Sample records for order qcd analysis

  1. Fragmentation functions at next-to-next-to-leading order accuracy

    DOE PAGES

    Anderle, Daniele P.; Stratmann, Marco; Ringer, Felix

    2015-12-01

    We present a first analysis of parton-to-pion fragmentation functions at next-to-next-to-leading order accuracy in QCD based on single-inclusive pion production in electron-positron annihilation. Special emphasis is put on the technical details necessary to perform the QCD scale evolution and cross section calculation in Mellin moment space. Lastly, we demonstrate how the description of the data and the theoretical uncertainties are improved when next-to-next-to-leading order QCD corrections are included.

  2. Accurate determinations of alpha(s) from realistic lattice QCD.

    PubMed

    Mason, Q; Trottier, H D; Davies, C T H; Foley, K; Gray, A; Lepage, G P; Nobes, M; Shigemitsu, J

    2005-07-29

    We obtain a new value for the QCD coupling constant by combining lattice QCD simulations with experimental data for hadron masses. Our lattice analysis is the first to (1) include vacuum polarization effects from all three light-quark flavors (using MILC configurations), (2) include third-order terms in perturbation theory, (3) systematically estimate fourth and higher-order terms, (4) use an unambiguous lattice spacing, and (5) use an [symbol: see text](a2)-accurate QCD action. We use 28 different (but related) short-distance quantities to obtain alpha((5)/(MS))(M(Z)) = 0.1170(12).

  3. The generalized scheme-independent Crewther relation in QCD

    NASA Astrophysics Data System (ADS)

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.

    2017-07-01

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.

  4. The generalized scheme-independent Crewther relation in QCD

    DOE PAGES

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; ...

    2017-05-10

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less

  5. The generalized scheme-independent Crewther relation in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less

  6. Renormalization scheme dependence of high-order perturbative QCD predictions

    NASA Astrophysics Data System (ADS)

    Ma, Yang; Wu, Xing-Gang

    2018-02-01

    Conventionally, one adopts typical momentum flow of a physical observable as the renormalization scale for its perturbative QCD (pQCD) approximant. This simple treatment leads to renormalization scheme-and-scale ambiguities due to the renormalization scheme and scale dependence of the strong coupling and the perturbative coefficients do not exactly cancel at any fixed order. It is believed that those ambiguities will be softened by including more higher-order terms. In the paper, to show how the renormalization scheme dependence changes when more loop terms have been included, we discuss the sensitivity of pQCD prediction on the scheme parameters by using the scheme-dependent {βm ≥2}-terms. We adopt two four-loop examples, e+e-→hadrons and τ decays into hadrons, for detailed analysis. Our results show that under the conventional scale setting, by including more-and-more loop terms, the scheme dependence of the pQCD prediction cannot be reduced as efficiently as that of the scale dependence. Thus a proper scale-setting approach should be important to reduce the scheme dependence. We observe that the principle of minimum sensitivity could be such a scale-setting approach, which provides a practical way to achieve optimal scheme and scale by requiring the pQCD approximate be independent to the "unphysical" theoretical conventions.

  7. Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum

    DOE PAGES

    Fernando, I. P.; Goity, J. L.

    2015-02-01

    The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,l P=0⁺] ground state and excited baryons, and the [56,2 +] and [70}},1 -] excited states are analyzed. The analyses are carried out to order O(1/N c) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubomore » and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.« less

  8. Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion

    NASA Astrophysics Data System (ADS)

    Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo

    2018-03-01

    We present an estimate of the next-to-leading-order (NLO) QCD corrections to mixed QCD-electroweak contributions to the Higgs boson production cross section in gluon fusion, combining the recently computed three-loop virtual corrections and the approximate treatment of real emission in the soft approximation. We find that the NLO QCD corrections to the mixed QCD-electroweak contributions are nearly identical to NLO QCD corrections to QCD Higgs production. Our result confirms an earlier estimate of these O (α αs2) effects by Anastasiou et al. [J. High Energy Phys. 04 (2009) 003, 10.1088/1126-6708/2009/04/003] and provides further support for the factorization approximation of QCD and electroweak corrections.

  9. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE PAGES

    Gizhko, A.; Geiser, A.; Moch, S.; ...

    2017-11-07

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  10. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gizhko, A.; Geiser, A.; Moch, S.

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  11. Setting the renormalization scale in pQCD: Comparisons of the principle of maximum conformality with the sequential extended Brodsky-Lepage-Mackenzie approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hong -Hao; Wu, Xing -Gang; Ma, Yang

    A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach tomore » all orders. In this paper we discuss two distinct methods. One is based on the “Principle of Maximum Conformality” (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the “sequential extended BLM” (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the β0-expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. As a result, we then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio R e+e– at four-loop order in pQCD.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Christopher Lynn

    By determining the production cross sections for heavy flavor hadrons, we test the theoretical predictions from perturhative quantum chroma-dynamics (QCD). In the case of pion induced beauty production, the few published results do not resolve the issue of the applicability of perturbative QCD. This analysis is undertaken in order to help resolve this situation. We determine the total beauty and charm production cross sections using an analysis of single electron decay products. We extract the cross sections per nucleon from the two-dimensional distribution of electron p versus impact parameter ( d) to the primary vertex. We place an upper limit on the beauty production cross section of σ bmore » $$\\bar{b}$$ < 105 nb at the 90% confidence level, where the limit includes both statistical and systematic errors. The charm production cross section is determined to be σ cc = 13.9$$+2.4/atop{-2.3}$$ (stat) ± 1.8 (syst) μ.b, which is in good agreement with next-to-leading order QCD predictions and other measurements.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Christopher Lynn

    By determining the production cross sections for heavy flavor hadrons, we test the theoretical predictions from perturhative quantum chroma-dynamics (QCD). In the case of pion induced beauty production, the few published results do not resolve the issue of the applicability of perturbative QCD. This analysis is undertaken in order to help resolve this situation. We determine the total beauty and charm production cross sections using an analysis of single electron decay products. We extract the cross sections per nucleon from the two-dimensional distribution of electronmore » $$p^2_{\\tau}$$ versus impact parameter (d) to the primary vertex. We place an upper limit on the beauty production cross section of $$\\sigma_{b\\overline{b}}$$ < 105 nb at the 90% confidence level, where the limit includes both statistical and systematic errors. The charm production cross section is determined to be $$\\sigma_{c\\overline{c}} = 13.9 ^{+2.4}_{-2.3}$$(stat)±l.8(syst) $$\\mu b$$, which is in good agreement with next-to-leading order QCD predictions and other measurements.« less

  14. The order of the quantum chromodynamics transition predicted by the standard model of particle physics.

    PubMed

    Aoki, Y; Endrodi, G; Fodor, Z; Katz, S D; Szabó, K K

    2006-10-12

    Quantum chromodynamics (QCD) is the theory of the strong interaction, explaining (for example) the binding of three almost massless quarks into a much heavier proton or neutron--and thus most of the mass of the visible Universe. The standard model of particle physics predicts a QCD-related transition that is relevant for the evolution of the early Universe. At low temperatures, the dominant degrees of freedom are colourless bound states of hadrons (such as protons and pions). However, QCD is asymptotically free, meaning that at high energies or temperatures the interaction gets weaker and weaker, causing hadrons to break up. This behaviour underlies the predicted cosmological transition between the low-temperature hadronic phase and a high-temperature quark-gluon plasma phase (for simplicity, we use the word 'phase' to characterize regions with different dominant degrees of freedom). Despite enormous theoretical effort, the nature of this finite-temperature QCD transition (that is, first-order, second-order or analytic crossover) remains ambiguous. Here we determine the nature of the QCD transition using computationally demanding lattice calculations for physical quark masses. Susceptibilities are extrapolated to vanishing lattice spacing for three physical volumes, the smallest and largest of which differ by a factor of five. This ensures that a true transition should result in a dramatic increase of the susceptibilities. No such behaviour is observed: our finite-size scaling analysis shows that the finite-temperature QCD transition in the hot early Universe was not a real phase transition, but an analytic crossover (involving a rapid change, as opposed to a jump, as the temperature varied). As such, it will be difficult to find experimental evidence of this transition from astronomical observations.

  15. Lee-Yang zero analysis for the study of QCD phase structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejiri, Shinji

    2006-03-01

    We comment on the Lee-Yang zero analysis for the study of the phase structure of QCD at high temperature and baryon number density by Monte-Carlo simulations. We find that the sign problem for nonzero density QCD induces a serious problem in the finite volume scaling analysis of the Lee-Yang zeros for the investigation of the order of the phase transition. If the sign problem occurs at large volume, the Lee-Yang zeros will always approach the real axis of the complex parameter plane in the thermodynamic limit. This implies that a scaling behavior which would suggest a crossover transition will notmore » be obtained. To clarify this problem, we discuss the Lee-Yang zero analysis for SU(3) pure gauge theory as a simple example without the sign problem, and then consider the case of nonzero density QCD. It is suggested that the distribution of the Lee-Yang zeros in the complex parameter space obtained by each simulation could be more important information for the investigation of the critical endpoint in the (T,{mu}{sub q}) plane than the finite volume scaling behavior.« less

  16. Renormalization in Coulomb-gauge QCD within the Lagrangian formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niegawa, A.

    2006-08-15

    We study renormalization of Coulomb-gauge QCD within the Lagrangian, second-order, formalism. We derive a Ward identity and the Zinn-Justin equation, and, with the help of the latter, we give a proof of algebraic renormalizability of the theory. Through diagrammatic analysis, we show that, in the strict Coulomb gauge, g{sup 2}D{sup 00} is invariant under renormalization. (D{sup 00} is the time-time component of the gluon propagator.)

  17. NLO QCD corrections to tt-barbb-bar production at the LHC: 1. quark-antiquark annihilation

    NASA Astrophysics Data System (ADS)

    Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S.

    2008-08-01

    The process pp → tt-barbb-bar + X represents a very important background reaction to searches at the LHC, in particular to tt-barH production where the Higgs boson decays into a bb-bar pair. A successful analysis of tt-barH at the LHC requires the knowledge of direct tt-barbb-bar production at next-to-leading order in QCD. We take the first step in this direction upon calculating the next-to-leading-order QCD corrections to the subprocess initiated by qbar q annihilation. We devote an appendix to the general issue of rational terms resulting from ultraviolet or infrared (soft or collinear) singularities within dimensional regularization. There we show that, for arbitrary processes, in the Feynman gauge, rational terms of infrared origin cancel in truncated one-loop diagrams and result only from trivial self-energy corrections.

  18. Polyakov loop modeling for hot QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, Kenji; Skokov, Vladimir

    Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  19. Polyakov loop modeling for hot QCD

    DOE PAGES

    Fukushima, Kenji; Skokov, Vladimir

    2017-06-19

    Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  20. Measurement of the $$b\\bar{b}$$ di-jet cross section at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallecorsa, Sofia

    The dominant b production mechanism at the Tevatron is pair production through strong interactions. The lowest order QCD diagrams contain only b andmore » $$\\bar{b}$$ quarks in the final state, for which momentum conservation requires the quarks to be produced back-to-back in azimuthal opening angle. When higher order QCD processes are considered, the presence of additional light quarks and gluons in the final state allows the azimuthal angle difference, Δφ, to spread. The next to leading order QCD calculation includes diagrams up to O(α$$3\\atop{s}$$) some of which, commonly known as flavor excitation and gluon splitting, provide a contribution of approximately the same magnitude as the lowest order diagrams. The study of b$$\\bar{b}$$ angular correlation gives predictions on the effective b quark production mechanisms and on the different contributions of the leading order and next-to-leading order terms. The first experimental results on inclusive bottom production at the Tevatron were strongly underestimated by the exact NLO QCD prediction. Later on this disagreement had been explained and reduced by theoretical and experimental improvements: new QCD calculations that implement the Fixed Order with Next-to- Leading-Logarithms calculation (FONLL); updated parton distribution functions and fragmentation functions; and more precise measurements. Previous measurements of b$$\\bar{b}$$ azimuthal angle correlation have, instead, reached various level of agreement with parton shower Monte Carlo and NLO predictions. Here we present a measurement of the b$$\\bar{b}$$ jet cross section and azimuthal angle correlation performed on about 260 pb -1 of data collected by the CDF II detector at Fermilab from March 2002 to September 2004. This study extends the energy range investigated by previous analyses, measuring jet transverse energies (E T) up to values of about 220 GeV. It relies on the good tracking capabilities of the CDF detector both at the trigger level and offline. Events with heavy quarks are selected online using the Secondary Vertex Trigger (SVT), which can measure in real time the impact parameter of the tracks, in particular those originated from the decay of long-lived particles. The SVT represents the key element for all the heavy flavor measurement performed by CDF, and this analysis describes one of the first cases in which the SVT trigger is used to study high pT physics. The total cross section is mesured together with the di-jet differential cross sections as a function of the highest energy jet ET and the di-jet invariant mass. The azimuthal angular correlation (Δφ) between the two jets is also measured. As expected this distribution proves that the largest contribution to b$$\\bar{b}$$ production is due to lowest order QCD diagrams, corresponding to a back to back configuration of the two b-jets (large Δφ values). The most interesting fact is, however, that the low Δφ region also results highly populated, suggesting an important role played by higher order production terms. To verify this conclusion, results are compared to Monte Carlo predictions at leading order and next to leading order QCD. When technical details are correctly taken into account, as the contribution of the underlying event for example, it is possible to conclude that the data are in agreement with a next to leading order model. Nevertheless the agreement is not perfect and the data present some excess with respect to theoretical predictions. This thesis describes the analysis steps in details as support to the PRL paper forseen to be published soon.« less

  1. Assessing the role of the Kelvin-Helmholtz instability at the QCD cosmological transition

    NASA Astrophysics Data System (ADS)

    Mourão Roque, V. R. C.; Lugones, G.

    2018-03-01

    We performed numerical simulations with the PLUTO code in order to analyze the non-linear behavior of the Kelvin-Helmholtz instability in non-magnetized relativistic fluids. The relevance of the instability at the cosmological QCD phase transition was explored using an equation of state based on lattice QCD results with the addition of leptons. The results of the simulations were compared with the theoretical predictions of the linearized theory. For small Mach numbers up to Ms ~ 0.1 we find that both results are in good agreement. However, for higher Mach numbers, non-linear effects are significant. In particular, many initial conditions that look stable according to the linear analysis are shown to be unstable according to the full calculation. Since according to lattice calculations the cosmological QCD transition is a smooth crossover, violent fluid motions are not expected. Thus, in order to assess the role of the Kelvin-Helmholtz instability at the QCD epoch, we focus on simulations with low shear velocity and use monochromatic as well as random perturbations to trigger the instability. We find that the Kelvin-Helmholtz instability can strongly amplify turbulence in the primordial plasma and as a consequence it may increase the amount of primordial gravitational radiation. Such turbulence may be relevant for the evolution of the Universe at later stages and may have an impact in the stochastic gravitational wave background.

  2. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators.

    PubMed

    Backović, Mihailo; Krämer, Michael; Maltoni, Fabio; Martini, Antony; Mawatari, Kentarou; Pellen, Mathieu

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s -channel mediators. We implement such models in the FeynRules/MadGraph5_aMC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s -channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  3. Determination of electric dipole transitions in heavy quarkonia using potential non-relativistic QCD

    NASA Astrophysics Data System (ADS)

    Segovia, Jorge; Steinbeißer, Sebastian

    2018-05-01

    The electric dipole transitions {χ }bJ(1P)\\to γ \\Upsilon (1S) with J = 0, 1, 2 and {h}b(1P)\\to γ {η }b(1S) are computed using the weak-coupling version of a low-energy effective field theory named potential non-relativistic QCD (pNRQCD). In order to improve convergence and thus give firm predictions for the studied reactions, the full static potential is incorporated into the leading order Hamiltonian; moreover, we must handle properly renormalon effects and re-summation of large logarithms. The precision we reach is {k}γ 3/{(mv)}2× O({v}2), where kγ is the photon energy, m is the mass of the heavy quark and v its velocity. Our analysis separates those relativistic contributions that account for the electromagnetic interaction terms in the pNRQCD Lagrangian which are v 2 suppressed and those that account for wave function corrections of relative order v 2. Among the last ones, corrections from 1/m and 1/m2 potentials are computed, but not those coming from higher Fock states since they demand non-perturbative input and are {{{Λ }}}{{QCD}}2/{(mv)}2 or {{{Λ }}}{{QCD}}3/({m}3{v}4) suppressed, at least, in the strict weak coupling regime. These proceedings are based on the forthcoming publication [1].

  4. Second-order QCD effects in Higgs boson production through vector boson fusion

    NASA Astrophysics Data System (ADS)

    Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.

    2018-06-01

    We compute the factorising second-order QCD corrections to the electroweak production of a Higgs boson through vector boson fusion. Our calculation is fully differential in the kinematics of the Higgs boson and of the final state jets, and uses the antenna subtraction method to handle infrared singular configurations in the different parton-level contributions. Our results allow us to reassess the impact of the next-to-leading order (NLO) QCD corrections to electroweak Higgs-plus-three-jet production and of the next-to-next-to-leading order (NNLO) QCD corrections to electroweak Higgs-plus-two-jet production. The NNLO corrections are found to be limited in magnitude to around ± 5% and are uniform in several of the kinematical variables, displaying a kinematical dependence only in the transverse momenta and rapidity separation of the two tagging jets.

  5. openQ*D simulation code for QCD+QED

    NASA Astrophysics Data System (ADS)

    Campos, Isabel; Fritzsch, Patrick; Hansen, Martin; Krstić Marinković, Marina; Patella, Agostino; Ramos, Alberto; Tantalo, Nazario

    2018-03-01

    The openQ*D code for the simulation of QCD+QED with C* boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion action, the multilevel integrator, the 4th order OMF integrator, the SSE/AVX intrinsics, etc. The photon field is treated as fully dynamical and C* boundary conditions can be chosen in the spatial directions. We discuss the main features of openQ*D, and we show basic test results and performance analysis. An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/.

  6. Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Di Vecchia, Paolo; Rossi, Giancarlo; Veneziano, Gabriele; Yankielowicz, Shimon

    2017-12-01

    Using the well-known low-energy effective Lagrangian of QCD — valid for small (non-vanishing) quark masses and a large number of colors — we study in detail the regions of parameter space where CP is spontaneously broken/unbroken for a vacuum angle θ = π. In the CP broken region there are first order phase transitions as one crosses θ = π, while on the (hyper)surface separating the two regions, there are second order phase transitions signalled by the vanishing of the mass of a pseudo Nambu-Goldstone boson and by a divergent QCD topological susceptibility. The second order point sits at the end of a first order line associated with the CP spontaneous breaking, in the appropriate complex parameter plane. When the effective Lagrangian is extended by the inclusion of an axion these features of QCD imply that standard calculations of the axion potential have to be revised if the QCD parameters fall in the above mentioned CP broken region, in spite of the fact that the axion solves the strong- CP problem. These last results could be of interest for axionic dark matter calculations if the topological susceptibility of pure Yang-Mills theory falls off sufficiently fast when temperature is increased towards the QCD deconfining transition.

  7. QCD analysis of $W$- and $Z$-boson production at Tevatron

    DOE PAGES

    Camarda, S.; Belov, P.; Cooper-Sarkar, A. M.; ...

    2015-09-28

    Recent measurements of the W-boson charge asymmetry and of the Z-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations, are studied using the HERAFitter framework to assess their impact on the proton parton distribution functions (PDFs). Thus, the Tevatron measurements, together with deep-inelastic scattering data from HERA, are included in a QCD analysis performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. Good agreement between measurements and theoretical predictions is observed. The Tevatron data provide significant constraints on the d-valence quark distribution.

  8. QCD analysis of $W$- and $Z$-boson production at Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camarda, S.; Belov, P.; Cooper-Sarkar, A. M.

    Recent measurements of the W-boson charge asymmetry and of the Z-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations, are studied using the HERAFitter framework to assess their impact on the proton parton distribution functions (PDFs). Thus, the Tevatron measurements, together with deep-inelastic scattering data from HERA, are included in a QCD analysis performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. Good agreement between measurements and theoretical predictions is observed. The Tevatron data provide significant constraints on the d-valence quark distribution.

  9. Remarks on the Phase Transition in QCD

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    The significance of the question of the order of the phase transition in QCD, and recent evidence that real-world QCD is probably close to having a single second order transition as a function of temperature, is reviewed. Although this circumstance seems to remove the possibility that the QCD transition during the big bang might have had spectacular cosmological consequences, there is some good news: it allows highly non-trivial yet reliable quantitative predictions to be made for the behavior near the transition. These predictions can be tested in numerical simulations and perhaps even eventually in heavy ion collisions. The present paper is a very elementary discussion of the relevant concepts, meant to be an accessible introduction for those innocent of the renormalization group approach to critical phenomena and/or the details of QCD.

  10. QCD corrections to ZZ production in gluon fusion at the LHC

    DOE PAGES

    Caola, Fabrizio; Melnikov, Kirill; Rontsch, Raoul; ...

    2015-11-23

    We compute the next-to-leading-order QCD corrections to the production of two Z-bosons in the annihilation of two gluons at the LHC. Being enhanced by a large gluon flux, these corrections provide a distinct and, potentially, the dominant part of the N 3LO QCD contributions to Z-pair production in proton collisions. The gg → ZZ annihilation is a loop-induced process that receives the dominant contribution from loops of five light quarks, that are included in our computation in the massless approximation. We find that QCD corrections increase the gg → ZZ production cross section by O(50%–100%) depending on the values ofmore » the renormalization and factorization scales used in the leading-order computation and the collider energy. Furthermore, the large corrections to the gg → ZZ channel increase the pp → ZZ cross section by about 6% to 8%, exceeding the estimated theoretical uncertainty of the recent next-to-next-to-leading-order QCD calculation.« less

  11. The large-N Yang-Mills S matrix is ultraviolet finite, but the large-N QCD S matrix is only renormalizable

    NASA Astrophysics Data System (ADS)

    Bochicchio, Marco

    2017-03-01

    Yang-Mills (YM) theory and QCD are known to be renormalizable, but not ultraviolet (UV) finite, order by order, in perturbation theory. It is a fundamental question whether YM theory or QCD is UV finite, or only renormalizable, order by order, in the large-N 't Hooft or Veneziano expansions. We demonstrate that the renormalization group (RG) and asymptotic freedom imply that in 't Hooft large-N expansion the S matrix in YM theory is UV finite, while in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massless QCD is renormalizable but not UV finite. By the same argument, the large-N N =1 supersymmetry (SUSY) YM S matrix is UV finite as well. Besides, we demonstrate that, in both 't Hooft and Veneziano large-N expansions, the correlators of local gauge-invariant operators, as opposed to the S matrix, are renormalizable but, in general, not UV finite, either in YM theory and N =1 SUSY YM theory or a fortiori in massless QCD. Moreover, we compute explicitly the counterterms that arise from renormalizing the 't Hooft and Veneziano expansions by deriving in confining massless QCD-like theories a low-energy theorem of the Novikov-Shifman-Vainshtein-Zakharov type that relates the log derivative with respect to the gauge coupling of a k -point correlator, or the log derivative with respect to the RG-invariant scale, to a (k +1 )-point correlator with the insertion of Tr F2 at zero momentum. Finally, we argue that similar results hold in the large-N limit of a vast class of confining massive QCD-like theories, provided a renormalization scheme exists—as, for example, MS ¯ —in which the beta function is not dependent on the masses. Specifically, in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massive QCD and massive N =1 SUSY QCD is renormalizable but not UV finite.

  12. Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD [The Energy-Energy Correlation at Next-to-Leading Order in QCD, Analytically

    DOE PAGES

    Dixon, Lance J.; Luo, Ming-xing; Shtabovenko, Vladyslav; ...

    2018-03-09

    Here, the energy-energy correlation (EEC) between two detectors in e +e – annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.

  13. Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD [The Energy-Energy Correlation at Next-to-Leading Order in QCD, Analytically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Lance J.; Luo, Ming-xing; Shtabovenko, Vladyslav

    Here, the energy-energy correlation (EEC) between two detectors in e +e – annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.

  14. Susceptibility of the QCD vacuum to CP-odd electromagnetic background fields.

    PubMed

    D'Elia, Massimo; Mariti, Marco; Negro, Francesco

    2013-02-22

    We investigate two flavor quantum chromodynamics (QCD) in the presence of CP-odd electromagnetic background fields and determine, by means of lattice QCD simulations, the induced effective θ term to first order in E[over →] · B[over →]. We employ a rooted staggered discretization and study lattice spacings down to 0.1 fm and Goldstone pion masses around 480 MeV. In order to deal with a positive measure, we consider purely imaginary electric fields and real magnetic fields, and then exploit the analytic continuation. Our results are relevant to a description of the effective pseudoscalar quantum electrodynamics-QCD interactions.

  15. Matching next-to-leading order predictions to parton showers in supersymmetric QCD

    DOE PAGES

    Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin; ...

    2016-02-03

    We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.

  16. Matching next-to-leading order predictions to parton showers in supersymmetric QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin

    We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.

  17. Nucleon-nucleon interactions via Lattice QCD: Methodology. HAL QCD approach to extract hadronic interactions in lattice QCD

    NASA Astrophysics Data System (ADS)

    Aoki, Sinya

    2013-07-01

    We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for nucleon-nucleon potentials.

  18. Higher order cumulants in colorless partonic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherif, S.; Laboratoire de Physique et de Mathématiques Appliquées; Ahmed, M. A. A.

    2016-06-10

    Any physical system considered to study the QCD deconfinement phase transition certainly has a finite volume, so the finite size effects are inevitably present. This renders the location of the phase transition and the determination of its order as an extremely difficult task, even in the simplest known cases. In order to identify and locate the colorless QCD deconfinement transition point in finite volume T{sub 0}(V), a new approach based on the finite-size cumulant expansion of the order parameter and the ℒ{sub m,n}-Method is used. We have shown that both cumulants of higher order and their ratios, associated to themore » thermodynamical fluctuations of the order parameter, in QCD deconfinement phase transition behave in a particular enough way revealing pronounced oscillations in the transition region. The sign structure and the oscillatory behavior of these in the vicinity of the deconfinement phase transition point might be a sensitive probe and may allow one to elucidate their relation to the QCD phase transition point. In the context of our model, we have shown that the finite volume transition point is always associated to the appearance of a particular point in whole higher order cumulants under consideration.« less

  19. End point of a first-order phase transition in many-flavor lattice QCD at finite temperature and density.

    PubMed

    Ejiri, Shinji; Yamada, Norikazu

    2013-04-26

    Towards the feasibility study of the electroweak baryogenesis in realistic technicolor scenario, we investigate the phase structure of (2+N(f))-flavor QCD, where the mass of two flavors is fixed to a small value and the others are heavy. For the baryogenesis, an appearance of a first-order phase transition at finite temperature is a necessary condition. Using a set of configurations of two-flavor lattice QCD and applying the reweighting method, the effective potential defined by the probability distribution function of the plaquette is calculated in the presence of additional many heavy flavors. Through the shape of the effective potential, we determine the critical mass of heavy flavors separating the first-order and crossover regions and find it to become larger with N(f). We moreover study the critical line at finite density and the first-order region is found to become wider as increasing the chemical potential. Possible applications to real (2+1)-flavor QCD are discussed.

  20. QCD and Asymptotic Freedom:. Perspectives and Prospects

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    QCD is now a mature theory, and it is possible to begin to view its place in the conceptual universe of physics with an appropriate perspective. There is a certain irony in the achievements of QCD. For the problems which initially drove its development — specifically, the desire to understand in detail the force that holds atomic nuclei together, and later the desire to calculate the spectrum of hadrons and their interactions — only limited insight has been achieved. However, I shall argue that QCD is actually more special and important a theory than one had any right to anticipate. In many ways, the importance of the solution transcends that of the original motivating problems. After elaborating on these quasiphilosophical remarks, I discuss two current frontiers of physics that illustrate the continuing vitality of the ideas. The recent wealth of beautiful precision experiments measuring the parameters of the standard model have made it possible to consider the unification of couplings in unprecedented quantitative detail. One central result emerging from these developments is a tantalizing hint of virtual supersymmetry. The possibility of phase transitions in matter at temperatures of order ~102 MeV, governed by QCD dynamics, is of interest from several points of view. Besides having a certain intrinsic grandeur, the question “Does the nature of matter change qualitatively, as it is radically heated?” is important for cosmology, relevant to planned high-energy heavy-ion collision experiments, and provides a promising arena for numerical simulations of QCD. Recent numerical work seems to be consistent with expectations suggested by renormalization group analysis of the potential universality classes of the QCD chiral phase transition; specifically, that the transition is second-order for two species of massless quarks but first order otherwise. There is an interesting possibility of long-range correlations in heavy ion collisions due to the creation of large regions of the misaligned chiral condensate. Finally, at the end, there is a brief discussion on the relation between scaling violations and running of the coupling. Some statements made later in the conference seemed to indicate that the relationship between these concepts is commonly misunderstood, so I’m smuggling this bit in even though it wasn’t part of the original talk.

  1. The QCD running coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled regime and its prediction for the analytic form of $$\\alpha_s(Q^2)$$. The AdS/QCD light-front holographic analysis predicts the color confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale $$\\Lambda$$ and hadron masses. One can also identify a specific scale $$Q_0$$ which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including Lattice QCD, Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating conflicting results, we provide a partial discussion on the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances on this difficult subject, but also to suggest what could be the best definition of $$\\alpha_s(Q^2)$$ in order to bring better unity to the subject.« less

  2. The QCD running coupling

    DOE PAGES

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-05-09

    Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled regime and its prediction for the analytic form of $$\\alpha_s(Q^2)$$. The AdS/QCD light-front holographic analysis predicts the color confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale $$\\Lambda$$ and hadron masses. One can also identify a specific scale $$Q_0$$ which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including Lattice QCD, Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating conflicting results, we provide a partial discussion on the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances on this difficult subject, but also to suggest what could be the best definition of $$\\alpha_s(Q^2)$$ in order to bring better unity to the subject.« less

  3. Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence

    NASA Astrophysics Data System (ADS)

    Jones, S. P.; Kerner, M.; Luisoni, G.

    2018-04-01

    We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high pt ,H region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.

  4. Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence.

    PubMed

    Jones, S P; Kerner, M; Luisoni, G

    2018-04-20

    We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high p_{t,H} region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.

  5. Higgs boson gluon-fusion production in QCD at three loops.

    PubMed

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; Herzog, Franz; Mistlberger, Bernhard

    2015-05-29

    We present the cross section for the production of a Higgs boson at hadron colliders at next-to-next-to-next-to-leading order (N^{3}LO) in perturbative QCD. The calculation is based on a method to perform a series expansion of the partonic cross section around the threshold limit to an arbitrary order. We perform this expansion to sufficiently high order to obtain the value of the hadronic cross at N^{3}LO in the large top-mass limit. For renormalization and factorization scales equal to half the Higgs boson mass, the N^{3}LO corrections are of the order of +2.2%. The total scale variation at N^{3}LO is 3%, reducing the uncertainty due to missing higher order QCD corrections by a factor of 3.

  6. Surface energy from order parameter profile: At the QCD phase transition

    NASA Technical Reports Server (NTRS)

    Frei, Z.; Patkos, A.

    1989-01-01

    The order parameter profile between coexisting confined and plasma regions at the quantum chromodynamic (QCD) phase transition is constructed. The dimensionless combination of the surface energy (Sigma) and the correlation length (Zeta) is estimated to be Sigma Zeta 3 approximately equals 0.8.

  7. C P -odd sector and θ dynamics in holographic QCD

    NASA Astrophysics Data System (ADS)

    Areán, Daniel; Iatrakis, Ioannis; Järvinen, Matti; Kiritsis, Elias

    2017-07-01

    The holographic model of V-QCD is used to analyze the physics of QCD in the Veneziano large-N limit. An unprecedented analysis of the C P -odd physics is performed going beyond the level of effective field theories. The structure of holographic saddle points at finite θ is determined, as well as its interplay with chiral symmetry breaking. Many observables (vacuum energy and higher-order susceptibilities, singlet and nonsinglet masses and mixings) are computed as functions of θ and the quark mass m . Wherever applicable the results are compared to those of chiral Lagrangians, finding agreement. In particular, we recover the Witten-Veneziano formula in the small x →0 limit, we compute the θ dependence of the pion mass, and we derive the hyperscaling relation for the topological susceptibility in the conformal window in terms of the quark mass.

  8. QCD In Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    Introduction Symmetry and the Phenomena of QCD Apparent and Actual Symmetries Asymptotic Freedom Confinement Chiral Symmetry Breaking Chiral Anomalies and Instantons High Temperature QCD: Asymptotic Properties Significance of High Temperature QCD Numerical Indications for Quasi-Free Behavior Ideas About Quark-Gluon Plasma Screening Versus Confinement Models of Chiral Symmetry Breaking More Refined Numerical Experiments High-Temperature QCD: Phase Transitions Yoga of Phase Transitions and Order Parameters Application to Glue Theories Application to Chiral Transitions Close Up on Two Flavors A Genuine Critical Point! (?) High-Density QCD: Methods Hopes, Doubts, and Fruition Another Renormalization Group Pairing Theory Taming the Magnetic Singularity High-Density QCD: Color-Flavor Locking and Quark-Hadron Continuity Gauge Symmetry (Non)Breaking Symmetry Accounting Elementary Excitations A Modified Photon Quark-Hadron Continuity Remembrance of Things Past More Quarks Fewer Quarks and Reality

  9. Next-to-leading order QCD corrections to W{sup +}W{sup +}jj and W{sup -}W{sup -}jj production via weak-boson fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, B.; Oleari, C.; Zeppenfeld, D.

    2009-08-01

    We present a next-to-leading order QCD calculation for e{sup +}{nu}{sub e}{mu}{sup +}{nu}{sub {mu}}jj and e{sup -}{nu}{sub e}{mu}{sup -}{nu}{sub {mu}}jj production via weak-boson fusion at a hadron collider in the form of a fully flexible parton-level Monte Carlo program, which allows for the calculation of experimentally accessible observables within realistic selection cuts. The QCD corrections to the integrated cross sections are found to be modest, while the shapes of some kinematical distributions change appreciably compared to leading order. The residual scale uncertainties of the next-to-leading order results are at the few-percent level.

  10. Gravitation waves from QCD and electroweak phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Yidian; Huang, Mei; Yan, Qi-Shu

    2018-05-01

    We investigate the gravitation waves produced from QCD and electroweak phase transitions in the early universe by using a 5-dimension holographic QCD model and a holographic technicolor model. The dynamical holographic QCD model is to describe the pure gluon system, where a first order confinement-deconfinement phase transition can happen at the critical temperature around 250 MeV. The minimal holographic technicolor model is introduced to model the strong dynamics of electroweak, it can give a first order electroweak phase transition at the critical temperature around 100-360 GeV. We find that for both GW signals produced from QCD and EW phase transitions, in the peak frequency region, the dominant contribution comes from the sound waves, while away from the peak frequency region the contribution from the bubble collision is dominant. The peak frequency of gravitation wave determined by the QCD phase transition is located around 10-7 Hz which is within the detectability of FAST and SKA, and the peak frequency of gravitational wave predicted by EW phase transition is located at 0.002 - 0.007 Hz, which might be detectable by BBO, DECIGO, LISA and ELISA.

  11. Direct connection between the different QCD orders for parton distribution and fragmentation functions

    NASA Astrophysics Data System (ADS)

    Shevchenko, O. Yu.

    2013-06-01

    The formulas directly connecting parton distribution functions and fragmentation functions at the next-to-leading-order QCD with the same quantities at the leading order are derived. These formulas are universal, i.e., have the same form for all kinds of parton distribution functions and fragmentation functions, differing only in the respective splitting functions entering there.

  12. Isolating the Λ(1405) in lattice QCD.

    PubMed

    Menadue, Benjamin J; Kamleh, Waseem; Leinweber, Derek B; Mahbub, M Selim

    2012-03-16

    The odd-parity ground state of the Λ baryon lies surprisingly low in mass. At 1405 MeV, it lies lower than the odd-parity ground-state nucleon, even though it has a valence strange quark. Using the PACS-CS (2+1)-flavor full-QCD ensembles, we employ a variational analysis using source and sink smearing to isolate this elusive state. For the first time we reproduce the correct level ordering with respect to nearby scattering thresholds. With a partially quenched strange quark to produce the appropriate kaon mass, we find a low-lying, odd-parity mass trend consistent with the experimental value.

  13. Instantons and Large N

    NASA Astrophysics Data System (ADS)

    Mariño, Marcos

    2015-09-01

    Preface; Part I. Instantons: 1. Instantons in quantum mechanics; 2. Unstable vacua in quantum field theory; 3. Large order behavior and Borel summability; 4. Non-perturbative aspects of Yang-Mills theories; 5. Instantons and fermions; Part II. Large N: 6. Sigma models at large N; 7. The 1=N expansion in QCD; 8. Matrix models and matrix quantum mechanics at large N; 9. Large N QCD in two dimensions; 10. Instantons at large N; Appendix A. Harmonic analysis on S3; Appendix B. Heat kernel and zeta functions; Appendix C. Effective action for large N sigma models; References; Author index; Subject index.

  14. Massive QCD Amplitudes at Higher Orders

    NASA Astrophysics Data System (ADS)

    Moch, S.; Mitov, A.

    2007-11-01

    We consider the factorisation properties of on-shell QCD amplitudes with massive partons in the limit when all kinematical invariants are large compared to the parton mass and discuss the structure of their infrared singularities. The dimensionally regulated soft poles and the large collinear logarithms of the parton masses exponentiate to all orders. Based on this factorisation a simple relation between massless and massive scattering amplitudes in gauge theories can be established. We present recent applications of this relation for the calculation of the two-loop virtual QCD corrections to the hadro-production of heavy quarks.

  15. A comparison of NNLO QCD predictions with 7 TeV ATLAS and CMS data for V+jet processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boughezal, Radja; Liu, Xiaohui; Petriello, Frank

    2016-06-17

    Here, we perform a detailed comparison of next-to-next-to-leading order (NNLO) QCD predictions for the W+jet and Z+jet processes with 7 TeV experimental data from ATLAS and CMS. We observe excellent agreement between theory and data for most studied observables, which span several orders of magnitude in both cross section and energy. For some observables, such as the HT distribution, the NNLO QCD corrections are essential for resolving existing discrepancies between theory and data.

  16. Critical opalescence in baryonic QCD matter.

    PubMed

    Antoniou, N G; Diakonos, F K; Kapoyannis, A S; Kousouris, K S

    2006-07-21

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

  17. QCD sum-rules analysis of vector (1-) heavy quarkonium meson-hybrid mixing

    NASA Astrophysics Data System (ADS)

    Palameta, A.; Ho, J.; Harnett, D.; Steele, T. G.

    2018-02-01

    We use QCD Laplace sum rules to study meson-hybrid mixing in vector (1-) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leading-order perturbation theory, we include four- and six-dimensional gluon condensate contributions as well as a six-dimensional quark condensate contribution. We construct several single and multiresonance models that take known hadron masses as inputs. We investigate which resonances couple to both currents and so exhibit meson-hybrid mixing. Compared to single resonance models that include only the ground state, we find that models that also include excited states lead to significantly improved agreement between QCD and experiment. In the charmonium sector, we find that meson-hybrid mixing is consistent with a two-resonance model consisting of the J /ψ and a 4.3 GeV resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing in the ϒ (1 S ) , ϒ (2 S ), ϒ (3 S ), and ϒ (4 S ).

  18. Importance of proper renormalization scale-setting for QCD testing at colliders

    DOE PAGES

    Wu, Xing -Gang; Wang, Sheng -Quan; Brodsky, Stanley J.

    2015-12-22

    A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived frommore » the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the N C → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing tt¯ invariant mass. At lower energies, the angular distributions of heavy quarks can be used to obtain a direct determination of the heavy quark potential. A discussion of the angular distributions of massive quarks and leptons is also presented, including the fermionic component of the two-loop corrections to the electromagnetic form factors. Furthermore, these results demonstrate that the application of the PMC systematically eliminates a major theoretical uncertainty for pQCD predictions, thus increasing collider sensitivity to possible new physics beyond the Standard Model.« less

  19. Electroweak Higgs boson plus three jet production at next-to-leading-order QCD.

    PubMed

    Campanario, Francisco; Figy, Terrance M; Plätzer, Simon; Sjödahl, Malin

    2013-11-22

    We calculate next-to-leading order (NLO) QCD corrections to electroweak Higgs boson plus three jet production. Both vector boson fusion (VBF) and Higgs-strahlung type contributions are included along with all interferences. The calculation is implemented within the Matchbox NLO framework of the Herwig++ event generator.

  20. The Top Quark, QCD, And New Physics.

    DOE R&D Accomplishments Database

    Dawson, S.

    2002-06-01

    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  1. Jet production and fragmentation properties in deep inelastic muon scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Conrad, J.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Drobnitzki, M.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftàčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlabböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; Ziemons, K.

    1987-12-01

    Results are presented from a study of deep inelastic 280 GeV muon-nucleon interactions on the transverse momenta and jet properties of the final state hadrons. The results are analysed in a way which attempts to separate the contributions of hard and soft QCD effects from those that arise from the fragmentation process. The fragmentation models with which the data are compared are the Lund string model, the independent jet model, the QCD parton shower model including soft gluon interference effects, and the firestring model. The discrimination between these models is discussed. Various methods of analysis of the data in terms of hard QCD processes are presented. From a study of the properties of the jet profiles a value of α s , to leading order, is determined using the Lund string model, namely α s =0.29±0.01 (stat.) ±0.02 (syst.), for Q 2˜20 GeV2.

  2. Freeze-out conditions in heavy ion collisions from QCD thermodynamics.

    PubMed

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Mukherjee, Swagato; Petreczky, P; Schmidt, C; Smith, D; Soeldner, W; Wagner, M

    2012-11-09

    We present a determination of freeze-out conditions in heavy ion collisions based on ratios of cumulants of net electric charge fluctuations. These ratios can reliably be calculated in lattice QCD for a wide range of chemical potential values by using a next-to-leading order Taylor series expansion around the limit of vanishing baryon, electric charge and strangeness chemical potentials. From a computation of up to fourth order cumulants and charge correlations we first determine the strangeness and electric charge chemical potentials that characterize freeze-out conditions in a heavy ion collision and confirm that in the temperature range 150 MeV ≤ T ≤ 170 MeV the hadron resonance gas model provides good approximations for these parameters that agree with QCD calculations on the 5%-15% level. We then show that a comparison of lattice QCD results for ratios of up to third order cumulants of electric charge fluctuations with experimental results allows us to extract the freeze-out baryon chemical potential and the freeze-out temperature.

  3. Chiral phase transition at finite chemical potential in 2 +1 -flavor soft-wall anti-de Sitter space QCD

    NASA Astrophysics Data System (ADS)

    Bartz, Sean P.; Jacobson, Theodore

    2018-04-01

    The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid crossover at zero quark chemical potential (μ ), becoming first order at some finite value of μ , indicating the presence of a critical point. Using a three-flavor soft-wall model of anti-de Sitter/QCD, we investigate the effect of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic models. We then extend this holographic model to examine the effects of finite quark chemical potential. We find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is necessary to reproduce all the features of the QCD phase diagram.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caola, Fabrizio; Melnikov, Kirill; Rontsch, Raoul

    We compute the next-to-leading-order QCD corrections to the production of two Z-bosons in the annihilation of two gluons at the LHC. Being enhanced by a large gluon flux, these corrections provide a distinct and, potentially, the dominant part of the N 3LO QCD contributions to Z-pair production in proton collisions. The gg → ZZ annihilation is a loop-induced process that receives the dominant contribution from loops of five light quarks, that are included in our computation in the massless approximation. We find that QCD corrections increase the gg → ZZ production cross section by O(50%–100%) depending on the values ofmore » the renormalization and factorization scales used in the leading-order computation and the collider energy. Furthermore, the large corrections to the gg → ZZ channel increase the pp → ZZ cross section by about 6% to 8%, exceeding the estimated theoretical uncertainty of the recent next-to-next-to-leading-order QCD calculation.« less

  5. Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion.

    PubMed

    Cullen, G; van Deurzen, H; Greiner, N; Luisoni, G; Mastrolia, P; Mirabella, E; Ossola, G; Peraro, T; Tramontano, F

    2013-09-27

    We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs boson and the leading jets. The results are obtained with the combined use of GOSAM, SHERPA, and the MADDIPOLE-MADEVENT framework.

  6. CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis

    NASA Astrophysics Data System (ADS)

    Hou, Tie-Jiun; Dulat, Sayipjamal; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Winter, Jan; Xie, Keping; Yuan, C.-P.

    2018-02-01

    We investigate the possibility of a (sizable) nonperturbative contribution to the charm parton distribution function (PDF) in a nucleon, theoretical issues arising in its interpretation, and its potential impact on LHC scattering processes. The "fitted charm" PDF obtained in various QCD analyses contains a process-dependent component that is partly traced to power-suppressed radiative contributions in DIS and is generally different at the LHC. We discuss separation of the universal component of the nonperturbative charm from the rest of the radiative contributions and estimate its magnitude in the CT14 global QCD analysis at the next-to-next-to leading order in the QCD coupling strength, including the latest experimental data from HERA and the Large Hadron Collider. Models for the nonperturbative charm PDF are examined as a function of the charm quark mass and other parameters. The prospects for testing these models in the associated production of a Z boson and a charm jet at the LHC are studied under realistic assumptions, including effects of the final-state parton showering.

  7. Top-quark decay at next-to-next-to-leading order in QCD.

    PubMed

    Gao, Jun; Li, Chong Sheng; Zhu, Hua Xing

    2013-01-25

    We present the complete calculation of the top-quark decay width at next-to-next-to-leading order in QCD, including next-to-leading electroweak corrections as well as finite bottom quark mass and W boson width effects. In particular, we also show the first results of the fully differential decay rates for the top-quark semileptonic decay t → W(+)(l(+)ν)b at next-to-next-to-leading order in QCD. Our method is based on the understanding of the invariant mass distribution of the final-state jet in the singular limit from effective field theory. Our result can be used to study arbitrary infrared-safe observables of top-quark decay with the highest perturbative accuracy.

  8. Next-to-Next-to-Leading-Order QCD Corrections to the Transverse Momentum Distribution of Weak Gauge Bosons

    NASA Astrophysics Data System (ADS)

    Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E. W. N.; Huss, A.; Walker, D. M.

    2018-03-01

    The transverse momentum spectra of weak gauge bosons and their ratios probe the underlying dynamics and are crucial in testing our understanding of the standard model. They are an essential ingredient in precision measurements, such as the W boson mass extraction. To fully exploit the potential of the LHC data, we compute the second-order [next-to-next-to-leading-order (NNLO)] QCD corrections to the inclusive-pTW spectrum as well as to the ratios of spectra for W-/W+ and Z /W . We find that the inclusion of NNLO QCD corrections considerably improves the theoretical description of the experimental CMS data and results in a substantial reduction of the residual scale uncertainties.

  9. Fluctuations and QCD phase structure

    NASA Astrophysics Data System (ADS)

    Kitazawa, Masakiyo

    2014-11-01

    Fluctuation observables are invaluable tools in relativistic heavy ion collisions to investigate primordial thermodynamics of fireballs. Active experimental measurements have been performed at RHIC and LHC. In particular, interesting experimental results were recently reported on the electric charge fluctuation at ALICE and on the higher order cumulants at STAR, which show nontrivial behaviors reflecting non-hadronic and/or non-thermal physics. We argue that more detailed understanding on these observables are needed to use them effectively in the analysis of QCD phase structure. We suggest that the measurement of various cumulants of conserved charges including baryon number and their rapidity window dependence will provide important information needed for making progress in this subject.

  10. QCD for Postgraduates (4/5)

    ScienceCinema

    Zanderighi, Giulia

    2018-05-23

    Modern QCD - Lecture 4. We will consider some processes of interest at the LHC and will discuss the main elements of their cross-section calculations. We will also summarize the current status of higher order calculations.

  11. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsch, F.; Kojo, T.; Mukherjee, S.

    Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that atmore » zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical background for the search of the CEP using observables related to fluctuations and correlations. While new data are pouring in from the RHIC low energy scan program, many recent advances have also been made in the phenomenological and lattice gauge theory sides in order to have a better theoretical understanding of the wealth of new data. This workshop tried to create a synergy between the experimental, phenomenological and lattice QCD aspects of the fluctuation and correlation related studies of the RHIC low energy scan program. The workshop brought together all the leading experts from related fields under the same forum to share new ideas among themselves in order to streamline the continuing search of CEP in the RHIC low energy scan program.« less

  12. Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale

    DOE PAGES

    Bi, Huan -Yu; Wu, Xing -Gang; Ma, Yang; ...

    2015-06-26

    The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I); the other, more recent, method (PMC-II) uses the R δ-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfymore » all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio R e+e– and the Higgs partial width I'(H→bb¯). Both methods lead to the same resummed (‘conformal’) series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {β i}-terms in the pQCD expansion are taken into account. In addition, we show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.« less

  13. Matrix theory for baryons: an overview of holographic QCD for nuclear physics.

    PubMed

    Aoki, Sinya; Hashimoto, Koji; Iizuka, Norihiro

    2013-10-01

    We provide, for non-experts, a brief overview of holographic QCD (quantum chromodynamics) and a review of the recent proposal (Hashimoto et al 2010 (arXiv:1003.4988[hep-th])) of a matrix-like description of multi-baryon systems in holographic QCD. Based on the matrix model, we derive the baryon interaction at short distances in multi-flavor holographic QCD. We show that there is a very universal repulsive core of inter-baryon forces for a generic number of flavors. This is consistent with a recent lattice QCD analysis for Nf = 2, 3 where the repulsive core looks universal. We also provide a comparison of our results with the lattice QCD and the operator product expansion analysis.

  14. W -Boson Production in Association with a Jet at Next-to-Next-to-Leading Order in Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Boughezal, Radja; Focke, Christfried; Liu, Xiaohui; Petriello, Frank

    2015-08-01

    We present the complete calculation of W -boson production in association with a jet in hadronic collisions through next-to-next-to-leading order (NNLO) in perturbative QCD. To cancel infrared divergences, we discuss a new subtraction method that exploits the fact that the N -jettiness event-shape variable fully captures the singularity structure of QCD amplitudes with final-state partons. This method holds for processes with an arbitrary number of jets and is easily implemented into existing frameworks for higher-order calculations. We present initial phenomenological results for W +jet production at the LHC. The NNLO corrections are small and lead to a significantly reduced theoretical error, opening the door to precision measurements in the W +jet channel at the LHC.

  15. Computational Science: Ensuring America’s Competitiveness

    DTIC Science & Technology

    2005-06-01

    Supercharging U. S. Innovation & Competitiveness, Washington, D.C. , July 2004. Davies, C. T. H. , et al. , “High-Precision Lattice QCD Confronts Experiment...together to form a class of particles call hadrons (that include protons and neutrons) . For 30 years, researchers in lattice QCD have been trying to use...the basic QCD equations to calculate the properties of hadrons, especially their masses, using numerical lattice gauge theory calculations in order to

  16. Bs and Ds decay constants in three-flavor lattice QCD.

    PubMed

    Wingate, Matthew; Davies, Christine T H; Gray, Alan; Lepage, G Peter; Shigemitsu, Junko

    2004-04-23

    Capitalizing on recent advances in lattice QCD, we present a calculation of the leptonic decay constants f(B(s)) and f(D(s)) that includes effects of one strange sea quark and two light sea quarks via an improved staggered action. By shedding the quenched approximation and the associated lattice scale uncertainty, lattice QCD greatly increases its predictive power. Nonrelativistic QCD is used to simulate heavy quarks with masses between 1.5m(c) and m(b). We arrive at the following results: f(B(s))=260+/-7+/-26+/-8+/-5 and f(D(s))=290+/-20+/-29+/-29+/-6 MeV. The first quoted error is the statistical uncertainty, and the rest estimate the sizes of higher order terms neglected in this calculation. All of these uncertainties are systematically improvable by including another order in the weak coupling expansion, the nonrelativistic expansion, or the Symanzik improvement program.

  17. Scheme variations of the QCD coupling

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon

    2017-03-01

    The Quantum Chromodynamics (QCD) coupling αs is a central parameter in the Standard Model of particle physics. However, it depends on theoretical conventions related to renormalisation and hence is not an observable quantity. In order to capture this dependence in a transparent way, a novel definition of the QCD coupling, denoted by â, is introduced, whose running is explicitly renormalisation scheme invariant. The remaining renormalisation scheme dependence is related to transformations of the QCD scale Λ, and can be parametrised by a single parameter C. Hence, we call â the C-scheme coupling. The dependence on C can be exploited to study and improve perturbative predictions of physical observables. This is demonstrated for the QCD Adler function and hadronic decays of the τ lepton.

  18. Constraining the hadronic spectrum through QCD thermodynamics on the lattice

    NASA Astrophysics Data System (ADS)

    Alba, Paolo; Bellwied, Rene; Borsányi, Szabolcs; Fodor, Zoltan; Günther, Jana; Katz, Sandor D.; Mantovani Sarti, Valentina; Noronha-Hostler, Jacquelyn; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia

    2017-08-01

    Fluctuations of conserved charges allow us to study the chemical composition of hadronic matter. A comparison between lattice simulations and the hadron resonance gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase of QCD. In order to make this calculation feasible, we perform simulations at imaginary strangeness chemical potentials. We systematically study the effect of different hadronic spectra on thermodynamic observables in the HRG model and compare to lattice QCD results. We show that, for each hadronic sector, the well-established states are not enough in order to have agreement with the lattice results. Additional states, either listed in the Particle Data Group booklet (PDG) but not well established, or predicted by the quark model (QM), are necessary in order to reproduce the lattice data. For mesons, it appears that the PDG and the quark model do not list enough strange mesons, or that, in this sector, interactions beyond those included in the HRG model are needed to reproduce the lattice QCD results.

  19. Application of the principle of maximum conformality to the hadroproduction of the Higgs boson at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sheng-Quan; Wu, Xing-Gang; Brodsky, Stanley J.

