Sample records for order rate model

  1. Development of a second order closure model for computation of turbulent diffusion flames

    NASA Technical Reports Server (NTRS)

    Varma, A. K.; Donaldson, C. D.

    1974-01-01

    A typical eddy box model for the second-order closure of turbulent, multispecies, reacting flows developed. The model structure was quite general and was valid for an arbitrary number of species. For the case of a reaction involving three species, the nine model parameters were determined from equations for nine independent first- and second-order correlations. The model enabled calculation of any higher-order correlation involving mass fractions, temperatures, and reaction rates in terms of first- and second-order correlations. Model predictions for the reaction rate were in very good agreement with exact solutions of the reaction rate equations for a number of assumed flow distributions.

  2. A continued fraction resummation form of bath relaxation effect in the spin-boson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Zhihao; Tang, Zhoufei; Wu, Jianlan, E-mail: jianlanwu@zju.edu.cn

    2015-02-28

    In the spin-boson model, a continued fraction form is proposed to systematically resum high-order quantum kinetic expansion (QKE) rate kernels, accounting for the bath relaxation effect beyond the second-order perturbation. In particular, the analytical expression of the sixth-order QKE rate kernel is derived for resummation. With higher-order correction terms systematically extracted from higher-order rate kernels, the resummed quantum kinetic expansion approach in the continued fraction form extends the Pade approximation and can fully recover the exact quantum dynamics as the expansion order increases.

  3. Fractional viscoelasticity in fractal and non-fractal media: Theory, experimental validation, and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Somayeh; Miles, Paul; Hussaini, M. Yousuff; Oates, William S.

    2018-02-01

    In this paper, fractional and non-fractional viscoelastic models for elastomeric materials are derived and analyzed in comparison to experimental results. The viscoelastic models are derived by expanding thermodynamic balance equations for both fractal and non-fractal media. The order of the fractional time derivative is shown to strongly affect the accuracy of the viscoelastic constitutive predictions. Model validation uses experimental data describing viscoelasticity of the dielectric elastomer Very High Bond (VHB) 4910. Since these materials are known for their broad applications in smart structures, it is important to characterize and accurately predict their behavior across a large range of time scales. Whereas integer order viscoelastic models can yield reasonable agreement with data, the model parameters often lack robustness in prediction at different deformation rates. Alternatively, fractional order models of viscoelasticity provide an alternative framework to more accurately quantify complex rate-dependent behavior. Prior research that has considered fractional order viscoelasticity lacks experimental validation and contains limited links between viscoelastic theory and fractional order derivatives. To address these issues, we use fractional order operators to experimentally validate fractional and non-fractional viscoelastic models in elastomeric solids using Bayesian uncertainty quantification. The fractional order model is found to be advantageous as predictions are significantly more accurate than integer order viscoelastic models for deformation rates spanning four orders of magnitude.

  4. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models.

    PubMed

    Li, Zhengqi; Zhao, Wei; Meng, Baihong; Liu, Chunlong; Zhu, Qunyi; Zhao, Guangbo

    2008-11-01

    With heating rates of 20, 50 and 100 K min(-1), the thermal decomposition of corn straw samples (corn stalks skins, corn stalks cores, corn bracts and corn leaves) were studied using thermogravimetric analysis. The maximum pyrolysis rates increased with the heating rate increasing and the temperature at the peak pyrolysis rate also increased. Assuming the addition of three independent parallel reactions, corresponding to three pseudocomponents linked to the hemicellulose, cellulose and lignin, two different three-pseudocomponent models were used to simulate the corn straw pyrolysis. Model parameters of pyrolysis were given. It was found that the three-pseudocomponent model with n-order kinetics was more accurate than the model with first-order kinetics at most cases. It showed that the model with n-order kinetics was more accurate to describe the pyrolysis of the hemicellulose.

  5. Dissolution rate enhancement of gliclazide by ordered mixing.

    PubMed

    Saharan, Vikas A; Choudhury, Pratim K

    2011-09-01

    The poorly water soluble antidiabetic drug gliclazide was selected to study the effect of excipients on dissolution rate enhancement. Ordered mixtures of micronized gliclazide with lactose, mannitol, sorbitol, maltitol and sodium chloride were prepared by manual shaking of glass vials containing the drug and excipient(s). Different water soluble excipients, addition of surfactant and superdisintegrant, drug concentration and carrier particle size influenced the dissolution rate of the drug. Dissolution rate studies of the prepared ordered mixtures revealed an increase in drug dissolution with all water soluble excipients. The order of dissolution rate improvement for gliclazide was mannitol > lactose > maltitol > sorbitol > sodium chloride. Composite granules of the particle size range 355-710 μm were superior in increasing the drug dissolution rate from ordered mixtures. Reducing the carrier particle size decreased the dissolution rate of the drug as well as the increase in drug concentration. Kinetic modeling of drug release data fitted best the Hixson-Crowell model, which indicates that all the ordered mixture formulations followed the cube root law fairly well.

  6. Scavenging and recombination kinetics in a radiation spur: The successive ordered scavenging events

    NASA Astrophysics Data System (ADS)

    Al-Samra, Eyad H.; Green, Nicholas J. B.

    2018-03-01

    This study describes stochastic models to investigate the successive ordered scavenging events in a spur of four radicals, a model system based on a radiation spur. Three simulation models have been developed to obtain the probabilities of the ordered scavenging events: (i) a Monte Carlo random flight (RF) model, (ii) hybrid simulations in which the reaction rate coefficient is used to generate scavenging times for the radicals and (iii) the independent reaction times (IRT) method. The results of these simulations are found to be in agreement with one another. In addition, a detailed master equation treatment is also presented, and used to extract simulated rate coefficients of the ordered scavenging reactions from the RF simulations. These rate coefficients are transient, the rate coefficients obtained for subsequent reactions are effectively equal, and in reasonable agreement with the simple correction for competition effects that has recently been proposed.

  7. An Investigation of the Factor Structure and Convergent and Discriminant Validity of the Five-Factor Model Rating Form

    ERIC Educational Resources Information Center

    Samuel, Douglas B.; Mullins-Sweatt, Stephanie N.; Widiger, Thomas A.

    2013-01-01

    The Five-Factor Model Rating Form (FFMRF) is a one-page measure designed to provide an efficient assessment of the higher order domains of the Five Factor Model (FFM) as well as the more specific, lower order facets proposed by McCrae and Costa. Although previous research has suggested that the FFMRF's assessment of the lower order facets converge…

  8. Automated Decisional Model for Optimum Economic Order Quantity Determination Using Price Regressive Rates

    NASA Astrophysics Data System (ADS)

    Roşu, M. M.; Tarbă, C. I.; Neagu, C.

    2016-11-01

    The current models for inventory management are complementary, but together they offer a large pallet of elements for solving complex problems of companies when wanting to establish the optimum economic order quantity for unfinished products, row of materials, goods etc. The main objective of this paper is to elaborate an automated decisional model for the calculus of the economic order quantity taking into account the price regressive rates for the total order quantity. This model has two main objectives: first, to determine the periodicity when to be done the order n or the quantity order q; second, to determine the levels of stock: lighting control, security stock etc. In this way we can provide the answer to two fundamental questions: How much must be ordered? When to Order? In the current practice, the business relationships with its suppliers are based on regressive rates for price. This means that suppliers may grant discounts, from a certain level of quantities ordered. Thus, the unit price of the products is a variable which depends on the order size. So, the most important element for choosing the optimum for the economic order quantity is the total cost for ordering and this cost depends on the following elements: the medium price per units, the stock cost, the ordering cost etc.

  9. Low-traffic limit and first-passage times for a simple model of the continuous double auction

    NASA Astrophysics Data System (ADS)

    Scalas, Enrico; Rapallo, Fabio; Radivojević, Tijana

    2017-11-01

    We consider a simplified model of the continuous double auction where prices are integers varying from 1 to N with limit orders and market orders, but quantity per order limited to a single share. For this model, the order process is equivalent to two M / M / 1 queues. We study the behavior of the auction in the low-traffic limit where limit orders are immediately matched by market orders. In this limit, the distribution of prices can be computed exactly and gives a reasonable approximation of the price distribution when the ratio between the rate of order arrivals and the rate of order executions is below 1 / 2. This is further confirmed by the analysis of the first-passage time in 1 or N.

  10. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells.

    PubMed

    Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J

    2016-03-15

    This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Quantification of biodegradation for o-xylene and naphthalene using first order decay models, Michaelis-Menten kinetics and stable carbon isotopes.

    PubMed

    Blum, Philipp; Hunkeler, Daniel; Weede, Matthias; Beyer, Christof; Grathwohl, Peter; Morasch, Barbara

    2009-04-01

    At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis-Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d(-1) and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d(-1). Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of k(max)=0.1 microg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d(-1). The stable isotope-based biodegradation rate constant of 0.0027 d(-1) was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d(-1). With MM-kinetics a maximum degradation rate of k(max)=12 microg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor epsilon(field) of -1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.

  12. Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions

    PubMed Central

    Hopkins, Jesse B.; Badeau, Ryan; Warkentin, Matthew; Thorne, Robert E.

    2012-01-01

    Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10 to 104 K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates. PMID:22728046

  13. Terminal hospitalizations of nursing home residents: does facility increasing the rate of do not resuscitate orders reduce them?

    PubMed

    Teno, Joan M; Gozalo, Pedro; Mitchell, Susan L; Bynum, Julie P W; Dosa, David; Mor, Vincent

    2011-06-01

    Terminal hospitalizations are costly and often avoidable with appropriate advance care planning. This study examined the association between advance care planning, as measured by facility rate of do not resuscitate (DNR) orders in U.S. nursing homes (NHs) and changes in terminal hospitalization rates. Retrospective cohort study of the changing prevalence of DNR orders in U.S. NHs. Using a fixed effect multivariate model, we examined whether increasing facility rate of DNR orders correlates with reductions in terminal hospitalizations in the last week of life, controlling for changes in facility characteristics (staffing, use of NP/PA, case mix of nursing residents, admission volume, racial composition, payer mix). The average facility rate of terminal hospitalizations was 15.5%, fluctuating between 1999 (15.0%) and 2007 (14.8%). NHs starting with low rates of DNR orders that increased their rates had fewer terminal hospital admissions in 2007 (11.2%) than facilities with continuously low DNR usage. Even after applying a multivariate fixed effect model, the effect of changes in facility DNR order rate on terminal hospitalization was -0.056 (95% confidence interval: -0.061, -0.050), indicating that for every 10% increase in DNR orders there was 0.56% decrease in terminal hospitalizations. This rate can be compared with the increase of 0.70% in the terminal hospitalization rate when an NH became disproportionately dependent on Medicaid funding or the 0.40% decrease in terminal hospitalization rate associated with adding a nurse practitioner to the clinical staff complement. NHs that changed their culture of decision making by increasing their facility rate of DNR orders decreased their rate of terminal hospitalizations. Copyright © 2011 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  14. A Perishable Inventory Model with Return

    NASA Astrophysics Data System (ADS)

    Setiawan, S. W.; Lesmono, D.; Limansyah, T.

    2018-04-01

    In this paper, we develop a mathematical model for a perishable inventory with return by assuming deterministic demand and inventory dependent demand. By inventory dependent demand, it means that demand at certain time depends on the available inventory at that time with certain rate. In dealing with perishable items, we should consider deteriorating rate factor that corresponds to the decreasing quality of goods. There are also costs involved in this model such as purchasing, ordering, holding, shortage (backordering) and returning costs. These costs compose the total costs in the model that we want to minimize. In the model we seek for the optimal return time and order quantity. We assume that after some period of time, called return time, perishable items can be returned to the supplier at some returning costs. The supplier will then replace them in the next delivery. Some numerical experiments are given to illustrate our model and sensitivity analysis is performed as well. We found that as the deteriorating rate increases, returning time becomes shorter, the optimal order quantity and total cost increases. When considering the inventory-dependent demand factor, we found that as this factor increases, assuming a certain deteriorating rate, returning time becomes shorter, optimal order quantity becomes larger and the total cost increases.

  15. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon.

    PubMed

    Kumar, K Vasanth

    2006-10-11

    Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.

  16. Using gamma distribution to determine half-life of rotenone, applied in freshwater.

    PubMed

    Rohan, Maheswaran; Fairweather, Alastair; Grainger, Natasha

    2015-09-15

    Following the use of rotenone to eradicate invasive pest fish, a dynamic first-order kinetic model is usually used to determine the half-life and rate at which rotenone dissipated from the treated waterbody. In this study, we investigate the use of a stochastic gamma model for determining the half-life and rate at which rotenone dissipates from waterbodies. The first-order kinetic and gamma models produced similar values for the half-life (4.45 days and 5.33 days respectively) and days to complete dissipation (51.2 days and 52.48 days respectively). However, the gamma model fitted the data better and was more flexible than the first-order kinetic model, allowing us to use covariates and to predict a possible range for the half-life of rotenone. These benefits are particularly important when examining the influence that different environmental factors have on rotenone dissipation and when trying to predict the rate at which rotenone will dissipate during future operations. We therefore recommend that in future the gamma distribution model is used when calculating the half-life of rotenone in preference to the dynamic first-order kinetics model. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A comparison of zero-order, first-order, and monod biotransformation models

    USGS Publications Warehouse

    Bekins, B.A.; Warren, E.; Godsy, E.M.

    1998-01-01

    Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(s), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(s)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(s), it may better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of KS for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set.A formal error analysis is presented showing that the relative error in the first-order approximation is S/KS and in the zero-order approximation the error is KS/S where S is the substrate concentration and KS is the half-saturation constant. The problems that arise when the first-order approximation is used outside the range for which it is valid are examined. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than KS, it may be better to model degradation using a zero-order rate expression.

  18. Effect of Acylglycerol Composition and Fatty Acyl Chain Length on Lipid Digestion in pH-Stat Digestion Model and Simulated In Vitro Digestion Model.

    PubMed

    Qi, Jin F; Jia, Cai H; Shin, Jung A; Woo, Jeong M; Wang, Xiang Y; Park, Jong T; Hong, Soon T; Lee, K-T

    2016-02-01

    In this study, a pH-stat digestion model and a simulated in vitro digestion model were employed to evaluate the digestion degree of lipids depending on different acylglycerols and acyl chain length (that is, diacylglycerol [DAG] compared with soybean oil representing long-chain triacylglycerol compared with medium-chain triacylglycerol [MCT]). In the pH-stat digestion model, differences were observed among the digestion degrees of 3 oils using digestion rate (k), digestion half-time (t1/2 ), and digestion extent (Φmax). The results showed the digestion rate order was MCT > soybean oil > DAG. Accordingly, the order of digestion half-times was MCT < soybean oil < DAG. In simulated in vitro digestion model, digestion rates (k') and digestion half-times (t'1/2 ) were also obtained and the results showed a digestion rate order of MCT (k' = 0.068 min(-1) ) > soybean oil (k' = 0.037 min(-1) ) > DAG (k' = 0.024 min(-1) ). Consequently, the order of digestion half-times was MCT (t'1/2 = 10.20 min) < soybean oil (t'1/2 = 18.74 min) < DAG (t'1/2 = 29.08 min). The parameters obtained using the 2 models showed MCT was digested faster than soybean oil, and that soybean oil was digested faster than DAG. © 2015 Institute of Food Technologists®

  19. How Well Can We Detect Lineage-Specific Diversification-Rate Shifts? A Simulation Study of Sequential AIC Methods.

    PubMed

    May, Michael R; Moore, Brian R

    2016-11-01

    Evolutionary biologists have long been fascinated by the extreme differences in species numbers across branches of the Tree of Life. This has motivated the development of statistical methods for detecting shifts in the rate of lineage diversification across the branches of phylogenic trees. One of the most frequently used methods, MEDUSA, explores a set of diversification-rate models, where each model assigns branches of the phylogeny to a set of diversification-rate categories. Each model is first fit to the data, and the Akaike information criterion (AIC) is then used to identify the optimal diversification model. Surprisingly, the statistical behavior of this popular method is uncharacterized, which is a concern in light of: (1) the poor performance of the AIC as a means of choosing among models in other phylogenetic contexts; (2) the ad hoc algorithm used to visit diversification models, and; (3) errors that we reveal in the likelihood function used to fit diversification models to the phylogenetic data. Here, we perform an extensive simulation study demonstrating that MEDUSA (1) has a high false-discovery rate (on average, spurious diversification-rate shifts are identified [Formula: see text] of the time), and (2) provides biased estimates of diversification-rate parameters. Understanding the statistical behavior of MEDUSA is critical both to empirical researchers-in order to clarify whether these methods can make reliable inferences from empirical datasets-and to theoretical biologists-in order to clarify the specific problems that need to be solved in order to develop more reliable approaches for detecting shifts in the rate of lineage diversification. [Akaike information criterion; extinction; lineage-specific diversification rates; phylogenetic model selection; speciation.]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  20. How Well Can We Detect Lineage-Specific Diversification-Rate Shifts? A Simulation Study of Sequential AIC Methods

    PubMed Central

    May, Michael R.; Moore, Brian R.

    2016-01-01

    Evolutionary biologists have long been fascinated by the extreme differences in species numbers across branches of the Tree of Life. This has motivated the development of statistical methods for detecting shifts in the rate of lineage diversification across the branches of phylogenic trees. One of the most frequently used methods, MEDUSA, explores a set of diversification-rate models, where each model assigns branches of the phylogeny to a set of diversification-rate categories. Each model is first fit to the data, and the Akaike information criterion (AIC) is then used to identify the optimal diversification model. Surprisingly, the statistical behavior of this popular method is uncharacterized, which is a concern in light of: (1) the poor performance of the AIC as a means of choosing among models in other phylogenetic contexts; (2) the ad hoc algorithm used to visit diversification models, and; (3) errors that we reveal in the likelihood function used to fit diversification models to the phylogenetic data. Here, we perform an extensive simulation study demonstrating that MEDUSA (1) has a high false-discovery rate (on average, spurious diversification-rate shifts are identified ≈30% of the time), and (2) provides biased estimates of diversification-rate parameters. Understanding the statistical behavior of MEDUSA is critical both to empirical researchers—in order to clarify whether these methods can make reliable inferences from empirical datasets—and to theoretical biologists—in order to clarify the specific problems that need to be solved in order to develop more reliable approaches for detecting shifts in the rate of lineage diversification. [Akaike information criterion; extinction; lineage-specific diversification rates; phylogenetic model selection; speciation.] PMID:27037081

  1. The structure of evaporating and combusting sprays: Measurements and predictions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.

    1982-01-01

    An apparatus was constructed to provide measurements in open sprays with no zones of recirculation, in order to provide well-defined conditions for use in evaluating spray models. Measurements were completed in a gas jet, in order to test experimental methods, and are currently in progress for nonevaporating sprays. A locally homogeneous flow (LHF) model where interphase transport rates are assumed to be infinitely fast; a separated flow (SF) model which allows for finite interphase transport rates but neglects effects of turbulent fluctuations on drop motion; and a stochastic SF model which considers effects of turbulent fluctuations on drop motion were evaluated using existing data on particle-laden jets. The LHF model generally overestimates rates of particle dispersion while the SF model underestimates dispersion rates. The stochastic SF flow yield satisfactory predictions except at high particle mass loadings where effects of turbulence modulation may have caused the model to overestimate turbulence levels.

  2. Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge.

    PubMed

    Ramirez, Ivan; Mottet, Alexis; Carrère, Hélène; Déléris, Stéphane; Vedrenne, Fabien; Steyer, Jean-Philippe

    2009-08-01

    Anaerobic digestion disintegration and hydrolysis have been traditionally modeled according to first-order kinetics assuming that their rates do not depend on disintegration/hydrolytic biomass concentrations. However, the typical sigmoid-shape increase in time of the disintegration/hydrolysis rates cannot be described with first-order models. For complex substrates, first-order kinetics should thus be modified to account for slowly degradable material. In this study, a slightly modified IWA ADM1 model is presented to simulate thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Contois model is first included for disintegration and hydrolysis steps instead of first-order kinetics and Hill function is then used to model ammonia inhibition of aceticlastic methanogens instead of a non-competitive function. One batch experimental data set of anaerobic degradation of a raw waste activated sludge is used to calibrate the proposed model and three additional data sets from similar sludge thermally pretreated at three different temperatures are used to validate the parameters values.

  3. Assessing doses to terrestrial wildlife at a radioactive waste disposal site: inter-comparison of modelling approaches.

    PubMed

    Johansen, M P; Barnett, C L; Beresford, N A; Brown, J E; Černe, M; Howard, B J; Kamboj, S; Keum, D-K; Smodiš, B; Twining, J R; Vandenhove, H; Vives i Batlle, J; Wood, M D; Yu, C

    2012-06-15

    Radiological doses to terrestrial wildlife were examined in this model inter-comparison study that emphasised factors causing variability in dose estimation. The study participants used varying modelling approaches and information sources to estimate dose rates and tissue concentrations for a range of biota types exposed to soil contamination at a shallow radionuclide waste burial site in Australia. Results indicated that the dominant factor causing variation in dose rate estimates (up to three orders of magnitude on mean total dose rates) was the soil-to-organism transfer of radionuclides that included variation in transfer parameter values as well as transfer calculation methods. Additional variation was associated with other modelling factors including: how participants conceptualised and modelled the exposure configurations (two orders of magnitude); which progeny to include with the parent radionuclide (typically less than one order of magnitude); and dose calculation parameters, including radiation weighting factors and dose conversion coefficients (typically less than one order of magnitude). Probabilistic approaches to model parameterisation were used to encompass and describe variable model parameters and outcomes. The study confirms the need for continued evaluation of the underlying mechanisms governing soil-to-organism transfer of radionuclides to improve estimation of dose rates to terrestrial wildlife. The exposure pathways and configurations available in most current codes are limited when considering instances where organisms access subsurface contamination through rooting, burrowing, or using different localised waste areas as part of their habitual routines. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  4. Malaria transmission rates estimated from serological data.

    PubMed Central

    Burattini, M. N.; Massad, E.; Coutinho, F. A.

    1993-01-01

    A mathematical model was used to estimate malaria transmission rates based on serological data. The model is minimally stochastic and assumes an age-dependent force of infection for malaria. The transmission rates estimated were applied to a simple compartmental model in order to mimic the malaria transmission. The model has shown a good retrieving capacity for serological and parasite prevalence data. PMID:8270011

  5. Implementation of Improved Transverse Shear Calculations and Higher Order Laminate Theory Into Strain Rate Dependent Analyses of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.

  6. Improvements to Fidelity, Generation and Implementation of Physics-Based Lithium-Ion Reduced-Order Models

    NASA Astrophysics Data System (ADS)

    Rodriguez Marco, Albert

    Battery management systems (BMS) require computationally simple but highly accurate models of the battery cells they are monitoring and controlling. Historically, empirical equivalent-circuit models have been used, but increasingly researchers are focusing their attention on physics-based models due to their greater predictive capabilities. These models are of high intrinsic computational complexity and so must undergo some kind of order-reduction process to make their use by a BMS feasible: we favor methods based on a transfer-function approach of battery cell dynamics. In prior works, transfer functions have been found from full-order PDE models via two simplifying assumptions: (1) a linearization assumption--which is a fundamental necessity in order to make transfer functions--and (2) an assumption made out of expedience that decouples the electrolyte-potential and electrolyte-concentration PDEs in order to render an approach to solve for the transfer functions from the PDEs. This dissertation improves the fidelity of physics-based models by eliminating the need for the second assumption and, by linearizing nonlinear dynamics around different constant currents. Electrochemical transfer functions are infinite-order and cannot be expressed as a ratio of polynomials in the Laplace variable s. Thus, for practical use, these systems need to be approximated using reduced-order models that capture the most significant dynamics. This dissertation improves the generation of physics-based reduced-order models by introducing different realization algorithms, which produce a low-order model from the infinite-order electrochemical transfer functions. Physics-based reduced-order models are linear and describe cell dynamics if operated near the setpoint at which they have been generated. Hence, multiple physics-based reduced-order models need to be generated at different setpoints (i.e., state-of-charge, temperature and C-rate) in order to extend the cell operating range. This dissertation improves the implementation of physics-based reduced-order models by introducing different blending approaches that combine the pre-computed models generated (offline) at different setpoints in order to produce good electrochemical estimates (online) along the cell state-of-charge, temperature and C-rate range.

  7. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate.

    PubMed

    Mahmoodlu, Mojtaba G; Hassanizadeh, S Majid; Hartog, Niels

    2014-07-01

    The use of permanganate solutions for in-situ chemical oxidation (ISCO) is a well-established groundwater remediation technology, particularly for targeting chlorinated ethenes. The kinetics of oxidation reactions is an important ISCO remediation design aspect that affects the efficiency and oxidant persistence. The overall rate of the ISCO reaction between oxidant and contaminant is typically described using a second-order kinetic model while the second-order rate constant is determined experimentally by means of a pseudo first order approach. However, earlier studies of chlorinated hydrocarbons have yielded a wide range of values for the second-order rate constants. Also, there is limited insight in the kinetics of permanganate reactions with fuel-derived groundwater contaminants such as toluene and ethanol. In this study, batch experiments were carried out to investigate and compare the oxidation kinetics of aqueous trichloroethylene (TCE), ethanol, and toluene in an aqueous potassium permanganate solution. The overall second-order rate constants were determined directly by fitting a second-order model to the data, instead of typically using the pseudo-first-order approach. The second-order reaction rate constants (M(-1) s(-1)) for TCE, toluene, and ethanol were 8.0×10(-1), 2.5×10(-4), and 6.5×10(-4), respectively. Results showed that the inappropriate use of the pseudo-first-order approach in several previous studies produced biased estimates of the second-order rate constants. In our study, this error was expressed as a function of the extent (P/N) in which the reactant concentrations deviated from the stoichiometric ratio of each oxidation reaction. The error associated with the inappropriate use of the pseudo-first-order approach is negatively correlated with the P/N ratio and reached up to 25% of the estimated second-order rate constant in some previous studies of TCE oxidation. Based on our results, a similar relation is valid for the other volatile organic compounds studied. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Inferring Markov chains: Bayesian estimation, model comparison, entropy rate, and out-of-class modeling.

