equations by Hybrid of Block-Pulse Functions and Bernoulli Polynomials

    PubMed Central

    Mashayekhi, S.; Razzaghi, M.; Tripak, O.

    2014-01-01

    A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. PMID:24523638

  7. Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery.

    PubMed

    Altmann, Yoann; Halimi, Abderrahim; Dobigeon, Nicolas; Tourneret, Jean-Yves

    2012-06-01

    This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated using polynomial functions leading to a polynomial postnonlinear mixing model. A Bayesian algorithm and optimization methods are proposed to estimate the parameters involved in the model. The performance of the unmixing strategies is evaluated by simulations conducted on synthetic and real data.

  8. Modeling corneal surfaces with rational functions for high-speed videokeratoscopy data compression.

    PubMed

    Schneider, Martin; Iskander, D Robert; Collins, Michael J

    2009-02-01

    High-speed videokeratoscopy is an emerging technique that enables study of the corneal surface and tear-film dynamics. Unlike its static predecessor, this new technique results in a very large amount of digital data for which storage needs become significant. We aimed to design a compression technique that would use mathematical functions to parsimoniously fit corneal surface data with a minimum number of coefficients. Since the Zernike polynomial functions that have been traditionally used for modeling corneal surfaces may not necessarily correctly represent given corneal surface data in terms of its optical performance, we introduced the concept of Zernike polynomial-based rational functions. Modeling optimality criteria were employed in terms of both the rms surface error as well as the point spread function cross-correlation. The parameters of approximations were estimated using a nonlinear least-squares procedure based on the Levenberg-Marquardt algorithm. A large number of retrospective videokeratoscopic measurements were used to evaluate the performance of the proposed rational-function-based modeling approach. The results indicate that the rational functions almost always outperform the traditional Zernike polynomial approximations with the same number of coefficients.

  9. Mixed kernel function support vector regression for global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng

    2017-11-01

    Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.

  10. Recurrence relations in one-dimensional Ising models.

    PubMed

    da Conceição, C M Silva; Maia, R N P

    2017-09-01

    The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found through an approach using algebra operators. Specifically, in this paper we show that the partition function can be computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models. Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.

  11. Random regression models using Legendre orthogonal polynomials to evaluate the milk production of Alpine goats.

    PubMed

    Silva, F G; Torres, R A; Brito, L F; Euclydes, R F; Melo, A L P; Souza, N O; Ribeiro, J I; Rodrigues, M T

    2013-12-11

    The objective of this study was to identify the best random regression model using Legendre orthogonal polynomials to evaluate Alpine goats genetically and to estimate the parameters for test day milk yield. On the test day, we analyzed 20,710 records of milk yield of 667 goats from the Goat Sector of the Universidade Federal de Viçosa. The evaluated models had combinations of distinct fitting orders for polynomials (2-5), random genetic (1-7), and permanent environmental (1-7) fixed curves and a number of classes for residual variance (2, 4, 5, and 6). WOMBAT software was used for all genetic analyses. A random regression model using the best Legendre orthogonal polynomial for genetic evaluation of milk yield on the test day of Alpine goats considered a fixed curve of order 4, curve of genetic additive effects of order 2, curve of permanent environmental effects of order 7, and a minimum of 5 classes of residual variance because it was the most economical model among those that were equivalent to the complete model by the likelihood ratio test. Phenotypic variance and heritability were higher at the end of the lactation period, indicating that the length of lactation has more genetic components in relation to the production peak and persistence. It is very important that the evaluation utilizes the best combination of fixed, genetic additive and permanent environmental regressions, and number of classes of heterogeneous residual variance for genetic evaluation using random regression models, thereby enhancing the precision and accuracy of the estimates of parameters and prediction of genetic values.

  12. Blending Velocities In Task Space In Computing Robot Motions

    NASA Technical Reports Server (NTRS)

    Volpe, Richard A.

    1995-01-01

    Blending of linear and angular velocities between sequential specified points in task space constitutes theoretical basis of improved method of computing trajectories followed by robotic manipulators. In method, generalized velocity-vector-blending technique provides relatively simple, common conceptual framework for blending linear, angular, and other parametric velocities. Velocity vectors originate from straight-line segments connecting specified task-space points, called "via frames" and represent specified robot poses. Linear-velocity-blending functions chosen from among first-order, third-order-polynomial, and cycloidal options. Angular velocities blended by use of first-order approximation of previous orientation-matrix-blending formulation. Angular-velocity approximation yields small residual error, quantified and corrected. Method offers both relative simplicity and speed needed for generation of robot-manipulator trajectories in real time.

  13. Recursive approach to the moment-based phase unwrapping method.

    PubMed

    Langley, Jason A; Brice, Robert G; Zhao, Qun

    2010-06-01

    The moment-based phase unwrapping algorithm approximates the phase map as a product of Gegenbauer polynomials, but the weight function for the Gegenbauer polynomials generates artificial singularities along the edge of the phase map. A method is presented to remove the singularities inherent to the moment-based phase unwrapping algorithm by approximating the phase map as a product of two one-dimensional Legendre polynomials and applying a recursive property of derivatives of Legendre polynomials. The proposed phase unwrapping algorithm is tested on simulated and experimental data sets. The results are then compared to those of PRELUDE 2D, a widely used phase unwrapping algorithm, and a Chebyshev-polynomial-based phase unwrapping algorithm. It was found that the proposed phase unwrapping algorithm provides results that are comparable to those obtained by using PRELUDE 2D and the Chebyshev phase unwrapping algorithm.

  14. Random regression models on Legendre polynomials to estimate genetic parameters for weights from birth to adult age in Canchim cattle.

    PubMed

    Baldi, F; Albuquerque, L G; Alencar, M M

    2010-08-01

    The objective of this work was to estimate covariance functions for direct and maternal genetic effects, animal and maternal permanent environmental effects, and subsequently, to derive relevant genetic parameters for growth traits in Canchim cattle. Data comprised 49,011 weight records on 2435 females from birth to adult age. The model of analysis included fixed effects of contemporary groups (year and month of birth and at weighing) and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were allowed to vary and were modelled by a step function with 1, 4 or 11 classes based on animal's age. The model fitting four classes of residual variances was the best. A total of 12 random regression models from second to seventh order were used to model direct and maternal genetic effects, animal and maternal permanent environmental effects. The model with direct and maternal genetic effects, animal and maternal permanent environmental effects fitted by quadric, cubic, quintic and linear Legendre polynomials, respectively, was the most adequate to describe the covariance structure of the data. Estimates of direct and maternal heritability obtained by multi-trait (seven traits) and random regression models were very similar. Selection for higher weight at any age, especially after weaning, will produce an increase in mature cow weight. The possibility to modify the growth curve in Canchim cattle to obtain animals with rapid growth at early ages and moderate to low mature cow weight is limited.

  15. Modeling State-Space Aeroelastic Systems Using a Simple Matrix Polynomial Approach for the Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2008-01-01

    A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.

  16. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    PubMed

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second degree where the parabola is its graphical representation.

  17. Noncommutative Differential Geometry of Generalized Weyl Algebras

    NASA Astrophysics Data System (ADS)

    Brzeziński, Tomasz

    2016-06-01

    Elements of noncommutative differential geometry of Z-graded generalized Weyl algebras A(p;q) over the ring of polynomials in two variables and their zero-degree subalgebras B(p;q), which themselves are generalized Weyl algebras over the ring of polynomials in one variable, are discussed. In particular, three classes of skew derivations of A(p;q) are constructed, and three-dimensional first-order differential calculi induced by these derivations are described. The associated integrals are computed and it is shown that the dimension of the integral space coincides with the order of the defining polynomial p(z). It is proven that the restriction of these first-order differential calculi to the calculi on B(p;q) is isomorphic to the direct sum of degree 2 and degree -2 components of A(p;q). A Dirac operator for B(p;q) is constructed from a (strong) connection with respect to this differential calculus on the (free) spinor bimodule defined as the direct sum of degree 1 and degree -1 components of A(p;q). The real structure of KO-dimension two for this Dirac operator is also described.

  18. Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks

    PubMed Central

    Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir

    2014-01-01

    Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques. PMID:25157950

  19. Predicting physical time series using dynamic ridge polynomial neural networks.

    PubMed

    Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir

    2014-01-01

    Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques.

  20. Distortion theorems for polynomials on a circle

    NASA Astrophysics Data System (ADS)

    Dubinin, V. N.

    2000-12-01

    Inequalities for the derivatives with respect to \\varphi=\\arg z the functions \\operatorname{Re}P(z), \\vert P(z)\\vert^2 and \\arg P(z) are established for an algebraic polynomial P(z) at points on the circle \\vert z\\vert=1. These estimates depend, in particular, on the constant term and the leading coefficient of the polynomial P(z) and improve the classical Bernstein and Turan inequalities. The method of proof is based on the techniques of generalized reduced moduli.

  1. CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae

    NASA Astrophysics Data System (ADS)

    van de Leur, Johan W.; Orlov, Alexander Yu.; Shiota, Takahiro

    2012-06-01

    We develop the theory of CKP hierarchy introduced in the papers of Kyoto school [Date E., Jimbo M., Kashiwara M., Miwa T., J. Phys. Soc. Japan 50 (1981), 3806-3812] (see also [Kac V.G., van de Leur J.W., Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 369-406]). We present appropriate bosonization formulae. We show that in the context of the CKP theory certain orthogonal polynomials appear. These polynomials are polynomial both in even and odd (in Grassmannian sense) variables.