    We present improved perturbative QCD (pQCD) predictions for Higgs boson hadroproduction at the LHC by applying the principle of maximum conformality (PMC), a procedure which resums the pQCD series using the renormalization group (RG), thereby eliminating the dependence of the predictions on the choice of the renormalization scheme while minimizing sensitivity to the initial choice of the renormalization scale. In previous pQCD predictions for Higgs boson hadroproduction, it has been conventional to assume that the renormalization scale μ r of the QCD coupling α s ( μ r ) is the Higgs mass and then to vary this choice overmore » the range 1 / 2 m H < μ r < 2 m H in order to estimate the theory uncertainty. However, this error estimate is only sensitive to the nonconformal β terms in the pQCD series, and thus it fails to correctly estimate the theory uncertainty in cases where a pQCD series has large higher-order contributions, as is the case for Higgs boson hadroproduction. Furthermore, this ad hoc choice of scale and range gives pQCD predictions which depend on the renormalization scheme being used, in contradiction to basic RG principles. In contrast, after applying the PMC, we obtain next-to-next-to-leading-order RG resummed pQCD predictions for Higgs boson hadroproduction which are renormalization-scheme independent and have minimal sensitivity to the choice of the initial renormalization scale. Taking m H = 125 GeV , the PMC predictions for the p p → H X Higgs inclusive hadroproduction cross sections for various LHC center-of-mass energies are σ Incl | 7 TeV = 21.2 1 + 1.36 - 1.32 pb , σ Incl | 8 TeV = 27.3 7 + 1.65 - 1.59 pb , and σ Incl | 13 TeV = 65.7 2 + 3.46 - 3.0 pb . We also predict the fiducial cross section σ fid ( p p → H → γ γ ) : σ fid | 7 TeV = 30.1 + 2.3 - 2.2 fb , σ fid | 8 TeV = 38.3 + 2.9 - 2.8 fb , and σ fid | 13 TeV = 85.8 + 5.7 - 5.3 fb . The error limits in these predictions include the small residual high-order renormalization-scale dependence plus the uncertainty from the factorization scale. The PMC predictions show better agreement with the ATLAS measurements than the LHC Higgs Cross Section Working Group predictions which are based on conventional renormalization-scale setting.« less

  20. The QCD running coupling

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-09-01

    We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale Λ and hadron masses. One can also identify a specific scale Q0 which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including lattice QCD, the Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating their conflicting predictions, we discuss the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances in this difficult area, but also to suggest what could be an optimal definition of αs(Q2) in order to bring better unity to the subject.

  1. Next-To Order QCD Corrections for Transversely Polarized PP and bar {p}p Collisions

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Stratmann, M.; Vogelsang, W.

    We present a calculation of the next-to-leading order QCD corrections to the partonic cross sections contributing to single-inclusive high-pT hadron production in collisions of transversely polarized hadrons. We use a recently proposed projection technique and give some predictions for the double-spin asymmetry Aπ TT for the proposed experiments at RHIC and at the GSI.

  2. Next-to-Next-to-Leading-Order QCD Corrections to the Hadronic Width of Pseudoscalar Quarkonium

    NASA Astrophysics Data System (ADS)

    Feng, Feng; Jia, Yu; Sang, Wen-Long

    2017-12-01

    We compute the next-to-next-to-leading-order QCD corrections to the hadronic decay rates of the pseudoscalar quarkonia, at the lowest order in velocity expansion. The validity of nonrelativistic QCD (NRQCD) factorization for inclusive quarkonium decay process, for the first time, is verified to relative order αs2. As a by-product, the renormalization group equation of the leading NRQCD four-fermion operator O1(1S0 ) is also deduced to this perturbative order. By incorporating this new piece of correction together with available relativistic corrections, we find that there exists severe tension between the state-of-the-art NRQCD predictions and the measured ηc hadronic width and, in particular, the branching fraction of ηc→γ γ . NRQCD appears to be capable of accounting for ηb hadronic decay to a satisfactory degree, and our most refined prediction is Br(ηb→γ γ )=(4.8 ±0.7 )×10-5.

  3. Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review.

    PubMed

    Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J; Mojaza, Matin

    2015-12-01

    A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme--this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the 'principle of maximum conformality' (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the 'principle of minimum sensitivity' (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R(e+e-) and [Formula: see text] up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on the choice of initial scale is highly suppressed even for low-order predictions. Thus the PMC, based on the standard RGI, has a rigorous foundation; it eliminates an unnecessary systematic error for high precision pQCD predictions and can be widely applied to virtually all high-energy hadronic processes, including multi-scale problems.

  4. Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J.; Mojaza, Matin

    2015-12-01

    A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme—this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the ‘principle of maximum conformality’ (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the ‘principle of minimum sensitivity’ (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R e+e- and Γ(H\\to b\\bar{b}) up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on the choice of initial scale is highly suppressed even for low-order predictions. Thus the PMC, based on the standard RGI, has a rigorous foundation; it eliminates an unnecessary systematic error for high precision pQCD predictions and can be widely applied to virtually all high-energy hadronic processes, including multi-scale problems.

  5. The singular behavior of massive QCD amplitudes

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Moch, Sven-Olaf

    2007-05-01

    We discuss the structure of infrared singularities in on-shell QCD amplitudes with massive partons and present a general factorization formula in the limit of small parton masses. The factorization formula gives rise to an all-order exponentiation of both, the soft poles in dimensional regularization and the large collinear logarithms of the parton masses. Moreover, it provides a universal relation between any on-shell amplitude with massive external partons and its corresponding massless amplitude. For the form factor of a heavy quark we present explicit results including the fixed-order expansion up to three loops in the small mass limit. For general scattering processes we show how our constructive method applies to the computation of all singularities as well as the constant (mass-independent) terms of a generic massive n-parton QCD amplitude up to the next-to-next-to-leading order corrections.

  6. Off-shell production of top-antitop pairs in the lepton+jets channel at NLO QCD

    NASA Astrophysics Data System (ADS)

    Denner, Ansgar; Pellen, Mathieu

    2018-02-01

    The production of top-quark pairs that subsequently decay hadronically and leptonically (lepton+jets channel) is one of the key processes for the study of top-quark properties at the LHC. In this article, NLO QCD corrections of order O({α}s^3{α}^4) to the hadronic process pp\\to {μ}-{\\overline{ν}}_{μ}b\\overline{b}jj are presented. The computation includes off-shell as well as non-resonant contributions, and experimental event selections are used in order to provide realistic predictions. The results are provided in the form of cross sections and differential distributions. The QCD corrections are sizeable and different from the ones of the fully leptonic channel. This is due to the different final state where here four jets are present at leading order.

  7. Combination and QCD analysis of charm and beauty production cross-section measurements in deep inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Andreev, V.; Antonelli, S.; Aushev, V.; Baghdasaryan, A.; Begzsuren, K.; Behnke, O.; Behrens, U.; Belousov, A.; Bertolin, A.; Bloch, I.; Bolz, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Buniatyan, A.; Bussey, P. J.; Bylinkin, A.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Avila, K. B. Cantun; Capua, M.; Catterall, C. D.; Cerny, K.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Contreras, J. G.; Cooper-Sarkar, A. M.; Corradi, M.; Cvach, J.; Dainton, J. B.; Daum, K.; Dementiev, R. K.; Devenish, R. C. E.; Diaconu, C.; Dobre, M.; Dusini, S.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Grzelak, G.; Gwenlan, C.; Haidt, D.; Henderson, R. C. W.; Hladkỳ, J.; Hlushchenko, O.; Hochman, D.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Jacquet, M.; Janssen, X.; Jomhari, N. Z.; Jung, A. W.; Jung, H.; Kadenko, I.; Kananov, S.; Kapichine, M.; Karshon, U.; Katzy, J.; Kaur, P.; Kiesling, C.; Kisielewska, D.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kogler, R.; Korzhavina, I. A.; Kostka, P.; Kotański, A.; Kovalchuk, N.; Kowalski, H.; Kretzschmar, J.; Krücker, D.; Krüger, K.; Krupa, B.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levchenko, B. B.; Levonian, S.; Levy, A.; Libov, V.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinski, B.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lukina, O. Yu.; Makarenko, I.; Malinovski, E.; Malka, J.; Martyn, H.-U.; Masciocchi, S.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Idris, F. Mohamad; Mohammad Nasir, N.; Morozov, A.; Müller, K.; Myronenko, V.; Nagano, K.; Nam, J. D.; Naumann, Th.; Newman, P. R.; Nicassio, M.; Niebuhr, C.; Nowak, G.; Olsson, J. E.; Onderwaater, J.; Onishchuk, Yu.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Paul, E.; Perez, E.; Perlański, W.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Pokrovskiy, N. S.; Polifka, R.; Polini, A.; Przybycień, M.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruspa, M.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Saxon, D. H.; Schioppa, M.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schöning, A.; Schörner-Sadenius, T.; Sefkow, F.; Selyuzhenkov, I.; Shcheglova, L. M.; Shushkevich, S.; Shyrma, Yu.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Stanco, L.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stopa, P.; Straumann, U.; Surrow, B.; Sykora, T.; Sztuk-Dambietz, J.; Tassi, E.; Thompson, P. D.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Abdullah, W. A. T. Wan; Wegener, D.; Wichmann, K.; Wing, M.; Wünsch, E.; Yamada, S.; Yamazaki, Y.; Žáček, J.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhang, Z.; Zhautykov, B. O.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2018-06-01

    Measurements of open charm and beauty production cross sections in deep inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections are obtained in the kinematic range of negative four-momentum transfer squared of the photon 2.5 GeV^2≤Q^2 ≤2000 GeV^2 and Bjorken scaling variable 3 \\cdot 10^{-5} ≤ x_Bj ≤ 5 \\cdot 10^{-2}. The combination method accounts for the correlations of the statistical and systematic uncertainties among the different datasets. Perturbative QCD calculations are compared to the combined data. A next-to-leading order QCD analysis is performed using these data together with the combined inclusive deep inelastic scattering cross sections from HERA. The running charm- and beauty-quark masses are determined as m_c(m_c) = 1.290^{+0.046}_{-0.041} (exp/fit) {}^{+0.062}_{-0.014} (model) {}^{+0.003}_{-0.031} (parameterisation) GeV and m_b(m_b) = 4.049^{+0.104}_{-0.109} (exp/fit) {}^{+0.090}_{-0.032} (model) {}^{+0.001}_{-0.031} (parameterisation) GeV.

  8. Lattice QCD inputs to the CKM unitarity triangle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laiho, Jack; Department of Physics and Astronomy, University of Glasgow, Glasgow, G128 QQ; Lunghi, E.

    2010-02-01

    We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner:more » whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters B-circumflex{sub K}, |V{sub cb}|, and |V{sub ub}|/|V{sub cb}|. We find a (2-3){sigma} tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V{sub cb}|. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data.« less

  9. Lattice QCD Inputs to the CKM Unitarity Triangle Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Water, R.; Lunghi, E; Laiho, J

    2010-02-02

    We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner:more » whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters B{sub K}, |V{sub cb}|, and |V{sub ub}|/|Vcb|. We find a (2-3){sigma} tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V{sub cb}|. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data.« less

  10. Three-particle N π π state contribution to the nucleon two-point function in lattice QCD

    NASA Astrophysics Data System (ADS)

    Bär, Oliver

    2018-05-01

    The three-particle N π π state contribution to the QCD two-point function of standard nucleon interpolating fields is computed to leading order in chiral perturbation theory. Using the experimental values for two low-energy coefficients, the impact of this contribution on lattice QCD calculations of the nucleon mass is estimated. The impact is found to be at the per mille level at most and negligible in practice.

  11. Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations.

    PubMed

    Ma, Yan-Qing; Qiu, Jian-Wei

    2018-01-12

    Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. We also show that the proposed functions for lattice QCD calculation of PDFs in the literature are special cases of these good LCSs.

  12. Strangeness S =-1 hyperon-nucleon interactions: Chiral effective field theory versus lattice QCD

    NASA Astrophysics Data System (ADS)

    Song, Jing; Li, Kai-Wen; Geng, Li-Sheng

    2018-06-01

    Hyperon-nucleon interactions serve as basic inputs to studies of hypernuclear physics and dense (neutron) stars. Unfortunately, a precise understanding of these important quantities has lagged far behind that of the nucleon-nucleon interaction due to lack of high-precision experimental data. Historically, hyperon-nucleon interactions are either formulated in quark models or meson exchange models. In recent years, lattice QCD simulations and chiral effective field theory approaches start to offer new insights from first principles. In the present work, we contrast the state-of-the-art lattice QCD simulations with the latest chiral hyperon-nucleon forces and show that the leading order relativistic chiral results can already describe the lattice QCD data reasonably well. Given the fact that the lattice QCD simulations are performed with pion masses ranging from the (almost) physical point to 700 MeV, such studies provide a useful check on both the chiral effective field theory approaches as well as lattice QCD simulations. Nevertheless more precise lattice QCD simulations are eagerly needed to refine our understanding of hyperon-nucleon interactions.

  13. Subtraction method of computing QCD jet cross sections at NNLO accuracy

    NASA Astrophysics Data System (ADS)

    Trócsányi, Zoltán; Somogyi, Gábor

    2008-10-01

    We present a general subtraction method for computing radiative corrections to QCD jet cross sections at next-to-next-to-leading order accuracy. The steps needed to set up this subtraction scheme are the same as those used in next-to-leading order computations. However, all steps need non-trivial modifications, which we implement such that that those can be defined at any order in perturbation theory. We give a status report of the implementation of the method to computing jet cross sections in electron-positron annihilation at the next-to-next-to-leading order accuracy.

  14. QCD Resummation for Single Spin Asymmetries

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Xiao, Bo-Wen; Yuan, Feng

    2011-10-01

    We study the transverse momentum dependent factorization for single spin asymmetries in Drell-Yan and semi-inclusive deep inelastic scattering processes at one-loop order. The next-to-leading order hard factors are calculated in the Ji-Ma-Yuan factorization scheme. We further derive the QCD resummation formalisms for these observables following the Collins-Soper-Sterman method. The results are expressed in terms of the collinear correlation functions from initial and/or final state hadrons coupled with the Sudakov form factor containing all order soft-gluon resummation effects. The scheme-independent coefficients are calculated up to one-loop order.

  15. QCD Resummation for Single Spin Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang Z.; Xiao, Bo-Wen; Yuan, Feng

    We study the transverse momentum dependent factorization for single spin asymmetries in Drell-Yan and semi-inclusive deep inelastic scattering processes at one-loop order. The next-to-leading order hard factors are calculated in the Ji-Ma-Yuan factorization scheme. We further derive the QCD resummation formalisms for these observables following the Collins-Soper-Sterman method. The results are expressed in terms of the collinear correlation functions from initial and/or final state hadrons coupled with the Sudakov form factor containing all order soft-gluon resummation effects. The scheme-independent coefficients are calculated up to one-loop order.

  16. Fully differential Higgs boson pair production in association with a Z boson at next-to-next-to-leading order in QCD

    NASA Astrophysics Data System (ADS)

    Li, Hai Tao; Li, Chong Sheng; Wang, Jian

    2018-04-01

    We present a fully differential next-to-next-to-leading order QCD calculation of the Higgs pair production in association with a Z boson at hadron colliders, which is important for probing the trilinear Higgs self-coupling. The next-to-next-to-leading-order corrections enhance the next-to-leading order total cross sections by a factor of 1.2-1.5, depending on the collider energy, and change the shape of next-to-leading order kinematic distributions. We discuss how to determine the trilinear Higgs self-coupling using our results.

  17. Fully differential Higgs boson pair production in association with a Z boson at next-to-next-to-leading order in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hai Tao; Li, Chong Sheng; Wang, Jian

    Here, we present a fully differential next-to-next-to-leading order QCD calculation of the Higgs pair production in association with a Z boson at hadron colliders, which is important for probing the trilinear Higgs self-coupling. The next-to-next-to-leading-order corrections enhance the next-to-leading order total cross sections by a factor of 1.2–1.5, depending on the collider energy, and change the shape of next-to-leading order kinematic distributions. We discuss how to determine the trilinear Higgs self-coupling using our results.

  18. Fully differential Higgs boson pair production in association with a Z boson at next-to-next-to-leading order in QCD

    DOE PAGES

    Li, Hai Tao; Li, Chong Sheng; Wang, Jian

    2018-04-23

    Here, we present a fully differential next-to-next-to-leading order QCD calculation of the Higgs pair production in association with a Z boson at hadron colliders, which is important for probing the trilinear Higgs self-coupling. The next-to-next-to-leading-order corrections enhance the next-to-leading order total cross sections by a factor of 1.2–1.5, depending on the collider energy, and change the shape of next-to-leading order kinematic distributions. We discuss how to determine the trilinear Higgs self-coupling using our results.

  19. The QCD Equation of state and critical end-point estimates at O (μB6)

    NASA Astrophysics Data System (ADS)

    Sharma, Sayantan; Bielefeld-BNL-CCNU Collaboration

    2017-11-01

    We present results for the QCD Equation of State at non-zero chemical potentials corresponding to the conserved charges in QCD using Taylor expansion upto sixth order in the baryon number, electric charge and strangeness chemical potentials. The latter two are constrained by the strangeness neutrality and a fixed electric charge to baryon number ratio. In our calculations, we use the Highly Improved Staggered Quarks (HISQ) discretization scheme at physical quark masses and at different values of the lattice spacings to control lattice cut-off effects. Furthermore we calculate the pressure along lines of constant energy density, which serve as proxies for the freeze-out conditions and discuss their dependence on μB, which is necessary for hydrodynamic modelling near freezeout. We also provide an estimate of the radius of convergence of the Taylor series from the 6th order coefficients which provides a new constraint on the location of the critical end-point in the T-μB plane of the QCD phase diagram.

  20. QCD equation of state to O (μB6) from lattice QCD

    NASA Astrophysics Data System (ADS)

    Bazavov, A.; Ding, H.-T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Maezawa, Y.; Mukherjee, Swagato; Ohno, H.; Petreczky, P.; Sandmeyer, H.; Steinbrecher, P.; Schmidt, C.; Sharma, S.; Soeldner, W.; Wagner, M.

    2017-03-01

    We calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range T ∈[135 MeV ,330 MeV ] using up to four different sets of lattice cutoffs corresponding to lattices of size Nσ3×Nτ with aspect ratio Nσ/Nτ=4 and Nτ=6 - 16 . The strange quark mass is tuned to its physical value, and we use two strange to light quark mass ratios ms/ml=20 and 27, which in the continuum limit correspond to a pion mass of about 160 and 140 MeV, respectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature (μB≤2 T ). The fourth-order equation of state thus is suitable for the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to √{sN N}˜12 GeV . We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth-order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the T -μB plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. We argue that results on sixth-order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for μB/T ≤2 and T /Tc(μB=0 )>0.9 .

  1. Lattice analysis for the energy scale of QCD phenomena.

    PubMed

    Yamamoto, Arata; Suganuma, Hideo

    2008-12-12

    We formulate a new framework in lattice QCD to study the relevant energy scale of QCD phenomena. By considering the Fourier transformation of link variable, we can investigate the intrinsic energy scale of a physical quantity nonperturbatively. This framework is broadly available for all lattice QCD calculations. We apply this framework for the quark-antiquark potential and meson masses in quenched lattice QCD. The gluonic energy scale relevant for the confinement is found to be less than 1 GeV in the Landau or Coulomb gauge.

  2. Next-to-leading-order QCD corrections to Higgs boson production in association with a top quark pair and a jet.

    PubMed

    van Deurzen, H; Luisoni, G; Mastrolia, P; Mirabella, E; Ossola, G; Peraro, T

    2013-10-25

    We present the calculation of the cross section for Higgs boson production in association with a top quark pair plus one jet, at next-to-leading-order accuracy in QCD. All mass dependence is retained without recurring to any approximation. After including the complete next-to-leading-order QCD corrections, we observe a strong reduction in the scale dependence of the result. We also show distributions for the invariant mass of the top quark pair, with and without the additional jet, and for the transverse momentum and the pseudorapidity of the Higgs boson. Results for the virtual contributions are obtained with a novel reduction approach based on integrand decomposition via the Laurent expansion, as implemented in the library, NINJA. Cross sections and differential distributions are obtained with an automated setup which combines the GOSAM and SHERPA frameworks.

  3. Higgs boson production via vector-boson fusion at next-to-next-to-leading order in QCD.

    PubMed

    Bolzoni, Paolo; Maltoni, Fabio; Moch, Sven-Olaf; Zaro, Marco

    2010-07-02

    We present the total cross sections at next-to-next-to-leading order in the strong coupling for Higgs boson production via weak-boson fusion. Our results are obtained via the structure function approach, which builds upon the approximate, though very accurate, factorization of the QCD corrections between the two quark lines. The theoretical uncertainty on the total cross sections at the LHC from higher order corrections and the parton distribution uncertainties are estimated at the 2% level each for a wide range of Higgs boson masses.

  4. Heavy-quark production in gluon fusion at two loops in QCD

    NASA Astrophysics Data System (ADS)

    Czakon, M.; Mitov, A.; Moch, S.

    2008-07-01

    We present the two-loop virtual QCD corrections to the production of heavy quarks in gluon fusion. The results are exact in the limit when all kinematical invariants are large compared to the mass of the heavy quark up to terms suppressed by powers of the heavy-quark mass. Our derivation uses a simple relation between massless and massive QCD scattering amplitudes as well as a direct calculation of the massive amplitude at two loops. The results presented here together with those obtained previously for quark-quark scattering form important parts of the next-to-next-to-leading order QCD corrections to heavy-quark production in hadron-hadron collisions.

  5. Parton distributions and lattice QCD calculations: A community white paper

    NASA Astrophysics Data System (ADS)

    Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; Orginos, Kostas; Rojo, Juan; Accardi, Alberto; Alexandrou, Constantia; Bacchetta, Alessandro; Bozzi, Giuseppe; Chen, Jiunn-Wei; Collins, Sara; Cooper-Sarkar, Amanda; Constantinou, Martha; Del Debbio, Luigi; Engelhardt, Michael; Green, Jeremy; Gupta, Rajan; Harland-Lang, Lucian A.; Ishikawa, Tomomi; Kusina, Aleksander; Liu, Keh-Fei; Liuti, Simonetta; Monahan, Christopher; Nadolsky, Pavel; Qiu, Jian-Wei; Schienbein, Ingo; Schierholz, Gerrit; Thorne, Robert S.; Vogelsang, Werner; Wittig, Hartmut; Yuan, C.-P.; Zanotti, James

    2018-05-01

    In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.

  6. Third generation sfermion decays into Z and W gauge bosons: Full one-loop analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arhrib, Abdesslam; LPHEA, Departement de Physique, Faculte des Sciences-Semlalia, B.P. 2390 Marrakech; Benbrik, Rachid

    2005-05-01

    The complete one-loop radiative corrections to third-generation scalar fermions into gauge bosons Z and W{sup {+-}} is considered. We focus on f-tilde{sub 2}{yields}Zf-tilde{sub 1} and f-tilde{sub i}{yields}W{sup {+-}}f-tilde{sub j}{sup '}, f,f{sup '}=t,b. We include SUSY-QCD, QED, and full electroweak corrections. It is found that the electroweak corrections can be of the same order as the SUSY-QCD corrections. The two sets of corrections interfere destructively in some region of parameter space. The full one-loop correction can reach 10% in some supergravity scenario, while in model independent analysis like general the minimal supersymmetric standard model, the one-loop correction can reach 20% formore » large tan{beta} and large trilinear soft breaking terms A{sub b}.« less

  7. A measurement and QCD analysis of the proton structure function F2 ( x, Q2) at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançoni, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; BurgerF. W. Büsser, J.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; De Roeck, A.; De Wolf, E. A.; Dirkmann, M.; Dixon, P.; Di Nezza, P.; Dlugosz, W.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Fahr, A. B.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Griffiths, R.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hampel, M.; Haynes, W. J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbie, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Lander, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindström, G.; Lindstroem, M.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, A.; MeyerH. Meyer, A.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Rick, H.; Riech, V.; Riedlberger, J.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, H.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabl, F.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vazdik, Y.; Verrecchi, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zomer, F.; Zsembery, J.; Zuber, K.; zurNedden, M.; Kaufmannxa, O.; H1 Collaboration

    1996-02-01

    A new measurement of the proton structure function F2 ( x, Q2) is reported for momentum transfers squared Q2 between ].5 GeV 2 and 5000 GeV 2 and for Bjorken x between 3 · 10 -5 and 0.32 using data collected by the HERA experiment H1 in 1994. The data represent an increase in statistics by a factor of ten with respect to the analysis of the 1993 data. Substantial extension of the kinematic range towards low Q2 and x has been achieved using dedicated data samples and events with initial state photon radiation. The structure function is found to increase significantly with decreasing x, even in the lowest accessible Q2 region. The data are well described by a Next to Leading Order QCD fit and the gluon density is extracted.

  8. Octet baryon masses and sigma terms from an SU(3) chiral extrapolation

    NASA Astrophysics Data System (ADS)

    Young, R. D.; Thomas, A. W.

    2010-01-01

    We report an analysis of the impressive new lattice simulation results for octet baryon masses in 2+1-flavor QCD. The analysis is based on a low-order expansion about the chiral SU(3) limit in which the symmetry breaking arises from terms linear in the quark masses plus the variation of the Goldstone boson masses in the leading chiral loops. The baryon masses evaluated at the physical light-quark masses are in remarkable agreement with the experimental values, with a model dependence considerably smaller than the rather small statistical uncertainty. From the mass formulas one can evaluate the sigma commutators for all octet baryons. This yields an accurate value for the pion-nucleon sigma commutator. It also yields the first determination of the strangeness sigma term based on 2+1-flavor lattice QCD and, in general, the sigma commutators provide a resolution to the difficult issue of fine-tuning the strange-quark mass.

  9. Ground-state properties of 4He and 16O extrapolated from lattice QCD with pionless EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contessi, L.; Lovato, A.; Pederiva, F.

    Here, we extend the prediction range of Pionless Effective Field Theory with an analysis of the ground state of 16O in leading order. To renormalize the theory, we use as input both experimental data and lattice QCD predictions of nuclear observables, which probe the sensitivity of nuclei to increased quark masses. The nuclear many-body Schrödinger equation is solved with the Auxiliary Field Diffusion Monte Carlo method. For the first time in a nuclear quantum Monte Carlo calculation, a linear optimization procedure, which allows us to devise an accurate trial wave function with a large number of variational parameters, is adopted.more » The method yields a binding energy of 4He which is in good agreement with experiment at physical pion mass and with lattice calculations at larger pion masses. At leading order we do not find any evidence of a 16O state which is stable against breakup into four 4He, although higher-order terms could bind 16O.« less

  10. Measurement of dijet azimuthal decorrelation in pp collisions at √{s}=8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Zeid, S. Abu; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Seva, T.; Velde, C. Vander; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Rios, A. A. Ocampo; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Teles, P. Rebello; Chagas, E. Belchior Batista Das; Carvalho, W.; Chinellato, J.; Custódio, A.; Costa, E. M. Da; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Guativa, L. M. Huertas; Malbouisson, H.; Figueiredo, D. Matos; Herrera, C. Mora; Mundim, L.; Nogima, H.; Silva, W. L. Prado Da; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela; Ahuja, S.; Bernardes, C. A.; Santos, A. De Souza; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Abad, D. Romero; Vargas, J. C. Ruiz; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; de Cassagnac, R. Granier; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Bihan, A.-C. Le; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; Mamouni, H. El; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Toriashvili, T.; Bagaturia, I.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Vetere, M. Lo; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Solestizi, L. Alunni; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Licata, C. La; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Cifuentes, J. A. Brochero; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Linares, E. Casimiro; Castilla-Valdez, H.; Cruz-Burelo, E. De La; Cruz, I. Heredia-De La; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Moreno, S. Carrillo; Valencia, F. Vazquez; Pedraza, I.; Ibarguen, H. A. Salazar; Pineda, A. Morelos; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Silva, C. Beirão Da Cruz; Di Francesco, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Hollar, J.; Leonardo, N.; Iglesias, L. Lloret; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; Cruz, B. De La; Delgado Peris, A.; Del Valle, A. Escalante; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; De Martino, E. Navarro; Yzquierdo, A. Pérez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; De Saa, J. R. Castiñeiras; Manzano, P. De Castro; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Gomez, J. Piedra; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Arbol, P. Martinez Ruiz del; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Moya, M. Miñano; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Gecit, F. H.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozcan, M.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Nasr-storey, S. Seif El; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Della Porta, G. Zevi; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sá, R. Lopes; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Kumar, A.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Petrillo, G.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; CMS Collaboration

    2016-10-01

    A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2 TeV. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 {fb}^{-1}. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production.

  11. Ground-state properties of 4He and 16O extrapolated from lattice QCD with pionless EFT

    DOE PAGES

    Contessi, L.; Lovato, A.; Pederiva, F.; ...

    2017-07-26

    Here, we extend the prediction range of Pionless Effective Field Theory with an analysis of the ground state of 16O in leading order. To renormalize the theory, we use as input both experimental data and lattice QCD predictions of nuclear observables, which probe the sensitivity of nuclei to increased quark masses. The nuclear many-body Schrödinger equation is solved with the Auxiliary Field Diffusion Monte Carlo method. For the first time in a nuclear quantum Monte Carlo calculation, a linear optimization procedure, which allows us to devise an accurate trial wave function with a large number of variational parameters, is adopted.more » The method yields a binding energy of 4He which is in good agreement with experiment at physical pion mass and with lattice calculations at larger pion masses. At leading order we do not find any evidence of a 16O state which is stable against breakup into four 4He, although higher-order terms could bind 16O.« less

  12. Measurement of dijet azimuthal decorrelation in pp collisions at [Formula: see text].

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Gonzalez, J Suarez; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Zeid, S Abu; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Seva, T; Velde, C Vander; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Rios, A A Ocampo; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Marono, M Vidal; Beliy, N; Hammad, G H; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Teles, P Rebello; Chagas, E Belchior Batista Das; Carvalho, W; Chinellato, J; Custódio, A; Costa, E M Da; Damiao, D De Jesus; Martins, C De Oliveira; De Souza, S Fonseca; Guativa, L M Huertas; Malbouisson, H; Figueiredo, D Matos; Herrera, C Mora; Mundim, L; Nogima, H; Silva, W L Prado Da; Santoro, A; Sznajder, A; Manganote, E J Tonelli; Pereira, A Vilela; Ahuja, S; Bernardes, C A; Santos, A De Souza; Dogra, S; Tomei, T R Fernandez Perez; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Abad, D Romero; Vargas, J C Ruiz; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Leggat, D; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Sierra, L F Chaparro; Florez, C; Gomez, J P; Moreno, B Gomez; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Cipriano, P M Ribeiro; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; El-Khateeb, E; Elkafrawy, T; Mohamed, A; Salama, E; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Peltola, T; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; de Monchenault, G Hamel; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Filipovic, N; de Cassagnac, R Granier; Jo, M; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Bihan, A-C Le; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; Mamouni, H El; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Alvarez, J D Ruiz; Sabes, D; Sgandurra, L; Sordini, V; Donckt, M Vander; Verdier, P; Viret, S; Toriashvili, T; Bagaturia, I; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schulte, J F; Verlage, T; Weber, H; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Martin, M Aldaya; Asin, I; Bartosik, N; Behnke, O; Behrens, U; Borras, K; Burgmeier, A; Campbell, A; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Gallo, E; Garcia, J Garay; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Trippkewitz, K D; Walsh, R; Wissing, C; Blobel, V; Vignali, M Centis; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Rathjens, D; Sander, C; Scharf, C; Schleper, P; Schlieckau, E; Schmidt, A; Schumann, S; Schwandt, J; Sola, V; Stadie, H; Steinbrück, G; Stober, F M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Descroix, A; Dierlamm, A; Fink, S; Frensch, F; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Bencze, G; Hajdu, C; Hazi, A; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Mal, P; Mandal, K; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, S; Chatterjee, K; Dey, S; Dutta, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Abdulsalam, A; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Jain, Sa; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Cappello, G; Chiorboli, M; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Vetere, M Lo; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; de Fatis, T Tabarelli; Buontempo, S; Cavallo, N; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Passaseo, M; Pazzini, J; Pegoraro, M; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Solestizi, L Alunni; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; Licata, C La; Marone, M; Schizzi, A; Zanetti, A; Kropivnitskaya, A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Sakharov, A; Son, D C; Cifuentes, J A Brochero; Kim, H; Kim, T J; Song, S; Cho, S; Choi, S; Go, Y; Gyun, D; Hong, B; Kim, H; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Linares, E Casimiro; Castilla-Valdez, H; Cruz-Burelo, E De La; Cruz, I Heredia-De La; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Moreno, S Carrillo; Valencia, F Vazquez; Pedraza, I; Ibarguen, H A Salazar; Pineda, A Morelos; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Silva, C Beirão Da Cruz; Di Francesco, A; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Hollar, J; Leonardo, N; Iglesias, L Lloret; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Vlasov, E; Zhokin, A; Bylinkin, A; Chadeeva, M; Chistov, R; Danilov, M; Rusinov, V; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Baskakov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Calvo, E; Cerrada, M; Llatas, M Chamizo; Colino, N; Cruz, B De La; Delgado Peris, A; Del Valle, A Escalante; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Lopez, O Gonzalez; Lopez, S Goy; Hernandez, J M; Josa, M I; De Martino, E Navarro; Yzquierdo, A Pérez-Calero; Pelayo, J Puerta; Olmeda, A Quintario; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Palencia Cortezon, E; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; De Saa, J R Castiñeiras; Manzano, P De Castro; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Virto, A Lopez; Marco, J; Marco, R; Rivero, C Martinez; Matorras, F; Gomez, J Piedra; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Cortabitarte, R Vilar; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Berruti, G M; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Castello, R; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Kortelainen, M J; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Nemallapudi, M V; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Piparo, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Arbol, P Martinez Ruiz Del; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Cardaci, M; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Grundler, U; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Moya, M Miñano; Petrakou, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Eskut, E; Gecit, F H; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Topaksu, A Kayis; Onengut, G; Ozcan, M; Ozdemir, K; Ozturk, S; Polatoz, A; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Vardarlı, F I; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Nasr-Storey, S Seif El; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Futyan, D; Hall, G; Iles, G; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Alimena, J; Berry, E; Cutts, D; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Jesus, O; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Paneva, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Malberti, M; Olmedo Negrete, M; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Würthwein, F; Yagil, A; Della Porta, G Zevi; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Incandela, J; Mccoll, N; Mullin, S D; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Nauenberg, U; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Sun, W; Tan, S M; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; De Sá, R Lopes; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Gleyzer, S V; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Rossin, R; Shchutska, L; Snowball, M; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Barnett, B A; Blumenfeld, B; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Osherson, M; Roskes, J; Sady, A; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Majumder, D; Malek, M; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Ratnikov, F; Siado, J E; Snow, G R; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; De Lima, R Teixeira; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Bhattacharya, S; Hahn, K A; Kubik, A; Low, J F; Mucia, N; Odell, N; Pollack, B; Schmitt, M; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Ji, W; Ling, T Y; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Jha, M K; Jones, M; Jung, A W; Jung, K; Kumar, A; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Harel, A; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Petrillo, G; Tan, P; Verzetti, M; Chou, J P; Contreras-Campana, E; Ferencek, D; Gershtein, Y; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Krutelyov, V; Mueller, R; Osipenkov, I; Pakhotin, Y; Patel, R; Perloff, A; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Mao, Y; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Wood, J; Xia, F; Clarke, C; Harr, R; Karchin, P E; Don, C Kottachchi Kankanamge; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Sarangi, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Verwilligen, P; Woods, N; Collaboration, Authorinst The Cms

    2016-01-01

    A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2[Formula: see text]. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8[Formula: see text] corresponding to an integrated luminosity of 19.7[Formula: see text]. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production.

  13. Conformal Aspects of QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S

    2003-11-19

    Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1more » GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.« less

  14. Testing charm quark equilibration in ultrahigh-energy heavy ion collisions with fluctuations

    NASA Astrophysics Data System (ADS)

    Graf, Thorben; Steinheimer, Jan; Bleicher, Marcus; Herold, Christoph

    2018-03-01

    Recent lattice QCD data on higher order susceptibilities of charm quarks provide the opportunity to explore charm quark equilibration in the early quark gluon plasma (QGP) phase. Here, we propose to use the lattice data on second- and fourth-order net charm susceptibilities to infer the charm quark equilibration temperature and the corresponding volume, in the early QGP stage, via a combined analysis of experimentally measured multiplicity fluctuations. Furthermore, the first perturbative results for the second- and fourth-order charm quark susceptibilities and their ratio are presented.

  15. NNLO QCD corrections to associated W H production and H →b b ¯ decay

    NASA Astrophysics Data System (ADS)

    Caola, Fabrizio; Luisoni, Gionata; Melnikov, Kirill; Röntsch, Raoul

    2018-04-01

    We present a computation of the next-to-next-to-leading-order (NNLO) QCD corrections to the production of a Higgs boson in association with a W boson at the LHC and the subsequent decay of the Higgs boson into a b b ¯ pair, treating the b quarks as massless. We consider various kinematic distributions and find significant corrections to observables that resolve the Higgs decay products. We also find that a cut on the transverse momentum of the W boson, important for experimental analyses, may have a significant impact on kinematic distributions and radiative corrections. We show that some of these effects can be adequately described by simulating QCD radiation in Higgs boson decays to b quarks using parton showers. We also describe contributions to Higgs decay to a b b ¯ pair that first appear at NNLO and that were not considered in previous fully differential computations. The calculation of NNLO QCD corrections to production and decay sub-processes is carried out within the nested soft-collinear subtraction scheme presented by some of us earlier this year. We demonstrate that this subtraction scheme performs very well, allowing a computation of the coefficient of the second-order QCD corrections at the level of a few per mill.

  16. Decoupling the NLO-coupled QED⊗QCD, DGLAP evolution equations, using Laplace transform method

    NASA Astrophysics Data System (ADS)

    Mottaghizadeh, Marzieh; Eslami, Parvin; Taghavi-Shahri, Fatemeh

    2017-05-01

    We analytically solved the QED⊗QCD-coupled DGLAP evolution equations at leading order (LO) quantum electrodynamics (QED) and next-to-leading order (NLO) quantum chromodynamics (QCD) approximations, using the Laplace transform method and then computed the proton structure function in terms of the unpolarized parton distribution functions. Our analytical solutions for parton densities are in good agreement with those from CT14QED (1.2952 < Q2 < 1010) (Ref. 6) global parametrizations and APFEL (A PDF Evolution Library) (2 < Q2 < 108) (Ref. 4). We also compared the proton structure function, F2p(x,Q2), with the experimental data released by the ZEUS and H1 collaborations at HERA. There is a nice agreement between them in the range of low and high x and Q2.

  17. Measurement of the low-mass Drell-Yan differential cross section at = 7 TeV using the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmad, A.; Ahmadov, F.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Gonzalez, B. Alvarez; Alviggi, M. G.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Ammosov, V. V.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Mayes, J. Backus; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Garcia, J. A. Benitez; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown, J.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Urbán, S. Cabrera; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Camarda, S.; Cameron, D.; Caminada, L. M.; Armadans, R. Caminal; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Castaneda-Miranda, E.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Barajas, C. A. Chavez; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; El Moursli, R. Cherkaoui; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Ortuzar, M. Crispin; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Almenar, C. Cuenca; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Wemans, A. Do Valle; Doan, T. K. O.; Dobos, D.; Dobson, E.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Anjos, A. Dos; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Perez, S. Fernandez; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Bustos, A. C. Florez; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, J.; Gao, Y. S.; Walls, F. M. Garay; Garberson, F.; ıa, C. Garc; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Fajardo, L. S. Gomez; Gonçalo, R.; Da Costa, J. Goncalves Pinto Firmino; Gonella, L.; de la Hoz, S. González; Parra, G. Gonzalez; Silva, M. L. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Grybel, K.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageboeck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Hengler, C.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Jiménez, Y. Hernández; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; van Huysduynen, L. Hooft; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ponce, J. M. Iturbe; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javůrek, T.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Belenguer, M. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Rozas, A. Juste; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy, M.; Karpov, S. N.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le, B. T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Miotto, G. Lehmann; Lei, X.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, J. D.; Long, R. E.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Ramos, J. A. Manjarres; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Garcia, B. R. Mellado; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Moya, M. Miñano; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Moeller, V.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S. G.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Hanninger, G. Nunes; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Pino, S. A. Olivares; Damazio, D. Oliveira; Garcia, E. Oliver; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Barrera, C. Oropeza; Orr, R. S.; Osculati, B.; Ospanov, R.; y Garzon, G. Otero; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Vazquez, J. G. Panduro; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Codina, E. Perez; García-Estañ, M. T. Pérez; Reale, V. Perez; Perini, L.; Pernegger, H.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petteni, M.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Bueso, X. Portell; Pospelov, G. E.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qin, G.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reinsch, A.; Reisin, H.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Adam, E. Romero; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Ferrando, B. M. Salvachua; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Socher, F.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Camillocci, E. Solfaroli; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, V.; Sopko, B.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Staerz, S.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steele, G.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramania, HS.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Cakir, I. Turk; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Gallego, E. Valladolid; Vallecorsa, S.; Ferrer, J. A. Valls; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Vivarelli, I.; Vaque, F. Vives; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; della Porta, G. Zevi; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.

    2014-06-01

    The differential cross section for the process Z/ γ ∗ → ℓℓ ( ℓ = e, μ) as a function of dilepton invariant mass is measured in pp collisions at = 7 TeV at the LHC using the ATLAS detector. The measurement is performed in the e and μ channels for invariant masses between 26 GeV and 66 GeV using an integrated luminosity of 1 .6 fb-1 collected in 2011 and these measurements are combined. The analysis is extended to invariant masses as low as 12 GeV in the muon channel using 35 pb-1 of data collected in 2010. The cross sections are determined within fiducial acceptance regions and corrections to extrapolate the measurements to the full kinematic range are provided. Next-to-next-to-leading-order QCD predictions provide a significantly better description of the results than next-to-leading-order QCD calculations, unless the latter are matched to a parton shower calculation. [Figure not available: see fulltext.

  18. Event shapes and azimuthal correlations in Z +jets events in pp collisions at √{ s} = 7 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Mahrous, A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellato, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Gundacker, S.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-05-01

    Measurements of event shapes and azimuthal correlations are presented for events where a Z boson is produced in association with jets in proton-proton collisions. The data collected with the CMS detector at the CERN LHC at √{ s} = 7 TeV correspond to an integrated luminosity of 5.0 fb-1. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictions from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z +1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD models.

  19. Event shapes and azimuthal correlations in Z + jets events in pp collisions at s = 7   TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    Measurements of event shapes and azimuthal correlations are presented for events where a Z boson is produced in association with jets in proton-proton collisions. The data collected with the CMS detector at the CERN LHC at sqrt(s) = 7 TeV correspond to an integrated luminosity of 5.0 inverse femtobarns. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictionsmore » from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z + 1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD models.« less

  20. A first determination of the unpolarized quark TMDs from a global analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchetta, Alessandro; Delcarro, Filippo; Pisano, Cristian

    Transverse momentum dependent distribution and fragmentation functions of unpolarized quarks inside unpolarized protons are extracted, for the first time, through a simultaneous analysis of semi-inclusive deep-inelastic scattering, Drell-Yan and Z boson hadroproduction processes. This study is performed at leading order in perturbative QCD, with energy scale evolution at the next-to-leading logarithmic accuracy. Moreover, some specific choices are made to deal with low scale evolution around 1 GeV2. Since only data in the low transverse momentum region are considered, no matching to fixed-order calculations at high transverse momentum is needed.

  1. Heavy quarkonium hybrids: Spectrum, decay, and mixing

    NASA Astrophysics Data System (ADS)

    Oncala, Ruben; Soto, Joan

    2017-07-01

    We present a largely model-independent analysis of the lighter heavy quarkonium hybrids based on the strong coupling regime of potential nonrelativistic QCD. We calculate the spectrum at leading order, including the mixing of static hybrid states. We use potentials that fulfill the required short and long distance theoretical constraints and fit well the available lattice data. We argue that the decay width to the lower lying heavy quarkonia can be reliably estimated in some cases and provide results for a selected set of decays. We also consider the mixing with heavy quarkonium states. We establish the form of the mixing potential at O (1 /mQ) , mQ being the mass of the heavy quarks, and work out its short and long distance constraints. The weak coupling regime of potential nonrelativistic QCD and the effective string theory of QCD are used for that goal. We show that the mixing effects may indeed be important and produce large spin symmetry violations. Most of the isospin zero XYZ states fit well in our spectrum, either as a hybrid or standard quarkonium candidate.

  2. Hadronic Correlations and Fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  3. Lattice QCD Application Development within the US DOE Exascale Computing Project

    NASA Astrophysics Data System (ADS)

    Brower, Richard; Christ, Norman; DeTar, Carleton; Edwards, Robert; Mackenzie, Paul

    2018-03-01

    In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.

  4. Inclusive heavy flavor hadroproduction in NLO QCD: The exact analytic result

    NASA Astrophysics Data System (ADS)

    Czakon, M.; Mitov, A.

    2010-01-01

    We present the first exact analytic result for all partonic channels contributing to the total cross section for the production of a pair of heavy flavors in hadronic collisions in NLO QCD. Our calculation is a step in the derivation of the top quark pair production cross section at NNLO in QCD, which is a cornerstone of the precision LHC program. Our results uncover the analytical structures behind observables with heavy flavors at higher orders. They also reveal surprising and non-trivial implications for kinematics close to partonic threshold.

  5. Lattice QCD Application Development within the US DOE Exascale Computing Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Richard; Christ, Norman; DeTar, Carleton

    In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.

  6. Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD

    NASA Astrophysics Data System (ADS)

    Dixon, Lance J.; Luo, Ming-xing; Shtabovenko, Vladyslav; Yang, Tong-Zhi; Zhu, Hua Xing

    2018-03-01

    The energy-energy correlation (EEC) between two detectors in e+e- annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.

  7. Quark-hadron phase structure of QCD matter from SU(4) Polyakov linear sigma model

    NASA Astrophysics Data System (ADS)

    Diab, Abdel Magied Abdel Aal; Tawfik, Abdel Nasser

    2018-04-01

    The SU(4) Polyakov linear sigma model (PLSM) is extended towards characterizing the chiral condensates, σl, σs and σc of light, strange and charm quarks, respectively and the deconfinement order-parameters φ and φ at finite temperatures and densities (chemical potentials). The PLSM is considered to study the QCD equation of state in the presence of the chiral condensate of charm for different finite chemical potentials. The PLSM results are in a good agreement with the recent lattice QCD simulations. We conclude that, the charm condensate is likely not affected by the QCD phase-transition, where the corresponding critical temperature is greater than that of the light and strange quark condensates.

  8. Curvature of the freeze-out line in heavy ion collisions

    DOE PAGES

    Bazavov, A.; Ding, H. -T.; Hegde, P.; ...

    2016-01-28

    Here, we calculate the mean and variance of net-baryon number and net-electric charge distributions from quantum chromodynamics (QCD) using a next-to-leading order Taylor expansion in terms of temperature and chemical potentials. Moreover, these expansions with experimental data from STAR and PHENIX are compared, we determine the freeze-out temperature in the limit of vanishing baryon chemical potential, and, for the first time, constrain the curvature of the freeze-out line through a direct comparison between experimental data on net-charge fluctuations and a QCD calculation. We obtain a bound on the curvature coefficient, κmore » $^f$$_2$$<0.011, that is compatible with lattice QCD results on the curvature of the QCD transition line.« less

  9. Proof of factorization of χ _{cJ} production in non-equilibrium QCD at RHIC and LHC in color singlet mechanism

    NASA Astrophysics Data System (ADS)

    Nayak, Gouranga C.

    2017-12-01

    Recently we have proved the factorization of NRQCD S-wave heavy quarkonium production at all orders in coupling constant. In this paper we extend this to prove the factorization of infrared divergences in χ _{cJ} production from color singlet c{\\bar{c}} pair in non-equilibrium QCD at RHIC and LHC at all orders in coupling constant. This can be relevant to study the quark-gluon plasma at RHIC and LHC.

  10. Longitudinal conductivity in strong magnetic field in perturbative QCD: Complete leading order

    NASA Astrophysics Data System (ADS)

    Hattori, Koichi; Li, Shiyong; Satow, Daisuke; Yee, Ho-Ung

    2017-04-01

    We compute the longitudinal electrical conductivity in the presence of a strong background magnetic field in complete leading order of perturbative QCD, based on the assumed hierarchy of scales αse B ≪(mq2,T2)≪e B . We formulate an effective kinetic theory of lowest Landau level quarks with the leading order QCD collision term arising from 1-to-2 processes that become possible due to 1 +1 dimensional Landau level kinematics. In the small mq/T ≪1 regime, the longitudinal conductivity behaves as σz z˜e2(e B )T /(αsmq2log (T /mq)) , where the quark mass dependence can be understood from the chiral anomaly with the axial charge relaxation provided by a finite quark mass mq. We also present parametric estimates for the longitudinal and transverse "color conductivities" in the presence of the strong magnetic field, by computing dominant damping rates for quarks and gluons that are responsible for color charge transportation. We observe that the longitudinal color conductivity is enhanced by the strong magnetic field, which implies that the sphaleron transition rate in perturbative QCD is suppressed by the strong magnetic field due to the enhanced Lenz's law in color field dynamics.

  11. Hamiltonian Effective Field Theory Study of the N^{*}(1535) Resonance in Lattice QCD.

    PubMed

    Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun

    2016-02-26

    Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.

  12. Closeout Report for CTEQ Summer School 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Tao

    The CTEQ Collaboration is an informal group of 37 experimental and theoretical high energy physicists from 20 universities and 5 national labs, engaged in a program to advance research in and understanding of QCD. This program includes the well-known collaborative project on global QCD analysis of parton distributions, the organization of a variety of workshops, periodic collaboration meetings, and the subject of this proposal: the CTEQ Summer Schools on QCD Analysis and Phenomenology.

  13. Renormalization scheme and gauge (in)dependence of the generalized Crewther relation: what are the real grounds of the β-factorization property?

    NASA Astrophysics Data System (ADS)

    Garkusha, A. V.; Kataev, A. L.; Molokoedov, V. S.

    2018-02-01

    The problem of scheme and gauge dependence of the factorization property of the renormalization group β-function in the SU( N c ) QCD generalized Crewther relation (GCR), which connects the flavor non-singlet contributions to the Adler and Bjorken polarized sum rule functions, is investigated at the O({a}_s^4) level of perturbation theory. It is known that in the gauge-invariant renormalization \\overline{MS} -scheme this property holds in the QCD GCR at least at this order. To study whether this factorization property is true in all gauge-invariant schemes, we consider the MS-like schemes in QCD and the QED-limit of the GCR in the \\overline{MS} -scheme and in two other gauge-independent subtraction schemes, namely in the momentum MOM and the on-shell OS schemes. In these schemes we confirm the existence of the β-function factorization in the QCD and QED variants of the GCR. The problem of the possible β-factorization in the gauge-dependent renormalization schemes in QCD is studied. To investigate this problem we consider the gauge non-invariant mMOM and MOMgggg-schemes. We demonstrate that in the mMOM scheme at the O({a}_s^3) level the β-factorization is valid for three values of the gauge parameter ξ only, namely for ξ = -3 , -1 and ξ = 0. In the O({a}_s^4) order of PT it remains valid only for case of the Landau gauge ξ = 0. The consideration of these two gauge-dependent schemes for the QCD GCR allows us to conclude that the factorization of RG β-function will always be implemented in any MOM-like renormalization schemes with linear covariant gauge at ξ = 0 and ξ = -3 at the O({a}_s^3) approximation. It is demonstrated that if factorization property for the MS-like schemes is true in all orders of PT, as theoretically indicated in the several works on the subject, then the factorization will also occur in the arbitrary MOM-like scheme in the Landau gauge in all orders of perturbation theory as well.

  14. Baryon mass splittings and strong CP violation in SU(3) chiral perturbation theory

    DOE PAGES

    de Vries, Jordy; Mereghetti, Emanuele; Walker-Loud, Andre P.

    2015-10-08

    We study SU(3) flavor breaking corrections to the relation between the octet baryon masses and the nucleon-meson CP-violating interactions induced by the QCD theta term. We also work within the framework of SU(3) chiral perturbation theory and work through next-to-next-to-leading order in the SU(3) chiral expansion, which is O(m 2 q). At lowest order, the CP-odd couplings induced by the QCD θ - term are determined by mass splittings of the baryon octet, the classic result of Crewther et al. We show that for each isospin-invariant CP-violating nucleon-meson interaction there exists one relation which is respected by loop corrections upmore » to the order we work, while other leading-order relations are violated. With these relations we extract a precise value of the pion-nucleon coupling g - 0 by using recent lattice QCD evaluations of the proton-neutron mass splitting. Additionally, we derive semi-precise values for CP-violating coupling constants between heavier mesons and nucleons and discuss their phenomenological impact on electric dipole moments of nucleons and nuclei.« less

  15. Baryon mass splittings and strong CP violation in SU(3) chiral perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Vries, Jordy; Mereghetti, Emanuele; Walker-Loud, Andre P.

    We study SU(3) flavor breaking corrections to the relation between the octet baryon masses and the nucleon-meson CP-violating interactions induced by the QCD theta term. We also work within the framework of SU(3) chiral perturbation theory and work through next-to-next-to-leading order in the SU(3) chiral expansion, which is O(m 2 q). At lowest order, the CP-odd couplings induced by the QCD θ - term are determined by mass splittings of the baryon octet, the classic result of Crewther et al. We show that for each isospin-invariant CP-violating nucleon-meson interaction there exists one relation which is respected by loop corrections upmore » to the order we work, while other leading-order relations are violated. With these relations we extract a precise value of the pion-nucleon coupling g - 0 by using recent lattice QCD evaluations of the proton-neutron mass splitting. Additionally, we derive semi-precise values for CP-violating coupling constants between heavier mesons and nucleons and discuss their phenomenological impact on electric dipole moments of nucleons and nuclei.« less

  16. Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x

    DOE PAGES

    Zenaiev, O.; Geiser, A.; Lipka, K.; ...

    2015-08-01

    The impact of recent measurements of heavy-flavour production in deep inelastic ep scattering and in pp collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour number scheme at next-to-leading order. Differential cross sections of charm- and beauty-hadron production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at low partonic fractions x of the proton momentum, down to x~5×10 -6. This kinematic range is currently not covered bymore » other experimental data in perturbative QCD fits.« less

  17. Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenaiev, O.; Geiser, A.; Lipka, K.

    The impact of recent measurements of heavy-flavour production in deep inelastic ep scattering and in pp collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour number scheme at next-to-leading order. Differential cross sections of charm- and beauty-hadron production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at low partonic fractions x of the proton momentum, down to x~5×10 -6. This kinematic range is currently not covered bymore » other experimental data in perturbative QCD fits.« less

  18. Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider.

    PubMed

    Bevilacqua, G; Hartanto, H B; Kraus, M; Worek, M

    2016-02-05

    We present a complete description of top quark pair production in association with a jet in the dilepton channel. Our calculation is accurate to next-to-leading order (NLO) in QCD and includes all nonresonant diagrams, interferences, and off-shell effects of the top quark. Moreover, nonresonant and off-shell effects due to the finite W gauge boson width are taken into account. This calculation constitutes the first fully realistic NLO computation for top quark pair production with a final state jet in hadronic collisions. Numerical results for differential distributions as well as total cross sections are presented for the Large Hadron Collider at 8 TeV. With our inclusive cuts, NLO predictions reduce the unphysical scale dependence by more than a factor of 3 and lower the total rate by about 13% compared to leading-order QCD predictions. In addition, the size of the top quark off-shell effects is estimated to be below 2%.