    PubMed

    Strelioff, Christopher C; Crutchfield, James P; Hübler, Alfred W

    2007-07-01

    Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or space. We show how to infer kth order Markov chains, for arbitrary k , from finite data by applying Bayesian methods to both parameter estimation and model-order selection. Extending existing results for multinomial models of discrete data, we connect inference to statistical mechanics through information-theoretic (type theory) techniques. We establish a direct relationship between Bayesian evidence and the partition function which allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes.

  9. Effect of soil and a nonionic surfactant on BTE-oX and MTBE biodegradation kinetics.

    PubMed

    Acuna-Askar, K; Gracia-Lozano, M V; Villarreal-Chiu, J F; Marmolejo, J G; Garza-Gonzalez, M T; Chavez-Gomez, B

    2005-01-01

    The biodegradation kinetics of BTE-oX and MTBE, mixed all together, in the presence of 905 mg/L VSS of BTEX-acclimated biomass was evaluated. Effects of soil and Tergitol NP-10 in aqueous samples on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 36 hours, every 6 hours. MTBE biodegradation followed a first-order one-phase kinetic model in all samples, whereas benzene, toluene and ethylbenzene biodegradation followed a first-order two-phase kinetic model in all samples. O-xylene biodegradation followed a first-order two-phase kinetic model in the presence of biomass only. Interestingly, o-xylene biodegradation was able to switch to a first-order one-phase kinetic model when either soil or soil and Tergitol NP-10 were added. The presence of soil in aqueous samples retarded benzene, toluene and ethylbenzene removal rates. O-xylene and MTBE removal rates were enhanced by soil. The addition of Tergitol NP-10 to aqueous samples containing soil had a positive effect on substrate removal rate in all samples. Substrate percent removals ranged 77-99.8% for benzene, toluene and ethylbenzene. O-xylene and MTBE percent removals ranged 50.1-65.3% and 9.9-43.0%, respectively.

  10. Quantitative model of price diffusion and market friction based on trading as a mechanistic random process.

    PubMed

    Daniels, Marcus G; Farmer, J Doyne; Gillemot, László; Iori, Giulia; Smith, Eric

    2003-03-14

    We model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure of financial risk) and the spread and price impact functions (which are the main determinants of transaction cost). Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.

  11. Quantitative Model of Price Diffusion and Market Friction Based on Trading as a Mechanistic Random Process

    NASA Astrophysics Data System (ADS)

    Daniels, Marcus G.; Farmer, J. Doyne; Gillemot, László; Iori, Giulia; Smith, Eric

    2003-03-01

    We model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure of financial risk) and the spread and price impact functions (which are the main determinants of transaction cost). Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.

  12. Generalized quantum kinetic expansion: Higher-order corrections to multichromophoric Förster theory

    NASA Astrophysics Data System (ADS)

    Wu, Jianlan; Gong, Zhihao; Tang, Zhoufei

    2015-08-01

    For a general two-cluster energy transfer network, a new methodology of the generalized quantum kinetic expansion (GQKE) method is developed, which predicts an exact time-convolution equation for the cluster population evolution under the initial condition of the local cluster equilibrium state. The cluster-to-cluster rate kernel is expanded over the inter-cluster couplings. The lowest second-order GQKE rate recovers the multichromophoric Förster theory (MCFT) rate. The higher-order corrections to the MCFT rate are systematically included using the continued fraction resummation form, resulting in the resummed GQKE method. The reliability of the GQKE methodology is verified in two model systems, revealing the relevance of higher-order corrections.

  13. The uncertainty of biodegradation rate constants of emerging organic compounds in soil and groundwater - A compilation of literature values for 82 substances.

    PubMed

    Greskowiak, Janek; Hamann, Enrico; Burke, Victoria; Massmann, Gudrun

    2017-12-01

    The present study reports on biodegradation rate constants of emerging organic compounds (EOCs) in soil and groundwater available in the literature. The major aim of this compilation was to provide an assessment of the uncertainty of hydrological models with respect to the fate of EOCs. The literature search identified a total number of 82 EOCs for which 1st-order rate constants could be derived. It was found that for the majority of compounds degradation rate constants vary over more than three orders of magnitude. Correlation to factors that are well known to affect the degradation rate, such as temperature or redox condition was weak. No correlation at all was found with results from available quantitative structure-activity relationship models. This suggests that many unknown site specific or experimentally specific factors influence the degradation behavior of EOCs in the environment. Thus, local and catchment scale predictive models to estimate EOC concentration at receptors, e.g., receiving waters or drinking water wells, need to consider the large uncertainty in 1st-order rate constants. As a consequence, applying rate constants that were derived from one experiment or field site investigation to other experiments or field sites should be done with extreme caution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mathematics in Marine Botany: Examples of the Modelling Process. Part II: Continuous Models.

    ERIC Educational Resources Information Center

    Nyman, Melvin A.; Brown, Murray T.

    1996-01-01

    Describes some continuous models for growth of the seaweed Macrocystis pyrifera. Uses observed growth rates over several months to derive first-order differential equations as models for growth rates of individual fronds. The nature of the solutions is analyzed and comparison between these theoretical results and documented characteristics of…

  15. Mergers in ΛCDM: Uncertainties in Theoretical Predictions and Interpretations of the Merger Rate

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Croton, Darren; Bundy, Kevin; Khochfar, Sadegh; van den Bosch, Frank; Somerville, Rachel S.; Wetzel, Andrew; Keres, Dusan; Hernquist, Lars; Stewart, Kyle; Younger, Joshua D.; Genel, Shy; Ma, Chung-Pei

    2010-12-01

    Different theoretical methodologies lead to order-of-magnitude variations in predicted galaxy-galaxy merger rates. We examine how this arises and quantify the dominant uncertainties. Modeling of dark matter and galaxy inspiral/merger times contribute factor of ~2 uncertainties. Different estimates of the halo-halo merger rate, the subhalo "destruction" rate, and the halo merger rate with some dynamical friction time delay for galaxy-galaxy mergers, agree to within this factor of ~2, provided proper care is taken to define mergers consistently. There are some caveats: if halo/subhalo masses are not appropriately defined the major-merger rate can be dramatically suppressed, and in models with "orphan" galaxies and under-resolved subhalos the merger timescale can be severely over-estimated. The dominant differences in galaxy-galaxy merger rates between models owe to the treatment of the baryonic physics. Cosmological hydrodynamic simulations without strong feedback and some older semi-analytic models (SAMs), with known discrepancies in mass functions, can be biased by large factors (~5) in predicted merger rates. However, provided that models yield a reasonable match to the total galaxy mass function, the differences in properties of central galaxies are sufficiently small to alone contribute small (factor of ~1.5) additional systematics to merger rate predictions. But variations in the baryonic physics of satellite galaxies in models can also have a dramatic effect on merger rates. The well-known problem of satellite "over-quenching" in most current SAMs—whereby SAM satellite populations are too efficiently stripped of their gas—could lead to order-of-magnitude under-estimates of merger rates for low-mass, gas-rich galaxies. Models in which the masses of satellites are fixed by observations (or SAMs adjusted to resolve this "over-quenching") tend to predict higher merger rates, but with factor of ~2 uncertainties stemming from the uncertainty in those observations. The choice of mass used to define "major" and "minor" mergers also matters: stellar-stellar major mergers can be more or less abundant than halo-halo major mergers by an order of magnitude. At low masses, most true major mergers (mass ratio defined in terms of their baryonic or dynamical mass) will appear to be minor mergers in their stellar mass ratio—observations and models using just stellar criteria could underestimate major-merger rates by factors of ~3-5. We discuss the uncertainties in relating any merger rate to spheroid formation (in observations or theory): in order to achieve better than factor of ~3 accuracy, it is necessary to account for the distribution of merger orbital parameters, gas fractions, and the full efficiency of merger-induced effects as a function of mass ratio.

  16. Phase transition in conservative diffusive contact processes

    NASA Astrophysics Data System (ADS)

    Fiore, Carlos E.; de Oliveira, Mário J.

    2004-10-01

    We determine the phase diagrams of conservative diffusive contact processes by means of numerical simulations. These models are versions of the ordinary diffusive single-creation, pair-creation, and triplet-creation contact processes in which the particle number is conserved. The transition between the frozen and active states was determined by studying the system in the subcritical regime, and the nature of the transition, whether continuous or first order, was determined by looking at the fractal dimension of the critical cluster. For the single-creation model the transition remains continuous for any diffusion rate. For pair- and triplet-creation models, however, the transition becomes first order for high enough diffusion rate. Our results indicate that in the limit of infinite diffusion rate the jump in density equals 2/3 for the pair-creation model and 5/6 for the triplet-creation model.

  17. [Effect of SO2 volume fraction in flue gas on the adsorption behaviors adsorbed by ZL50 activated carbon and kinetic analysis].

    PubMed

    Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu

    2010-05-01

    The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.

  18. Modeling of batch sorber system: kinetic, mechanistic, and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Mishra, Vishal

    2017-10-01

    The present investigation has dealt with the biosorption of copper and zinc ions on the surface of egg-shell particles in the liquid phase. Various rate models were evaluated to elucidate the kinetics of copper and zinc biosorptions, and the results indicated that the pseudo-second-order model was more appropriate than the pseudo-first-order model. The curve of the initial sorption rate versus the initial concentration of copper and zinc ions also complemented the results of the pseudo-second-order model. Models used for the mechanistic modeling were the intra-particle model of pore diffusion and Bangham's model of film diffusion. The results of the mechanistic modeling together with the values of pore and film diffusivities indicated that the preferential mode of the biosorption of copper and zinc ions on the surface of egg-shell particles in the liquid phase was film diffusion. The results of the intra-particle model showed that the biosorption of the copper and zinc ions was not dominated by the pore diffusion, which was due to macro-pores with open-void spaces present on the surface of egg-shell particles. The thermodynamic modeling reproduced the fact that the sorption of copper and zinc was spontaneous, exothermic with the increased order of the randomness at the solid-liquid interface.

  19. Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste

    PubMed Central

    Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming

    2017-01-01

    This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste. PMID:28546964

  20. Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste.

    PubMed

    Feng, Lei; Gao, Yuan; Kou, Wei; Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming

    2017-01-01

    This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste.

  1. Biodegradation of organic chemicals in soil/water microcosms system: Model development

    USGS Publications Warehouse

    Liu, L.; Tindall, J.A.; Friedel, M.J.; Zhang, W.

    2007-01-01

    The chemical interactions of hydrophobic organic contaminants with soils and sediments may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. In order to illustrate the recalcitrance of chemical to degradation on sites, a sorption mechanism of intraparticle sequestration was postulated to operate on chemical remediation sites. Pseudo-first order sequestration kinetics is used in the study with the hypothesis that sequestration is an irreversibly surface-mediated process. A mathematical model based on mass balance equations was developed to describe the fate of chemical degradation in soil/water microcosm systems. In the model, diffusion was represented by Fick's second law, local sorption-desorption by a linear isotherm, irreversible sequestration by a pseudo-first order kinetics and biodegradation by Monod kinetics. Solutions were obtained to provide estimates of chemical concentrations. The mathematical model was applied to a benzene biodegradation batch test and simulated model responses correlated well compared to measurements of biodegradation of benzene in the batch soil/water microcosm system. A sensitivity analysis was performed to assess the effects of several parameters on model behavior. Overall chemical removal rate decreased and sequestration increased quickly with an increase in the sorption partition coefficient. When soil particle radius, a, was greater than 1 mm, an increase in radius produced a significant decrease in overall chemical removal rate as well as an increase in sequestration. However, when soil particle radius was less than 0.1 mm, an increase in radius resulted in small changes in the removal rate and sequestration. As pseudo-first order sequestration rate increased, both chemical removal rate and sequestration increased slightly. Model simulation results showed that desorption resistance played an important role in the bioavailability of organic chemicals in porous media. Complete biostabilization of chemicals on remediation sites can be achieved when the concentration of the reversibly sorbed chemical reduces to zero (i.e., undetectable), with a certain amount of irreversibly sequestrated chemical left inside the soil particle solid phase. ?? 2006 Springer Science + Business Media B.V.

  2. Kinetics of Methylmercury Production Revisited

    DOE PAGES

    Olsen, Todd A.; Muller, Katherine A.; Painter, Scott L.; ...

    2018-01-27

    Laboratory measurements of the biologically mediated methylation of mercury (Hg) to the neurotoxin monomethylmercury (MMHg) often exhibit kinetics that are inconsistent with first-order kinetic models. Using time-resolved measurements of filter passing Hg and MMHg during methylation/demethylation assays, a multisite kinetic sorption model, and reanalyses of previous assays, we show in this paper that competing kinetic sorption reactions can lead to time-varying availability and apparent non-first-order kinetics in Hg methylation and MMHg demethylation. The new model employing a multisite kinetic sorption model for Hg and MMHg can describe the range of behaviors for time-resolved methylation/demethylation data reported in the literature includingmore » those that exhibit non-first-order kinetics. Additionally, we show that neglecting competing sorption processes can confound analyses of methylation/demethylation assays, resulting in rate constant estimates that are systematically biased low. Finally, simulations of MMHg production and transport in a hypothetical periphyton biofilm bed illustrate the implications of our new model and demonstrate that methylmercury production may be significantly different than projected by single-rate first-order models.« less

  3. MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    A mass transfer-based model is developed for predicting chlorine decay in drinking water distribution networks. he model considers first order reactions of chlorine to occur both in the bulk flow and at the pipe wall. he overall rate of the wall reaction is a function of the rate...

  4. The friable sponge model of a cometary nucleus

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Gombosi, T. I.; Korosmezey, A.; Kecskemety, K.; Szego, K.; Cravens, T. E.; Nagy, A. F.

    1984-01-01

    The mantle/core model of cometary nuclei, first suggested by Whipple and subsequently developed by Mendis and Brin, is modified and extended. New terms are added to the heat conduction equation for the mantle, which is solved in order to obtain the temperature distribution in the mantle and the gas production rate as a function of mantle thickness and heliocentric distance. These results are then combined with some specific assumptions about the mantle structure (the friable sponge model) in order to make predictions for the variation of gas production rate and mantle thickness as functions of heliocentric distance for different comets. A solution of the time-dependent heat conduction equation is presented in order to check some of the assumptions.

  5. American option pricing in Gauss-Markov interest rate models

    NASA Astrophysics Data System (ADS)

    Galluccio, Stefano

    1999-07-01

    In the context of Gaussian non-homogeneous interest-rate models, we study the problem of American bond option pricing. In particular, we show how to efficiently compute the exercise boundary in these models in order to decompose the price as a sum of a European option and an American premium. Generalizations to coupon-bearing bonds and jump-diffusion processes for the interest rates are also discussed.

  6. Major effect of inherited rheology weakening in the crust and mantle on continental intraplate strain and seismicity rates

    NASA Astrophysics Data System (ADS)

    Gueydan, Frédéric; Mazzotti, Stephane

    2017-04-01

    Stable Continental Regions (SCR, i.e., intraplate) are commonly viewed as non-deforming and very high resistance lithosphere domains, except in localized regions of higher strain and seismicity rates that often related to fossilized tectonic zones acting as weaker domains (e.g., Rhine Graben, New Madrid). Two main categories of models have been proposed to explain strain concentration in SCR: Local stress concentration (fault intersection, erosion pulse, …) and local lithosphere weakness (high geotherm, mantle anisotropy, …). In order to test the respective role of these various parameters of the stress - rheology - strain relationship, we propose a simple 1D model to quantify first-order continental strain rate variations using laboratory and field-based rheology laws for the crust and mantle. In particular, we include new strain-weakening rheologies in order to simulate tectonic heritage. Within the framework of near-failure equilibrium between tectonic forces and strain rates, we show that inherited rheology weakening plays a fundamental role in allowing for and explaining strain and seismicity concentration in intraplate weak zones. A comparison with empirical strain rate estimations in SCR and intraplate weak zones shows that inherited weakening rheologies can increase local strain rates by as much as three orders of magnitude, about one to two orders higher than that permitted by other processes such as stress concentration, thermal anomaly, etc.

  7. Temperature gradient interaction chromatography of polymers: A molecular statistical model.

    PubMed

    Radke, Wolfgang; Lee, Sekyung; Chang, Taihyun

    2010-11-01

    A new model describing the retention in temperature gradient interaction chromatography of polymers is developed. The model predicts that polymers might elute in temperature gradient interaction chromatography in either an increasing or decreasing order or even nearly independent of molar mass, depending on the rate of the temperature increase relative to the flow rate. This is in contrast to solvent gradient elution, where polymers elute either in order of increasing molar mass or molar mass independent. The predictions of the newly developed model were verified with the literature data as well as new experimental data. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sorption kinetics of diuron on volcanic ash derived soils.

    PubMed

    Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente

    2013-10-15

    Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. BTE-OX biodegradation kinetics with MTBE through bioaugmentation.

    PubMed

    Acuna-Askar, K; Villarreal-Chiu, J F; Gracia-Lozano, M V; Garza-Gonzalez, M T; Chavez-Gomez, B; Rodriguez-Sanchez, I P; Barrera-Saldana, H A

    2004-01-01

    The biodegradation kinetics of BTE-oX and MTBE, mixed all together, in the presence of bioaugmented bacterial populations as high as 880 mg/L VSS was evaluated. The effect of soil in aqueous samples and the effect of Tergitol NP-10 on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 36 hours, every 6 hours. Benzene and o-xylene biodegradation followed a first-order one-phase kinetic model, whereas toluene and ethylbenzene biodegradation was well described by a first-order two-phase kinetic model in all samples. MTBE followed a zero-order removal kinetic model in all samples. The presence of soil in aqueous samples retarded BTE-oX removal rates, with the highest negative effect on o-xylene. The presence of soil enhanced MTBE removal rate. The addition of Tergitol NP-10 to aqueous samples containing soil had a positive effect on substrate removal rate in all samples. Substrate percent removals ranged from 95.4-99.7% for benzene, toluene and ethylbenzene. O-xylene and MTBE percent removals ranged from 55.9-90.1% and 15.6-30.1%, respectively.

  10. Investigating Compaction by Intergranular Pressure Solution Using the Discrete Element Method

    NASA Astrophysics Data System (ADS)

    van den Ende, M. P. A.; Marketos, G.; Niemeijer, A. R.; Spiers, C. J.

    2018-01-01

    Intergranular pressure solution creep is an important deformation mechanism in the Earth's crust. The phenomenon has been frequently studied and several analytical models have been proposed that describe its constitutive behavior. These models require assumptions regarding the geometry of the aggregate and the grain size distribution in order to solve for the contact stresses and often neglect shear tractions. Furthermore, analytical models tend to overestimate experimental compaction rates at low porosities, an observation for which the underlying mechanisms remain to be elucidated. Here we present a conceptually simple, 3-D discrete element method (DEM) approach for simulating intergranular pressure solution creep that explicitly models individual grains, relaxing many of the assumptions that are required by analytical models. The DEM model is validated against experiments by direct comparison of macroscopic sample compaction rates. Furthermore, the sensitivity of the overall DEM compaction rate to the grain size and applied stress is tested. The effects of the interparticle friction and of a distributed grain size on macroscopic strain rates are subsequently investigated. Overall, we find that the DEM model is capable of reproducing realistic compaction behavior, and that the strain rates produced by the model are in good agreement with uniaxial compaction experiments. Characteristic features, such as the dependence of the strain rate on grain size and applied stress, as predicted by analytical models, are also observed in the simulations. DEM results show that interparticle friction and a distributed grain size affect the compaction rates by less than half an order of magnitude.

  11. Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models.

    PubMed

    Pekař, Miloslav

    2018-01-01

    Recently, a method based on non-equilibrium continuum thermodynamics which derives thermodynamically consistent reaction rate models together with thermodynamic constraints on their parameters was analyzed using a triangular reaction scheme. The scheme was kinetically of the first order. Here, the analysis is further developed for several first and second order schemes to gain a deeper insight into the thermodynamic consistency of rate equations and relationships between chemical thermodynamic and kinetics. It is shown that the thermodynamic constraints on the so-called proper rate coefficient are usually simple sign restrictions consistent with the supposed reaction directions. Constraints on the so-called coupling rate coefficients are more complex and weaker. This means more freedom in kinetic coupling between reaction steps in a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction in a reacting system. When compared with traditional mass-action rate equations, the method allows a reduction in the number of traditional rate constants to be evaluated from data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is due to identifying relationships between mass-action rate constants (relationships which also include thermodynamic equilibrium constants) which have so far been unknown.

  12. Rate dependent constitutive behavior of dielectric elastomers and applications in legged robotics

    NASA Astrophysics Data System (ADS)

    Oates, William; Miles, Paul; Gao, Wei; Clark, Jonathan; Mashayekhi, Somayeh; Hussaini, M. Yousuff

    2017-04-01

    Dielectric elastomers exhibit novel electromechanical coupling that has been exploited in many adaptive structure applications. Whereas the quasi-static, one-dimensional constitutive behavior can often be accurately quantified by hyperelastic functions and linear dielectric relations, accurate predictions of electromechanical, rate-dependent deformation during multiaxial loading is non-trivial. In this paper, an overview of multiaxial electromechanical membrane finite element modeling is formulated. Viscoelastic constitutive relations are extended to include fractional order. It is shown that fractional order viscoelastic constitutive relations are superior to conventional integer order models. This knowledge is critical for transition to control of legged robotic structures that exhibit advanced mobility.

  13. Preliminary study: kinetics of oil extraction from sandalwood by microwave-assisted hydrodistillation

    NASA Astrophysics Data System (ADS)

    Kusuma, H. S.; Mahfud, M.

    2016-04-01

    Sandalwood and its oil, is one of the oldest known perfume materials and has a long history (more than 4000 years) of use as mentioned in Sanskrit manuscripts. Sandalwood oil plays an important role as an export commodity in many countries and its widely used in the food, perfumery and pharmaceuticals industries. The aim of this study is to know and verify the kinetics and mechanism of microwave-assisted hydrodistillation of sandalwood based on a second-order model. In this study, microwave-assisted hydrodistillation is used to extract essential oils from sandalwood. The extraction was carried out in ten extraction cycles of 15 min to 2.5 hours. The initial extraction rate, the extraction capacity and the second-order extraction rate constant were calculated using the model. Kinetics of oil extraction from sandalwood by microwave-assisted hydrodistillation proved that the extraction process was based on the second-order extraction model as the experimentally done in three different steps. The initial extraction rate, h, was 0.0232 g L-1 min-1, the extraction capacity, C S, was 0.6015 g L-1, the second-order extraction rate constant, k, was 0.0642 L g-1 min-1 and coefficient of determination, R 2, was 0.9597.

  14. Teacher Adoption of Moodle LMS: A K-12 Diffusion Study

    ERIC Educational Resources Information Center

    Gagnon, Daniel A.

    2012-01-01

    This paper describes the diffusion of Moodle within Cherokee County Schools. The diffusion is evaluated using the Bass Model and the RIPPLES model in order to evaluate relative success or failure. The Bass Model of Diffusion was calculated utilizing forecasting by analogy in order to analyze the adoption rates in a county high school. The adoption…

  15. Modeling of pickup ion distributions in the Halley cometosheath: Empirical limits on rates of ionization, diffusion, loss and creation of fast neutral atoms

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Neugebauer, M.; Goldstein, B. E.

    1994-01-01

    The shape of the velocity distribution of water group ions observed by the Giotto ion mass spectrometer on its approach to comet Halley is modeled to derive empirical values for the rates of ionization, energy diffusion, and loss in the midcometosheath. The model includes the effect of rapid pitch angle scattering into a bispherical shell distribution as well as the effect of the magnetization of the plasma on the charge exchange loss rate. It is found that the average rate of ionization of cometary neutrals in this region of the cometosheath appears to be of the order of a factor 3 faster than the `standard' rates approx. 1 x 10(exp -6)/s that are generally assumed to model the observations in most regions of the comet environment. For the region of the coma studied in the present work (approx. 1 - 2 x 10(exp 5) km from the nucleus), the inferred energy diffusion coefficient is D(sub 0) approx. equals 0.0002 to 0.0005 sq km/cu s, which is generally lower than values used in other models. The empirically obtained loss rate appears to be about an order of magnitude greater than can be explained by charge exchange with the `standard' cross section of approx. 2 x 10(exp -15)sq cm. However such cross sections are not well known and for water group ion/water group neutral interactions, rates as high as 8 x 10(exp -15) sq cm have previously been suggested in the literature. Assuming the entire loss rate is due to charge exchange yields a rate of creation of fast neutral atoms of the order of approx. 10(exp -4)/s or higher, depending on the level of velocity diffusion. The fast neutrals may, in turn, be partly responsible for the higher-than-expected ionization rate.