  2. Correcting bias in the rational polynomial coefficients of satellite imagery using thin-plate smoothing splines

    NASA Astrophysics Data System (ADS)

    Shen, Xiang; Liu, Bin; Li, Qing-Quan

    2017-03-01

    The Rational Function Model (RFM) has proven to be a viable alternative to the rigorous sensor models used for geo-processing of high-resolution satellite imagery. Because of various errors in the satellite ephemeris and instrument calibration, the Rational Polynomial Coefficients (RPCs) supplied by image vendors are often not sufficiently accurate, and there is therefore a clear need to correct the systematic biases in order to meet the requirements of high-precision topographic mapping. In this paper, we propose a new RPC bias-correction method using the thin-plate spline modeling technique. Benefiting from its excellent performance and high flexibility in data fitting, the thin-plate spline model has the potential to remove complex distortions in vendor-provided RPCs, such as the errors caused by short-period orbital perturbations. The performance of the new method was evaluated by using Ziyuan-3 satellite images and was compared against the recently developed least-squares collocation approach, as well as the classical affine-transformation and quadratic-polynomial based methods. The results show that the accuracies of the thin-plate spline and the least-squares collocation approaches were better than the other two methods, which indicates that strong non-rigid deformations exist in the test data because they cannot be adequately modeled by simple polynomial-based methods. The performance of the thin-plate spline method was close to that of the least-squares collocation approach when only a few Ground Control Points (GCPs) were used, and it improved more rapidly with an increase in the number of redundant observations. In the test scenario using 21 GCPs (some of them located at the four corners of the scene), the correction residuals of the thin-plate spline method were about 36%, 37%, and 19% smaller than those of the affine transformation method, the quadratic polynomial method, and the least-squares collocation algorithm, respectively, which demonstrates that the new method can be more effective at removing systematic biases in vendor-supplied RPCs.

  3. Field curvature correction method for ultrashort throw ratio projection optics design using an odd polynomial mirror surface.

    PubMed

    Zhuang, Zhenfeng; Chen, Yanting; Yu, Feihong; Sun, Xiaowei

    2014-08-01

    This paper presents a field curvature correction method of designing an ultrashort throw ratio (TR) projection lens for an imaging system. The projection lens is composed of several refractive optical elements and an odd polynomial mirror surface. A curved image is formed in a direction away from the odd polynomial mirror surface by the refractive optical elements from the image formed on the digital micromirror device (DMD) panel, and the curved image formed is its virtual image. Then the odd polynomial mirror surface enlarges the curved image and a plane image is formed on the screen. Based on the relationship between the chief ray from the exit pupil of each field of view (FOV) and the corresponding predescribed position on the screen, the initial profile of the freeform mirror surface is calculated by using segments of the hyperbolic according to the laws of reflection. For further optimization, the value of the high-order odd polynomial surface is used to express the freeform mirror surface through a least-squares fitting method. As an example, an ultrashort TR projection lens that realizes projection onto a large 50 in. screen at a distance of only 510 mm is presented. The optical performance for the designed projection lens is analyzed by ray tracing method. Results show that an ultrashort TR projection lens modulation transfer function of over 60% at 0.5 cycles/mm for all optimization fields is achievable with f-number of 2.0, 126° full FOV, <1% distortion, and 0.46 TR. Moreover, in comparing the proposed projection lens' optical specifications to that of traditional projection lenses, aspheric mirror projection lenses, and conventional short TR projection lenses, results indicate that this projection lens has the advantages of ultrashort TR, low f-number, wide full FOV, and small distortion.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  5. Equations on knot polynomials and 3d/5d duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironov, A.; Morozov, A.; ITEP, Moscow

    2012-09-24

    We briefly review the current situation with various relations between knot/braid polynomials (Chern-Simons correlation functions), ordinary and extended, considered as functions of the representation and of the knot topology. These include linear skein relations, quadratic Plucker relations, as well as 'differential' and (quantum) A-polynomial structures. We pay a special attention to identity between the A-polynomial equations for knots and Baxter equations for quantum relativistic integrable systems, related through Seiberg-Witten theory to 5d super-Yang-Mills models and through the AGT relation to the q-Virasoro algebra. This identity is an important ingredient of emerging a 3d- 5d generalization of the AGT relation. Themore » shape of the Baxter equation (including the values of coefficients) depend on the choice of the knot/braid. Thus, like the case of KP integrability, where (some, so far torus) knots parameterize particular points of the Universal Grassmannian, in this relation they parameterize particular points in the moduli space of many-body integrable systems of relativistic type.« less

  6. Phase demodulation method from a single fringe pattern based on correlation with a polynomial form.

    PubMed

    Robin, Eric; Valle, Valéry; Brémand, Fabrice

    2005-12-01

    The method presented extracts the demodulated phase from only one fringe pattern. Locally, this method approaches the fringe pattern morphology with the help of a mathematical model. The degree of similarity between the mathematical model and the real fringe is estimated by minimizing a correlation function. To use an optimization process, we have chosen a polynomial form such as a mathematical model. However, the use of a polynomial form induces an identification procedure with the purpose of retrieving the demodulated phase. This method, polynomial modulated phase correlation, is tested on several examples. Its performance, in terms of speed and precision, is presented on very noised fringe patterns.

  7. Reliability of the Load-Velocity Relationship Obtained Through Linear and Polynomial Regression Models to Predict the One-Repetition Maximum Load.

    PubMed

    Pestaña-Melero, Francisco Luis; Haff, G Gregory; Rojas, Francisco Javier; Pérez-Castilla, Alejandro; García-Ramos, Amador

    2017-12-18

    This study aimed to compare the between-session reliability of the load-velocity relationship between (1) linear vs. polynomial regression models, (2) concentric-only vs. eccentric-concentric bench press variants, as well as (3) the within-participants vs. the between-participants variability of the velocity attained at each percentage of the one-repetition maximum (%1RM). The load-velocity relationship of 30 men (age: 21.2±3.8 y; height: 1.78±0.07 m, body mass: 72.3±7.3 kg; bench press 1RM: 78.8±13.2 kg) were evaluated by means of linear and polynomial regression models in the concentric-only and eccentric-concentric bench press variants in a Smith Machine. Two sessions were performed with each bench press variant. The main findings were: (1) first-order-polynomials (CV: 4.39%-4.70%) provided the load-velocity relationship with higher reliability than second-order-polynomials (CV: 4.68%-5.04%); (2) the reliability of the load-velocity relationship did not differ between the concentric-only and eccentric-concentric bench press variants; (3) the within-participants variability of the velocity attained at each %1RM was markedly lower than the between-participants variability. Taken together, these results highlight that, regardless of the bench press variant considered, the individual determination of the load-velocity relationship by a linear regression model could be recommended to monitor and prescribe the relative load in the Smith machine bench press exercise.

  8. Static and Vibration Analyses of General Wing Structures Using Equivalent Plate Models

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Liu, Youhua

    1999-01-01

    An efficient method, using equivalent plate model, is developed for studying the static and vibration analyses of general built-up wing structures composed of skins, spars, and ribs. The model includes the transverse shear effects by treating the built-up wing as a plate following the Reissner-Mindlin theory, the so-called First-order Shear Deformation Theory (FSDT). The Ritz method is used with the Legendre polynomials being employed as the trial functions. This is in contrast to previous equivalent plate model methods which have used simple polynomials, known to be prone to numerical ill-conditioning, as the trial functions. The present developments are evaluated by comparing the results with those obtained using MSC/NASTRAN, for a set of examples. These examples are: (i) free-vibration analysis of a clamped trapezoidal plate with (a) uniform thickness, and (b) non-uniform thickness varying as an airfoil, (ii) free-vibration and static analyses (including skin stress distribution) of a general built-up wing, and (iii) free-vibration and static analyses of a swept-back box wing. The results obtained by the present equivalent plate model are in good agreement with those obtained by the finite element method.

  9. High-Order Polynomial Expansions (HOPE) for flux-vector splitting

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Steffen, Chris J., Jr.

    1991-01-01

    The Van Leer flux splitting is known to produce excessive numerical dissipation for Navier-Stokes calculations. Researchers attempt to remedy this deficiency by introducing a higher order polynomial expansion (HOPE) for the mass flux. In addition to Van Leer's splitting, a term is introduced so that the mass diffusion error vanishes at M equals 0. Several splittings for pressure are proposed and examined. The effectiveness of the HOPE scheme is illustrated for 1-D hypersonic conical viscous flow and 2-D supersonic shock-wave boundary layer interactions. Also, the authors give the weakness of the scheme and suggest areas for further investigation.