  19. Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations

    DOE PAGES

    Ma, Yan-Qing; Qiu, Jian-Wei

    2018-01-10

    Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. In conclusion, we also show that the proposed functions for lattice QCDmore » calculation of PDFs in the literature are special cases of these good LCSs.« less

  20. QCD equation of state to O ( μ B 6 ) from lattice QCD

    DOE PAGES

    Bazavov, A.; Ding, H. -T.; Hegde, P.; ...

    2017-03-07

    In this work, we calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range T ϵ [135 MeV, 330 MeV] using up to four different sets of lattice cut-offs corresponding to lattices of size Nmore » $$3\\atop{σ}$$ × N τ with aspect ratio N σ/N τ = 4 and N τ = 6-16. The strange quark mass is tuned to its physical value and we use two strange to light quark mass ratios m s/m l = 20 and 27, which in the continuum limit correspond to a pion mass of about 160 MeV and 140 MeV respectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature (µ B ≤ 2T ). The fourth-order equation of state thus is suitable for √the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to √sNN ~ 12 GeV. We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the T -µ B plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. Lastly, we argue that results on sixth order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for µ B/T ≤ 2 and T/T c(µ B = 0) > 0.9.« less

  1. Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons

    DOE PAGES

    Frixione, Stefano; Hirschi, V.; Pagani, D.; ...

    2015-06-26

    Here, we compute the contribution of order α S 2α 2 to the cross section of a top-antitop pair in association with at least one heavy Standard Model boson — Z, W ±, and Higgs — by including all effects of QCD, QED, and weak origin and by working in the automated MadGraph5_aMC@NLO framework. Furthermore, this next-to-leading order contribution is then combined with that of order αS3α, and with the two dominant lowest-order ones, α S 2α and α Sα 2, to obtain phenomenological results relevant to a 8, 13, and 100 TeV pp collider.

  2. Higgs Boson Production in Association with a Jet at Next-to-Next-to-Leading Order.

    PubMed

    Boughezal, Radja; Caola, Fabrizio; Melnikov, Kirill; Petriello, Frank; Schulze, Markus

    2015-08-21

    We present precise predictions for Higgs boson production in association with a jet. We work in the Higgs effective field theory framework and compute next-to-next-to-leading order QCD corrections to the gluon-gluon and quark-gluon channels, which is sufficient for reliable LHC phenomenology. We present fully differential results as well as total cross sections for the LHC. Our next-to-next-to-leading order predictions reduce the unphysical scale dependence by more than a factor of 2 and enhance the total rate by about twenty percent compared to next-to-leading order QCD predictions. Our results demonstrate for the first time satisfactory convergence of the perturbative series.

  3. Integrated analysis of particle interactions at hadron colliders Report of research activities in 2010-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadolsky, Pavel M.

    2015-08-31

    The report summarizes research activities of the project ”Integrated analysis of particle interactions” at Southern Methodist University, funded by 2010 DOE Early Career Research Award DE-SC0003870. The goal of the project is to provide state-of-the-art predictions in quantum chromodynamics in order to achieve objectives of the LHC program for studies of electroweak symmetry breaking and new physics searches. We published 19 journal papers focusing on in-depth studies of proton structure and integration of advanced calculations from different areas of particle phenomenology: multi-loop calculations, accurate long-distance hadronic functions, and precise numerical programs. Methods for factorization of QCD cross sections were advancedmore » in order to develop new generations of CTEQ parton distribution functions (PDFs), CT10 and CT14. These distributions provide the core theoretical input for multi-loop perturbative calculations by LHC experimental collaborations. A novel ”PDF meta-analysis” technique was invented to streamline applications of PDFs in numerous LHC simulations and to combine PDFs from various groups using multivariate stochastic sampling of PDF parameters. The meta-analysis will help to bring the LHC perturbative calculations to the new level of accuracy, while reducing computational efforts. The work on parton distributions was complemented by development of advanced perturbative techniques to predict observables dependent on several momentum scales, including production of massive quarks and transverse momentum resummation at the next-to-next-to-leading order in QCD.« less

  4. I = 2 ππ scattering phase shift from the HAL QCD method with the LapH smearing

    NASA Astrophysics Data System (ADS)

    Kawai, Daisuke; Aoki, Sinya; Doi, Takumi; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu; Sasaki, Kenji

    2018-04-01

    Physical observables, such as the scattering phase shifts and binding energy, calculated from the non-local HAL QCD potential do not depend on the sink operators used to define the potential. In practical applications, the derivative expansion of the non-local potential is employed, so that physical observables may receive some scheme dependence at a given order of the expansion. In this paper, we compare the I=2ππ scattering phase shifts obtained in the point-sink scheme (the standard scheme in the HAL QCD method) and the smeared-sink scheme (the LapH smearing newly introduced in the HAL QCD method). Although potentials in different schemes have different forms as expected, we find that, for reasonably small smearing size, the resultant scattering phase shifts agree with each other if the next-to-leading-order (NLO) term is taken into account. We also find that the HAL QCD potential in the point-sink scheme has a negligible NLO term for a wide range of energies, which implies good convergence of the derivative expansion, while the potential in the smeared-sink scheme has a non-negligible NLO contribution. The implications of this observation for future studies of resonance channels (such as the I=0 and 1ππ scatterings) with smeared all-to-all propagators are briefly discussed.

  5. Electroweak Higgs production with HiggsPO at NLO QCD

    NASA Astrophysics Data System (ADS)

    Greljo, Admir; Isidori, Gino; Lindert, Jonas M.; Marzocca, David; Zhang, Hantian

    2017-12-01

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p_T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available.

  6. The decay of Λ _b→ p~K^- in QCD factorization approach

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Ke, Hong-Wei; Wei, Zheng-Tao

    2016-05-01

    With only the tree-level operator, the decay of Λ _b→ pK is predicted to be one order smaller than the experimental data. The QCD penguin effects should be taken into account. In this paper, we explore the one-loop QCD corrections to the decay of Λ _b→ pK within the framework of QCD factorization approach. For the baryon system, the diquark approximation is adopted. The transition hadronic matrix elements between Λ _b and p are calculated in the light-front quark model. The branching ratio of Λ _b→ pK is predicted to be about 4.85× 10^{-6}, which is consistent with experimental data (4.9± 0.9)× 10^{-6}. The CP violation is about 5 % in theory.

  7. Parton distributions and lattice QCD calculations: A community white paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred

    In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this paper we present an overview of lattice-QCDmore » and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. Finally, this document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.« less

  8. Parton distributions and lattice QCD calculations: A community white paper

    DOE PAGES

    Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; ...

    2018-01-31

    In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this paper we present an overview of lattice-QCDmore » and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. Finally, this document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.« less

  9. Correlations and Fluctuations: Status and Perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Volker; Koch, Volker

    2008-04-15

    We will provide an overview of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. Observables, which have been discussed in the literature will be briefly reviewed and put in context with experiment and information from Lattice QCD. Special attention will be given to the QCD critical point and the first order co-existence region.

  10. One-side forward-backward asymmetry in top quark pair production at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Youkai; Xiao Bo; Zhu Shouhua

    2010-11-01

    Both D0 and CDF at Tevatron reported the measurements of forward-backward asymmetry in top pair production, which showed possible deviation from the standard model QCD prediction. In this paper, we explore how to examine the same higher-order QCD effects at the more powerful Large Hadron Collider.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yan-Qing; Qiu, Jian-Wei

    Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. In conclusion, we also show that the proposed functions for lattice QCDmore » calculation of PDFs in the literature are special cases of these good LCSs.« less

  12. Associated Higgs-W-boson production at hadron colliders: a fully exclusive QCD calculation at NNLO.

    PubMed

    Ferrera, Giancarlo; Grazzini, Massimiliano; Tramontano, Francesco

    2011-10-07

    We consider QCD radiative corrections to standard model Higgs-boson production in association with a W boson in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. Our calculation includes finite-width effects, the leptonic decay of the W boson with its spin correlations, and the decay of the Higgs boson into a bb pair. We present selected numerical results at the Tevatron and the LHC.

  13. The gluon density of the proton at low x from a QCD analysis of F2

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1995-02-01

    We present a QCD analysis of the proton structure function F2 measured by the H1 experiment at HERA, combined with data from previous fixed target experiments. The gluon density is extracted from the scaling violations of F2 in the range 2 · 10 -4 < x < 3 · 10 -2 and compared with an approximate solution of the QCD evolution equations. The gluon density is found to rise steeply with decreasing x.

  14. Measurement of dijet azimuthal decorrelation in pp collisions at $$\\sqrt{s}=8\\,\\mathrm{TeV} $$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.

    A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2 TeV. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb –1. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generatorsmore » that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. Furthermore, this observation emphasizes the need to improve predictions for multijet production.« less

  15. Measurement of dijet azimuthal decorrelation in pp collisions at $$\\sqrt{s}=8\\,\\mathrm{TeV} $$

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2016-09-30

    A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2 TeV. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb –1. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generatorsmore » that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. Furthermore, this observation emphasizes the need to improve predictions for multijet production.« less

  16. Time-reversal breaking in QCD4, walls, and dualities in 2 + 1 dimensions

    NASA Astrophysics Data System (ADS)

    Gaiotto, Davide; Komargodski, Zohar; Seiberg, Nathan

    2018-01-01

    We study SU( N ) Quantum Chromodynamics (QCD) in 3+1 dimensions with N f degenerate fundamental quarks with mass m and a θ-parameter. For generic m and θ the theory has a single gapped vacuum. However, as θ is varied through θ = π for large m there is a first order transition. For N f = 1 the first order transition line ends at a point with a massless η' particle (for all N ) and for N f > 1 the first order transition ends at m = 0, where, depending on the value of N f , the IR theory has free Nambu-Goldstone bosons, an interacting conformal field theory, or a free gauge theory. Even when the 4 d bulk is smooth, domain walls and interfaces can have interesting phase transitions separating different 3 d phases. These turn out to be the phases of the recently studied 3 d Chern-Simons matter theories, thus relating the dynamics of QCD4 and QCD3, and, in particular, making contact with the recently discussed dualities in 2+1 dimensions. For example, when the massless 4 d theory has an SU( N f ) sigma model, the domain wall theory at low (nonzero) mass supports a 3 d massless CP^{N_f-1} nonlinear σ-model with a Wess-Zumino term, in agreement with the conjectured dynamics in 2+1 dimensions.

  17. Baryon interactions in lattice QCD: the direct method vs. the HAL QCD potential method

    NASA Astrophysics Data System (ADS)

    Iritani, T.; HAL QCD Collaboration

    We make a detailed comparison between the direct method and the HAL QCD potential method for the baryon-baryon interactions, taking the $\\Xi\\Xi$ system at $m_\\pi= 0.51$ GeV in 2+1 flavor QCD and using both smeared and wall quark sources. The energy shift $\\Delta E_\\mathrm{eff}(t)$ in the direct method shows the strong dependence on the choice of quark source operators, which means that the results with either (or both) source are false. The time-dependent HAL QCD method, on the other hand, gives the quark source independent $\\Xi\\Xi$ potential, thanks to the derivative expansion of the potential, which absorbs the source dependence to the next leading order correction. The HAL QCD potential predicts the absence of the bound state in the $\\Xi\\Xi$($^1$S$_0$) channel at $m_\\pi= 0.51$ GeV, which is also confirmed by the volume dependence of finite volume energy from the potential. We also demonstrate that the origin of the fake plateau in the effective energy shift $\\Delta E_\\mathrm{eff}(t)$ at $t \\sim 1$ fm can be clarified by a few low-lying eigenfunctions and eigenvalues on the finite volume derived from the HAL QCD potential, which implies that the ground state saturation of $\\Xi\\Xi$($^1$S$_0$) requires $t \\sim 10$ fm in the direct method for the smeared source on $(4.3 \\ \\mathrm{fm})^3$ lattice, while the HAL QCD method does not suffer from such a problem.

  18. Quark–hadron phase structure, thermodynamics, and magnetization of QCD matter

    NASA Astrophysics Data System (ADS)

    Nasser Tawfik, Abdel; Magied Diab, Abdel; Hussein, M. T.

    2018-05-01

    The SU(3) Polyakov linear-sigma model (PLSM) is systematically implemented to characterize the quark-hadron phase structure and to determine various thermodynamic quantities and the magnetization of quantum chromodynamic (QCD) matter. Using mean-field approximation, the dependence of the chiral order parameter on a finite magnetic field is also calculated. Under a wide range of temperatures and magnetic field strengths, various thermodynamic quantities including trace anomaly, speed of sound squared, entropy density, and specific heat are presented, and some magnetic properties are described as well. Where available these results are compared to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous finding that the transition temperature is reduced with the increase in the magnetic field strength, i.e. QCD matter is characterized by an inverse magnetic catalysis. Furthermore, the temperature dependence of the magnetization showing that QCD matter has paramagnetic properties slightly below and far above the pseudo-critical temperature is confirmed as well. The excellent agreement with recent lattice calculations proves that our QCD-like approach (PLSM) seems to possess the correct degrees of freedom in both the hadronic and partonic phases and describes well the dynamics deriving confined hadrons to deconfined quark-gluon plasma.

  19. Convergence of the chiral expansion in two-flavor lattice QCD.

    PubMed

    Noaki, J; Aoki, S; Chiu, T W; Fukaya, H; Hashimoto, S; Hsieh, T H; Kaneko, T; Matsufuru, H; Onogi, T; Shintani, E; Yamada, N

    2008-11-14

    We test the convergence property of the chiral perturbation theory using a lattice QCD calculation of pion mass and decay constant with two dynamical quark flavors. The lattice calculation is performed using the overlap fermion formulation, which realizes exact chiral symmetry at finite lattice spacing. By comparing various expansion prescriptions, we find that the chiral expansion is well saturated at the next-to-leading order for pions lighter than approximately 450 MeV. Better convergence behavior is found, in particular, for a resummed expansion parameter xi, with which the lattice data in the pion mass region 290-750 MeV can be fitted well with the next-to-next-to-leading order formulas. We obtain the results in two-flavor QCD for the low energy constants l[over ]_{3} and l[over ]_{4} as well as the pion decay constant, the chiral condensate, and the average up and down quark mass.

  20. τ hadronic spectral function moments in a nonpower QCD perturbation theory

    NASA Astrophysics Data System (ADS)

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, I.; Fischer, J.

    2016-04-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling and other QCD parameters from the hadronic decays of the τ lepton. We consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ;reference model;, including moments that are poorly described by the standard expansions.

  1. Strange-quark asymmetry in the proton in chiral effective theory

    DOE PAGES

    Wang, X. G.; Ji, Chueng -Ryong; Melnitchouk, W.; ...

    2016-11-29

    We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest-order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of δ-function contributions to the s¯ PDF at x = 0, with a corresponding valencelike component of the s-quark PDF at larger x, which allows greater flexibility for the shape of s–s¯. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we computemore » the leading nonanalytic behavior of the number and momentum integrals of the s and s¯ distributions, consistent with the chiral symmetry of QCD. Lastly, we discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange-quark PDFs in global QCD analysis.« less

  2. The structure of the proton in the LHC precision era

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Harland-Lang, Lucian; Rojo, Juan

    2018-05-01

    We review recent progress in the determination of the parton distribution functions (PDFs) of the proton, with emphasis on the applications for precision phenomenology at the Large Hadron Collider (LHC). First of all, we introduce the general theoretical framework underlying the global QCD analysis of the quark and gluon internal structure of protons. We then present a detailed overview of the hard-scattering measurements, and the corresponding theory predictions, that are used in state-of-the-art PDF fits. We emphasize here the role that higher-order QCD and electroweak corrections play in the description of recent high-precision collider data. We present the methodology used to extract PDFs in global analyses, including the PDF parametrization strategy and the definition and propagation of PDF uncertainties. Then we review and compare the most recent releases from the various PDF fitting collaborations, highlighting their differences and similarities. We discuss the role that QED corrections and photon-initiated contributions play in modern PDF analysis. We provide representative examples of the implications of PDF fits for high-precision LHC phenomenological applications, such as Higgs coupling measurements and searches for high-mass New Physics resonances. We conclude this report by discussing some selected topics relevant for the future of PDF determinations, including the treatment of theoretical uncertainties, the connection with lattice QCD calculations, and the role of PDFs at future high-energy colliders beyond the LHC.

  3. Testing the Concept of Quark-Hadron Duality with the ALEPH τ Decay Data

    NASA Astrophysics Data System (ADS)

    Magradze, B. A.

    2010-12-01

    We propose a modified procedure for extracting the numerical value for the strong coupling constant α s from the τ lepton hadronic decay rate into non-strange particles in the vector channel. We employ the concept of the quark-hadron duality specifically, introducing a boundary energy squared s p > 0, the onset of the perturbative QCD continuum in Minkowski space (Bertlmann et al. in Nucl Phys B 250:61, 1985; de Rafael in An introduction to sum rules in QCD. In: Lectures at the Les Houches Summer School. arXiv: 9802448 [hep-ph], 1997; Peris et al. in JHEP 9805:011, 1998). To approximate the hadronic spectral function in the region s > s p, we use analytic perturbation theory (APT) up to the fifth order. A new feature of our procedure is that it enables us to extract from the data simultaneously the QCD scale parameter {Λ_{overlineMS}} and the boundary energy squared s p. We carefully determine the experimental errors on these parameters which come from the errors on the invariant mass squared distribution. For the {overlineMS} scheme coupling constant, we obtain {α_s(m2_{tau})=0.3204± 0.0159_{exp.}}. We show that our numerical analysis is much more stable against higher-order corrections than the standard one. Additionally, we recalculate the “experimental” Adler function in the infrared region using final ALEPH results. The uncertainty on this function is also determined.

  4. Determination of the chiral condensate from (2+1)-flavor lattice QCD.

    PubMed

    Fukaya, H; Aoki, S; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T; Yamada, N

    2010-03-26

    We perform a precise calculation of the chiral condensate in QCD using lattice QCD with 2+1 flavors of dynamical overlap quarks. Up and down quark masses cover a range between 3 and 100 MeV on a 16{3}x48 lattice at a lattice spacing approximately 0.11 fm. At the lightest sea quark mass, the finite volume system on the lattice is in the regime. By matching the low-lying eigenvalue spectrum of the Dirac operator with the prediction of chiral perturbation theory at the next-to-leading order, we determine the chiral condensate in (2+1)-flavor QCD with strange quark mass fixed at its physical value as Sigma;{MS[over ]}(2 GeV)=[242(04)(+19/-18) MeV]{3} where the errors are statistical and systematic, respectively.

  5. Measurement of the low-mass Drell-Yan differential cross section at √s = 7 TeV using the ATLAS detector

    DOE PAGES

    Aad, G.

    2014-06-18

    The differential cross section for the process Z/γ → ℓℓ (ℓ = e,μ) as a function of dilepton invariant mass is measured in pp collisions at √s = 7 TeV at the LHC using the ATLAS detector. The measurement is performed in the e and μ channels for invariant masses between 26 GeV and 66 GeV using an integrated luminosity of 1.6 fb -1 collected in 2011 and these measurements are combined. The analysis is extended to invariant masses as low as 12 GeV in the muon channel using 35 pb -1 of data collected in 2010. The cross sectionsmore » are determined within fiducial acceptance regions and corrections to extrapolate the measurements to the full kinematic range are provided. Next-to-next-to-leading-order QCD predictions provide a significantly better description of the results than next-to-leading order QCD calculations, unless the latter are matched to a parton shower calculation.« less

  6. Wilson Lines and Webs in Higher-Order QCD

    NASA Astrophysics Data System (ADS)

    White, Chris D.

    2018-03-01

    Wilson lines have a number of uses in non-abelian gauge theories. A topical example in QCD is the description of radiation in the soft or collinear limit, which must often be resummed to all orders in perturbation theory. Correlators involving a pair of Wilson lines are known to exponentiate in terms of special Feynman diagrams called "webs". I will show how this language can be extended to an arbitrary number of Wilson lines, which introduces novel new combinatoric structures (web mixing matrices) of interest in their own right. I will also summarise recent results obtained from applying this formalism at three-loop order, before concluding with a list of open problems.

  7. The Compressed Baryonic Matter Experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Senger, Peter

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental facility will be discussed.

  8. High-Energy QCD Asymptotics of Photon-Photon Collisions

    NASA Astrophysics Data System (ADS)

    Brodsky, S. J.; Fadin, V. S.; Kim, V. T.; Lipatov, L. N.; Pivovarov, G. B.

    2002-07-01

    The high-energy behaviour of the total cross section for highly virtual photons, as predicted by the BFKL equation at next-to-leading order (NLO) in QCD, is discussed. The NLO BFKL predictions, improved by the BLM optimal scale setting, are in good agreement with recent OPAL and L3 data at CERN LEP2. NLO BFKL predictions for future linear colliders are presented.

  9. Challenges in the global QCD analysis of parton structure of nucleons

    NASA Astrophysics Data System (ADS)

    Tung, Wu-Ki

    2000-12-01

    We briefly summarize the current status of global QCD analysis of the parton structure of the nucleon and then highlight the open questions and challenges which confront this endeavor on which much of the phenomenology of the Standard Model and the search of New Physics depend.

  10. Three-loop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Haque, Najmul; Mustafa, Munshi G.; Strickland, Michael

    2016-03-01

    In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop thermodynamic potential of QCD at finite temperature T and quark chemical potentials μq using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and isospin chemical potentials μB, μS, and μI. We calculate the pressure at nonzero μB and μI with μS=0 , and the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero μI with μB=μS=0 . The second- and fourth-order isospin susceptibilities are calculated at μB=μS=μI=0 . Our results can be directly compared to lattice QCD without Taylor expansions around μq=0 since QCD has no sign problem at μB=μS=0 and finite isospin chemical potential μI.

  11. Lattice QCD results on soft and hard probes of strongly interacting matter

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Olaf

    2017-11-01

    We present recent results from lattice QCD relevant for the study of strongly interacting matter as it is produced in heavy ion collision experiments. The equation of state at non-vanishing density from a Taylor expansion up to 6th order will be discussed for a strangeness neutral system and using the expansion coefficients of the series limits on the critical point are estimated. Chemical freeze-out temperatures from the STAR and ALICE Collaborations will be compared to lines of constant physics calculated from the Taylor expansion of QCD bulk thermodynamic quantities. We show that qualitative features of the √{sNN} dependence of skewness and kurtosis ratios of net proton-number fluctuations measured by the STAR Collaboration can be understood from QCD results for cumulants of conserved baryon-number fluctuations. As an example for recent progress towards the determination of spectral and transport properties of the QGP from lattice QCD, we will present constraints on the thermal photon rate determined from a spectral reconstruction of continuum extrapolated lattice correlation functions in combination with input from most recent perturbative calculations.

  12. Inclusive jet cross section and strong coupling constant measurements at CMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerci, Salim, E-mail: Salim.Cerci@cern.ch

    2016-03-25

    The probes which are abundantly produced in high energetic proton-proton (pp) collisions at the LHC are called jets. Events with jets can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. The inclusive jet cross section in pp collision is the fundamental quantity which can be measured and predicted within the framework of perturbative QCD (pQCD). The strong coupling constant α{sub S} which can be determined empirically in the limit of massless quarks, is the single parameter in QCD. The jet measurements can also be used to determine strong coupling constant α{sub S} and parton density functions (PDFs).more » The recent jet measurements which are performed with the data collected by the CMS detector at different center-of-mass energies and down to very low transverse momentum p{sub T} are presented. The measurements are compared to Monte Carlo predictions and perturbative calculations up to next-to-next-to leading order. Finally, the precision jet measurements give further insight into the QCD dynamics.« less

  13. Next-to-leading order QCD predictions for top-quark pair production with up to three jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höche, S.; Maierhöfer, P.; Moretti, N.

    2017-03-07

    Here, we present theoretical predictions for the production of top-quark pairs with up to three jets at the next-to leading order in perturbative QCD. The relevant calculations are performed with Sherpa and OpenLoops. In order to address the issue of scale choices and related uncertainties in the presence of multiple scales, we compare results obtained with the standard scale HT/2HT/2 at fixed order and the MiNLO procedure. By analyzing various cross sections and distributions for tmore » $$\\bar{t}$$+0,1,2,3 jets at the 13 TeV LHC we found a remarkable overall agreement between fixed-order and MiNLO results. The differences are typically below the respective factor-two scale variations, suggesting that for all considered jet multiplicities missing higher-order effects should not exceed the ten percent level.« less

  14. Fragmentation contributions to J / ψ photoproduction at HERA

    DOE PAGES

    Bodwin, Geoffrey T.; Chung, Hee Sok; Kim, U-Rae; ...

    2015-10-28

    Here, we compute leading-power fragmentation corrections to J/ψ photoproduction at DESY HERA, making use of the nonrelativistic QCD factorization approach. Our calculations include parton production cross sections through order α 3 s, fragmentation functions though order α 2 s, and leading logarithms of the transverse momentum divided by the charm-quark mass to all orders in α s. We find that the leading-power fragmentation corrections, beyond those that are included through next-to-leading order in α s, are small relative to the fixed-order contributions through next-to-leading order in α s. Consequently, an important discrepancy remains between the experimental measurements of the J/ψmore » photoproduction cross section and predictions that make use of nonrelativistic-QCD long-distance matrix elements that are extracted from the J/ψ hadroproduction cross-section and polarization data.« less

  15. Scalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approach

    DOE PAGES

    Franzosi, Diogo Buarque; Vryonidou, Eleni; Zhang, Cen

    2017-10-13

    Scalar and pseudo-scalar resonances decaying to top quarks are common predictions in several scenarios beyond the standard model (SM) and are extensively searched for by LHC experiments. Challenges on the experimental side require optimising the strategy based on accurate predictions. Firstly, QCD corrections are known to be large both for the SM QCD background and for the pure signal scalar production. Secondly, leading order and approximate next-to-leading order (NLO) calculations indicate that the interference between signal and background is large and drastically changes the lineshape of the signal, from a simple peak to a peak-dip structure. Therefore, a robust predictionmore » of this interference at NLO accuracy in QCD is necessary to ensure that higher-order corrections do not alter the lineshapes. We compute the exact NLO corrections, assuming a point-like coupling between the scalar and the gluons and consistently embedding the calculation in an effective field theory within an automated framework, and present results for a representative set of beyond the SM benchmarks. The results can be further matched to parton shower simulation, providing more realistic predictions. We find that NLO corrections are important and lead to a significant reduction of the uncertainties. We also discuss how our computation can be used to improve the predictions for physics scenarios where the gluon-scalar loop is resolved and the effective approach is less applicable.« less

  16. Scalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franzosi, Diogo Buarque; Vryonidou, Eleni; Zhang, Cen

    Scalar and pseudo-scalar resonances decaying to top quarks are common predictions in several scenarios beyond the standard model (SM) and are extensively searched for by LHC experiments. Challenges on the experimental side require optimising the strategy based on accurate predictions. Firstly, QCD corrections are known to be large both for the SM QCD background and for the pure signal scalar production. Secondly, leading order and approximate next-to-leading order (NLO) calculations indicate that the interference between signal and background is large and drastically changes the lineshape of the signal, from a simple peak to a peak-dip structure. Therefore, a robust predictionmore » of this interference at NLO accuracy in QCD is necessary to ensure that higher-order corrections do not alter the lineshapes. We compute the exact NLO corrections, assuming a point-like coupling between the scalar and the gluons and consistently embedding the calculation in an effective field theory within an automated framework, and present results for a representative set of beyond the SM benchmarks. The results can be further matched to parton shower simulation, providing more realistic predictions. We find that NLO corrections are important and lead to a significant reduction of the uncertainties. We also discuss how our computation can be used to improve the predictions for physics scenarios where the gluon-scalar loop is resolved and the effective approach is less applicable.« less

  17. Continuous Advances in QCD 2008

    NASA Astrophysics Data System (ADS)

    Peloso, Marco M.

    2008-12-01

    1. High-order calculations in QCD and in general gauge theories. NLO evolution of color dipoles / I. Balitsky. Recent perturbative results on heavy quark decays / J. H. Piclum, M. Dowling, A. Pak. Leading and non-leading singularities in gauge theory hard scattering / G. Sterman. The space-cone gauge, Lorentz invariance and on-shell recursion for one-loop Yang-Mills amplitudes / D. Vaman, Y.-P. Yao -- 2. Heavy flavor physics. Exotic cc¯ mesons / E. Braaten. Search for new physics in B[symbol]-mixing / A. J. Lenz. Implications of D[symbol]-D[symbol] mixing for new physics / A. A. Petrov. Precise determinations of the charm quark mass / M. Steinhauser -- 3. Quark-gluon dynamics at high density and/or high temperature. Crystalline condensate in the chiral Gross-Neveu model / G. V. Dunne, G. Basar. The strong coupling constant at low and high energies / J. H. Kühn. Quarkyonic matter and the phase diagram of QCD / L. McLerran. Statistical QCD with non-positive measure / J. C. Osborn, K. Splittorff, J. J. M. Verbaarschot. From equilibrium to transport properties of strongly correlated fermi liquids / T. Schäfer. Lessons from random matrix theory for QCD at finite density / K. Splittorff, J. J. M. Verbaarschot -- 4. Methods and models of holographic correspondence. Soft-wall dynamics in AdS/QCD / B. Batell. Holographic QCD / N. Evans, E. Threlfall. QCD glueball sum rules and vacuum topology / H. Forkel. The pion form factor in AdS/QCD / H. J. Kwee, R. F. Lebed. The fast life of holographic mesons / R. C. Myers, A. Sinha. Properties of Baryons from D-branes and instantons / S. Sugimoto. The master space of N = 1 quiver gauge theories: counting BPS operators / A. Zaffaroni. Topological field congurations. Skyrmions in theories with massless adjoint quarks / R. Auzzi. Domain walls, localization and confinement: what binds strings inside walls / S. Bolognesi. Static interactions of non-abelian vortices / M. Eto. Vortices which do not abelianize dynamically: semi-classical origin of non-abelian monopoles / K. Konishi. A generalized construction for lumps and non-abelian vortices / W. Vinci -- 6. Dynamics in supersymmetric theories. Cusp anomalous dimension in planar maximally supersymmetric Yang-Mills theory / B. Basso. SO(2M) and USp(2M) (hyper)Kähler quotients and lumps / S. B. Gudnason -- 7. Other developments. Gluinos condensing at the CCNI: 4096 CPUs weigh in / J. Giedt ... [et al.]. Baryon Regge trajectories and the 1/N[symbol] expansion / J. L. Goity, N. Matagne. Infrared behavior of the fermion propagator in unquenched QED[symbol] with finite threshold effects / Y. Hoshino. Gauge fields in accelerated frames / F. Lenz. QCD at complex coupling, large order in perturbation theory and the gluon condensate / Y. Meurice. 511 KeV line and other diffuse emissions as a trace of the dark matter / A. R. Zhitnitsky -- 8. Glimpses of the conference.

  18. Generalized parton distributions and transversity from full lattice QCD

    NASA Astrophysics Data System (ADS)

    Göckeler, M.; Hägler, Ph.; Horsley, R.; Pleiter, D.; Rakow, P. E. L.; Schäfer, A.; Schierholz, G.; Zanotti, J. M.; Qcdsf Collaboration

    2005-06-01

    We present here the latest results from the QCDSF collaboration for moments of gener- alized parton distributions and transversity in two-flavour QCD, including a preliminary analysis of the pion mass dependence.

  19. ηc Hadroproduction at Large Hadron Collider Challenges NRQCD Factorization

    NASA Astrophysics Data System (ADS)

    Butenschoen, Mathias; He, Zhi-Guo; Kniehl, Bernd A.

    2017-03-01

    We report on our analysis [1] of prompt ηc meson production, measured by the LHCb Collaboration at the Large Hadron Collider, within the framework of non-relativistic QCD (NRQCD) factorization up to the sub-leading order in both the QCD coupling constant αs and the relative velocity v of the bound heavy quarks. We thereby convert various sets of J/ψ and χc,J long-distance matrix elements (LDMEs), determined by different groups in J/ψ and χc,J yield and polarization fits, to ηc and hc production LDMEs making use of the NRQCD heavy quark spin symmetry. The resulting predictions for ηc hadroproduction in all cases greatly overshoot the LHCb data, while the color-singlet model contributions alone would indeed be sufficient. We investigate the consequences for the universality of the LDMEs, and show how the observed tensions remain in follow-up works by other groups.

  20. Bridging a gap between continuum-QCD and ab initio predictions of hadron observables

    DOE PAGES

    Binosi, Daniele; Chang, Lei; Papavassiliou, Joannis; ...

    2015-03-01

    Within contemporary hadron physics there are two common methods for determining the momentum- dependence of the interaction between quarks: the top-down approach, which works toward an ab initiocomputation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD’s gauge sector coincides with that required in order to describe ground-state hadron observables usingmore » a nonperturbative truncation of QCD’s Dyson–Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.« less

  1. Vector and Axial-Vector Current Correlators Within the Instanton Model of QCD Vacuum

    NASA Astrophysics Data System (ADS)

    Dorokhov, A. E.

    2005-08-01

    The pion electric polarizability, α {π ^ ± }E , the leading order hadronic contribution to the muon anomalous magnetic moment, aμ hvp(1) , and the ratio of the V - A and V + A correlators are found within the instanton model of QCD vacuum. The results are compared with phenomenological estimates of these quantities from the ALEPH and OPAL data on vector and axial-vector spectral densities.

  2. Extra dimension searches at hadron colliders to next-to-leading order-QCD

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.

    2007-11-01

    The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton distribution functions are studied. Uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.

  3. Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin

    1998-07-01

    Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.

  4. Analytic boosted boson discrimination

    DOE PAGES

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff

    2016-05-20

    Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between thesemore » limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. In conclusion, our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff

    Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between thesemore » limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. In conclusion, our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.« less

  6. Hadronic vacuum polarization in QCD and its evaluation in Euclidean spacetime

    NASA Astrophysics Data System (ADS)

    de Rafael, Eduardo

    2017-07-01

    We discuss a new technique to evaluate integrals of QCD Green's functions in the Euclidean based on their Mellin-Barnes representation. We present as a first application the evaluation of the lowest order hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon 1/2 (gμ-2 )HVP≡aμHVP . It is shown that with a precise determination of the slope and curvature of the HVP function at the origin from lattice QCD (LQCD), one can already obtain a result for aμHVP which may serve as a test of the determinations based on experimental measurements of the e+e- annihilation cross section into hadrons.

  7. Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; , M. Finger, Jr.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2017-04-01

    Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality Q^2>1 (GeV/c)^2. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/ c polarised muon beam impinging on a polarised ^6LiD target. By analysing the full range in hadron transverse momentum p_T, the different p_T-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation Δ g/g is evaluated at leading order in pQCD at a hard scale of μ ^2= < Q^2 \\rangle = 3 (GeV/c)^2. It is determined in three intervals of the nucleon momentum fraction carried by gluons, x_g, covering the range 0.04 < x_{g} < 0.28 and does not exhibit a significant dependence on x_g. The average over the three intervals, < Δ g/g \\rangle = 0.113 ± 0.038_(stat.)± 0.036_(syst.) at < x_g \\rangle ≈ 0.10, suggests that the gluon polarisation is positive in the measured x_g range.

  8. Extraction of partonic transverse momentum distributions from semi-inclusive deep inelastic scattering and Drell-Yan data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, Cristian; Bacchetta, Alessandro; Delcarro, Filippo

    We present a first attempt at a global fit of unpolarized quark transverse momentum dependent distribution and fragmentation functions from available data on semi-inclusive deep-inelastic scattering, Drell-Yan and $Z$ boson production processes. This analysis is performed in the low transverse momentum region, at leading order in perturbative QCD and with the inclusion of energy scale evolution effects at the next-to-leading logarithmic accuracy.

  9. Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower

    DOE PAGES

    Höche, Stefan; Krauss, Frank; Maierhöfer, Philipp; ...

    2015-06-26

    We present differential cross sections for the production of top-quark pairs in conjunction with up to two jets, computed at next-to-leading order in perturbative QCD and consistently merged with a parton shower in the SHERPA+OPENLOOPS framework. Top quark decays including spin correlation effects are taken into account at leading order accuracy. The calculation yields a unified description of top-pair plus multi-jet production, and detailed results are presented for various key observables at the Large Hadron Collider. As a result, a large improvement with respect to the multi-jet merging approach at leading order is found for the total transverse energy spectrum,more » which plays a prominent role in searches for physics beyond the Standard Model.« less

  10. Z -Boson Production in Association with a Jet at Next-To-Next-To-Leading Order in Perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boughezal, Radja; Campbell, John; Ellis, R. Keith

    2016-04-01

    We present the first complete calculation of Z-boson production in association with a jet in hadronic collisions through next-to-next-to-leading order in perturbative QCD. Our computation uses the recently proposed N-jettiness subtraction scheme to regulate the infrared divergences that appear in the real-emission contributions. We present phenomenological results for 13 TeV proton-proton collisions with fully realistic fiducial cuts on the final-state particles. The remaining theoretical uncertainties after the inclusion of our calculations are at the percent level, making the Z + jet channel ready for precision studies at the LHC run II.

  11. Deviation pattern approach for optimizing perturbative terms of QCD renormalization group invariant observables

    NASA Astrophysics Data System (ADS)

    Khellat, M. R.; Mirjalili, A.

    2017-03-01

    We first consider the idea of renormalization group-induced estimates, in the context of optimization procedures, for the Brodsky-Lepage-Mackenzie approach to generate higher-order contributions to QCD perturbative series. Secondly, we develop the deviation pattern approach (DPA) in which through a series of comparisons between lowerorder RG-induced estimates and the corresponding analytical calculations, one could modify higher-order RG-induced estimates. Finally, using the normal estimation procedure and DPA, we get estimates of αs4 corrections for the Bjorken sum rule of polarized deep-inelastic scattering and for the non-singlet contribution to the Adler function.

  12. Resolving the Tevatron Top Quark Forward-Backward Asymmetry Puzzle: Fully Differential Next-to-Next-to-Leading-Order Calculation.

    PubMed

    Czakon, Michal; Fiedler, Paul; Mitov, Alexander

    2015-07-31

    We determine the dominant missing standard model (SM) contribution to the top quark pair forward-backward asymmetry at the Tevatron. Contrary to past expectations, we find a large, around 27%, shift relative to the well-known value of the inclusive asymmetry in next-to-leading order QCD. Combining all known standard model corrections, we find that A(FB)(SM)=0.095±0.007. This value is in agreement with the latest DØ measurement [V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 90, 072011 (2014)] A(FB)(D∅)=0.106±0.03 and about 1.5σ below that of CDF [T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 87, 092002 (2013)] A(FB)(CDF)=0.164±0.047. Our result is derived from a fully differential calculation of the next-to-next-to leading order (NNLO) QCD corrections to inclusive top pair production at hadron colliders and includes-without any approximation-all partonic channels contributing to this process. This is the first complete fully differential calculation in NNLO QCD of a two-to-two scattering process with all colored partons.

  13. Resolving the Tevatron Top Quark Forward-Backward Asymmetry Puzzle: Fully Differential Next-to-Next-to-Leading-Order Calculation

    NASA Astrophysics Data System (ADS)

    Czakon, Michal; Fiedler, Paul; Mitov, Alexander

    2015-07-01

    We determine the dominant missing standard model (SM) contribution to the top quark pair forward-backward asymmetry at the Tevatron. Contrary to past expectations, we find a large, around 27%, shift relative to the well-known value of the inclusive asymmetry in next-to-leading order QCD. Combining all known standard model corrections, we find that AF BS M = 0.095 ±0.007 . This value is in agreement with the latest DØ measurement [V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 90, 072011 (2014)] AFBD ∅=0.106 ±0.03 and about 1.5 σ below that of CDF [T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 87, 092002 (2013)] AFBCDF=0.164 ±0.047 . Our result is derived from a fully differential calculation of the next-to-next-to leading order (NNLO) QCD corrections to inclusive top pair production at hadron colliders and includes—without any approximation—all partonic channels contributing to this process. This is the first complete fully differential calculation in NNLO QCD of a two-to-two scattering process with all colored partons.

  14. Quantum Chromodynamics and Color Confinement (confinement 2000) - Proceedings of the International Symposium

    NASA Astrophysics Data System (ADS)

    Suganuma, H.; Fukushima, M.; Toki, H.

    The Table of Contents for the book is as follows: * Preface * Opening Address * Monopole Condensation and Quark Confinement * Dual QCD, Effective String Theory, and Regge Trajectories * Abelian Dominance and Monopole Condensation * Non-Abelian Stokes Theorem and Quark Confinement in QCD * Infrared Region of QCD and Confining Configurations * BRS Quartet Mechanism for Color Confinement * Color Confinement and Quartet Mechanism * Numerical Tests of the Kugo-Ojima Color Confinement Criterion * Monopoles and Confinement in Lattice QCD * SU(2) Lattice Gauge Theory at T > 0 in a Finite Box with Fixed Holonomy * Confining and Dirac Strings in Gluodynamics * Cooling, Monopoles, and Vortices in SU(2) Lattice Gauge Theory * Quark Confinement Physics from Lattice QCD * An (Almost) Perfect Lattice Action for SU(2) and SU(3) Gluodynamics * Vortices and Confinement in Lattice QCD * P-Vortices, Nexuses and Effects of Gribov Copies in the Center Gauges * Laplacian Center Vortices * Center Vortices at Strong Couplings and All Couplings * Simulations in SO(3) × Z(2) Lattice Gauge Theory * Exciting a Vortex - the Cost of Confinement * Instantons in QCD * Deformation of Instanton in External Color Fields * Field Strength Correlators in the Instanton Liquid * Instanton and Meron Physics in Lattice QCD * The Dual Ginzburg-Landau Theory for Confinement and the Role of Instantons * Lattice QCD for Quarks, Gluons and Hadrons * Hadronic Spectral Functions in QCD * Universality and Chaos in Quantum Field Theories * Lattice QCD Study of Three Quark Potential * Probing the QCD Vacuum with Flavour Singlet Objects : η' on the Lattice * Lattice Studies of Quarks and Gluons * Quarks and Hadrons in QCD * Supersymmetric Nonlinear Sigma Models * Chiral Transition and Baryon-number Susceptibility * Light Quark Masses in QCD * Chiral Symmetry of Baryons and Baryon Resonances * Confinement and Bound States in QCD * Parallel Session * Off-diagonal Gluon Mass Generation and Strong Randomness of Off-diagonal Gluon Phase in the Maximally Abelian Gauge * On the Colour Confinement and the Minimal Surface * Glueball Mass and String Tension of SU(2) Gluodynamics from Abelian Monopoles and Strings * Application of the Non-Perturbative Renormalization Group to the Nambu-Jona-Lasinio Model at Finite Temperature and Density * Confining Flux-Tube and Hadrons in QCD * Gauge Symmetry Breakdown due to Dynamical Higgs Scalar * Spatial Structure of Quark Cooper Pairs * New Approach to Axial Coupling Constants in the QCD Sum Rule and Instanton Effects * String Breaking on a Lattice * Bethe-Salpeter Approach for Mesons within the Dual Ginzburg-Landau Theory * Gauge Dependence and Matching Procedure of a Nonrelativistic QCD Boundstate Formalism * A Mathematical Approach to the SU(2)-Quark Confinement * Simulations of Odd Flavors QCD by Hybrid Monte Carlo * Non-Perturbative Renormalization Group Analysis of Dynamical Chiral Symmetry Breaking with Beyond Ladder Contributions * Charmonium Physics in Finite Temperature Lattice QCD * From Meson-Nucleon Scattering to Vector Mesons in Nuclear Matter * Symposium Program * List of Participants

  15. The Nc dependencies of baryon masses: Analysis with Lattice QCD and Effective Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calle Cordon, Alvaro C.; DeGrand, Thomas A.; Goity, Jose L.

    Baryon masses at varying values of Nc and light quark masses are studied with Lattice QCD and the results are analyzed in a low energy effective theory based on a combined framework of the 1/Nc and Heavy Baryon Chiral Perturbation Theory expansions. Lattice QCD results for Nc=3, 5 and 7 obtained in quenched calculations, as well as results for unquenched calculations for Nc=3, are used for the analysis. The results are consistent with a previous analysis of Nc=3 LQCD results, and in addition permit the determination of sub-leading in 1/Nc effects in the spin-flavor singlet component of the baryon massesmore » as well as in the hyperfine splittings.« less

  16. Constraints on spin-dependent parton distributions at large x from global QCD analysis

    DOE PAGES

    Jimenez-Delgado, P.; Avakian, H.; Melnitchouk, W.

    2014-09-28

    This study investigate the behavior of spin-dependent parton distribution functions (PDFs) at large parton momentum fractions x in the context of global QCD analysis. We explore the constraints from existing deep-inelastic scattering data, and from theoretical expectations for the leading x → 1 behavior based on hard gluon exchange in perturbative QCD. Systematic uncertainties from the dependence of the PDFs on the choice of parametrization are studied by considering functional forms motivated by orbital angular momentum arguments. Finally, we quantify the reduction in the PDF uncertainties that may be expected from future high-x data from Jefferson Lab at 12 GeV.

  17. The Light-Front Schrödinger Equation and Determination of the Perturbative QCD Scale from Color Confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; de Teramond, Guy F.; Deur, Alexandre P.

    2015-09-01

    The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a relativistic equation of motion with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light front Hamiltonian theory, the potential U has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic andmore » dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter κ appears. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. We also show how the mass scale κ underlying confinement and hadron masses determines the scale Λ {ovr MS} controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime computed to four-loop order. The result is an effective coupling defined at all momenta. The predicted value Λ {ovr MS}=0.328±0.034 GeV is in agreement with the world average 0.339±0.010 GeV. The analysis applies to any renormalization scheme.« less

  18. Better than $l/Mflops sustained: a scalable PC-based parallel computer for lattice QCD

    NASA Astrophysics Data System (ADS)

    Fodor, Zoltán; Katz, Sándor D.; Papp, Gábor

    2003-05-01

    We study the feasibility of a PC-based parallel computer for medium to large scale lattice QCD simulations. The Eötvös Univ., Inst. Theor. Phys. cluster consists of 137 Intel P4-1.7GHz nodes with 512 MB RDRAM. The 32-bit, single precision sustained performance for dynamical QCD without communication is 1510 Mflops/node with Wilson and 970 Mflops/node with staggered fermions. This gives a total performance of 208 Gflops for Wilson and 133 Gflops for staggered QCD, respectively (for 64-bit applications the performance is approximately halved). The novel feature of our system is its communication architecture. In order to have a scalable, cost-effective machine we use Gigabit Ethernet cards for nearest-neighbor communications in a two-dimensional mesh. This type of communication is cost effective (only 30% of the hardware costs is spent on the communication). According to our benchmark measurements this type of communication results in around 40% communication time fraction for lattices upto 48 3·96 in full QCD simulations. The price/sustained-performance ratio for full QCD is better than l/Mflops for Wilson (and around 1.5/Mflops for staggered) quarks for practically any lattice size, which can fit in our parallel computer. The communication software is freely available upon request for non-profit organizations.

  19. Fluctuations in the quark-meson model for QCD with isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Kamikado, Kazuhiko; Strodthoff, Nils; von Smekal, Lorenz; Wambach, Jochen

    2013-01-01

    We study the two-flavor quark-meson (QM) model with the functional renormalization group (FRG) to describe the effects of collective mesonic fluctuations on the phase diagram of QCD at finite baryon and isospin chemical potentials, μB and μI. With only isospin chemical potential there is a precise equivalence between the competing dynamics of chiral versus pion condensation and that of collective mesonic and baryonic fluctuations in the quark-meson-diquark model for two-color QCD at finite baryon chemical potential. Here, finite μB = 3 μ introduces an additional dimension to the phase diagram as compared to two-color QCD, however. At zero temperature, the (μI, μ) plane of this phase diagram is strongly constrained by the "Silver Blaze problem." In particular, the onset of pion condensation must occur at μI =mπ / 2, independent of μ as long as μ +μI stays below the constituent quark mass of the QM model or the liquid-gas transition line of nuclear matter in QCD. In order to maintain this relation beyond mean field it is crucial to compute the pion mass from its timelike correlator with the FRG in a consistent way.

  20. New Methods in Non-Perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unsal, Mithat

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), andmore » there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.« less

  1. 2+1 flavor lattice QCD toward the physical point

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Ishikawa, K.-I.; Ishizuka, N.; Izubuchi, T.; Kadoh, D.; Kanaya, K.; Kuramashi, Y.; Namekawa, Y.; Okawa, M.; Taniguchi, Y.; Ukawa, A.; Ukita, N.; Yoshié, T.

    2009-02-01

    We present the first results of the PACS-CS project which aims to simulate 2+1 flavor lattice QCD on the physical point with the nonperturbatively O(a)-improved Wilson quark action and the Iwasaki gauge action. Numerical simulations are carried out at β=1.9, corresponding to the lattice spacing of a=0.0907(13)fm, on a 323×64 lattice with the use of the domain-decomposed HMC algorithm to reduce the up-down quark mass. Further algorithmic improvements make possible the simulation whose up-down quark mass is as light as the physical value. The resulting pseudoscalar meson masses range from 702 MeV down to 156 MeV, which clearly exhibit the presence of chiral logarithms. An analysis of the pseudoscalar meson sector with SU(3) chiral perturbation theory reveals that the next-to-leading order corrections are large at the physical strange quark mass. In order to estimate the physical up-down quark mass, we employ the SU(2) chiral analysis expanding the strange quark contributions analytically around the physical strange quark mass. The SU(2) low energy constants lmacr 3 and lmacr 4 are comparable with the recent estimates by other lattice QCD calculations. We determine the physical point together with the lattice spacing employing mπ, mK and mΩ as input. The hadron spectrum extrapolated to the physical point shows an agreement with the experimental values at a few % level of statistical errors, albeit there remain possible cutoff effects. We also find that our results of fπ, fK and their ratio, where renormalization is carries out perturbatively at one loop, are compatible with the experimental values. For the physical quark masses we obtain mudM Smacr and msM Smacr extracted from the axial-vector Ward-Takahashi identity with the perturbative renormalization factors. We also briefly discuss the results for the static quark potential.

  2. Heavy-quark production in massless quark scattering at two loops in QCD

    NASA Astrophysics Data System (ADS)

    Czakon, M.; Mitov, A.; Moch, S.

    2007-07-01

    We present the two-loop virtual QCD corrections to the production of heavy quarks in the quark-anti-quark annihilation channel in the limit when all kinematical invariants are large compared to the mass of the heavy quark. Our result is exact up to terms suppressed by powers of the heavy-quark mass. The derivation is based on a simple relation between massless and massive scattering amplitudes in gauge theories proposed recently by two of the authors as well as a direct calculation of the massive amplitude at two loops. The results presented here form an important part of the next-to-next-to-leading order QCD contributions to heavy-quark production in hadron-hadron collisions.

  3. Static quark-antiquark potential in the quark-gluon plasma from lattice QCD.

    PubMed

    Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander

    2015-02-27

    We present a state-of-the-art determination of the complex valued static quark-antiquark potential at phenomenologically relevant temperatures around the deconfinement phase transition. Its values are obtained from nonperturbative lattice QCD simulations using spectral functions extracted via a novel Bayesian inference prescription. We find that the real part, both in a gluonic medium, as well as in realistic QCD with light u, d, and s quarks, lies close to the color singlet free energies in Coulomb gauge and shows Debye screening above the (pseudo)critical temperature T_{c}. The imaginary part is estimated in the gluonic medium, where we find that it is of the same order of magnitude as in hard-thermal loop resummed perturbation theory in the deconfined phase.

  4. High-precision QCD at hadron colliders:electroweak gauge boson rapidity distributions at NNLO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastasiou, C.

    2004-01-05

    We compute the rapidity distributions of W and Z bosons produced at the Tevatron and the LHC through next-to-next-to leading order in QCD. Our results demonstrate remarkable stability with respect to variations of the factorization and renormalization scales for all values of rapidity accessible in current and future experiments. These processes are therefore ''gold-plated'': current theoretical knowledge yields QCD predictions accurate to better than one percent. These results strengthen the proposal to use $W$ and $Z$ production to determine parton-parton luminosities and constrain parton distribution functions at the LHC. For example, LHC data should easily be able to distinguish themore » central parton distribution fit obtained by MRST from that obtained by Alekhin.« less

  5. Computer Simulation of Electron Positron Annihilation Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, y

    2003-10-02

    With the launching of the Next Linear Collider coming closer and closer, there is a pressing need for physicists to develop a fully-integrated computer simulation of e{sup +}e{sup -} annihilation process at center-of-mass energy of 1TeV. A simulation program acts as the template for future experiments. Either new physics will be discovered, or current theoretical uncertainties will shrink due to more accurate higher-order radiative correction calculations. The existence of an efficient and accurate simulation will help us understand the new data and validate (or veto) some of the theoretical models developed to explain new physics. It should handle well interfacesmore » between different sectors of physics, e.g., interactions happening at parton levels well above the QCD scale which are described by perturbative QCD, and interactions happening at much lower energy scale, which combine partons into hadrons. Also it should achieve competitive speed in real time when the complexity of the simulation increases. This thesis contributes some tools that will be useful for the development of such simulation programs. We begin our study by the development of a new Monte Carlo algorithm intended to perform efficiently in selecting weight-1 events when multiple parameter dimensions are strongly correlated. The algorithm first seeks to model the peaks of the distribution by features, adapting these features to the function using the EM algorithm. The representation of the distribution provided by these features is then improved using the VEGAS algorithm for the Monte Carlo integration. The two strategies mesh neatly into an effective multi-channel adaptive representation. We then present a new algorithm for the simulation of parton shower processes in high energy QCD. We want to find an algorithm which is free of negative weights, produces its output as a set of exclusive events, and whose total rate exactly matches the full Feynman amplitude calculation. Our strategy is to create the whole QCD shower as a tree structure generated by a multiple Poisson process. Working with the whole shower allows us to include correlations between gluon emissions from different sources. QCD destructive interference is controlled by the implementation of ''angular-ordering,'' as in the HERWIG Monte Carlo program. We discuss methods for systematic improvement of the approach to include higher order QCD effects.« less

  6. Vector-Boson Fusion Higgs Production at Three Loops in QCD.

    PubMed

    Dreyer, Frédéric A; Karlberg, Alexander

    2016-08-12

    We calculate the next-to-next-to-next-to-leading-order (N^{3}LO) QCD corrections to inclusive vector-boson fusion Higgs production at proton colliders, in the limit in which there is no color exchange between the hadronic systems associated with the two colliding protons. We also provide differential cross sections for the Higgs transverse momentum and rapidity distributions. We find that the corrections are at the 1‰-2‰ level, well within the scale uncertainty of the next-to-next-to-leading-order calculation. The associated scale uncertainty of the N^{3}LO calculation is typically found to be below the 2‰ level. We also consider theoretical uncertainties due to missing higher order parton distribution functions, and provide an estimate of their importance.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Nadine; Prestel, S.; Ritzmann, M.