  16. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors

    NASA Astrophysics Data System (ADS)

    Allen, John M.; Elbasiouny, Sherif M.

    2018-06-01

    Objective. Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. Approach. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Main results. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Significance. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.

  17. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors.

    PubMed

    Allen, John M; Elbasiouny, Sherif M

    2018-06-01

    Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.

  18. Kinetic sorption of contaminants of emerging concern by a palygorskite-montmorillonite filter medium.

    PubMed

    Berhane, Tedros M; Levy, Jonathan; Krekeler, Mark P S; Danielson, Neil D

    2017-06-01

    Kinetic sorption of bisphenol A (BPA), carbamazepine (CMZ) and ciprofloxacin (CIP) by three palygorskite-montmorillonite (Pal-Mt) granule sizes was studied. For BPA, CMZ and CIP, apparent sorption equilibrium was reached within about 3, 5 and 16 h, respectively. The highest and the lowest sorption capacities were by the small and the large granule sizes, respectively. Experimental results were compared to various sorption kinetics models to gain insights regarding the sorption processes and achieve a predictive capacity. The pseudo-second order (PSO) and the Elovich models performed the best while the pseudo-first order (PFO) model was only adequate for CMZ. The intraparticle-diffusion (IPD) model showed a two-step linear plot of BPA, CMZ and CIP sorption versus square root of time that was indicative of surface-sorption followed by IPD as a rate-limiting process before equilibrium was reached. Using the pseudo-first order (PFO) and the pseudo-second order (PSO) rate constants combined with previously-established Langmuir equilibrium sorption models, the kinetic sorption (k a ) and desorption (k d ) Langmuir kinetic rate constants were theoretically calculated for BPA and CIP. Kinetic sorption was then simulated using these theoretically calculated k a and k d values, and the simulations were compared to the observed behavior. The simulations fit the observed sorbed concentrations better during the early part of the experiments; the observed sorption during later times occurred more slowly than expected, supporting the hypothesis that IPD becomes a rate-limiting process during the course of the experiment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An optimal policy for deteriorating items with time-proportional deterioration rate and constant and time-dependent linear demand rate

    NASA Astrophysics Data System (ADS)

    Singh, Trailokyanath; Mishra, Pandit Jagatananda; Pattanayak, Hadibandhu

    2017-12-01

    In this paper, an economic order quantity (EOQ) inventory model for a deteriorating item is developed with the following characteristics: (i) The demand rate is deterministic and two-staged, i.e., it is constant in first part of the cycle and linear function of time in the second part. (ii) Deterioration rate is time-proportional. (iii) Shortages are not allowed to occur. The optimal cycle time and the optimal order quantity have been derived by minimizing the total average cost. A simple solution procedure is provided to illustrate the proposed model. The article concludes with a numerical example and sensitivity analysis of various parameters as illustrations of the theoretical results.

  20. Removal of copper by oxygenated pyrolytic tire char: kinetics and mechanistic insights.

    PubMed

    Quek, Augustine; Balasubramanian, Rajashekhar

    2011-04-01

    The kinetics of copper ion (Cu(II)) removal from aqueous solution by pyrolytic tire char was modeled using five different conventional models. A modification to these models was also developed through a modified equation that accounts for precipitation. Conventional first- and second-order reaction models did not fit the copper sorption kinetics well, indicating a lack of simple rate-order dependency on solute concentration. Instead, a reversible first-order rate reaction showed the best fit to the data, indicating a dependence on surface functional groups. Due to the varying solution pH during the sorption process, modified external and internal mass transfer models were employed. Results showed that the sorption of copper onto oxygenated chars was limited by external mass transfer and internal resistance with and without the modification. However, the modification of the sorption process produced very different results for unoxygenated chars, which showed neither internal nor external limitation to sorption. Instead, its slow sorption rate indicates a lack of surface functional groups. The sorption of Cu(II) by oxygenated and unoxygenated chars was also found to occur via three and two distinct stages, respectively. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme

    NASA Astrophysics Data System (ADS)

    Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang

    2013-04-01

    A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.

  2. Conventional Energy and Macronutrient Variables Distort the Accuracy of Children’s Dietary Reports: Illustrative Data from a Validation Study of Effect of Order Prompts

    PubMed Central

    Baxter, Suzanne Domel; Smith, Albert F.; Hardin, James W.; Nichols, Michele D.

    2008-01-01

    Objective Validation-study data are used to illustrate that conventional energy and macronutrient (protein, carbohydrate, fat) variables, which disregard accuracy of reported items and amounts, misrepresent reporting accuracy. Reporting-error-sensitive variables are proposed which classify reported items as matches or intrusions, and reported amounts as corresponding or overreported. Methods 58 girls and 63 boys were each observed eating school meals on 2 days separated by ≥4 weeks, and interviewed the morning after each observation day. One interview per child had forward-order (morning-to-evening) prompts; one had reverse-order prompts. Original food-item-level analyses found a sex-x-order prompt interaction for omission rates. Current analyses compared reference (observed) and reported information transformed to energy and macronutrients. Results Using conventional variables, reported amounts were less than reference amounts (ps<0.001; paired t-tests); report rates were higher for the first than second interview for energy, protein, and carbohydrate (ps≤0.049; mixed models). Using reporting-error-sensitive variables, correspondence rates were higher for girls with forward- but boys with reverse-order prompts (ps≤0.041; mixed models); inflation ratios were lower with reverse- than forward-order prompts for energy, carbohydrate, and fat (ps≤0.045; mixed models). Conclusions Conventional variables overestimated reporting accuracy and masked order prompt and sex effects. Reporting-error-sensitive variables are recommended when assessing accuracy for energy and macronutrients in validation studies. PMID:16959308

  3. Solution of non-continuum flows using BGK-type model with enforced relaxation of moments

    NASA Astrophysics Data System (ADS)

    Alekseenko, Alexander; Gimelshein, Sergey; Nguyen, Truong; Vedula, Prakash

    2016-11-01

    A BGK-type model with velocity dependent collision frequency and enforced relaxation rates for selected moments is applied to simulation of one- and two-dimensional super sonic flows. Relaxation rates of the moments are estimated by evaluating the full Boltzmann collision integral several times during the simulation. The solutions show improvements in velocity and temperature profiles as compared to the classical ES-BGK model. However, enforcement of relaxation rates for high order moments increases stiffness of the model.

  4. Mechanical model for filament buckling and growth by phase ordering.

    PubMed

    Rey, Alejandro D; Abukhdeir, Nasser M

    2008-02-05

    A mechanical model of open filament shape and growth driven by phase ordering is formulated. For a given phase-ordering driving force, the model output is the filament shape evolution and the filament end-point kinematics. The linearized model for the slope of the filament is the Cahn-Hilliard model of spinodal decomposition, where the buckling corresponds to concentration fluctuations. Two modes are predicted: (i) sequential growth and buckling and (ii) simultaneous buckling and growth. The relation among the maximum buckling rate, filament tension, and matrix viscosity is given. These results contribute to ongoing work in smectic A filament buckling.

  5. Influence of Triply-Charged Ions and Ionization Cross-Sections in a Hybrid-PIC Model of a Hall Thruster Discharge

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani

    2014-01-01

    The sensitivity of xenon ionization rates to collision cross-sections is studied within the framework of a hybrid-PIC model of a Hall thruster discharge. A revised curve fit based on the Drawin form is proposed and is shown to better reproduce the measured crosssections at high electron energies, with differences in the integrated rate coefficients being on the order of 10% for electron temperatures between 20 eV and 30 eV. The revised fit is implemented into HPHall and the updated model is used to simulate NASA's HiVHAc EDU2 Hall thruster at discharge voltages of 300, 400, and 500 V. For all three operating points, the revised cross-sections result in an increase in the predicted thrust and anode efficiency, reducing the error relative to experimental performance measurements. Electron temperature and ionization reaction rates are shown to follow the trends expected based on the integrated rate coefficients. The effects of triply-charged xenon are also assessed. The predicted thruster performance is found to have little or no dependence on the presence of triply-charged ions. The fraction of ion current carried by triply-charged ions is found to be on the order of 1% and increases slightly with increasing discharge voltage. The reaction rates for the 0?III, I?III, and II?III ionization reactions are found to be of similar order of magnitude and are about one order of magnitude smaller than the rate of 0?II ionization in the discharge channel.

  6. Quantifying predictability variations in a low-order ocean-atmosphere model - A dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.; Dutton, John A.

    1993-01-01

    The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.

  7. Fuzzy time series forecasting model with natural partitioning length approach for predicting the unemployment rate under different degree of confidence

    NASA Astrophysics Data System (ADS)

    Ramli, Nazirah; Mutalib, Siti Musleha Ab; Mohamad, Daud

    2017-08-01

    Fuzzy time series forecasting model has been proposed since 1993 to cater for data in linguistic values. Many improvement and modification have been made to the model such as enhancement on the length of interval and types of fuzzy logical relation. However, most of the improvement models represent the linguistic term in the form of discrete fuzzy sets. In this paper, fuzzy time series model with data in the form of trapezoidal fuzzy numbers and natural partitioning length approach is introduced for predicting the unemployment rate. Two types of fuzzy relations are used in this study which are first order and second order fuzzy relation. This proposed model can produce the forecasted values under different degree of confidence.

  8. Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation

    NASA Astrophysics Data System (ADS)

    Stenback, Greg A.; Ong, Say Kee; Rogers, Shane W.; Kjartanson, Bruce H.

    2004-09-01

    A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day -1 for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant—highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be applicable.

  9. Modelling studies for photocatalytic degradation of organic dyes using TiO2 nanofibers.

    PubMed

    Singh, Narendra; Rana, Mohit Singh; Gupta, Raju Kumar

    2017-09-05

    In this work, modelling of the photocatalytic degradation of para-nitrophenol (PNP) using synthesized electrospun TiO 2 nanofibers under UV light illumination is reported. A dynamic model was developed in order to understand the behaviour of operating parameters, i.e. light intensity and catalyst loading on the photocatalytic activity. This model was simulated and analysed for both TiO 2 solid nanofibers and TiO 2 hollow nanofibers, applied as photocatalysts in the Langmuir-Hinshelwood kinetic framework. The entire photocatalytic degradation rate follows pseudo-first-order kinetics. The simulated results obtained from the developed model are in good agreement with the experimental results. At a catalyst loading of 1.0 mg mL -1 , better respective degradation rates were achieved at UV light irradiance of 4 mW cm -2 , for both the TiO 2 solid and hollow nanofibers. However, it was also observed that TiO 2 hollow nanofibers have a higher adsorption rate than that of TiO 2 solid nanofibers resulting in a higher photocatalytic degradation rate of PNP.

  10. Higher Order, Hybrid BEM/FEM Methods Applied to Antenna Modeling

    NASA Technical Reports Server (NTRS)

    Fink, P. W.; Wilton, D. R.; Dobbins, J. A.

    2002-01-01

    In this presentation, the authors address topics relevant to higher order modeling using hybrid BEM/FEM formulations. The first of these is the limitation on convergence rates imposed by geometric modeling errors in the analysis of scattering by a dielectric sphere. The second topic is the application of an Incomplete LU Threshold (ILUT) preconditioner to solve the linear system resulting from the BEM/FEM formulation. The final tOpic is the application of the higher order BEM/FEM formulation to antenna modeling problems. The authors have previously presented work on the benefits of higher order modeling. To achieve these benefits, special attention is required in the integration of singular and near-singular terms arising in the surface integral equation. Several methods for handling these terms have been presented. It is also well known that achieving he high rates of convergence afforded by higher order bases may als'o require the employment of higher order geometry models. A number of publications have described the use of quadratic elements to model curved surfaces. The authors have shown in an EFIE formulation, applied to scattering by a PEC .sphere, that quadratic order elements may be insufficient to prevent the domination of modeling errors. In fact, on a PEC sphere with radius r = 0.58 Lambda(sub 0), a quartic order geometry representation was required to obtain a convergence benefi.t from quadratic bases when compared to the convergence rate achieved with linear bases. Initial trials indicate that, for a dielectric sphere of the same radius, - requirements on the geometry model are not as severe as for the PEC sphere. The authors will present convergence results for higher order bases as a function of the geometry model order in the hybrid BEM/FEM formulation applied to dielectric spheres. It is well known that the system matrix resulting from the hybrid BEM/FEM formulation is ill -conditioned. For many real applications, a good preconditioner is required to obtain usable convergence from an iterative solver. The authors have examined the use of an Incomplete LU Threshold (ILUT) preconditioner . to solver linear systems stemming from higher order BEM/FEM formulations in 2D scattering problems. Although the resulting preconditioner provided aD excellent approximation to the system inverse, its size in terms of non-zero entries represented only a modest improvement when compared with the fill-in associated with a sparse direct solver. Furthermore, the fill-in of the preconditioner could not be substantially reduced without the occurrence of instabilities. In addition to the results for these 2D problems, the authors will present iterative solution data from the application of the ILUT preconditioner to 3D problems.

  11. Application of the Zero-Order Reaction Rate Model and Transition State Theory to predict porous Ti6Al4V bending strength.

    PubMed

    Reig, L; Amigó, V; Busquets, D; Calero, J A; Ortiz, J L

    2012-08-01

    Porous Ti6Al4V samples were produced by microsphere sintering. The Zero-Order Reaction Rate Model and Transition State Theory were used to model the sintering process and to estimate the bending strength of the porous samples developed. The evolution of the surface area during the sintering process was used to obtain sintering parameters (sintering constant, activation energy, frequency factor, constant of activation and Gibbs energy of activation). These were then correlated with the bending strength in order to obtain a simple model with which to estimate the evolution of the bending strength of the samples when the sintering temperature and time are modified: σY=P+B·[lnT·t-ΔGa/R·T]. Although the sintering parameters were obtained only for the microsphere sizes analysed here, the strength of intermediate sizes could easily be estimated following this model. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The predictive power of zero intelligence in financial markets.

    PubMed

    Farmer, J Doyne; Patelli, Paolo; Zovko, Ilija I

    2005-02-08

    Standard models in economics stress the role of intelligent agents who maximize utility. However, there may be situations where constraints imposed by market institutions dominate strategic agent behavior. We use data from the London Stock Exchange to test a simple model in which minimally intelligent agents place orders to trade at random. The model treats the statistical mechanics of order placement, price formation, and the accumulation of revealed supply and demand within the context of the continuous double auction and yields simple laws relating order-arrival rates to statistical properties of the market. We test the validity of these laws in explaining cross-sectional variation for 11 stocks. The model explains 96% of the variance of the gap between the best buying and selling prices (the spread) and 76% of the variance of the price diffusion rate, with only one free parameter. We also study the market impact function, describing the response of quoted prices to the arrival of new orders. The nondimensional coordinates dictated by the model approximately collapse data from different stocks onto a single curve. This work is important from a practical point of view, because it demonstrates the existence of simple laws relating prices to order flows and, in a broader context, suggests there are circumstances where the strategic behavior of agents may be dominated by other considerations.

  13. Effect of Social Comparison Feedback on Laboratory Test Ordering for Hospitalized Patients: A Randomized Controlled Trial.

    PubMed

    Ryskina, Kira; Jessica Dine, C; Gitelman, Yevgeniy; Leri, Damien; Patel, Mitesh; Kurtzman, Gregory; Lin, Lisa Y; Epstein, Andrew J

    2018-05-22

    Social comparison feedback is an increasingly popular strategy that uses performance report cards to modify physician behavior. Our objective was to test the effect of such feedback on the ordering of routine laboratory tests for hospitalized patients, a practice considered overused. This was a single-blinded randomized controlled trial. Between January and June 2016, physicians on six general medicine teams at the Hospital of the University of Pennsylvania were cluster randomized with equal allocation to two arms: (1) those e-mailed a summary of their routine laboratory test ordering vs. the service average for the prior week, linked to a continuously updated personalized dashboard containing patient-level details, and snapshot of the dashboard and (2) those who did not receive the intervention. The primary outcome was the count of routine laboratory test orders placed by a physician per patient-day. We modeled the count of orders by each physician per patient-day after the intervention as a function of trial arm and the physician's order count before the intervention. The count outcome was modeled using negative binomial models with adjustment for clustering within teams. One hundred and fourteen interns and residents participated. We did not observe a statistically significant difference in adjusted reduction in routine laboratory ordering between the intervention and control physicians (physicians in the intervention group ordered 0.14 fewer tests per patient-day than physicians in the control group, 95% CI - 0.56 to 0.27, p = 0.50). Physicians whose absolute ordering rate deviated from the peer rate by more than 1.0 laboratory test per patient-day reduced their laboratory ordering by 0.80 orders per patient-day (95% CI - 1.58 to - 0.02, p = 0.04). Personalized social comparison feedback on routine laboratory ordering did not change targeted behavior among physicians, although there was a significant decrease in orders among participants who deviated more from the peer rate. Clinicaltrials.gov registration: #NCT02330289.

  14. Development of one-minute rain-rate and rain-attenuation contour maps for satellite propagation system planning in a subtropical country: South Africa

    NASA Astrophysics Data System (ADS)

    Ojo, J. S.; Owolawi, P. A.

    2014-10-01

    Millimeter and microwave system design at higher frequencies require as input a 1-min rain-rate cumulative distribution function for estimating the level of degradation that can be encountered at such frequency bands. Owing to the lack of 1-min rain-rate data in South Africa and the availability of 5-min and hourly rainfall data, we have used rain-rate conversion models and the refined Moupfouma model to convert the available data into 1-min rain-rate statistics. The attenuation caused by these rain rates was predicted using the International Telecommunication Union (ITU) recommendations model. The Kriging interpolation method was used to draw contour maps over different percentages of time for spatial interpolation of rain-rate values into a regular grid in order to obtain a highly consistent and predictable inter-gauge rain-rate variation over South Africa. The present results will be useful for system designers of modern broadband wireless access (BWA) and high-density cell-based Ku/Ka, Q/V band satellite systems, over the desired area of coverage in order to determine the appropriate effective isotropically radiated power (EIRP) and receiver characteristics of this region.

  15. Pseudo-second order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth

    2007-04-02

    Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.

  16. Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen

    NASA Astrophysics Data System (ADS)

    Miki, K.; Panesi, M.; Prudencio, E. E.; Prudhomme, S.

    2012-05-01

    The objective in this paper is to analyze some stochastic models for estimating the ionization reaction rate constant of atomic Nitrogen (N + e- → N+ + 2e-). Parameters of the models are identified by means of Bayesian inference using spatially resolved absolute radiance data obtained from the Electric Arc Shock Tube (EAST) wind-tunnel. The proposed methodology accounts for uncertainties in the model parameters as well as physical model inadequacies, providing estimates of the rate constant that reflect both types of uncertainties. We present four different probabilistic models by varying the error structure (either additive or multiplicative) and by choosing different descriptions of the statistical correlation among data points. In order to assess the validity of our methodology, we first present some calibration results obtained with manufactured data and then proceed by using experimental data collected at EAST experimental facility. In order to simulate the radiative signature emitted in the shock-heated air plasma, we use a one-dimensional flow solver with Park's two-temperature model that simulates non-equilibrium effects. We also discuss the implications of the choice of the stochastic model on the estimation of the reaction rate and its uncertainties. Our analysis shows that the stochastic models based on correlated multiplicative errors are the most plausible models among the four models proposed in this study. The rate of the atomic Nitrogen ionization is found to be (6.2 ± 3.3) × 1011 cm3 mol-1 s-1 at 10,000 K.

  17. Cascaded Amplitude Modulations in Sound Texture Perception

    PubMed Central

    McWalter, Richard; Dau, Torsten

    2017-01-01

    Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches. PMID:28955191

  18. Cascaded Amplitude Modulations in Sound Texture Perception.

    PubMed

    McWalter, Richard; Dau, Torsten

    2017-01-01

    Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  19. A Model-Based Approach for Visualizing the Dimensional Structure of Ordered Successive Categories Preference Data

    ERIC Educational Resources Information Center

    DeSarbo, Wayne S.; Park, Joonwook; Scott, Crystal J.

    2008-01-01

    A cyclical conditional maximum likelihood estimation procedure is developed for the multidimensional unfolding of two- or three-way dominance data (e.g., preference, choice, consideration) measured on ordered successive category rating scales. The technical description of the proposed model and estimation procedure are discussed, as well as the…

  20. Higher plant modelling for life support applications: first results of a simple mechanistic model

    NASA Astrophysics Data System (ADS)

    Hezard, Pauline; Dussap, Claude-Gilles; Sasidharan L, Swathy

    2012-07-01

    In the case of closed ecological life support systems, the air and water regeneration and food production are performed using microorganisms and higher plants. Wheat, rice, soybean, lettuce, tomato or other types of eatable annual plants produce fresh food while recycling CO2 into breathable oxygen. Additionally, they evaporate a large quantity of water, which can be condensed and used as potable water. This shows that recycling functions of air revitalization and food production are completely linked. Consequently, the control of a growth chamber for higher plant production has to be performed with efficient mechanistic models, in order to ensure a realistic prediction of plant behaviour, water and gas recycling whatever the environmental conditions. Purely mechanistic models of plant production in controlled environments are not available yet. This is the reason why new models must be developed and validated. This work concerns the design and test of a simplified version of a mathematical model coupling plant architecture and mass balance purposes in order to compare its results with available data of lettuce grown in closed and controlled chambers. The carbon exchange rate, water absorption and evaporation rate, biomass fresh weight as well as leaf surface are modelled and compared with available data. The model consists of four modules. The first one evaluates plant architecture, like total leaf surface, leaf area index and stem length data. The second one calculates the rate of matter and energy exchange depending on architectural and environmental data: light absorption in the canopy, CO2 uptake or release, water uptake and evapotranspiration. The third module evaluates which of the previous rates is limiting overall biomass growth; and the last one calculates biomass growth rate depending on matter exchange rates, using a global stoichiometric equation. All these rates are a set of differential equations, which are integrated with time in order to provide total biomass fresh weight during the full growth duration. The model predicts a growth with exponential rate at the beginning and then it becomes linear for the end of the growth; this follows rather accurately the experimental data. Even if this model is too simple to be realistic for more complex plants in changing environments, this is the first step for an integrated approach of plant growth accounting of architectural and mass transfer limitations.

  1. Computational procedure of optimal inventory model involving controllable backorder rate and variable lead time with defective units

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Chuan; Wu, Jong-Wuu; Tsou, Hsin-Hui; Lei, Chia-Ling

    2012-10-01

    This article considers that the number of defective units in an arrival order is a binominal random variable. We derive a modified mixture inventory model with backorders and lost sales, in which the order quantity and lead time are decision variables. In our studies, we also assume that the backorder rate is dependent on the length of lead time through the amount of shortages and let the backorder rate be a control variable. In addition, we assume that the lead time demand follows a mixture of normal distributions, and then relax the assumption about the form of the mixture of distribution functions of the lead time demand and apply the minimax distribution free procedure to solve the problem. Furthermore, we develop an algorithm procedure to obtain the optimal ordering strategy for each case. Finally, three numerical examples are also given to illustrate the results.

  2. Lepton asymmetry rate from quantum field theory: NLO in the hierarchical limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bödeker, D.; Sangel, M., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: msangel@physik.uni-bielefeld.de

    2017-06-01

    The rates for generating a matter-antimatter asymmetry in extensions of the Standard Model (SM) containing right-handed neutrinos are the most interesting and least trivial co\\-efficients in the rate equations for baryogenesis through thermal leptogenesis. We obtain a relation of these rates to finite-temperature real-time correlation functions, similar to the Kubo formulas for transport coefficients. Then we consider the case of hierarchical masses for the sterile neutrinos. At leading order in their Yukawa couplings we find a simple master formula which relates the rates to a single finite temperature three-point spectral function. It is valid to all orders in g ,more » where g denotes a SM gauge or quark Yukawa coupling. We use it to compute the rate for generating a matter-antimatter asymmetry at next-to-leading order in g in the non-relativistic regime. The corrections are of order g {sup 2}, and they amount to 4% or less.« less

  3. Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order

    DOE PAGES

    Favalli, Andrea; Croft, Stephen; Santi, Peter

    2015-06-15

    Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclearmore » data constants by a series of coupled algebraic equations – the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This study represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.« less

  4. The predictive power of zero intelligence in financial markets

    NASA Astrophysics Data System (ADS)

    Farmer, J. Doyne; Patelli, Paolo; Zovko, Ilija I.