  10. Homogenous polynomially parameter-dependent H∞ filter designs of discrete-time fuzzy systems.

    PubMed

    Zhang, Huaguang; Xie, Xiangpeng; Tong, Shaocheng

    2011-10-01

    This paper proposes a novel H(∞) filtering technique for a class of discrete-time fuzzy systems. First, a novel kind of fuzzy H(∞) filter, which is homogenous polynomially parameter dependent on membership functions with an arbitrary degree, is developed to guarantee the asymptotic stability and a prescribed H(∞) performance of the filtering error system. Second, relaxed conditions for H(∞) performance analysis are proposed by using a new fuzzy Lyapunov function and the Finsler lemma with homogenous polynomial matrix Lagrange multipliers. Then, based on a new kind of slack variable technique, relaxed linear matrix inequality-based H(∞) filtering conditions are proposed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.

  11. Modeling the High Speed Research Cycle 2B Longitudinal Aerodynamic Database Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, E. A.; Proffitt, M. S.

    1999-01-01

    The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.

  12. Fast Implicit Methods For Elliptic Moving Interface Problems

    DTIC Science & Technology

    2015-12-11

    analyzed, and tested for the Fourier transform of piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space. These transforms...evaluation, and one to three orders of magnitude slower than the classical uniform Fast Fourier Transform. Second, bilinear quadratures ---which...a fast algorithm was derived, analyzed, and tested for the Fourier transform of pi ecewise polynomials given on d-dimensional simplices in D

  13. Polynomial Solutions of Nth Order Non-Homogeneous Differential Equations

    ERIC Educational Resources Information Center

    Levine, Lawrence E.; Maleh, Ray

    2002-01-01

    It was shown by Costa and Levine that the homogeneous differential equation (1-x[superscript N])y([superscript N]) + A[subscript N-1]x[superscript N-1)y([superscript N-1]) + A[subscript N-2]x[superscript N-2])y([superscript N-2]) + ... + A[subscript 1]xy[prime] + A[subscript 0]y = 0 has a finite polynomial solution if and only if [for…

  14. Decision support system for diabetic retinopathy using discrete wavelet transform.

    PubMed

    Noronha, K; Acharya, U R; Nayak, K P; Kamath, S; Bhandary, S V

    2013-03-01

    Prolonged duration of the diabetes may affect the tiny blood vessels of the retina causing diabetic retinopathy. Routine eye screening of patients with diabetes helps to detect diabetic retinopathy at the early stage. It is very laborious and time-consuming for the doctors to go through many fundus images continuously. Therefore, decision support system for diabetic retinopathy detection can reduce the burden of the ophthalmologists. In this work, we have used discrete wavelet transform and support vector machine classifier for automated detection of normal and diabetic retinopathy classes. The wavelet-based decomposition was performed up to the second level, and eight energy features were extracted. Two energy features from the approximation coefficients of two levels and six energy values from the details in three orientations (horizontal, vertical and diagonal) were evaluated. These features were fed to the support vector machine classifier with various kernel functions (linear, radial basis function, polynomial of orders 2 and 3) to evaluate the highest classification accuracy. We obtained the highest average classification accuracy, sensitivity and specificity of more than 99% with support vector machine classifier (polynomial kernel of order 3) using three discrete wavelet transform features. We have also proposed an integrated index called Diabetic Retinopathy Risk Index using clinically significant wavelet energy features to identify normal and diabetic retinopathy classes using just one number. We believe that this (Diabetic Retinopathy Risk Index) can be used as an adjunct tool by the doctors during the eye screening to cross-check their diagnosis.

  15. Analysis on the misalignment errors between Hartmann-Shack sensor and 45-element deformable mirror

    NASA Astrophysics Data System (ADS)

    Liu, Lihui; Zhang, Yi; Tao, Jianjun; Cao, Fen; Long, Yin; Tian, Pingchuan; Chen, Shangwu

    2017-02-01

    Aiming at 45-element adaptive optics system, the model of 45-element deformable mirror is truly built by COMSOL Multiphysics, and every actuator's influence function is acquired by finite element method. The process of this system correcting optical aberration is simulated by making use of procedure, and aiming for Strehl ratio of corrected diffraction facula, in the condition of existing different translation and rotation error between Hartmann-Shack sensor and deformable mirror, the system's correction ability for 3-20 Zernike polynomial wave aberration is analyzed. The computed result shows: the system's correction ability for 3-9 Zernike polynomial wave aberration is higher than that of 10-20 Zernike polynomial wave aberration. The correction ability for 3-20 Zernike polynomial wave aberration does not change with misalignment error changing. With rotation error between Hartmann-Shack sensor and deformable mirror increasing, the correction ability for 3-20 Zernike polynomial wave aberration gradually goes down, and with translation error increasing, the correction ability for 3-9 Zernike polynomial wave aberration gradually goes down, but the correction ability for 10-20 Zernike polynomial wave aberration behave up-and-down depression.

  16. Propagation of Computational Uncertainty Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2007-01-01

    This paper describes the use of formally designed experiments to aid in the error analysis of a computational experiment. A method is described by which the underlying code is approximated with relatively low-order polynomial graduating functions represented by truncated Taylor series approximations to the true underlying response function. A resource-minimal approach is outlined by which such graduating functions can be estimated from a minimum number of case runs of the underlying computational code. Certain practical considerations are discussed, including ways and means of coping with high-order response functions. The distributional properties of prediction residuals are presented and discussed. A practical method is presented for quantifying that component of the prediction uncertainty of a computational code that can be attributed to imperfect knowledge of independent variable levels. This method is illustrated with a recent assessment of uncertainty in computational estimates of Space Shuttle thermal and structural reentry loads attributable to ice and foam debris impact on ascent.

  17. Constructing a polynomial whose nodal set is the three-twist knot 52

    NASA Astrophysics Data System (ADS)

    Dennis, Mark R.; Bode, Benjamin

    2017-06-01

    We describe a procedure that creates an explicit complex-valued polynomial function of three-dimensional space, whose nodal lines are the three-twist knot 52. The construction generalizes a similar approach for lemniscate knots: a braid representation is engineered from finite Fourier series and then considered as the nodal set of a certain complex polynomial which depends on an additional parameter. For sufficiently small values of this parameter, the nodal lines form the three-twist knot. Further mathematical properties of this map are explored, including the relationship of the phase critical points with the Morse-Novikov number, which is nonzero as this knot is not fibred. We also find analogous functions for other simple knots and links. The particular function we find, and the general procedure, should be useful for designing knotted fields of particular knot types in various physical systems.

  18. An empirical analysis of the quantitative effect of data when fitting quadratic and cubic polynomials

    NASA Technical Reports Server (NTRS)

    Canavos, G. C.

    1974-01-01

    A study is made of the extent to which the size of the sample affects the accuracy of a quadratic or a cubic polynomial approximation of an experimentally observed quantity, and the trend with regard to improvement in the accuracy of the approximation as a function of sample size is established. The task is made possible through a simulated analysis carried out by the Monte Carlo method in which data are simulated by using several transcendental or algebraic functions as models. Contaminated data of varying amounts are fitted to either quadratic or cubic polynomials, and the behavior of the mean-squared error of the residual variance is determined as a function of sample size. Results indicate that the effect of the size of the sample is significant only for relatively small sizes and diminishes drastically for moderate and large amounts of experimental data.

  19. Prospective Measurement of Daily Health Behaviors: Modeling Temporal Patterns in Missing Data, Sexual Behavior, and Substance Use in an Online Daily Diary Study of Gay and Bisexual Men.

    PubMed

    Rendina, H Jonathon; Ventuneac, Ana; Mustanski, Brian; Grov, Christian; Parsons, Jeffrey T

    2016-08-01

    Daily diary and other intensive longitudinal methods are increasingly being used to investigate fluctuations in psychological and behavioral processes. To inform the development of this methodology, we sought to explore predictors of and patterns in diary compliance and behavioral reports. We used multilevel modeling to analyze data from an online daily diary study of 371 gay and bisexual men focused on sexual behavior and substance use. We found that greater education and older age as well as lower frequency of substance use were associated with higher compliance. Using polynomial and trigonometric functions, we found evidence for circaseptan patterns in compliance, sexual behavior, and substance use, as well as linear declines in compliance and behavior over time. The results suggest potential sources of non-random patterns of missing data and suggest that trigonometric terms provide a similar but more parsimonious investigation of circaseptan rhythms than do third-order polynomial terms.

  20. Polynomial Method for PLL Controller Optimization†

    PubMed Central

    Wang, Ta-Chung; Lall, Sanjay; Chiou, Tsung-Yu

    2011-01-01

    The Phase-Locked Loop (PLL) is a key component of modern electronic communication and control systems. PLL is designed to extract signals from transmission channels. It plays an important role in systems where it is required to estimate the phase of a received signal, such as carrier tracking from global positioning system satellites. In order to robustly provide centimeter-level accuracy, it is crucial for the PLL to estimate the instantaneous phase of an incoming signal which is usually buried in random noise or some type of interference. This paper presents an approach that utilizes the recent development in the semi-definite programming and sum-of-squares field. A Lyapunov function will be searched as the certificate of the pull-in range of the PLL system. Moreover, a polynomial design procedure is proposed to further refine the controller parameters for system response away from the equilibrium point. Several simulation results as well as an experiment result are provided to show the effectiveness of this approach. PMID:22163973

  1. Prospective Measurement of Daily Health Behaviors: Modeling Temporal Patterns in Missing Data, Sexual Behavior, and Substance Use in an Online Daily Diary Study of Gay and Bisexual Men

    PubMed Central

    Rendina, H. Jonathon; Ventuneac, Ana; Mustanski, Brian; Grov, Christian; Parsons, Jeffrey T.