    We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are 2→3 antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a p ⊥ measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., g → qq¯) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of 1/Q 2. Recoils and kinematics are governed bymore » exact on-shell 2 → 3 phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to O(α 4 s) (4 jets), and for Drell–Yan and Higgs production up to O(α 3 s) (V / H + 3 jets). Finally, the resulting algorithm has been made publicly available in Vincia 2.0.« less

  8. Shear viscosity of the quark-gluon plasma in a weak magnetic field in perturbative QCD: Leading log

    NASA Astrophysics Data System (ADS)

    Li, Shiyong; Yee, Ho-Ung

    2018-03-01

    We compute the shear viscosity of two-flavor QCD plasma in an external magnetic field in perturbative QCD at leading log order, assuming that the magnetic field is weak or soft: e B ˜g4log (1 /g )T2. We work in the assumption that the magnetic field is homogeneous and static, and the electrodynamics is nondynamical in a formal limit e →0 while e B is kept fixed. We show that the shear viscosity takes a form η =η ¯(B ¯)T3/(g4log (1 /g )) with a dimensionless function η ¯(B ¯) in terms of a dimensionless variable B ¯=(e B )/(g4log (1 /g )T2). The variable B ¯ corresponds to the relative strength of the effect of cyclotron motions compared to the QCD collisions: B ¯˜lmfp/lcyclo. We provide a full numerical result for the scaled shear viscosity η ¯(B ¯).

  9. Anomalous magnetic moment of the muon: A hybrid approach

    NASA Astrophysics Data System (ADS)

    Dominguez, C. A.; Horch, H.; Jäger, B.; Nasrallah, N. F.; Schilcher, K.; Spiesberger, H.; Wittig, H.

    2017-10-01

    A new QCD sum rule determination of the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, aμhvp, is proposed. This approach combines data on e+e- annihilation into hadrons, perturbative QCD and lattice QCD results for the first derivative of the electromagnetic current correlator at zero momentum transfer, ΠEM'(0 ). The idea is based on the observation that, in the relevant kinematic domain, the integration kernel K (s ), entering the formula relating aμhvp to e+e- annihilation data, behaves like 1 /s times a very smooth function of s , the squared energy. We find an expression for aμ in terms of ΠEM'(0 ), which can be calculated in lattice QCD. Using recent lattice results we find a good approximation for aμhvp, but the precision is not yet sufficient to resolve the discrepancy between the R (s ) data-based results and the experimentally measured value.

  10. K-->pipi amplitudes from lattice QCD with a light charm quark.

    PubMed

    Giusti, L; Hernández, P; Laine, M; Pena, C; Wennekers, J; Wittig, H

    2007-02-23

    We compute the leading-order low-energy constants of the DeltaS=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light. They are extracted by comparing the predictions of finite-volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a DeltaI=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the DeltaI=1/2 amplitude, our computation suggests large QCD contributions to the physical DeltaI=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm-quark mass in K-->pipi amplitudes. The use of fermions with an exact chiral symmetry is an essential ingredient in our computation.

  11. Scale dependencies of proton spin constituents with a nonperturbative αs

    NASA Astrophysics Data System (ADS)

    Jia, Shaoyang; Huang, Feng

    2012-11-01

    By introducing the contribution from dynamically generated gluon mass, we present a brand new parametrized form of QCD beta function to get an inferred limited running behavior of QCD coupling constant αs. This parametrized form is regarded as an essential factor to determine the scale dependencies of the proton spin constituents at the very low scale. In order to compare with experimental results directly, we work within the gauge-invariant framework to decompose the proton spin. Utilizing the updated next-to-next-leading-order evolution equations for angular momentum observables within a modified minimal subtraction scheme, we indicate that gluon contribution to proton spin cannot be ignored. Specifically, by assuming asymptotic limits of the total quark/gluon angular momentum valid, respectively, the scale dependencies of quark angular momentum Jq and gluon angular momentum Jg down to Q2˜1GeV2 are presented, which are comparable with the preliminary analysis of deeply virtual Compton scattering experiments by HERMES and JLab. After solving scale dependencies of quark spin ΔΣq, orbital angular momenta of quarks Lq are given by subtraction, presenting a holistic picture of proton spin partition within up and down quarks at a low scale.

  12. A determination of the fragmentation functions of pions, kaons, and protons with faithful uncertainties. The NNPDF Collaboration

    NASA Astrophysics Data System (ADS)

    Bertone, Valerio; Carrazza, Stefano; Hartland, Nathan P.; Nocera, Emanuele R.; Rojo, Juan

    2017-08-01

    We present NNFF1.0, a new determination of the fragmentation functions (FFs) of charged pions, charged kaons, and protons/antiprotons from an analysis of single-inclusive hadron production data in electron-positron annihilation. This determination, performed at leading, next-to-leading, and next-to-next-to-leading order in perturbative QCD, is based on the NNPDF methodology, a fitting framework designed to provide a statistically sound representation of FF uncertainties and to minimise any procedural bias. We discuss novel aspects of the methodology used in this analysis, namely an optimised parametrisation of FFs and a more efficient χ ^2 minimisation strategy, and validate the FF fitting procedure by means of closure tests. We then present the NNFF1.0 sets, and discuss their fit quality, their perturbative convergence, and their stability upon variations of the kinematic cuts and the fitted dataset. We find that the systematic inclusion of higher-order QCD corrections significantly improves the description of the data, especially in the small- z region. We compare the NNFF1.0 sets to other recent sets of FFs, finding in general a reasonable agreement, but also important differences. Together with existing sets of unpolarised and polarised parton distribution functions (PDFs), FFs and PDFs are now available from a common fitting framework for the first time.

  13. Resumming double logarithms in the QCD evolution of color dipoles

    DOE PAGES

    Iancu, E.; Madrigal, J. D.; Mueller, A. H.; ...

    2015-05-01

    The higher-order perturbative corrections, beyond leading logarithmic accuracy, to the BFKL evolution in QCD at high energy are well known to suffer from a severe lack-of-convergence problem, due to radiative corrections enhanced by double collinear logarithms. Via an explicit calculation of Feynman graphs in light cone (time-ordered) perturbation theory, we show that the corrections enhanced by double logarithms (either energy-collinear, or double collinear) are associated with soft gluon emissions which are strictly ordered in lifetime. These corrections can be resummed to all orders by solving an evolution equation which is non-local in rapidity. This equation can be equivalently rewritten inmore » local form, but with modified kernel and initial conditions, which resum double collinear logs to all orders. We extend this resummation to the next-to-leading order BFKL and BK equations. The first numerical studies of the collinearly-improved BK equation demonstrate the essential role of the resummation in both stabilizing and slowing down the evolution.« less

  14. The singular behavior of one-loop massive QCD amplitudes with one external soft gluon

    NASA Astrophysics Data System (ADS)

    Bierenbaum, Isabella; Czakon, Michał; Mitov, Alexander

    2012-03-01

    We calculate the one-loop correction to the soft-gluon current with massive fermions. This current is process independent and controls the singular behavior of one-loop massive QCD amplitudes in the limit when one external gluon becomes soft. The result derived in this work is the last missing process-independent ingredient needed for numerical evaluation of observables with massive fermions at hadron colliders at the next-to-next-to-leading order.

  15. Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boughezal, Radja; Campbell, John M.; Ellis, R. Keith

    2016-04-14

    Here, we present the first complete calculation of Z-boson production in association with a jet in hadronic collisions through next-to-next-to-leading order in perturbative QCD. Our computation uses the recently proposed N-jettiness subtraction scheme to regulate the infrared divergences that appear in the real-emission contributions. We present phenomenological results for 13 TeV proton-proton collisions with fully realistic fiducial cuts on the final-state particles. The remaining theoretical uncertainties after the inclusion of our calculations are at the percent level, making the Z+jet channel ready for precision studies at the LHC run II.

  16. Spontaneous breaking of discrete symmetries in QCD on a small volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucini, B.; Patella, A.; Pica, C.

    2007-11-20

    In a compact space with non-trivial cycles, for sufficiently small values of the compact dimensions, charge conjugation (C), spatial reflection (P) and time reversal (J) are spontaneously broken in QCD. The order parameter for the symmetry breaking is the trace of the Wilson line wrapping around the compact dimension, which acquires an imaginary part in the broken phase. We show that a physical signature for the symmetry breaking is a persistent baryonic current wrapping in the compact directions. The existence of such a current is derived analytically at first order in perturbation theory and confirmed in the non-perturbative regime bymore » lattice simulations.« less

  17. Charmless two-body B decays: A global analysis with QCD factorization

    NASA Astrophysics Data System (ADS)

    Du, Dongsheng; Sun, Junfeng; Yang, Deshan; Zhu, Guohuai

    2003-01-01

    In this paper, we perform a global analysis of B→PP and PV decays with the QCD factorization approach. It is encouraging to observe that the predictions of QCD factorization are in good agreement with experiment. The best fit γ is around 79 °. The penguin-diagram to tree-diagram ratio |Pππ/Tππ| of π+π- decays is preferred to be larger than 0.3. We also show the confidence levels for some interesting channels: B0→π0π0, K+K-, and B+→ωπ+, ωK+. For B→πK* decays, they are expected to have smaller branching ratios with more precise measurements.

  18. Concerns Expressed by Parents of Children with Pervasive Developmental Disorders for Different Time Periods of the Day: A Case–Control Study

    PubMed Central

    Sasaki, Yoshinori; Usami, Masahide; Sasayama, Daimei; Okada, Takashi; Iwadare, Yoshitaka; Watanabe, Kyota; Ushijima, Hirokage; Tanaka, Tetsuya; Harada, Maiko; Tanaka, Hiromi; Kodaira, Masaki; Sugiyama, Nobuhiro; Sawa, Tetsuji; Saito, Kazuhiko

    2015-01-01

    Background/Aim The Questionnaire: Children with Difficulties (QCD) is a parent-assessed questionnaire designed to evaluate child’s difficulties in functioning during specific periods of the day. This study aimed to evaluate difficulties in daily functioning of children and adolescents with pervasive developmental disorder (PDD) using the QCD. Results were compared with those for a community sample. Methods A case–control design was used. The cases comprised elementary school students (182 males, 51 females) and junior high school students (100 males, 39 females) with PDD, whereas a community sample of elementary school students (568 males, 579 females) and junior high school students (180 males, 183 females) was enrolled as controls. Their behavior was assessed using the QCD, the Tokyo Autistic Behavior Scale (TABS), the ADHD-rating scale (ADHD-RS), and the Oppositional Defiant Behavior Inventory (ODBI) for elementary and junior high school students, respectively. Effects of gender and diagnosis on the QCD scores were analyzed. Correlation coefficients between QCD and TABS, ADHD-RS, and ODBI scores were analyzed. Results The QCD scores for the children with PDD were significantly lower compared with those from the community sample (P < 0.001). Significantly strong correlations were observed in more areas of the ADHD-RS and ODBI scores compared with the TABS scores. Conclusions Children with PDD experienced greater difficulties in completing basic daily activities; moreover, their QCD scores revealed stronger associations with their ADHD-RS and ODBI scores in comparison with their TABS scores. The difficulties of PDD, ADHD and OBDI symptoms combined in children makes it necessary to assess all diagnoses before any therapy for PDD is initiated in order to be able to evaluate its results properly. PMID:25898260

  19. Analysis of nucleon electromagnetic form factors from light-front holographic QCD: The spacelike region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sufian, Raza Sabbir; de Teramond, Guy F.; Brodsky, Stanley J.

    We present a comprehensive analysis of the space-like nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock componentsmore » $$|{qqqq\\bar{q}}$$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$$\\%$$ in the proton and about 40$$\\%$$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter $r$, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. As a result, the covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS$$_5$$ semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.« less

  20. Analysis of nucleon electromagnetic form factors from light-front holographic QCD: The spacelike region

    DOE PAGES

    Sufian, Raza Sabbir; de Teramond, Guy F.; Brodsky, Stanley J.; ...

    2017-01-10

    We present a comprehensive analysis of the space-like nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock componentsmore » $$|{qqqq\\bar{q}}$$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$$\\%$$ in the proton and about 40$$\\%$$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter $r$, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. As a result, the covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS$$_5$$ semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.« less

  1. On the loop approximation in nucleon QCD sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drukarev, E. G., E-mail: drukarev@thd.pnpi.spb.ru; Ryskin, M. G.; Sadovnikova, V. A.

    There was a general belief that the nucleon QCD sum rules which include only the quark loops and thus contain only the condensates of dimension d = 3 and d = 4 have only a trivial solution. We demonstrate that there is also a nontrivial solution. We show that it can be treated as the lowest order approximation to the solution which includes the higher terms of the Operator Product Expansion. Inclusion of the radiative corrections improves the convergence of the series.

  2. On the small-x behavior of the orbital angular momentum distributions in QCD

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshitaka; Yang, Dong-Jing

    2018-06-01

    We present the numerical solution of the leading order QCD evolution equation for the orbital angular momentum distributions of quarks and gluons and discuss its implications for the nucleon spin sum rule. We observe that at small-x, the gluon helicity and orbital angular momentum distributions are roughly of the same magnitude but with opposite signs, indicating a significant cancellation between them. A similar cancellation occurs also in the quark sector. We explain analytically the reason for this cancellation.

  3. Glueball spectrum and hadronic processes in low-energy QCD

    NASA Astrophysics Data System (ADS)

    Frasca, Marco

    2010-10-01

    Low-energy limit of quantum chromodynamics (QCD) is obtained using a mapping theorem recently proved. This theorem states that, classically, solutions of a massless quartic scalar field theory are approximate solutions of Yang-Mills equations in the limit of the gauge coupling going to infinity. Low-energy QCD is described by a Yukawa theory further reducible to a Nambu-Jona-Lasinio model. At the leading order one can compute glue-quark interactions and one is able to calculate the properties of the σ and η-η mesons. Finally, it is seen that all the physics of strong interactions, both in the infrared and ultraviolet limit, is described by a single constant Λ arising in the ultraviolet by dimensional transmutation and in the infrared as an integration constant.

  4. Threshold Collision Energy of the QCD Phase Diagram Tricritical Endpoint

    NASA Astrophysics Data System (ADS)

    Bugaev, K. A.; Emaus, R.; Sagun, V. V.; Ivanytskyi, A. I.; Bravina, L. V.; Blaschke, D. B.; Nikonov, E. G.; Taranenko, A. V.; Zabrodin, E. E.; Zinovjev, G. M.

    2018-05-01

    Using the most advanced formulation of the hadron resonance gas model we analyze the two sets of irregularities found at chemical freeze-out of central nuclear-nuclear collisions at the center of mass energies 3.8-4.9 GeV and 7.6-9.2 GeV. In addition to previously reported irregularities at the collision energies 4.9 and 9.2 GeV we found sharp peaks of baryonic charge density. Also we analyze the collision energy dependence of the modified Wroblewski factor and the strangeness suppression factor. Based on the thermostatic properties of the mixed phase of a 1st order phase transition and the ones of the Hagedorn mass spectrum we explain, respectively, the reason of observed chemical equilibration of strangeness at the collision energy 4.9 GeV and above 8.7 GeV. It is argued that the both sets of irregularities possibly evidence for two phase transitions, namely, the 1st order transition at lower energy range and the 2nd order transition at higher one. In combination with a recent analysis of the light nuclei number fluctuations we conclude that the center of mass collision energy range 8.8-9.2 GeV may be in the nearest vicinity of the QCD tricritical endpoint. The properties of the phase existing between two phase transitions are revealed and discussed.

  5. Multi-Variable Analysis and Design Techniques.

    DTIC Science & Technology

    1981-09-01

    factors through ri. Fact: - is a partial order on E(X) and induces a lattice structure. Namely for any ri,0, [(X) there exists I := YlAtl with the...U- (0.- -qi. U C 0 ro.* qcd .-O ’ 3 . mC V03 -- Dh-J CEQ-UO C O) C C 00 0 m U CO )CQL IG L ?( (5 Li C -0 -0Z0M0-U010 0 4)1- EC -0 - 0 C:) -D >Z 1 J a

  6. QCD-Electroweak First-Order Phase Transition in a Supercooled Universe.

    PubMed

    Iso, Satoshi; Serpico, Pasquale D; Shimada, Kengo

    2017-10-06

    If the electroweak sector of the standard model is described by classically conformal dynamics, the early Universe evolution can be substantially altered. It is already known that-contrarily to the standard model case-a first-order electroweak phase transition may occur. Here we show that, depending on the model parameters, a dramatically different scenario may happen: A first-order, six massless quark QCD phase transition occurs first, which then triggers the electroweak symmetry breaking. We derive the necessary conditions for this dynamics to occur, using the specific example of the classically conformal B-L model. In particular, relatively light weakly coupled particles are predicted, with implications for collider searches. This scenario is also potentially rich in cosmological consequences, such as renewed possibilities for electroweak baryogenesis, altered dark matter production, and gravitational wave production, as we briefly comment upon.

  7. QCD-Electroweak First-Order Phase Transition in a Supercooled Universe

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Serpico, Pasquale D.; Shimada, Kengo

    2017-10-01

    If the electroweak sector of the standard model is described by classically conformal dynamics, the early Universe evolution can be substantially altered. It is already known that—contrarily to the standard model case—a first-order electroweak phase transition may occur. Here we show that, depending on the model parameters, a dramatically different scenario may happen: A first-order, six massless quark QCD phase transition occurs first, which then triggers the electroweak symmetry breaking. We derive the necessary conditions for this dynamics to occur, using the specific example of the classically conformal B -L model. In particular, relatively light weakly coupled particles are predicted, with implications for collider searches. This scenario is also potentially rich in cosmological consequences, such as renewed possibilities for electroweak baryogenesis, altered dark matter production, and gravitational wave production, as we briefly comment upon.

  8. Measurement of D ∗ meson cross sections at HERA and determination of the gluon density in the proton using NLO QCD

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beck, M.; Beglarian, A.; Behnke, O.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Biddulph, P.; Bizot, J. C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Brown, D. P.; Brückner, W.; Bruel, P.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burrage, A.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davidsson, M.; De Roeck, A.; De Wolf, E. A.; Delcourt, B.; Demirchyan, R.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K. T.; Dowell, J. D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Fleischer, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gassner, J.; Gayler, J.; Gerhards, R.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haustein, V.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; İşsever, Ç.; Jacquet, M.; Jaffre, M.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jones, M.; Jung, H.; Kästli, H. K.; Kander, M.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnik, O.; Katzy, J.; Kaufmann, O.; Kausch, M.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, K.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Lahmann, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobo, G.; Lobodzinska, E.; Lubimov, V.; Lüders, S.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martin, G.; Martyn, H.-U.; Martyniak, J.; Maxfield, S. J.; McMahon, T. R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Mikocki, S.; Milstead, D.; Moeck, J.; Mohr, R.; Mohrdieck, S.; Moreau, F.; Morris, J. V.; Müller, D.; Müller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nikitin, D.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panassik, V.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Scheins, J.; Schilling, F.-P.; Schleif, S.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schoeffel, L.; Schröder, V.; Schultz-Coulon, H.-C.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Sirois, Y.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Spaskov, V.; Specka, A.; Spiekermann, J.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Swart, M.; Tapprogge, S.; Taševský, M.; Tchernshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Haecke, A.; Van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wünsch, E.; Žaček, J.; Zálešak, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; zurNedden, M.; H1 Collaboration

    1999-04-01

    With the H1 detector at the ep collider HERA, D ∗ meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q2 > 3 GeV 2 and in photoproduction at energies around Wγp ≈ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, xgg( xg), has been extracted in the momentum fraction range 7.5 × 10 -4 < xg < 4 × 10 -2 at average scales μ2 = 25 to 50 GeV 2. The gluon momentum fraction xg has been obtained from the measured kinematics of the scattered electron and the D ∗ meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F2.

  9. Charged hadrons in local finite-volume QED+QCD with C⋆ boundary conditions

    NASA Astrophysics Data System (ADS)

    Lucini, B.; Patella, A.; Ramos, A.; Tantalo, N.

    2016-02-01

    In order to calculate QED corrections to hadronic physical quantities by means of lattice simulations, a coherent description of electrically-charged states in finite volume is needed. In the usual periodic setup, Gauss's law and large gauge transformations forbid the propagation of electrically-charged states. A possible solution to this problem, which does not violate the axioms of local quantum field theory, has been proposed by Wiese and Polley, and is based on the use of C⋆ boundary conditions. We present a thorough analysis of the properties and symmetries of QED in isolation and QED coupled to QCD, with C⋆ boundary conditions. In particular we learn that a certain class of electrically-charged states can be constructed in a fully consistent fashion without relying on gauge fixing and without peculiar complications. This class includes single particle states of most stable hadrons. We also calculate finite-volume corrections to the mass of stable charged particles and show that these are much smaller than in non-local formulations of QED.

  10. The Secret Life of Quarks, Final Report for the University of North Carolina at Chapel Hill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Robert J.

    This final report summarizes activities and results at the University of North Carolina as part of the the SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Quantum Chromodynamics. The overall objective of the project is to construct the software needed to study quantum chromo- dynamics (QCD), the theory of the strong interactions of subatomic physics, and similar strongly coupled gauge theories anticipated to be of importance in the LHC era. It built upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API)more » was developed that enables lat- tice gauge theorists to make effective use of a wide variety of massively parallel computers. In the SciDAC-2 project, optimized versions of the QCD API were being created for the IBM Blue- Gene/L (BG/L) and BlueGene/P (BG/P), the Cray XT3/XT4 and its successors, and clusters based on multi-core processors and Infiniband communications networks. The QCD API is being used to enhance the performance of the major QCD community codes and to create new applications. Software libraries of physics tools have been expanded to contain sharable building blocks for inclusion in application codes, performance analysis and visualization tools, and software for au- tomation of physics work flow. New software tools were designed for managing the large data sets generated in lattice QCD simulations, and for sharing them through the International Lattice Data Grid consortium. As part of the overall project, researchers at UNC were funded through ASCR to work in three general areas. The main thrust has been performance instrumentation and analysis in support of the SciDAC QCD code base as it evolved and as it moved to new computation platforms. In support of the performance activities, performance data was to be collected in a database for the purpose of broader analysis. Third, the UNC work was done at RENCI (Renaissance Computing Institute), which has extensive expertise and facilities for scientific data visualization, so we acted in an ongoing consulting and support role in that area.« less

  11. First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints

    DOE PAGES

    Lin, Huey-Wen; Melnitchouk, Wally; Prokudin, Alexei; ...

    2018-04-11

    We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor chargemore » $$g_T$$ from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with $$g_T$$ values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller $$g_T$$ values. The contributions to the nucleon tensor charge from $u$ and $d$ quarks are found to be $$\\delta u = 0.3(2)$$ and $$\\delta d = -0.7(2)$$ at a scale $Q^2 = 2$ GeV$^2$.« less

  12. First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Huey-Wen; Melnitchouk, Wally; Prokudin, Alexei

    We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor chargemore » $$g_T$$ from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with $$g_T$$ values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller $$g_T$$ values. The contributions to the nucleon tensor charge from $u$ and $d$ quarks are found to be $$\\delta u = 0.3(2)$$ and $$\\delta d = -0.7(2)$$ at a scale $Q^2 = 2$ GeV$^2$.« less

  13. First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints.

    PubMed

    Lin, H-W; Melnitchouk, W; Prokudin, A; Sato, N; Shows, H

    2018-04-13

    We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor charge g_{T} from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with g_{T} values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller g_{T} values. The contributions to the nucleon tensor charge from u and d quarks are found to be δu=0.3(2) and δd=-0.7(2) at a scale Q^{2}=2  GeV^{2}.

  14. First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints

    NASA Astrophysics Data System (ADS)

    Lin, H.-W.; Melnitchouk, W.; Prokudin, A.; Sato, N.; Shows, H.; Jefferson Lab Angular Momentum JAM Collaboration

    2018-04-01

    We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor charge gT from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with gT values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller gT values. The contributions to the nucleon tensor charge from u and d quarks are found to be δ u =0.3 (2 ) and δ d =-0.7 (2 ) at a scale Q2=2 GeV2.

  15. VINCIA for hadron colliders

    DOE PAGES

    Fischer, Nadine; Prestel, S.; Ritzmann, M.; ...

    2016-10-28

    We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are 2→3 antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a p ⊥ measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., g → qq¯) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of 1/Q 2. Recoils and kinematics are governed bymore » exact on-shell 2 → 3 phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to O(α 4 s) (4 jets), and for Drell–Yan and Higgs production up to O(α 3 s) (V / H + 3 jets). Finally, the resulting algorithm has been made publicly available in Vincia 2.0.« less

  16. The QCD form factor of heavy quarks at NNLO

    NASA Astrophysics Data System (ADS)

    Gluza, J.; Mitov, A.; Moch, S.; Riemann, T.

    2009-07-01

    We present an analytical calculation of the two-loop QCD corrections to the electromagnetic form factor of heavy quarks. The two-loop contributions to the form factor are reduced to linear combinations of master integrals, which are computed through higher orders in the parameter of dimensional regularization epsilon = (4-D)/2. Our result includes all terms of order epsilon at two loops and extends the previous literature. We apply the exponentiation of the heavy-quark form factor to derive new improved three-loop expansions in the high-energy limit. We also discuss the implications for predictions of massive n-parton amplitudes based on massless results in the limit, where the quark mass is small compared to all kinematical invariants.

  17. Determination of $${{\\rm{\\Lambda }}}_{\\overline{{\\rm{MS}}}}$$ at five loops from holographic QCD

    DOE PAGES

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2017-08-25

    Here, the recent determination of themore » $$\\beta$$--function of the QCD running coupling $$\\alpha_{\\overline{MS}}(Q^2)$$ to five-loops, provides a verification of the convergence of a novel method for determining the fundamental QCD parameter $$\\Lambda_s$$ based on the Light-Front Holographic approach to nonperturbative QCD. The new 5-loop analysis, together with improvements in determining the holographic QCD nonperturbative scale parameter $$\\kappa$$ from hadronic spectroscopy, leads to an improved precision of the value of $$\\Lambda_s$$ in the $${\\overline{MS}}$$ scheme close to a factor of two; we find $$\\Lambda^{(3)}_{\\overline{MS}}=0.339\\pm0.019$$ GeV for $$n_{f}=3$$, in excellent agreement with the world average, $$\\Lambda_{\\overline{MS}}^{(3)}=0.332\\pm0.017$$ GeV. Lastly, we also discuss the constraints imposed on the scale dependence of the strong coupling in the nonperturbative domain by superconformal quantum mechanics and its holographic embedding in anti-de Sitter space.« less

  18. Exposing the QCD Splitting Function with CMS Open Data.

    PubMed

    Larkoski, Andrew; Marzani, Simone; Thaler, Jesse; Tripathee, Aashish; Xue, Wei

    2017-09-29

    The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in many QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this Letter, we use public data released by the CMS experiment to study the two-prong substructure of jets and test the 1→2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.

  19. An automated subtraction of NLO EW infrared divergences

    NASA Astrophysics Data System (ADS)

    Schönherr, Marek

    2018-02-01

    In this paper a generalisation of the Catani-Seymour dipole subtraction method to next-to-leading order electroweak calculations is presented. All singularities due to photon and gluon radiation off both massless and massive partons in the presence of both massless and massive spectators are accounted for. Particular attention is paid to the simultaneous subtraction of singularities of both QCD and electroweak origin which are present in the next-to-leading order corrections to processes with more than one perturbative order contributing at Born level. Similarly, embedding non-dipole-like photon splittings in the dipole subtraction scheme discussed. The implementation of the formulated subtraction scheme in the framework of the Sherpa Monte-Carlo event generator, including the restriction of the dipole phase space through the α -parameters and expanding its existing subtraction for NLO QCD calculations, is detailed and numerous internal consistency checks validating the obtained results are presented.

  20. Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(αS4)

    NASA Astrophysics Data System (ADS)

    Czakon, Michał; Fiedler, Paul; Mitov, Alexander

    2013-06-01

    We compute the next-to-next-to-leading order (NNLO) quantum chromodynamics (QCD) correction to the total cross section for the reaction gg→tt¯+X. Together with the partonic channels we computed previously, the result derived in this Letter completes the set of NNLO QCD corrections to the total top pair-production cross section at hadron colliders. Supplementing the fixed order results with soft-gluon resummation with next-to-next-to-leading logarithmic accuracy, we estimate that the theoretical uncertainty of this observable due to unknown higher order corrections is about 3% at the LHC and 2.2% at the Tevatron. We observe a good agreement between the standard model predictions and the available experimental measurements. The very high theoretical precision of this observable allows a new level of scrutiny in parton distribution functions and new physics searches.

  1. Total top-quark pair-production cross section at hadron colliders through O(αS(4)).

    PubMed

    Czakon, Michał; Fiedler, Paul; Mitov, Alexander

    2013-06-21

    We compute the next-to-next-to-leading order (NNLO) quantum chromodynamics (QCD) correction to the total cross section for the reaction gg → tt + X. Together with the partonic channels we computed previously, the result derived in this Letter completes the set of NNLO QCD corrections to the total top pair-production cross section at hadron colliders. Supplementing the fixed order results with soft-gluon resummation with next-to-next-to-leading logarithmic accuracy, we estimate that the theoretical uncertainty of this observable due to unknown higher order corrections is about 3% at the LHC and 2.2% at the Tevatron. We observe a good agreement between the standard model predictions and the available experimental measurements. The very high theoretical precision of this observable allows a new level of scrutiny in parton distribution functions and new physics searches.

  2. Measurement of the inclusive isolated prompt photons cross section in pp collisions at √s =7 TeV with the ATLAS detector using 4.6 fb-1

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Aefsky, S.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Astbury, A.; Atkinson, M.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brost, E.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas, J.; Cole, S.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Courneyea, L.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Damiani, D. S.; Daniells, A. C.; Danielsson, H. O.; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dinut, F.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Doi, Y.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Dufour, M.-A.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Eckweiler, S.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Engelmann, R.; Engl, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gandrajula, R. P.; Gao, Y. S.; Gaponenko, A.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gunther, J.; Guo, J.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Haefner, P.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmgren, S. O.; Holzbauer, J. L.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jeng, G.-Y.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lukas, W.; Luminari, L.; Lund, E.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lundquist, J.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Meguro, T.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Möser, N.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nozaki, M.; Nozka, L.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pizio, C.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Raas, M.; Radeka, V.; Radescu, V.; Radloff, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinsch, A.; Reisinger, I.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Ritsch, E.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.; Subramania, Hs.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Tuna, A. N.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. S.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimin, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; ATLAS Collaboration

    2014-03-01

    A measurement of the cross section for the production of isolated prompt photons in pp collisions at a center-of-mass energy √s =7 TeV is presented. The results are based on an integrated luminosity of 4.6 fb-1 collected with the ATLAS detector at the LHC. The cross section is measured as a function of photon pseudorapidity ηγ and transverse energy ETγ in the kinematic range 100≤ETγ<1000 GeV and in the regions |ηγ|<1.37 and 1.52≤|ηγ|<2.37. The results are compared to leading-order parton-shower Monte Carlo models and next-to-leading-order perturbative QCD calculations. Next-to-leading-order perturbative QCD calculations agree well with the measured cross sections as a function of ETγ and ηγ.

  3. (O8 , O8 ) contribution to B ¯→Xsγ γ at O (αs)

    NASA Astrophysics Data System (ADS)

    Asatrian, H. M.; Greub, C.; Kokulu, A.

    2016-01-01

    In this analysis, we present the contribution associated with the chromomagnetic dipole operator O8 to the double differential decay width d Γ /(d s1d s2) for the inclusive process B ¯→Xsγ γ . The kinematical variables s1 and s2 are defined as si=(pb-qi)2/mb2, where pb, q1, q2 are the momenta of b quark and two photons. This contribution (taken at tree level) is of order αs, like the recently calculated QCD corrections to the contribution of the operator O7. In order to regulate possible collinear singularities of one of the photons with the strange quark, we introduce a nonzero mass ms for the strange quark. Our results are obtained for exact ms, which we interpret as a constituent mass being varied between 400 and 600 MeV. Numerically it turns out that the effect of the (O8 , O8 ) contribution to the branching ratio of B ¯→Xsγ γ does not exceed +0.1 % for any kinematically allowed value of our physical cutoff parameter c , confirming the expected suppression of this contribution relative to the QCD corrections to d Γ77/(d s1d s2).

  4. Percent-level-precision physics at the Tevatron: next-to-next-to-leading order QCD corrections to qq¯→tt¯+X.

    PubMed

    Bärnreuther, Peter; Czakon, Michał; Mitov, Alexander

    2012-09-28

    We compute the next-to-next-to-leading order QCD corrections to the partonic reaction that dominates top-pair production at the Tevatron. This is the first ever next-to-next-to-leading order calculation of an observable with more than two colored partons and/or massive fermions at hadron colliders. Augmenting our fixed order calculation with soft-gluon resummation through next-to-next-to-leading logarithmic accuracy, we observe that the predicted total inclusive cross section exhibits a very small perturbative uncertainty, estimated at ±2.7%. We expect that once all subdominant partonic reactions are accounted for, and work in this direction is ongoing, the perturbative theoretical uncertainty for this observable could drop below ±2%. Our calculation demonstrates the power of our computational approach and proves it can be successfully applied to all processes at hadron colliders for which high-precision analyses are needed.

  5. Percent-Level-Precision Physics at the Tevatron: Next-to-Next-to-Leading Order QCD Corrections to qq¯→tt¯+X

    NASA Astrophysics Data System (ADS)

    Bärnreuther, Peter; Czakon, Michał; Mitov, Alexander

    2012-09-01

    We compute the next-to-next-to-leading order QCD corrections to the partonic reaction that dominates top-pair production at the Tevatron. This is the first ever next-to-next-to-leading order calculation of an observable with more than two colored partons and/or massive fermions at hadron colliders. Augmenting our fixed order calculation with soft-gluon resummation through next-to-next-to-leading logarithmic accuracy, we observe that the predicted total inclusive cross section exhibits a very small perturbative uncertainty, estimated at ±2.7%. We expect that once all subdominant partonic reactions are accounted for, and work in this direction is ongoing, the perturbative theoretical uncertainty for this observable could drop below ±2%. Our calculation demonstrates the power of our computational approach and proves it can be successfully applied to all processes at hadron colliders for which high-precision analyses are needed.

  6. Holographic QCD phase diagram with critical point from Einstein-Maxwell-dilaton dynamics

    NASA Astrophysics Data System (ADS)

    Knaute, J.; Yaresko, R.; Kämpfer, B.

    2018-03-01

    Supplementing the holographic Einstein-Maxwell-dilaton model of [1,2] by input of lattice QCD data for 2 + 1 flavors and physical quark masses for the equation of state and quark number susceptibility at zero baryo-chemical potential we explore the resulting phase diagram over the temperature-chemical potential plane. A first-order phase transition sets in at a temperature of about 112 MeV and a baryo-chemical potential of 612 MeV. We estimate the accuracy of the critical point position in the order of approximately 5-8% by considering parameter variations and different low-temperature asymptotics for the second-order quark number susceptibility. The critical pressure as a function of the temperature has a positive slope, i.e. the entropy per baryon jumps up when crossing the phase border line from larger values of temperature/baryo-chemical potential, thus classifying the phase transition as a gas-liquid one. The updated holographic model exhibits in- and outgoing isentropes in the vicinity of the first-order phase transition.

  7. Complete NLO corrections to W+W+ scattering and its irreducible background at the LHC

    NASA Astrophysics Data System (ADS)

    Biedermann, Benedikt; Denner, Ansgar; Pellen, Mathieu

    2017-10-01

    The process pp → μ +ν μ e+νejj receives several contributions of different orders in the strong and electroweak coupling constants. Using appropriate event selections, this process is dominated by vector-boson scattering (VBS) and has recently been measured at the LHC. It is thus of prime importance to estimate precisely each contribution. In this article we compute for the first time the full NLO QCD and electroweak corrections to VBS and its irreducible background processes with realistic experimental cuts. We do not rely on approximations but use complete amplitudes involving two different orders at tree level and three different orders at one-loop level. Since we take into account all interferences, at NLO level the corrections to the VBS process and to the QCD-induced irreducible background process contribute at the same orders. Hence the two processes cannot be unambiguously distinguished, and all contributions to the μ +ν μ e+νejj final state should be preferably measured together.

  8. Parton Densities: A Personal Retrospective

    NASA Astrophysics Data System (ADS)

    Petronzio, R.

    The beginning of perturbative QCD and the generalisation of parton evolution probabilities beyond leading order are briefly recalled, together with my personal experience of collaboration and friendships with Gabriele.

  9. Precise QCD Predictions for the Production of a Z Boson in Association with a Hadronic Jet.

    PubMed

    Gehrmann-De Ridder, A; Gehrmann, T; Glover, E W N; Huss, A; Morgan, T A

    2016-07-08

    We compute the cross section and differential distributions for the production of a Z boson in association with a hadronic jet to next-to-next-to-leading order (NNLO) in perturbative QCD, including the leptonic decay of the Z boson. We present numerical results for the transverse momentum and rapidity distributions of both the Z boson and the associated jet at the LHC. We find that the NNLO corrections increase the NLO predictions by approximately 1% and significantly reduce the scale variation uncertainty.

  10. NNLO QCD corrections to the polarized top quark decay t (↑)→Xb+W+

    NASA Astrophysics Data System (ADS)

    Czarnecki, A.; Groote, S.; Körner, J. G.; Piclum, J. H.

    2018-05-01

    We compute the next-to-next-to-leading order (NNLO) QCD corrections to the decay t (↑)→Xb+W+ of a polarized top quark. The spin-momentum correlation in this quasi two-body decay is described by the polar angle distribution d Γ /d cos θP=Γ/2 (1 +PtαPcos θP) , where Pt is the polarization of the top quark and αP denotes the asymmetry parameter of the decay. For the latter we find αPNNLO=0.3792 ±0.0037 .

  11. Towards a unified description of total and diffractive structure functions at DESY HERA in the QCD dipole picture

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.; Royon, Ch.

    1998-06-01

    It is argued that the QCD dipole picture allows us to build a unified theoretical description, based on Balitskii-Fadin-Kuraev-Lipatov dynamics, of the total and diffractive nucleon structure functions. This description is in qualitative agreement with the present collection of data obtained by the H1 Collaboration. More precise theoretical estimates, in particular the determination of the normalizations and proton transverse momentum behavior of the diffractive components, are shown to be required in order to reach definite conclusions.

  12. Conformal Symmetry as a Template for QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S

    2004-08-04

    Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero {beta} function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadronmore » phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as {tau} decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized.« less

  13. Two-gluon and trigluon glueballs from dynamical holography QCD

    NASA Astrophysics Data System (ADS)

    Chen, Yi-dian; Huang, Mei

    2016-12-01

    We study the scalar, vector and tensor two-gluon and trigluon glueball spectra in the framework of the 5-dimension dynamical holographic QCD model, where the metric structure is deformed self-consistently by the dilaton field. For comparison, the glueball spectra are also calculated in the hard-wall and soft-wall holographic QCD models. In order to distinguish glueballs with even and odd parities, we introduce a positive and negative coupling between the dilaton field and glueballs, and for higher spin glueballs, we introduce a deformed 5-dimension mass. With this set-up, there is only one free parameter from the quadratic dilaton profile in the dynamical holographic QCD model, which is fixed by the scalar glueball spectra. It is found that the two-gluon glueball spectra produced in the dynamical holographic QCD model are in good agreement with lattice data. Among six trigluon glueballs, the produced masses for 1±- and 2-- are in good agreement with lattice data, and the produced masses for 0--, 0+- and 2+- are around 1.5 GeV lighter than lattice results. This result might indicate that the three trigluon glueballs of 0--, 0+- and 2+- are dominated by the three-gluon condensate contribution. Supported by the NSFC (11175251, 11621131001), DFG and NSFC (CRC 110), CAS Key Project KJCX2-EW-N01, K.C.Wong Education Foundation, and Youth Innovation Promotion Association of CAS

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiller, Britta

    Higher order QCD corrections to W and Z boson production do not only manifest themselves in the generation of high transverse momenta of the weak bosons, but these QCD effects become directly visible in the production of jets in association with the weak bosons. Studying these processes is not only interesting from the perspective of testing perturbative QCD, but also to constrain a major background to many Standard Model (SM) of non-SM physics signals, e.g. top pair and single top production, searchers for the Higgs boson, leptoquarks and supersymmetric particles. This thesis describes a measurement of Z/γ* + jets production in pmore » $$\\bar{p}$$ collisions at √s = 1.96 TeV in the decay channel Z/γ* → μ +μ -. An integrated luminosity of L≈ 1fb -1 collected by the D0 detector at the Tevatron between August 2002 and February 2006 has been used. Differential production cross sections as function of the transverse energy of the first, second and third leading jet are measured. The distributions are corrected for acceptance and migration effects back to hadron level using an iterative unfolding method. Comparison of the measured cross sections to event generators, which include part of the higher order corrections are presented.« less

  15. A proposal of a local modified QCD

    NASA Astrophysics Data System (ADS)

    Cabo Montes de Oca, A.

    2012-06-01

    A local and renormalizable version of a modified PQCD introduced in previous works is presented. The construction indicates that it could be equivalent to massless QCD. The case in which only quark condensate effects are retained is discussed in more detail. Then, the appearing auxiliary fermion fields can be integrated, leading to a theory with the action of massless QCD, to which one local and gauge invariant Lagrangian term for each quark flavour is added. Those action terms are defined by two gluon and two quark fields, in a form curiously not harming power counting renormalizability. The gluon self-energy is evaluated in second order in the gauge coupling and all orders in the new quark couplings, and the result became transversal as required by the gauge invariance. The vacuum energy was also calculated in the two-loop approximation and became gauge parameter independent. The possibilities that higher-loop contributions to the vacuum energy allow the generation of a quark mass hierarchy as a flavour symmetry-breaking effect are commented. The decision on this issue needs a further evaluation of more than two-loop contributions, in which more than one type of quark loops start appearing, possibly leading to interference effects in the vacuum energy.

  16. Reliable semiclassical computations in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dine, Michael; Department of Physics, Stanford University Stanford, California 94305-4060; Festuccia, Guido

    We revisit the question of whether or not one can perform reliable semiclassical QCD computations at zero temperature. We study correlation functions with no perturbative contributions, and organize the problem by means of the operator product expansion, establishing a precise criterion for the validity of a semiclassical calculation. For N{sub f}>N, a systematic computation is possible; for N{sub f}

  17. Bjorken unpolarized and polarized sum rules: comparative analysis of large- NF expansions

    NASA Astrophysics Data System (ADS)

    Broadhurst, D. J.; Kataev, A. L.

    2002-09-01

    Analytical all-orders results are presented for the one-renormalon-chain contributions to the Bjorken unpolarized sum rule for the F1 structure function of νN deep-inelastic scattering in the large-NF limit. The feasibility of estimating higher order perturbative QCD corrections, by the process of naive nonabelianization (NNA), is studied, in anticipation of measurement of this sum rule at a Neutrino Factory. A comparison is made with similar estimates obtained for the Bjorken polarized sum rule. Application of the NNA procedure to correlators of quark vector and scalar currents, in the euclidean region, is compared with recent analytical results for the O(αs4NF2) terms.

  18. Current Issues and Challenges in Global Analysis of Parton Distributions

    NASA Astrophysics Data System (ADS)

    Tung, Wu-Ki

    2007-01-01

    A new implementation of precise perturbative QCD calculation of deep inelastic scattering structure functions and cross sections, incorporating heavy quark mass effects, is applied to the global analysis of the full HERA I data sets on NC and CC cross sections, in conjunction with other experiments. Improved agreement between the NLO QCD theory and the global data sets are obtained. Comparison of the new results to that of previous analysis based on conventional zero-mass parton formalism is made. Exploratory work on implications of new fixed-target neutrino scattering and Drell-Yan data on global analysis is also discussed.

  19. Bulk viscous corrections to screening and damping in QCD at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Qianqian; Dumitru, Adrian; Guo, Yun

    2017-01-01

    Non-equilibrium corrections to the distribution functions of quarks and gluons in a hot and dense QCD medium modify the \\hard thermal loops" (HTL). The HTLs determine the retarded, advanced, and symmetric (time-ordered) propagators for gluons with soft momenta as well as the Debye screening and Landau damping mass scales. Here, we compute such corrections to a thermal as well as to a non-thermal fixed point. The screening and damping mass scales are sensitive to the bulk pressure and hence to (pseudo-) critical dynamical scaling of the bulk viscosity in the vicinity of a second-order critical point. This could be reectedmore » in the properties of quarkonium bound states in the deconfined phase and in the dynamics of soft gluon fields.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, Timo Antero; et al.

    A measurement of the inclusive production cross section of isolated prompt photons in proton-antiproton collisions at center-of-mass energymore » $$\\sqrt{s}$$=1.96TeV is presented. The results are obtained using the full Run II data sample collected with the Collider Detector at the Fermilab Tevatron, which corresponds to an integrated luminosity of 9.5fb$$^{-1}$$. The cross section is measured as a function of photon transverse energy, $$E_T^{\\gamma}$$, in the range 30$$ < E_T^{\\gamma} <$$500GeV and in the pseudorapidity region $$|\\eta^{\\gamma}|<$$1.0. The results are compared with predictions from parton-shower Monte Carlo models at leading order in quantum chromodynamics (QCD) and from next-to-leading order perturbative QCD calculations. The latter show good agreement with the measured cross section.« less

  1. Neutron matter within QCD sum rules

    NASA Astrophysics Data System (ADS)

    Cai, Bao-Jun; Chen, Lie-Wen

    2018-05-01

    The equation of state (EOS) of pure neutron matter (PNM) is studied in QCD sum rules (QCDSRs ). It is found that the QCDSR results on the EOS of PNM are in good agreement with predictions by current advanced microscopic many-body theories. Moreover, the higher-order density terms in quark condensates are shown to be important to describe the empirical EOS of PNM in the density region around and above nuclear saturation density although they play a minor role at subsaturation densities. The chiral condensates in PNM are also studied, and our results indicate that the higher-order density terms in quark condensates, which are introduced to reasonably describe the empirical EOS of PNM at suprasaturation densities, tend to hinder the appearance of chiral symmetry restoration in PNM at high densities.

  2. Analytic derivation of the next-to-leading order proton structure function F2p(x ,Q2) based on the Laplace transformation

    NASA Astrophysics Data System (ADS)

    Khanpour, Hamzeh; Mirjalili, Abolfazl; Tehrani, S. Atashbar

    2017-03-01

    An analytical solution based on the Laplace transformation technique for the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations is presented at next-to-leading order accuracy in perturbative QCD. This technique is also applied to extract the analytical solution for the proton structure function, F2p(x ,Q2) , in the Laplace s space. We present the results for the separate parton distributions of all parton species, including valence quark densities, the antiquark and strange sea parton distribution functions (PDFs), and the gluon distribution. We successfully compare the obtained parton distribution functions and the proton structure function with the results from GJR08 [Gluck, Jimenez-Delgado, and Reya, Eur. Phys. J. C 53, 355 (2008)], 10.1140/epjc/s10052-007-0462-9 and KKT12 [Khanpour, Khorramian, and Tehrani, J. Phys. G 40, 045002 (2013)], 10.1088/0954-3899/40/4/045002 parametrization models as well as the x -space results using QCDnum code. Our calculations show a very good agreement with the available theoretical models as well as the deep inelastic scattering (DIS) experimental data throughout the small and large values of x . The use of our analytical solution to extract the parton densities and the proton structure function is discussed in detail to justify the analysis method, considering the accuracy and speed of calculations. Overall, the accuracy we obtain from the analytical solution using the inverse Laplace transform technique is found to be better than 1 part in 104 to 105. We also present a detailed QCD analysis of nonsinglet structure functions using all available DIS data to perform global QCD fits. In this regard we employ the Jacobi polynomial approach to convert the results from Laplace s space to Bjorken x space. The extracted valence quark densities are also presented and compared to the JR14, MMHT14, NNPDF, and CJ15 PDFs sets. We evaluate the numerical effects of target mass corrections (TMCs) and higher twist (HT) terms on various structure functions, and compare fits to data with and without these corrections.

  3. Associated production of a Higgs boson decaying into bottom quarks at the LHC in full NNLO QCD

    NASA Astrophysics Data System (ADS)

    Ferrera, Giancarlo; Somogyi, Gábor; Tramontano, Francesco

    2018-05-01

    We consider the production of a Standard Model Higgs boson decaying to bottom quarks in association with a vector boson W± / Z in hadron collisions. We present a fully exclusive calculation of QCD radiative corrections both for the production cross section and for the Higgs boson decay rate up to next-to-next-to-leading order (NNLO) accuracy. Our calculation also includes the leptonic decay of the vector boson with finite-width effects and spin correlations. We consider typical kinematical cuts applied in the experimental analyses at the Large Hadron Collider (LHC) and we find that the full NNLO QCD corrections significantly decrease the accepted cross section and have a substantial impact on the shape of distributions. We point out that these additional effects are essential to obtain precise theoretical predictions to be compared with the LHC data.

  4. Stable Pentaquarks from Strange Chiral Multiplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silas Beane

    2004-12-01

    The assumption of strong diquark correlations in the QCD spectrum suggests flavor multiplets of hadrons that are degenerate in the chiral limit. Generally it would be unnatural for there to be degeneracy in the hadron spectrum that is not protected by a QCD symmetry. Here we show--for pentaquarks constructed from diquarks--that these degeneracies can be naturally protected by the full chiral symmetry of QCD. The resulting chiral multiplet structure recovers the ideally-mixed pentaquark mass spectrum of the diquark model, and interestingly, requires that the axial couplings of the pentaquarks to states outside the degenerate multiplets vanish in the chiral limit.more » This result suggests that if these hadrons exist, they are stable in the chiral limit and therefore have widths that scale as the fourth power of the kaon mass over the chiral symmetry breaking scale. Natural-size widths are of order a few MeV.« less

  5. Proper time regularization and the QCD chiral phase transition

    PubMed Central

    Cui, Zhu-Fang; Zhang, Jin-Li; Zong, Hong-Shi

    2017-01-01

    We study the QCD chiral phase transition at finite temperature and finite quark chemical potential within the two flavor Nambu–Jona-Lasinio (NJL) model, where a generalization of the proper-time regularization scheme is motivated and implemented. We find that in the chiral limit the whole transition line in the phase diagram is of second order, whereas for finite quark masses a crossover is observed. Moreover, if we take into account the influence of quark condensate to the coupling strength (which also provides a possible way of how the effective coupling varies with temperature and quark chemical potential), it is found that a CEP may appear. These findings differ substantially from other NJL results which use alternative regularization schemes, some explanation and discussion are given at the end. This indicates that the regularization scheme can have a dramatic impact on the study of the QCD phase transition within the NJL model. PMID:28401889

  6. Predictions for diphoton production at the LHC through NNLO in QCD

    DOE PAGES

    Campbell, John M.; Ellis, R. Keith; Li, Ye; ...

    2016-07-29

    In this paper we present a next-to-next-to-leading order (NNLO) calculation of the processmore » $$pp\\rightarrow \\gamma\\gamma$$ that we have implemented into the parton level Monte Carlo code MCFM. We do not find agreement with the previous calculation of this process in the literature. In addition to the $$\\mathcal{O}(\\alpha_s^2)$$ corrections present at NNLO, we include some effects arising at $$\\mathcal{O}(\\alpha_s^3)$$, namely those associated with gluon-initiated closed fermion loops. We investigate the role of this process in the context of studies of QCD at colliders and as a background for searches for new physics, paying particular attention to the diphoton invariant mass spectrum. We demonstrate that the NNLO QCD prediction for the shape of this spectrum agrees well with functional forms used in recent data-driven fits.« less

  7. Measurement of the transverse momentum distribution of Z / γ * bosons in proton–proton collisions at s = 7 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-10-13

    A measurement of the Z/γ* transverse momentum (p T Z) distribution in proton–proton collisions at √s = 7 TeV is presented using Z/γ* → e +e – and Z/γ* → μ +μ – decays collected with the ATLAS detector in data sets with integrated luminosities of 35 pb –1 and 40 pb –1, respectively. The normalized differential cross sections are measured separately for electron and muon decay channels as well as for their combination up to p T Z of 350 GeV for invariant dilepton masses 66 GeV < m ℓℓ < 116 GeV. The measurement is compared to predictionsmore » of perturbative QCD and various event generators. In conclusion, the prediction of resummed QCD combined with fixed order perturbative QCD is found to be in good agreement with the data.« less

  8. Light-cone distribution amplitudes of {xi} and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yonglu; Huang Mingqiu

    We present the light-cone distribution amplitudes of the {xi} baryons up to twist six on the basis of QCD conformal partial wave expansion to the leading order conformal spin accuracy. The nonperturbative parameters relevant to the DAs are determined in the framework of the QCD sum rule. The light-cone QCD sum rule approach is used to investigate both the electromagnetic form factors of {xi} and the exclusive semileptonic decay of {xi}{sub c} as applications. Our estimations on the magnetic moments are {mu}{sub {xi}{sup 0}}=-(1.92{+-}0.34){mu}{sub N} and {mu}{sub {xi}{sup -}}=-(1.19{+-}0.03){mu}{sub N}. The decay width of the process {xi}{sub c}{yields}{xi}e{sup +}{nu}{sub e}more » is evaluated to be {gamma}=8.73x10{sup -14} GeV, which is in accordance with the experimental measurements and other theoretical approaches.« less

  9. Measurement of the transverse momentum distribution of Z /γ* bosons in proton-proton collisions at √{ s} = 7 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Saintignon, P.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovin, T.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; P Ottersbach, J.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, H. S.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration

    2011-11-01

    A measurement of the Z /γ* transverse momentum (pTZ) distribution in proton-proton collisions at √{ s} = 7 TeV is presented using Z /γ* →e+e- and Z /γ* →μ+μ- decays collected with the ATLAS detector in data sets with integrated luminosities of 35 pb-1 and 40 pb-1, respectively. The normalized differential cross sections are measured separately for electron and muon decay channels as well as for their combination up to pTZ of 350 GeV for invariant dilepton masses 66 GeV

  10. AdS/QCD and Light Front Holography: A New Approximation to QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; de Teramond, Guy

    2010-02-15

    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give themore » hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.« less

  11. NNLO QCD corrections to Higgs boson production at large transverse momentum

    NASA Astrophysics Data System (ADS)

    Chen, X.; Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Jaquier, M.