    2005-02-01

    Standard models in economics stress the role of intelligent agents who maximize utility. However, there may be situations where constraints imposed by market institutions dominate strategic agent behavior. We use data from the London Stock Exchange to test a simple model in which minimally intelligent agents place orders to trade at random. The model treats the statistical mechanics of order placement, price formation, and the accumulation of revealed supply and demand within the context of the continuous double auction and yields simple laws relating order-arrival rates to statistical properties of the market. We test the validity of these laws in explaining cross-sectional variation for 11 stocks. The model explains 96% of the variance of the gap between the best buying and selling prices (the spread) and 76% of the variance of the price diffusion rate, with only one free parameter. We also study the market impact function, describing the response of quoted prices to the arrival of new orders. The nondimensional coordinates dictated by the model approximately collapse data from different stocks onto a single curve. This work is important from a practical point of view, because it demonstrates the existence of simple laws relating prices to order flows and, in a broader context, suggests there are circumstances where the strategic behavior of agents may be dominated by other considerations. double auction market | market microstructure | agent-based models

  5. Perception of differences in naturalistic dynamic scenes, and a V1-based model.

    PubMed

    To, Michelle P S; Gilchrist, Iain D; Tolhurst, David J

    2015-01-16

    We investigate whether a computational model of V1 can predict how observers rate perceptual differences between paired movie clips of natural scenes. Observers viewed 198 pairs of movies clips, rating how different the two clips appeared to them on a magnitude scale. Sixty-six of the movie pairs were naturalistic and those remaining were low-pass or high-pass spatially filtered versions of those originals. We examined three ways of comparing a movie pair. The Spatial Model compared corresponding frames between each movie pairwise, combining those differences using Minkowski summation. The Temporal Model compared successive frames within each movie, summed those differences for each movie, and then compared the overall differences between the paired movies. The Ordered-Temporal Model combined elements from both models, and yielded the single strongest predictions of observers' ratings. We modeled naturalistic sustained and transient impulse functions and compared frames directly with no temporal filtering. Overall, modeling naturalistic temporal filtering improved the models' performance; in particular, the predictions of the ratings for low-pass spatially filtered movies were much improved by employing a transient impulse function. The correlations between model predictions and observers' ratings rose from 0.507 without temporal filtering to 0.759 (p = 0.01%) when realistic impulses were included. The sustained impulse function and the Spatial Model carried more weight in ratings for normal and high-pass movies, whereas the transient impulse function with the Ordered-Temporal Model was most important for spatially low-pass movies. This is consistent with models in which high spatial frequency channels with sustained responses primarily code for spatial details in movies, while low spatial frequency channels with transient responses code for dynamic events. © 2015 ARVO.

  6. Game-Theoretic Models of Information Overload in Social Networks

    NASA Astrophysics Data System (ADS)

    Borgs, Christian; Chayes, Jennifer; Karrer, Brian; Meeder, Brendan; Ravi, R.; Reagans, Ray; Sayedi, Amin

    We study the effect of information overload on user engagement in an asymmetric social network like Twitter. We introduce simple game-theoretic models that capture rate competition between celebrities producing updates in such networks where users non-strategically choose a subset of celebrities to follow based on the utility derived from high quality updates as well as disutility derived from having to wade through too many updates. Our two variants model the two behaviors of users dropping some potential connections (followership model) or leaving the network altogether (engagement model). We show that under a simple formulation of celebrity rate competition, there is no pure strategy Nash equilibrium under the first model. We then identify special cases in both models when pure rate equilibria exist for the celebrities: For the followership model, we show existence of a pure rate equilibrium when there is a global ranking of the celebrities in terms of the quality of their updates to users. This result also generalizes to the case when there is a partial order consistent with all the linear orders of the celebrities based on their qualities to the users. Furthermore, these equilibria can be computed in polynomial time. For the engagement model, pure rate equilibria exist when all users are interested in the same number of celebrities, or when they are interested in at most two. Finally, we also give a finite though inefficient procedure to determine if pure equilibria exist in the general case of the followership model.

  7. Building a kinetic Monte Carlo model with a chosen accuracy.

    PubMed

    Bhute, Vijesh J; Chatterjee, Abhijit

    2013-06-28

    The kinetic Monte Carlo (KMC) method is a popular modeling approach for reaching large materials length and time scales. The KMC dynamics is erroneous when atomic processes that are relevant to the dynamics are missing from the KMC model. Recently, we had developed for the first time an error measure for KMC in Bhute and Chatterjee [J. Chem. Phys. 138, 084103 (2013)]. The error measure, which is given in terms of the probability that a missing process will be selected in the correct dynamics, requires estimation of the missing rate. In this work, we present an improved procedure for estimating the missing rate. The estimate found using the new procedure is within an order of magnitude of the correct missing rate, unlike our previous approach where the estimate was larger by orders of magnitude. This enables one to find the error in the KMC model more accurately. In addition, we find the time for which the KMC model can be used before a maximum error in the dynamics has been reached.

  8. Factor structure of parent and teacher ratings of the ODD symptoms for Malaysian primary school children.

    PubMed

    Gomez, Rapson

    2017-02-01

    This present study used confirmatory factor analysis (CFA) to examine the applicability of one-, two- three- and second order Oppositional Defiant Disorder (ODD) factor models, proposed in previous studies, in a group of Malaysian primary school children. These models were primarily based on parent reports. In the current study, parent and teacher ratings of the ODD symptoms were obtained for 934 children. For both groups of respondents, the findings showing some support for all models examined, with most support for a second order model with Burke et al. (2010) three factors (oppositional, antagonistic, and negative affect) as the primary factors. The diagnostic implications of the findings are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics.

    PubMed

    Teka, Wondimu W; Upadhyay, Ranjit Kumar; Mondal, Argha

    2017-09-01

    Pyramidal neurons produce different spiking patterns to process information, communicate with each other and transform information. These spiking patterns have complex and multiple time scale dynamics that have been described with the fractional-order leaky integrate-and-Fire (FLIF) model. Models with fractional (non-integer) order differentiation that generalize power law dynamics can be used to describe complex temporal voltage dynamics. The main characteristic of FLIF model is that it depends on all past values of the voltage that causes long-term memory. The model produces spikes with high interspike interval variability and displays several spiking properties such as upward spike-frequency adaptation and long spike latency in response to a constant stimulus. We show that the subthreshold voltage and the firing rate of the fractional-order model make transitions from exponential to power law dynamics when the fractional order α decreases from 1 to smaller values. The firing rate displays different types of spike timing adaptation caused by changes on initial values. We also show that the voltage-memory trace and fractional coefficient are the causes of these different types of spiking properties. The voltage-memory trace that represents the long-term memory has a feedback regulatory mechanism and affects spiking activity. The results suggest that fractional-order models might be appropriate for understanding multiple time scale neuronal dynamics. Overall, a neuron with fractional dynamics displays history dependent activities that might be very useful and powerful for effective information processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The effect of speaking rate on serial-order sound-level errors in normal healthy controls and persons with aphasia.

    PubMed

    Fossett, Tepanta R D; McNeil, Malcolm R; Pratt, Sheila R; Tompkins, Connie A; Shuster, Linda I

    Although many speech errors can be generated at either a linguistic or motoric level of production, phonetically well-formed sound-level serial-order errors are generally assumed to result from disruption of phonologic encoding (PE) processes. An influential model of PE (Dell, 1986; Dell, Burger & Svec, 1997) predicts that speaking rate should affect the relative proportion of these serial-order sound errors (anticipations, perseverations, exchanges). These predictions have been extended to, and have special relevance for persons with aphasia (PWA) because of the increased frequency with which speech errors occur and because their localization within the functional linguistic architecture may help in diagnosis and treatment. Supporting evidence regarding the effect of speaking rate on phonological encoding has been provided by studies using young normal language (NL) speakers and computer simulations. Limited data exist for older NL users and no group data exist for PWA. This study tested the phonologic encoding properties of Dell's model of speech production (Dell, 1986; Dell,et al., 1997), which predicts that increasing speaking rate affects the relative proportion of serial-order sound errors (i.e., anticipations, perseverations, and exchanges). The effects of speech rate on the error ratios of anticipation/exchange (AE), anticipation/perseveration (AP) and vocal reaction time (VRT) were examined in 16 normal healthy controls (NHC) and 16 PWA without concomitant motor speech disorders. The participants were recorded performing a phonologically challenging (tongue twister) speech production task at their typical and two faster speaking rates. A significant effect of increased rate was obtained for the AP but not the AE ratio. Significant effects of group and rate were obtained for VRT. Although the significant effect of rate for the AP ratio provided evidence that changes in speaking rate did affect PE, the results failed to support the model derived predictions regarding the direction of change for error type proportions. The current findings argued for an alternative concept of the role of activation and decay in influencing types of serial-order sound errors. Rather than a slow activation decay rate (Dell, 1986), the results of the current study were more compatible with an alternative explanation of rapid activation decay or slow build-up of residual activation.

  11. Second-order closure models for supersonic turbulent flows

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Sarkar, Sutanu

    1991-01-01

    Recent work by the authors on the development of a second-order closure model for high-speed compressible flows is reviewed. This turbulence closure is based on the solution of modeled transport equations for the Favre-averaged Reynolds stress tensor and the solenoidal part of the turbulent dissipation rate. A new model for the compressible dissipation is used along with traditional gradient transport models for the Reynolds heat flux and mass flux terms. Consistent with simple asymptotic analyses, the deviatoric part of the remaining higher-order correlations in the Reynolds stress transport equation are modeled by a variable density extension of the newest incompressible models. The resulting second-order closure model is tested in a variety of compressible turbulent flows which include the decay of isotropic turbulence, homogeneous shear flow, the supersonic mixing layer, and the supersonic flat-plate turbulent boundary layer. Comparisons between the model predictions and the results of physical and numerical experiments are quite encouraging.

  12. Second-order closure models for supersonic turbulent flows

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Sarkar, Sutanu

    1991-01-01

    Recent work on the development of a second-order closure model for high-speed compressible flows is reviewed. This turbulent closure is based on the solution of modeled transport equations for the Favre-averaged Reynolds stress tensor and the solenoidal part of the turbulent dissipation rate. A new model for the compressible dissipation is used along with traditional gradient transport models for the Reynolds heat flux and mass flux terms. Consistent with simple asymptotic analyses, the deviatoric part of the remaining higher-order correlations in the Reynolds stress transport equations are modeled by a variable density extension of the newest incompressible models. The resulting second-order closure model is tested in a variety of compressible turbulent flows which include the decay of isotropic turbulence, homogeneous shear flow, the supersonic mixing layer, and the supersonic flat-plate turbulent boundary layer. Comparisons between the model predictions and the results of physical and numerical experiments are quite encouraging.

  13. Renormalization group approach to power-law modeling of complex metabolic networks.

    PubMed

    Hernández-Bermejo, Benito

    2010-08-07

    In the modeling of complex biological systems, and especially in the framework of the description of metabolic pathways, the use of power-law models (such as S-systems and GMA systems) often provides a remarkable accuracy over several orders of magnitude in concentrations, an unusually broad range not fully understood at present. In order to provide additional insight in this sense, this article is devoted to the renormalization group analysis of reactions in fractal or self-similar media. In particular, the renormalization group methodology is applied to the investigation of how rate-laws describing such reactions are transformed when the geometric scale is changed. The precise purpose of such analysis is to investigate whether or not power-law rate-laws present some remarkable features accounting for the successes of power-law modeling. As we shall see, according to the renormalization group point of view the answer is positive, as far as power-laws are the critical solutions of the renormalization group transformation, namely power-law rate-laws are the renormalization group invariant solutions. Moreover, it is shown that these results also imply invariance under the group of concentration scalings, thus accounting for the reported power-law model accuracy over several orders of magnitude in metabolite concentrations. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Reactions and reaction rates in the regional aquifer beneath the Pajarito Plateau, north-central New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Hereford, Anne G.; Keating, Elizabeth H.; Guthrie, George D.; Zhu, Chen

    2007-05-01

    Reactions and reaction rates within aquifers are fundamental components of critical hydrological processes. However, reactions simulated in laboratory experiments typically demonstrate rates that are much faster than those observed in the field. Therefore, it is necessary to conduct more reaction rate analyses in natural settings. This study of geochemical reactions in the regional aquifer in the Pajarito Plateau near Los Alamos, New Mexico combines modeling with petrographic assessment to further knowledge and understanding of complex natural hydrologic systems. Groundwater geochemistry shows marked evolution along assumed flow paths. The flow path chosen for this study was evaluated using inverse mass balance modeling to calculate the mass transfer. X-ray diffraction and field emission gun scanning electron microscopy were used to identify possible reactants and products. Considering the mineralogy of the aquifer and saturation indices for the regional water refined initial interpretations. Calculations yielded dissolution rates for plagioclase on the order of 10-15 mol s-1 m-2 and for K-feldspar on the order of 10-17 mol s-1 m-2, orders of magnitude slower than laboratory rates. While these rates agree with other aquifer studies, they must be considered in the light of the uncertainty associated with geometric surface area estimates, 14C ages, and aquifer properties.

  15. An Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model Using the Level-Set Method

    NASA Astrophysics Data System (ADS)

    Muñoz-Esparza, Domingo; Kosović, Branko; Jiménez, Pedro A.; Coen, Janice L.

    2018-04-01

    The level-set method is typically used to track and propagate the fire perimeter in wildland fire models. Herein, a high-order level-set method using fifth-order WENO scheme for the discretization of spatial derivatives and third-order explicit Runge-Kutta temporal integration is implemented within the Weather Research and Forecasting model wildland fire physics package, WRF-Fire. The algorithm includes solution of an additional partial differential equation for level-set reinitialization. The accuracy of the fire-front shape and rate of spread in uncoupled simulations is systematically analyzed. It is demonstrated that the common implementation used by level-set-based wildfire models yields to rate-of-spread errors in the range 10-35% for typical grid sizes (Δ = 12.5-100 m) and considerably underestimates fire area. Moreover, the amplitude of fire-front gradients in the presence of explicitly resolved turbulence features is systematically underestimated. In contrast, the new WRF-Fire algorithm results in rate-of-spread errors that are lower than 1% and that become nearly grid independent. Also, the underestimation of fire area at the sharp transition between the fire front and the lateral flanks is found to be reduced by a factor of ≈7. A hybrid-order level-set method with locally reduced artificial viscosity is proposed, which substantially alleviates the computational cost associated with high-order discretizations while preserving accuracy. Simulations of the Last Chance wildfire demonstrate additional benefits of high-order accurate level-set algorithms when dealing with complex fuel heterogeneities, enabling propagation across narrow fuel gaps and more accurate fire backing over the lee side of no fuel clusters.

  16. Removal of humic acid from aqueous solution using dual PMMA/PVDF composite nanofiber: kinetics study

    NASA Astrophysics Data System (ADS)

    Zulfikar, M. A.; Afrianingsih, I.; Bahri, A.; Nasir, M.; Alni, A.; Setiyanto, H.

    2018-05-01

    The removal of humic acid from aqueous solution using dual poly(methyl methacrylate)/polyvinyl difluoride composite nanofiber under the influence of concentration has been studied. The experiments were performed using humic acid (HA) as an adsorbate at concentration in the range of 50-200 mg/L. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were used to describe the kinetic data and the rate constants were evaluated. It was observed that the amount of humic acid removed decrease with increasing concentration. The kinetic study revealed that pseudo-second order model fitted well the kinetic data, while the external diffusion or boundary layer diffusion was the main rate determining step in the removal process.

  17. Ordering policy for stock-dependent demand rate under progressive payment scheme: a comment

    NASA Astrophysics Data System (ADS)

    Glock, Christoph H.; Ries, Jörg M.; Schwindl, Kurt

    2015-04-01

    In a recent paper, Soni and Shah developed a model for finding the optimal ordering policy for a retailer facing stock-dependent demand and a supplier offering a progressive payment scheme. In this comment, we correct several errors in the formulation of the models of Soni and Shah and modify some assumptions to increase the model's applicability. Numerical examples illustrate the benefits of our modifications.

  18. A preliminary compressible second-order closure model for high speed flows

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Sarkar, Sutanu

    1989-01-01

    A preliminary version of a compressible second-order closure model that was developed in connection with the National Aero-Space Plane Project is presented. The model requires the solution of transport equations for the Favre-averaged Reynolds stress tensor and dissipation rate. Gradient transport hypotheses are used for the Reynolds heat flux, mass flux, and turbulent diffusion terms. Some brief remarks are made about the direction of future research to generalize the model.

  19. The present state and future direction of second order closure models for compressible flows

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B.; Sarkar, Sutanu; Speziale, Charles G.

    1992-01-01

    The topics are presented in viewgraph form and include: (1) Reynolds stress closure models; (2) Favre averages and governing equations; (3) the model for the deviatoric part of the pressure-strain rate correlation; (4) the SSG pressure-strain correlation model; (5) a compressible turbulent dissipation rate model; (6) variable viscosity effects; (7) near-wall stiffness problems; (8) models of the Reynolds mass and heat flux; and (9) a numerical solution of the compressible turbulent transport equation.

  20. Kinetic modeling of electro-Fenton reaction in aqueous solution.

    PubMed

    Liu, H; Li, X Z; Leng, Y J; Wang, C

    2007-03-01

    To well describe the electro-Fenton (E-Fenton) reaction in aqueous solution, a new kinetic model was established according to the generally accepted mechanism of E-Fenton reaction. The model has special consideration on the rates of hydrogen peroxide (H(2)O(2)) generation and consumption in the reaction solution. The model also embraces three key operating factors affecting the organic degradation in the E-Fenton reaction, including current density, dissolved oxygen concentration and initial ferrous ion concentration. This analytical model was then validated by the experiments of phenol degradation in aqueous solution. The experiments demonstrated that the H(2)O(2) gradually built up with time and eventually approached its maximum value in the reaction solution. The experiments also showed that phenol was degraded at a slow rate at the early stage of the reaction, a faster rate during the middle stage, and a slow rate again at the final stage. It was confirmed in all experiments that the curves of phenol degradation (concentration vs. time) appeared to be an inverted "S" shape. The experimental data were fitted using both the normal first-order model and our new model, respectively. The goodness of fittings demonstrated that the new model could better fit the experimental data than the first-order model appreciably, which indicates that this analytical model can better describe the kinetics of the E-Fenton reaction mathematically and also chemically.

  1. Confirmation of monod model for biofiltration of styrene vapors from waste flue gas.

    PubMed

    Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; Aslhashemi, Ahmad

    2012-01-01

    The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution.

  2. EFFECT OF RESIDENCE TIME ON ANNUAL EXPORT AND DENITRIFICATION OF NITROGEN IN ESTUARIES: A MODEL ANALYSIS

    EPA Science Inventory

    A simple model of annual average response of an estuary to mean nitrogen loading rate and freshwater residence time was developed and tested. It uses nitrogen inputs from land, deposition from the atmosphere, and first-order calculations of internal loss rate and export to perfor...

  3. A novel kinetic modeling method for the stabilization phase of the composting process for biodegradation of solid wastes.

    PubMed

    Ebrahimzadeh, Reza; Ghazanfari Moghaddam, Ahmad; Sarcheshmehpour, Mehdi; Mortezapour, Hamid

    2017-12-01

    Biomass degradation kinetics of the composting process for kitchen waste, pruned elm tree branches and sheep manure were studied to model changes in volatile solids (VS) over time. Three experimental reactors containing raw mixtures with a carbon to nitrogen (C/N) ratio of 27:1 and a moisture content of 65% were prepared. During the composting process two of the reactors used forced air and the third used natural aeration. The composting stabilization phases in all reactors were completed in 30 days. During this period, composting indexes such as temperature, moisture content and VS changes were recorded. Elementary reactions were used for kinetics modeling of the degradation process. Results showed that the numerical values of rate constant ( k) for zero-order ranged from 0.86 to 1.03 VS×day -1 , for first-order models it ranged from 0.01 to 0.02 day -1 , for second-order the range was from 1.36×10 -5 to 1.78×10 -5 VS -1 ×day -1 and for n-order the rate constant ranged from 0.031 to 0.095 VS (1-n) ×day -1 . The resulting models were validated by comparing statistical parameters. Evaluation of the models showed that, in the aerated reactors, the n-order models (less than 1) successfully estimated the VS changes. In the non-aeration reactor, for the second-order model good agreement was achieved between the simulated and actual quantities of VS. Also, half-life time provided a useful criterion for the estimation of expected time for completion of different phases of composting.

  4. Fractional time-dependent apparent viscosity model for semisolid foodstuffs

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Chen, Wen; Sun, HongGuang

    2017-10-01

    The difficulty in the description of thixotropic behaviors in semisolid foodstuffs is the time dependent nature of apparent viscosity under constant shear rate. In this study, we propose a novel theoretical model via fractional derivative to address the high demand by industries. The present model adopts the critical parameter of fractional derivative order α to describe the corresponding time-dependent thixotropic behavior. More interestingly, the parameter α provides a quantitative insight into discriminating foodstuffs. With the re-exploration of three groups of experimental data (tehineh, balangu, and natillas), the proposed methodology is validated in good applicability and efficiency. The results show that the present fractional apparent viscosity model performs successfully for tested foodstuffs in the shear rate range of 50-150 s^{ - 1}. The fractional order α decreases with the increase of temperature at low temperature, below 50 °C, but increases with growing shear rate. While the ideal initial viscosity k decreases with the increase of temperature, shear rate, and ingredient content. It is observed that the magnitude of α is capable of characterizing the thixotropy of semisolid foodstuffs.

  5. Shilling Attacks Detection in Recommender Systems Based on Target Item Analysis

    PubMed Central

    Zhou, Wei; Wen, Junhao; Koh, Yun Sing; Xiong, Qingyu; Gao, Min; Dobbie, Gillian; Alam, Shafiq

    2015-01-01

    Recommender systems are highly vulnerable to shilling attacks, both by individuals and groups. Attackers who introduce biased ratings in order to affect recommendations, have been shown to negatively affect collaborative filtering (CF) algorithms. Previous research focuses only on the differences between genuine profiles and attack profiles, ignoring the group characteristics in attack profiles. In this paper, we study the use of statistical metrics to detect rating patterns of attackers and group characteristics in attack profiles. Another question is that most existing detecting methods are model specific. Two metrics, Rating Deviation from Mean Agreement (RDMA) and Degree of Similarity with Top Neighbors (DegSim), are used for analyzing rating patterns between malicious profiles and genuine profiles in attack models. Building upon this, we also propose and evaluate a detection structure called RD-TIA for detecting shilling attacks in recommender systems using a statistical approach. In order to detect more complicated attack models, we propose a novel metric called DegSim’ based on DegSim. The experimental results show that our detection model based on target item analysis is an effective approach for detecting shilling attacks. PMID:26222882

  6. Pilot modeling and closed-loop analysis of flexible aircraft in the pitch tracking task

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1983-01-01

    The issue addressed in the appropriate modeling technique for pilot vehicle analysis of large flexible aircraft, when the frequency separation between the rigid-body mode and the dynamic aeroelastic modes is reduced. This situation was shown to have significant effects on pitch-tracking performance and subjective rating of the task, obtained via fixed base simulation. Further, the dynamics in these cases are not well modeled with a rigid-body-like model obtained by including only 'static elastic' effects, for example. It is shown that pilot/vehicle analysis of this data supports the hypothesis that an appropriate pilot-model structure is an optimal-control pilot model of full order. This is in contrast to the contention that a representative model is of reduced order when the subject is controlling high-order dynamics as in a flexible vehicle. The key appears to be in the correct assessment of the pilot's objective of attempting to control 'rigid-body' vehicle response, a response that must be estimated by the pilot from observations contaminated by aeroelastic dynamics. Finally, a model-based metric is shown to correlate well with the pilot's subjective ratings.

  7. Prediction of in vivo neutral detergent fiber digestibility and digestion rate of potentially digestible neutral detergent fiber: comparison of models.

    PubMed

    Huhtanen, P; Seppälä, A; Ahvenjärvi, S; Rinne, M

    2008-10-01

    Eleven 1-pool, seven 2-pool, and three 3-pool models were compared in fitting gas production data and predicting in vivo NDF digestibility and effective first-order digestion rate of potentially digestible NDF (pdNDF). Isolated NDF from 15 grass silages harvested at different stages of maturity was incubated in triplicate in rumen fluid-buffer solution for 72 h to estimate the digestion kinetics from cumulative gas production profiles. In vivo digestibility was estimated by the total fecal collection method in sheep fed at a maintenance level of feeding. The concentration of pdNDF was estimated by a 12-d in situ incubation. The parameter values from gas production profiles and pdNDF were used in a 2-compartment rumen model to predict pdNDF digestibility using 50 h of rumen residence time distributed in a ratio of 0.4:0.6 between the non-escapable and escapable pools. The effective first-order digestion rate was computed both from observed in vivo and model-predicted pdNDF digestibility assuming the passage kinetic model described above. There were marked differences between the models in fitting the gas production data. The fit improved with increasing number of pools, suggesting that silage pdNDF is not a homogenous substrate. Generally, the models predicted in vivo NDF digestibility and digestion rate accurately. However, a good fit of gas production data was not necessarily translated into improved predictions of the in vivo data. The models overestimating the asymptotic gas volumes tended to underestimate the in vivo digestibility. Investigating the time-related residuals during the later phases of fermentation is important when the data are used to estimate the first-order digestion rate of pdNDF. Relatively simple models such as the France model or even a single exponential model with discrete lag period satisfied the minimum criteria for a good model. Further, the comparison of feedstuffs on the basis of parameter values is more unequivocal than in the case of multiple-pool models.

  8. Rapid hybridization of nucleic acids using isotachophoresis

    PubMed Central

    Bercovici, Moran; Han, Crystal M.; Liao, Joseph C.; Santiago, Juan G.