    2016-01-01

    Daily diary and other intensive longitudinal methods are increasingly being used to investigate fluctuations in psychological and behavioral processes. To inform the development of this methodology, we sought to explore predictors of and patterns in diary compliance and behavioral reports. We used multilevel modeling to analyze data from an online daily diary study of 371 gay and bisexual men focused on sexual behavior and substance use. We found that greater education and older age as well as lower frequency of substance use were associated with higher compliance. Using polynomial and trigonometric functions, we found evidence for circaseptan patterns in compliance, sexual behavior, and substance use, as well as linear declines in compliance and behavior over time. The results suggest potential sources of non-random patterns of missing data and suggest that trigonometric terms provide a similar but more parsimonious investigation of circaseptan rhythms than do third-order polynomial terms. PMID:26992392

  2. Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Marinelli, Dimitri; Marzuoli, Annalisa

    2013-05-01

    The action of the quantum mechanical volume operator, introduced in connection with a symmetric representation of the three-body problem and recently recognized to play a fundamental role in discretized quantum gravity models, can be given as a second-order difference equation which, by a complex phase change, we turn into a discrete Schrödinger-like equation. The introduction of discrete potential-like functions reveals the surprising crucial role here of hidden symmetries, first discovered by Regge for the quantum mechanical 6j symbols; insight is provided into the underlying geometric features. The spectrum and wavefunctions of the volume operator are discussed from the viewpoint of the Hamiltonian evolution of an elementary ‘quantum of space’, and a transparent asymptotic picture of the semiclassical and classical regimes emerges. The definition of coordinates adapted to the Regge symmetry is exploited for the construction of a novel set of discrete orthogonal polynomials, characterizing the oscillatory components of torsion-like modes.

  3. Interpolation by new B-splines on a four directional mesh of the plane

    NASA Astrophysics Data System (ADS)

    Nouisser, O.; Sbibih, D.

    2004-01-01

    In this paper we construct new simple and composed B-splines on the uniform four directional mesh of the plane, in order to improve the approximation order of B-splines studied in Sablonniere (in: Program on Spline Functions and the Theory of Wavelets, Proceedings and Lecture Notes, Vol. 17, University of Montreal, 1998, pp. 67-78). If φ is such a simple B-spline, we first determine the space of polynomials with maximal total degree included in , and we prove some results concerning the linear independence of the family . Next, we show that the cardinal interpolation with φ is correct and we study in S(φ) a Lagrange interpolation problem. Finally, we define composed B-splines by repeated convolution of φ with the characteristic functions of a square or a lozenge, and we give some of their properties.

  4. Efficient computer algebra algorithms for polynomial matrices in control design

    NASA Technical Reports Server (NTRS)

    Baras, J. S.; Macenany, D. C.; Munach, R.

    1989-01-01

    The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.

  5. Developing the Polynomial Expressions for Fields in the ITER Tokamak

    NASA Astrophysics Data System (ADS)

    Sharma, Stephen

    2017-10-01

    The two most important problems to be solved in the development of working nuclear fusion power plants are: sustained partial ignition and turbulence. These two phenomena are the subject of research and investigation through the development of analytic functions and computational models. Ansatz development through Gaussian wave-function approximations, dielectric quark models, field solutions using new elliptic functions, and better descriptions of the polynomials of the superconducting current loops are the critical theoretical developments that need to be improved. Euler-Lagrange equations of motion in addition to geodesic formulations generate the particle model which should correspond to the Dirac dispersive scattering coefficient calculations and the fluid plasma model. Feynman-Hellman formalism and Heaviside step functional forms are introduced to the fusion equations to produce simple expressions for the kinetic energy and loop currents. Conclusively, a polynomial description of the current loops, the Biot-Savart field, and the Lagrangian must be uncovered before there can be an adequate computational and iterative model of the thermonuclear plasma.

  6. SOMBI: Bayesian identification of parameter relations in unstructured cosmological data

    NASA Astrophysics Data System (ADS)

    Frank, Philipp; Jasche, Jens; Enßlin, Torsten A.

    2016-11-01

    This work describes the implementation and application of a correlation determination method based on self organizing maps and Bayesian inference (SOMBI). SOMBI aims to automatically identify relations between different observed parameters in unstructured cosmological or astrophysical surveys by automatically identifying data clusters in high-dimensional datasets via the self organizing map neural network algorithm. Parameter relations are then revealed by means of a Bayesian inference within respective identified data clusters. Specifically such relations are assumed to be parametrized as a polynomial of unknown order. The Bayesian approach results in a posterior probability distribution function for respective polynomial coefficients. To decide which polynomial order suffices to describe correlation structures in data, we include a method for model selection, the Bayesian information criterion, to the analysis. The performance of the SOMBI algorithm is tested with mock data. As illustration we also provide applications of our method to cosmological data. In particular, we present results of a correlation analysis between galaxy and active galactic nucleus (AGN) properties provided by the SDSS catalog with the cosmic large-scale-structure (LSS). The results indicate that the combined galaxy and LSS dataset indeed is clustered into several sub-samples of data with different average properties (for example different stellar masses or web-type classifications). The majority of data clusters appear to have a similar correlation structure between galaxy properties and the LSS. In particular we revealed a positive and linear dependency between the stellar mass, the absolute magnitude and the color of a galaxy with the corresponding cosmic density field. A remaining subset of data shows inverted correlations, which might be an artifact of non-linear redshift distortions.

  7. Hermite WENO limiting for multi-moment finite-volume methods using the ADER-DT time discretization for 1-D systems of conservation laws

    DOE PAGES

    Norman, Matthew R.

    2014-11-24

    New Hermite Weighted Essentially Non-Oscillatory (HWENO) interpolants are developed and investigated within the Multi-Moment Finite-Volume (MMFV) formulation using the ADER-DT time discretization. Whereas traditional WENO methods interpolate pointwise, function-based WENO methods explicitly form a non-oscillatory, high-order polynomial over the cell in question. This study chooses a function-based approach and details how fast convergence to optimal weights for smooth flow is ensured. Methods of sixth-, eighth-, and tenth-order accuracy are developed. We compare these against traditional single-moment WENO methods of fifth-, seventh-, ninth-, and eleventh-order accuracy to compare against more familiar methods from literature. The new HWENO methods improve upon existingmore » HWENO methods (1) by giving a better resolution of unreinforced contact discontinuities and (2) by only needing a single HWENO polynomial to update both the cell mean value and cell mean derivative. Test cases to validate and assess these methods include 1-D linear transport, the 1-D inviscid Burger's equation, and the 1-D inviscid Euler equations. Smooth and non-smooth flows are used for evaluation. These HWENO methods performed better than comparable literature-standard WENO methods for all regimes of discontinuity and smoothness in all tests herein. They exhibit improved optimal accuracy due to the use of derivatives, and they collapse to solutions similar to typical WENO methods when limiting is required. The study concludes that the new HWENO methods are robust and effective when used in the ADER-DT MMFV framework. Finally, these results are intended to demonstrate capability rather than exhaust all possible implementations.« less

  8. From r-spin intersection numbers to Hodge integrals

    NASA Astrophysics Data System (ADS)

    Ding, Xiang-Mao; Li, Yuping; Meng, Lingxian

    2016-01-01

    Generalized Kontsevich Matrix Model (GKMM) with a certain given potential is the partition function of r-spin intersection numbers. We represent this GKMM in terms of fermions and expand it in terms of the Schur polynomials by boson-fermion correspondence, and link it with a Hurwitz partition function and a Hodge partition by operators in a widehat{GL}(∞) group. Then, from a W 1+∞ constraint of the partition function of r-spin intersection numbers, we get a W 1+∞ constraint for the Hodge partition function. The W 1+∞ constraint completely determines the Schur polynomials expansion of the Hodge partition function.

  9. Rigorous high-precision enclosures of fixed points and their invariant manifolds

    NASA Astrophysics Data System (ADS)

    Wittig, Alexander N.

    The well established concept of Taylor Models is introduced, which offer highly accurate C0 enclosures of functional dependencies, combining high-order polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly non-linear dynamical systems. A method is proposed to extend the existing implementation of Taylor Models in COSY INFINITY from double precision coefficients to arbitrary precision coefficients. Great care is taken to maintain the highest efficiency possible by adaptively adjusting the precision of higher order coefficients in the polynomial expansion. High precision operations are based on clever combinations of elementary floating point operations yielding exact values for round-off errors. An experimental high precision interval data type is developed and implemented. Algorithms for the verified computation of intrinsic functions based on the High Precision Interval datatype are developed and described in detail. The application of these operations in the implementation of High Precision Taylor Models is discussed. An application of Taylor Model methods to the verification of fixed points is presented by verifying the existence of a period 15 fixed point in a near standard Henon map. Verification is performed using different verified methods such as double precision Taylor Models, High Precision intervals and High Precision Taylor Models. Results and performance of each method are compared. An automated rigorous fixed point finder is implemented, allowing the fully automated search for all fixed points of a function within a given domain. It returns a list of verified enclosures of each fixed point, optionally verifying uniqueness within these enclosures. An application of the fixed point finder to the rigorous analysis of beam transfer maps in accelerator physics is presented. Previous work done by Johannes Grote is extended to compute very accurate polynomial approximations to invariant manifolds of discrete maps of arbitrary dimension around hyperbolic fixed points. The algorithm presented allows for automatic removal of resonances occurring during construction. A method for the rigorous enclosure of invariant manifolds of continuous systems is introduced. Using methods developed for discrete maps, polynomial approximations of invariant manifolds of hyperbolic fixed points of ODEs are obtained. These approximations are outfit with a sharp error bound which is verified to rigorously contain the manifolds. While we focus on the three dimensional case, verification in higher dimensions is possible using similar techniques. Integrating the resulting enclosures using the verified COSY VI integrator, the initial manifold enclosures are expanded to yield sharp enclosures of large parts of the stable and unstable manifolds. To demonstrate the effectiveness of this method, we construct enclosures of the invariant manifolds of the Lorenz system and show pictures of the resulting manifold enclosures. To the best of our knowledge, these enclosures are the largest verified enclosures of manifolds in the Lorenz system in existence.