    2016-10-01

    We derive the second-order QCD corrections to the production of a Higgs boson recoiling against a parton with finite transverse momentum, working in the effective field theory in which the top quark contributions are integrated out. To account for quark mass effects, we supplement the effective field theory result by the full quark mass dependence at leading order. Our calculation is fully differential in the final state kinematics and includes the decay of the Higgs boson to a photon pair. It allows one to make next-to-next-to-leading order (NNLO)-accurate theory predictions for Higgs-plus-jet final states and for the transverse momentum distribution of the Higgs boson, accounting for the experimental definition of the fiducial cross sections. The NNLO QCD corrections are found to be moderate and positive, they lead to a substantial reduction of the theory uncertainty on the predictions. We compare our results to 8 TeV LHC data from ATLAS and CMS. While the shape of the data is well-described for both experiments, we agree on the normalization only for CMS. By normalizing data and theory to the inclusive fiducial cross section for Higgs production, good agreement is found for both experiments, however at the expense of an increased theory uncertainty. We make predictions for Higgs production observables at the 13 TeV LHC, which are in good agreement with recent ATLAS data. At this energy, the leading order mass corrections to the effective field theory prediction become significant at large transverse momenta, and we discuss the resulting uncertainties on the predictions.

  12. Longitudinal leading-twist distribution amplitude of the J /ψ meson within the background field theory

    NASA Astrophysics Data System (ADS)

    Fu, Hai-Bing; Zeng, Long; Cheng, Wei; Wu, Xing-Gang; Zhong, Tao

    2018-04-01

    We make a detailed study on the J /ψ meson longitudinal leading-twist distribution amplitude ϕ2;J /ψ ∥ by using the QCD sum rules within the background field theory. By keeping all the nonperturbative condensates up to dimension 6, we obtain accurate QCD sum rules for the moments ⟨ξn;J /ψ ∥⟩. The first three ones are ⟨ξ2;J /ψ ∥⟩=0.083 (12 ), ⟨ξ4;J /ψ ∥⟩=0.015 (5 ), and ⟨ξ6;J /ψ ∥⟩=0.003 (2 ), respectively. Those values indicate a single peaked behavior for ϕ2;J /ψ ∥. As an application, we adopt the QCD light-cone sum rules to calculate the Bc meson semileptonic decay Bc+→J /ψ ℓ+νℓ. We obtain Γ (Bc+→J /ψ ℓ+νℓ)=(89.67-19.06+24.76)×10-15 GeV and ℜ(J /ψ ℓ+νℓ)=0.21 7-0.057+0.069, which agree with both the extrapolated next-to-leading order pQCD prediction and the new CDF measurement within errors.

  13. Inclusive rare B decays using effective field theories

    NASA Astrophysics Data System (ADS)

    Bauer, Christian

    In this thesis we will discuss several properties of rare decays of B mesons. First we discuss properties of the inclusive radiative decay B¯ --> Xsγ, where Xs stands for any hadronic state containing an s quark. We extend previous studies of this decay, which included perturbative corrections to order αs and nonperturbative contributions up to order (ΛQCD/ mb)2 and calculate the O (ΛQCD/mb)3 contributions to this decay. The values of the nonperturbative parameters entering at this order are unknown, leading to uncertainties in the standard model prediction of this decay. We estimate the size of these nonperturbative uncertainties by varying these parameters in the range suggested by dimensional analysis. We also estimate uncertainties arising from a cut on the photon energy which is required experimentally. Another decay mode investigated is B¯ --> Xsl+l-. We study the O (ΛQCD/mb)3 contributions to the leptonic invariant mass spectrum, the forward-backward asymmetry and hadronic invariant mass moments and estimate the resulting uncertainties. We calculate how the size of these uncertainties depend on the value of an experimental cut that has to be applied to eliminate the large background from other B decays. A model independent way to determinate the CKM matrix element | Vub| from the dilepton invariant mass spectrum of the inclusive decay B-->Xul+ n is presented next. We show that cuts required to eliminate the charm background still allow for a theoretically clean way to determine the CKM matrix element |Vub|. We also discuss the utility of the B¯ --> Xsl +l- decay rate above the y (2S) resonance to reduce the resulting uncertainties. Finally, we introduce a novel effective theory valid for highly energetic particles. In decays where the phase space is sufficiently restricted such that final state particles have very high energies compared to their mass, the perturbative as well as nonperturbative series diverge. The effective theory presented allows to sum perturbative Sudakov logarithms in a framework that also incorporates the nonperturbative physics in such limits of phase space.

  14. The SU(3)/Z3 QCD(adj) deconfinement transition via the gauge theory/"affine" XY-model duality

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Collier, Scott; Poppitz, Erich

    2013-01-01

    Earlier, two of us and M. Ünsal [1] showed that a class of 4d gauge theories, when compactified on a small spatial circle of size L and considered at temperatures β-1 near the deconfinement transition, are dual to 2d "affine" XY-spin models. We exploit this duality to study the deconfinement phase transition in SU(3)/{{{Z}}_3} gauge theories with n f > 1 massless adjoint Weyl fermions, QCD(adj) on {{{R}}^2}× {S}_{β}^1× {S}_L^1 . The dual "affine" XY-model describes two "spins" — compact scalars taking values in the SU(3) root lattice. The spins couple via nearest-neighbor interactions and are subject to an "external field" perturbation preserving the topological {Z}_3^t and a discrete {Z}_3^{{{d_{\\upchi}}}} subgroup of the anomaly-free chiral symmetry of the 4d gauge theory. The equivalent Coulomb gas representation of the theory exhibits electric-magnetic duality, which is also a high-/low-temperature duality. A renormalization group analysis suggests — but is not convincing, due to the onset of strong coupling — that the self-dual point is a fixed point, implying a continuous deconfinement transition. Here, we study the nature of the transition via Monte Carlo simulations. The {Z}_3^t× {Z}_3^{{{d_{\\upchi}}}} order parameter, its susceptibility, the vortex density, the energy per spin, and the specific heat are measured over a range of volumes, temperatures, and "external field" strengths (in the gauge theory, these correspond to magnetic bion fugacities). The finite-size scaling of the susceptibility and specific heat we find is characteristic of a first-order transition. Furthermore, for sufficiently large but still smaller than unity bion fugacity (as can be achieved upon an increase of the {S}_L^1 size), at the critical temperature we find two distinct peaks of the energy probability distribution, indicative of a first-order transition, as has been seen in earlier simulations of the full 4d QCD(adj) theory. We end with discussions of the global phase diagram in the β- L plane for different numbers of flavors.

  15. Most Strange Dibaryon from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Gongyo, Shinya; Sasaki, Kenji; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu; HAL QCD Collaboration

    2018-05-01

    The Ω Ω system in the 1S0 channel (the most strange dibaryon) is studied on the basis of the (2 +1 )-flavor lattice QCD simulations with a large volume (8.1 fm )3 and nearly physical pion mass mπ≃146 MeV at a lattice spacing of a ≃0.0846 fm . We show that lattice QCD data analysis by the HAL QCD method leads to the scattering length a0=4.6 (6 )(-0.5+1.2) fm , the effective range reff=1.27 (3 )(-0.03+0.06) fm , and the binding energy BΩ Ω=1.6 (6 )(-0.6+0.7) MeV . These results indicate that the Ω Ω system has an overall attraction and is located near the unitary regime. Such a system can be best searched experimentally by the pair-momentum correlation in relativistic heavy-ion collisions.

  16. Most Strange Dibaryon from Lattice QCD.

    PubMed

    Gongyo, Shinya; Sasaki, Kenji; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu

    2018-05-25

    The ΩΩ system in the ^{1}S_{0} channel (the most strange dibaryon) is studied on the basis of the (2+1)-flavor lattice QCD simulations with a large volume (8.1  fm)^{3} and nearly physical pion mass m_{π}≃146  MeV at a lattice spacing of a≃0.0846  fm. We show that lattice QCD data analysis by the HAL QCD method leads to the scattering length a_{0}=4.6(6)(_{-0.5}^{+1.2})  fm, the effective range r_{eff}=1.27(3)(_{-0.03}^{+0.06})  fm, and the binding energy B_{ΩΩ}=1.6(6)(_{-0.6}^{+0.7})  MeV. These results indicate that the ΩΩ system has an overall attraction and is located near the unitary regime. Such a system can be best searched experimentally by the pair-momentum correlation in relativistic heavy-ion collisions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    Here, the recent determination of themore » $$\\beta$$--function of the QCD running coupling $$\\alpha_{\\overline{MS}}(Q^2)$$ to five-loops, provides a verification of the convergence of a novel method for determining the fundamental QCD parameter $$\\Lambda_s$$ based on the Light-Front Holographic approach to nonperturbative QCD. The new 5-loop analysis, together with improvements in determining the holographic QCD nonperturbative scale parameter $$\\kappa$$ from hadronic spectroscopy, leads to an improved precision of the value of $$\\Lambda_s$$ in the $${\\overline{MS}}$$ scheme close to a factor of two; we find $$\\Lambda^{(3)}_{\\overline{MS}}=0.339\\pm0.019$$ GeV for $$n_{f}=3$$, in excellent agreement with the world average, $$\\Lambda_{\\overline{MS}}^{(3)}=0.332\\pm0.017$$ GeV. Lastly, we also discuss the constraints imposed on the scale dependence of the strong coupling in the nonperturbative domain by superconformal quantum mechanics and its holographic embedding in anti-de Sitter space.« less

  18. Aspects of Chiral Symmetry Breaking in Lattice QCD

    NASA Astrophysics Data System (ADS)

    Horkel, Derek P.

    In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD): first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin breaking effects, second a computational study measuring non-perturbative Greens functions. We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects necessary for understanding how a lattice computation is performed and how discretization effects can be understood. Our work in Wilson and twisted-mass fermions investigates an increasingly relevant regime where lattice simulations are performed with quarks at or near their physical masses and both the mass difference of the up and down quarks and their differing electric charges are included. Our computation of a non-perturbative Greens functions on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which they calculate Greens functions which vanish in perturbation theory, yet have a contribution from the one instanton background. In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the presence of non-degeneracy between the up and down quark and discretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory (which occurs for sufficiently large non-degeneracy) is continuously connected to the Aoki phase of the lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push simulations with physical masses closer to either the CP-violating phase or another phase not present in the continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these phases. In chapter 3, we extend the work in chapter 2 to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the phase diagram is unaffected by the inclusion of electromagnetism--the only effect is to raise the charged pion masses. For maximally twisted fermions, we previously took the twist and isospin-breaking directions to be different, in order that the fermion determinant is real and positive. However, this is incompatible with electromagnetic gauge invariance, and so here we take the twist to be in the isospin-breaking direction, following the RM123 collaboration. We map out the phase diagram in this case, which has not previously been studied. The results differ from those obtained with different twist and isospin directions. One practical issue when including electromagnetism is that the critical masses for up and down quarks differ. We show that one of the criteria suggested to determine these critical masses does not work, and propose an alternative. In chapter 4, we delve deeper into the technical details of the analysis in chapter 3. We determine the phase diagram and chiral condensate for lattice QCD with two flavors of twisted-mass fermions in the presence of nondegenerate up and down quarks, discretization errors and a nonzero value of thetaQCD. We find that, in general, the only phase structure is a first-order transition of finite length. Pion masses are nonvanishing throughout the phase plane except at the endpoints of the first-order line. Only for extremal values of the twist angle and thetaQCD (o = 0 or pi/2 and thetaQCD = 0 or pi) are there second-order transitions. In chapter 5 we move on to a new topic, working to make a first measurement of non-perturbative Greens functions which vanish in perturbation theory but have a non-vanishing one-instanton contribution, as suggested in recent work by Dine et. al. [24] using a semi- classical approach. This measurement was done using 163 x 48 configurations generated by the MILC collaboration, with coupling beta = 6.572, light quark mass m la = 0.0097, strange quark mass msa = 0.0484, lattice spacing a ≈ 0.14 fm and pion mass mpia = 0.2456. The analysis was done by separating the Green function of interest into pseudoscalar and scalar components. These are separately calculated on 440 configurations, using the Chroma software package. To improve statistics, we used the various reduction technique suggested in Ref. [13]. We subtracted out the long distance contributions from the pion, excited pion and a0 from the Green function, in the hope of obtaining the short distance form predicted by Ref. [24]. Unfortunately, after subtraction of the a0 and pion states only noise remained. While the results are not in themselves useful, we believe this approach will be worth repeating in the future with finer lattices with a fermion action with better chiral symmetry.

  19. Moment analysis of hadronic vacuum polarization. Proposal for a lattice QCD evaluation of gμ - 2

    NASA Astrophysics Data System (ADS)

    de Rafael, Eduardo

    2014-09-01

    I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.

  20. Instanton liquid properties from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athenodorou, A.; Boucaud, Philippe; De Soto, F.

    Here, we examined the instanton contribution to the QCD configurations generated from lattice QCD for N F = 0, N F = 2 + 1 and N F = 2 + 1 + 1 dynamical quark flavors from two different and complementary approaches. First via the use of Gradient flow, we computed instanton liquid properties using an algorithm to localize instantons in the gauge field configurations and studied their evolution with flow time. Then, the analysis of the running at low momenta of gluon Green's functions serves as an independent confirmation of the instanton density which can also be derivedmore » without the use of the Gradient flow.« less

  1. Instanton liquid properties from lattice QCD

    DOE PAGES

    Athenodorou, A.; Boucaud, Philippe; De Soto, F.; ...

    2018-02-22

    Here, we examined the instanton contribution to the QCD configurations generated from lattice QCD for N F = 0, N F = 2 + 1 and N F = 2 + 1 + 1 dynamical quark flavors from two different and complementary approaches. First via the use of Gradient flow, we computed instanton liquid properties using an algorithm to localize instantons in the gauge field configurations and studied their evolution with flow time. Then, the analysis of the running at low momenta of gluon Green's functions serves as an independent confirmation of the instanton density which can also be derivedmore » without the use of the Gradient flow.« less

  2. NLO QCD effective field theory analysis of W+W- production at the LHC including fermionic operators

    NASA Astrophysics Data System (ADS)

    Baglio, Julien; Dawson, Sally; Lewis, Ian M.

    2017-10-01

    We study the impact of anomalous gauge boson and fermion couplings on the production of W+W- pairs at the LHC. Helicity amplitudes are presented separately to demonstrate the sources of new physics contributions and the impact of QCD and electroweak corrections. The QCD corrections have important effects on the fits to anomalous couplings, in particular when one W boson is longitudinally polarized and the other is transversely polarized. In effective field theory language, we demonstrate that the dimension-6 approximation to constraining new physics effects in W+W- pair production fails at pT˜500 - 1000 GeV .

  3. Recent Developments in SHERPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, Jennifer; /Durham U., IPPP; Gleisberg, Tanju

    2011-11-15

    Some recent QCD-related developments in the SHERPA event generator are presented. In the past decades, event generators such as PYTHIA [1, 2] and HERWIG [3, 4] have been central for nearly all physics analyses at particle physics experiments at the high-energy frontier. This will also hold true at the LHC, where a large number of interesting signals for new particles or new phenomena (the Higgs boson or any other manifestation of the mechanism behind electro-weak symmetry breaking, supersymmetry, extra dimensions etc.) is hampered by a plethora of severe, sometimes overwhelming backgrounds. Nearly all of them are largely influenced by QCD.more » Therefore it seems fair to say that the success of the LHC in finding new physics may very well depend on a deep and detailed understanding of old physics, like QCD. Examples for this include, among others, the central-jet veto for the vector boson fusion channel for Higgs production or topologies, where gauge bosons emerge in association with many jets, a background for many search channels. In a reflection on increased needs by the experimental community, aiming at higher precision, incorporation of new physics models and so on, the work horses of old have undergone serious renovation efforts, resulting in new, improved versions of the respective codes, namely PYTHIA8 [5] and HERWIG++ [6]. In addition a completely new code, SHERPA [7], has been constructed and is in the process of maturing. The status of this code is the topic of this contribution. SHERPA's hallmark property is the inclusion of higher-order tree-level QCD contributions, leading to an improved modelling of jet production. They are introduced through a full-fledged matrix element generator, AMEGIC++ [8], which is capable of generating matrix elements and corresponding phase space mappings for processes with multi-particle final states in various models, including the Standard Model, anomalous gauge triple and quadruple couplings according to [9, 10], the Minimal Supersymmetric Standard Model with Feynman rules from [11], the ADD-model of extra dimensions [12, 13], and a model with an extra U(1) singlet coupling to the Higgs boson only [14]. The code has been thoroughly tested and validated [15]. This code, however, is limited, especially in the treatment of many ({ge} 6) external QCD particles. Therefore, in the near future, SHERPA will incorporate another, new matrix element generator, COMIX, which is based on Berends-Giele recursion relations [16] and color-dressing [17] rather than color-ordering. In Tabs. 1 and 2 some example cross sections for gg {yields} ng at fixed energies and pp {yields} b{bar b} + n jets obtained with this program are exhibited and compared to those from other programs. In addition, concerning the calculation of higher-order matrix elements and cross sections, there have been first steps towards an automation of such calculations at truly next-to leading order accuracy. They manifest themselves in the implementation of a procedure [19] to fully automatically construct and evaluate Catani-Seymour dipole subtraction terms [20] for the real part of such NLO calculations. The results from the matrix element calculations are merged with the subsequent parton shower through the formalism of [21, 22]. The results of its implementation in SHERPA [23] has recently been compared with other algorithms [24]. Although there remains some dispute about the theoretical equivalence of the different approaches, the overall results show satisfying agreement with each other, such that they can be used with confidence for data analysis.« less

  4. Aspects of the color flavor locking phase of QCD in the Nambu Jona-Lasinio approximation

    NASA Astrophysics Data System (ADS)

    Casalbuoni, R.; Gatto, R.; Nardulli, G.; Ruggieri, M.

    2003-08-01

    We study two aspects of the color flavor locked phase of QCD in the Nambu Jona-Lasinio approximation. The first one is the issue of the dependence on μ of the ultraviolet cutoff in the gap equation, which is solved by allowing for a running coupling constant. The second one is the dependence of the gap on the strange quark mass; using high density effective theory we perform an expansion in the parameter (ms/μ)2 after checking that its numerical validity is already very good at first order.

  5. Lattice QCD phase diagram in and away from the strong coupling limit.

    PubMed

    de Forcrand, Ph; Langelage, J; Philipsen, O; Unger, W

    2014-10-10

    We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling, "dual" variables can be introduced, which render the finite-density sign problem mild and allow a full determination of the μ-T phase diagram by Monte Carlo simulations, also in the chiral limit. However, the continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach towards the continuum limit. We show first results, including the phase diagram and its chiral critical point, from this expansion truncated at next-to-leading order.

  6. Lattice QCD and the timelike pion form factor.

    PubMed

    Meyer, Harvey B

    2011-08-12

    We present a formula that allows one to calculate the pion form factor in the timelike region 2m(π) ≤ √(s) ≤ 4m(π) in lattice QCD. The form factor quantifies the contribution of two-pion states to the vacuum polarization. It must be known very accurately in order to reduce the theoretical uncertainty on the anomalous magnetic moment of the muon. At the same time, the formula constitutes a rare example where, in a restricted kinematic regime, the spectral function of a conserved current can be determined from Euclidean observables without an explicit analytic continuation.

  7. Radiative improvement of the lattice nonrelativistic QCD action using the background field method and application to the hyperfine splitting of quarkonium states.

    PubMed

    Hammant, T C; Hart, A G; von Hippel, G M; Horgan, R R; Monahan, C J

    2011-09-09

    We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner. The coefficients of the σ·B term in the NRQCD action and the four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine splitting of bottomonium is found to bring the lattice predictions in line with experiment.

  8. Higgs boson gluon–fusion production at threshold in N 3LO QCD

    DOE PAGES

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; ...

    2014-09-02

    We present the cross-section for the threshold production of the Higgs boson at hadron-colliders at next-to-next-to-next-to-leading order (N 3LO) in perturbative QCD. Furthermore, we present an analytic expression for the partonic cross-section at threshold and the impact of these corrections on the numerical estimates for the hadronic cross-section at the LHC. With this result we achieve a major milestone towards a complete evaluation of the cross-section at N 3LO which will reduce the theoretical uncertainty in the determination of the strengths of the Higgs boson interactions.

  9. Effective Theories for QCD-like at TeV Scale

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Bijnens, Johan

    2016-04-01

    We study the Effective Field Theory of three QCD-like theories, which can be classified by having quarks in a complex, real or pseudo-real representations of the gauge group. The Lagrangians are written in a very similar way so that the calculations can be done using techniques from Chiral Perturbation Theory (ChPT). We calculated the vacuum-expectation-value, the mass and the decay constant of pseudo-Goldstone Bosons up to next-to-next-to leading order (NNLO) [J. Bijnens and J. Lu, JHEP 0911 (2009) 116 [arxiv:arXiv:0910.5424 [hep-ph

  10. Finite volume effects in the chiral extrapolation of baryon masses

    NASA Astrophysics Data System (ADS)

    Lutz, M. F. M.; Bavontaweepanya, R.; Kobdaj, C.; Schwarz, K.

    2014-09-01

    We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self-energies are computed in a finite volume at next-to-next-to-next-to-leading order (N3LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-Nc sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Values for all counterterms relevant at N3LO are predicted. In particular we extract a pion-nucleon sigma term of 39-1+2 MeV and a strangeness sigma term of the nucleon of σsN=84-4+28 MeV. The flavor SU(3) chiral limit of the baryon octet and decuplet masses is determined with (802±4) and (1103±6) MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.

  11. Domain walls and the C P anomaly in softly broken supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Draper, Patrick

    2018-04-01

    In ordinary QCD with light, degenerate, fundamental flavors, C P symmetry is spontaneously broken at θ =π , and domain wall solutions connecting the vacua can be constructed in chiral perturbation theory. In some cases the breaking of C P saturates a 't Hooft anomaly, and anomaly inflow requires nontrivial massless excitations on the domain walls. Analogously, C P can be spontaneously broken in supersymmetric QCD (SQCD) with light flavors and small soft breaking parameters. We study C P breaking and domain walls in softly broken SQCD with Nf

  12. Search for C=+ charmonium and bottomonium states in e{sup +}e{sup -}{yields}{gamma}+ X at B factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Dan; Chao Kuangta; He Zhiguo

    2009-12-01

    We study the production of C=+ charmonium states X in e{sup +}e{sup -}{yields}{gamma}+X at B factories with X={eta}{sub c}(nS) (n=1, 2, 3), {chi}{sub cJ}(mP) (m=1, 2), and {sup 1}D{sub 2}(1D). In the S- and P-wave case, contributions of QED with one-loop QCD corrections are calculated within the framework of nonrelativistic QCD (NRQCD), and in the D-wave case only the QED contribution is considered. We find that in most cases the one-loop QCD corrections are negative and moderate, in contrast to the case of double charmonium production e{sup +}e{sup -}{yields}J/{psi}+X, where one-loop QCD corrections are positive and large in most cases.more » We also find that the production cross sections of some of these states in e{sup +}e{sup -}{yields}{gamma}+X are larger than that in e{sup +}e{sup -}{yields}J/{psi}+X by an order of magnitude even after the negative one-loop QCD corrections are included. We then argue that search for the X(3872), X(3940), Y(3940), and X(4160) in e{sup +}e{sup -}{yields}{gamma}+X at B factories may be helpful to clarify the nature of these states. For completeness, the production of bottomonium states in e{sup +}e{sup -} annihilation is also discussed.« less

  13. Global QCD Analysis of the Nucleon Tensor Charge with Lattice QCD Constraints

    NASA Astrophysics Data System (ADS)

    Shows, Harvey, III; Melnitchouk, Wally; Sato, Nobuo

    2017-09-01

    By studying the parton distribution functions (PDFs) of a nucleon, we probe the partonic scale of nature, exploring what it means to be a nucleon. In this study, we are interested in the transversity PDF-the least studied of the three collinear PDFs. By conducting a global analysis on experimental data from semi-inclusive deep inelastic scattering (SIDIS), as well as single-inclusive e+e- annihilation (SIA), we extract the fit parameters needed to describe the transverse moment dependent (TMD) transversity PDF, as well as the Collins fragmentation function. Once the collinear transversity PDF is obtained by integrating the extracted TMD PDF, we wish to resolve discrepancies between lattice QCD calculations and phenomenological extractions of the tensor charge from data. Here we show our results for the transversity distribution and tensor charge. Using our method of iterative Monte Carlo, we now have a more robust understanding of the transversity PDF. With these results we are able to progress in our understanding of TMD PDFs, as well as testify to the efficacy of current lattice QCD calculations. This work is made possible through support from NSF award 1659177 to Old Dominion University.

  14. NLO Hierarchy of Wilson Lines Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balitsky, Ian

    2015-03-01

    The high-energy behavior of QCD amplitudes can be described in terms of the rapidity evolution of Wilson lines. I present the hierarchy of evolution equations for Wilson lines in the next-to-leading order.

  15. Low-energy antikaon-nuclei interactions studies by AMADEUS: from QCD with strangeness to neutron stars

    NASA Astrophysics Data System (ADS)

    Piscicchia, K.; Curceanu, C.; Cargnelli, M.; Del Grande, R.; Fabbietti, L.; Marton, J.; Scordo, A.; Sirghi, D.; Tucakovic, I.; Vazquez Doce, O.; Wycech, S.; Zmeskal, J.; Mandaglio, G.; Martini, M.; Moskal, P.

    2018-01-01

    The AMADEUS collaboration aims to provide unique quality results from K- hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the Λ(1405) state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon K- absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters and to the role of strangeness in neutron stars. AMADEUS takes advantage of the DAΦNE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for K- nuclear capture on H, 4He, 9Be and 12C, both at-rest and in-flight.

  16. The NNLO QCD soft function for 1-jettiness

    NASA Astrophysics Data System (ADS)

    Campbell, John M.; Ellis, R. Keith; Mondini, Roberto; Williams, Ciaran

    2018-03-01

    We calculate the soft function for the global event variable 1-jettiness at next-to-next-to-leading order (NNLO) in QCD. We focus specifically on the non-Abelian contribution, which, unlike the Abelian part, is not determined by the next-to-leading order result. The calculation uses the known general forms for the emission of one and two soft partons and is performed using a sector-decomposition method that is spelled out in detail. Results are presented in the form of numerical fits to the 1-jettiness soft function for LHC kinematics (as a function of the angle between the incoming beams and the final-state jet) and for generic kinematics (as a function of three independent angles). These fits represent one of the needed ingredients for NNLO calculations that use the N-jettiness event variable to handle infrared singularities.

  17. Measurement of the inclusive-isolated prompt-photon cross section in p p ¯ collisions using the full CDF data set

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Albrow, M. G.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2017-11-01

    A measurement of the inclusive production cross section of isolated prompt photons in proton-antiproton collisions at center-of-mass energy √{s }=1.96 TeV is presented. The results are obtained using the full Run II data sample collected with the Collider Detector at the Fermilab Tevatron, which corresponds to an integrated luminosity of 9.5 fb-1 . The cross section is measured as a function of photon transverse energy, ETγ, in the range 30

  18. Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel State

    NASA Astrophysics Data System (ADS)

    Thomson, Alex; Sachdev, Subir

    2018-01-01

    Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by a CP1 theory of bosonic spinons coupled to a U(1) gauge field, and with a global SU(2) spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS) order, and upon including spin-singlet charge-2 Higgs fields, deconfined phases with Z2 topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations about this π -flux state are described by (2 +1 )-dimensional quantum chromodynamics (QCD3 ) with a SU(2) gauge group and Nf=2 flavors of massless Dirac fermions. It has recently been argued by Wang et al. [Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017)., 10.1103/PhysRevX.7.031051] that this QCD3 theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD3 and obtain fermionic dual descriptions of the phases with Z2 topological order obtained earlier using the bosonic CP1 theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1) gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.

  19. Heavy quark form factors at two loops

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; Marquard, P.; Rana, N.; Schneider, C.

    2018-05-01

    We compute the two-loop QCD corrections to the heavy quark form factors in the case of the vector, axial-vector, scalar and pseudoscalar currents up to second order in the dimensional parameter ɛ =(4 -D )/2 . These terms are required in the renormalization of the higher-order corrections to these form factors.

  20. Spin polarized photons from an axially charged plasma at weak coupling: Complete leading order

    DOE PAGES

    Mamo, Kiminad A.; Yee, Ho-Ung

    2016-03-24

    In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin aligned, which is a unique P- and CP-odd signature of axial charge in the photon emission observables. We compute this “P-odd photon emission rate” in a weak coupling regime at a high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P-even total emission rate in the literature, the computation of the P-odd emission rate at leading order consists of three parts: (1) Comptonmore » and pair annihilation processes with hard momentum exchange, (2) soft t- and u-channel contributions with hard thermal loop resummation, (3) Landau-Pomeranchuk-Migdal resummation of collinear bremsstrahlung and pair annihilation. In conclusion, we present analytical and numerical evaluations of these contributions to our P-odd photon emission rate observable.« less

  1. TMD parton distributions based on three-body decay functions in NLL order of QCD

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidekazu

    2015-04-01

    Three-body decay functions in space-like parton branches are implemented to evaluate transverse-momentum-dependent (TMD) parton distribution functions in the next-to-leading logarithmic (NLL) order of quantum chromodynamics (QCD). Interference contributions due to the next-to-leading-order terms are taken into account for the evaluation of the transverse momenta in initial state parton radiations. Some properties of the decay functions are also examined. As an example, the calculated results are compared with those evaluated by an algorithm proposed in [M. A. Kimber, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 12, 655 (2000)], [M. A. Kimber, A. D. Martin, and M. G. Ryskin, Phys. Rev. D 63, 11402 (2001)], [G. Watt, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 31, 73 (2003)], and [A. D. Martin, M. G. Ryskin, and G. Watt, Eur. Phys. J. C 66, 167 (2010)], in which the TMD parton distributions are defined based on the k_t-factorization method with angular ordering conditions due to interference effects.

  2. N3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born method

    NASA Astrophysics Data System (ADS)

    Currie, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.; Niehues, J.; Vogt, A.

    2018-05-01

    Computations of higher-order QCD corrections for processes with exclusive final states require a subtraction method for real-radiation contributions. We present the first-ever generalisation of a subtraction method for third-order (N3LO) QCD corrections. The Projection-to-Born method is used to combine inclusive N3LO coefficient functions with an exclusive second-order (NNLO) calculation for a final state with an extra jet. The input requirements, advantages, and potential applications of the method are discussed, and validations at lower orders are performed. As a test case, we compute the N3LO corrections to kinematical distributions and production rates for single-jet production in deep inelastic scattering in the laboratory frame, and compare them with data from the ZEUS experiment at HERA. The corrections are small in the central rapidity region, where they stabilize the predictions to sub per-cent level. The corrections increase substantially towards forward rapidity where large logarithmic effects are expected, thereby yielding an improved description of the data in this region.

  3. High energy scattering in QCD and in quantum gravity

    NASA Astrophysics Data System (ADS)

    Lipatov, L. N.

    2014-06-01

    The theory of the high energy scattering in QCD is based on the BFKL equation for the Pomeron wave function and on its generalization for composite multi-gluon states in the crossing channel. At a large number of colors the equations for the gluon composite states have remarkable mathematical properties including their Möbius invariance, holomorphic separability, duality symmetry and integrability. High energy QCD interactions local in the particle rapidities are formulated in the form of the gauge invariant effective action. In the maximally extended N = 4 super-symmetry the Pomeron turns out to be dual to the reggeized graviton in the 10-dimensional anti-de-Sitter space. As a result, the Gribov calculus for the Pomeron interactions should be reformulated here as a generally covariant effective field theory for the reggeized gravitons. We construct the corresponding effective action, which gives a possibility to calculate their trajectory and couplings. The graviton trajectory in the leading order contains an ultraviolet divergency meaning the presence of the double-logarithmic (DL) terms. We sum the DL contributions in all orders of the perturbation theory in the Einstein-Hilbert gravity and in its super-symmetric generalizations. In the N = 8 super gravity the ratio of the scattering amplitude in the DL approximation to the Born expression tends to zero at large energies.

  4. Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory

    NASA Astrophysics Data System (ADS)

    Mantry, Sonny; Petriello, Frank

    2010-05-01

    We derive a factorization theorem for the Higgs boson transverse momentum (pT) and rapidity (Y) distributions at hadron colliders, using the soft-collinear effective theory (SCET), for mh≫pT≫ΛQCD, where mh denotes the Higgs mass. In addition to the factorization of the various scales involved, the perturbative physics at the pT scale is further factorized into two collinear impact-parameter beam functions (IBFs) and an inverse soft function (ISF). These newly defined functions are of a universal nature for the study of differential distributions at hadron colliders. The additional factorization of the pT-scale physics simplifies the implementation of higher order radiative corrections in αs(pT). We derive formulas for factorization in both momentum and impact parameter space and discuss the relationship between them. Large logarithms of the relevant scales in the problem are summed using the renormalization group equations of the effective theories. Power corrections to the factorization theorem in pT/mh and ΛQCD/pT can be systematically derived. We perform multiple consistency checks on our factorization theorem including a comparison with known fixed-order QCD results. We compare the SCET factorization theorem with the Collins-Soper-Sterman approach to low-pT resummation.

  5. Higgs pair production at NLO QCD for CP-violating Higgs sectors

    NASA Astrophysics Data System (ADS)

    Gröber, R.; Mühlleitner, M.; Spira, M.

    2017-12-01

    Higgs pair production through gluon fusion is an important process at the LHC to test the dynamics underlying electroweak symmetry breaking. Higgs sectors beyond the Standard Model (SM) can substantially modify this cross section through novel couplings not present in the SM or the on-shell production of new heavy Higgs bosons that subsequently decay into Higgs pairs. CP violation in the Higgs sector is important for the explanation of the observed matter-antimatter asymmetry through electroweak baryogenesis. In this work we compute the next-to-leading order (NLO) QCD corrections in the heavy top quark limit, including the effects of CP violation in the Higgs sector. We choose the effective theory (EFT) approach, which provides a rather model-independent way to explore New Physics (NP) effects by adding dimension-6 operators, both CP-conserving and CP-violating ones, to the SM Lagrangian. Furthermore, we perform the computation within a specific UV-complete model and choose as benchmark model the general 2-Higgs-Doublet Model with CP violation, the C2HDM. Depending on the dimension-6 coefficients, the relative NLO QCD corrections are affected by several per cent through the new CP-violating operators. This is also the case for SM-like Higgs pair production in the C2HDM, while the relative QCD corrections in the production of heavier C2HDM Higgs boson pairs deviate more strongly from the SM case. The absolute cross sections both in the EFT and the C2HDM can be modified by more than an order of magnitude. In particular, in the C2HDM the resonant production of Higgs pairs can by far exceed the SM cross section.

  6. XYZ-like spectra from Laplace sum rule at N2LO in the chiral limit

    NASA Astrophysics Data System (ADS)

    Albuquerque, R.; Narison, S.; Fanomezana, F.; Rabemananjara, A.; Rabetiarivony, D.; Randriamanatrika, G.

    2016-12-01

    We present new compact integrated expressions of QCD spectral functions of heavy-light molecules and four-quark XY Z-like states at lowest order (LO) of perturbative (PT) QCD and up to d = 8 condensates of the Operator Product Expansion (OPE). Then, by including up to next-to-next leading order (N2LO) PT QCD corrections, which we have estimated by assuming the factorization of the four-quark spectral functions, we improve previous LO results from QCD spectral sum rules (QSSR), on the XY Z-like masses and decay constants which suffer from the ill-defined heavy quark mass. PT N3LO corrections are estimated using a geometric growth of the PT series and are included in the systematic errors. Our optimal results based on stability criteria are summarized in Tables 11-14 and compared, in Sec. 10, with experimental candidates and some LO QSSR results. We conclude that the masses of the XZ observed states are compatible with (almost) pure JPC = 1+±, 0++ molecule or/and four-quark states. The ones of the 1-±, 0-± molecule/four-quark states are about 1.5 GeV above the Yc,b mesons experimental candidates and hadronic thresholds. We also find that the couplings of these exotics to the associated interpolating currents are weaker than that of ordinary D,B mesons (fDD ≈ 10-3f D) and may behave numerically as 1/m¯b3/2 (respectively 1/m¯b) for the 1+, 0+ (respectively 1-, 0-) states which can stimulate further theoretical studies of these decay constants.

  7. Born-Oppenheimer approximation in an effective field theory language

    NASA Astrophysics Data System (ADS)

    Brambilla, Nora; Krein, Gastão; Tarrús Castellà, Jaume; Vairo, Antonio

    2018-01-01

    The Born-Oppenheimer approximation is the standard tool for the study of molecular systems. It is founded on the observation that the energy scale of the electron dynamics in a molecule is larger than that of the nuclei. A very similar physical picture can be used to describe QCD states containing heavy quarks as well as light-quarks or gluonic excitations. In this work, we derive the Born-Oppenheimer approximation for QED molecular systems in an effective field theory framework by sequentially integrating out degrees of freedom living at energies above the typical energy scale where the dynamics of the heavy degrees of freedom occurs. In particular, we compute the matching coefficients of the effective field theory for the case of the H2+ diatomic molecule that are relevant to compute its spectrum up to O (m α5). Ultrasoft photon loops contribute at this order, being ultimately responsible for the molecular Lamb shift. In the effective field theory the scaling of all the operators is homogeneous, which facilitates the determination of all the relevant contributions, an observation that may become useful for high-precision calculations. Using the above case as a guidance, we construct under some conditions an effective field theory for QCD states formed by a color-octet heavy quark-antiquark pair bound with a color-octet light-quark pair or excited gluonic state, highlighting the similarities and differences between the QED and QCD systems. Assuming that the multipole expansion is applicable, we construct the heavy-quark potential up to next-to-leading order in the multipole expansion in terms of nonperturbative matching coefficients to be obtained from lattice QCD.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazavov, A.; Ding, H. -T.; Hegde, P.

    In this work, we calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range T ϵ [135 MeV, 330 MeV] using up to four different sets of lattice cut-offs corresponding to lattices of size Nmore » $$3\\atop{σ}$$ × N τ with aspect ratio N σ/N τ = 4 and N τ = 6-16. The strange quark mass is tuned to its physical value and we use two strange to light quark mass ratios m s/m l = 20 and 27, which in the continuum limit correspond to a pion mass of about 160 MeV and 140 MeV respectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature (µ B ≤ 2T ). The fourth-order equation of state thus is suitable for √the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to √sNN ~ 12 GeV. We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the T -µ B plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. Lastly, we argue that results on sixth order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for µ B/T ≤ 2 and T/T c(µ B = 0) > 0.9.« less

  9. Strong and Electroweak Matter 2004

    NASA Astrophysics Data System (ADS)

    Eskola, Kari J.; Kainulainen, Kimmo; Kajantie, Keijo; Rummukainen, Kari

    RHIC experimental summary: the message from pp, d+Au and Au+Au collisions / M. Calderón de la Barca Sánchez -- Hydrodynamic aspects of relativistic heavy ion collisions at RHIC / P. F. Kolb -- Photon emission in a hot QCD plasma / P. Aurenche -- In search of the saturation scale: intrinsic features of the CGC / H. Weigert -- From leading hadron suppression to jet quenching at RHIC and LHC / U. A. Wiedemann -- Lattice simulations with chemical potential / C. Schmidt -- Mesonic correlators in hot QCD / M. Laine -- Thermalization and plasma instabilities / P. Arnold -- Transport coefficients in hot QCD / G. D. Moore -- Classical fields and heavy ion collisions / T. Lappi -- Progress in nonequilibrium quantum field theory II / J. Berges and J. Serreau -- A general effective theory for dense quark matter / P. T. Reuter, Q. Wang and D. H. Rischke -- Thermal leptogenesis / M. Plümacher -- Cold electroweak Baryogenesis / J. Smit -- Proton-nucleus collisions in the color glass condensate framework / J.-P. Blaizot, F. Gelis and R. Venugopalan -- From classical to quantum saturation in the nuclear wavefunction / D. N. Triantafyllopoulos -- Charge correlations in heavy ion collisions / A. Rajantie -- Whitening of the quark-gluon plasma / S. Mrówczyński -- Progress in anisotropic plasma physics / P. Romatschke and M. Strickland -- Deconfinement and chiral symmetry: competing orders / K. Tuominen -- Relation between the chiral and deconfinement phase transitions / Y. Hatta -- Renormalized Polyakov loops, matrix models and the Gross-Witten point / A. Dumitru and J. T. Lenaghan -- The nature of the soft excitation at the critical end point of QCD / A. Jakovác ... [et al.] -- Thermodynamics of the 1+1-dimensional nonlinear sigma model through next-to-leading order in 1/N / H. J. Warringa -- Light quark meson correlations at high temperature / E. Laemann ... [et al.] -- Charmonia at finite momenta in a deconfined plasma / S. Datta ... [et al.] -- QCD thermodynamics: lattice results confront models / M. D'Elia and M. P. Lombardo -- Singlet free energies of a static quark-antiquark pair / K. Petrov -- Contributions to transport theory from multi-particle interactions and production processes / M. E. Carrington -- Transport coefficients and the 2PI effective action in the large N limit / G. Aarts and J. M. Martinez Resco -- Thermal features far from equilibrium: prethermalization / S. Borsányi -- QCD phase diagram at small Baryon densities from imaginary [symbol]: status report / O. Philipsen and Ph. de Forcrand -- Two loop renormalisation of the magnetic coupling in hot QCD and spatial Wilson loop / P. Giovannangeli -- Thermodynamics of deconfined QCD at small and large chemical potential / A. Ipp -- Evading the infrared problem of thermal QCD / Y. Schroder -- Chiral mesons in hot matter / A. Gómez Nicola, F. J. Llanes-Estrada and J. R. Peláez -- Thermal production of axinos in the early universe / A. Brandenburg and F. D. Steffen -- The 2-PI-1/N approximation applied to tachyonic preheating / A. Tranberg, A. Arrizabalaga and J. Smit -- Nonequilibrium dynamics in scalar hybrid models / J. Baacke and A. Heinen -- Photon mass in inflation and nearly minimal magnetogenesis / T. Prokopec -- Transport equations for chiral fermions to order [symbol] and electroweak Baryogenesis / S. Weinstock, M. G. Schmidt and T. Prokopec -- The gapless 2SC phase / M. Huang and I. A. Shovkovy -- Gapless CFL and its competition with mixed phases / M. Alford, C. Kouvaris and K. Rajagopal -- Transport coefficients in color superconducting quark matter / C. Manuel -- Renormalization and resummation in finite temperature field theories / A. Jakovác and Zs. Szép -- Renormalization and gauge symmetry for 2PI effective actions / U. Reinosa -- Out-of-equilibrium massless Schwinger model / R. F. Alvarez-Estrada -- Selfconsistent calculations of hadrons at finite temperature / C. Beckmann -- Fermion production in classical fields / D. D. Dietrich -- Numerical study of the equation of state for two flavor QCD at non-zero Baryon density / S. Ejiri ... [et al.] -- Phase conversion after a chiral transition: effects from inhomogeneities and finite size / E. S. Fraga -- Coherent Baryogenesis and nonthermal leptogenesis: a comparison / B. Garbrecht, T. Prokopec and M. G. Schmidt -- Two aspects of color superconductivity: gauge independence and neutrality / A. Gerhold -- QCD phase diagram in nonlocal chiral quark models / D. Gómez Dumm -- QCD equation of state and dark matter / M. Hindmarsh and O. Philipsen -- Analytical approach to SU(2) Yang-Mills thermodynamics / R. Hofmann -- Free energies of static three quark systems / K. Hübner ... [et al.] -- Color ferromagnetic state of dense quark matter / A. Iwazaki -- Axial currents from CKM matrix CP violation and electroweak Baryogenesis / T. Konstandin -- Dilute monopole gas, and K-tensions in gluodynamics / C. P. Korthals Altes and P. Giovannangeli -- Infrared QCD and the renormalisation group / D. F. Litim ... [et al.] -- Residual confinement in high-temperature Yang-Mills theory / A. Maas ... [et al.] -- Scalar O(N) model at finite temperature - 2PI effective potential in different approximations / J. Baacke and S. Michalski -- Cutoff effects in meson spectral functions / T. Blum and P. Petreczky -- Anomalous specific heat in ultradegenerate QED and QCD / A. Gerhold, A. Ipp and A. Rebhan -- Color-superconducting phases in cold and dense quark matter / A. Schmitt -- Non fermi liquid effects in dense matter and compact star cooling / K. Schwenzer and T. Schäfer -- Prethermalisation and the build-up of the Higgs effect / D. Sexty and A. Patkós -- Vector meson at non-zero Baryon density and zero sound / S. J. Hands and C. G. Strouthos -- Impact of Baryon resonances on the chiral phase transition / D. Zschiesche ... [et al.].

  10. NLO QCD effective field theory analysis of W +W - production at the LHC including fermionic operators

    DOE PAGES

    Baglio, Julien; Dawson, Sally; Lewis, Ian M.

    2017-10-03

    In this paper, we study the impact of anomalous gauge boson and fermion couplings on the production of W +W - pairs at the LHC. Helicity amplitudes are presented separately to demonstrate the sources of new physics contributions and the impact of QCD and electroweak corrections. The QCD corrections have important effects on the fits to anomalous couplings, in particular when one W boson is longitudinally polarized and the other is transversely polarized. In effective field theory language, we demonstrate that the dimension-6 approximation to constraining new physics effects in W +W - pair production fails at p T ~more » 500 - 1000 GeV.« less

  11. Lattice QCD Calculation of Hadronic Light-by-Light Scattering.

    PubMed

    Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B; Pascalutsa, Vladimir

    2015-11-27

    We perform a lattice QCD calculation of the hadronic light-by-light scattering amplitude in a broad kinematical range. At forward kinematics, the results are compared to a phenomenological analysis based on dispersive sum rules for light-by-light scattering. The size of the pion pole contribution is investigated for momenta of typical hadronic size. The presented numerical methods can be used to compute the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Our calculations are carried out in two-flavor QCD with the pion mass in the range of 270-450 MeV and contain so far only the diagrams with fully connected quark lines.

  12. NLO QCD effective field theory analysis of W +W - production at the LHC including fermionic operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglio, Julien; Dawson, Sally; Lewis, Ian M.

    In this paper, we study the impact of anomalous gauge boson and fermion couplings on the production of W +W - pairs at the LHC. Helicity amplitudes are presented separately to demonstrate the sources of new physics contributions and the impact of QCD and electroweak corrections. The QCD corrections have important effects on the fits to anomalous couplings, in particular when one W boson is longitudinally polarized and the other is transversely polarized. In effective field theory language, we demonstrate that the dimension-6 approximation to constraining new physics effects in W +W - pair production fails at p T ~more » 500 - 1000 GeV.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, C. D.; Schmidt, S. M.; Physics

    Continuum strong QCD is the application of models and continuum quantum field theory to the study of phenomena in hadronic physics, which includes; e.g., the spectrum of QCD bound states and their interactions; and the transition to, and properties of, a quark gluon plasma. We provide a contemporary perspective, couched primarily in terms of the Dyson-Schwinger equations but also making comparisons with other approaches and models. Our discourse provides a practitioners' guide to features of the Dyson-Schwinger equations [such as confinement and dynamical chiral symmetry breaking] and canvasses phenomenological applications to light meson and baryon properties in cold, sparse QCD.more » These provide the foundation for an extension to hot, dense QCD, which is probed via the introduction of the intensive thermodynamic variables: chemical potential and temperature. We describe order parameters whose evolution signals deconfinement and chiral symmetry restoration, and chronicle their use in demarcating the quark gluon plasma phase boundary and characterizing the plasma's properties. Hadron traits change in an equilibrated plasma. We exemplify this and discuss putative signals of the effects. Finally, since plasma formation is not an equilibrium process, we discuss recent developments in kinetic theory and its application to describing the evolution from a relativistic heavy ion collision to an equilibrated quark gluon plasma.« less

  14. Transport coefficients of a hot QCD medium and their relative significance in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Mitra, Sukanya; Chandra, Vinod

    2017-11-01

    The main focus of this article is to obtain various transport coefficients for a hot QCD medium that is likely to be produced while colliding two heavy nuclei ultra-relativistically. The technical approach adopted here is the semiclassical transport theory. The away-from-equilibrium linearized transport equation has been set up by employing the Chapman-Enskog technique from the kinetic theory of a many-particle system with a collision term that includes the binary collisions of quarks/antiquarks and gluons. In order to include the effects of a strongly interacting, thermal medium, a quasi-particle description of a realistic hot QCD equation of state has been employed through the equilibrium modeling of the momentum distributions of gluons and quarks with nontrivial dispersion relations while extending the model for finite but small quark chemical potential. The effective coupling for strong interaction has been redefined following the charge renormalization under the scheme of the quasi-particle model. The consolidated effects on transport coefficients are seen to have a significant impact on their temperature dependence. Finally, the relative significances of momentum and heat transfer, as well as the charge diffusion processes in hot QCD, have been investigated by studying the ratios of the respective transport coefficients indicating different physical laws.

  15. Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn

    2015-11-01

    Five dimensional black hole solutions that describe the QCD crossover transition seen in (2 +1 ) -flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV ≤T ≤300 MeV and baryon chemical potentials 0 ≤μB≤400 MeV . Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan.

  16. Role of QCD monopoles in jet quenching

    NASA Astrophysics Data System (ADS)

    Ramamurti, Adith; Shuryak, Edward

    2018-01-01

    QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC) at T Tc is responsible for the unusual kinetic properties of quark-gluon plasma. In this paper, we study the contribution of the monopoles to jet quenching phenomenon, using the Baier-Dokshitzer-Mueller-Peigne-Schiff framework and hydrodynamic backgrounds. In the lowest order for cross sections, we calculate the nuclear modification factor, RAA, and azimuthal anisotropy, v2, of jets, as well as the dijet asymmetry, Aj, and compare those to the available data. We find relatively good agreement with experiment when using realistic hydrodynamic backgrounds. In addition, we find that event-by-event fluctuations are not necessary to reproduce RAA and v2 data, but play a role in Aj. Since the monopole-induced effects are maximal at T ≈Tc, we predict that their role should be significantly larger, relative to quarks and gluons, at lower RHIC energies.

  17. Higgs bosons with large transverse momentum at the LHC

    NASA Astrophysics Data System (ADS)

    Kudashkin, Kirill; Lindert, Jonas M.; Melnikov, Kirill; Wever, Christopher

    2018-07-01

    We compute the next-to-leading order QCD corrections to the production of Higgs bosons with large transverse momentum p⊥ ≫ 2mt at the LHC. To accomplish this, we combine the two-loop amplitudes for processes gg → Hg, qg → Hq and q q bar → Hg, recently computed in the approximation of nearly massless top quarks, with the numerical calculation of the squared one-loop amplitudes for gg → Hgg, qg → Hqg and q q bar → Hgg processes. The latter computation is performed with OpenLoops. We find that the QCD corrections to the Higgs transverse momentum distribution at very high p⊥ are large but quite similar to the QCD corrections obtained for point-like Hgg coupling. Our result removes one of the largest sources of theoretical uncertainty in the description of high-p⊥ Higgs boson production and opens a way to use the high-p⊥ region to search for physics beyond the Standard Model.

  18. Top-pair production at the LHC through NNLO QCD and NLO EW

    NASA Astrophysics Data System (ADS)

    Czakon, Michał; Heymes, David; Mitov, Alexander; Pagani, Davide; Tsinikos, Ioannis; Zaro, Marco

    2017-10-01

    In this work we present for the first time predictions for top-quark pair differential distributions at the LHC at NNLO QCD accuracy and including EW corrections. For the latter we include not only contributions of O({α}_s^2α ) , but also those of order O({α}_s{α}^2) and O({α}^3) . Besides providing phenomenological predictions for all main differential distributions with stable top quarks, we also study the following issues. 1) The effect of the photon PDF on top-pair spectra: we find it to be strongly dependent on the PDF set used — especially for the top p T distribution. 2) The difference between the additive and multiplicative approaches for combining QCD and EW corrections: with our scale choice, we find relatively small differences between the central predictions, but reduced scale dependence within the multiplicative approach. 3) The potential effect from the radiation of heavy bosons on inclusive top-pair spectra: we find it to be, typically, negligible.

  19. Chiral phase transition of three flavor QCD with nonzero magnetic field using standard staggered fermions

    NASA Astrophysics Data System (ADS)

    Tomiya, Akio; Ding, Heng-Tong; Mukherjee, Swagato; Schmidt, Christian; Wang, Xiao-Dan

    2018-03-01

    Lattice simulations for (2+1)-flavor QCD with external magnetic field demon-strated that the quark mass is one of the important parameters responsible for the (inverse) magnetic catalysis. We discuss the dependences of chiral condensates and susceptibilities, the Polyakov loop on the magnetic field and quark mass in three degenerate flavor QCD. The lattice simulations are performed using standard staggered fermions and the plaquette action with spatial sizes Nσ = 16 and 24 and a fixed temporal size Nτ = 4. The value of the quark masses are chosen such that the system undergoes a first order chiral phase transition and crossover with zero magnetic field. We find that in light mass regime, the quark chiral condensate undergoes magnetic catalysis in the whole temperature region and the phase transition tend to become stronger as the magnetic field increases. In crossover regime, deconfinement transition temperature is shifted by the magnetic field when quark mass ma is less than 0:4. The lattice cutoff effects are also discussed.

  20. Quark-hadron duality in spin structure functions g1p and g1d

    NASA Astrophysics Data System (ADS)

    Bosted, P. E.; Dharmawardane, K. V.; Dodge, G. E.; Forest, T. A.; Kuhn, S. E.; Prok, Y.; Adams, G.; Amarian, M.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Cazes, A.; Chen, S.; Cole, P. L.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Masi, R. De; Devita, R.; Sanctis, E. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Djalali, C.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feuerbach, R. J.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gonenc, A.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Keith, C.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Lima, A. C. S.; Livingston, K.; Lu, H.; Lukashin, K.; MacCormick, M.; Manak, J. J.; Markov, N.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Moteabbed, M.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Shvedunov, N. V.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z.

    2007-03-01

    New measurements of the spin structure functions of the proton and deuteron g1p(x,Q2) and g1d(x,Q2) in the nucleon resonance region are compared with extrapolations of target-mass-corrected next-to-leading-order (NLO) QCD fits to higher energy data. Averaged over the entire resonance region (W<2 GeV), the data and QCD fits are in good agreement in both magnitude and Q2 dependence for Q2>1.7 GeV2/c2. This “global” duality appears to result from cancellations among the prominent “local” resonance regions: in particular strong σ3/2 contributions in the Δ(1232) region appear to be compensated by strong σ1/2 contributions in the resonance region centered on 1.5 GeV. These results are encouraging for the extension of NLO QCD fits to lower W and Q2 than have been used previously.