    2012-01-01

    We use isotachophoresis (ITP) to control and increase the rate of nucleic acid hybridization reactions in free solution. We present a new physical model, validation experiments, and demonstrations of this assay. We studied the coupled physicochemical processes of preconcentration, mixing, and chemical reaction kinetics under ITP. Our experimentally validated model enables a closed form solution for ITP-aided reaction kinetics, and reveals a new characteristic time scale which correctly predicts order 10,000-fold speed-up of chemical reaction rate for order 100 pM reactants, and greater enhancement at lower concentrations. At 500 pM concentration, we measured a reaction time which is 14,000-fold lower than that predicted for standard second-order hybridization. The model and method are generally applicable to acceleration of reactions involving nucleic acids, and may be applicable to a wide range of reactions involving ionic reactants. PMID:22733732

  9. Performance analysis of 60-min to 1-min integration time rain rate conversion models in Malaysia

    NASA Astrophysics Data System (ADS)

    Ng, Yun-Yann; Singh, Mandeep Singh Jit; Thiruchelvam, Vinesh

    2018-01-01

    Utilizing the frequency band above 10 GHz is in focus nowadays as a result of the fast expansion of radio communication systems in Malaysia. However, rain fade is the critical factor in attenuation of signal propagation for frequencies above 10 GHz. Malaysia is located in a tropical and equatorial region with high rain intensity throughout the year, and this study will review rain distribution and evaluate the performance of 60-min to 1-min integration time rain rate conversion methods for Malaysia. Several conversion methods such as Segal, Chebil & Rahman, Burgeono, Emiliani, Lavergnat and Gole (LG), Simplified Moupfouma, Joo et al., fourth order polynomial fit and logarithmic model have been chosen to evaluate the performance to predict 1-min rain rate for 10 sites in Malaysia. After the completion of this research, the results show that Chebil & Rahman model, Lavergnat & Gole model, Fourth order polynomial fit and Logarithmic model have shown the best performances in 60-min to 1-min rain rate conversion over 10 sites. In conclusion, it is proven that there is no single model which can claim to perform the best across 10 sites. By averaging RMSE and SC-RMSE over 10 sites, Chebil and Rahman model is the best method.

  10. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    USGS Publications Warehouse

    Green, Christopher T.; Jurgens, Bryant; Zhang, Yong; Starn, Jeffrey; Singleton, Michael J.; Esser, Bradley K.

    2016-01-01

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3− reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He),14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3− and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3− reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3− trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  11. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Christopher T.; Jurgens, Bryant C.; Zhang, Yong

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O 2 reduction and denitrification (NO 3 – reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwatermore » age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF 6, CFCs, 3H, He from 3H (tritiogenic He), 14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO 3 – and dissolved gas data to estimate zero order and first order rates of O 2 reduction and denitrification. Results indicated that O 2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O 2 and NO 3 – reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O 2 reduction rates. Estimated historical NO 3 – trends were similar to historical measurements. Here, results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O 2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.« less

  12. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    DOE PAGES

    Green, Christopher T.; Jurgens, Bryant C.; Zhang, Yong; ...

    2016-05-14

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O 2 reduction and denitrification (NO 3 – reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwatermore » age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF 6, CFCs, 3H, He from 3H (tritiogenic He), 14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO 3 – and dissolved gas data to estimate zero order and first order rates of O 2 reduction and denitrification. Results indicated that O 2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O 2 and NO 3 – reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O 2 reduction rates. Estimated historical NO 3 – trends were similar to historical measurements. Here, results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O 2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.« less

  13. LS-DYNA Implementation of Polymer Matrix Composite Model Under High Strain Rate Impact

    NASA Technical Reports Server (NTRS)

    Zheng, Xia-Hua; Goldberg, Robert K.; Binienda, Wieslaw K.; Roberts, Gary D.

    2003-01-01

    A recently developed constitutive model is implemented into LS-DYNA as a user defined material model (UMAT) to characterize the nonlinear strain rate dependent behavior of polymers. By utilizing this model within a micromechanics technique based on a laminate analogy, an algorithm to analyze the strain rate dependent, nonlinear deformation of a fiber reinforced polymer matrix composite is then developed as a UMAT to simulate the response of these composites under high strain rate impact. The models are designed for shell elements in order to ensure computational efficiency. Experimental and numerical stress-strain curves are compared for two representative polymers and a representative polymer matrix composite, with the analytical model predicting the experimental response reasonably well.

  14. Infrared dynamics of cold atoms on hot graphene membranes

    NASA Astrophysics Data System (ADS)

    Sengupta, Sanghita; Kotov, Valeri N.; Clougherty, Dennis P.

    2016-06-01

    We study the infrared dynamics of low-energy atoms interacting with a sample of suspended graphene at finite temperature. The dynamics exhibits severe infrared divergences order by order in perturbation theory as a result of the singular nature of low-energy flexural phonon emission. Our model can be viewed as a two-channel generalization of the independent boson model with asymmetric atom-phonon coupling. This allows us to take advantage of the exact nonperturbative solution of the independent boson model in the stronger channel while treating the weaker one perturbatively. In the low-energy limit, the exact solution can be viewed as a resummation (exponentiation) of the most divergent diagrams in the perturbative expansion. As a result of this procedure, we obtain the atom's Green function which we use to calculate the atom damping rate, a quantity equal to the quantum sticking rate. A characteristic feature of our results is that the Green's function retains a weak, infrared cutoff dependence that reflects the reduced dimensionality of the problem. As a consequence, we predict a measurable dependence of the sticking rate on graphene sample size. We provide detailed predictions for the sticking rate of atomic hydrogen as a function of temperature and sample size. The resummation yields an enhanced sticking rate relative to the conventional Fermi golden rule result (equivalent to the one-loop atom self-energy), as higher-order processes increase damping at finite temperature.

  15. Oxygen consumption rates by different oenological tannins in a model wine solution.

    PubMed

    Pascual, Olga; Vignault, Adeline; Gombau, Jordi; Navarro, Maria; Gómez-Alonso, Sergio; García-Romero, Esteban; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Teissedre, Pierre-Louis; Zamora, Fernando

    2017-11-01

    The kinetics of oxygen consumption by different oenological tannins were measured in a model wine solution using the non-invasive method based on luminiscence. The results indicate that the oxygen consumption rate follows second-order kinetics depending on tannin and oxygen concentrations. They also confirm that the oxygen consumption rate is influenced by temperature in accordance with Arrhenius law. The indications are that ellagitannins are the fastest oxygen consumers of the different oenological tannins, followed in decreasing order by quebracho tannins, skin tannins, seed tannins and finally gallotannins. This methodology can therefore be proposed as an index for determining the effectiveness of different commercial tannins in protecting wines against oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The predictive power of zero intelligence in financial markets

    PubMed Central

    Farmer, J. Doyne; Patelli, Paolo; Zovko, Ilija I.

    2005-01-01

    Standard models in economics stress the role of intelligent agents who maximize utility. However, there may be situations where constraints imposed by market institutions dominate strategic agent behavior. We use data from the London Stock Exchange to test a simple model in which minimally intelligent agents place orders to trade at random. The model treats the statistical mechanics of order placement, price formation, and the accumulation of revealed supply and demand within the context of the continuous double auction and yields simple laws relating order-arrival rates to statistical properties of the market. We test the validity of these laws in explaining cross-sectional variation for 11 stocks. The model explains 96% of the variance of the gap between the best buying and selling prices (the spread) and 76% of the variance of the price diffusion rate, with only one free parameter. We also study the market impact function, describing the response of quoted prices to the arrival of new orders. The nondimensional coordinates dictated by the model approximately collapse data from different stocks onto a single curve. This work is important from a practical point of view, because it demonstrates the existence of simple laws relating prices to order flows and, in a broader context, suggests there are circumstances where the strategic behavior of agents may be dominated by other considerations. PMID:15687505

  17. Effect of rheological parameters on curing rate during NBR injection molding

    NASA Astrophysics Data System (ADS)

    Kyas, Kamil; Stanek, Michal; Manas, David; Skrobak, Adam

    2013-04-01

    In this work, non-isothermal injection molding process for NBR rubber mixture considering Isayev-Deng curing kinetic model, generalized Newtonian model with Carreau-WLF viscosity was modeled by using finite element method in order to understand the effect of volume flow rate, index of non-Newtonian behavior and relaxation time on the temperature profile and curing rate. It was found that for specific geometry and processing conditions, increase in relaxation time or in the index of non-Newtonian behavior increases the curing rate due to viscous dissipation taking place at the flow domain walls.

  18. Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine.

    PubMed

    Yan, Zhao-Da; Zhou, Chong-Guang; Su, Shi-Chuan; Liu, Zhen-Tao; Wang, Xi-Zhen

    2003-01-01

    In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operating parameters on combustion rate was also studied by means of this model. The study showed that the predicted results were good agreement with the experimental data. It was proved that the developed combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine.

  19. Modelling nifedipine photodegradation, photostability and actinometric properties.

    PubMed

    Maafi, Wassila; Maafi, Mounir

    2013-11-01

    The photodegradation of drugs obeying unimolecular mechanisms such as that of nifedipine (NIF) were usually characterised in the literature by zero-, first- and second-order kinetics. This approach has been met with varying success. This paper addresses this issue and proposes a novel approach for unimolecular photodegradation kinetics. The photodegradation of the cardiovascular drug nifedipine is investigated within this framework. Experimental kinetic data of nifedipine photodegradation were obtained by continuous monochromatic irradiation and DAD analysis. Fourth-order Runge-Kutta calculated kinetic data served for the validation of the new semi-empirical integrated rate-law model proposed in this study. A new model equation has been developed and proposed which faithfully describes the kinetic behaviour of NIF in solution for non-isosbestic irradiations at wavelengths where both NIF and its photoproduct absorb. NIF absolute quantum yield values were determined and found to increase with irradiation wavelength according to a defined sigmoid relationship. The effects of increasing NIF or excipients' concentrations on NIF kinetics were successfully modelled and found to improve NIF photostability. The potential of NIF for actinometry has been explored and evaluated. A new reaction order (the so-called Φ-order) has been identified and specifically proposed for unimolecular photodegradation reactions. The semi-empirical and integrated rate-law models facilitated reliable kinetic studies of NIF photodegradation as an example of AB(1Φ) unimolecular reactions. It allowed filling a gap in kinetic studies of drugs since, thus far, thermal first-order or a combination of first- and zero- order kinetic equations were generally applied for drug photoreactions in the literature. Also, a new reaction order, the "Φ-order", has been evidenced and proposed as a specific alternative for photodegradation kinetics. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effects of carbonate species on the kinetics of dechlorination of 1,1,1-trichloroethane by zero-valent iron.

    PubMed

    Agrawal, Abinash; Ferguson, William J; Gardner, Bruce O; Christ, John A; Bandstra, Joel Z; Tratnyek, Paul G

    2002-10-15

    The effect of precipitates on the reactivity of iron metal (Fe0) with 1,1,1-trichloroethane (TCA) was studied in batch systems designed to model groundwaters that contain dissolved carbonate species (i.e., C(IV)). At representative concentrations for high-C(IV) groundwaters (approximately 10(-2) M), the pH in batch reactors containing Fe0 was effectively buffered until most of the aqueous C(IV) precipitated. The precipitate was mainly FeCO3 (siderite) but may also have included some carbonate green rust. Exposure of the Fe0 to dissolved C(IV) accelerated reduction of TCA, and the products formed under these conditions consisted mainly of ethane and ethene, with minor amounts of several butenes. The kinetics of TCA reduction were first-order when C(IV)-enhanced corrosion predominated but showed mixed-order kinetics (zero- and first-order) in experiments performed with passivated Fe0 (i.e., before the onset of pitting corrosion and after repassivation by precipitation of FeCO3). All these data were described by fitting a Michaelis-Menten-type kinetic model and approximating the first-order rate constant as the ratio of the maximum reaction rate (Vm) and the concentration of TCA at half of the maximum rate (K(1/2)). The decrease in Vm/K(1/2) with increasing C(IV) exposure time was fit to a heuristic model assuming proportionality between changes in TCA reduction rate and changes in surface coverage with FeCO3.

  1. Landscape evolution by subglacial quarrying

    NASA Astrophysics Data System (ADS)

    Ugelvig, Sofie V.; Egholm, David L.; Iverson, Neal R.

    2014-05-01

    In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified for bedrock abrasion because rock debris transported in the basal ice drives the erosion. However, a simple relation between rates of sliding and erosion is not well supported when considering models for quarrying of rock blocks from the bed. Iverson (2012) introduced a new subglacial quarrying model that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential stress, form along the lee side of bed obstacles when the sliding velocity is to high to allow for the ice to creep around the obstacles. The erosion rate is quantified by considering the likelihood of rock fracturing on topographic bumps. The model includes a statistical treatment of the bedrock weakness: larger rock bodies have lower strengths since they have greater possibility of containing a large flaw [Jaeger and Cook, 1979]. Inclusion of this effect strongly influences the erosion rates and questions the dominant role of sliding rate in standard models for subglacial erosion. Effective pressure, average bedslope, and bedrock fracture density are primary factors that, in addition to sliding rate, influence the erosion rate of this new quarrying model [Iverson, 2012]. We have implemented the quarrying model in a depth-integrated higher-order ice-sheet model [Egholm et al. 2011], coupled to a model for glacial hydrology. In order to also include the effects of cavitation on the subglacial sliding rate, we use a sliding law proposed by Schoof (2005), which includes an upper limit for the stress that can be supported at the bed. Computational experiments show that the combined influence of pressure, sliding rate and bed slope leads to realistically looking landforms such as U-shaped valleys, cirques, hanging valleys and overdeepenings. Compared to model results using a standard erosion rule, where erosion rate scales with basal sliding, the quarrying model produces valleys that are wider and have more flattened valley floors with several shallow overdeepenings. The overdeepenings are stabilized by hydrology because of the strong influence of effective pressure on quarrying rate. For melt water to escape the overdeepening, the average water pressure must rise as the overdeepening grows, and this keeps the effective pressure low and prevents the overdeepening from growing infinitely. In addition, the strong influence of effective pressure indicates that erosion rate depends strongly on ice thickness. This could associate to sudden jumps in erosion rate and fjord formation along margins that experienced periodic ice sheet configurations in the Quaternary. Egholm, D. L. et al. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical Research, 116, F02012 (2011). Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005). Jaeger, J.C., and Cook, N.G.W. Fundamentals of rock mechanics: New York, Chapman and Hall, 593 p. (1979)

  2. Continuous and Discrete Structured Population Models with Applications to Epidemiology and Marine Mammals

    NASA Astrophysics Data System (ADS)

    Tang, Tingting

    In this dissertation, we develop structured population models to examine how changes in the environmental affect population processes. In Chapter 2, we develop a general continuous time size structured model describing a susceptible-infected (SI) population coupled with the environment. This model applies to problems arising in ecology, epidemiology, and cell biology. The model consists of a system of quasilinear hyperbolic partial differential equations coupled with a system of nonlinear ordinary differential equations that represent the environment. We develop a second-order high resolution finite difference scheme to numerically solve the model. Convergence of this scheme to a weak solution with bounded total variation is proved. We numerically compare the second order high resolution scheme with a first order finite difference scheme. Higher order of convergence and high resolution property are observed in the second order finite difference scheme. In addition, we apply our model to a multi-host wildlife disease problem, questions regarding the impact of the initial population structure and transition rate within each host are numerically explored. In Chapter 3, we use a stage structured matrix model for wildlife population to study the recovery process of the population given an environmental disturbance. We focus on the time it takes for the population to recover to its pre-event level and develop general formulas to calculate the sensitivity or elasticity of the recovery time to changes in the initial population distribution, vital rates and event severity. Our results suggest that the recovery time is independent of the initial population size, but is sensitive to the initial population structure. Moreover, it is more sensitive to the reduction proportion to the vital rates of the population caused by the catastrophe event relative to the duration of impact of the event. We present the potential application of our model to the amphibian population dynamic and the recovery of a certain plant population. In addition, we explore, in details, the application of the model to the sperm whale population in Gulf of Mexico after the Deepwater Horizon oil spill. In Chapter 4, we summarize the results from Chapter 2 and Chapter 3 and explore some further avenues of our research.

  3. A dual-input nonlinear system analysis of autonomic modulation of heart rate

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Mullen, T. J.; Cohen, R. J.

    1996-01-01

    Linear analyses of fluctuations in heart rate and other hemodynamic variables have been used to elucidate cardiovascular regulatory mechanisms. The role of nonlinear contributions to fluctuations in hemodynamic variables has not been fully explored. This paper presents a nonlinear system analysis of the effect of fluctuations in instantaneous lung volume (ILV) and arterial blood pressure (ABP) on heart rate (HR) fluctuations. To successfully employ a nonlinear analysis based on the Laguerre expansion technique (LET), we introduce an efficient procedure for broadening the spectral content of the ILV and ABP inputs to the model by adding white noise. Results from computer simulations demonstrate the effectiveness of broadening the spectral band of input signals to obtain consistent and stable kernel estimates with the use of the LET. Without broadening the band of the ILV and ABP inputs, the LET did not provide stable kernel estimates. Moreover, we extend the LET to the case of multiple inputs in order to accommodate the analysis of the combined effect of ILV and ABP effect on heart rate. Analyzes of data based on the second-order Volterra-Wiener model reveal an important contribution of the second-order kernels to the description of the effect of lung volume and arterial blood pressure on heart rate. Furthermore, physiological effects of the autonomic blocking agents propranolol and atropine on changes in the first- and second-order kernels are also discussed.

  4. Modeling the Kinetics of Contaminants Oxidation and the Generation of Manganese(III) in the Permanganate/Bisulfite Process.

    PubMed

    Sun, Bo; Dong, Hongyu; He, Di; Rao, Dandan; Guan, Xiaohong

    2016-02-02

    Permanganate can be activated by bisulfite to generate soluble Mn(III) (noncomplexed with ligands other than H2O and OH(-)) which oxidizes organic contaminants at extraordinarily high rates. However, the generation of Mn(III) in the permanganate/bisulfite (PM/BS) process and the reactivity of Mn(III) toward emerging contaminants have never been quantified. In this work, Mn(III) generated in the PM/BS process was shown to absorb at 230-290 nm for the first time and disproportionated more easily at higher pH, and thus, the utilization rate of Mn(III) for decomposing organic contaminant was low under alkaline conditions. A Mn(III) generation and utilization model was developed to get the second-order reaction rate parameters of benzene oxidation by soluble Mn(III), and then, benzene was chosen as the reference probe to build a competition kinetics method, which was employed to obtain the second-order rate constants of organic contaminants oxidation by soluble Mn(III). The results revealed that the second-order rate constants of aniline and bisphenol A oxidation by soluble Mn(III) were in the range of 10(5)-10(6) M(-1) s(-1). With the presence of soluble Mn(III) at micromolar concentration, contaminants could be oxidized with the observed rates several orders of magnitude higher than those by common oxidation processes, implying the great potential application of the PM/BS process in water and wastewater treatment.

  5. Optimization of an intracavity Q-switched solid-state second order Raman laser

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqiong; Fu, Xihong; Peng, Hangyu; Zhang, Jun; Qin, Li; Ning, Yongqiang

    2017-01-01

    In this paper, the model of an intracavity Q-switched second order Raman laser is established, the characteristics of the output 2nd Stokes are simulated. The dynamic balance mechanism among intracavity conversion rates of stimulated emission, first order Raman and second order Raman is obtained. Finally, optimization solutions for increasing output 2nd Stokes pulse energy are proposed.

  6. A generic model for a single strain mosquito-transmitted disease with memory on the host and the vector.

    PubMed

    Sardar, Tridip; Rana, Sourav; Bhattacharya, Sabyasachi; Al-Khaled, Kamel; Chattopadhyay, Joydev

    2015-05-01

    In the present investigation, three mathematical models on a common single strain mosquito-transmitted diseases are considered. The first one is based on ordinary differential equations, and other two models are based on fractional order differential equations. The proposed models are validated using published monthly dengue incidence data from two provinces of Venezuela during the period 1999-2002. We estimate several parameters of these models like the order of the fractional derivatives (in case of two fractional order systems), the biting rate of mosquito, two probabilities of infection, mosquito recruitment and mortality rates, etc., from the data. The basic reproduction number, R0, for the ODE system is estimated using the data. For two fractional order systems, an upper bound for, R0, is derived and its value is obtained using the published data. The force of infection, and the effective reproduction number, R(t), for the three models are estimated using the data. Sensitivity analysis of the mosquito memory parameter with some important responses is worked out. We use Akaike Information Criterion (AIC) to identify the best model among the three proposed models. It is observed that the model with memory in both the host, and the vector population provides a better agreement with epidemic data. Finally, we provide a control strategy for the vector-borne disease, dengue, using the memory of the host, and the vector. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A dissolution model that accounts for coverage of mineral surfaces by precipitation in core floods

    NASA Astrophysics Data System (ADS)

    Pedersen, Janne; Jettestuen, Espen; Madland, Merete V.; Hildebrand-Habel, Tania; Korsnes, Reidar I.; Vinningland, Jan Ludvig; Hiorth, Aksel

    2016-01-01

    In this paper, we propose a model for evolution of reactive surface area of minerals due to surface coverage by precipitating minerals. The model is used to interpret results from an experiment where a chalk core was flooded with MgCl2 for 1072 days, giving rise to calcite dissolution and magnesite precipitation. The model successfully describes both the long-term behavior of the measured effluent concentrations and the more or less homogeneous distribution of magnesite found in the core after 1072 days. The model also predicts that precipitating magnesite minerals form as larger crystals or aggregates of smaller size crystals, and not as thin flakes or as a monomolecular layer. Using rate constants obtained from literature gave numerical effluent concentrations that diverged from observed values only after a few days of flooding. To match the simulations to the experimental data after approximately 1 year of flooding, a rate constant that is four orders of magnitude lower than reported by powder experiments had to be used. We argue that a static rate constant is not sufficient to describe a chalk core flooding experiment lasting for nearly 3 years. The model is a necessary extension of standard rate equations in order to describe long term core flooding experiments where there is a large degree of textural alteration.

  8. Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water

    PubMed Central

    Juraszek, Jarek; Bolhuis, Peter G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the protein maintains its compact configuration, while a (de)increase of secondary structure is observed. The calculated folding rate agrees reasonably with experiment, while the unfolding rate is 10 times higher. We discuss possible origins for this mismatch. We recomputed the rates with the forward flux sampling method, and found a discrepancy of four orders of magnitude, probably caused by the method's higher sensitivity to the choice of order parameter with respect to transition interface sampling. Finally, we used the previously computed transition path-sampling ensemble to screen combinations of many order parameters for the best model of the reaction coordinate by employing likelihood maximization. We found that a combination of the root mean-square deviation of the helix and of the entire protein was, of the set of tried order parameters, the one that best describes the reaction coordination. PMID:18676648

  9. Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC)

    NASA Astrophysics Data System (ADS)

    Chen, Jinghuan; Cao, Feifei; Chen, Songze; Ni, Mingjiang; Gao, Xiang; Cen, Kefa

    2014-10-01

    Ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC) were prepared using evaporation-induced self-assembly (EISA) method and used to adsorb NO. N2 sorption, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm their structures. The results showed that the ordered and uniform structures were successfully synthesized and with the introduction of cerium pore properties were not significantly changed. The NO adsorption capacity of OMC was two times larger than that of activated carbon (AC). With the introduction of cerium both the adsorption capacity and the adsorption rate were improved. The effects of residence time and oxygen concentration on NO adsorption were also investigated. Oxygen played an important role in the NO adsorption (especially in the form of chemisorption) and residence time had small influence on the NO adsorption capacity. The NO adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion models. The results indicated that the NO adsorption process can be divided into rapid adsorption period, slow adsorption period, and equilibrium adsorption period. The pseudo-second-order model was the most suitable model for NO adsorption on OMC and Ce-OMC. The rate controlling step was the intraparticle diffusion together with the adsorption reaction.

  10. Predictive Rate-Distortion for Infinite-Order Markov Processes

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah E.; Crutchfield, James P.

    2016-06-01

    Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.

  11. Role of structural inheritance on present-day deformation in intraplate domains

    NASA Astrophysics Data System (ADS)

    Tarayoun, A.; Mazzotti, S.; Gueydan, F.

    2017-12-01

    Understanding the role of structural inheritance on present day surface deformation is a key element for better characterizing the dynamism of intraplate earthquakes. Current deformation and seismicity are poorly understood phenomenon in intra-continental domains. A commonly used hypothesis, based on observations, suggests that intraplate deformation is related to the reactivation of large tectonic paleo-structures, which can act as locally weakened domains. The objective of our study is to quantify the impact of these weakened areas on present-day strain localizations and rates. We combine GPS observations and numerical modeling to analyze the role of structural inheritance on strain rates, with specific observations along the St. Lawrence Valley of eastern Canada. We processed 143 GPS stations from five different networks, in particular one dense campaign network situated along a recognized major normal faults system of the Iapetus paleo-rift, in order to accurately determine the GPS velocities and strain rates. Results of strain rates show magnitude varying from 1.5x10-10 to 6.8x10-9 yr-1 in the St Lawrence valley. Weakened area strain rates are up to one order of magnitude higher than surrounding areas. We compare strain rates inferred from GPS and the new postglacial rebound model. We found that GPS signal is one order of magnitude higher in the weakened zone, which is likely due to structural inheritance. The numerical modeling investigates the steady-state deformation of the continental lithosphere with presence of a weak area. Our new approach integrates ductile structural inheritance using a weakening coefficient that decreases the lithosphere strength at different depths. This allows studying crustal strain rates mainly as a function of rheological contrast and geometry of the weakened domains. Comparison between model predictions and observed GPS strain rates will allow us to investigate the respective role of crustal and mantle tectonic inheritance.