  10. Calculators and Polynomial Evaluation.

    ERIC Educational Resources Information Center

    Weaver, J. F.

    The intent of this paper is to suggest and illustrate how electronic hand-held calculators, especially non-programmable ones with limited data-storage capacity, can be used to advantage by students in one particular aspect of work with polynomial functions. The basic mathematical background upon which calculator application is built is summarized.…

  11. On Partial Fraction Decompositions by Repeated Polynomial Divisions

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2017-01-01

    We present a method for finding partial fraction decompositions of rational functions with linear or quadratic factors in the denominators by means of repeated polynomial divisions. This method does not involve differentiation or solving linear equations for obtaining the unknown partial fraction coefficients, which is very suitable for either…

  12. On generalized Melvin solution for the Lie algebra E_6

    NASA Astrophysics Data System (ADS)

    Bolokhov, S. V.; Ivashchuk, V. D.

    2017-10-01

    A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H_s(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H_s(z), s = 1,\\ldots ,6, for the Lie algebra E_6 are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q_s, s = 1,\\ldots ,6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E_6-polynomials at large z are governed by the integer-valued matrix ν = A^{-1} (I + P), where A^{-1} is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z_2-group of symmetry of the Dynkin diagram. The 2-form fluxes Φ ^s, s = 1,\\ldots ,6, are calculated.

  13. Polynomial equations for science orbits around Europa

    NASA Astrophysics Data System (ADS)

    Cinelli, Marco; Circi, Christian; Ortore, Emiliano

    2015-07-01

    In this paper, the design of science orbits for the observation of a celestial body has been carried out using polynomial equations. The effects related to the main zonal harmonics of the celestial body and the perturbation deriving from the presence of a third celestial body have been taken into account. The third body describes a circular and equatorial orbit with respect to the primary body and, for its disturbing potential, an expansion in Legendre polynomials up to the second order has been considered. These polynomial equations allow the determination of science orbits around Jupiter's satellite Europa, where the third body gravitational attraction represents one of the main forces influencing the motion of an orbiting probe. Thus, the retrieved relationships have been applied to this moon and periodic sun-synchronous and multi-sun-synchronous orbits have been determined. Finally, numerical simulations have been carried out to validate the analytical results.

  14. Algebro-geometric Solutions for the Derivative Burgers Hierarchy

    NASA Astrophysics Data System (ADS)

    Hou, Yu; Fan, Engui; Qiao, Zhijun; Wang, Zhong

    2015-02-01

    Though completely integrable Camassa-Holm (CH) equation and Degasperis-Procesi (DP) equation are cast in the same peakon family, they possess the second- and third-order Lax operators, respectively. From the viewpoint of algebro-geometrical study, this difference lies in hyper-elliptic and non-hyper-elliptic curves. The non-hyperelliptic curves lead to great difficulty in the construction of algebro-geometric solutions of the DP equation. In this paper, we study algebro-geometric solutions for the derivative Burgers (DB) equation, which is derived by Qiao and Li (2004) as a short wave model of the DP equation with the help of functional gradient and a pair of Lenard operators. Based on the characteristic polynomial of a Lax matrix for the DB equation, we introduce a third order algebraic curve with genus , from which the associated Baker-Akhiezer functions, meromorphic function, and Dubrovin-type equations are constructed. Furthermore, the theory of algebraic curve is applied to derive explicit representations of the theta function for the Baker-Akhiezer functions and the meromorphic function. In particular, the algebro-geometric solutions are obtained for all equations in the whole DB hierarchy.

  15. A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Qiu, Jianxian

    2017-11-01

    In this paper a third order finite volume weighted essentially non-oscillatory scheme is designed for solving hyperbolic conservation laws on tetrahedral meshes. Comparing with other finite volume WENO schemes designed on tetrahedral meshes, the crucial advantages of such new WENO scheme are its simplicity and compactness with the application of only six unequal size spatial stencils for reconstructing unequal degree polynomials in the WENO type spatial procedures, and easy choice of the positive linear weights without considering the topology of the meshes. The original innovation of such scheme is to use a quadratic polynomial defined on a big central spatial stencil for obtaining third order numerical approximation at any points inside the target tetrahedral cell in smooth region and switch to at least one of five linear polynomials defined on small biased/central spatial stencils for sustaining sharp shock transitions and keeping essentially non-oscillatory property simultaneously. By performing such new procedures in spatial reconstructions and adopting a third order TVD Runge-Kutta time discretization method for solving the ordinary differential equation (ODE), the new scheme's memory occupancy is decreased and the computing efficiency is increased. So it is suitable for large scale engineering requirements on tetrahedral meshes. Some numerical results are provided to illustrate the good performance of such scheme.

  16. Hamiltonian BVMs (HBVMs): Implementation Details and Applications

    NASA Astrophysics Data System (ADS)

    Brugnano, Luigi; Iavernaro, Felice; Susca, Tiziana

    2009-09-01

    Hamiltonian Boundary Value Methods are one step schemes of high order where the internal stages are partly exploited to impose the order conditions (fundamental stages) and partly to confer the formula the property of conserving the Hamiltonian function when this is a polynomial with a given degree v. The term "silent stages" has been coined for these latter set of extra-stages to mean that their presence does not cause an increase of the dimension of the associated nonlinear system to be solved at each step. By considering a specific method in this class, we give some details about how the solution of the nonlinear system may be conveniently carried out and how to compensate the effect of roundoff errors.

  17. Establishing a direct connection between detrended fluctuation analysis and Fourier analysis

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken

    2015-10-01

    To understand methodological features of the detrended fluctuation analysis (DFA) using a higher-order polynomial fitting, we establish the direct connection between DFA and Fourier analysis. Based on an exact calculation of the single-frequency response of the DFA, the following facts are shown analytically: (1) in the analysis of stochastic processes exhibiting a power-law scaling of the power spectral density (PSD), S (f ) ˜f-β , a higher-order detrending in the DFA has no adverse effect in the estimation of the DFA scaling exponent α , which satisfies the scaling relation α =(β +1 )/2 ; (2) the upper limit of the scaling exponents detectable by the DFA depends on the order of polynomial fit used in the DFA, and is bounded by m +1 , where m is the order of the polynomial fit; (3) the relation between the time scale in the DFA and the corresponding frequency in the PSD are distorted depending on both the order of the DFA and the frequency dependence of the PSD. We can improve the scale distortion by introducing the corrected time scale in the DFA corresponding to the inverse of the frequency scale in the PSD. In addition, our analytical approach makes it possible to characterize variants of the DFA using different types of detrending. As an application, properties of the detrending moving average algorithm are discussed.

  18. Comparison of random regression models with Legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows.

    PubMed

    Bohmanova, J; Miglior, F; Jamrozik, J; Misztal, I; Sullivan, P G

    2008-09-01

    A random regression model with both random and fixed regressions fitted by Legendre polynomials of order 4 was compared with 3 alternative models fitting linear splines with 4, 5, or 6 knots. The effects common for all models were a herd-test-date effect, fixed regressions on days in milk (DIM) nested within region-age-season of calving class, and random regressions for additive genetic and permanent environmental effects. Data were test-day milk, fat and protein yields, and SCS recorded from 5 to 365 DIM during the first 3 lactations of Canadian Holstein cows. A random sample of 50 herds consisting of 96,756 test-day records was generated to estimate variance components within a Bayesian framework via Gibbs sampling. Two sets of genetic evaluations were subsequently carried out to investigate performance of the 4 models. Models were compared by graphical inspection of variance functions, goodness of fit, error of prediction of breeding values, and stability of estimated breeding values. Models with splines gave lower estimates of variances at extremes of lactations than the model with Legendre polynomials. Differences among models in goodness of fit measured by percentages of squared bias, correlations between predicted and observed records, and residual variances were small. The deviance information criterion favored the spline model with 6 knots. Smaller error of prediction and higher stability of estimated breeding values were achieved by using spline models with 5 and 6 knots compared with the model with Legendre polynomials. In general, the spline model with 6 knots had the best overall performance based upon the considered model comparison criteria.