  1. Quantum Yang-Mills Dark Energy

    NASA Astrophysics Data System (ADS)

    Pasechnik, Roman

    2016-02-01

    In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.

  2. Lattice QCD results for the HVP contribution to the anomalous magnetic moments of leptons

    NASA Astrophysics Data System (ADS)

    2018-03-01

    We present lattice QCD results by the Budapest-Marseille-Wuppertal (BMW) Collaboration for the leading-order contribution of the hadron vacuum polarization (LOHVP) to the anomalous magnetic moments of all charged leptons. Calculations are performed with u, d, s and c quarks at their physical masses, in volumes of linear extent larger than 6 fm, and at six values of the lattice spacing, allowing for controlled continuum extrapolations. All connected and disconnected contributions are calculated for not only the muon but also the electron and tau anomalous magnetic moments. Systematic uncertainties are thoroughly discussed and comparisons with other calculations and phenomenological estimates are made.

  3. QCD-inspired spectra from Blue's functions

    NASA Astrophysics Data System (ADS)

    Nowak, Maciej A.; Papp, Gábor; Zahed, Ismail

    1996-02-01

    We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether through symmetries or models. In terms of the Blue's functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter.

  4. QCD corrections to massive color-octet vector boson pair production

    NASA Astrophysics Data System (ADS)

    Freitas, Ayres; Wiegand, Daniel

    2017-09-01

    This paper describes the calculation of the next-to-leading order (NLO) QCD corrections to massive color-octet vector boson pair production at hadron colliders. As a concrete framework, a two-site coloron model with an internal parity is chosen, which can be regarded as an effective low-energy approximation of Kaluza-Klein gluon physics in universal extra dimensions. The renormalization procedure involves several subtleties, which are discussed in detail. The impact of the NLO corrections is relatively modest, amounting to a reduction of 11-14% in the total cross-section, but they significantly reduce the scale dependence of the LO result.

  5. QCD pairing in primordial nuggets

    NASA Astrophysics Data System (ADS)

    Lugones, G.; Horvath, J. E.

    2003-08-01

    We analyze the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition. Recently, it has been shown that QCD pairing modifies the stability properties of strange quark matter. More specifically, strange quark matter in a color-flavor locked state was found to be absolutely stable for a much wider range of the parameters than ordinary unpaired strange quark matter (G. Lugones and J. E. Horvath, Phys. Rev. D, 66, 074017 (2002)). Assuming that primordial quark nuggets are actually formed we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived.

  6. Counting the number of Feynman graphs in QCD

    NASA Astrophysics Data System (ADS)

    Kaneko, T.

    2018-05-01

    Information about the number of Feynman graphs for a given physical process in a given field theory is especially useful for confirming the result of a Feynman graph generator used in an automatic system of perturbative calculations. A method of counting the number of Feynman graphs with weight of symmetry factor was established based on zero-dimensional field theory, and was used in scalar theories and QED. In this article this method is generalized to more complicated models by direct calculation of generating functions on a computer algebra system. This method is applied to QCD with and without counter terms, where many higher order are being calculated automatically.

  7. Studies of jet mass in dijet and W/Z + jet events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    Invariant mass spectra for jets reconstructed using the anti-kt and Cambridge-Aachen algorithms are studied for different jet "grooming" techniques in data corresponding to an integrated luminosity of 5 inverse femtobarns, recorded with the CMS detector in proton-proton collisions at the LHC at a center-of-mass energy of 7 TeV. Leading-order QCD predictions for inclusive dijet and W/Z+jet production combined with parton-shower Monte Carlo models are found to agree overall with the data, and the agreement improves with the implementation of jet grooming methods used to distinguish merged jets of large transverse momentum from softer QCD gluon radiation.

  8. Conserved charge fluctuations at vanishing and non-vanishing chemical potential

    NASA Astrophysics Data System (ADS)

    Karsch, Frithjof

    2017-11-01

    Up to 6th order cumulants of fluctuations of net baryon-number, net electric charge and net strangeness as well as correlations among these conserved charge fluctuations are now being calculated in lattice QCD. These cumulants provide a wealth of information on the properties of strong-interaction matter in the transition region from the low temperature hadronic phase to the quark-gluon plasma phase. They can be used to quantify deviations from hadron resonance gas (HRG) model calculations which frequently are used to determine thermal conditions realized in heavy ion collision experiments. Already some second order cumulants like the correlations between net baryon-number and net strangeness or net electric charge differ significantly at temperatures above 155 MeV in QCD and HRG model calculations. We show that these differences increase at non-zero baryon chemical potential constraining the applicability range of HRG model calculations to even smaller values of the temperature.

  9. The NNLO QCD soft function for 1-jettiness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Ellis, R. Keith; Mondini, Roberto

    We calculate the soft function for the global event variable 1-jettiness at next-to-next-to-leading order (NNLO) in QCD. We focus specifically on the non-Abelian contribution, which, unlike the Abelian part, is not determined by the next-to-leading order result. The calculation uses the known general forms for the emission of one and two soft partons and is performed using a sector-decomposition method that is spelled out in detail. Results are presented in the form of numerical fits to the 1-jettiness soft function for LHC kinematics (as a function of the angle between the incoming beams and the final-state jet) and for genericmore » kinematics (as a function of three independent angles). These fits represent one of the needed ingredients for NNLO calculations that use the N-jettiness event variable to handle infrared singularities.« less

  10. Fourth generation CP violation effects on B-->Kpi, phiK, and rhoK in next-to-leading-order perturbative QCD.

    PubMed

    Hou, Wei-Shu; Li, Hsiang-nan; Mishima, Satoshi; Nagashima, Makiko

    2007-03-30

    We study the effect from a sequential fourth generation quark on penguin-dominated two-body nonleptonic B meson decays in the next-to-leading order perturbative QCD formalism. With an enhancement of the color-suppressed tree amplitude and possibility of a new CP phase in the electroweak penguin amplitude, we can account better for A(CP)(B(0)-->K+ pi-)-A(CP)(B+-->K+ pi0). Taking |V(t's)V(t'b)| approximately 0.02 with a phase just below 90 degrees, which is consistent with the b-->sl+ l- rate and the B(s) mixing parameter Deltam(B)(s), we find a downward shift in the mixing-induced CP asymmetries of B(0)-->K(S)(pi 0) and phi(K)(S). The predicted behavior for B(0)-->rho(0)(K)(S) is opposite.

  11. Diphoton production in association with two bottom jets

    NASA Astrophysics Data System (ADS)

    Fäh, Daniel; Greiner, Nicolas

    2017-11-01

    We study the production of a photon pair in association with two bottom jets at the LHC. This process constitutes an important background to double Higgs production with the subsequent decay of the two Higgs bosons into a pair of photons and b-quarks respectively. We calculate this process at next-to-leading order accuracy in QCD and find that QCD corrections lead to a substantial increase of the production cross section due to new channels opening up at next-to-leading order and their inclusion is therefore inevitable for a reliable prediction. Furthermore, the approximation of massless b-quarks is scrutinized by calculating the process with both massless and massive b-quarks. We find that the massive bottom quark leads to a substantial reduction of the cross section where the biggest effect is, however, due to the use of a four-flavor PDF set and the corresponding smaller values for the strong coupling constant.

  12. Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory.

    PubMed

    Zhang, Cen

    2016-04-22

    Single top production processes at hadron colliders provide information on the relation between the top quark and the electroweak sector of the standard model. We compute the next-to-leading order QCD corrections to the three main production channels: t-channel, s-channel, and tW associated production, in the standard model including operators up to dimension six. The calculation can be matched to parton shower programs and can therefore be directly used in experimental analyses. The QCD corrections are found to significantly impact the extraction of the current limits on the operators, because both of an improved accuracy and a better precision of the theoretical predictions. In addition, the distributions of some of the key discriminating observables are modified in a nontrivial way, which could change the interpretation of measurements in terms of UV complete models.

  13. The NNLO QCD soft function for 1-jettiness

    DOE PAGES

    Campbell, John M.; Ellis, R. Keith; Mondini, Roberto; ...

    2018-03-19

    We calculate the soft function for the global event variable 1-jettiness at next-to-next-to-leading order (NNLO) in QCD. We focus specifically on the non-Abelian contribution, which, unlike the Abelian part, is not determined by the next-to-leading order result. The calculation uses the known general forms for the emission of one and two soft partons and is performed using a sector-decomposition method that is spelled out in detail. Results are presented in the form of numerical fits to the 1-jettiness soft function for LHC kinematics (as a function of the angle between the incoming beams and the final-state jet) and for genericmore » kinematics (as a function of three independent angles). These fits represent one of the needed ingredients for NNLO calculations that use the N-jettiness event variable to handle infrared singularities.« less

  14. How tetraquarks can generate a second chiral phase transition

    DOE PAGES

    Pisarski, Robert D.; Skokov, Vladimir V.

    2016-09-09

    We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of temperature,more » T, and quark chemical potential, μ, though, a crossover line for the tetraquark condensate is naturally related to the transition line for color superconductivity. For four flavors we suggest that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.« less

  15. Parton distribution functions with QED corrections in the valon model

    NASA Astrophysics Data System (ADS)

    Mottaghizadeh, Marzieh; Taghavi Shahri, Fatemeh; Eslami, Parvin

    2017-10-01

    The parton distribution functions (PDFs) with QED corrections are obtained by solving the QCD ⊗QED DGLAP evolution equations in the framework of the "valon" model at the next-to-leading-order QCD and the leading-order QED approximations. Our results for the PDFs with QED corrections in this phenomenological model are in good agreement with the newly related CT14QED global fits code [Phys. Rev. D 93, 114015 (2016), 10.1103/PhysRevD.93.114015] and APFEL (NNPDF2.3QED) program [Comput. Phys. Commun. 185, 1647 (2014), 10.1016/j.cpc.2014.03.007] in a wide range of x =[10-5,1 ] and Q2=[0.283 ,108] GeV2 . The model calculations agree rather well with those codes. In the latter, we proposed a new method for studying the symmetry breaking of the sea quark distribution functions inside the proton.

  16. Higgs boson decay into b-quarks at NNLO accuracy

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Tramontano, Francesco; Trócsányi, Zoltán

    2015-04-01

    We compute the fully differential decay rate of the Standard Model Higgs boson into b-quarks at next-to-next-to-leading order (NNLO) accuracy in αs. We employ a general subtraction scheme developed for the calculation of higher order perturbative corrections to QCD jet cross sections, which is based on the universal infrared factorization properties of QCD squared matrix elements. We show that the subtractions render the various contributions to the NNLO correction finite. In particular, we demonstrate analytically that the sum of integrated subtraction terms correctly reproduces the infrared poles of the two-loop double virtual contribution to this process. We present illustrative differential distributions obtained by implementing the method in a parton level Monte Carlo program. The basic ingredients of our subtraction scheme, used here for the first time to compute a physical observable, are universal and can be employed for the computation of more involved processes.

  17. Implications of the principle of maximum conformality for the QCD strong coupling

    DOE PAGES

    Deur, Alexandre; Shen, Jian -Ming; Wu, Xing -Gang; ...

    2017-08-14

    The Principle of Maximum Conformality (PMC) provides scale-fixed perturbative QCD predictions which are independent of the choice of the renormalization scheme, as well as the choice of the initial renormalization scale. In this article, we will test the PMC by comparing its predictions for the strong couplingmore » $$\\alpha^s_{g_1}(Q)$$, defined from the Bjorken sum rule, with predictions using conventional pQCD scale-setting. The two results are found to be compatible with each other and with the available experimental data. However, the PMC provides a significantly more precise determination, although its domain of applicability ($$Q \\gtrsim 1.5$$ GeV) does not extend to as small values of momentum transfer as that of a conventional pQCD analysis ($$Q \\gtrsim 1$$ GeV). In conclusion, we suggest that the PMC range of applicability could be improved by a modified intermediate scheme choice or using a single effective PMC scale.« less

  18. Dissociation of 1P states in hot QCD Medium Using Quasi-Particle Model

    NASA Astrophysics Data System (ADS)

    Nilima, Indrani; Agotiya, Vineet Kumar

    2018-03-01

    We extend the analysis of a very recent work [1] to study the dissociation phenomenon of 1P states of the charmonium and bottomonium spectra (χc and χb) in a hot QCD medium using Quasi-Particle Model. This study employed a medium modified heavy quark potential which has quite different form in the sense that it has a lomg range Coulombic tail in addition to the Yukawa term even above the deconfinement temperature. Then we study the flavor dependence of their binding energies and explore the nature of dissociation temperatures by employing the Quasi-Particle debye mass for pure gluonic and full QCD case. Interestingly, the dissociation temperatures obtained by employing EoS1 and EoS2 with the Γ criterion, is closer to the upper bound of the dissociation temperatures which are obtained by the dissolution of a given quarkonia state by the mean thermal energy of the quasi-partons in the hot QCD/QGP medium.

  19. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2017-03-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

  20. Results from the RHIC energy scan and prospects for the future

    NASA Astrophysics Data System (ADS)

    Cebra, Daniel

    2016-03-01

    Collisions between relativistic heavy-ions are energetic enough to vaporize the participating neutrons and protons creating an equilibrated plasma of quarks and gluons which is understood to be similar to the state of the universe about one microsecond after the big bang. This deconfined, partonic phase has been well established an the top energies available at the Relativistic Heavy Ion Collider (RHIC). Although progress has been made in understanding the nature of hot dense QCD matter, there are still important open questions about how the matter undergoes the transition between a quark-gluon plasma and a hot hadronic gas. If the plasma has an equal mix of quarks and anti-quarks, lattice QCD calculations now tell us that there will be a crossover transition. However, in heavy-ion collisions, systems are created with an excess of quarks. The degree of the quark excess (measured as baryon chemical potential) is determined by the collision energy. Under high baryon chemical potential conditions, we expect a first order phase transition. The termination of the first order phase transition boundary will be a critical point. RHIC has performed a scan of several beam energies in order to map the QCD matter phase diagram as a function of baryon chemical potential. Features of the phase diagram and becoming evident, however more data are needed to clarify the picture. Upgrades to both the collider and the detectors are being undertaken. These will allow a more focused and refined follow-up energy scan in 2019 and 2020. This material is based upon work supported by the National Science Foundation under Grant No. 1404281.

  1. Lattice QCD in rotating frames.

    PubMed

    Yamamoto, Arata; Hirono, Yuji

    2013-08-23

    We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.

  2. Elastic and Diffractive Scattering - Proceedings of the International Conference on Vth Blois Workshop

    NASA Astrophysics Data System (ADS)

    Kang, K.; Fried, H. M.; Tan, C.-I.

    1994-02-01

    The Table of Contents for the book is as follows: * Preface * `Overview' on Elastic Scattering and Total Cross-Sections * A Precise Measurement of the Real Part of the Elastic Scattering Amplitude at the {S bar{p}pS} * Luminosity Dependent Measurement of the p bar{p} Total Cross Section at √{s} = 541 GeV * Status of Fermilab E-710 * Luminosity-Independent Measurement of bar{p}p Elastic Scattering, Single Diffraction, Dissociation and Total Cross Section at √{s} = 546 and 1800 GeV * Phase Relations Revisited: A Challenge for SSC and LHC * Status of Near-Forward Elastic Scattering * bar{p}p Collisions at √{s} = 1.8 TeV: p, σt and B * p bar{p} Forward Scattering Parameters Results from Fermilab E760 * Photoproduction Results from H1 at HERA * Total and Jet Photoproduction Cross Sections at HERA and Fermilab * Minijet Model for High Energy γp Cross Sections * The Pomeron as Massive Gluons * Large N Theories with Glueball-like Spectra * Unitarity Relations for Gluonic Pomeron * The Donnachie-Landshoff Pomeron vs. QCD * The Odderon Intercept in Perturbative QCD * Theoret. and Phenomenol. Aspects of the Odderon * First Theorist's Gaze at HERA Data at Low xB * H1 Results for Structure Functions at Small x * Partial Photoproduction Cross Sections at √{s} ≈prox 180 GeV and First Results on F2 of the Proton from the ZEUS Experiment * Observation of a New Class of Events in Deep Inelastic Scattering * Jet Production in Muon-Proton and Muon-Nuclei Scattering at Fermilab-E665 * D0 Studies of Perturbative QCD * Large Rapidity Gaps and Single Diffraction Dissociation in High Energy pp and bar{p}p Collisions * Hadron and Reggeon Structure in High Energy Collisions * Monte Carlo Studies of Diffractive Processes in Deep Inelastic Scattering * Elastic Parton-Parton Amplitudes in Geometrical Models * Non-Perturbative QCD Calculations of High-Energy Observables * Effective Field Theory for Diffractive QCD Processes * High Energy Behavior of σtot, ρ, and B - Asymptotic Amplitude Analysis and a QCD-Inspired Analysis * Rapidity Gaps and Multiplicity Fluctuations * Branching Processes and Multi-Particle Production * High Energy Elastic Scattering and Nucleon as a Topological Soliton * The Behavior of Cross Sections at Very High Energies * The Pomeron and QCD with Many Light Quarks * Heterotic Pomeron: High Energy Hadronic Collisions in QCD * CDF Results on Electroweak Physics * DØ Results on Electroweak Physics * Search for the Top Quark and Other New Particles at DØ * Rapidity Gaps and Forward Physics at DØ * High Energy Asymptotics of Perturbative Multi-Color QCD * Rapidity Gaps in e+e- Collisions * Large Rapidity Gap, Jet Events at HERA: a PQCD Approach * High Energy Parton-Parton Elastic Scattering in QCD * Parton-Parton Elastic Scattering and Rapidity Gaps at Tevatron Energies * Hard Elastic Scattering * Hard Diffractive Processes * Three Successful Tests of Color Transparency and Nuclear Filtering * New KNO in QCD * A Chiral Condensate Search at the Tevatron * Cosmic Ray Evidences for Aligned High Energy Jets at Supertevatron Energy and Hard DDD * "New Hadronic State" Observed in Extremely High Energy Cosmic-Ray Interactions * Meson and Nucleon Form Factors in PQCD * Elastic Charge Form Factors for Pseudoscalar Mesons * The Ultimate Experiment * Search for Coherent Charm Production in 800 GeV/c Proton-Silicon Interactions * Chiral Quark Model and Hadron Scattering * Elastic Spin Experiments at UNK, Fermilab and SSC * Spin-Flip in Elastic and Diffractive Scattering * FNAL Polarized Beams and Spin Dependence at RHIC * Particle Tracking in the Close-to-Forward Region (η > 5.5) * Blois V: Experimental Summary * Blois V: Summary Talk * List of Participants

  3. Study of ordered hadron chains with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2017-11-01

    The analysis of the momentum difference between charged hadrons in high-energy proton-proton collisions is performed in order to study coherent particle production. The observed correlation pattern agrees with a model of a helical QCD string fragmenting into a chain of ground-state hadrons. A threshold momentum difference in the production of adjacent pairs of charged hadrons is observed, in agreement with model predictions. The presence of low-mass hadron chains also explains the emergence of charge-combination-dependent two-particle correlations commonly attributed to Bose-Einstein interference. The data sample consists of 190 μ b-1 of minimum-bias events collected with proton-proton collisions at a center-of-mass energy √{s }=7 TeV in the early low-luminosity data taking with the ATLAS detector at the LHC.

  4. Production of heavy Higgs bosons and decay into top quarks at the LHC

    NASA Astrophysics Data System (ADS)

    Bernreuther, W.; Galler, P.; Mellein, C.; Si, Z.-G.; Uwer, P.

    2016-02-01

    We investigate the production of heavy, neutral Higgs boson resonances and their decays to top-quark top-antiquark (t t ¯) pairs at the Large Hadron Collider (LHC) at next-to-leading order (NLO) in the strong coupling of quantum chromodynamics (QCD). The NLO corrections to heavy Higgs boson production and the Higgs-QCD interference are calculated in the large mt limit with an effective K-factor rescaling. The nonresonant t t ¯ background is taken into account at NLO QCD including weak-interaction corrections. In order to consistently determine the total decay widths of the heavy Higgs bosons, we consider for definiteness the type-II two-Higgs-doublet extension of the standard model and choose three parameter scenarios that entail two heavy neutral Higgs bosons with masses above the t t ¯ threshold and unsuppressed Yukawa couplings to top quarks. For these three scenarios we compute, for the LHC operating at 13 TeV, the t t ¯ cross section and the distributions of the t t ¯ invariant mass, of the transverse top-quark momentum and rapidity, and of the cosine of the Collins-Soper angle with and without the two heavy Higgs resonances. For selected Mt t ¯ bins we estimate the significances for detecting a heavy Higgs signal in the t t ¯ dileptonic and lepton plus jets decay channels.

  5. Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantry, Sonny; Petriello, Frank

    We derive a factorization theorem for the Higgs boson transverse momentum (p{sub T}) and rapidity (Y) distributions at hadron colliders, using the soft-collinear effective theory (SCET), for m{sub h}>>p{sub T}>>{Lambda}{sub QCD}, where m{sub h} denotes the Higgs mass. In addition to the factorization of the various scales involved, the perturbative physics at the p{sub T} scale is further factorized into two collinear impact-parameter beam functions (IBFs) and an inverse soft function (ISF). These newly defined functions are of a universal nature for the study of differential distributions at hadron colliders. The additional factorization of the p{sub T}-scale physics simplifies themore » implementation of higher order radiative corrections in {alpha}{sub s}(p{sub T}). We derive formulas for factorization in both momentum and impact parameter space and discuss the relationship between them. Large logarithms of the relevant scales in the problem are summed using the renormalization group equations of the effective theories. Power corrections to the factorization theorem in p{sub T}/m{sub h} and {Lambda}{sub QCD}/p{sub T} can be systematically derived. We perform multiple consistency checks on our factorization theorem including a comparison with known fixed-order QCD results. We compare the SCET factorization theorem with the Collins-Soper-Sterman approach to low-p{sub T} resummation.« less

  6. The b Quark Fragmentation Function, From LEP to TeVatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-haim, Eli

    2004-12-01

    The b quark fragmentation distribution has been measured, using data registered by the DELPHI experiment at the Z pole, in the years 1994-1995. The measurement made use of 176000 inclusively reconstructed B meson candidates. The errors of this measurement are dominated by systematic effects, the principal ones being related to the energy calibration. The distribution has been established in a nine bin histogram. Its mean value has been found to be = 0.704 ± 0.001(stat.) ± 0.008(syst.). Using this measurement, and other available analyses of the b-quark fragmentation distribution in e +e - collisions, the non-perturbative QCD component of the distribution has been extracted independently of any hadronic physics modeling. This distribution depends only on the way the perturbative QCD component has been defined. When the perturbative QCD component is taken from a parton shower Monte-Carlo, the non-perturbative QCD component is rather similar with those obtained from the Lund or Bowler models. When the perturbative QCD component is the result of an analytic NLL computation, the non-perturbative QCD component has to be extended in a non-physical region and thus cannot be described by any hadronic modeling. In the two examples, used to characterize these two situations, which are studied at present, it happens that the extracted non-perturbative QCD distribution has the same shape, being simply translated to higher-x values in the second approach, illustrating the ability of the analytic perturbative QCD approach to account for softer gluon radiation than with a parton shower generator. Using all the available analyses of the b-quark fragmentation distribution in e +e - collisions, together with the result from DELPHI presented in this thesis, a combined world average b fragmentation distribution has been obtained. Its mean value has been found to be = 0.714 ± 0.002. An analysis of the B hadron production at CDF is ongoing. It makes use of ~ 6000 B ± candidates, from 333 pb -1 of data registered by the CDF experiment, fully reconstructed in the decay channel B ± → J/ΨK ±. Characteristics of B mesons and for accompanying tracks have been examined, in the perspective of understanding the effect of fragmentation. These studies, done in the framework of the PYTHIA event generator, also involve the contributions from different bmore » $$\\bar{b}$$ production mechanisms. Distributions from a fully reconstructed Monte Carlo sample have been compared to data, and the agreement has been found to be reasonable. The analysis is ongoing, and the goal is to fit the fragmentation function parameters and/or the relative contributions from different production mechanisms to improve the agreement between data and Monte Carlo. A measurement of the b quark production cross section has been obtained using the same data. The analysis is still under way, and therefore the result is preliminary.« less

  7. Large-Nc sum rules for charmed baryons at subleading orders

    NASA Astrophysics Data System (ADS)

    Heo, Yonggoo; Lutz, Matthias F. M.

    2018-05-01

    Sum rules for the low-energy constants of the chiral SU(3) Lagrangian with charmed baryons of spin JP=1 /2+ and JP=3 /2+ baryons are derived from large-Nc QCD. We consider the large-Nc operator expansion at subleading orders for current-current correlation functions in the charmed baryon-ground states for two scalar and two axial-vector currents.

  8. First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis.

    PubMed

    Ethier, J J; Sato, N; Melnitchouk, W

    2017-09-29

    We perform the first global QCD analysis of polarized inclusive and semi-inclusive deep-inelastic scattering and single-inclusive e^{+}e^{-} annihilation data, simultaneously fitting the parton distribution and fragmentation functions using the iterative Monte Carlo method. Without imposing SU(3) symmetry relations, we find the strange polarization to be very small, consistent with zero for both inclusive and semi-inclusive data, which provides a resolution to the strange quark polarization puzzle. The combined analysis also allows the direct extraction from data of the isovector and octet axial charges, and is consistent with a small SU(2) flavor asymmetry in the polarized sea.

  9. First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis

    DOE PAGES

    Ethier, Jacob J.; Sato, Nobuo; Melnitchouk, Wally

    2017-09-26

    In this paper, we perform the first global QCD analysis of polarized inclusive and semi-inclusive deep-inelastic scattering and single-inclusive $e^+e^-$ annihilation data, simultaneously fitting the parton distribution and fragmentation functions using the iterative Monte Carlo method. Without imposing SU(3) symmetry relations, we find the strange polarization to be very small, consistent with zero for both inclusive and semi-inclusive data, which provides a resolution to the strange quark polarization puzzle. Finally, the combined analysis also allows the direct extraction from data of the isovector and octet axial charges, and is consistent with a small SU(2) flavor asymmetry in the polarized sea.

  10. Hadronic decays of B →a1(1260 )b1(1235 ) in the perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Jing, Hao-Yang; Liu, Xin; Xiao, Zhen-Jun

    2017-12-01

    We calculate the branching ratios and polarization fractions of the B →a1b1 decays in the perturbative QCD(pQCD) approach at leading order, where a1(b1) stands for the axial-vector a1(1260 )[b1(1235 )] state. By combining the phenomenological analyses with the perturbative calculations, we find the following results: (a) the large decay rates around 10-5 to 10-6 of the B →a1b1 decays dominated by the longitudinal polarization(except for the B+→b1+a10 mode) are predicted and basically consistent with those in the QCD factorization(QCDF) within errors, which are expected to be tested by the Large Hadron Collider and Belle-II experiments. The large B0→a10b10 branching ratio could provide hints to help explore the mechanism of the color-suppressed decays. (b) the rather different QCD behaviors between the a1 and b1 mesons result in the destructive(constructive) contributions in the nonfactorizable spectator diagrams with a1(b1) emission. Therefore, an interesting pattern of the branching ratios appears for the color-suppressed B0→a10a10,a10b10, and b10b10 modes in the pQCD approach, BR (B0→b10b10)>BR (B0→a10b10)≳BR (B0→a10a10), which is different from BR (B0→b10b10)˜BR (B0→a10b10)≳BR (B0→a10a10) in the QCDF and would be verified at future experiments. (c) the large naive factorization breaking effects are observed in these B →a1b1 decays. Specifically, the large nonfactorizable spectator(weak annihilation) amplitudes contribute to the B0→b1+a1-(B+→a1+b10andB+→b1+a10) mode(s), which demand confirmations via the precise measurements. Furthermore, the different phenomenologies shown among B →a1b1, B →a1a1, and B →b1b1 decays are also expected to be tested stringently, which could shed light on the typical QCD dynamics involved in these modes, even further distinguish those two popular pQCD and QCDF approaches.

  11. The cosmic QCD phase transition with dense matter and its gravitational waves from holography

    NASA Astrophysics Data System (ADS)

    Ahmadvand, M.; Bitaghsir Fadafan, K.

    2018-04-01

    Consistent with cosmological constraints, there are scenarios with the large lepton asymmetry which can lead to the finite baryochemical potential at the cosmic QCD phase transition scale. In this paper, we investigate this possibility in the holographic models. Using the holographic renormalization method, we find the first order Hawking-Page phase transition, between the Reissner-Nordström AdS black hole and thermal charged AdS space, corresponding to the de/confinement phase transition. We obtain the gravitational wave spectra generated during the evolution of bubbles for a range of the bubble wall velocity and examine the reliability of the scenarios and consequent calculations by gravitational wave experiments.

  12. NNLO QCD predictions for fully-differential top-quark pair production at the Tevatron

    NASA Astrophysics Data System (ADS)

    Czakon, Michal; Fiedler, Paul; Heymes, David; Mitov, Alexander

    2016-05-01

    We present a comprehensive study of differential distributions for Tevatron top-pair events at the level of stable top quarks. All calculations are performed in NNLO QCD with the help of a fully differential partonic Monte-Carlo and are exact at this order in perturbation theory. We present predictions for all kinematic distributions for which data exists. Particular attention is paid on the top-quark forward-backward asymmetry which we study in detail. We compare the NNLO results with existing approximate NNLO predictions as well as differential distributions computed with different parton distribution sets. Theory errors are significantly smaller than current experimental ones with overall agreement between theory and data.

  13. Precise charm to strange mass ratio and light quark masses from full lattice QCD.

    PubMed

    Davies, C T H; McNeile, C; Wong, K Y; Follana, E; Horgan, R; Hornbostel, K; Lepage, G P; Shigemitsu, J; Trottier, H

    2010-04-02

    By using a single formalism to handle charm, strange, and light valence quarks in full lattice QCD for the first time, we are able to determine ratios of quark masses to 1%. For m(c)/m(s) we obtain 11.85(16), an order of magnitude more precise than the current PDG average. Combined with 1% determinations of the charm quark mass now possible this gives m(s)(2 GeV)=92.4(1.5) MeV. The MILC result for m(s)/m(l)=27.2(3) yields m(l)(2 GeV)=3.40(7) MeV for the average of u and d quark masses.

  14. On a realization of { β}-expansion in QCD

    NASA Astrophysics Data System (ADS)

    Mikhailov, S. V.

    2017-04-01

    We suggest a simple algebraic approach to fix the elements of the { β}-expansion for renormalization group invariant quantities, which uses additional degrees of freedom. The approach is discussed in detail for N2LO calculations in QCD with the MSSM gluino — an additional degree of freedom. We derive the formulae of the { β}-expansion for the nonsinglet Adler D-function and Bjorken polarized sum rules in the actual N3LO within this quantum field theory scheme with the MSSM gluino and the scheme with the second additional degree of freedom. We discuss the properties of the { β}-expansion for higher orders considering the N4LO as an example.

  15. An estimate for the thermal photon rate from lattice QCD

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Francis, Anthony; Harris, Tim; Meyer, Harvey B.; Steinberg, Aman

    2018-03-01

    We estimate the production rate of photons by the quark-gluon plasma in lattice QCD. We propose a new correlation function which provides better control over the systematic uncertainty in estimating the photon production rate at photon momenta in the range πT/2 to 2πT. The relevant Euclidean vector current correlation functions are computed with Nf = 2 Wilson clover fermions in the chirally-symmetric phase. In order to estimate the photon rate, an ill-posed problem for the vector-channel spectral function must be regularized. We use both a direct model for the spectral function and a modelindependent estimate from the Backus-Gilbert method to give an estimate for the photon rate.

  16. Complete Nagy-Soper subtraction for next-to-leading order calculations in QCD

    NASA Astrophysics Data System (ADS)

    Bevilacqua, G.; Czakon, M.; Kubocz, M.; Worek, M.

    2013-10-01

    We extend the Helac-Dipoles package with the implementation of a new subtraction formalism, first introduced by Nagy and Soper in the formulation of an improved parton shower. We discuss a systematic, semi-numerical approach for the evaluation of the integrated subtraction terms for both massless and massive partons, which provides the missing ingredient for a complete implementation. In consequence, the new scheme can now be used as part of a complete NLO QCD calculation for processes with arbitrary parton masses and multiplicities. We assess its overall performance through a detailed comparison with results based on Catani-Seymour subtraction. The importance of random polarization and color sampling of the external partons is also examined.

  17. Study of jet transverse momentum and jet rapidity dependence of dijet azimuthal decorrelations with the DO detector

    NASA Astrophysics Data System (ADS)

    Chakravarthula, Kiran

    In a collision experiment involving highly energetic particles such as hadrons, processes at high momentum transfers can provide information useful for many studies involving Quantum Chromodynamics (QCD). One way of analyzing these interactions is through angular distributions. In hadron-hadron collisions, the angular distribution between the two leading jets with the largest transverse momentum (pT) is affected by the production of additional jets. While soft radiation causes small differences in the azimuthal angular distribution of the two leading jets produced in a collision event, additional hard jets produced in the event have more pronounced influence on the distribution of the two leading jets produced in the collision. Thus, the dijet azimuthal angular distribution can serve as a variable that can be used to study the transition from soft to hard QCD processes in a collision event. This dissertation presents a triple-differential study involving the azimuthal angular distribution and the jet transverse momenta, and jet rapidities of the first two leading jets. The data used for this research are obtained from proton-antiproton (pp¯) collisions occurring at a center of mass energy of 1.96 TeV, using the DØ detector in Run II of the Tevatron Collider at the Fermi National Accelerator Laboratory (FNAL) in Illinois, USA. Comparisons are made to perturbative QCD (pQCD) predictions at next-to-leading order (NLO).

  18. The Compressed Baryonic Matter experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Höhne, Claudia

    2018-02-01

    The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.

  19. Neutrinoless double beta decay and QCD running at low energy scales

    NASA Astrophysics Data System (ADS)

    González, M.; Hirsch, M.; Kovalenko, S. G.

    2018-06-01

    There is a common belief that the main uncertainties in the theoretical analysis of neutrinoless double beta (0 ν β β ) decay originate from the nuclear matrix elements. Here, we uncover another previously overlooked source of potentially large uncertainties stemming from nonperturbative QCD effects. Recently perturbative QCD corrections have been calculated for all dimension 6 and 9 effective operators describing 0 ν β β -decay and their importance for a reliable treatment of 0 ν β β -decay has been demonstrated. However, these perturbative results are valid at energy scales above ˜1 GeV , while the typical 0 ν β β scale is about ˜100 MeV . In view of this fact we examine the possibility of extrapolating the perturbative results towards sub-GeV nonperturbative scales on the basis of the QCD coupling constant "freezing" behavior using background perturbation theory. Our analysis suggests that such an infrared extrapolation does modify the perturbative results for both short-range and long-range mechanisms of 0 ν β β -decay in general only moderately. We also discuss that the tensor⊗tensor effective operator cannot appear alone in the low energy limit of any renormalizable high-scale model and then demonstrate that all five linearly independent combinations of the scalar and tensor operators, which can appear in renormalizable models, are infrared stable.

  20. QCD for Postgraduates (1/5)

    ScienceCinema

    Zanderighi, Giulia

    2018-04-26

    Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities.

  1. New parton distribution functions from a global analysis of quantum chromodynamics

    DOE PAGES

    Dulat, Sayipjamal; Hou, Tie -Jiun; Gao, Jun; ...

    2016-02-16

    Here, we present new parton distribution functions (PDFs) up to next-to-next-to-leading order (NNLO) from the CTEQ-TEA global analysis of quantum chromodynamics. These differ from previous CT PDFs in several respects, including the use of data from LHC experiments and the new D0 charged lepton rapidity asymmetry data, as well as the use of more flexible parametrization of PDFs that, in particular, allows a better fit to different combinations of quark flavors. Predictions for important LHC processes, especially Higgs boson production at 13 TeV, are presented. These CT14 PDFs include a central set and error sets in the Hessian representation. Formore » completeness, we also present the CT14 PDFs determined at the leading order (LO) and the next-to-leading order (NLO) in QCD. Besides these general-purpose PDF sets, we provide a series of (N)NLO sets with various α s values and additional sets in general-mass variable flavor number (GM-VFN) schemes, to deal with heavy partons, with up to 3, 4, and 6 active flavors.« less

  2. The ratio of inclusive jet cross sections at square √s = 630 GeV and square √s = 1800 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krane, John

    This dissertation presents an analysis of hadronic jet production from proton-antiproton collisions at two center-of-mass energies. Measurements were performed in the central region (|η|<0.5) of the D0 detector at Fermi National Accelerator Laboratory (Batavia, IL). Results are compared to next-to-leading-order QCD predictions generated with JETRAD and EKS Monte Carlo. Several techniques reduce the uncertainty in the ratio of cross sections as low as 5%. The observed normalization difference results in a low probability that the data and predictions describe the same distribution.

  3. FOREWORD: Extreme QCD 2012 (xQCD)

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Bazavov, Alexei; Liu, Keh-Fei

    2013-04-01

    The Extreme QCD 2012 conference, held at the George Washington University in August 2012, celebrated the 10th event in the series. It has been held annually since 2003 at different locations: San Carlos (2011), Bad Honnef (2010), Seoul (2009), Raleigh (2008), Rome (2007), Brookhaven (2006), Swansea (2005), Argonne (2004), and Nara (2003). As usual, it was a very productive and inspiring meeting that brought together experts in the field of finite-temperature QCD, both theoretical and experimental. On the experimental side, we heard about recent results from major experiments, such as PHENIX and STAR at Brookhaven National Laboratory, ALICE and CMS at CERN, and also about the constraints on the QCD phase diagram coming from astronomical observations of one of the largest laboratories one can imagine, neutron stars. The theoretical contributions covered a wide range of topics, including QCD thermodynamics at zero and finite chemical potential, new ideas to overcome the sign problem in the latter case, fluctuations of conserved charges and how they allow one to connect calculations in lattice QCD with experimentally measured quantities, finite-temperature behavior of theories with many flavors of fermions, properties and the fate of heavy quarkonium states in the quark-gluon plasma, and many others. The participants took the time to write up and revise their contributions and submit them for publication in these proceedings. Thanks to their efforts, we have now a good record of the ideas presented and discussed during the workshop. We hope that this will serve both as a reminder and as a reference for the participants and for other researchers interested in the physics of nuclear matter at high temperatures and density. To preserve the atmosphere of the event the contributions are ordered in the same way as the talks at the conference. We are honored to have helped organize the 10th meeting in this series, a milestone that reflects the lasting interest in this research area and the steady progress in resolving the outstanding issues. Many challenges remain and we are confident that this series will continue well into the future. Next year, the meeting will be organized at the Albert Einstein Center for Fundamental Physics at the University of Bern. We expect to have another interesting and lively meeting and look forward to meeting you there. February 23, 2013 Andrei Alexandru Alexei Bazavov Keh-Fei Liu

  4. Leptoquark toolbox for precision collider studies

    NASA Astrophysics Data System (ADS)

    Doršner, Ilja; Greljo, Admir

    2018-05-01

    We implement scalar and vector leptoquark (LQ) models in the universal FeynRules output (UFO) format assuming the Standard Model fermion content and conservation of baryon and lepton numbers. Scalar LQ implementations include next-to-leading order (NLO) QCD corrections. We report the NLO QCD inclusive cross sections in proton-proton collisions at 13 TeV, 14 TeV, and 27 TeV for all on-shell LQ production processes. These comprise (i) LQ pair production ( pp → ΦΦ) and (ii) single LQ + lepton production ( pp → Φ ℓ) for all initial quark flavours ( u, d, s, c, and b). Vector LQ implementation includes adjustable non-minimal QCD coupling. We discuss several aspects of LQ searches at a hadron collider, emphasising the implications of SU(2) gauge invariance, electroweak and flavour constraints, on the possible signatures. Finally, we outline the high- p T search strategy for LQs recently proposed in the literature to resolve experimental anomalies in B-meson decays. In this context, we stress the importance of complementarity of the three LQ related processes, namely, pp → ΦΦ, pp → Φ ℓ, and pp → ℓℓ.

  5. Flavor-singlet spectrum in multi-flavor QCD

    NASA Astrophysics Data System (ADS)

    Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed; Kurachi, Masafumi; Maskawa, Toshihide; Miura, Kohtaroh; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi

    2018-03-01

    Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.

  6. Precision probes of QCD at high energies

    NASA Astrophysics Data System (ADS)

    Alioli, Simone; Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.

    2017-07-01

    New physics, that is too heavy to be produced directly, can leave measurable imprints on the tails of kinematic distributions at the LHC. We use energetic QCD processes to perform novel measurements of the Standard Model (SM) Effective Field Theory. We show that the dijet invariant mass spectrum, and the inclusive jet transverse momentum spectrum, are sensitive to a dimension 6 operator that modifies the gluon propagator at high energies. The dominant effect is constructive or destructive interference with SM jet production. We compare differential next-to-leading order predictions from POWHEG to public 7 TeV jet data, including scale, PDF, and experimental uncertainties and their respective correlations. We constrain a New Physics (NP) scale of 3.5 TeV with current data. We project the reach of future 13 and 100 TeV measurements, which we estimate to be sensitive to NP scales of 8 and 60 TeV, respectively. As an application, we apply our bounds to constrain heavy vector octet colorons that couple to the QCD current. We project that effective operators will surpass bump hunts, in terms of coloron mass reach, even for sequential couplings.

  7. Baryon interactions from lattice QCD with physical masses — strangeness S = -1 sector —

    NASA Astrophysics Data System (ADS)

    Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Sasaki, Kenji

    2018-03-01

    We present our recent results of baryon interactions with strangeness S = -1 based on Nambu-Bethe-Salpeter (NBS) correlation functions calculated fromlattice QCD with almost physical quark masses corresponding to (mk,mk) ≈ (146, 525) MeV and large volume (La)4 ≈ (96a)4 ≈ (8.1 fm)4. In order to perform a comprehensive study of baryon interactions, a large number of NBS correlation functions from NN to ΞΞ are calculated simultaneously by using large scale computer resources. In this contribution, we focus on the strangeness S = -1 channels of the hyperon interactions by means of HAL QCD method. Four sets of three potentials (the 3S1 - 3 D1 central, 3S1 - 3 D1 tensor, and the 1S0 central potentials) are presented for the ∑N - ∑N (the isospin I = 3/2) diagonal, the ∧N - ∧N diagonal, the ∧N → ∑N transition, and the ∑N - ∑N (I = 1/2) diagonal interactions. Scattering phase shifts for ∑N (I = 3/2) system are presented.

  8. Flavor-singlet spectrum in multi-flavor QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Yasamichi; Rinaldi, Enrico

    2017-06-18

    Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixedmore » number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.« less

  9. Study of B c  → J/ψV and {B}_{c}^{* } \\rightarrow {\\eta }_{c}V decays within the QCD factorization

    NASA Astrophysics Data System (ADS)

    Chang, Qin; Chen, Li-Li; Xu, Shuai

    2018-07-01

    In this paper, we study the non-leptonic B c → J/ψV and {B}c* \\to {η }cV (V=ρ ,{K}* ) weak decays in the framework of QCD factorization. In the evaluation, the form factors are calculated using the Bauer–Stech–Wirbel model and the light-front quark model, respectively. Besides the longitudinal amplitude, the power-suppressed transverse contributions are also evaluated at next-to-leading order. The predictions for the observables of B c → J/ψV and {B}c* \\to {η }cV decays are presented. We find that the NLO QCD contribution presents about 8% correction to the branching ratios, and the longitudinal polarization fractions of these decays are at the level of (80 ∼ 90)%. In addition, we suggest direct measurements on some useful ratios, {R}{K* /ρ }(λ =0) and {\\widetilde{R}}{K* /ρ }(λ =0), which are very suitable to test the consistence between theoretical prediction and data because their theoretical uncertainties can be well controlled.

  10. NLO QCD corrections to B c( B*c) production around the Z pole at an e + e - collider

    NASA Astrophysics Data System (ADS)

    Zheng, XuChang; Chang, ChaoHsi; Feng, TaiFu; Pan, Zan

    2018-03-01

    The production of B c and B*c mesons at a Z-factory (an e + e - collider operating at energies around the Z pole) is calculated up to the next-to-leading order (NLO) QCD accuracy. The results show that the dependence of the total cross sections on the renormalization scale μ is suppressed by the corrections, and the NLO corrections enhance the total cross sections of B c by 52% and of B*c by 33% when the renormalization scale is taken at μ = 2 m b . To observe the various behaviors of the production of the mesons B c and B*c, such as the differential cross section vs. the out-going angle, the forward-backward asymmetry, and the distribution vs. the energy fraction z up to NLO QCD accuracy as well as the relevant K-factor (NLO to LO) for the production, are calculated, and it is pointed out that some of the observables obtained in the present work may be used as a specific precision test of the standard model.

  11. Vector and scalar charmonium resonances with lattice QCD

    DOE PAGES

    Lang, C. B.; Leskovec, Luka; Mohler, Daniel; ...

    2015-09-15

    We perform an exploratory lattice QCD simulation of DD¯ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for DD¯ scattering in p-wave yields the well-known vector resonance ψ(3770). For m π = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state Χc0(1P) is well understood, while there is no commonly accepted candidate for its first excitation. We simulate DD¯ scatteringmore » in s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at Χc0(1P) agrees with the energy-dependence of our phase shift. In addition, further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia.« less

  12. Lattice QCD spectroscopy for hadronic CP violation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Vries, Jordy; Mereghetti, Emanuele; Seng, Chien -Yeah

    Here, the interpretation of nuclear electric dipole moment (EDM) experiments is clouded by large theoretical uncertainties associated with nonperturbative matrix elements. In various beyond-the-Standard Model scenarios nuclear and diamagnetic atomic EDMs are expected to be dominated by CP-violating pion–nucleon interactions that arise from quark chromo-electric dipole moments. The corresponding CP-violating pion–nucleon coupling strengths are, however, poorly known. In this work we propose a strategy to calculate these couplings by using spectroscopic lattice QCD techniques. Instead of directly calculating the pion–nucleon coupling constants, a challenging task, we use chiral symmetry relations that link the pion–nucleon couplings to nucleon sigma terms andmore » mass splittings that are significantly easier to calculate. In this work, we show that these relations are reliable up to next-to-next-to-leading order in the chiral expansion in both SU(2) and SU(3) chiral perturbation theory. We conclude with a brief discussion about practical details regarding the required lattice QCD calculations and the phenomenological impact of an improved understanding of CP-violating matrix elements.« less

  13. Lattice QCD spectroscopy for hadronic CP violation

    DOE PAGES

    de Vries, Jordy; Mereghetti, Emanuele; Seng, Chien -Yeah; ...

    2017-01-16

    Here, the interpretation of nuclear electric dipole moment (EDM) experiments is clouded by large theoretical uncertainties associated with nonperturbative matrix elements. In various beyond-the-Standard Model scenarios nuclear and diamagnetic atomic EDMs are expected to be dominated by CP-violating pion–nucleon interactions that arise from quark chromo-electric dipole moments. The corresponding CP-violating pion–nucleon coupling strengths are, however, poorly known. In this work we propose a strategy to calculate these couplings by using spectroscopic lattice QCD techniques. Instead of directly calculating the pion–nucleon coupling constants, a challenging task, we use chiral symmetry relations that link the pion–nucleon couplings to nucleon sigma terms andmore » mass splittings that are significantly easier to calculate. In this work, we show that these relations are reliable up to next-to-next-to-leading order in the chiral expansion in both SU(2) and SU(3) chiral perturbation theory. We conclude with a brief discussion about practical details regarding the required lattice QCD calculations and the phenomenological impact of an improved understanding of CP-violating matrix elements.« less

  14. Nucleon form factors in dispersively improved chiral effective field theory: Scalar form factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alarcon Soriano, Jose Manuel; Weiss, Christian

    We propose a method for calculating the nucleon form factors (FFs) ofmore » $G$-parity-even operators by combining Chiral Effective Field Theory ($$\\chi$$EFT) and dispersion analysis. The FFs are expressed as dispersive integrals over the two-pion cut at $$t > 4 M_\\pi^2$$. The spectral functions are obtained from the elastic unitarity condition and expressed as products of the complex $$\\pi\\pi \\rightarrow N\\bar N$$ partial-wave amplitudes and the timelike pion FF. $$\\chi$$EFT is used to calculate the ratio of the partial-wave amplitudes and the pion FF, which is real and free of $$\\pi\\pi$$ rescattering in the $t$-channel ($N/D$ method). The rescattering effects are then incorporated by multiplying with the squared modulus of the empirical pion FF. The procedure results in a marked improvement compared to conventional $$\\chi$$EFT calculations of the spectral functions. We apply the method to the nucleon scalar FF and compute the scalar spectral function, the scalar radius, the $t$-dependent FF, and the Cheng-Dashen discrepancy. Higher-order chiral corrections are estimated through the $$\\pi N$$ low-energy constants. Results are in excellent agreement with dispersion-theoretical calculations. We elaborate several other interesting aspects of our method. The results show proper scaling behavior in the large-$$N_c$$ limit of QCD because the $$\\chi$$EFT includes $N$ and $$\\Delta$$ intermediate states. The squared modulus of the timelike pion FF required by our method can be extracted from Lattice QCD calculations of vacuum correlation functions of the operator at large Euclidean distances. Our method can be applied to the nucleon FFs of other operators of interest, such as the isovector-vector current, the energy-momentum tensor, and twist-2 QCD operators (moments of generalized parton distributions).« less

  15. Nucleon form factors in dispersively improved chiral effective field theory: Scalar form factor

    DOE PAGES

    Alarcon Soriano, Jose Manuel; Weiss, Christian

    2017-11-20

    We propose a method for calculating the nucleon form factors (FFs) ofmore » $G$-parity-even operators by combining Chiral Effective Field Theory ($$\\chi$$EFT) and dispersion analysis. The FFs are expressed as dispersive integrals over the two-pion cut at $$t > 4 M_\\pi^2$$. The spectral functions are obtained from the elastic unitarity condition and expressed as products of the complex $$\\pi\\pi \\rightarrow N\\bar N$$ partial-wave amplitudes and the timelike pion FF. $$\\chi$$EFT is used to calculate the ratio of the partial-wave amplitudes and the pion FF, which is real and free of $$\\pi\\pi$$ rescattering in the $t$-channel ($N/D$ method). The rescattering effects are then incorporated by multiplying with the squared modulus of the empirical pion FF. The procedure results in a marked improvement compared to conventional $$\\chi$$EFT calculations of the spectral functions. We apply the method to the nucleon scalar FF and compute the scalar spectral function, the scalar radius, the $t$-dependent FF, and the Cheng-Dashen discrepancy. Higher-order chiral corrections are estimated through the $$\\pi N$$ low-energy constants. Results are in excellent agreement with dispersion-theoretical calculations. We elaborate several other interesting aspects of our method. The results show proper scaling behavior in the large-$$N_c$$ limit of QCD because the $$\\chi$$EFT includes $N$ and $$\\Delta$$ intermediate states. The squared modulus of the timelike pion FF required by our method can be extracted from Lattice QCD calculations of vacuum correlation functions of the operator at large Euclidean distances. Our method can be applied to the nucleon FFs of other operators of interest, such as the isovector-vector current, the energy-momentum tensor, and twist-2 QCD operators (moments of generalized parton distributions).« less

  16. Equilibrium statistical-thermal models in high-energy physics

    NASA Astrophysics Data System (ADS)

    Tawfik, Abdel Nasser

    2014-05-01

    We review some recent highlights from the applications of statistical-thermal models to different experimental measurements and lattice QCD thermodynamics that have been made during the last decade. We start with a short review of the historical milestones on the path of constructing statistical-thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948, an almost complete recipe for the statistical-thermal models. In 1950, Enrico Fermi generalized this statistical approach, in which he started with a general cross-section formula and inserted into it, the simplifying assumptions about the matrix element of the interaction process that likely reflects many features of the high-energy reactions dominated by density in the phase space of final states. In 1964, Hagedorn systematically analyzed the high-energy phenomena using all tools of statistical physics and introduced the concept of limiting temperature based on the statistical bootstrap model. It turns to be quite often that many-particle systems can be studied with the help of statistical-thermal methods. The analysis of yield multiplicities in high-energy collisions gives an overwhelming evidence for the chemical equilibrium in the final state. The strange particles might be an exception, as they are suppressed at lower beam energies. However, their relative yields fulfill statistical equilibrium, as well. We review the equilibrium statistical-thermal models for particle production, fluctuations and collective flow in heavy-ion experiments. We also review their reproduction of the lattice QCD thermodynamics at vanishing and finite chemical potential. During the last decade, five conditions have been suggested to describe the universal behavior of the chemical freeze-out parameters. The higher order moments of multiplicity have been discussed. They offer deep insights about particle production and to critical fluctuations. Therefore, we use them to describe the freeze-out parameters and suggest the location of the QCD critical endpoint. Various extensions have been proposed in order to take into consideration the possible deviations of the ideal hadron gas. We highlight various types of interactions, dissipative properties and location-dependences (spatial rapidity). Furthermore, we review three models combining hadronic with partonic phases; quasi-particle model, linear sigma model with Polyakov potentials and compressible bag model.

  17. --No Title--

    Science.gov Websites

    using mesonet visbility observations and CLARUS QC'd obs; Add ceiling height and sky cover analysis to precipitation coverage gaps near CONUS coastlines; Add significant wave height analysis to OCONUS domains

  18. Chiral phase structure of three flavor QCD at vanishing baryon number density

    DOE PAGES

    Bazavov, A.; Ding, H. -T.; Hegde, P.; ...

    2017-04-12

    In this paper, we investigate the phase structure of QCD with three degenerate quark flavors as a function of the degenerate quark masses at vanishing baryon number density. We use the highly improved staggered quarks on lattices with temporal extent N τ = 6 and perform calculations for six values of quark masses, which in the continuum limit correspond to pion masses in the range 80 MeV ≲ m π ≲ 230 MeV. By analyzing the volume and temperature dependence of the chiral condensate and chiral susceptibility, we find no direct evidence for a first-order phase transition in this rangemore » of pion mass values. Finally, relying on the universal scaling behaviors of the chiral observables near an anticipated chiral critical point, we estimate an upper bound for the critical pion mass m c π ≲ 50 MeV, below which a region of first-order chiral phase transition is favored.« less

  19. Use of a running coupling in the NLO calculation of forward hadron production

    NASA Astrophysics Data System (ADS)

    Ducloué, B.; Iancu, E.; Lappi, T.; Mueller, A. H.; Soyez, G.; Triantafyllopoulos, D. N.; Zhu, Y.

    2018-03-01

    We address and solve a puzzle raised by a recent calculation [1] of the cross section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an unreasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by 1 to 2 orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artifact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to momentum space. When used in coordinate space, the running coupling can act as a fictitious potential which mimics hard scattering and thus introduces a spurious contribution to the cross section. We identify a new coordinate-space prescription, which avoids this problem, and leads to results consistent with those obtained with the momentum-space prescription.