  12. Photocatalytic degradation of carbofuran by TiO2-coated activated carbon: Model for kinetic, electrical energy per order and economic analysis.

    PubMed

    Vishnuganth, M A; Remya, Neelancherry; Kumar, Mathava; Selvaraju, N

    2016-10-01

    The photocatalytic removal of carbofuran (CBF) from aqueous solution in the presence of granular activated carbon supported TiO2 (GAC-TiO2) catalyst was investigated under batch-mode experiments. The presence of GAC enhanced the photocatalytic efficiency of the TiO2 catalyst. Experiments were conducted at different concentrations of CBF to clarify the dependence of apparent rate constant (kapp) in the pseudo first-order kinetics on CBF photodegradation. The general relationship between the adsorption equilibrium constant (K) and reaction rate constant (kr) were explained by using the modified Langmuir-Hinshelwood (L-H) model. From the observed kinetics, it was observed that the surface reaction was the rate limiting step in the GAC-TiO2 catalyzed photodegradation of CBF. The values of K and kr for this pseudo first-order reaction were found to be 0.1942 L  mg(-1) and 1.51 mg L(-1) min(-1), respectively. In addition, the dependence of kapp on the half-life time was determined by calculating the electrical energy per order experimentally (EEO experimental) and also by modeling (EEO model). The batch-mode experimental outcomes revealed the possibility of 100% CBF removal (under optimized conditions and at an initial concentration of 50 mg L(-1) and 100 mg L(-1)) at a contact time of 90 min and 120 min, respectively. Both L-H kinetic model and EEO model fitted well with the batch-mode experimental data and also elucidated successfully the phenomena of photocatalytic degradation in the presence of GAC-TiO2 catalyst. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.

    PubMed

    Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong

    2018-08-01

    This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.

  14. Laboratory constraints on models of earthquake recurrence

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Tullis, Terry; Junger, Jenni; Kilgore, Brian; Goldsby, David

    2014-12-01

    In this study, rock friction "stick-slip" experiments are used to develop constraints on models of earthquake recurrence. Constant rate loading of bare rock surfaces in high-quality experiments produces stick-slip recurrence that is periodic at least to second order. When the loading rate is varied, recurrence is approximately inversely proportional to loading rate. These laboratory events initiate due to a slip-rate-dependent process that also determines the size of the stress drop and, as a consequence, stress drop varies weakly but systematically with loading rate. This is especially evident in experiments where the loading rate is changed by orders of magnitude, as is thought to be the loading condition of naturally occurring, small repeating earthquakes driven by afterslip, or low-frequency earthquakes loaded by episodic slip. The experimentally observed stress drops are well described by a logarithmic dependence on recurrence interval that can be cast as a nonlinear slip predictable model. The fault's rate dependence of strength is the key physical parameter. Additionally, even at constant loading rate the most reproducible laboratory recurrence is not exactly periodic, unlike existing friction recurrence models. We present example laboratory catalogs that document the variance and show that in large catalogs, even at constant loading rate, stress drop and recurrence covary systematically. The origin of this covariance is largely consistent with variability of the dependence of fault strength on slip rate. Laboratory catalogs show aspects of both slip and time predictability, and successive stress drops are strongly correlated indicating a "memory" of prior slip history that extends over at least one recurrence cycle.

  15. Software reliability studies

    NASA Technical Reports Server (NTRS)

    Hoppa, Mary Ann; Wilson, Larry W.

    1994-01-01

    There are many software reliability models which try to predict future performance of software based on data generated by the debugging process. Our research has shown that by improving the quality of the data one can greatly improve the predictions. We are working on methodologies which control some of the randomness inherent in the standard data generation processes in order to improve the accuracy of predictions. Our contribution is twofold in that we describe an experimental methodology using a data structure called the debugging graph and apply this methodology to assess the robustness of existing models. The debugging graph is used to analyze the effects of various fault recovery orders on the predictive accuracy of several well-known software reliability algorithms. We found that, along a particular debugging path in the graph, the predictive performance of different models can vary greatly. Similarly, just because a model 'fits' a given path's data well does not guarantee that the model would perform well on a different path. Further we observed bug interactions and noted their potential effects on the predictive process. We saw that not only do different faults fail at different rates, but that those rates can be affected by the particular debugging stage at which the rates are evaluated. Based on our experiment, we conjecture that the accuracy of a reliability prediction is affected by the fault recovery order as well as by fault interaction.

  16. Modeling of near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Shih, T. H.; Mansour, N. N.

    1990-01-01

    An improved k-epsilon model and a second order closure model is presented for low Reynolds number turbulence near a wall. For the k-epsilon model, a modified form of the eddy viscosity having correct asymptotic near wall behavior is suggested, and a model for the pressure diffusion term in the turbulent kinetic energy equation is proposed. For the second order closure model, the existing models are modified for the Reynolds stress equations to have proper near wall behavior. A dissipation rate equation for the turbulent kinetic energy is also reformulated. The proposed models satisfy realizability and will not produce unphysical behavior. Fully developed channel flows are used for model testing. The calculations are compared with direct numerical simulations. It is shown that the present models, both the k-epsilon model and the second order closure model, perform well in predicting the behavior of the near wall turbulence. Significant improvements over previous models are obtained.

  17. Confirmation of Monod Model for Biofiltration of Styrene Vapors from Waste Flue Gas

    PubMed Central

    Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; AslHashemi, Ahmad

    2012-01-01

    Background: The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. Methods: A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. Results: The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. Conclusion: In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution. PMID:24688940

  18. First-order inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1992-01-01

    I discuss the most recent model of inflation. In first-order inflation the inflationary epoch is associated with a first-order phase transition, with the most likely candidate being GUT symmetry breaking. The transition from the false-vacuum inflationary phase to the true-vacuum radiation-dominated phase proceeds through the nucleation and percolation of true-vacuum bubbles. The first successful and simplest model of first-order inflation, extended inflation, is discussed in some detail: evolution of the cosmic-scale factor, reheating, density perturbations, and the production of gravitational waves both from quantum fluctuations and bubble collisions. Particular attention is paid to the most critical issue in any model of first-order inflation: the requirements on the nucleation rate to ensure a graceful transition from the inflationary phase to the radiation-dominated phase.

  19. Solutions of the chemical kinetic equations for initially inhomogeneous mixtures.

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.

    1973-01-01

    Following the recent discussions by O'Brien (1971) and Donaldson and Hilst (1972) of the effects of inhomogeneous mixing and turbulent diffusion on simple chemical reaction rates, the present report provides a more extensive analysis of when inhomogeneous mixing has a significant effect on chemical reaction rates. The analysis is then extended to the development of an approximate chemical sub-model which provides much improved predictions of chemical reaction rates over a wide range of inhomogeneities and pathological distributions of the concentrations of the reacting chemical species. In particular, the development of an approximate representation of the third-order correlations of the joint concentration fluctuations permits closure of the chemical sub-model at the level of the second-order moments of these fluctuations and the mean concentrations.

  20. Development of a model describing the inhibitory effect of selected preservatives on the growth of Listeria monocytogenes in a meat model system.

    PubMed

    Dussault, Dominic; Vu, Khanh Dang; Lacroix, Monique

    2016-02-01

    The objective of this study was to evaluate the impact of seven independent factors consisting of sodium nitrite, pH, sodium chloride, sodium acetate, sodium lactate syrup, calcium propionate and a blend of nisin and hop alpha acids on the growth rate of Listeria monocytogenes in ham as a model of ready-to-eat (RTE) meat products. A central composite consisted of seven factors mentioned above was designed and the response surface methodology was applied for creating a mathematic model to predict the growth rate of L. monocytogenes in RTE meat products. Six parameters showed a significant (P ≤ 0.1) influence on the growth rate of L. monocytogenes. Only the blend of nisin and hop alpha acids did not show any significant effect (P > 0.1) in the concentrations used in this study. Increasing concentration of sodium chloride, sodium nitrite, sodium acetate, potassium lactate and calcium propionate in meat reduced bacterial growth rate while increasing pH in meat increased the growth rate of L. monocytogenes. The current mathematical equation will be an important tool in order to reduce the required number of challenge studies performed in order to ensure a safe food product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A multi-species reactive transport model to estimate biogeochemical rates based on single-well push-pull test data

    NASA Astrophysics Data System (ADS)

    Phanikumar, Mantha S.; McGuire, Jennifer T.

    2010-08-01

    Push-pull tests are a popular technique to investigate various aquifer properties and microbial reaction kinetics in situ. Most previous studies have interpreted push-pull test data using approximate analytical solutions to estimate (generally first-order) reaction rate coefficients. Though useful, these analytical solutions may not be able to describe important complexities in rate data. This paper reports the development of a multi-species, radial coordinate numerical model (PPTEST) that includes the effects of sorption, reaction lag time and arbitrary reaction order kinetics to estimate rates in the presence of mixing interfaces such as those created between injected "push" water and native aquifer water. The model has the ability to describe an arbitrary number of species and user-defined reaction rate expressions including Monod/Michelis-Menten kinetics. The FORTRAN code uses a finite-difference numerical model based on the advection-dispersion-reaction equation and was developed to describe the radial flow and transport during a push-pull test. The accuracy of the numerical solutions was assessed by comparing numerical results with analytical solutions and field data available in the literature. The model described the observed breakthrough data for tracers (chloride and iodide-131) and reactive components (sulfate and strontium-85) well and was found to be useful for testing hypotheses related to the complex set of processes operating near mixing interfaces.

  2. Mathematical modeling of silica deposition in Tongonan-I reinjection wells, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malate, R.C.M.; O`Sullivan, M.J.

    1993-10-01

    Mathematical models of silica deposition are derived using the method of characteristics for the problem of variable rate injection into a well producing radially symmetric flow. Solutions are developed using the first order rate equation of silica deposition suggested by Rimstidt and Barnes (1980). The changes in porosity and permeability resulting from deposition are included in the models. The models developed are successfully applied in simulating the changes in injection capacity in some of the reinjection wells in Tongonan geothermal field, Philippines.

  3. A simple analytical model for signal amplification by reversible exchange (SABRE) process.

    PubMed

    Barskiy, Danila A; Pravdivtsev, Andrey N; Ivanov, Konstantin L; Kovtunov, Kirill V; Koptyug, Igor V

    2016-01-07

    We demonstrate an analytical model for the description of the signal amplification by reversible exchange (SABRE) process. The model relies on a combined analysis of chemical kinetics and the evolution of the nuclear spin system during the hyperpolarization process. The presented model for the first time provides rationale for deciding which system parameters (i.e. J-couplings, relaxation rates, reaction rate constants) have to be optimized in order to achieve higher signal enhancement for a substrate of interest in SABRE experiments.

  4. Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite.

    PubMed

    Jovanovic, Mina; Rajic, Nevenka; Obradovic, Bojana

    2012-09-30

    Removal of heavy metal ions from aqueous solutions using zeolites is widely described by pseudo-second order kinetics although this model may not be valid under all conditions. In this work, we have extended approaches used for derivation of this model in order to develop a novel kinetic model that is related to the ion exchange mechanism underlying sorption of metal ions in zeolites. The novel model assumed two reversible steps, i.e. release of sodium ions from the zeolite lattice followed by bonding of the metal ion. The model was applied to experimental results of Cu(II) sorption by natural clinoptilolite-rich zeolitic tuff at different initial concentrations and temperatures and then validated by predictions of ion exchange kinetics of other divalent heavy metal ions (i.e. Mn(II), Zn(II) and Pb(II)). Model predictions were in excellent agreements with experimental data for all investigated systems. In regard to the proposed mechanism, modeling results implied that the sodium ion release rate was constant for all investigated metals while the overall rate was mainly determined by the rate of heavy metal ion bonding to the lattice. In addition, prediction capabilities of the novel model were demonstrated requiring one experimentally determined parameter, only. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. High-order shock-fitted detonation propagation in high explosives

    NASA Astrophysics Data System (ADS)

    Romick, Christopher M.; Aslam, Tariq D.

    2017-03-01

    A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting strategy, in conjunction with a nonlinear optimizer, a new set of reaction rate parameters improves the correlation of the model to experimental results. Finally, this new model is tested against two dimensional slabs as a validation test.

  6. A hybrid constructed wetland for organic-material and nutrient removal from sewage: Process performance and multi-kinetic models.

    PubMed

    Nguyen, X Cuong; Chang, S Woong; Nguyen, Thi Loan; Ngo, H Hao; Kumar, Gopalakrishnan; Banu, J Rajesh; Vu, M Cuong; Le, H Sinh; Nguyen, D Duc

    2018-09-15

    A pilot-scale hybrid constructed wetland with vertical flow and horizontal flow in series was constructed and used to investigate organic material and nutrient removal rate constants for wastewater treatment and establish a practical predictive model for use. For this purpose, the performance of multiple parameters was statistically evaluated during the process and predictive models were suggested. The measurement of the kinetic rate constant was based on the use of the first-order derivation and Monod kinetic derivation (Monod) paired with a plug flow reactor (PFR) and a continuously stirred tank reactor (CSTR). Both the Lindeman, Merenda, and Gold (LMG) analysis and Bayesian model averaging (BMA) method were employed for identifying the relative importance of variables and their optimal multiple regression (MR). The results showed that the first-order-PFR (M 2 ) model did not fit the data (P > 0.05, and R 2  < 0.5), whereas the first-order-CSTR (M 1 ) model for the chemical oxygen demand (COD Cr ) and Monod-CSTR (M 3 ) model for the COD Cr and ammonium nitrogen (NH 4 -N) showed a high correlation with the experimental data (R 2  > 0.5). The pollutant removal rates in the case of M 1 were 0.19 m/d (COD Cr ) and those for M 3 were 25.2 g/m 2 ∙d for COD Cr and 2.63 g/m 2 ∙d for NH 4 -N. By applying a multi-variable linear regression method, the optimal empirical models were established for predicting the final effluent concentration of five days' biochemical oxygen demand (BOD 5 ) and NH 4 -N. In general, the hydraulic loading rate was considered an important variable having a high value of relative importance, which appeared in all the optimal predictive models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Adaptation of hidden Markov models for recognizing speech of reduced frame rate.

    PubMed

    Lee, Lee-Min; Jean, Fu-Rong

    2013-12-01

    The frame rate of the observation sequence in distributed speech recognition applications may be reduced to suit a resource-limited front-end device. In order to use models trained using full-frame-rate data in the recognition of reduced frame-rate (RFR) data, we propose a method for adapting the transition probabilities of hidden Markov models (HMMs) to match the frame rate of the observation. Experiments on the recognition of clean and noisy connected digits are conducted to evaluate the proposed method. Experimental results show that the proposed method can effectively compensate for the frame-rate mismatch between the training and the test data. Using our adapted model to recognize the RFR speech data, one can significantly reduce the computation time and achieve the same level of accuracy as that of a method, which restores the frame rate using data interpolation.

  8. Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water

    NASA Astrophysics Data System (ADS)

    Reinhardt, Aleks; Doye, Jonathan P. K.; Noya, Eva G.; Vega, Carlos

    2012-11-01

    We present a local order parameter based on the standard Steinhardt-Ten Wolde approach that is capable both of tracking and of driving homogeneous ice nucleation in simulations of all-atom models of water. We demonstrate that it is capable of forcing the growth of ice nuclei in supercooled liquid water simulated using the TIP4P/2005 model using over-biassed umbrella sampling Monte Carlo simulations. However, even with such an order parameter, the dynamics of ice growth in deeply supercooled liquid water in all-atom models of water are shown to be very slow, and so the computation of free energy landscapes and nucleation rates remains extremely challenging.

  9. A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics

    NASA Astrophysics Data System (ADS)

    Lei, Dong; Liang, Yingjie; Xiao, Rui

    2018-01-01

    We develop a fractional model to describe the thermomechanical behavior of amorphous thermoplastics. The fractional model is composed of two parallel fractional Maxwell elements. The first fractional Maxwell model is used to describe the glass transition, while the second component is aimed at describing the viscous flow. We further derive the analytical solutions for the stress relaxation modulus and complex modulus through Laplace transform. We then demonstrate the model is able to describe the master curves of the stress relaxation modulus, storage modulus and loss modulus, which all show two distinct transition regions. The obtained parameters show that the modulus of the two fractional Maxwell elements differs in 2-3 orders of magnitude, while the relaxation time differs in 7-9 orders of magnitude. Finally, we apply the model to describe the stress response of constant strain rate tests. The model, together with the parameters obtained from fitting the master curve of stress relaxation modulus, can accurately predict the temperature and strain rate dependent stress response.

  10. The origins of radial fracture systems and associated large lava flows on Venus

    NASA Technical Reports Server (NTRS)

    Parfitt, Elisabeth A.; Wilson, Lionel; Head, James W., III

    1992-01-01

    Magellan images have revealed the existence of systems of radial fractures on venus that are very similar in form to terrestrial dike swarms such as the Mackenzie swarm in Northern Canada. The association of many of the fracture systems with lava flows, calderas, and volcanic edifices further support the idea of a dike emplacement origin. A global survey of the Magellan images has allowed the location of 300 such fracture systems. Two types of fracture systems are defined. A series of models were developed to simulate the emplacement of dikes on Venus. Observations of fracture lengths and widths were then used to constrain the emplacement conditions. The model results show that the great length and relatively large width of the fractures can only be explained if the dikes that produce them were emplaced in high driving pressure (pressure buffered) conditions. Such conditions imply high rates of melt production, which is consistent with the melt being derived directly from a plume head. We have recently modeled the vertical emplacement of a dike from the top of a mantle plume and calculated the eruption rates such a dike would produce on reaching the surface. This modeling shows that eruption rates of approximately 0.1 cu km/hr can readily be generated by such a dike, consistent with the above results. However, the sensitivity of the model to dike width and therefore driving pressure means that eruption rates from dikes emplaced from the base of the crust or the head of a mantle plume could be orders of magnitude higher than this. Clearly, therefore, the model needs to be refined in order to better constrain eruption conditions. However, it is worth noting here that the initial results do show that even for moderate dike widths, eruption rates could be at least on the order of those estimated for terrestrial flood basalts.

  11. Simulation of substrate degradation in composting of sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jun; Gao Ding, E-mail: gaod@igsnrr.ac.c; Chen Tongbin

    2010-10-15

    To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k{sub 20} (the first-order rate constant at 20 {sup o}C). After comparison withmore » experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k{sub 20}, k{sub 20s} (first-order rate coefficient of slow fraction of BVS at 20 {sup o}C) of the sewage sludge were estimated as 0.082 and 0.015 d{sup -1}, respectively.« less

  12. Accelerated Aging of Lead-Free Propellant

    NASA Technical Reports Server (NTRS)

    Furrow, Keith W.; Jervey, David D.

    2000-01-01

    Following higher than expected 2-NDPA depletion rates in a lead-free doublebase formulation (RPD-422), an accelerated aging study was conducted to verify the depletion rates. A test plan was prepared to compare the aging characteristics of lead-free propellant and NOSIH-AA2. The study was also designed to determine which lead-free ballistic modifiers accelerated 2-NDPA depletion. The increased depletion rate occurred in propellants containing monobasic copper salicylate. Four lead-free propellants were then formulated to improved aging characteristics over previous lead-free propellant formulations. The new formulations reduced or replaced the monobasic copper salicylate. The new formulations had improved aging characteristics. Their burn rates, however, were unacceptable for use in a 2.75 inch rocket. To compare aging characteristics, stabilizer depletion rates of RPD-422, AA2, M28, and RLC 470/6A were measured or taken from the literature. The data were fit to a kinetic model. The model contained first and zero order terms which allowed the stabilizer concentration to go to zero. In the model, only the concentration of the primary stabilizer was considered. Derivatives beyond the first nitrated or nitroso derivative of 2-NPDA were not considered. The rate constants were fit to the Arrhenius equation and extrapolated to lower temperatures. The time to complete stabilizer depletion was estimated using the kinetic model. The four propellants were compared and the RPD-422 depleted faster at 45 C than both A22 and M28. These types of predictions depend on the validity of the model and on confidence in the Arrhenius relationship holding at lower temperatures. At 45 C, the zero order portion of the model dominates the depletion rate.

  13. Simple stochastic birth and death models of genome evolution: was there enough time for us to evolve?

    PubMed

    Karev, Georgy P; Wolf, Yuri I; Koonin, Eugene V

    2003-10-12

    The distributions of many genome-associated quantities, including the membership of paralogous gene families can be approximated with power laws. We are interested in developing mathematical models of genome evolution that adequately account for the shape of these distributions and describe the evolutionary dynamics of their formation. We show that simple stochastic models of genome evolution lead to power-law asymptotics of protein domain family size distribution. These models, called Birth, Death and Innovation Models (BDIM), represent a special class of balanced birth-and-death processes, in which domain duplication and deletion rates are asymptotically equal up to the second order. The simplest, linear BDIM shows an excellent fit to the observed distributions of domain family size in diverse prokaryotic and eukaryotic genomes. However, the stochastic version of the linear BDIM explored here predicts that the actual size of large paralogous families is reached on an unrealistically long timescale. We show that introduction of non-linearity, which might be interpreted as interaction of a particular order between individual family members, allows the model to achieve genome evolution rates that are much better compatible with the current estimates of the rates of individual duplication/loss events.

  14. Experimental and Computational Interrogation of Fast SCR Mechanism and Active Sites on H-Form SSZ-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sichi; Zheng, Yang; Gao, Feng

    Experiment and density functional theory (DFT) models are combined to develop a unified, quantitative model of the mechanism and kinetics of fast selective catalytic reduction (SCR) of NO/NO2 mixtures over H-SSZ-13 zeolite. Rates, rate orders, and apparent activation energies collected under differential conditions reveal two distinct kinetic regimes. First-principles thermodynamics simulations are used to determine the relative coverages of free Brønsted sites, chemisorbed NH4+ and physisorbed NH3 as a function of reaction conditions. First-principles metadynamics calculations show that all three sites can contribute to the rate-limiting N-N bond forming step in fast SCR. The results are used to parameterize amore » kinetic model that encompasses the full range of reaction conditions and recovers observed rate orders and apparent activation energies. Observed kinetic regimes are related to changes in most-abundant surface intermediates. Financial support was provided by the National Science Foundation GAOLI program under award number 1258690-CBET. We thank the Center for Research Computing at Notre« less

  15. A two-scale model for dynamic damage evolution

    NASA Astrophysics Data System (ADS)

    Keita, Oumar; Dascalu, Cristian; François, Bertrand

    2014-03-01

    This paper presents a new micro-mechanical damage model accounting for inertial effect. The two-scale damage model is fully deduced from small-scale descriptions of dynamic micro-crack propagation under tensile loading (mode I). An appropriate micro-mechanical energy analysis is combined with homogenization based on asymptotic developments in order to obtain the macroscopic evolution law for damage. Numerical simulations are presented in order to illustrate the ability of the model to describe known behaviors like size effects for the structural response, strain-rate sensitivity, brittle-ductile transition and wave dispersion.

  16. An EOQ model for weibull distribution deterioration with time-dependent cubic demand and backlogging

    NASA Astrophysics Data System (ADS)

    Santhi, G.; Karthikeyan, K.

    2017-11-01

    In this article we introduce an economic order quantity model with weibull deterioration and time dependent cubic demand rate where holding costs as a linear function of time. Shortages are allowed in the inventory system are partially and fully backlogging. The objective of this model is to minimize the total inventory cost by using the optimal order quantity and the cycle length. The proposed model is illustrated by numerical examples and the sensitivity analysis is performed to study the effect of changes in parameters on the optimum solutions.

  17. Optimal aeroassisted coplanar orbital transfer using an energy model

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Taylor, Deborah B.

    1989-01-01

    The atmospheric portion of the trajectories for the aeroassisted coplanar orbit transfer was investigated. The equations of motion for the problem are expressed using reduced order model and total vehicle energy, kinetic plus potential, as the independent variable rather than time. The order reduction is achieved analytically without an approximation of the vehicle dynamics. In this model, the problem of coplanar orbit transfer is seen as one in which a given amount of energy must be transferred from the vehicle to the atmosphere during the trajectory without overheating the vehicle. An optimal control problem is posed where a linear combination of the integrated square of the heating rate and the vehicle drag is the cost function to be minimized. The necessary conditions for optimality are obtained. These result in a 4th order two-point-boundary-value problem. A parametric study of the optimal guidance trajectory in which the proportion of the heating rate term versus the drag varies is made. Simulations of the guidance trajectories are presented.

  18. CO/sub 2/ absorption into aqueous MDEA and MDEA/MEA solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critchfield, J.; Rochelle, G.T.