  19. CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES

    PubMed Central

    GILLETTE, ANDREW; RAND, ALEXANDER; BAJAJ, CHANDRAJIT

    2016-01-01

    We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties. PMID:28077939

  20. Point-to-point migration functions and gravity model renormalization: approaches to aggregation in spatial interaction modeling.

    PubMed

    Slater, P B

    1985-08-01

    Two distinct approaches to assessing the effect of geographic scale on spatial interactions are modeled. In the first, the question of whether a distance deterrence function, which explains interactions for one system of zones, can also succeed on a more aggregate scale, is examined. Only the two-parameter function for which it is found that distances between macrozones are weighted averaged of distances between component zones is satisfactory in this regard. Estimation of continuous (point-to-point) functions--in the form of quadrivariate cubic polynomials--for US interstate migration streams, is then undertaken. Upon numerical integration, these higher order surfaces yield predictions of interzonal and intrazonal movements at any scale of interest. Test of spatial stationarity, isotropy, and symmetry of interstate migration are conducted in this framework.

  1. CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES.

    PubMed

    Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit

    2016-10-01

    We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties.

  2. An Interpolation Approach to Optimal Trajectory Planning for Helicopter Unmanned Aerial Vehicles

    DTIC Science & Technology

    2012-06-01

    Armament Data Line DOF Degree of Freedom PS Pseudospectral LGL Legendre -Gauss-Lobatto quadrature nodes ODE Ordinary Differential Equation xiv...low order polynomials patched together in such away so that the resulting trajectory has several continuous derivatives at all points. In [7], Murray...claims that splines are ideal for optimal control problems because each segment of the spline’s piecewise polynomials approximate the trajectory

  3. Least Squares Approximation By G1 Piecewise Parametric Cubes

    DTIC Science & Technology

    1993-12-01

    ADDRESS(ES) 10.SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not...CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (maximum 200 words) Parametric piecewise cubic polynomials are used throughout...piecewise parametric cubic polynomial to a sequence of ordered points in the plane. Cubic Bdzier curves are used as a basis. The parameterization, the

  4. Local zeta factors and geometries under Spec Z

    NASA Astrophysics Data System (ADS)

    Manin, Yu I.

    2016-08-01

    The first part of this note shows that the odd-period polynomial of each Hecke cusp eigenform for the full modular group produces via the Rodriguez-Villegas transform ([1]) a polynomial satisfying the functional equation of zeta type and having non-trivial zeros only in the middle line of its critical strip. The second part discusses the Chebyshev lambda-structure of the polynomial ring as Borger's descent data to \\mathbf{F}_1 and suggests its role in a possible relation of the Γ\\mathbf{R}-factor to 'real geometry over \\mathbf{F}_1' (cf. [2]).

  5. The neighbourhood polynomial of some families of dendrimers

    NASA Astrophysics Data System (ADS)

    Nazri Husin, Mohamad; Hasni, Roslan

    2018-04-01

    The neighbourhood polynomial N(G,x) is generating function for the number of faces of each cardinality in the neighbourhood complex of a graph and it is defined as (G,x)={\\sum }U\\in N(G){x}|U|, where N(G) is neighbourhood complex of a graph, whose vertices of the graph and faces are subsets of vertices that have a common neighbour. A dendrimers is an artificially manufactured or synthesized molecule built up from branched units called monomers. In this paper, we compute this polynomial for some families of dendrimer.

  6. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting

    PubMed Central

    Ghazali, Rozaida; Herawan, Tutut

    2016-01-01

    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network. PMID:27959927

  7. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting.

    PubMed

    Waheeb, Waddah; Ghazali, Rozaida; Herawan, Tutut

    2016-01-01

    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network.

  8. Jack Polynomials as Fractional Quantum Hall States and the Betti Numbers of the ( k + 1)-Equals Ideal

    NASA Astrophysics Data System (ADS)

    Zamaere, Christine Berkesch; Griffeth, Stephen; Sam, Steven V.

    2014-08-01

    We show that for Jack parameter α = -( k + 1)/( r - 1), certain Jack polynomials studied by Feigin-Jimbo-Miwa-Mukhin vanish to order r when k + 1 of the coordinates coincide. This result was conjectured by Bernevig and Haldane, who proposed that these Jack polynomials are model wavefunctions for fractional quantum Hall states. Special cases of these Jack polynomials include the wavefunctions of Laughlin and Read-Rezayi. In fact, along these lines we prove several vanishing theorems known as clustering properties for Jack polynomials in the mathematical physics literature, special cases of which had previously been conjectured by Bernevig and Haldane. Motivated by the method of proof, which in the case r = 2 identifies the span of the relevant Jack polynomials with the S n -invariant part of a unitary representation of the rational Cherednik algebra, we conjecture that unitary representations of the type A Cherednik algebra have graded minimal free resolutions of Bernstein-Gelfand-Gelfand type; we prove this for the ideal of the ( k + 1)-equals arrangement in the case when the number of coordinates n is at most 2 k + 1. In general, our conjecture predicts the graded S n -equivariant Betti numbers of the ideal of the ( k + 1)-equals arrangement with no restriction on the number of ambient dimensions.

  9. Bounding the Failure Probability Range of Polynomial Systems Subject to P-box Uncertainties

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2012-01-01

    This paper proposes a reliability analysis framework for systems subject to multiple design requirements that depend polynomially on the uncertainty. Uncertainty is prescribed by probability boxes, also known as p-boxes, whose distribution functions have free or fixed functional forms. An approach based on the Bernstein expansion of polynomials and optimization is proposed. In particular, we search for the elements of a multi-dimensional p-box that minimize (i.e., the best-case) and maximize (i.e., the worst-case) the probability of inner and outer bounding sets of the failure domain. This technique yields intervals that bound the range of failure probabilities. The offset between this bounding interval and the actual failure probability range can be made arbitrarily tight with additional computational effort.

  10. Intricacies of cosmological bounce in polynomial metric f(R) gravity for flat FLRW spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Kaushik; Chakrabarty, Saikat, E-mail: kaushikb@iitk.ac.in, E-mail: snilch@iitk.ac.in

    2016-02-01

    In this paper we present the techniques for computing cosmological bounces in polynomial f(R) theories, whose order is more than two, for spatially flat FLRW spacetime. In these cases the conformally connected Einstein frame shows up multiple scalar potentials predicting various possibilities of cosmological evolution in the Jordan frame where the f(R) theory lives. We present a reasonable way in which one can associate the various possible potentials in the Einstein frame, for cubic f(R) gravity, to the cosmological development in the Jordan frame. The issue concerning the energy conditions in f(R) theories is presented. We also point out themore » very important relationships between the conformal transformations connecting the Jordan frame and the Einstein frame and the various instabilities of f(R) theory. All the calculations are done for cubic f(R) gravity but we hope the results are sufficiently general for higher order polynomial gravity.« less

  11. Connection between quantum systems involving the fourth Painlevé transcendent and k-step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial

    NASA Astrophysics Data System (ADS)

    Marquette, Ian; Quesne, Christiane

    2016-05-01

    The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent PIV, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed Xm1,m2,…,mk Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite and Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.

  12. Determination of Nerve Fiber Diameter Distribution From Compound Action Potential: A Continuous Approach.

    PubMed

    Un, M Kerem; Kaghazchi, Hamed

    2018-01-01

    When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.

  13. IRFK2D: a computer program for simulating intrinsic random functions of order k

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, Eulogio; Dowd, Peter A.

    2003-07-01

    IRFK2D is an ANSI Fortran-77 program that generates realizations of an intrinsic function of order k (with k equal to 0, 1 or 2) with a permissible polynomial generalized covariance model. The realizations may be non-conditional or conditioned to the experimental data. The turning bands method is used to generate realizations in 2D and 3D from simulations of an intrinsic random function of order k along lines that span the 2D or 3D space. The program generates two output files, the first containing the simulated values and the second containing the theoretical generalized variogram for different directions together with the theoretical model. The experimental variogram is calculated from the simulated values while the theoretical variogram is the specified generalized covariance model. The generalized variogram is used to assess the quality of the simulation as measured by the extent to which the generalized covariance is reproduced by the simulation. The examples given in this paper indicate that IRFK2D is an efficient implementation of the methodology.

  14. Use of high-order spectral moments in Doppler weather radar

    NASA Astrophysics Data System (ADS)

    di Vito, A.; Galati, G.; Veredice, A.

    Three techniques to estimate the skewness and curtosis of measured precipitation spectra are evaluated. These are: (1) an extension of the pulse-pair technique, (2) fitting the autocorrelation function with a least square polynomial and differentiating it, and (3) the autoregressive spectral estimation. The third technique provides the best results but has an exceedingly large computation burden. The first technique does not supply any useful results due to the crude approximation of the derivatives of the ACF. The second technique requires further study to reduce its variance.