  20. Critical point in the phase diagram of primordial quark-gluon matter from black hole physics

    NASA Astrophysics Data System (ADS)

    Critelli, Renato; Noronha, Jorge; Noronha-Hostler, Jacquelyn; Portillo, Israel; Ratti, Claudia; Rougemont, Romulo

    2017-11-01

    Strongly interacting matter undergoes a crossover phase transition at high temperatures T ˜1012 K and zero net-baryon density. A fundamental question in the theory of strong interactions, QCD, is whether a hot and dense system of quarks and gluons displays critical phenomena when doped with more quarks than antiquarks, where net-baryon number fluctuations diverge. Recent lattice QCD work indicates that such a critical point can only occur in the baryon dense regime of the theory, which defies a description from first principles calculations. Here we use the holographic gauge/gravity correspondence to map the fluctuations of baryon charge in the dense quark-gluon liquid onto a numerically tractable gravitational problem involving the charge fluctuations of holographic black holes. This approach quantitatively reproduces ab initio results for the lowest order moments of the baryon fluctuations and makes predictions for the higher-order baryon susceptibilities and also for the location of the critical point, which is found to be within the reach of heavy-ion collision experiments.

  1. Low energy constants of S U ( 2 ) partially quenched chiral perturbation theory from N f = 2 + 1 domain wall QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, P. A.; Christ, N. H.; Garron, N.

    2016-03-09

    Here, we have performed fits of the pseudoscalar masses and decay constants, from a variety of the RBC-UKQCD Collaboration’s domain wall fermion ensembles, to SU(2) partially quenched chiral perturbation theory at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO). We report values for 9 NLO and 8 linearly independent combinations of NNLO partially quenched low-energy constants, which we compare to other lattice and phenomenological determinations. We discuss the size of successive terms in the chiral expansion and use our large set of low-energy constants to make predictions for mass splittings due to QCD isospin-breaking effects and the S-wave ππ scattering lengths.more » Lastly, we conclude that, for the range of pseudoscalar masses explored in this work, 115 MeV≲mPS≲430 MeV, the NNLO SU(2) expansion is quite robust and can fit lattice data with percent-scale accuracy.« less

  2. Exploratory Lattice QCD Study of the Rare Kaon Decay K^{+}→π^{+}νν[over ¯].

    PubMed

    Bai, Ziyuan; Christ, Norman H; Feng, Xu; Lawson, Andrew; Portelli, Antonin; Sachrajda, Christopher T

    2017-06-23

    We report a first, complete lattice QCD calculation of the long-distance contribution to the K^{+}→π^{+}νν[over ¯] decay within the standard model. This is a second-order weak process involving two four-Fermi operators that is highly sensitive to new physics and being studied by the NA62 experiment at CERN. While much of this decay comes from perturbative, short-distance physics, there is a long-distance part, perhaps as large as the planned experimental error, which involves nonperturbative phenomena. The calculation presented here, with unphysical quark masses, demonstrates that this contribution can be computed using lattice methods by overcoming three technical difficulties: (i) a short-distance divergence that results when the two weak operators approach each other, (ii) exponentially growing, unphysical terms that appear in Euclidean, second-order perturbation theory, and (iii) potentially large finite-volume effects. A follow-on calculation with physical quark masses and controlled systematic errors will be possible with the next generation of computers.

  3. TDA and RPA pseudoscalar and vector solutions for the low energy regime of a motivated QCD Hamiltonian.

    NASA Astrophysics Data System (ADS)

    Yépez-Martínez, T.; Amor Quiroz, D. A.; Hess, P. O.; Civitarese, O.

    2017-07-01

    We present the low energy meson spectrum of a Coulomb gauge QCD motivated Hamiltonian for light and strange quarks. We have used the harmonic oscillator as a trial basis and performed a pre-diagonalization of the kinetic energy term in order to get an effective basis where quark and anti-quark degrees of freedom are defined. For the relevant interactions between quarks and anti-quarks, we have implemented a confining interaction between color sources, in order to account in an effective way for the gluonic degrees of freedom. The low energy meson spectrum is obtained from the implementation of the TDA and RPA many-body-methods. The physical states have been described as TDA and RPA collective states with a relatively good agreement. Particularly, the particle-hole correlations of the RPA ground state improve the RPA pion-like state (159.7 MeV) close to its physical value while the TDA one remains at a higher energy (269.2 MeV).

  4. Exploratory Lattice QCD Study of the Rare Kaon Decay K+→π+ν ν ¯

    NASA Astrophysics Data System (ADS)

    Bai, Ziyuan; Christ, Norman H.; Feng, Xu; Lawson, Andrew; Portelli, Antonin; Sachrajda, Christopher T.; Rbc-Ukqcd Collaboration

    2017-06-01

    We report a first, complete lattice QCD calculation of the long-distance contribution to the K+→π+ν ν ¯ decay within the standard model. This is a second-order weak process involving two four-Fermi operators that is highly sensitive to new physics and being studied by the NA62 experiment at CERN. While much of this decay comes from perturbative, short-distance physics, there is a long-distance part, perhaps as large as the planned experimental error, which involves nonperturbative phenomena. The calculation presented here, with unphysical quark masses, demonstrates that this contribution can be computed using lattice methods by overcoming three technical difficulties: (i) a short-distance divergence that results when the two weak operators approach each other, (ii) exponentially growing, unphysical terms that appear in Euclidean, second-order perturbation theory, and (iii) potentially large finite-volume effects. A follow-on calculation with physical quark masses and controlled systematic errors will be possible with the next generation of computers.

  5. The lepton+jets Selection and Determination of the Lepton Fake Rate with the Full RunIIb Data Set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meister, Daniel

    2013-01-01

    This thesis presents the combined single top andmore » $$ t\\overline{ }\\ t $$ lepton+jets selection for the full RunIIb dataset of the DØ detector. The selection uses the newest soft- ware versions including all standard central object identifications and corrections and has various additions and improvements compared to the previous 7 . 3 fb - 1 $$ t\\overline{ }\\ t $$ selection and the previous single top selection in order to accommodate even more different analyses. The lepton fake rate $$\\epsilon_{\\rm QCD}$$ and the real lepton efficiency $$\\epsilon_{\\rm sig}$$ are estimated using the matrix method and different variations are considered in order to determine the systematic errors. The calculation has to be done for each run period and every set of analysis cuts separately. In addition the values for the exclusive jet bins and for the new single top analysis cuts have been derived and the thesis shows numerous control plots to demonstrate the excellent agreement between data and Monte Carlo.« less

  6. Study of ordered hadron chains with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-11-29

    The analysis of the momentum difference between charged hadrons in high-energy proton-proton collisions is performed in order to study coherent particle production. The observed correlation pattern agrees with a model of a helical QCD string fragmenting into a chain of ground-state hadrons. A threshold momentum difference in the production of adjacent pairs of charged hadrons is observed, in agreement with model predictions. The presence of low-mass hadron chains also explains the emergence of charge-combination-dependent two-particle correlations commonly attributed to Bose-Einstein interference. Here, the data sample consists of 190 μb –1 of minimum-bias events collected with proton-proton collisions at a center-of-massmore » energy √s=7 TeV in the early low-luminosity data taking with the ATLAS detector at the LHC.« less

  7. Diphoton production at the LHC: a QCD study up to NNLO

    NASA Astrophysics Data System (ADS)

    Catani, Stefano; Cieri, Leandro; de Florian, Daniel; Ferrera, Giancarlo; Grazzini, Massimiliano

    2018-04-01

    We consider the production of prompt-photon pairs at the LHC and we report on a study of QCD radiative corrections up to the next-to-next-to-leading order (NNLO). We present a detailed comparison of next-to-leading order (NLO) results obtained within the standard and smooth cone isolation criteria, by studying the dependence on the isolation parameters. We highlight the role of different partonic subprocesses within the two isolation criteria, and we show that they produce large radiative corrections for both criteria. Smooth cone isolation is a consistent procedure to compute QCD radiative corrections at NLO and beyond. If photon isolation is sufficiently tight, we show that the NLO results for the two isolation procedures are consistent with each other within their perturbative uncertainties. We then extend our study to NNLO by using smooth cone isolation. We discuss the impact of the NNLO corrections and the corresponding perturbative uncertainties for both fiducial cross sections and distributions, and we comment on the comparison with some LHC data. Throughout our study we remark on the main features that are produced by the kinematical selection cuts that are applied to the photons. In particular, we examine soft-gluon singularities that appear in the perturbative computations of the invariant mass distribution of the photon pair, the transverse-momentum spectra of the photons, and the fiducial cross section with asymmetric and symmetric photon transverse-momentum cuts, and we present their behaviour in analytic form.

  8. Phenomenology of single-inclusive jet production with jet radius and threshold resummation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Moch, Sven-Olaf; Ringer, Felix

    2018-03-01

    We perform a detailed study of inclusive jet production cross sections at the LHC and compare the QCD theory predictions based on the recently developed formalism for threshold and jet radius joint resummation at next-to-leading logarithmic accuracy to inclusive jet data collected by the CMS Collaboration at √{S }=7 and 13 TeV. We compute the cross sections at next-to-leading order in QCD with and without the joint resummation for different choices of jet radii R and observe that the joint resummation leads to crucial improvements in the description of the data. Comprehensive studies with different parton distribution functions demonstrate the necessity of considering the joint resummation in fits of those functions based on the LHC jet data.

  9. Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction.

    PubMed

    Demartin, Federico; Maltoni, Fabio; Mawatari, Kentarou; Page, Ben; Zaro, Marco

    At the LHC the CP properties of the top-quark Yukawa interaction can be probed through Higgs production in gluon fusion or in association with top quarks. We consider the possibility for both CP-even and CP-odd couplings to the top quark to be present, and study CP-sensitive observables at next-to-leading order (NLO) in QCD, including parton-shower effects. We show that the inclusion of NLO corrections sizeably reduces the theoretical uncertainties, and confirm that di-jet correlations in [Formula: see text] jet production through gluon fusion and correlations of the top-quark decay products in [Formula: see text] production can provide sensitive probes of the CP nature of the Higgs interactions.

  10. Cross sections and transverse single-spin asymmetries in forward neutral-pion production from proton collisions at sqrt[s]=200 GeV.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2004-04-30

    Measurements of the production of forward high-energy pi(0) mesons from transversely polarized proton collisions at sqrt[s]=200 GeV are reported. The cross section is generally consistent with next-to-leading order perturbative QCD calculations. The analyzing power is small at x(F) below about 0.3, and becomes positive and large at higher x(F), similar to the trend in data at sqrt[s]< or =20 GeV. The analyzing power is in qualitative agreement with perturbative QCD model expectations. This is the first significant spin result seen for particles produced with p(T)>1 GeV/c at a polarized proton collider.

  11. Computing Properties of Hadrons, Nuclei and Nuclear Matter from Quantum Chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Martin J.

    This project was part of a coordinated software development effort which the nuclear physics lattice QCD community pursues in order to ensure that lattice calculations can make optimal use of present, and forthcoming leadership-class and dedicated hardware, including those of the national laboratories, and prepares for the exploitation of future computational resources in the exascale era. The UW team improved and extended software libraries used in lattice QCD calculations related to multi-nucleon systems, enhanced production running codes related to load balancing multi-nucleon production on large-scale computing platforms, and developed SQLite (addressable database) interfaces to efficiently archive and analyze multi-nucleon datamore » and developed a Mathematica interface for the SQLite databases.« less

  12. Onset transition to cold nuclear matter from lattice QCD with heavy quarks.

    PubMed

    Fromm, M; Langelage, J; Lottini, S; Neuman, M; Philipsen, O

    2013-03-22

    Lattice QCD at finite density suffers from a severe sign problem, which has so far prohibited simulations of the cold and dense regime. Here we study the onset of nuclear matter employing a three-dimensional effective theory derived by combined strong coupling and hopping expansions, which is valid for heavy but dynamical quarks and has a mild sign problem only. Its numerical evaluations agree between a standard Metropolis and complex Langevin algorithm, where the latter is free of the sign problem. Our continuum extrapolated data approach a first order phase transition at μ(B) ≈ m(B) as the temperature approaches zero. An excellent description of the data is achieved by an analytic solution in the strong coupling limit.

  13. Linear vs non-linear QCD evolution in the neutrino-nucleon cross section

    NASA Astrophysics Data System (ADS)

    Albacete, Javier L.; Illana, José I.; Soto-Ontoso, Alba

    2016-03-01

    Evidence for an extraterrestrial flux of ultra-high-energy neutrinos, in the order of PeV, has opened a new era in Neutrino Astronomy. An essential ingredient for the determination of neutrino fluxes from the number of observed events is the precise knowledge of the neutrino-nucleon cross section. In this work, based on [1], we present a quantitative study of σνN in the neutrino energy range 104 < Eν < 1014 GeV within two transversal QCD approaches: NLO DGLAP evolution using different sets of PDFs and BK small-x evolution with running coupling and kinematical corrections. Further, we translate this theoretical uncertainty into upper bounds for the ultra-high-energy neutrino flux for different experiments.

  14. A comprehensive revisit of the ρ meson with improved Monte-Carlo based QCD sum rules

    NASA Astrophysics Data System (ADS)

    Wang, Qi-Nan; Zhang, Zhu-Feng; Steele, T. G.; Jin, Hong-Ying; Huang, Zhuo-Ran

    2017-07-01

    We improve the Monte-Carlo based QCD sum rules by introducing the rigorous Hölder-inequality-determined sum rule window and a Breit-Wigner type parametrization for the phenomenological spectral function. In this improved sum rule analysis methodology, the sum rule analysis window can be determined without any assumptions on OPE convergence or the QCD continuum. Therefore, an unbiased prediction can be obtained for the phenomenological parameters (the hadronic mass and width etc.). We test the new approach in the ρ meson channel with re-examination and inclusion of α s corrections to dimension-4 condensates in the OPE. We obtain results highly consistent with experimental values. We also discuss the possible extension of this method to some other channels. Supported by NSFC (11175153, 11205093, 11347020), Open Foundation of the Most Important Subjects of Zhejiang Province, and K. C. Wong Magna Fund in Ningbo University, TGS is Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Z. F. Zhang and Z. R. Huang are Grateful to the University of Saskatchewan for its Warm Hospitality

  15. Strangeness Production in Jets with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Smith, Chrismond; Harton, Austin; Garcia, Edmundo; Alice Collaboration

    2016-03-01

    The study of strange particle production is an important tool for understanding the properties of the hot and dense QCD medium created in heavy-ion collisions at ultra-relativistic energies. The study of strange particles in these collisions provides information on parton fragmentation, a fundamental QCD process. While measurements at low and intermediate pT, are already in progress at the LHC, the study of high momentum observables is equally important for a complete understanding of the QCD matter, this can be achieved by studying jet interactions. We propose the measurement of the characteristics of the jets containing strange particles. Starting with proton-proton collisions, we have calculated the inclusive pTJet spectra and the spectra for jets containing strange particles (K-short or lambda), and we are extending this analysis to lead-lead collisions. In this talk the ALICE experiment will be described, the methodology used for the data analysis and the available results will be discussed. This material is based upon work supported by the National Science Foundation under Grants PHY-1305280 and PHY-1407051.

  16. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2004-05-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.

  17. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2007-07-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.

  18. Two-color QCD at high density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boz, Tamer; Skullerud, Jon-Ivar; Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005

    2016-01-22

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.

  19. Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Zhu-Fang, E-mail: phycui@nju.edu.cn; State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190; Hou, Feng-Yao

    2015-07-15

    The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial–vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson–Schwinger equations.

  20. Measurement of inclusive jet cross sections in photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    H1 Collaboration; Abt, I.; Ahmed, T.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bischoff, A.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; del Buono, L.; Devel, M.; de Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Flauger, W.; Fleischer, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Genzel, H.; Gerhards, R.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. C.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schröder, V.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallée, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.

    1993-09-01

    The inclusive jet cross section in photoproduction has been measured as a function of transverse energy and pseudorapidity using the H 1 detector at the HERA electron-proton collider. The results are compared with leading order QCD calculations. Supported by the Swiss National Science Foundation.

  1. The renormalization scale-setting problem in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xing-Gang; Brodsky, Stanley J.; Mojaza, Matin

    2013-09-01

    A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The conventional scale-setting procedure assigns an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In fact, this ad hoc procedure gives results which depend on the choice of the renormalization scheme, and it is in conflict with the standard scale-setting procedure used in QED. Predictions for physical results should be independent of the choice of the scheme or other theoretical conventions. We review current ideas and points of view on how to deal with the renormalization scalemore » ambiguity and show how to obtain renormalization scheme- and scale-independent estimates. We begin by introducing the renormalization group (RG) equation and an extended version, which expresses the invariance of physical observables under both the renormalization scheme and scale-parameter transformations. The RG equation provides a convenient way for estimating the scheme- and scale-dependence of a physical process. We then discuss self-consistency requirements of the RG equations, such as reflexivity, symmetry, and transitivity, which must be satisfied by a scale-setting method. Four typical scale setting methods suggested in the literature, i.e., the Fastest Apparent Convergence (FAC) criterion, the Principle of Minimum Sensitivity (PMS), the Brodsky–Lepage–Mackenzie method (BLM), and the Principle of Maximum Conformality (PMC), are introduced. Basic properties and their applications are discussed. We pay particular attention to the PMC, which satisfies all of the requirements of RG invariance. Using the PMC, all non-conformal terms associated with the β-function in the perturbative series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC provides the principle underlying the BLM method, since it gives the general rule for extending BLM up to any perturbative order; in fact, they are equivalent to each other through the PMC–BLM correspondence principle. Thus, all the features previously observed in the BLM literature are also adaptable to the PMC. The PMC scales and the resulting finite-order PMC predictions are to high accuracy independent of the choice of the initial renormalization scale, and thus consistent with RG invariance. The PMC is also consistent with the renormalization scale-setting procedure for QED in the zero-color limit. The use of the PMC thus eliminates a serious systematic scale error in perturbative QCD predictions, greatly improving the precision of empirical tests of the Standard Model and their sensitivity to new physics.« less

  2. Transverse Quark Spin Effects in SIDIS and Drell Yan Scattering

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard

    2006-10-01

    The connection between quark orbital angular momentum and final state interactions for transversely polarized quarks in unpolarized hadrons suggests significant azimuthal asymmetries in pion production in semi-inclusive deep inelastic scattering (SIDIS) (e p->e^'X π) as well as in di- lepton production in Drell Yan (p p->&+circ;&-circ;X and &-circ;p->&+circ;&-circ;X) scattering. When transverse momentum of the reaction, PT is on the order of or less than λqcd, that is PT˜kT where kT is intrinsic transverse quark momentum, these effects are characterized in term of naive time reversal odd (so called T-odd) transverse momentum dependent (TMD) parton distribution and fragmentation functions. At these moderate transverse momentum scales we estimate the size of the 2φ azimuthal asymmetry in SIDIS and Drell Yan scattering in the parton spectator framework. In the former case we consider this so called ``Boer-Mulders'' effect for a proposed experiment at the upgraded CLAS-12 GeV detector at Jefferson LAB. In the latter case we consider this asymmetry for proton anti-proton collider, as well as π nucleon fixed target experiments. We also consider competing contributions to these asymmetries from perturbative QCD (pQCD) contributions which emerge when PT> λqcd. Evidence of a strong dependence on transverse momentum would indicate the presence of T-odd structures in unpolarized SIDIS and Drell Yan scattering, implying that transversity properties of the nucleon can be accessed without invoking beam or target polarization.

  3. QCD and Multiparticle Production - Proceedings of the XXIX International Symposium on Multiparticle Dynamics

    NASA Astrophysics Data System (ADS)

    Sarcevic, Ina; Tan, Chung-I.

    2000-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * Monday morning session: Hadronic Final States - Conveners: E. de Wolf and J. W. Gary * Session Chairman: J. W. Gary * Inclusive Jets at the Tevatron * Forward Jets, Dijets, and Subjets at the Tevatron * Inclusive Hadron Production and Dijets at HERA * Recent Opal Results on Photon Structure and Interactions * Review of Two-Photon Physics at LEP * Session Chairman: E. de Wolf * An Intriguing Area-Law-Based Hadron Production Scheme in e+e- Annihilation and Its Possible Extensions * Hyperfine Splitting in Hadron Production at High Energies * Event Selection Effects on Multiplicities in Quark and Gluon Jets * Quark and Gluon Jet Properties at LEP * Rapidity Gaps in Quark and Gluon Jets -- A Perturbative Approach * Monday afternoon session: Diffractive and Small-x - Conveners: M. Derrick and A. White * Session Chairman: A. White * Structure Functions: Low x, High y, Low Q2 * The Next-to-Leading Dynamics of the BFKL Pomeron * Renormalization Group Improved BFKL Equation * Session Chairman: G. Briskin * New Experimental Results on Diffraction at HERA * Diffractive Parton Distributions in Light-Cone QCD * The Logarithmic Derivative of the F2 Structure Function and Saturation * Spin Dependence of Diffractive DIS * Monday evening session * Session Chairman: M. Braun * Tests of QCD with Particle Production at HERA: Review and Outlook * Double Parton Scattering and Hadron Structure in Transverse Space * The High Density Parton Dynamics from Eikonal and Dipole Pictures * Hints of Higher Twist Effects in the Slope of the Proton Structure Function * Tuesday morning session: Correlations and Fluctuations - Conveners: R. Hwa and M. Tannenbaum * Session Chairman: A. Giovannini -- Fluctuations and Correlations * Bose-Einstein Results from L3 * Short-Range and Long-Range Correlations in DIS at HERA * Coior Mutation Model, Intermittency, and Erraticity * QCD Queuing and Hadron Multiplicity * Soft and Semi-hard Components in Multiplicity Distributions in the TeV Region * Qualitative Difference Between Particle Production Dynamics in Soft and Hard Processes * Session Chairman: M. Tannenbaum -- Bose-Einstein Correlations * Questions in Bose-Einstein Correlations * The Source Size Dependence on the mhadron Applying Fermi and Bose Statistics and I-Spin Invariance * Signal of Partial UA(1) Symmetry Restoration from Two-Pion Bose-Einstein Correlations * Multiparticle Bose-Einstein Correlations in Heavy-Ion Collisions * Tuesday afternoon session: Heavy Ion Collisions - Conveners: B. Müller and J. Statchel * Session Chairman: J. Stachel * Probing Baryon Freeze-out Density at the AGS with Proton Correlations * Centrality Dependence of Hadronic Observables at CERN SPS * Study of Transverse Momentum Spectra in pp Collisions with a Statistical Model of Hadronisation * Session Chairman: B. Brower * Production of Light (Anti-)Nuclei with E864 at the AGS * QCD Critical Point in Heavy-Ion Collision Experiments * Tuesday evening session * Session Chairman: H. M. Fried * Oscillating Hq, Event Shapes, and QCD * Critical Behavior of Quark-Hadron Phase Transition * Shadowing of Gluons at RHIC and LHC * Parton Distributions in Nuclei at Small x * Wednesday morning session: Diffraction and Small x - Conveners: M. Derrick and A. White * Session Chairman: C. Pajares * High-Energy Effective Action from Scattering of Shock Waves in QCD * The Triangle Anomaly in the Triple-Regge Limit * CDF Results on Hard Diffraction and Rapidity Gap Physics * DØ Results on Hard Diffraction * Interjet Rapidity Gaps in Perturbative QCD * Pomeron: Beyond the Standard Approach * Factorization and Diffractive Production at Collider Energies * Thursday morning session: Heavy Ion Collisions - Conveners: B. Müller and J. B. Stachel * Session Chairman: N. Schmitz * Summary of J/ψ Suppression Data and Preliminary Results on Multiplicity Distributions in PB-PB Collisions from the NA50 Experiment * Duality and Chiral Restoration from Dilepton Production in Relativistic Heavy-Ion Collisions * Session Chairman: I. Sarcevic * Transport-Theoretical Analysis of Reaction Dynamics, Particle Production and Freeze-out at RHIC * Inclusive Particle Spectra and Exotic Particle Searches Using STAR * The First Fermi in a High Energy Nuclear Collision * Probing the Space-Time Evolution of Heavy Ion Collisions with Bremsstrahlung * Thursday afternoon session: Hadronic Final States - Conveners: E. de Wolf and J. Gary * Session Chairman: F. Verbeure * QCD with SLD * QCD at LEP II * Multidimensional Analysis of the Bose-Einstein Correlations at DELPHI * Study of Color Singlet with Gluonic Subsinglet by Color Effective Hamiltonian * Correlations and Fluctuations - Conveners: R. Hwa and M. Tannenbaum * Session Chairman: R. C. Hwa -- Fluctuations in Heavy-Ion Collisions * Scale-Local Statistical Measures and the Multiparticle Final State * Centrality and ET Fluctuations from p + Be to Au + Au at AGS Energies * Order Parameter of Single Event * Multiplicities, Transverse Momenta and Their Correlations from Percolating Colour Strings * Probing the QCD Critical Point in Nuclear Collisions * Event-by-Event Fluctuations in Pb + Pb Collisions at the CERN SPS * Friday morning session: High Energy Collisions and Cosmic-Ray/Astrophysics - Conveners: F. Halzen and T. Stanev * Session Chairman: U. Sukhatme * Rethinking the Eikonal Approximation * QCD and Total Cross-Sections * The Role of Multiple Parton Collisions in Hadron Collisions * Effective Cross Sections and Spatial Structure of the Hadrons * Looking for the Odderon * QCD in Embedded Coordinates * Session Chairman: F. Bopp * Extensive Air Sbowers and Hadronic Interaction Models * Penetration of the Earth by Ultrahigh Energy Neutrinos and the Parton Distributions Inside the Nucleon * Comparison of Prompt Muon Observations to Charm Expectations * Friday afternoon session: Recent Developments - Conveners: R. Brower and I. Sarcevic * Session Chairman: G. Guralnik * The Relation Between Gauge Theories and Gravity * From Black Holes to Pomeron: Tensor Glueball and Pomeron Intercept at Strong Coupling * Summary Talks * Summary of Results of the Ultrarelativistic Heavy Ion Fixed Target Program * Review of Theory Talks * Summary of Experimental Talks * List of Participants

  4. QCD next-to-leading-order predictions matched to parton showers for vector-like quark models.

    PubMed

    Fuks, Benjamin; Shao, Hua-Sheng

    2017-01-01

    Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however, rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks thanks to an accurate control of the shapes of the relevant observables and emphasise the extra handles that could be provided by novel vector-like-quark probes never envisaged so far.

  5. Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q² on Nucleons and Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tvaskis, Vladas

    2004-12-06

    Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F 2(x,Q 2) is known with high precision over about four orders of magnitude in x and Q 2. In the region of Q 2 > 1 (GeV/c) 2 the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoreticalmore » framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q 2 becomes of the order of 1 (GeV/c) 2, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q 2, since they include a factor 1/(Q 2n) (n ≥ 1).« less

  6. Recent development in lattice QCD studies for three-nucleon forces

    NASA Astrophysics Data System (ADS)

    Doi, Takumi; HAL QCD Collaboration

    2014-09-01

    The direct determination of nuclear forces from QCD has been one of the most desirable challenges in nuclear physics. Recently, a first-principles lattice QCD determination is becoming possible by a novel theoretical method, HAL QCD method, in which Nambu-Bethe-Salpeter (NBS) wave functions are utilized. In this talk, I will focus on the study of three-nucleon forces in HAL QCD method by presenting the recent theoretical/numerical development.

  7. XYZ-SU3 breakings from Laplace sum rules at higher orders

    NASA Astrophysics Data System (ADS)

    Albuquerque, R.; Narison, S.; Rabetiarivony, D.; Randriamanatrika, G.

    2018-06-01

    We present new compact integrated expressions of SU3 breaking corrections to QCD spectral functions of heavy-light molecules and four-quark XY Z-like states at lowest order (LO) of perturbative (PT) QCD and up to d = 8 condensates of the Operator Product Expansion (OPE). Including next-to-next-to-leading order (N2LO) PT corrections in the chiral limit and next-to-leading order (NLO) SU3 PT corrections, which we have estimated by assuming the factorization of the four-quark spectral functions, we improve previous LO results for the XY Z-like masses and decay constants from QCD spectral sum rules (QSSR). Systematic errors are estimated from a geometric growth of the higher order PT corrections and from some partially known d = 8 nonperturbative contributions. Our optimal results, based on stability criteria, are summarized in Tables 18-21 while the 0++ and 1++ channels are compared with some existing LO results in Table 22. One can note that, in most channels, the SU3 corrections on the meson masses are tiny: ≤ 10% (respectively ≤ 3%) for the c (respectively b)-quark channel but can be large for the couplings ( ≤ 20%). Within the lowest dimension currents, most of the 0++ and 1++ states are below the physical thresholds while our predictions cannot discriminate a molecule from a four-quark state. A comparison with the masses of some experimental candidates indicates that the 0++ X(4500) might have a large D¯s0∗D s0∗ molecule component while an interpretation of the 0++ candidates as four-quark ground states is not supported by our findings. The 1++ X(4147) and X(4273) are compatible with the D¯s∗D s, D¯s0∗D s1 molecules and/or with the axial-vector Ac four-quark ground state. Our results for the 0‑±, 1‑± and for different beauty states can be tested in the future data. Finally, we revisit our previous estimates1 for the D¯0∗D 0∗ and D¯0∗D 1 and present new results for the D¯1D1.

  8. Quantitative carbon detector for enhanced detection of molecules in foods, pharmaceuticals, cosmetics, flavors, and fuels.

    PubMed

    Beach, Connor A; Krumm, Christoph; Spanjers, Charles S; Maduskar, Saurabh; Jones, Andrew J; Dauenhauer, Paul J

    2016-03-07

    Analysis of trace compounds, such as pesticides and other contaminants, within consumer products, fuels, and the environment requires quantification of increasingly complex mixtures of difficult-to-quantify compounds. Many compounds of interest are non-volatile and exhibit poor response in current gas chromatography and flame ionization systems. Here we show the reaction of trimethylsilylated chemical analytes to methane using a quantitative carbon detector (QCD; the Polyarc™ reactor) within a gas chromatograph (GC), thereby enabling enhanced detection (up to 10×) of highly functionalized compounds including carbohydrates, acids, drugs, flavorants, and pesticides. Analysis of a complex mixture of compounds shows that the GC-QCD method exhibits faster and more accurate analysis of complex mixtures commonly encountered in everyday products and the environment.

  9. The current matrix elements from HAL QCD method

    NASA Astrophysics Data System (ADS)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-03-01

    HAL QCD method is a method to construct a potential (HAL QCD potential) that reproduces the NN scattering phase shift faithful to the QCD. The HAL QCD potential is obtained from QCD by eliminating the degrees of freedom of quarks and gluons and leaving only two particular hadrons. Therefor, in the effective quantum mechanics of two nucleons defined by HAL QCD potential, the conserved current consists not only of the nucleon current but also an extra current originating from the potential (two-body current). Though the form of the two-body current is closely related to the potential, it is not straight forward to extract the former from the latter. In this work, we derive the the current matrix element formula in the quantum mechanics defined by the HAL QCD potential. As a first step, we focus on the non-relativistic case. To give an explicit example, we consider a second quantized non-relativistic two-channel coupling model which we refer to as the original model. From the original model, the HAL QCD potential for the open channel is constructed by eliminating the closed channel in the elastic two-particle scattering region. The current matrix element formula is derived by demanding the effective quantum mechanics defined by the HAL QCD potential to respond to the external field in the same way as the original two-channel coupling model.

  10. QCD equation of state with almost physical quark masses

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Christ, N. H.; Datta, S.; van der Heide, J.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Petrov, K.; Schmidt, C.; Soeldner, W.; Umeda, T.

    2008-01-01

    We present results on the equation of state in QCD with two light quark flavors and a heavier strange quark. Calculations with improved staggered fermions have been performed on lattices with temporal extent Nτ=4 and 6 on a line of constant physics with almost physical quark mass values; the pion mass is about 220 MeV, and the strange quark mass is adjusted to its physical value. High statistics results on large lattices are obtained for bulk thermodynamic observables, i.e. pressure, energy and entropy density, at vanishing quark chemical potential for a wide range of temperatures, 140MeV≤T≤800MeV. We present a detailed discussion of finite cutoff effects which become particularly significant for temperatures larger than about twice the transition temperature. At these high temperatures we also performed calculations of the trace anomaly on lattices with temporal extent Nτ=8. Furthermore, we have performed an extensive analysis of zero temperature observables including the light and strange quark condensates and the static quark potential at zero temperature. These are used to set the temperature scale for thermodynamic observables and to calculate renormalized observables that are sensitive to deconfinement and chiral symmetry restoration and become order parameters in the infinite and zero quark mass limits, respectively.

  11. Global analysis of charmless B decays into two vector mesons in soft-collinear effective theory

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhou, Si-Hong; Li, Ying; Lü, Cai-Dian

    2017-10-01

    Under the framework of soft-collinear effective theory, we analyze the charmless B →V V decays in a global way at leading power in 1 /mb and leading order in αs with V denoting a light vector meson. In the flavor SU(3) symmetry, decay amplitudes for the 28 decay modes are expressed in terms of eight nonperturbative parameters. We fit these eight nonperturbative parameters with 35 experimental results. Annihilation contributions are neglected due to power suppression in the mb→∞ limit, so we include in the fit the nonperturbative charm penguins, which will play an important role in understanding the direct C P asymmetries. Charming penguins are also responsible for the large transverse polarizations of penguin-dominated and color-suppressed decays. With the best-fitted parameters, we calculate all possible physical observables of 28 decay modes, including branching fractions, direct C P asymmetries, and the complete set of polarization observables. Most of our results are compatible with the present experimental data when available, while others can be examined on the ongoing LHCb experiment and the forthcoming Belle II experiment. Moreover, the agreements and differences with results in QCD factorization and perturbative QCD approach are also discussed. A few observables are suggested to discriminate between these different approaches.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deur, Alexandre; Shen, Jian -Ming; Wu, Xing -Gang

    The Principle of Maximum Conformality (PMC) provides scale-fixed perturbative QCD predictions which are independent of the choice of the renormalization scheme, as well as the choice of the initial renormalization scale. In this article, we will test the PMC by comparing its predictions for the strong couplingmore » $$\\alpha^s_{g_1}(Q)$$, defined from the Bjorken sum rule, with predictions using conventional pQCD scale-setting. The two results are found to be compatible with each other and with the available experimental data. However, the PMC provides a significantly more precise determination, although its domain of applicability ($$Q \\gtrsim 1.5$$ GeV) does not extend to as small values of momentum transfer as that of a conventional pQCD analysis ($$Q \\gtrsim 1$$ GeV). In conclusion, we suggest that the PMC range of applicability could be improved by a modified intermediate scheme choice or using a single effective PMC scale.« less

  13. D mesons in a magnetic field

    DOE PAGES

    Gubler, Philipp; Hattori, Koichi; Lee, Su Houng; ...

    2016-03-15

    In this paper, we investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral Ansatze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension-5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixingmore » effects almost completely saturate the mass shifts obtained in our sum rule analysis.« less

  14. Examination of the relevance of hydrodynamics for data measured at the BNL relativistic heavy ion collider

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    2010-08-01

    Hydrodynamic (hydro) models applied to heavy ion data from the relativistic heavy ion collider (RHIC) suggest that a dense QCD medium nearly opaque to partons—a strongly coupled quark-gluon plasma—is formed in more-central Au-Au collisions and may have a small viscosity ('perfect liquid'). Claimed evidence for radial and elliptic flows and possible coalescence of 'constituent quarks' seems to support the conclusion. But other measurements provide contradictory evidence. Unbiased angular correlations indicate that most back-to-back jets from initial-state scattered partons with energies as low as 3 GeV survive as 'minijet' hadron correlations even in central Au-Au collisions, suggesting near transparency. Two-component analysis of single-particle spectra reveals a spectrum hard component (parton fragment distribution) which can be mistaken for 'radial flow' in some forms of analysis. Based on recent results, reinterpretation of 'elliptic flow' as a QCD quadrupole scattering process including fragmentation may be possible. In this paper we review conventional analysis methods in the context of two paradigms: a hydrodynamics/hard-probes paradigm and a quadrupole/minijets paradigm. Re-examination of fiducial data suggests that hydrodynamics may not be relevant to RHIC collisions. Collision evolution may be dominated by QCD scattering and fragmentation, albeit strongly modified in more-central A-A collisions.

  15. Charmonium-nucleon interactions from the time-dependent HAL QCD method

    NASA Astrophysics Data System (ADS)

    Sugiura, Takuya; Ikeda, Yoichi; Ishii, Noriyoshi

    2018-03-01

    The charmonium-nucleon effective central interactions have been computed by the time-dependent HAL QCD method. This gives an updated result of a previous study based on the time-independent method, which is now known to be problematic because of the difficulty in achieving the ground-state saturation. We discuss that the result is consistent with the heavy quark symmetry. No bound state is observed from the analysis of the scattering phase shift; however, this shall lead to a future search of the hidden-charm pentaquarks by considering channel-coupling effects.

  16. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.

    2012-02-16

    Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z inmore » AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse momentum distributions. The effective confining potential also creates quark-antiquark pairs from the amplitude q {yields} q{bar q}q. Thus in holographic QCD higher Fock states can have any number of extra q{bar q} pairs. We discuss the relevance of higher Fock-states for describing the detailed structure of space and time-like form factors. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also obtained.« less

  17. Precision probes of QCD at high energies

    DOE PAGES

    Alioli, Simone; Farina, Marco; Pappadopulo, Duccio; ...

    2017-07-20

    New physics, that is too heavy to be produced directly, can leave measurable imprints on the tails of kinematic distributions at the LHC.We use energetic QCD processes to perform novel measurements of the Standard Model (SM) Effective Field Theory. We show that the dijet invariant mass spectrum, and the inclusive jet transverse momentum spectrum, are sensitive to a dimension 6 operator that modifies the gluon propagator at high energies. The dominant effect is constructive or destructive interference with SM jet production. Here, we compare differential next-to-leading order predictions from POWHEG to public 7TeV jet data, including scale, PDF, and experimentalmore » uncertainties and their respective correlations. Furthermore, we constrain a New Physics (NP) scale of 3.5TeV with current data. We project the reach of future 13 and 100TeV measurements, which we estimate to be sensitive to NP scales of 8 and 60TeV, respectively. As an application, we apply our bounds to constrain heavy vector octet colorons that couple to the QCD current. We conclude that effective operators will surpass bump hunts, in terms of coloron mass reach, even for sequential couplings.« less

  18. A percent-level determination of the nucleon axial coupling from Quantum Chromodynamics

    DOE PAGES

    Chang, Chia C.; Rinaldi, Enrico; Nicholson, A. N.; ...

    2018-06-15

    Here, the axial coupling of the nucleon, g A, is the strength of its coupling to the weak axial current of the Standard Model, much as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates, for example, the rate of β-decay of neutrons to protons and the strength of the attractive long-range force between nucleons. Precision tests of the Standard Model in nuclear environments require a quantitative understanding of nuclear physics rooted in Quantum Chromodynamics, a pillar of this theory. The prominence of g A makes it a benchmark quantity to determinemore » from theory, a difficult task as the theory is non-perturbative. Lattice QCD provides a rigorous, non-perturbative definition of the theory which can be numerically implemented. In order to determine g A, the lattice QCD community has identified two challenges that must be overcome to achieve a 2% precision by 2020: the excited state contamination must be controlled, and the statistical precision must be markedly improved. Here we report a calculation of g A QCD =1.271 ± 0.013, using an unconventional method11 that overcomes these challenges.« less

  19. Investigating the topological structure of quenched lattice QCD with overlap fermions using a multi-probing approximation

    NASA Astrophysics Data System (ADS)

    Zou, You-Hao; Zhang, Jian-Bo; Xiong, Guang-Yi; Chen, Ying; Liu, Chuan; Liu, Yu-Bin; Ma, Jian-Ping

    2017-10-01

    The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 163×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion. Supported by National Natural Science Foundation of China (NSFC) (11335001, 11275169, 11075167), It is also supported in part by the DFG and the NSFC (11261130311) through funds provided to the Sino-German CRC 110 "Symmetries and the Emergence of Structure in QCD". This work was also funded in part by National Basic Research Program of China (973 Program) (2015CB856700)

  20. A percent-level determination of the nucleon axial coupling from Quantum Chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chia C.; Rinaldi, Enrico; Nicholson, A. N.

    Here, the axial coupling of the nucleon, g A, is the strength of its coupling to the weak axial current of the Standard Model, much as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates, for example, the rate of β-decay of neutrons to protons and the strength of the attractive long-range force between nucleons. Precision tests of the Standard Model in nuclear environments require a quantitative understanding of nuclear physics rooted in Quantum Chromodynamics, a pillar of this theory. The prominence of g A makes it a benchmark quantity to determinemore » from theory, a difficult task as the theory is non-perturbative. Lattice QCD provides a rigorous, non-perturbative definition of the theory which can be numerically implemented. In order to determine g A, the lattice QCD community has identified two challenges that must be overcome to achieve a 2% precision by 2020: the excited state contamination must be controlled, and the statistical precision must be markedly improved. Here we report a calculation of g A QCD =1.271 ± 0.013, using an unconventional method11 that overcomes these challenges.« less

  1. Non-perturbative RPA-method implemented in the Coulomb gauge QCD Hamiltonian: From quarks and gluons to baryons and mesons

    NASA Astrophysics Data System (ADS)

    Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.

    2018-02-01

    Starting from an algebraic model based on the QCD-Hamiltonian and previously applied to study meson states, we have developed an extension of it in order to explore the structure of baryon states. In developing our approach we have adapted concepts taken from group theory and non-perturbative many-body methods to describe states built from effective quarks and anti-quarks degrees of freedom. As a Hamiltonian we have used the QCD Hamiltonian written in the Coulomb Gauge, and expressed it in terms of effective quark-antiquark, di-quarks and di-antiquark excitations. To gain some insights about the relevant interactions of quarks in hadronic states, the Hamiltonian was approximately diagonalized by mapping quark-antiquark pairs and di-quarks (di-antiquarks) onto phonon states. In dealing with the structure of the vacuum of the theory, color-scalar and color-vector states are introduced to account for ground-state correlations. While the use of a purely color-scalar ground state is an obvious choice, so that colorless hadrons contain at least three quarks, the presence of coupled color-vector pairs in the ground state allows for colorless excitations resulting from the action of color objects upon it.

  2. QCD dirac operator at nonzero chemical potential: lattice data and matrix model.

    PubMed

    Akemann, Gernot; Wettig, Tilo

    2004-03-12

    Recently, a non-Hermitian chiral random matrix model was proposed to describe the eigenvalues of the QCD Dirac operator at nonzero chemical potential. This matrix model can be constructed from QCD by mapping it to an equivalent matrix model which has the same symmetries as QCD with chemical potential. Its microscopic spectral correlations are conjectured to be identical to those of the QCD Dirac operator. We investigate this conjecture by comparing large ensembles of Dirac eigenvalues in quenched SU(3) lattice QCD at a nonzero chemical potential to the analytical predictions of the matrix model. Excellent agreement is found in the two regimes of weak and strong non-Hermiticity, for several different lattice volumes.

  3. Baryon masses and σ terms in SU(3) BChPT × 1/Nc

    NASA Astrophysics Data System (ADS)

    Fernando, I. P.; Alarcón, J. M.; Goity, J. L.

    2018-06-01

    Baryon masses and nucleon σ terms are studied with the effective theory that combines the chiral and 1 /Nc expansions for three flavors. In particular the connection between the deviation of the Gell-Mann-Okubo relation and the σ term associated with the scalar density u bar u + d bar d - 2 s bar s is emphasized. The latter is at lowest order related to a mass combination whose low value has given rise to a σ term puzzle. It is shown that while the nucleon σ terms have a well behaved low energy expansion, that mass combination is affected by large higher order corrections non-analytic in quark masses. Adding to the analysis lattice QCD baryon masses, it is found that σπN = 69 (10) MeV and σs has natural magnitude within its relatively large uncertainty.

  4. Baryon masses and σ terms in SU(3) BChPT×1/N c

    DOE PAGES

    Fernando, Ishara P.; Alarcon-Soriano, Jose-Manuel; Goity, Jose Luis

    2018-04-27

    Baryon masses and nucleonmore » $$\\sigma$$ terms are studied with the effective theory that combines the chiral and $$1/N_c$$ expansions for three flavors. In particular the connection between the deviation of the Gell-Mann-Okubo relation and the $$\\sigma$$ term associated with the scalar density $$\\bar u u+\\bar d d-2\\bar s s$$ is emphasized. The latter is at lowest order related to a mass combination whose low value has given rise to a $$\\sigma$$ term puzzle. It is shown that while the nucleon $$\\sigma$$ terms have a well behaved low energy expansion, that mass combination is affected by large higher order corrections non-analytic in quark masses. Lastly, adding to the analysis lattice QCD baryon masses, it is found that $$\\sigma_{\\pi N}=69(10)$$~MeV and $$\\sigma_s$$ has natural magnitude within its relative large uncertainty.« less

  5. Measurement of the production cross section for Z / γ * in association with jets in p p collisions at s = 7 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2012-02-28

    Results are presented on the production of jets of particles in association with a Z / γ * boson, in proton-proton collisions at √ s = 7 TeV with the ATLAS detector. The analysis includes the full 2010 data set, collected with a low rate of multiple proton-proton collisions in the accelerator, corresponding to an integrated luminosity of 36 pb -1 . Inclusive jet cross sections in Z / γ * events, with Z / γ * decaying into electron or muon pairs, are measured for jets with transverse momentum p T > 30 GeV and jet rapidity | ymore » | < 4.4 . The measurements are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.« less

  6. Baryon masses and σ terms in SU(3) BChPT×1/N c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Ishara P.; Alarcon-Soriano, Jose-Manuel; Goity, Jose Luis

    Baryon masses and nucleonmore » $$\\sigma$$ terms are studied with the effective theory that combines the chiral and $$1/N_c$$ expansions for three flavors. In particular the connection between the deviation of the Gell-Mann-Okubo relation and the $$\\sigma$$ term associated with the scalar density $$\\bar u u+\\bar d d-2\\bar s s$$ is emphasized. The latter is at lowest order related to a mass combination whose low value has given rise to a $$\\sigma$$ term puzzle. It is shown that while the nucleon $$\\sigma$$ terms have a well behaved low energy expansion, that mass combination is affected by large higher order corrections non-analytic in quark masses. Lastly, adding to the analysis lattice QCD baryon masses, it is found that $$\\sigma_{\\pi N}=69(10)$$~MeV and $$\\sigma_s$$ has natural magnitude within its relative large uncertainty.« less

  7. Precision studies of observables in p p → W → lν _l and pp → γ ,Z → l^+ l^- processes at the LHC

    NASA Astrophysics Data System (ADS)

    Alioli, S.; Arbuzov, A. B.; Bardin, D. Yu.; Barzè, L.; Bernaciak, C.; Bondarenko, S. G.; Carloni Calame, C. M.; Chiesa, M.; Dittmaier, S.; Ferrera, G.; de Florian, D.; Grazzini, M.; Höche, S.; Huss, A.; Jadach, S.; Kalinovskaya, L. V.; Karlberg, A.; Krauss, F.; Li, Y.; Martinez, H.; Montagna, G.; Mück, A.; Nason, P.; Nicrosini, O.; Petriello, F.; Piccinini, F.; Płaczek, W.; Prestel, S.; Re, E.; Sapronov, A. A.; Schönherr, M.; Schwinn, C.; Vicini, A.; Wackeroth, D.; Was, Z.; Zanderighi, G.

    2017-05-01

    This report was prepared in the context of the LPCC Electroweak Precision Measurements at the LHC WG (https://lpcc.web.cern.ch/lpcc/index.php?page=electroweak_wg) and summarizes the activity of a subgroup dedicated to the systematic comparison of public Monte Carlo codes, which describe the Drell-Yan processes at hadron colliders, in particular at the CERN Large Hadron Collider (LHC). This work represents an important step towards the definition of an accurate simulation framework necessary for very high-precision measurements of electroweak (EW) observables such as the W boson mass and the weak mixing angle. All the codes considered in this report share at least next-to-leading-order (NLO) accuracy in the prediction of the total cross sections in an expansion either in the strong or in the EW coupling constant. The NLO fixed-order predictions have been scrutinized at the technical level, using exactly the same inputs, setup and perturbative accuracy, in order to quantify the level of agreement of different implementations of the same calculation. A dedicated comparison, again at the technical level, of three codes that reach next-to-next-to-leading-order (NNLO) accuracy in quantum chromodynamics (QCD) for the total cross section has also been performed. These fixed-order results are a well-defined reference that allows a classification of the impact of higher-order sets of radiative corrections. Several examples of higher-order effects due to the strong or the EW interaction are discussed in this common framework. Also the combination of QCD and EW corrections is discussed, together with the ambiguities that affect the final result, due to the choice of a specific combination recipe. All the codes considered in this report have been run by the respective authors, and the results presented here constitute a benchmark that should be always checked/reproduced before any high-precision analysis is conducted based on these codes. In order to simplify these benchmarking procedures, the codes used in this report, together with the relevant input files and running instructions, can be found in a repository at https://twiki.cern.ch/twiki/bin/view/Main/DrellYanComparison.

  8. On the two-loop virtual QCD corrections to Higgs boson pair production in the standard model

    DOE PAGES

    Degrassi, Giuseppe; Giardino, Pier Paolo; Gröber, Ramona

    2016-07-21

    Here, we compute the next-to-leading order virtual QCD corrections to Higgs-pair production via gluon fusion. We also present analytic results for the two-loop contributions to the spin-0 and spin-2 form factors in the amplitude. The reducible contributions, given by the double-triangle diagrams, are evaluated exactly while the two-loop irreducible diagrams are evaluated by an asymptotic expansion in heavy top-quark mass up to and including terms of O(1/mmore » $$8\\atop{t}$$). We estimate that mass effects can reduce the hadronic cross section by at most 10 %, assuming that the finite top-quark mass effects are of similar size in the entire range of partonic energies.« less

  9. Infrared singularities of scattering amplitudes in perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becher, Thomas; Neubert, Matthias

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficientsmore » of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.« less

  10. Charm and the rise of the pp-bar total cross section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.T.; Dash, J.W.

    We give a detailed description of the pp-bar forward amplitude through CERN SPS collider energies, using the flavored Pomeron model as an effective parametrization of nonperturbative QCD. We show that the rise in the total cross section between CERN ISR and SPS collider energies is consistent with the onset of charmed-particle production up to the level of a few millibarns, along with other processes, and in agreement with available data. In contrast with our estimates of charm production, perturbative QCD charm-production calculations are well below the data. We give estimates of the p-bar and K/sup +- / multiplicities at SPSmore » collider energies. We also present a simplified version of the flavoring model in order to facilitate comparisons between it and other parametrizations.« less

  11. Gravitational-Wave and Neutrino Signals from Core-Collapse Supernovae with QCD Phase Transition

    NASA Astrophysics Data System (ADS)

    Zha, Shuai; Leung, Shing Chi; Lin, Lap Ming; Chu, Ming-Chung

    Core-collapse supernovae (CCSNe) mark the catastrophic death of massive stars. We simulate CCSNe with a hybrid equations of state (EOS) containing a QCD (quantum chromodynamics) phase transition. The hybrid EOS incorporates the pure hadronic HShen EOS and the MIT Bag Model, with a Gibbs construction. Our two-dimensional hydrodynamics code includes a fifth-order shock capturing scheme WENO and models neutrino transport with the isotropic diffusion source approximation (IDSA). As the proto-neutron-star accretes matter and the core enters the mixed phase, a second collapse takes place due to softening of the EOS. We calculate the gravitational-wave (GW) and neutrino signals for this kind of CCSNe model. Future detection of these signals from CCSNe may help to constrain this scenario and the hybrid EOS.

  12. Introducing MCgrid 2.0: Projecting cross section calculations on grids

    NASA Astrophysics Data System (ADS)

    Bothmann, Enrico; Hartland, Nathan; Schumann, Steffen

    2015-11-01

    MCgrid is a software package that provides access to interpolation tools for Monte Carlo event generator codes, allowing for the fast and flexible variation of scales, coupling parameters and PDFs in cutting edge leading- and next-to-leading-order QCD calculations. We present the upgrade to version 2.0 which has a broader scope of interfaced interpolation tools, now providing access to fastNLO, and features an approximated treatment for the projection of MC@NLO-type calculations onto interpolation grids. MCgrid 2.0 also now supports the extended information provided through the HepMC event record used in the recent SHERPA version 2.2.0. The additional information provided therein allows for the support of multi-jet merged QCD calculations in a future update of MCgrid.

  13. Nonperturbative renormalization of the axial current in Nf=3 lattice QCD with Wilson fermions and a tree-level improved gauge action

    NASA Astrophysics Data System (ADS)

    Bulava, John; Della Morte, Michele; Heitger, Jochen; Wittemeier, Christian

    2016-06-01

    We nonperturbatively determine the renormalization factor of the axial vector current in lattice QCD with Nf=3 flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity, and it is imposed among Schrödinger functional states with large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for simulations at lattice spacings of ≈0.09 fm and below. An interpolation formula for ZA(g02) , smoothly connecting the nonperturbative values to the 1-loop expression, is provided together with our final results.

  14. Final-state QED multipole radiation in antenna parton showers

    NASA Astrophysics Data System (ADS)

    Kleiss, Ronald; Verheyen, Rob

    2017-11-01

    We present a formalism for a fully coherent QED parton shower. The complete multipole structure of photonic radiation is incorporated in a single branching kernel. The regular on-shell 2 → 3 kinematic picture is kept intact by dividing the radiative phase space into sectors, allowing for a definition of the ordering variable that is similar to QCD antenna showers. A modified version of the Sudakov veto algorithm is discussed that increases performance at the cost of the introduction of weighted events. Due to the absence of a soft singularity, the formalism for photon splitting is very similar to the QCD analogon of gluon splitting. However, since no color structure is available to guide the selection of a spectator, a weighted selection procedure from all available spectators is introduced.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John; Carena, Marcela; Harnik, Roni

    We consider interference between the Higgs signal and QCD background inmore » $$gg\\rightarrow h \\rightarrow \\gamma\\gamma$$ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the Standard Model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on the Higgs width in a novel way, using on-shell rate measurements. Our study motivates further QCD calculations to reduce uncertainties. We discuss potential width-sensitive observables, both using total and differential rates and find that the HL-LHC can potentially indirectly probe widths of order tens of MeV.« less

  16. Heavy quarkonium production at collider energies: Partonic cross section and polarization

    DOE PAGES

    Qiu, Jian -Wei; Kang, Zhong -Bo; Ma, Yan -Qing; ...