    1987-01-01

    The rate of absorption of CO/sub 2/ into 2 molal MDEA was measured by following solution composition in a stirred-cell batch reactor. The conditions investigated were 9.5 - 62/sup 0/C at a nominal CO/sub 2/ pressure of 1 atm. The data were modelled with a combined mass transfer and equilibrium model which treated the reaction of CO/sub 2/ with MDEA as second order and reversible, rather than pseudo-first order. The resulting activation energy was 13.7 kcal/gmol, and the rate constant at 30.5/sup 0/C was 4.0 (Ms)/sup -1/. The assumption of pseudo-first order conditions was found to reduce the apparent activationmore » energy to approximately 9 kcal/gmol. CO/sub 2/ absorption into 1.36 molal MDEA/0.61 molal MEA was studied at 31/sup 0/C. The experimental data were predicted better by a mass transfer model based on a shuttle mechanism than by one with two parallel reactions.« less

  19. Construction of moment-matching multinomial lattices using Vandermonde matrices and Gröbner bases

    NASA Astrophysics Data System (ADS)

    Lundengârd, Karl; Ogutu, Carolyne; Silvestrov, Sergei; Ni, Ying; Weke, Patrick

    2017-01-01

    In order to describe and analyze the quantitative behavior of stochastic processes, such as the process followed by a financial asset, various discretization methods are used. One such set of methods are lattice models where a time interval is divided into equal time steps and the rate of change for the process is restricted to a particular set of values in each time step. The well-known binomial- and trinomial models are the most commonly used in applications, although several kinds of higher order models have also been examined. Here we will examine various ways of designing higher order lattice schemes with different node placements in order to guarantee moment-matching with the process.

  20. Controlled Hydrogen Peroxide Decomposition for a Solid Oxide Fuel Cell (SOFC) Oxidant Source with a Microreactor Model

    DTIC Science & Technology

    2007-10-01

    established assuming first order kinetics weighted via an inputted catalyst mass, Mcat (equation 2). catrxn MCk *−=22OHr (2) The...H2O2 (0-50%w/w) solution heat capacity(J/kg*K) M cat Mcat 0.03 Mass of Catalyst (g) Deffhh2o 7.85E-10 Average effective diffusivity of H2O2 into... Mcat *c Rate Law for Elementary 1st Order Irreversible Reaction (mol/((s*m^3)) r H2O rtb -rt Rate Law for Elementary 1st Order Irreversible Reaction

  1. Revision and proposed modification for a total maximum daily load model for Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Wherry, Susan A.; Wood, Tamara M.; Anderson, Chauncey W.

    2015-01-01

    Using the extended 1991–2010 external phosphorus loading dataset, the lake TMDL model was recalibrated following the same procedures outlined in the Phase 1 review. The version of the model selected for further development incorporated an updated sediment initial condition, a numerical solution method for the chlorophyll a model, changes to light and phosphorus factors limiting algal growth, and a new pH-model regression, which removed Julian day dependence in order to avoid discontinuities in pH at year boundaries. This updated lake TMDL model was recalibrated using the extended dataset in order to compare calibration parameters to those obtained from a calibration with the original 7.5-year dataset. The resulting algal settling velocity calibrated from the extended dataset was more than twice the value calibrated with the original dataset, and, because the calibrated values of algal settling velocity and recycle rate are related (more rapid settling required more rapid recycling), the recycling rate also was larger than that determined with the original dataset. These changes in calibration parameters highlight the uncertainty in critical rates in the Upper Klamath Lake TMDL model and argue for their direct measurement in future data collection to increase confidence in the model predictions.

  2. Application of balancing methods in modeling the penicillin fermentation.

    PubMed

    Heijnen, J J; Roels, J A; Stouthamer, A H

    1979-12-01

    This paper shows the application of elementary balancing methods in combination with simple kinetic equations in the formulation of an unstructured model for the fed-batch process for the production of penicillin. The rate of substrate uptake is modeled with a Monod-type relationship. The specific penicillin production rate is assumed to be a function of growth rate. Hydrolysis of penicillin to penicilloic acid is assumed to be first order in penicillin. In simulations with the present model it is shown that the model, although assuming a strict relationship between specific growth rate and penicillin productivity, allows for the commonly observed lag phase in the penicillin concentration curve and the apparent separation between growth and production phase (idiophase-trophophase concept). Furthermore it is shown that the feed rate profile during fermentation is of vital importance in the realization of a high production rate throughout the duration of the fermentation. It is emphasized that the method of modeling presented may also prove rewarding for an analysis of fermentation processes other than the penicillin fermentation.

  3. MICROBIAL DEGRADATION OF SEVEN AMIDES BY SUSPENDED BACTERIAL POPULATIONS

    EPA Science Inventory

    Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the...

  4. Cryovolcanic History of Ceres from Topography

    NASA Astrophysics Data System (ADS)

    Sori, M. M.; Sizemore, H. G.; Byrne, S.; Bramson, A. M.; Bland, M. T.; Stein, N. T.; Russell, C. T.; Raymond, C. A.

    2018-06-01

    We use image analysis and flow modeling of domes on Ceres to argue that they are cryovolcanic in origin. Results imply an average cryovolcanic rate of 10000 m^3/yr, orders of magnitude lower than rates of basaltic volcanism on terrestrial planets.

  5. Effect of Impacts on the Cooling Rates of Differentiated Planetesimals

    NASA Astrophysics Data System (ADS)

    Lyons, R. J.; Bowling, T. J.; Ciesla, F. J.; Davison, T. M.; Collins, G. S.

    2018-05-01

    I have modeled planetismal impacts in the early solar system, following their formation, differentiation, and cooling. I found that small collisions can expose the core, resulting in more than an order of magnitude increase in the cooling rates.

  6. Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant

    NASA Astrophysics Data System (ADS)

    Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram; Garg, Tarun Kr.

    2015-12-01

    This paper deals with the Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant. This system was modeled using Markov birth-death process with the assumption that the failure and repair rates of each subsystem follow exponential distribution. The first-order Chapman-Kolmogorov differential equations are developed with the use of mnemonic rule and these equations are solved with Runga-Kutta fourth-order method. The long-run availability, reliability and mean time between failures are computed for various choices of failure and repair rates of subsystems of the system. The findings of the paper are discussed with the plant personnel to adopt and practice suitable maintenance policies/strategies to enhance the performance of the urea synthesis system of the fertilizer plant.

  7. Theoretical study of gas hydrate decomposition kinetics--model development.

    PubMed

    Windmeier, Christoph; Oellrich, Lothar R

    2013-10-10

    In order to provide an estimate of the order of magnitude of intrinsic gas hydrate dissolution and dissociation kinetics, the "Consecutive Desorption and Melting Model" (CDM) is developed by applying only theoretical considerations. The process of gas hydrate decomposition is assumed to comprise two consecutive and repetitive quasi chemical reaction steps. These are desorption of the guest molecule followed by local solid body melting. The individual kinetic steps are modeled according to the "Statistical Rate Theory of Interfacial Transport" and the Wilson-Frenkel approach. All missing required model parameters are directly linked to geometric considerations and a thermodynamic gas hydrate equilibrium model.

  8. Regularized learning of linear ordered-statistic constant false alarm rate filters (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Havens, Timothy C.; Cummings, Ian; Botts, Jonathan; Summers, Jason E.

    2017-05-01

    The linear ordered statistic (LOS) is a parameterized ordered statistic (OS) that is a weighted average of a rank-ordered sample. LOS operators are useful generalizations of aggregation as they can represent any linear aggregation, from minimum to maximum, including conventional aggregations, such as mean and median. In the fuzzy logic field, these aggregations are called ordered weighted averages (OWAs). Here, we present a method for learning LOS operators from training data, viz., data for which you know the output of the desired LOS. We then extend the learning process with regularization, such that a lower complexity or sparse LOS can be learned. Hence, we discuss what 'lower complexity' means in this context and how to represent that in the optimization procedure. Finally, we apply our learning methods to the well-known constant-false-alarm-rate (CFAR) detection problem, specifically for the case of background levels modeled by long-tailed distributions, such as the K-distribution. These backgrounds arise in several pertinent imaging problems, including the modeling of clutter in synthetic aperture radar and sonar (SAR and SAS) and in wireless communications.

  9. Laboratory constraints on models of earthquake recurrence

    USGS Publications Warehouse

    Beeler, Nicholas M.; Tullis, Terry; Junger, Jenni; Kilgore, Brian D.; Goldsby, David L.

    2014-01-01

    In this study, rock friction ‘stick-slip’ experiments are used to develop constraints on models of earthquake recurrence. Constant-rate loading of bare rock surfaces in high quality experiments produces stick-slip recurrence that is periodic at least to second order. When the loading rate is varied, recurrence is approximately inversely proportional to loading rate. These laboratory events initiate due to a slip rate-dependent process that also determines the size of the stress drop [Dieterich, 1979; Ruina, 1983] and as a consequence, stress drop varies weakly but systematically with loading rate [e.g., Gu and Wong, 1991; Karner and Marone, 2000; McLaskey et al., 2012]. This is especially evident in experiments where the loading rate is changed by orders of magnitude, as is thought to be the loading condition of naturally occurring, small repeating earthquakes driven by afterslip, or low-frequency earthquakes loaded by episodic slip. As follows from the previous studies referred to above, experimentally observed stress drops are well described by a logarithmic dependence on recurrence interval that can be cast as a non-linear slip-predictable model. The fault’s rate dependence of strength is the key physical parameter. Additionally, even at constant loading rate the most reproducible laboratory recurrence is not exactly periodic, unlike existing friction recurrence models. We present example laboratory catalogs that document the variance and show that in large catalogs, even at constant loading rate, stress drop and recurrence co-vary systematically. The origin of this covariance is largely consistent with variability of the dependence of fault strength on slip rate. Laboratory catalogs show aspects of both slip and time predictability and successive stress drops are strongly correlated indicating a ‘memory’ of prior slip history that extends over at least one recurrence cycle.

  10. The Birth Order Puzzle.

    ERIC Educational Resources Information Center

    Zajonc, R. B.; And Others

    1979-01-01

    Discusses the controversy of the relationship between birth order and intellectual performance through a detailed evaluation of the confluence model which assumes that the rate of intellectual growth is a function of the intellectual environment within the family and associated with the special circumstances of last children. (CM)

  11. Generality of a congruity effect in judgements of relative order.

    PubMed

    Liu, Yang S; Chan, Michelle; Caplan, Jeremy B

    2014-10-01

    The judgement of relative order (JOR) procedure is used to investigate serial-order memory. Measuring response times, the wording of the instructions (whether the earlier or the later item was designated as the target) reversed the direction of search in subspan lists (Chan, Ross, Earle, & Caplan Psychonomic Bulletin & Review, 16(5), 945-951, 2009). If a similar congruity effect applied to above-span lists and, furthermore, with error rate as the measure, this could suggest how to model order memory across scales. Participants performed JORs on lists of nouns (Experiment 1: list lengths = 4, 6, 8, 10) or consonants (Experiment 2: list lengths = 4, 8). In addition to the usual distance, primacy, and recency effects, instructions interacted with serial position of the later probe in both experiments, not only in response time, but also in error rate, suggesting that availability, not just accessibility, is affected by instructions. The congruity effect challenges current memory models. We fitted Hacker's (Journal of Experimental Psychology: Human Learning and Memory, 6(6), 651-675, 1980) self-terminating search model to our data and found that a switch in search direction could explain the congruity effect for short lists, but not longer lists. This suggests that JORs may need to be understood via direct-access models, adapted to produce a congruity effect, or a mix of mechanisms.

  12. Optimal firing rate estimation

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.

    2001-01-01

    We define a measure for evaluating the quality of a predictive model of the behavior of a spiking neuron. This measure, information gain per spike (Is), indicates how much more information is provided by the model than if the prediction were made by specifying the neuron's average firing rate over the same time period. We apply a maximum Is criterion to optimize the performance of Gaussian smoothing filters for estimating neural firing rates. With data from bullfrog vestibular semicircular canal neurons and data from simulated integrate-and-fire neurons, the optimal bandwidth for firing rate estimation is typically similar to the average firing rate. Precise timing and average rate models are limiting cases that perform poorly. We estimate that bullfrog semicircular canal sensory neurons transmit in the order of 1 bit of stimulus-related information per spike.

  13. Formation kinetics of gemfibrozil chlorination reaction products: analysis and application.

    PubMed

    Krkosek, Wendy H; Peldszus, Sigrid; Huck, Peter M; Gagnon, Graham A

    2014-07-01

    Aqueous chlorination kinetics of the lipid regulator gemfibrozil and the formation of reaction products were investigated in deionized water over the pH range 3 to 9, and in two wastewater matrices. Chlorine oxidation of gemfibrozil was found to be highly dependent on pH. No statistically significant degradation of gemfibrozil was observed at pH values greater than 7. Gemfibrozil oxidation between pH 4 and 7 was best represented by first order kinetics. At pH 3, formation of three reaction products was observed. 4'-C1Gem was the only reaction product formed from pH 4-7 and was modeled with zero order kinetics. Chlorine oxidation of gemfibrozil in two wastewater matrices followed second order kinetics. 4'-C1Gem was only formed in wastewater with pH below 7. Deionized water rate kinetic models were applied to two wastewater effluents with gemfibrozil concentrations reported in literature in order to calculate potential mass loading rates of 4'C1Gem to the receiving water.

  14. Enabling electroweak baryogenesis through dark matter

    DOE PAGES

    Lewicki, Marek; Rindler-Daller, Tanja; Wells, James D.

    2016-06-09

    We study the impact on electroweak baryogenesis from a swifter cosmological expansion induced by dark matter. We detail the experimental bounds that one can place on models that realize it, and we investigate the modifications of these bounds that result from a non-standard cosmological history. The modifications can be sizeable if the expansion rate of the Universe increases by several orders of magnitude. We illustrate the impact through the example of scalar field dark matter, which can alter the cosmological history enough to enable a strong-enough first-order phase transition in the Standard Model when it is supplemented by a dimensionmore » six operator directly modifying the Higgs boson potential. We show that due to the modified cosmological history, electroweak baryogenesis can be realized, while keeping deviations of the triple Higgs coupling below HL-LHC sensitivies. The required scale of new physics to effectuate a strong-enough first order phase transition can change by as much as twenty percent as the expansion rate increases by six orders of magnitude.« less

  15. Texas-specific drive cycles and idle emissions rates for using with EPA's MOVES model : final report.

    DOT National Transportation Integrated Search

    2014-05-01

    The U.S. Environmental Protection Agencys (EPA) newest emissions model, MOtor Vehicle : Emission Simulator (MOVES), uses a disaggregate approach that enables the users of the model to create : and use local drive schedules (drive cycles) in order ...

  16. Investigation and kinetic evaluation of the reactions of hydroxymethylfurfural with amino and thiol groups of amino acids.

    PubMed

    Hamzalıoğlu, Aytül; Gökmen, Vural

    2018-02-01

    In this study, reactions of hydroxymethylfurfural (HMF) with selected amino acids (arginine, cysteine and lysine) were investigated in HMF-amino acid (high moisture) and Coffee-amino acid (low moisture) model systems at 5, 25 and 50°C. The results revealed that HMF reacted efficiently and effectively with amino acids in both high and low moisture model systems. High-resolution mass spectrometry (HRMS) analyses of the reaction mixtures confirmed the formations of Michael adduct and Schiff base of HMF with amino acids. Calculated pseudo-first order reaction rate constants were in the following order; k Cysteine >k Arginine >k Lysine for high moisture model systems. Comparing to these rate constants, the k Cysteine decreased whereas, k Arginine and k Lysine increased under the low moisture conditions of Coffee-amino acid model systems. The temperature dependence of the rate constants was found to obey the Arrhenius law in a temperature range of 5-50°C under both low and high moisture conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Heterogeneity-induced large deviations in activity and (in some cases) entropy production

    NASA Astrophysics Data System (ADS)

    Gingrich, Todd R.; Vaikuntanathan, Suriyanarayanan; Geissler, Phillip L.

    2014-10-01

    We solve a simple model that supports a dynamic phase transition and show conditions for the existence of the transition. Using methods of large deviation theory we analytically compute the probability distribution for activity and entropy production rates of the trajectories on a large ring with a single heterogeneous link. The corresponding joint rate function demonstrates two dynamical phases—one localized and the other delocalized, but the marginal rate functions do not always exhibit the underlying transition. Symmetries in dynamic order parameters influence the observation of a transition, such that distributions for certain dynamic order parameters need not reveal an underlying dynamical bistability. Solution of our model system furthermore yields the form of the effective Markov transition matrices that generate dynamics in which the two dynamical phases are at coexistence. We discuss the implications of the transition for the response of bacterial cells to antibiotic treatment, arguing that even simple models of a cell cycle lacking an explicit bistability in configuration space will exhibit a bistability of dynamical phases.

  18. Derivation of rigorous conditions for high cell-type diversity by algebraic approach.

    PubMed

    Yoshida, Hiroshi; Anai, Hirokazu; Horimoto, Katsuhisa

    2007-01-01

    The development of a multicellular organism is a dynamic process. Starting with one or a few cells, the organism develops into different types of cells with distinct functions. We have constructed a simple model by considering the cell number increase and the cell-type order conservation, and have assessed conditions for cell-type diversity. This model is based on a stochastic Lindenmayer system with cell-to-cell interactions for three types of cells. In the present model, we have successfully derived complex but rigorous algebraic relations between the proliferation and transition rates for cell-type diversity by using a symbolic method: quantifier elimination (QE). Surprisingly, three modes for the proliferation and transition rates have emerged for large ratios of the initial cells to the developed cells. The three modes have revealed that the equality between the development rates for the highest cell-type diversity is reduced during the development process of multicellular organisms. Furthermore, we have found that the highest cell-type diversity originates from order conservation.

  19. Toward a better understanding of helicopter stability derivatives

    NASA Technical Reports Server (NTRS)

    Hansen, R. S.

    1982-01-01

    An amended six degree of freedom helicopter stability and control derivative model was developed in which body acceleration and control rate derivatives were included in the Taylor series expansion. These additional derivatives were derived from consideration of the effects of the higher order rotor flapping dynamics, which are known to be inadequately represented in the conventional six degree of freedom, quasistatic stability derivative model. The amended model was a substantial improvement over the conventional model, effectively doubling the unsable bandwidth and providing a more accurate representation of the short period and cross axis characteristics. Further investigations assessed the applicability of the two stability derivative model structures for flight test parameter identification. Parameters were identified using simulation data generated from a higher order base line model having sixth order rotor tip path plane dynamics. Three lower order models were identified: one using the conventional stability derivative model structure, a second using the amended six degree of freedom model structure, and a third model having eight degrees of freedom that included a simplified rotor tip path plane tilt representation.

  20. Polytomous Differential Item Functioning and Violations of Ordering of the Expected Latent Trait by the Raw Score

    ERIC Educational Resources Information Center

    DeMars, Christine E.

    2008-01-01

    The graded response (GR) and generalized partial credit (GPC) models do not imply that examinees ordered by raw observed score will necessarily be ordered on the expected value of the latent trait (OEL). Factors were manipulated to assess whether increased violations of OEL also produced increased Type I error rates in differential item…

  1. Prioritizing Chemicals and Data Requirements for Screening-Level Exposure and Risk Assessment

    PubMed Central

    Brown, Trevor N.; Wania, Frank; Breivik, Knut; McLachlan, Michael S.

    2012-01-01

    Background: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. Objectives: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. Methods: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Results: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Conclusions: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner. PMID:23008278

  2. Forecasting the mortality rates of Malaysian population using Heligman-Pollard model

    NASA Astrophysics Data System (ADS)

    Ibrahim, Rose Irnawaty; Mohd, Razak; Ngataman, Nuraini; Abrisam, Wan Nur Azifah Wan Mohd

    2017-08-01

    Actuaries, demographers and other professionals have always been aware of the critical importance of mortality forecasting due to declining trend of mortality and continuous increases in life expectancy. Heligman-Pollard model was introduced in 1980 and has been widely used by researchers in modelling and forecasting future mortality. This paper aims to estimate an eight-parameter model based on Heligman and Pollard's law of mortality. Since the model involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 7.0 (MATLAB 7.0) software will be used in order to estimate the parameters. Statistical Package for the Social Sciences (SPSS) will be applied to forecast all the parameters according to Autoregressive Integrated Moving Average (ARIMA). The empirical data sets of Malaysian population for period of 1981 to 2015 for both genders will be considered, which the period of 1981 to 2010 will be used as "training set" and the period of 2011 to 2015 as "testing set". In order to investigate the accuracy of the estimation, the forecast results will be compared against actual data of mortality rates. The result shows that Heligman-Pollard model fit well for male population at all ages while the model seems to underestimate the mortality rates for female population at the older ages.

  3. Spatial Moment Equations for a Groundwater Plume with Degradation and Rate-Limited Sorption

    EPA Science Inventory

    In this note, we analytically derive the solution for the spatial moments of groundwater solute concentration distributions simulated by a one-dimensional model that assumes advective-dispersive transport with first-order degradation and rate-limited sorption. Sorption kinetics...

  4. Modeling of Phenoxy Acid Herbicide Mineralization and Growth of Microbial Degraders in 15 Soils Monitored by Quantitative Real-Time PCR of the Functional tfdA Gene

    PubMed Central

    Bælum, Jacob; Prestat, Emmanuel; David, Maude M.; Strobel, Bjarne W.

    2012-01-01

    Mineralization potentials, rates, and kinetics of the three phenoxy acid (PA) herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), and 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), were investigated and compared in 15 soils collected from five continents. The mineralization patterns were fitted by zero/linear or exponential growth forms of the three-half-order models and by logarithmic (log), first-order, or zero-order kinetic models. Prior and subsequent to the mineralization event, tfdA genes were quantified using real-time PCR to estimate the genetic potential for degrading PA in the soils. In 25 of the 45 mineralization scenarios, ∼60% mineralization was observed within 118 days. Elevated concentrations of tfdA in the range 1 × 105 to 5 × 107 gene copies g−1 of soil were observed in soils where mineralization could be described by using growth-linked kinetic models. A clear trend was observed that the mineralization rates of the three PAs occurred in the order 2,4-D > MCPA > MCPP, and a correlation was observed between rapid mineralization and soils exposed to PA previously. Finally, for 2,4-D mineralization, all seven mineralization patterns which were best fitted by the exponential model yielded a higher tfdA gene potential after mineralization had occurred than the three mineralization patterns best fitted by the Lin model. PMID:22635998

  5. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    PubMed

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Converting from Transdermal to Buccal Formulations of Buprenorphine: A Pharmacokinetic Meta-Model Simulation in Healthy Volunteers.

    PubMed

    Priestley, Tony; Chappa, Arvind K; Mould, Diane R; Upton, Richard N; Shusterman, Neil; Passik, Steven; Tormo, Vicente J; Camper, Stephen

    2017-09-29

     To develop a model to predict buprenorphine plasma concentrations during transition from transdermal to buccal administration.  Population pharmacokinetic model-based meta-analysis of published data.  A model-based meta-analysis of available buprenorphine pharmacokinetic data in healthy adults, extracted as aggregate (mean) data from published literature, was performed to explore potential conversion from transdermal to buccal buprenorphine. The time course of mean buprenorphine plasma concentrations following application of transdermal patch or buccal film was digitized from available literature, and a meta-model was developed using specific pharmacokinetic parameters (e.g., absorption rate, apparent clearance, and volumes of distribution) derived from analysis of pharmacokinetic data for intravenously, transdermally, and buccally administered buprenorphine.  Data from six studies were included in this analysis. The final transdermal absorption model employed a zero-order input rate that was scaled to reflect a nominal patch delivery rate and time after patch application (with decline in rate over time). The transdermal absorption rate constant became zero following patch removal. Buccal absorption was a first-order process with a time lag and bioavailability term. Simulations of conversion from transdermal 20 mcg/h and 10 mcg/h to buccal administration suggest that transition can be made rapidly (beginning 12 hours after patch removal) using the recommended buccal formulation titration increments (75-150 mcg) and schedule (every four days) described in the product labeling.  Computer modeling and simulations using a meta-model built from data extracted from publications suggest that rapid and straightforward conversion from transdermal to buccal buprenorphine is feasible. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Fractional order creep model for dam concrete considering degree of hydration

    NASA Astrophysics Data System (ADS)

    Huang, Yaoying; Xiao, Lei; Bao, Tengfei; Liu, Yu

    2018-05-01

    Concrete is a material that is an intermediate between an ideal solid and an ideal fluid. The creep of concrete is related not only to the loading age and duration, but also to its temperature and temperature history. Fractional order calculus is a powerful tool for solving physical mechanics modeling problems. Using a software element based on the generalized Kelvin model, a fractional order creep model of concrete considering the loading age and duration is established. Then, the hydration rate of cement is considered in terms of the degree of hydration, and the fractional order creep model of concrete considering the degree of hydration is established. Moreover, uniaxial tensile creep tests of dam concrete under different curing temperatures were conducted, and the results were combined with the creep test data and complex optimization method to optimize the parameters of a new creep model. The results show that the fractional tensile creep model based on hydration degree can better describe the tensile creep properties of concrete, and this model involves fewer parameters than the 8-parameter model.