  15. Human evaluation in association to the mathematical analysis of arch forms: Two-dimensional study.

    PubMed

    Zabidin, Nurwahidah; Mohamed, Alizae Marny; Zaharim, Azami; Marizan Nor, Murshida; Rosli, Tanti Irawati

    2018-03-01

    To evaluate the relationship between human evaluation of the dental-arch form, to complete a mathematical analysis via two different methods in quantifying the arch form, and to establish agreement with the fourth-order polynomial equation. This study included 64 sets of digitised maxilla and mandible dental casts obtained from a sample of dental arch with normal occlusion. For human evaluation, a convenient sample of orthodontic practitioners ranked the photo images of dental cast from the most tapered to the less tapered (square). In the mathematical analysis, dental arches were interpolated using the fourth-order polynomial equation with millimetric acetate paper and AutoCAD software. Finally, the relations between human evaluation and mathematical objective analyses were evaluated. Human evaluations were found to be generally in agreement, but only at the extremes of tapered and square arch forms; this indicated general human error and observer bias. The two methods used to plot the arch form were comparable. The use of fourth-order polynomial equation may be facilitative in obtaining a smooth curve, which can produce a template for individual arch that represents all potential tooth positions for the dental arch. Copyright © 2018 CEO. Published by Elsevier Masson SAS. All rights reserved.

  16. A new root-based direction-finding algorithm

    NASA Astrophysics Data System (ADS)

    Wasylkiwskyj, Wasyl; Kopriva, Ivica; DoroslovačKi, Miloš; Zaghloul, Amir I.

    2007-04-01

    Polynomial rooting direction-finding (DF) algorithms are a computationally efficient alternative to search-based DF algorithms and are particularly suitable for uniform linear arrays of physically identical elements provided that mutual interaction among the array elements can be either neglected or compensated for. A popular algorithm in such situations is Root Multiple Signal Classification (Root MUSIC (RM)), wherein the estimation of the directions of arrivals (DOA) requires the computation of the roots of a (2N - 2) -order polynomial, where N represents number of array elements. The DOA are estimated from the L pairs of roots closest to the unit circle, where L represents number of sources. In this paper we derive a modified root polynomial (MRP) algorithm requiring the calculation of only L roots in order to estimate the L DOA. We evaluate the performance of the MRP algorithm numerically and show that it is as accurate as the RM algorithm but with a significantly simpler algebraic structure. In order to demonstrate that the theoretically predicted performance can be achieved in an experimental setting, a decoupled array is emulated in hardware using phase shifters. The results are in excellent agreement with theory.

  17. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  18. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    PubMed Central

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-01-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254

  19. A Boussinesq-scaled, pressure-Poisson water wave model

    NASA Astrophysics Data System (ADS)

    Donahue, Aaron S.; Zhang, Yao; Kennedy, Andrew B.; Westerink, Joannes J.; Panda, Nishant; Dawson, Clint

    2015-02-01

    Through the use of Boussinesq scaling we develop and test a model for resolving non-hydrostatic pressure profiles in nonlinear wave systems over varying bathymetry. A Green-Nagdhi type polynomial expansion is used to resolve the pressure profile along the vertical axis, this is then inserted into the pressure-Poisson equation, retaining terms up to a prescribed order and solved using a weighted residual approach. The model shows rapid convergence properties with increasing order of polynomial expansion which can be greatly improved through the application of asymptotic rearrangement. Models of Boussinesq scaling of the fully nonlinear O (μ2) and weakly nonlinear O (μN) are presented, the analytical and numerical properties of O (μ2) and O (μ4) models are discussed. Optimal basis functions in the Green-Nagdhi expansion are determined through manipulation of the free-parameters which arise due to the Boussinesq scaling. The optimal O (μ2) model has dispersion accuracy equivalent to a Padé [2,2] approximation with one extra free-parameter. The optimal O (μ4) model obtains dispersion accuracy equivalent to a Padé [4,4] approximation with two free-parameters which can be used to optimize shoaling or nonlinear properties. In comparison to experimental results the O (μ4) model shows excellent agreement to experimental data.

  20. Elevation data fitting and precision analysis of Google Earth in road survey

    NASA Astrophysics Data System (ADS)

    Wei, Haibin; Luan, Xiaohan; Li, Hanchao; Jia, Jiangkun; Chen, Zhao; Han, Leilei

    2018-05-01

    Objective: In order to improve efficiency of road survey and save manpower and material resources, this paper intends to apply Google Earth to the feasibility study stage of road survey and design. Limited by the problem that Google Earth elevation data lacks precision, this paper is focused on finding several different fitting or difference methods to improve the data precision, in order to make every effort to meet the accuracy requirements of road survey and design specifications. Method: On the basis of elevation difference of limited public points, any elevation difference of the other points can be fitted or interpolated. Thus, the precise elevation can be obtained by subtracting elevation difference from the Google Earth data. Quadratic polynomial surface fitting method, cubic polynomial surface fitting method, V4 interpolation method in MATLAB and neural network method are used in this paper to process elevation data of Google Earth. And internal conformity, external conformity and cross correlation coefficient are used as evaluation indexes to evaluate the data processing effect. Results: There is no fitting difference at the fitting point while using V4 interpolation method. Its external conformity is the largest and the effect of accuracy improvement is the worst, so V4 interpolation method is ruled out. The internal and external conformity of the cubic polynomial surface fitting method both are better than those of the quadratic polynomial surface fitting method. The neural network method has a similar fitting effect with the cubic polynomial surface fitting method, but its fitting effect is better in the case of a higher elevation difference. Because the neural network method is an unmanageable fitting model, the cubic polynomial surface fitting method should be mainly used and the neural network method can be used as the auxiliary method in the case of higher elevation difference. Conclusions: Cubic polynomial surface fitting method can obviously improve data precision of Google Earth. The error of data in hilly terrain areas meets the requirement of specifications after precision improvement and it can be used in feasibility study stage of road survey and design.

  1. YORP torque as the function of shape harmonics

    NASA Astrophysics Data System (ADS)

    Breiter, Sławomir; Michalska, Hanna

    2008-08-01

    The second-order analytical approximation of the mean Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) torque components is given as an explicit function of the shape spherical harmonics coefficients for a sufficiently regular minor body. The results are based upon a new expression for the insolation function, significantly simpler than in previous works. Linearized plane-parallel model of the temperature distribution derived from the insolation function allows us to take into account a non-zero conductivity. Final expressions for the three average components of the YORP torque related with rotation period, obliquity and precession are given in a form of the Legendre series of the cosine of obliquity. The series have good numerical properties and can be easily truncated according to the degree of the Legendre polynomials or associated functions, with first two terms playing the principal role.

  2. Application of wall-models to discontinuous Galerkin LES

    NASA Astrophysics Data System (ADS)

    Frère, Ariane; Carton de Wiart, Corentin; Hillewaert, Koen; Chatelain, Philippe; Winckelmans, Grégoire

    2017-08-01

    Wall-resolved Large-Eddy Simulations (LES) are still limited to moderate Reynolds number flows due to the high computational cost required to capture the inner part of the boundary layer. Wall-modeled LES (WMLES) provide more affordable LES by modeling the near-wall layer. Wall function-based WMLES solve LES equations up to the wall, where the coarse mesh resolution essentially renders the calculation under-resolved. This makes the accuracy of WMLES very sensitive to the behavior of the numerical method. Therefore, best practice rules regarding the use and implementation of WMLES cannot be directly transferred from one methodology to another regardless of the type of discretization approach. Whilst numerous studies present guidelines on the use of WMLES, there is a lack of knowledge for discontinuous finite-element-like high-order methods. Incidentally, these methods are increasingly used on the account of their high accuracy on unstructured meshes and their strong computational efficiency. The present paper proposes best practice guidelines for the use of WMLES in these methods. The study is based on sensitivity analyses of turbulent channel flow simulations by means of a Discontinuous Galerkin approach. It appears that good results can be obtained without the use of a spatial or temporal averaging. The study confirms the importance of the wall function input data location and suggests to take it at the bottom of the second off-wall element. These data being available through the ghost element, the suggested method prevents the loss of computational scalability experienced in unstructured WMLES. The study also highlights the influence of the polynomial degree used in the wall-adjacent element. It should preferably be of even degree as using polynomials of degree two in the first off-wall element provides, surprisingly, better results than using polynomials of degree three.

  3. A Lagrange-type projector on the real line

    NASA Astrophysics Data System (ADS)

    Mastroianni, G.; Notarangelo, I.

    2010-01-01

    We introduce an interpolation process based on some of the zeros of the m th generalized Freud polynomial. Convergence results and error estimates are given. In particular we show that, in some important function spaces, the interpolating polynomial behaves like the best approximation. Moreover the stability and the convergence of some quadrature rules are proved.

  4. Tsallis p, q-deformed Touchard polynomials and Stirling numbers

    NASA Astrophysics Data System (ADS)

    Herscovici, O.; Mansour, T.

    2017-01-01

    In this paper, we develop and investigate a new two-parametrized deformation of the Touchard polynomials, based on the definition of the NEXT q-exponential function of Tsallis. We obtain new generalizations of the Stirling numbers of the second kind and of the binomial coefficients and represent two new statistics for the set partitions.

  5. Virasoro constraints and polynomial recursion for the linear Hodge integrals

    NASA Astrophysics Data System (ADS)

    Guo, Shuai; Wang, Gehao

    2017-04-01

    The Hodge tau-function is a generating function for the linear Hodge integrals. It is also a tau-function of the KP hierarchy. In this paper, we first present the Virasoro constraints for the Hodge tau-function in the explicit form of the Virasoro equations. The expression of our Virasoro constraints is simply a linear combination of the Virasoro operators, where the coefficients are restored from a power series for the Lambert W function. Then, using this result, we deduce a simple version of the Virasoro constraints for the linear Hodge partition function, where the coefficients are restored from the Gamma function. Finally, we establish the equivalence relation between the Virasoro constraints and polynomial recursion formula for the linear Hodge integrals.