    2015-01-27

    We calculate the O(α³ s) short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. Thus, this provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, pT, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy hadronic collisions. The consistency of QCDmore » collinear factorization and nonrelativistic QCD factorization applied to heavy quarkonium production is also discussed.« less

  17. Locating the QCD critical end point through peaked baryon number susceptibilities along the freeze-out line

    NASA Astrophysics Data System (ADS)

    Li, Zhibin; Chen, Yidian; Li, Danning; Huang, Mei

    2018-01-01

    We investigate the baryon number susceptibilities up to fourth order along different freeze-out lines in a holographic QCD model with a critical end point (CEP), and we propose that the peaked baryon number susceptibilities along the freeze-out line can be used as a clean signature to locate the CEP in the QCD phase diagram. On the temperature and baryon chemical potential plane, the cumulant ratio of the baryon number susceptibilities (up to fourth order) forms a ridge along the phase boundary, and develops a sword-shaped “mountain” standing upright around the CEP in a narrow and oblate region. The measurement of baryon number susceptibilities from heavy-ion collision experiments is along the freeze-out line. If the freeze-out line crosses the foot of the CEP mountain, then one can observe the peaked baryon number susceptibilities along the freeze-out line, and the kurtosis of the baryon number distributions has the highest magnitude. The data from the first phase of the beam energy scan program at the Relativistic Heavy Ion Collider indicates that there should be a peak of the kurtosis of the baryon number distribution at a collision energy of around 5 GeV, which suggests that the freeze-out line crosses the foot of the CEP mountain and the summit of the CEP should be located nearby, around a collision energy of 3-7 GeV. Supported by NSFC (11275213, and 11261130311) (CRC 110 by DFG and NSFC), CAS key project KJCX2-EW-N01, and Youth Innovation Promotion Association of CAS

  18. Quark mass relations to four-loop order in perturbative QCD.

    PubMed

    Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias

    2015-04-10

    We present results for the relation between a heavy quark mass defined in the on-shell and minimal subtraction (MS[over ¯]) scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS[over ¯] quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS[over ¯] heavy quark masses.

  19. Duality in a supersymmetric gauge theory from a perturbative viewpoint

    NASA Astrophysics Data System (ADS)

    Ryttov, Thomas A.; Shrock, Robert

    2018-03-01

    We study duality in N =1 supersymmetric QCD in the non-Abelian Coulomb phase, order-by-order in scheme-independent series expansions. Using exact results, we show how the dimensions of various fundamental and composite chiral superfields, and the quantities a , c , a /c , and b at superconformal fixed points of the renormalization group emerge in scheme-independent series expansions in the electric and magnetic theories. We further demonstrate that truncations of these series expansions to modest order yield very accurate approximations to these quantities and suggest possible implications for nonsupersymmetric theories.

  20. QCD for Postgraduates (2/5)

    ScienceCinema

    Zanderighi, Giulia

    2018-05-21

    Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD and will introduce the concept of infrared safe jets.

  1. Renormalization of Extended QCD2

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Yamamura, Ryo

    2015-10-01

    Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N_c, to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region.

  2. θ and the η ' in large N supersymmetric QCD

    DOE PAGES

    Dine, Michael; Draper, Patrick; Stephenson-Haskins, Laurel; ...

    2017-05-22

    Here, we study the large N θ dependence and the η' potential in supersymmetric QCD with small soft SUSY-breaking terms. Known exact results in SUSY QCD are found to reflect a variety of expectations from large N perturbation theory, including the presence of branches and the behavior of theories with matter (both with N f << N and N f ~ N ). But, there are also striking departures from ordinary QCD and the conventional large N description: instanton effects, when under control, are not exponentially suppressed at large N , and branched structure in supersymmetric QCD is always associatedmore » with approximate discrete symmetries. We suggest that these differences motivate further study of large N QCD on the lattice.« less

  3. Chiral extrapolations of the ρ ( 770 ) meson in N f = 2 + 1 lattice QCD simulations

    DOE PAGES

    Hu, B.; Molina, R.; Döring, M.; ...

    2017-08-24

    Recentmore » $$N_f=2+1$$ lattice data for meson-meson scattering in $p$-wave and isospin $I=1$ are analyzed using a unitarized model inspired by Chiral Perturbation Theory in the inverse-amplitude formulation for two and three flavors. We perform chiral extrapolations that postdict phase shifts extracted from experiment quite well. Additionally, the low-energy constants are compared to the ones from a recent analysis of $$N_f=2$$ lattice QCD simulations to check for the consistency of the hadronic model used here. Some inconsistencies are detected in the fits to $$N_f=2+1$$ data, in contrast to the previous analysis of $$N_f=2$$ data.« less

  4. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi

    2016-01-22

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact.more » From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.« less

  5. Transverse momentum resummation in soft collinear effective theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Yang; Li Chongsheng; Liu Jianjun

    We present a universal formalism for transverse momentum resummation in the view of soft-collinear effective theory (SCET), and establish the relation between our SCET formula and the well known Collins-Soper-Sterman's pQCD formula at the next-to-leading logarithmic order (NLLO). We also briefly discuss the reformulation of joint resummation in SCET.

  6. Perturbative matching of lattice and continuum heavy-light currents with NRQCD heavy quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morningstar, C.J.; Shigemitsu, J.

    1999-05-01

    The temporal and spatial components of the heavy-light vector current and the spatial components of the axial-vector current are expressed in terms of lattice-regulated operators suitable for simulations of {ital B} and {ital D} mesons. The currents are constructed by matching the appropriate scattering amplitudes in continuum QCD and a lattice model to one-loop order in perturbation theory. In the lattice theory, the heavy quarks are treated using the nonrelativistic (NRQCD) formulation and the light quarks are described by the tadpole-improved clover action. The light quarks are treated as massless. Our currents include relativistic and discretization corrections through O({alpha}{sub s}/M,a{alpha}{submore » s}), where {ital M} is the heavy-quark mass, {ital a} is the lattice spacing, and {alpha}{sub s} is the QCD coupling. As in our previous construction of the temporal component of the heavy-light axial-vector current, mixing between several lattice operators is encountered at one-loop order, and O(a{alpha}{sub s}) dimension-four improvement terms are identified. {copyright} {ital 1999} {ital The American Physical Society}« less

  7. Measurement of the triple-differential cross section for photon+jets production in proton-proton collisions at √s = 7 TeV

    DOE PAGES

    Chatrchyan, Serguei

    2013-06-03

    A measurement of the triple-differential cross section,more » $$ {{{{{\\mathrm{d}}^3}\\sigma }} \\left/ {{\\left( {\\mathrm{d}\\mathrm{p}_T^{\\gamma}\\mathrm{d}{\\eta^{\\gamma }}\\mathrm{d}{\\eta^{\\mathrm{jet}}}} \\right)}} \\right.} $$ , in photon + jets final states using a data sample from proton-proton collisions at $$ \\sqrt{s} $$ = 7 TeV is presented. This sample corresponds to an integrated luminosity of 2.14 fb$$^{-1}$$ collected by the CMS detector at the LHC. Photons and jets are reconstructed within a pseudorapidity range of |η| < 2.5, and are required to have transverse momenta in the range 40 < $$ p_{\\mathrm{T}}^{\\mathrm{jet}} $$ < 300 GeV and $$ p_{\\mathrm{T}}^{\\mathrm{jet}} $$ > 30 GeV, respectively. The measurements are compared to theoretical predictions from the sherpa leading-order QCD Monte Carlo event generator and the next-to-leading-order perturbative QCD calculation from jetphox. Lastly, the predictions are found to be consistent with the data over most of the examined kinematic region.« less

  8. New astrophysical bounds on ultralight axionlike particles

    DOE PAGES

    Banik, Nilanjan; Christopherson, Adam J.; Sikivie, Pierre; ...

    2017-02-15

    Motivated by tension between the predictions of ordinary cold dark matter (CDM) and observations at galactic scales, ultralight axionlike particles (ULALPs) with mass of the order 10 -22 eV have been proposed as an alternative CDM candidate. We consider cold and collisionless ULALPs produced in the early Universe by the vacuum realignment mechanism and constituting most of CDM. The ULALP fluid is commonly described by classical field equations. However, we show that, like QCD axions, the ULALPs thermalize by gravitational self-interactions and form a Bose-Einstein condensate, a quantum phenomenon. ULALPs, like QCD axions, explain the observational evidence for caustic ringsmore » of dark matter because they thermalize and go to the lowest energy state available to them. This is one of rigid rotation on the turnaround sphere. Here, by studying the heating effect of infalling ULALPs on galactic disk stars and the thickness of the nearby caustic ring as observed from a triangular feature in the infrared astronomical satellite map of our galactic disk, we obtain lower-mass bounds on the ULALP mass of order 10 -23 and 10 -20 eV, respectively.« less

  9. Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential: Two-loop corrections

    NASA Astrophysics Data System (ADS)

    Maelger, J.; Reinosa, U.; Serreau, J.

    2018-04-01

    We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.

  10. Fast algorithms for chiral fermions in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Hyka (Xhako), Dafina; Osmanaj (Zeqirllari), Rudina

    2018-03-01

    In lattice QCD simulations the formulation of the theory in lattice should be chiral in order that symmetry breaking happens dynamically from interactions. In order to guarantee this symmetry on the lattice one uses overlap and domain wall fermions. On the other hand high computational cost of lattice QCD simulations with overlap or domain wall fermions remains a major obstacle of research in the field of elementary particles. We have developed the preconditioned GMRESR algorithm as fast inverting algorithm for chiral fermions in U(1) lattice gauge theory. In this algorithm we used the geometric multigrid idea along the extra dimension.The main result of this work is that the preconditioned GMRESR is capable to accelerate the convergence 2 to 12 times faster than the other optimal algorithms (SHUMR) for different coupling constant and lattice 32x32. Also, in this paper we tested it for larger lattice size 64x64. From the results of simulations we can see that our algorithm is faster than SHUMR. This is a very promising result that this algorithm can be adapted also in 4 dimension.

  11. Interacting hadron resonance gas model in the K -matrix formalism

    NASA Astrophysics Data System (ADS)

    Dash, Ashutosh; Samanta, Subhasis; Mohanty, Bedangadas

    2018-05-01

    An extension of hadron resonance gas (HRG) model is constructed to include interactions using relativistic virial expansion of partition function. The noninteracting part of the expansion contains all the stable baryons and mesons and the interacting part contains all the higher mass resonances which decay into two stable hadrons. The virial coefficients are related to the phase shifts which are calculated using K -matrix formalism in the present work. We have calculated various thermodynamics quantities like pressure, energy density, and entropy density of the system. A comparison of thermodynamic quantities with noninteracting HRG model, calculated using the same number of hadrons, shows that the results of the above formalism are larger. A good agreement between equation of state calculated in K -matrix formalism and lattice QCD simulations is observed. Specifically, the lattice QCD calculated interaction measure is well described in our formalism. We have also calculated second-order fluctuations and correlations of conserved charges in K -matrix formalism. We observe a good agreement of second-order fluctuations and baryon-strangeness correlation with lattice data below the crossover temperature.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasparian, Ashot

    Properties of the neutral pion, as the lightest hadron in Nature, are most sensitive to the basic symmetries and their partial breaking effects in the theory of the strong interaction (QCD). In particular, the po →gg decay width is primarily defined by the spontaneous chiral symmetry breaking effect (chiral anomaly) in QCD. The next order corrections to the anomaly have been shown to be small and are known to a 1% precision level. The PrimEx Collaboration at JLab has developed and performed two Primakoff type experiments to measure the po →gg decay width with a similar precision. The published resultmore » from the PrimEx-I experiment, G(p0 →gg ) = 7.82±0.14 (stat.)±0.17 (syst.) eV, was a factor of two more precise than the average value quoted in PDG-2010 [1]. The second experiment was performed in 2010 with a goal of 1.4% total uncertainty to address the next-to-leading-order theory calculations. The preliminary results from the PrimEx-II experiment are presented and discussed in this note.« less

  13. Instanton-dyon ensembles reproduce deconfinement and chiral restoration phase transitions

    NASA Astrophysics Data System (ADS)

    Shuryak, Edward

    2018-03-01

    Paradigm shift in gauge topology at finite temperatures, from the instantons to their constituents - instanton-dyons - has recently lead to studies of their ensembles and very significant advances. Like instantons, they have fermionic zero modes, and their collectivization at suffciently high density explains the chiral symmetry breaking transition. Unlike instantons, these objects have electric and magnetic charges. Simulations of the instanton-dyon ensembles have demonstrated that their back reaction on the Polyakov line modifies its potential and generates the deconfinement phase transition. For the Nc = 2 gauge theory the transition is second order, for QCD-like theory with Nc = 2 and two light quark flavors Nf = 2 both transitions are weak crossovers at happening at about the same condition. Introduction of quark-flavor-dependent periodicity phases (imaginary chemical potentials) leads to drastic changes in both transitions. In particulaly, in the so called Z(Nc) - QCD model the deconfinement transforms to strong first order transition, while the chiral condensate does not disappear at all. The talk will also cover more detailed studies of correlations between the dyons, effective eta' mass and other screening masses.

  14. A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boglione, M.; Gonzalez Hernandez, J. O.; Melis, S.

    We study the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, qT. In order to describe it over a wide region of qT, soft gluon resummation has to be performed. Here we will use the original Collins-Soper-Sterman (CSS) formalism; however, the same procedure would hold within the improved Transverse Momentum Dependent (TMD) framework. We study the matching between the region where fixed order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be appliedmore » in the SIDIS kinematical configurations we examine. In particular, the non-perturbative component of the resummed cross section turns out to play a crucial role and should not be overlooked even at relatively high energies. As a result, the perturbative expansion of the resummed cross section in the matching region is not as reliable as it is usually believed and its treatment requires special attention.« less

  15. A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes

    NASA Astrophysics Data System (ADS)

    Boglione, M.; Gonzalez Hernandez, J. O.; Melis, S.; Prokudin, A.

    2015-02-01

    We study the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, q T . In order to describe it over a wide region of q T , soft gluon resummation has to be performed. Here we will use the original Collins-Soper-Sterman (CSS) formalism; however, the same procedure would hold within the improved Transverse Momentum Dependent (TMD) framework. We study the matching between the region where fixed order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. In particular, the non-perturbative component of the resummed cross section turns out to play a crucial role and should not be overlooked even at relatively high energies. Moreover, the perturbative expansion of the resummed cross section in the matching region is not as reliable as it is usually believed and its treatment requires special attention.

  16. Tetraquark candidate Zc(3900) from coupled-channel scattering - how to extract hadronic interactions? -

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoichi

    2018-03-01

    We present recent progress of lattice QCD studies on hadronic interactions which play a crucial role to understand the properties of atomic nuclei and hadron resonances. There are two methods, the plateau method (or the direct method) and the HAL QCD method, to study the hadronic interactions. In the plateau method, the determination of a ground state energy from the temporal correlation functions of multi-hadron systems is a key to reliably extract the physical observables. It turns out that, due to the contamination of excited elastic scattering states nearby, one can easily be misled by a fake plateau into extracting the ground state energy. We introduce a consistency check (sanity check) which can rule out obviously false results obtained from a fake plateau, and find that none of the results obtained at the moment for two-baryon systems in the plateau method pass the test. On the other hand, the HAL QCD method is free from the fake-plateau problem. We investigate the systematic uncertainties of the HAL QCD method, which are found to be well controlled. On the basis of the HAL QCD method, the structure of the tetraquark candidate Zc(3900), which was experimentally reported in e+e- collisions, is studied by the s-wave two-meson coupled-channel scattering. The results show that the Zc(3900) is not a conventional resonance but a threshold cusp. A semi-phenomenological analysis with the coupled-channel interaction to the experimentally observed decay mode is also presented to confirm the conclusion.

  17. On the interface between perturbative and nonperturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deur, Alexandre; Brodsky, Stanley J.; de Teramond, Guy F.

    2016-04-04

    The QCD running couplingmore » $$\\alpha_s(Q^2)$$ sets the strength of the interactions of quarks and gluons as a function of the momentum transfer $Q$. The $Q^2$ dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-$Q^2$ analytic behavior of the strong coupling $$\\alpha_s(Q^2)$$. The high-$Q^2$ dependence of the coupling $$\\alpha_s(Q^2)$$ is specified by perturbative QCD and its renormalization group equation. The matching of the high and low $Q^2$ regimes of $$\\alpha_s(Q^2)$$ then determines the scale $$Q_0$$ which sets the interface between perturbative and nonperturbative hadron dynamics. The value of $$Q_0$$ can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We discuss the scheme-dependence of the value of $$Q_0$$ and the infrared fixed-point of the QCD coupling. Our analysis is carried out for the $$\\bar{MS}$$, $$g_1$$, $MOM$ and $V$ renormalization schemes. Our results show that the discrepancies on the value of $$\\alpha_s$$ at large distance seen in the literature can be explained by different choices of renormalization schemes. Lastly, we also provide the formulae to compute $$\\alpha_s(Q^2)$$ over the entire range of space-like momentum transfer for the different renormalization schemes discussed in this article.« less

  18. Hard-thermal-loop perturbation theory to two loops

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Braaten, Eric; Petitgirard, Emmanuel; Strickland, Michael

    2002-10-01

    We calculate the pressure for pure-glue QCD at high temperature to two-loop order using hard-thermal-loop (HTL) perturbation theory. At this order, all the ultraviolet divergences can be absorbed into renormalizations of the vacuum energy density and the HTL mass parameter. We determine the HTL mass parameter by a variational prescription. The resulting predictions for the pressure fail to agree with results from lattice gauge theory at temperatures for which they are available.

  19. Measurement of multi-jet cross sections in proton-proton collisions at a 7 TeV center-of-mass energy

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holtsch, A.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schneider, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, H. S.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2011-11-01

    Inclusive multi-jet production is studied in proton-proton collisions at a center-of-mass energy of 7 TeV, using the ATLAS detector. The data sample corresponds to an integrated luminosity of 2.4 pb-1. Results on multi-jet cross sections are presented and compared to both leading-order plus parton-shower Monte Carlo predictions and to next-to-leading-order QCD calculations.

  20. Measurement of multi-jet cross sections in proton–proton collisions at a 7 TeV center-of-mass energy

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-11-15

    Inclusive multi-jet production is studied in proton–proton collisions at a center-of-mass energy of 7 TeV, using the ATLAS detector. The data sample corresponds to an integrated luminosity of 2.4 pb -1. Results on multi-jet cross sections are presented and compared to both leading-order plus parton-shower Monte Carlo predictions and to next-to-leading-order QCD calculations.

  1. Improving GEOS-5 seven day forecast skill by assimilation of quality controlled AIRS temperature profiles

    NASA Astrophysics Data System (ADS)

    Susskind, J.; Rosenberg, R. I.

    2016-12-01

    The GEOS-5 Data Assimilation System (DAS) generates a global analysis every six hours by combining the previous six hour forecast for that time period with contemporaneous observations. These observations include in-situ observations as well as those taken by satellite borne instruments, such as AIRS/AMSU on EOS Aqua and CrIS/ATMS on S-NPP. Operational data assimilation methodology assimilates observed channel radiances Ri for IR sounding instruments such as AIRS and CrIS, but only for those channels i in a given scene whose radiances are thought to be unaffected by clouds. A limitation of this approach is that radiances in most tropospheric sounding channels are affected by clouds under partial cloud cover conditions, which occurs most of the time. The AIRS Science Team Version-6 retrieval algorithm generates cloud cleared radiances (CCR's) for each channel in a given scene, which represent the radiances AIRS would have observed if the scene were cloud free, and then uses them to determine quality controlled (QC'd) temperature profiles T(p) under all cloud conditions. There are potential advantages to assimilate either AIRS QC'd CCR's or QC'd T(p) instead of Ri in that the spatial coverage of observations is greater under partial cloud cover. We tested these two alternate data assimilation approaches by running three parallel data assimilation experiments over different time periods using GEOS-5. Experiment 1 assimilated all observations as done operationally, Experiment 2 assimilated QC'd values of AIRS CCRs in place of AIRS radiances, and Experiment 3 assimilated QC'd values of T(p) in place of observed radiances. Assimilation of QC'd AIRS T(p) resulted in significant improvement in seven day forecast skill compared to assimilation of CCR's or assimilation of observed radiances, especially in the Southern Hemisphere Extra-tropics.

  2. Two-baryon systems from HAL QCD method and the mirage in the temporal correlation of the direct method

    NASA Astrophysics Data System (ADS)

    Iritani, Takumi

    2018-03-01

    Both direct and HAL QCD methods are currently used to study the hadron interactions in lattice QCD. In the direct method, the eigen-energy of two-particle is measured from the temporal correlation. Due to the contamination of excited states, however, the direct method suffers from the fake eigen-energy problem, which we call the "mirage problem," while the HAL QCD method can extract information from all elastic states by using the spatial correlation. In this work, we further investigate systematic uncertainties of the HAL QCD method such as the quark source operator dependence, the convergence of the derivative expansion of the non-local interaction kernel, and the single baryon saturation, which are found to be well controlled. We also confirm the consistency between the HAL QCD method and the Lüscher's finite volume formula. Based on the HAL QCD potential, we quantitatively confirm that the mirage plateau in the direct method is indeed caused by the contamination of excited states.

  3. Dissociation of heavy quarkonia in an anisotropic hot QCD medium in a quasiparticle model

    NASA Astrophysics Data System (ADS)

    Jamal, Mohammad Yousuf; Nilima, Indrani; Chandra, Vinod; Agotiya, Vineet Kumar

    2018-05-01

    The present article is the follow-up work of Phys. Rev. D 94, 094006 (2016), 10.1103/PhysRevD.94.094006, where we have extended the study of quarkonia dissociation in (momentum) anisotropic hot QCD medium. As evident by the experimentally observed collective flow at the RHIC and LHC, the momentum anisotropy is present at almost all the stages after the collision, and therefore, it is important to include its effects in the analysis. Employing the in-medium (corrected) potential while considering the anisotropy (both oblate and prolate cases) in the medium, the thermal widths and the binding energies of the heavy quarkonia states (s -wave charmonia and s -wave bottomonia specifically, for radial quantum numbers n =1 and 2) have been determined. The hot QCD medium effects have been included by employing a quasiparticle description. The presence of anisotropy has modified the potential and then the thermal widths and binding energies of these states in a significant manner. The results show a quite visible shift in the values of dissociation temperatures as compared to the isotropic case. Further, the hot QCD medium interaction effects suppress the dissociation temperature as compared to the case where we consider the medium as a noninteracting ultrarelativistic gas of quarks (antiquarks) and gluons.

  4. Branching ratios, CP asymmetries and polarizations of B→ ψ (2S) V decays

    NASA Astrophysics Data System (ADS)

    Rui, Zhou; Li, Ya; Xiao, Zhen-Jun

    2017-09-01

    We analyze the non-leptonic decays B/B_s→ ψ (2S) V with V=(ρ , ω , K^{*}, φ ) by employing the perturbative QCD (pQCD) factorization approach. Here the branching ratios, the CP asymmetries and the complete set of polarization observables are investigated systematically. Besides the traditional contributions from the factorizable and non-factorizable diagrams at the leading order, the next-to-leading order (NLO) vertex corrections could also provide considerable contributions. The pQCD predictions for the branching ratios of the B_{(s)}→ ψ (2S)K^{*}, ψ (2S)φ decays are consistent with the measured values within errors. As for B→ ψ (2S) ρ , ψ (2S) ω decays, the branching ratios can reach the order of 10^{-5} and could be measured in the LHCb and Belle-II experiments. The numerical results show that the direct CP asymmetries of the considered decays are very small. Thus the observation of any large direct CP asymmetry for these decays will be a signal for new physics. The mixing-induced CP asymmetries in the neutral modes are very close to sin 2β _{(s)}, which suggests that these channels can give a cross-check on the measurement of the Cabbibo-Kobayashi-Maskawa (CKM) angle β and β _s. We find that the longitudinal polarization fractions f_0 are suppressed to ˜ 50% due to the large non-factorizable contributions. The magnitudes and phases of the two transverse amplitudes A_{allel } and A_{\\perp } are roughly equal, which is an indication for the approximate light-quark helicity conservation in these decays. The overall polarization observables of B→ ψ (2S) K^{*0} and B_s→ ψ (2S) φ channels are also in good agreement with the experimental measurements as reported by LHCb and BaBar. Other results can also be tested by the LHCb and Belle-II experiments.

  5. The decays B → Ψ(2S)π(K),ηc(2S)π(K) in the pQCD approach beyond the leading-order

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qing

    2017-09-01

    Two body B meson decays involving the radially excited meson ψ (2 S) /ηc (2 S) in the final states are studied by using the perturbative QCD (pQCD) approach. We find that: (a) The branching ratios for the decays involving a K meson are predicted as Br (B+ → ψ (2 S)K+) = (5.37-2.22+1.85) ×10-4, Br (B0 → ψ (2 S)K0) = (4.98-2.06+1.71) ×10-4, Br (B+ →ηc (2 S)K+) = (3.54-3.09+3.18) ×10-4, which are consistent with the present data when the next-to-leading-order (NLO) effects are included. Here the NLO effects are from the vertex corrections and the NLO Wilson coefficients. The large errors in the decay B+ →ηc (2 S)K+ are mainly induced by using the decay constant f ηc (2 S) =0.243-0.111+0.079 GeV with large uncertainties. (b) While there seems to be some room left for other higher order corrections or the non-perturbative long distance contributions in the decays involving a π meson, Br (B+ → ψ (2 S)π+) = (1.17-0.50+0.42) ×10-5, Br (B0 → ψ (2 S)π0) =0.54-0.23+0.20 ×10-5, which are smaller than the present data. The results for other decays can be tested via running LHCb and forthcoming Super-B experiments. (c) There is no obvious evidence of the direct CP violation being seen in the decays B → ψ (2 S) π (K) ,ηc (2 S) π (K) in the present experiments, which is supported by our calculations. If a few percent value is confirmed in the future, this would definitely indicate the existence of new physics.

  6. Branching ratios, CP asymmetries and polarizations of $$B\\rightarrow \\psi (2S) V$$ decays

    DOE PAGES

    Rui, Zhou; Li, Ya; Xiao, Zhen -Jun

    2017-09-14

    We analyze the non-leptonic decays B/B s→ψ(2S)V with V=(ρ,ω,K*,Φ) by employing the perturbative QCD (pQCD) factorization approach. Here the branching ratios, the CP asymmetries and the complete set of polarization observables are investigated systematically. Besides the traditional contributions from the factorizable and non-factorizable diagrams at the leading order, the next-to-leading order (NLO) vertex corrections could also provide considerable contributions. The pQCD predictions for the branching ratios of the B (s)→ψ(2S)K*,ψ(2S) decays are consistent with the measured values within errors. As for B→ψ(2S)ρ,ψ(2S)ω decays, the branching ratios can reach the order of 10 –5 and could be measured in the LHCbmore » and Belle-II experiments. The numerical results show that the direct CP asymmetries of the considered decays are very small. Thus the observation of any large direct CP asymmetry for these decays will be a signal for new physics. The mixing-induced CP asymmetries in the neutral modes are very close to sin2β (s), which suggests that these channels can give a cross-check on the measurement of the Cabbibo–Kobayashi–Maskawa (CKM) angle β and β s. We find that the longitudinal polarization fractions f 0 are suppressed to ~50% due to the large non-factorizable contributions. The magnitudes and phases of the two transverse amplitudes A∥ and A⊥ are roughly equal, which is an indication for the approximate light-quark helicity conservation in these decays. The overall polarization observables of B→ψ(2S)K* 0 and B s→ψ(2S)Φ channels are also in good agreement with the experimental measurements as reported by LHCb and BaBar. In conclusion, other results can also be tested by the LHCb and Belle-II experiments.« less

  7. Branching ratios, CP asymmetries and polarizations of $$B\\rightarrow \\psi (2S) V$$ decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rui, Zhou; Li, Ya; Xiao, Zhen -Jun

    We analyze the non-leptonic decays B/B s→ψ(2S)V with V=(ρ,ω,K*,Φ) by employing the perturbative QCD (pQCD) factorization approach. Here the branching ratios, the CP asymmetries and the complete set of polarization observables are investigated systematically. Besides the traditional contributions from the factorizable and non-factorizable diagrams at the leading order, the next-to-leading order (NLO) vertex corrections could also provide considerable contributions. The pQCD predictions for the branching ratios of the B (s)→ψ(2S)K*,ψ(2S) decays are consistent with the measured values within errors. As for B→ψ(2S)ρ,ψ(2S)ω decays, the branching ratios can reach the order of 10 –5 and could be measured in the LHCbmore » and Belle-II experiments. The numerical results show that the direct CP asymmetries of the considered decays are very small. Thus the observation of any large direct CP asymmetry for these decays will be a signal for new physics. The mixing-induced CP asymmetries in the neutral modes are very close to sin2β (s), which suggests that these channels can give a cross-check on the measurement of the Cabbibo–Kobayashi–Maskawa (CKM) angle β and β s. We find that the longitudinal polarization fractions f 0 are suppressed to ~50% due to the large non-factorizable contributions. The magnitudes and phases of the two transverse amplitudes A∥ and A⊥ are roughly equal, which is an indication for the approximate light-quark helicity conservation in these decays. The overall polarization observables of B→ψ(2S)K* 0 and B s→ψ(2S)Φ channels are also in good agreement with the experimental measurements as reported by LHCb and BaBar. In conclusion, other results can also be tested by the LHCb and Belle-II experiments.« less

  8. Nucleon QCD sum rules in the instanton medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryskin, M. G.; Drukarev, E. G., E-mail: drukarev@pnpi.spb.ru; Sadovnikova, V. A.

    2015-09-15

    We try to find grounds for the standard nucleon QCD sum rules, based on a more detailed description of the QCD vacuum. We calculate the polarization operator of the nucleon current in the instanton medium. The medium (QCD vacuum) is assumed to be a composition of the small-size instantons and some long-wave gluon fluctuations. We solve the corresponding QCD sum rule equations and demonstrate that there is a solution with the value of the nucleon mass close to the physical one if the fraction of the small-size instantons contribution is w{sub s} ≈ 2/3.

  9. Research in Theoretical High-Energy Physics at Southern Methodist University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olness, Fredrick; Nadolsky, Pavel

    2016-08-05

    The SMU Theory group has developed a strong expertise in QCD, PDFs, and incisive comparisons between collider data and theory. The group pursues realistic phenomenological calculations for high-energy processes, the highly demanded research area driven by the LHC physics. Our field has seen major discoveries in recent years from a variety of experiments, large and small, including a number recognized by Nobel Prizes. There is a wealth of novel QCD data to explore. The SMU theory group develops the most advanced and innovative tools for comprehensive analysis in applications ranging from Higgs physics and new physics searches to nuclear scattering.

  10. Large-Nc masses of light mesons from QCD sum rules for nonlinear radial Regge trajectories

    NASA Astrophysics Data System (ADS)

    Afonin, S. S.; Solomko, T. D.

    2018-04-01

    The large-Nc masses of light vector, axial, scalar and pseudoscalar mesons are calculated from QCD spectral sum rules for a particular ansatz interpolating the radial Regge trajectories. The ansatz includes a linear part plus exponentially degreasing corrections to the meson masses and residues. The form of corrections was proposed some time ago for consistency with analytical structure of Operator Product Expansion of the two-point correlation functions. We revised that original analysis and found the second solution for the proposed sum rules. The given solution describes better the spectrum of vector and axial mesons.

  11. Study of Bc→ψ (2 S )K , ηc(2 S )K , ψ (3770 )K decays with perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Duan, Feng-Bo; Yu, Xian-Qiao

    2018-05-01

    We study the Bc→ψ (2 S ) K , ηc(2 S ) K , ψ (3770 ) K decays with perturbative QCD approach based on kT factorization. The new orbitally excited charmonium distribution amplitudes ψ (1 3D1) based on the Schrödinger wave function of the n =1 , l =2 state for the harmonic-oscillator potential are employed. By using the corresponding distribution amplitudes, we calculate the branching ratio of Bc→ψ (2 S ) K , ηc(2 S ) K , ψ (3770 ) K decays and the form factors A0 ,1 ,2 and V for the transition Bc→ψ (1 3D1) . We obtain the branching ratio of both Bc→ψ (2 S ) K and Bc→ηc(2 S ) K are at the order of 10-5. The effects of two sets of the S-D mixing angle θ =-1 2 ° and θ =2 7 ° for the decay Bc→ψ (3770 ) K are studied first in this paper. Our calculations show that the branching ratio of the decay Bc→ψ (3770 ) K can be raised from the order of 10-6 to the order of 10-5 at the mixing angle θ =-1 2 ° , which can be tested by the running LHC-b experiments.

  12. Chiral behavior of K →π l ν decay form factors in lattice QCD with exact chiral symmetry

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Cossu, G.; Feng, X.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.; Jlqcd Collaboration

    2017-08-01

    We calculate the form factors of the K →π l ν semileptonic decays in three-flavor lattice QCD and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11 fm with four pion masses covering 290-540 MeV and a strange quark mass ms close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on ms and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to-leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f+(0 )=0.9636 (36 )(-35+57) and observe reasonable agreement of their shape with experiment.

  13. First global next-to-leading order determination of diffractive parton distribution functions and their uncertainties within the xFitter framework

    NASA Astrophysics Data System (ADS)

    Goharipour, Muhammad; Khanpour, Hamzeh; Guzey, Vadim

    2018-04-01

    We present GKG18-DPDFs, a next-to-leading order (NLO) QCD analysis of diffractive parton distribution functions (diffractive PDFs) and their uncertainties. This is the first global set of diffractive PDFs determined within the xFitter framework. This analysis is motivated by all available and most up-to-date data on inclusive diffractive deep inelastic scattering (diffractive DIS). Heavy quark contributions are considered within the framework of the Thorne-Roberts (TR) general mass variable flavor number scheme (GM-VFNS). We form a mutually consistent set of diffractive PDFs due to the inclusion of high-precision data from H1/ZEUS combined inclusive diffractive cross sections measurements. We study the impact of the H1/ZEUS combined data by producing a variety of determinations based on reduced data sets. We find that these data sets have a significant impact on the diffractive PDFs with some substantial reductions in uncertainties. The predictions based on the extracted diffractive PDFs are compared to the analyzed diffractive DIS data and with other determinations of the diffractive PDFs.

  14. A case-control study of the difficulties in daily functioning experienced by children with depressive disorder.

    PubMed

    Usami, Masahide; Iwadare, Yoshitaka; Watanabe, Kyota; Ushijima, Hirokage; Kodaira, Masaki; Okada, Takashi; Sasayama, Daimei; Sugiyama, Nobuhiro; Saito, Kazuhiko

    2015-07-01

    The parent-assessed children-with-difficulties questionnaire (Questionnaire-Children with Difficulties; QCD) is designed to evaluate a child׳s difficulties in functioning during specific periods of the day. This study aimed to use the QCD to evaluate the difficulties in daily functioning experienced by children with depressive disorders. A case-control design was used. The cases comprised 90 junior high school students with depressive disorder, whereas a community sample of 363 junior high school students was enrolled as controls. Behaviors were assessed using the QCD, Depression Self-Rating Scale (DSRS), Tokyo Autistic Behavior Scale (TABS), attention deficit hyperactivity disorder-rating scale (ADHD-RS), and Oppositional Defiant Behavior Inventory (ODBI). We then analyzed the effects of sex and diagnosis on the QCD scores as well as the correlation coefficients between the QCD and the other questionnaires. We included 90 cases (33 boys, 57 girls) with depressive disorders and 363 controls (180 boys, 183 girls). The QCD scores for the children with depressive disorders were significantly lower compared with those from the community sample (P<0.001). The morning, school-time, and night subscores of the QCD were lower for the children with both depressive disorders and truancy problems than for those with depressive disorders alone (P<0.001). Significant correlations were observed between the following: the night QCD subscore and the DSRS scores among boys, the morning QCD subscore and ADHD-RS inattention scores for all groups, and the evening QCD subscore and the TABS score. Parents reported that children with depressive disorders experienced greater difficulties in completing basic daily activities compared with community controls. These difficulties were dependent on sex, symptoms, and the time of day. The use of QCD to assess children with depressive disorders enables clinicians to clarify the time periods at which the children face difficulties. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Ghost-Free APT Analysis of Perturbative QCD Observables

    NASA Astrophysics Data System (ADS)

    Shirkov, Dmitry V.

    The review of the essence and of application of recently devised ghost-free Analytic Perturbation Theory (APT) is presented. First, we discuss the main intrinsic problem of perturbative QCD - ghost singularities and with the resume of its resolving within the APT. By examples for diverse energy and momentum transfer values we show the property of better convergence for the APT modified QCD expansion. It is shown that in the APT analysis the three-loop contribution (sim alpha_s^3) is numerically inessential. This gives raise a hope for practical solution of the well-known problem of non-satisfactory convergence of QFT perturbation series due to its asymptotic nature. Our next result is that a usual perturbative analysis of time-like events is not adequate at sleq 2 GeV2. In particular, this relates to tau decay. Then, for the "high" (f=5) region it is shown that the common NLO, NLLA perturbation approximation widely used there (at 10 GeV lesssimsqrt{s}lesssim 170 GeV) yields a systematic theoretic negative error of a couple per cent level for the bar {alpha}_s^2 values. This results in a conclusion that the bar α_s(M^2_Z) value averaged over the f=5 data appreciably differs < bar {alpha}_s(M^2_Z)rangle_{f=5} simeq 0.124 from the currently popular "world average" (=0.118 ).

  16. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment:. NuSOnG

    NASA Astrophysics Data System (ADS)

    Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.

  17. Interference in the gg→h→γγ On-Shell Rate and the Higgs Boson Total Width.

    PubMed

    Campbell, John; Carena, Marcela; Harnik, Roni; Liu, Zhen

    2017-11-03

    We consider interference between the Higgs signal and QCD background in gg→h→γγ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the standard model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on the Higgs width in a novel way, using on-shell rate measurements. Our study motivates further QCD calculations to reduce uncertainties. We discuss possible width-sensitive observables, both using total and differential rates and find that the HL-LHC can potentially indirectly constrain widths of order tens of MeV.

  18. Studies of the 4-JET Rate and of Moments of Event Shape Observables Using Jade Data

    NASA Astrophysics Data System (ADS)

    Kluth, S.

    2005-04-01

    Data from e+e- annihilation into hadrons collected by the JADE experiment at centre-of-mass energies between 14 and 44 GeV were used to study the 4-jet rate using the Durham algorithm as well as the first five moments of event shape observables. The data were compared with NLO QCD predictions, augmented by resummed NLLA calculations for the 4-jet rate, in order to extract values of the strong coupling constant αS. The preliminary results are αS(MZ0) = 0.1169 ± 0.0026 (4-jet rate) and αS(MZ0) = 0.1286 ± 0.0072 (moments) consistent with the world average value. For some of the higher moments systematic deficiencies of the QCD predictions are observed.

  19. J/ψ production and suppression in high-energy proton-nucleus collisions

    DOE PAGES

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio R pA of these results to spectra in proton-proton collisions. In particular, we observe that the R pA data are strongly bounded by our computations of the same for each of the individual NRQCD channels;more » this result provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.« less

  20. QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order μ 2

    NASA Astrophysics Data System (ADS)

    Borsányi, Sz.; Endrődi, G.; Fodor, Z.; Katz, S. D.; Krieg, S.; Ratti, C.; Szabó, K. K.

    2012-08-01

    We determine the equation of state of QCD for nonzero chemical potentials via a Taylor expansion of the pressure. The results are obtained for N f = 2 + 1 flavors of quarks with physical masses, on various lattice spacings. We present results for the pressure, interaction measure, energy density, entropy density, and the speed of sound for small chemical potentials. At low temperatures we compare our results with the Hadron Resonance Gas model. We also express our observables along trajectories of constant entropy over particle number. A simple parameterization is given (the Matlab/Octave script parameterization.m, submitted to the arXiv along with the paper), which can be used to reconstruct the observables as functions of T and μ, or as functions of T and S/N.

  1. Additional strange hadrons from QCD thermodynamics and strangeness freezeout in heavy ion collisions.

    PubMed

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2014-08-15

    We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.

  2. Baryon Effective Theories and Phenomenology in the 1/N c Expansion

    NASA Astrophysics Data System (ADS)

    Fernando, Ishara Priyasad

    Chiral perturbation theory (ChPT) and the 1/Nc expansion provide systematic frameworks to investigate the strong interaction at low energy. There are two main focuses of this dissertation. First, analyzing the masses of baryons in the framework of the 1/Nc expansion, using the available physical masses and masses calculated in lattice QCD. Second, combining both ChPT and the 1/Nc expansion into a single framework and applying it to the phenomenology of baryons with three light-quark flavors. In the first focus, the baryon states are organized into irreducible representa- tions of SU(6) x O(3), where the [56, ℓ P = 0+] contains the ground state and radially excited baryons, and the [56, 2+] and [70, 1 -] contain orbitally excited states are analyzed. The analyses are carried out to O(1/Nc) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations and the famous Gell-Mann-Okubo (GMO) and Equal-Spacing (ES) relations are tested. Also, the quark mass dependence of the operator coefficients for baryon mass is discussed. In the second focus, a small scale expansion of the combined approach is defined as the xi-expansion, in which the power counting of 1/Nc and chiral expansions are linked as O(p) = O(1/Nc) = O(xi). A calculation of one-loop corrections to the ground state baryon masses, vector and axial-vector currents up to O(xi 3) is presented. Moreover, the physical and lattice QCD masses are considered in order to understand the quark mass dependence, along with an analysis of the violations to GMO, ES and Gursey-Radicati (GR) mass relations, and their dependence on Nc.

  3. Improving the theoretical prediction for the Bs - B̅s width difference: matrix elements of next-to-leading order ΔB = 2 operators

    NASA Astrophysics Data System (ADS)

    Davies, Christine; Harrison, Judd; Lepage, G. Peter; Monahan, Christopher; Shigemitsu, Junko; Wingate, Matthew

    2018-03-01

    We present lattice QCD results for the matrix elements of R2 and other dimension-7, ΔB = 2 operators relevant for calculations of Δs, the Bs - B̅s width difference. We have computed correlation functions using 5 ensembles of the MILC Collaboration's 2+1 + 1-flavour gauge field configurations, spanning 3 lattice spacings and light sea quarks masses down to the physical point. The HISQ action is used for the valence strange quarks, and the NRQCD action is used for the bottom quarks. Once our analysis is complete, the theoretical uncertainty in the Standard Model prediction for ΔΓs will be substantially reduced.

  4. Critical end point in the presence of a chiral chemical potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Z. -F.; Cloët, I. C.; Lu, Y.

    A class of Polyakov-loop-modified Nambu-Jona-Lasinio models has been used to support a conjecture that numerical simulations of lattice-regularized QCD defined with a chiral chemical potential can provide information about the existence and location of a critical end point in the QCD phase diagram drawn in the plane spanned by baryon chemical potential and temperature. That conjecture is challenged by conflicts between the model results and analyses of the same problem using simulations of lattice-regularized QCD (lQCD) and well-constrained Dyson-Schwinger equation (DSE) studies. We find the conflict is resolved in favor of the lQCD and DSE predictions when both a physicallymore » motivated regularization is employed to suppress the contribution of high-momentum quark modes in the definition of the effective potential connected with the Polyakov-loop-modified Nambu-Jona-Lasinio models and the four-fermion coupling in those models does not react strongly to changes in the mean field that is assumed to mock-up Polyakov-loop dynamics. With the lQCD and DSE predictions thus confirmed, it seems unlikely that simulations of lQCD with mu(5) > 0 can shed any light on a critical end point in the regular QCD phase diagram.« less

  5. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms I

    NASA Astrophysics Data System (ADS)

    Somogyi, Gábor; Trócsányi, Zoltán

    2008-08-01

    In previous articles we outlined a subtraction scheme for regularizing doubly-real emission and real-virtual emission in next-to-next-to-leading order (NNLO) calculations of jet cross sections in electron-positron annihilation. In order to find the NNLO correction these subtraction terms have to be integrated over the factorized unresolved phase space and combined with the two-loop corrections. In this paper we perform the integration of all one-parton unresolved subtraction terms.

  6. Matching the Nagy-Soper parton shower at next-to-leading order

    NASA Astrophysics Data System (ADS)

    Czakon, M.; Hartanto, H. B.; Kraus, M.; Worek, M.

    2015-06-01

    We present an Mc@Nlo-like matching of next-to-leading order QCD calculations with the Nagy-Soper parton shower. An implementation of the algorithm within the Helac-Dipoles Monte Carlo generator is used to address the uncertainties and ambiguities of the matching scheme. First results obtained using the Nagy-Soper parton shower implementation in Deductor in conjunction with the Helac-Nlo framework are given for the process at the LHC with TeV. Effects of resummation are discussed for various observables.

  7. Condensates in quantum chromodynamics and the cosmological constant

    PubMed Central

    Brodsky, Stanley J.; Shrock, Robert

    2011-01-01

    Casher and Susskind [Casher A, Susskind L (1974) Phys Rev 9:436–460] have noted that in the light-front description, spontaneous chiral symmetry breaking is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon condensates in quantum chromodynamics (QCD) are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the Anti de Sitter/conformal field theory correspondence, and the Bethe–Salpeter–Dyson–Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of “in-hadron” condensates by Roberts and coworkers [Maris P, Roberts CD, Tandy PC (1998) Phys Lett B 420:267–273], using the Bethe–Salpeter–Dyson–Schwinger formalism for QCD-bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, because all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.

  8. Lattice QCD evidence that the Λ(1405) resonance is an antikaon-nucleon molecule.

    PubMed

    Hall, Jonathan M M; Kamleh, Waseem; Leinweber, Derek B; Menadue, Benjamin J; Owen, Benjamin J; Thomas, Anthony W; Young, Ross D

    2015-04-03

    For almost 50 years the structure of the Λ(1405) resonance has been a mystery. Even though it contains a heavy strange quark and has odd parity, its mass is lower than any other excited spin-1/2 baryon. Dalitz and co-workers speculated that it might be a molecular state of an antikaon bound to a nucleon. However, a standard quark-model structure is also admissible. Although the intervening years have seen considerable effort, there has been no convincing resolution. Here we present a new lattice QCD simulation showing that the strange magnetic form factor of the Λ(1405) vanishes, signaling the formation of an antikaon-nucleon molecule. Together with a Hamiltonian effective-field-theory model analysis of the lattice QCD energy levels, this strongly suggests that the structure is dominated by a bound antikaon-nucleon component. This result clarifies that not all states occurring in nature can be described within a simple quark model framework and points to the existence of exotic molecular meson-nucleon bound states.

  9. ρ resonance from the I = 1 ππ potential in lattice QCD

    NASA Astrophysics Data System (ADS)

    Kawai, Daisuke

    2018-03-01

    We calculate the phase shift for the I = 1 ππ scattering in 2+1 flavor lattice QCD at mπ = 410 MeV, using all-to-all propagators with the LapH smearing. We first investigate the sink operator independence of the I = 2 ππ scattering phase shift to estimate the systematics in the LapH smearing scheme in the HAL QCD method at mπ = 870 MeV. The difference in the scattering phase shift in this channel between the conventional point sink scheme and the smeared sink scheme is reasonably small as long as the next-toleading analysis is employed in the smeared sink scheme with larger smearing levels. We then extract the I = 1 ππ potential with the smeared sink operator, whose scattering phase shift shows a resonant behavior (ρ resonance). We also examine the pole of the S-matrix corresponding to the ρ resonance in the complex energy plane.

  10. Charmed bottom baryon spectroscopy from lattice QCD

    DOE PAGES

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; ...

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with J P = 1/2 + and J P = 3/2 +. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limitmore » and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/m Q and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less

  11. The quark condensate in multi-flavour QCD – planar equivalence confronting lattice simulations

    DOE PAGES

    Armoni, Adi; Shifman, Mikhail; Shore, Graham; ...

    2015-02-01

    Planar equivalence between the large N limits of N=1 Super Yang–Mills (SYM) theory and a variant of QCD with fermions in the antisymmetric representation is a powerful tool to obtain analytic non-perturbative results in QCD itself. In particular, it allows the quark condensate for N=3 QCD with quarks in the fundamental representation to be inferred from exact calculations of the gluino condensate in N=1 SYM. In this paper, we review and refine our earlier predictions for the quark condensate in QCD with a general number nf of flavours and confront these with lattice results.

  12. Charmless hadronic B →(f1(1285 ),f1(1420 ))P decays in the perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Xiao, Zhen-Jun; Li, Jing-Wu; Zou, Zhi-Tian

    2015-01-01

    We study 20 charmless hadronic B →f1P decays in the perturbative QCD (pQCD) formalism with B denoting Bu, Bd, and Bs mesons; P standing for the light pseudoscalar mesons; and f1 representing axial-vector mesons f1(1285 ) and f1(1420 ) that result from a mixing of quark-flavor f1 q[u/u ¯ +d d ¯ √{2 } ] and f1 s[s s ¯ ] states with the angle ϕf1.The estimations of C P -averaged branching ratios and C P asymmetries of the considered B →f1P decays, in which the Bs→f1P modes are investigated for the first time, are presented in the pQCD approach with ϕf 1˜24 ° from recently measured Bd /s→J /ψ f1(1285 ) decays. It is found that (a) the tree (penguin) dominant B+→f1π+(K+) decays with large branching ratios [O (10-6) ] and large direct C P violations (around 14%-28% in magnitude) simultaneously are believed to be clearly measurable at the LHCb and Belle II experiments; (b) the Bd→f1KS0 and Bs→f1(η ,η') decays with nearly pure penguin contributions and safely negligible tree pollution also have large decay rates in the order of 10-6- 10-5 , which can be confronted with the experimental measurements in the near future; (c) as the alternative channels, the B+→f1(π+,K+) and Bd→f1KS0 decays have the supplementary power in providing more effective constraints on the Cabibbo-Kobayashi-Maskawa weak phases α , γ , and β , correspondingly, which are explicitly analyzed through the large decay rates and the direct and mixing-induced C P asymmetries in the pQCD approach and are expected to be stringently examined by the measurements with high precision; (d) the weak annihilation amplitudes play important roles in the B+→f1(1420 )K+ , Bd→f1(1420 )KS0 , Bs→f1(1420 )η' decays, and so on, which would offer more evidence, once they are confirmed by the experiments, to identify the soft-collinear effective theory and the pQCD approach on the evaluations of annihilation diagrams and to help further understand the annihilation mechanism in the heavy B meson decays; (e) combined with the future precise tests, the considered decays can provide more information to further understand the mixing angle ϕf 1 and the nature of the f1 mesons in depth after the confirmations on the reliability of the pQCD calculations in the present work.

  13. Analysis of the strong coupling form factors of ΣbNB and ΣcND in QCD sum rules

    NASA Astrophysics Data System (ADS)

    Yu, Guo-Liang; Wang, Zhi-Gang; Li, Zhen-Yu

    2017-08-01

    In this article, we study the strong interaction of the vertices Σ b NB and Σ c ND using the three-point QCD sum rules under two different Dirac structures. Considering the contributions of the vacuum condensates up to dimension 5 in the operation product expansion, the form factors of these vertices are calculated. Then, we fit the form factors into analytical functions and extrapolate them into time-like regions, which gives the coupling constants. Our analysis indicates that the coupling constants for these two vertices are G ΣbNB = 0.43±0.01 GeV-1 and G ΣcND = 3.76±0.05 GeV-1. Supported by Fundamental Research Funds for the Central Universities (2016MS133)

  14. QCD tests in $$p\\bar{p}$$ collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huth, John E.; Mangano, Michelangelo L.

    1993-02-01

    We review the status of QCD tests in high energy p-pbar collisions. Contents: i) Introduction ii) QCD in Hadronic Collisions iii) Jet Production iv) Heavy Flavour Production v) W and Z Production vi) Direct Photons.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajjar, Anant; /Liverpool U.

    Measurements of the di-photon cross section have been made in the central region and are found to be in good agreement with NLO QCD predictions. The cross section of events containing a photon and additional heavy flavor jet have also been measured, as well as the ratio of photon + b to photon + c. The statistically limited sample shows good agreement with Leading Order predictions.

  16. Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD

    NASA Astrophysics Data System (ADS)

    Aoki, S.

    We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.

  17. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  18. Jet transverse fragmentation momentum from h-h correlations in pp and p-Pb collisions

    NASA Astrophysics Data System (ADS)

    Viinikainen, J.; Alice Collaboration

    2017-08-01

    QCD color coherence phenomena, like angular ordering, can be studied by looking at jet fragmentation. As the jet is fragmenting, it is expected to go through two different phases. First, there is QCD branching that is calculable in perturbative QCD. Next, the produced partons hadronize in a non-perturbative way later in a hadronization process. The jet fragmentation can be studied using the method of two particle correlations. A useful observable is the jet transverse fragmentation momentum jT, which describes the angular width of the jet. In this contribution, a differential study will be presented in which separate jT components for branching and hadronization will be distinguished from the data measured by the ALICE experiment. The pTt dependence of the hadronization component √{ 〈jT2 〉 } is found to be rather flat, which is consistent with universal hadronization assumption. However, the branching component shows slightly rising trend in pTt. The √{ s } = 7 TeV pp and √{sNN } = 5.02 TeV p-Pb data give the same results within error bars, suggesting that this observable is not affected by cold nuclear matter effects in p-Pb collisions. The measured data will also be compared to the results obtained from PYTHIA8 simulations.

  19. QCD phase transition with chiral quarks and physical quark masses.

    PubMed

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  20. APFEL: A PDF evolution library with QED corrections

    NASA Astrophysics Data System (ADS)

    Bertone, Valerio; Carrazza, Stefano; Rojo, Juan

    2014-06-01

    Quantum electrodynamics and electroweak corrections are important ingredients for many theoretical predictions at the LHC. This paper documents APFEL, a new PDF evolution package that allows for the first time to perform DGLAP evolution up to NNLO in QCD and to LO in QED, in the variable-flavor-number scheme and with either pole or MS bar heavy quark masses. APFEL consistently accounts for the QED corrections to the evolution of quark and gluon PDFs and for the contribution from the photon PDF in the proton. The coupled QCD ⊗ QED equations are solved in x-space by means of higher order interpolation, followed by Runge-Kutta solution of the resulting discretized evolution equations. APFEL is based on an innovative and flexible methodology for the sequential solution of the QCD and QED evolution equations and their combination. In addition to PDF evolution, APFEL provides a module that computes Deep-Inelastic Scattering structure functions in the FONLL general-mass variable-flavor-number scheme up to O(αs2) . All the functionalities of APFEL can be accessed via a Graphical User Interface, supplemented with a variety of plotting tools for PDFs, parton luminosities and structure functions. Written in FORTRAN 77, APFEL can also be used via the C/C++ and Python interfaces, and is publicly available from the HepForge repository.

Top