  6. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  7. Investigating a continuous shear strain function for depth-dependent properties of native and tissue engineering cartilage using pixel-size data.

    PubMed

    Motavalli, Mostafa; Whitney, G Adam; Dennis, James E; Mansour, Joseph M

    2013-12-01

    A previously developed novel imaging technique for determining the depth dependent properties of cartilage in simple shear is implemented. Shear displacement is determined from images of deformed lines photobleached on a sample, and shear strain is obtained from the derivative of the displacement. We investigated the feasibility of an alternative systematic approach to numerical differentiation for computing the shear strain that is based on fitting a continuous function to the shear displacement. Three models for a continuous shear displacement function are evaluated: polynomials, cubic splines, and non-parametric locally weighted scatter plot curves. Four independent approaches are then applied to identify the best-fit model and the accuracy of the first derivative. One approach is based on the Akaiki Information Criteria, and the Bayesian Information Criteria. The second is based on a method developed to smooth and differentiate digitized data from human motion. The third method is based on photobleaching a predefined circular area with a specific radius. Finally, we integrate the shear strain and compare it with the total shear deflection of the sample measured experimentally. Results show that 6th and 7th order polynomials are the best models for the shear displacement and its first derivative. In addition, failure of tissue-engineered cartilage, consistent with previous results, demonstrates the qualitative value of this imaging approach. © 2013 Elsevier Ltd. All rights reserved.

  8. Complex Analysis and Related Topics. Proceedings of the Conference held in Amsterdam on 27 - 29 January 1993

    DTIC Science & Technology

    1993-01-29

    Bessel functions and Jacobi functions (cf. [2]). References [1] R. Askey & J. Wilson, Some basic hypergeometric orthogonal polynomials that gen- eralize...1; 1] can be treated as a part of general theory of T-systems (see [81 for that theory and [7] for some aspects of the Chebyshev polynomials theory...waves in elastic media. It has been known for some time that these multiplicities sometimes occur for topological reasons and are present generically , see

  9. Decomposition of the polynomial kernel of arbitrary higher spin Dirac operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eelbode, D., E-mail: David.Eelbode@ua.ac.be; Raeymaekers, T., E-mail: Tim.Raeymaekers@UGent.be; Van der Jeugt, J., E-mail: Joris.VanderJeugt@UGent.be

    2015-10-15

    In a series of recent papers, we have introduced higher spin Dirac operators, which are generalisations of the classical Dirac operator. Whereas the latter acts on spinor-valued functions, the former acts on functions taking values in arbitrary irreducible half-integer highest weight representations for the spin group. In this paper, we describe how the polynomial kernel spaces of such operators decompose in irreducible representations of the spin group. We will hereby make use of results from representation theory.

  10. Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices.

    PubMed

    Dehmer, Matthias; Emmert-Streib, Frank; Shi, Yongtang; Stefu, Monica; Tripathi, Shailesh

    2015-01-01

    In this paper, we study the discrimination power of graph measures that are based on graph-theoretical matrices. The paper generalizes the work of [M. Dehmer, M. Moosbrugger. Y. Shi, Encoding structural information uniquely with polynomial-based descriptors by employing the Randić matrix, Applied Mathematics and Computation, 268(2015), 164-168]. We demonstrate that by using the new functional matrix approach, exhaustively generated graphs can be discriminated more uniquely than shown in the mentioned previous work.

  11. Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices

    PubMed Central

    Dehmer, Matthias; Emmert-Streib, Frank; Shi, Yongtang; Stefu, Monica; Tripathi, Shailesh

    2015-01-01

    In this paper, we study the discrimination power of graph measures that are based on graph-theoretical matrices. The paper generalizes the work of [M. Dehmer, M. Moosbrugger. Y. Shi, Encoding structural information uniquely with polynomial-based descriptors by employing the Randić matrix, Applied Mathematics and Computation, 268(2015), 164–168]. We demonstrate that by using the new functional matrix approach, exhaustively generated graphs can be discriminated more uniquely than shown in the mentioned previous work. PMID:26479495

  12. Darboux partners of pseudoscalar Dirac potentials associated with exceptional orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com; Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, IN 46408; Roy, Barnana, E-mail: barnana@isical.ac.in

    2014-10-15

    We introduce a method for constructing Darboux (or supersymmetric) pairs of pseudoscalar and scalar Dirac potentials that are associated with exceptional orthogonal polynomials. Properties of the transformed potentials and regularity conditions are discussed. As an application, we consider a pseudoscalar Dirac potential related to the Schrödinger model for the rationally extended radial oscillator. The pseudoscalar partner potentials are constructed under the first- and second-order Darboux transformations.

  13. Splines and control theory

    NASA Technical Reports Server (NTRS)

    Zhang, Zhimin; Tomlinson, John; Martin, Clyde

    1994-01-01

    In this work, the relationship between splines and the control theory has been analyzed. We show that spline functions can be constructed naturally from the control theory. By establishing a framework based on control theory, we provide a simple and systematic way to construct splines. We have constructed the traditional spline functions including the polynomial splines and the classical exponential spline. We have also discovered some new spline functions such as trigonometric splines and the combination of polynomial, exponential and trigonometric splines. The method proposed in this paper is easy to implement. Some numerical experiments are performed to investigate properties of different spline approximations.

  14. Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes

    DOE PAGES

    Chen, Zheng; Huang, Hongying; Yan, Jue

    2015-12-21

    We develop 3rd order maximum-principle-satisfying direct discontinuous Galerkin methods [8], [9], [19] and [21] for convection diffusion equations on unstructured triangular mesh. We carefully calculate the normal derivative numerical flux across element edges and prove that, with proper choice of parameter pair (β 0,β 1) in the numerical flux formula, the quadratic polynomial solution satisfies strict maximum principle. The polynomial solution is bounded within the given range and third order accuracy is maintained. There is no geometric restriction on the meshes and obtuse triangles are allowed in the partition. As a result, a sequence of numerical examples are carried outmore » to demonstrate the accuracy and capability of the maximum-principle-satisfying limiter.« less

  15. Integrated production and distribution scheduling problems related to fixed delivery departure dates and weights of late orders.

    PubMed

    Li, Shanlin; Li, Maoqin

    2015-01-01

    We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time.

  16. Integrated Production and Distribution Scheduling Problems Related to Fixed Delivery Departure Dates and Weights of Late Orders

    PubMed Central

    Li, Shanlin; Li, Maoqin

    2015-01-01

    We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time. PMID:25785285

  17. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  18. A Formally-Verified Decision Procedure for Univariate Polynomial Computation Based on Sturm's Theorem

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.

    2014-01-01

    Sturm's Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semiopen interval. This paper presents a formalization of this theorem in the PVS theorem prover, as well as a decision procedure that checks whether a polynomial is always positive, nonnegative, nonzero, negative, or nonpositive on any input interval. The soundness and completeness of the decision procedure is proven in PVS. The procedure and its correctness properties enable the implementation of a PVS strategy for automatically proving existential and universal univariate polynomial inequalities. Since the decision procedure is formally verified in PVS, the soundness of the strategy depends solely on the internal logic of PVS rather than on an external oracle. The procedure itself uses a combination of Sturm's Theorem, an interval bisection procedure, and the fact that a polynomial with exactly one root in a bounded interval is always nonnegative on that interval if and only if it is nonnegative at both endpoints.

  19. An Arrhenius-type viscosity function to model sintering using the Skorohod Olevsky viscous sintering model within a finite element code.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewsuk, Kevin Gregory; Arguello, Jose Guadalupe, Jr.; Reiterer, Markus W.

    2006-02-01

    The ease and ability to predict sintering shrinkage and densification with the Skorohod-Olevsky viscous sintering (SOVS) model within a finite-element (FE) code have been improved with the use of an Arrhenius-type viscosity function. The need for a better viscosity function was identified by evaluating SOVS model predictions made using a previously published polynomial viscosity function. Predictions made using the original, polynomial viscosity function do not accurately reflect experimentally observed sintering behavior. To more easily and better predict sintering behavior using FE simulations, a thermally activated viscosity function based on creep theory was used with the SOVS model. In comparison withmore » the polynomial viscosity function, SOVS model predictions made using the Arrhenius-type viscosity function are more representative of experimentally observed viscosity and sintering behavior. Additionally, the effects of changes in heating rate on densification can easily be predicted with the Arrhenius-type viscosity function. Another attribute of the Arrhenius-type viscosity function is that it provides the potential to link different sintering models. For example, the apparent activation energy, Q, for densification used in the construction of the master sintering curve for a low-temperature cofire ceramic dielectric has been used as the apparent activation energy for material flow in the Arrhenius-type viscosity function to predict heating rate-dependent sintering behavior using the SOVS model.« less

  20. Discontinuous dual-primal mixed finite elements for elliptic problems

    NASA Technical Reports Server (NTRS)

    Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo

    2000-01-01

    We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.

Top