  8. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling

    DTIC Science & Technology

    2004-03-01

    equilibria among fluids, gases, and alteration minerals is a valid assumption in many volcanic-hosted hydrothermal systems (Arnórsson, 1983; Arnórsson et al...order n with respect to P(CO2). e. Sedimentary (disordered) dolomite. f. Hydrothermal (ordered) dolomite. 3.9 Sulfates Dissolution rate data...carbonate in sea water IV. Theory of calcite dissolution. Am. J. Sci. 274, 108-134. Bertrand C., Fritz B., and Sureau J. F. (1994) Hydrothermal

  9. Implementation of steady state approximation for modelling of reaction kinetic of UV catalysed hydrogen peroxide oxidation of starch

    NASA Astrophysics Data System (ADS)

    Kumoro, Andri Cahyo; Retnowati, Diah Susetyo; Ratnawati, Budiyati, Catarina Sri

    2015-12-01

    With regard to its low viscosity, high stability, clarity, film forming and binding properties, oxidised starch has been widely used in various applications specifically in the food, paper, textile, laundry finishing and binding materials industries. A number of methods have been used to produce oxidised starch through reactions with various oxidizing agents, such as hydrogen peroxide, air oxygen, ozone, bromine, chromic acid, permanganate, nitrogen dioxide and hypochlorite. Unfortunately, most of previous works reported in the literatures were focused on the study of reaction mechanism and physicochemical properties characterization of the oxidised starches produced without investigation of the reaction kinetics of the oxidation process. This work aimed to develop a simple kinetic model for UV catalysed hydrogen peroxide oxidation of starch through implementation of steady state approximation for the radical reaction rates. The model was then verified using experimental data available in the literature. The model verification revealed that the proposed model shows its good agreement with the experimental data as indicated by an average absolute relative error of only 2.45%. The model also confirmed that carboxyl groups are oxidised further by hydroxyl radical. The carbonyl production rate was found to follow first order reaction with respect to carbonyl concentration. Similarly, carboxyl production rate also followed first order reaction with respect to carbonyl concentration. The apparent reaction rate constant for carbonyl formation and oxidation were 6.24 × 104 s-1 and 1.01 × 104 M-1.s-1, respectively. While apparent reaction rate constant for carboxyl oxidation was 4.86 × 104 M-1.s-1.

  10. Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics

    PubMed Central

    Hata, Hiroaki; Kitajima, Tetsuro

    2018-01-01

    Abstract Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant. PMID:29220504

  11. Biodegradation kinetics of BTE-OX and MTBE by a diesel-grown biomass.

    PubMed

    Acuna-Askar, K; de la Torre-Torres, M A; Guerrero-Munoz, M J; Garza-Gonzalez, M T; Chavez-Gomez, B; Rodriguez-Sanchez, I P; Barrera-Saldana, H A

    2006-01-01

    The biodegradation kinetics of BTE-oX and MTBE, mixed all together in the presence of diesel-grown bioaugmented bacterial populations as high as 885 mg/L VSS, was evaluated. The effect of soil in aqueous samples and the effect of Tergitol NP-10 on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 54 h, every 6 h. All BTE-oX chemicals followed a first-order two-phase biodegradation kinetic model, whereas MTBE followed a zero-order removal kinetic model in all samples. BTE-oX removal rates were much higher than those of MTBE in all samples. The presence of soil in aqueous samples retarded BTE-oX and MTBE removal rates. The addition of Tergitol NP-10 to aqueous samples containing soil had a positive effect on substrate removal rate in all samples. Substrate percent removals ranged between 64.8-98.9% for benzene, toluene and ethylbenzene. O-xylene and MTBE percent removals ranged between 18.7-40.8% and 7.2-10.3%, respectively.

  12. Identification method of laser gyro error model under changing physical field

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Niu, Zhenzhong

    2018-04-01

    In this paper, the influence mechanism of temperature, temperature changing rate and temperature gradient on the inertial devices is studied. The two-order model of zero bias and the three-order model of the calibration factor of lster gyro under temperature variation are deduced. The calibration scheme of temperature error is designed, and the experiment is carried out. Two methods of stepwise regression analysis and BP neural network are used to identify the parameters of the temperature error model, and the effectiveness of the two methods is proved by the temperature error compensation.

  13. Investigating Relationships Between Health-Related Problems and Online Health Information Seeking.

    PubMed

    Oh, Young Sam; Song, Na Kyoung

    2017-01-01

    Online health information seeking (OHIS) functions as a coping strategy to relieve health-related stress and problems. When people rate their health as poor or felt concern about their health, they frequently visit the Internet to seek health-related information in order to understand their symptoms and treatments. Regarding this role of OHIS, it is important to understand the relationships between health-related problems and OHIS. This study applies the Common-Sense Model as a theoretical lens to examine the relationship between health-related problems (ie, diagnosis of cancer, poor self-rated health, and psychological distress) and OHIS of adults in the US. Using the Health Information National Trends Survey 4 Cycle 1 (2012), a total of 2351 adult Internet users was included in this research. Hierarchical logistic regression analyses were conducted to examine the research model, and the model adding psychological distress resulted in a statistically significant improvement in model fit. In this study, lower levels of self-rated health and higher levels of psychological distress were significantly associated with higher odds of OHIS. Study findings support the idea that individuals' low levels of self-rated health and high levels of perceived psychological distress make people search for health-related information via the Internet in order to cope with health-related concern and distress.

  14. Calving laws and strain rates: a comparison between modelled relationships and observations from InSAR velocity maps from across Greenland.

    NASA Astrophysics Data System (ADS)

    Lea, James; Nick, Faezeh; Benn, Douglas; Kirchner, Nina

    2017-04-01

    Calving is a major mechanism of cryospheric ice mass loss and a significant contributor to global sea level change, though it is currently poorly understood as a process. Longitudinal strain rate is often cited as a first order control on calving, however multiple different calving laws (not always including the strain rate) have been used to represent this in numerical models of ice sheets. This study seeks to investigate how (1) different calving laws within a 1D flowline model predict strain rate will evolve within increasing terminus thickness for steady state and transient simulations, and (2) how these relationships compare with observed strains (derived from MEaSUREs Greenland InSAR velocity maps; Joughin et al., 2010 [updated 2016]) and depths (from BedMachine v.2 subglacial topography data; Morlighem et al., 2014). We identify that systematic relationships with terminus thickness exist for height above buoyancy, waterline and full-depth crevasse calving laws amongst others for both steady state and transient simulations. However, analysis of observed near-terminus strain rates for multiple Greenlandic glaciers using a variety of metrics (with a range of bed depths predicted by BedMachine) does not reproduce the shape or magnitude of any of these modelled relationships. Relationships between strain rate and depth derived from simple 1D model simulations therefore cannot be realistically compared to current real-world observations. This suggests that the magnitude of observed strain rates at an individual point, or area-averaged conditions near a real-world terminus are not meaningful in determining the potential for calving when taken in isolation. To improve understanding of first/second order calving processes, future modelling work should therefore look to analyse how/if the distribution of strain across the terminus region impacts calving as part of 2D-planform/3D models.

  15. Kinetic modeling of n-hexane oxyfunctionalization by hydrogen peroxide on titanium silicalites of MEL structure (TS-2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallot, J.E.; Fu, H.; Kapoor, M.P.

    The authors present mathematical models of catalytic oxyfunctionalization of n-hexane over titanium silicalites. The model showed second-order reaction rates with respect to H{sub 2}O{sub 2} concentration in the aqueous phase. 56 refs., 7 figs., 3 tabs.

  16. MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    A mass-transfer-based model is developed for predicting chlorine decay in drinking-water distribution networks. The model considers first-order reactions of chlorine to occur both in the bulk flow and at the pipe wall. The overall rate of the wall reaction is a function of the ...

  17. Molecular and Kinetic Models for High-rate Thermal Degradation of Polyethylene

    DOE PAGES

    Lane, J. Matthew; Moore, Nathan W.

    2018-02-01

    Thermal degradation of polyethylene is studied under the extremely high rate temperature ramps expected in laser-driven and X-ray ablation experiments—from 10 10 to 10 14 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. The enthalpy, dissociation onset temperature, bond evolution, and observed cross-linking are shown to be rate dependent. These results are used to parametrize a kinetic rate model for the decomposition and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. In conclusion, the resultsmore » are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions.« less

  18. Molecular and Kinetic Models for High-rate Thermal Degradation of Polyethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, J. Matthew; Moore, Nathan W.

    Thermal degradation of polyethylene is studied under the extremely high rate temperature ramps expected in laser-driven and X-ray ablation experiments—from 10 10 to 10 14 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. The enthalpy, dissociation onset temperature, bond evolution, and observed cross-linking are shown to be rate dependent. These results are used to parametrize a kinetic rate model for the decomposition and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. In conclusion, the resultsmore » are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions.« less

  19. Phylogenetic Analysis of Genome Rearrangements among Five Mammalian Orders

    PubMed Central

    Luo, Haiwei; Arndt, William; Zhang, Yiwei; Shi, Guanqun; Alekseyev, Max; Tang, Jijun; Hughes, Austin L.; Friedman, Robert

    2015-01-01

    Evolutionary relationships among placental mammalian orders have been controversial. Whole genome sequencing and new computational methods offer opportunities to resolve the relationships among 10 genomes belonging to the mammalian orders Primates, Rodentia, Carnivora, Perissodactyla and Artiodactyla. By application of the double cut and join distance metric, where gene order is the phylogenetic character, we computed genomic distances among the sampled mammalian genomes. With a marsupial outgroup, the gene order tree supported a topology in which Rodentia fell outside the cluster of Primates, Carnivora, Perissodactyla, and Artiodactyla. Results of breakpoint reuse rate and synteny block length analyses were consistent with the prediction of random breakage model, which provided a diagnostic test to support use of gene order as an appropriate phylogenetic character in this study. We the influence of rate differences among lineages and other factors that may contribute to different resolutions of mammalian ordinal relationships by different methods of phylogenetic reconstruction. PMID:22929217

  20. Adsorption kinetic and desorption studies of Cd2+ on Multi-Carboxylic-Functionalized Silica Gel

    NASA Astrophysics Data System (ADS)

    Li, Min; Wei, Jian; Meng, Xiaojing; Wu, Zhuqiang; Liang, Xiuke

    2018-01-01

    In the present study, the adsorption behavior of cadmium (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of cadmium (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed cadmium (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of cadmium (II) ion didn’t present an obvious decrease after five cycles.

  1. Adsorption kinetic and desorption studies of Cu2+ on Multi-Carboxylic-Functionalized Silica Gel

    NASA Astrophysics Data System (ADS)

    Li, Min; Meng, Xiaojing; Liu, Yushuang; Hu, Xinju; Liang, Xiuke

    2018-01-01

    In the present study, the adsorption behavior of copper (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of copper (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed copper (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of copper (II) ion didn’t present an obvious decrease after five cycles.

  2. A preliminary study of a running speed based heart rate prediction during an incremental treadmill exercise.

    PubMed

    Dae-Geun Jang; Byung-Hoon Ko; Sub Sunoo; Sang-Seok Nam; Hun-Young Park; Sang-Kon Bae

    2016-08-01

    This preliminary study investigates feasibility of a running speed based heart rate (HR) prediction. It is basically motivated from the assumption that there is a significant relationship between HR and the running speed. In order to verify the assumption, HR and running speed data from 217 subjects of varying aerobic capabilities were simultaneously collected during an incremental treadmill exercise. A running speed was defined as a treadmill speed and its corresponding heart rate was calculated by averaging the last one minute HR values of each session. The feasibility was investigated by assessing a correlation between the heart rate and the running speed using inter-subject (between-subject) and intra-subject (within-subject) datasets with regression orders of 1, 2, 3, and 4, respectively. Furthermore, HR differences between actual and predicted HRs were also employed to investigate the feasibility of the running speed in predicting heart rate. In the inter-subject analysis, a strong positive correlation and a reasonable HR difference (r = 0.866, 16.55±11.24 bpm @ 1st order; r = 0.871, 15.93±11.49 bpm @ 2nd order; r = 0.897, 13.98±10.80 bpm @ 3rd order; and r = 0.899, 13.93±10.64 bpm @ 4th order) were obtained, and a very high positive correlation and a very low HR difference (r = 0.978, 6.46±3.89 bpm @ 1st order; r = 0.987, 5.14±2.87 bpm @ 2nd order; r = 0.996, 2.61±2.03 bpm @ 3rd order; and r = 0.997, 2.04±1.73 bpm @ 4th order) were obtained in the intra-subject analysis. It can therefore be concluded that 1) heart rate is highly correlated with a running speed; 2) heart rate can be approximately estimated by a running speed with a proper statistical model (e.g., 3rd-order regression); and 3) an individual HR-speed calibration process may improve the prediction accuracy.

  3. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    PubMed

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Spin-oscillator model for the unzipping of biomolecules by mechanical force.

    PubMed

    Prados, A; Carpio, A; Bonilla, L L

    2012-08-01

    A spin-oscillator system models unzipping of biomolecules (such as DNA, RNA, or proteins) subject to an external force. The system comprises a macroscopic degree of freedom, represented by a one-dimensional oscillator, and internal degrees of freedom, represented by Glauber spins with nearest-neighbor interaction and a coupling constant proportional to the oscillator position. At a critical value F(c) of an applied external force F, the oscillator rest position (order parameter) changes abruptly and the system undergoes a first-order phase transition. When the external force is cycled at different rates, the extension given by the oscillator position exhibits a hysteresis cycle at high loading rates, whereas it moves reversibly over the equilibrium force-extension curve at very low loading rates. Under constant force, the logarithm of the residence time at the stable and metastable oscillator rest position is proportional to F-F(c) as in an Arrhenius law.

  5. Strongly screening corrections to antineutrino energy loss by β --decay of nuclides 53Fe, 54Fe, 55Fe, and 56Fe in supernova

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Jing; Liu, Dong-Mei

    2018-06-01

    Based on the p-f shell-model, we discuss and calculate β--decay half-lives of neutron-rich nuclei, with a consideration of shell and pair effects, the decay energy, and the nucleon numbers. According to the linear response theory model, we study the effect of electron screening on the electron energy, beta-decay threshold energy, and the antineutrino energy loss rate by β--decay of some iron isotopes. We find that the electron screening antineutrino energy loss rates increase by about two orders of magnitude due to the shell effects and the pairing effect. Beta-decay rates with Q-value corrections due to strong electron screening are higher than those without the Q-value corrections by more than two orders of magnitude. Our conclusions may be helpful for the research on numerical simulations of the cooling of stars.

  6. Phenomenological study of a cellular material behaviour under dynamic loadings

    NASA Astrophysics Data System (ADS)

    Bouix, R.; Viot, Ph.; Lataillade, J.-L.

    2006-08-01

    Polypropylene foams are cellular materials, which are often use to fill structures subjected to crash or violent impacts. Therefore, it is necessary to know and to characterise in experiments their mechanical behaviour in compression at high strain rates. So, several apparatus have been used in order to highlight the influence of strain rate, material density and also temperature. A split Hopkinson Pressure Bar has been used for impact tests, a fly wheel to test theses materials at medium strain rate and an electro-mechanical testing machine associated to a climatic chamber for temperature tests. Then, a rheological model has been used in order to describe the material behaviour. The mechanical response to compression of these foams presents three typical domains: a linear elastic step, a wide collapse plateau stress, which leads to a densification, which are related to a standard rheological model.

  7. A reduced order electrochemical and thermal model for a pouch type lithium ion polymer battery with LiNixMnyCo1-x-yO2/LiFePO4 blended cathode

    NASA Astrophysics Data System (ADS)

    Li, Xueyan; Choe, Song-Yul; Joe, Won Tae

    2015-10-01

    LiNixMnyCo1-x-yO2 (NMC) and LiFePO4 (LFP) as a cathode material have been widely employed for cells designed for high power applications. However, NMC needs further improvements in rate capability and stability that can be accomplished by blending it with LFP. Working mechanism of the blended cells is very complex and hard to understand. In addition, characteristics of the blended cells, particularly the plateau and path dependence of LFP materials, make it extremely difficult to estimate the state of charge and state of health using classical electric equivalent circuit models. Therefore, a reduced order model based on electrochemical and thermal principles is developed with objectives for real time applications and validated against experimental data collected from a large format pouch type of lithium ion polymer battery. The model for LFP is based on a shrinking core model along with moving boundary and then integrated into NMC model. Responses of the model that include SOC estimation and responses of current and voltage are compared with those of experiments at CC/CV charging and CC discharging along with different current rates and temperatures. In addition, the model is used to analyze effects of mass ratios between two materials on terminal voltage and heat generation rate.

  8. Modeling Long-term Behavior of Stock Market Prices Using Differential Equations

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoxiang; Zhao, Conan; Mazilu, Irina

    2015-03-01

    Due to incomplete information available in the market and uncertainties associated with the price determination process, the stock prices fluctuate randomly during a short period of time. In the long run, however, certain economic factors, such as the interest rate, the inflation rate, and the company's revenue growth rate, will cause a gradual shift in the stock price. Thus, in this paper, a differential equation model has been constructed in order to study the effects of these factors on the stock prices. The model obtained accurately describes the general trends in the AAPL and XOM stock price changes over the last ten years.

  9. Applying constraints on model-based methods: Estimation of rate constants in a second order consecutive reaction

    NASA Astrophysics Data System (ADS)

    Kompany-Zareh, Mohsen; Khoshkam, Maryam

    2013-02-01

    This paper describes estimation of reaction rate constants and pure ultraviolet/visible (UV-vis) spectra of the component involved in a second order consecutive reaction between Ortho-Amino benzoeic acid (o-ABA) and Diazoniom ions (DIAZO), with one intermediate. In the described system, o-ABA was not absorbing in the visible region of interest and thus, closure rank deficiency problem did not exist. Concentration profiles were determined by solving differential equations of the corresponding kinetic model. In that sense, three types of model-based procedures were applied to estimate the rate constants of the kinetic system, according to Levenberg/Marquardt (NGL/M) algorithm. Original data-based, Score-based and concentration-based objective functions were included in these nonlinear fitting procedures. Results showed that when there is error in initial concentrations, accuracy of estimated rate constants strongly depends on the type of applied objective function in fitting procedure. Moreover, flexibility in application of different constraints and optimization of the initial concentrations estimation during the fitting procedure were investigated. Results showed a considerable decrease in ambiguity of obtained parameters by applying appropriate constraints and adjustable initial concentrations of reagents.

  10. Thermal degradation kinetics of all-trans and cis-carotenoids in a light-induced model system.

    PubMed

    Xiao, Ya-Dong; Huang, Wu-Yang; Li, Da-Jing; Song, Jiang-Feng; Liu, Chun-Quan; Wei, Qiu-Yu; Zhang, Min; Yang, Qiu-Ming

    2018-01-15

    Thermal degradation kinetics of lutein, zeaxanthin, β-cryptoxanthin, β-carotene was studied at 25, 35, and 45°C in a model system. Qualitative and quantitative analyses of all-trans- and cis-carotenoids were conducted using HPLC-DAD-MS technologies. Kinetic and thermodynamic parameters were calculated by non-linear regression. A total of 29 geometrical isomers and four oxidation products were detected, including all-trans-, keto compounds, mono-cis- and di-cis-isomers. Degradations of all-trans-lutein, zeaxanthin, β-cryptoxanthin, and β-carotene were described by a first-order kinetic model, with the order of rate constants as k β -carotene >k β -cryptoxanthin >k lutein >k zeaxanthin . Activation energies of zeaxanthin, lutein, β-cryptoxanthin, and β-carotene were 65.6, 38.9, 33.9, and 8.6kJ/moL, respectively. cis-carotenoids also followed with the first-order kinetic model, but they did not show a defined sequence of degradation rate constants and activation energies at different temperatures. A possible degradation pathway of four carotenoids was identified to better understand the mechanism of carotenoid degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Kinetic model of the thermal pyrolysis of chrome tanned leather treated with NaOH under different conditions using thermogravimetric analysis.

    PubMed

    Bañón, E; Marcilla, A; García, A N; Martínez, P; León, M

    2016-02-01

    The thermal decomposition of chrome tanned leather before and after a soaking treatment with NaOH was studied using thermogravimetric analysis (TGA). The effect of the solution concentration (0.2M and 0.5M) and the soaking time (5min and 15min) was evaluated. TGA experiments at four heating rates (5, 10, 15 and 20°Cmin(-1)) were run in a nitrogen atmosphere for every treatment condition. A kinetic model was developed considering the effect of the three variables studied, i.e.: the NaOH solution concentration, the soaking time and the heating rate. The proposed model for chrome tanned leather pyrolysis involves a set of four reactions, i.e.: three independent nth order reactions, yielding the corresponding products and one of them undergoing a successive cero order reaction. The model was successfully applied simultaneously to all the experimental data obtained. The evaluation of the kinetic parameters obtained (activation energy, pre-exponential factor and reaction order) allowed a better understanding of the effect of the alkali treatment on these wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method.

    PubMed

    Chai, Zhenhua; Zhao, T S

    2014-07-01

    In this paper, we propose a local nonequilibrium scheme for computing the flux of the convection-diffusion equation with a source term in the framework of the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). Both the Chapman-Enskog analysis and the numerical results show that, at the diffusive scaling, the present nonequilibrium scheme has a second-order convergence rate in space. A comparison between the nonequilibrium scheme and the conventional second-order central-difference scheme indicates that, although both schemes have a second-order convergence rate in space, the present nonequilibrium scheme is more accurate than the central-difference scheme. In addition, the flux computation rendered by the present scheme also preserves the parallel computation feature of the LBM, making the scheme more efficient than conventional finite-difference schemes in the study of large-scale problems. Finally, a comparison between the single-relaxation-time model and the MRT model is also conducted, and the results show that the MRT model is more accurate than the single-relaxation-time model, both in solving the convection-diffusion equation and in computing the flux.

  13. Analysis of Factors that Influence Infiltration Rates using the HELP Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J.; Shipmon, J.

    The Hydrologic Evaluation of Landfill Performance (HELP) model is used by Savannah River National Laboratory (SRNL) in conjunction with PORFLOW groundwater flow simulation software to make longterm predictions of the fate and transport of radionuclides in the environment at radiological waste sites. The work summarized in this report supports preparation of the planned 2018 Performance Assessment for the E-Area Low-Level Waste Facility (LLWF) at the Savannah River Site (SRS). More specifically, this project focused on conducting a sensitivity analysis of infiltration (i.e., the rate at which water travels vertically in soil) through the proposed E-Area LLWF closure cap. A sensitivitymore » analysis was completed using HELP v3.95D to identify the cap design and material property parameters that most impact infiltration rates through the proposed closure cap for a 10,000-year simulation period. The results of the sensitivity analysis indicate that saturated hydraulic conductivity (Ksat) for select cap layers, precipitation rate, surface vegetation type, and geomembrane layer defect density are dominant factors limiting infiltration rate. Interestingly, calculated infiltration rates were substantially influenced by changes in the saturated hydraulic conductivity of the Upper Foundation and Lateral Drainage layers. For example, an order-of-magnitude decrease in Ksat for the Upper Foundation layer lowered the maximum infiltration rate from a base-case 11 inches per year to only two inches per year. Conversely, an order-of-magnitude increase in Ksat led to an increase in infiltration rate from 11 to 15 inches per year. This work and its results provide a framework for quantifying uncertainty in the radionuclide transport and dose models for the planned 2018 E-Area Performance Assessment. Future work will focus on the development of a nonlinear regression model for infiltration rate using Minitab 17® to facilitate execution of probabilistic simulations in the GoldSim® overall system model for the E-Area LLWF.« less

  14. Towards establishing a combined rate law of nucleation and crystal growth - The case study of gypsum precipitation

    NASA Astrophysics Data System (ADS)

    Rendel, Pedro M.; Gavrieli, Ittai; Wolff-Boenisch, Domenik; Ganor, Jiwchar

    2018-03-01

    The main obstacle in the formulation of a quantitative rate-model for mineral precipitation is the absence of a rigorous method for coupling nucleation and growth processes. In order to link both processes, we conducted a series of batch experiments in which gypsum nucleation was followed by crystal growth. Experiments were carried out using various stirring methods in several batch vessels made of different materials. In the experiments, the initial degree of supersaturation of the solution with respect to gypsum (Ωgyp) was set between 1.58 and 1.82. Under these conditions, heterogeneous nucleation is the dominant nucleation mode. Based on changes in SO42- concentration with time, the induction time of gypsum nucleation and the following rate of crystal growth were calculated for each experiment. The induction time (6-104 h) was found to be a function of the vessel material, while the rates of crystal growth, which varied over three orders of magnitude, were strongly affected by the stirring speed and its mode (i.e. rocking, shaking, magnetic stirrer, and magnetic impeller). The SO42- concentration data were then used to formulate a forward model that couples the simple rate laws for nucleation and crystal growth of gypsum into a single kinetic model. Accordingly, the obtained rate law is based on classical nucleation theory and heterogeneous crystal growth.

  15. Control of serpentinisation rate by reaction-induced cracking

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Brantut, Nicolas; Kaczmarek, Mary-Alix

    2017-10-01

    Serpentinisation of mantle rocks requires the generation and maintenance of transport pathways for water. The solid volume increase during serpentinisation can lead to stress build-up and trigger cracking, which ease fluid penetration into the rock. The quantitative effect of this reaction-induced cracking mechanism on reactive surface generation is poorly constrained, thus hampering our ability to predict serpentinisation rate in geological environments. Here we use a combined approach with numerical modelling and observations in natural samples to provide estimates of serpentinisation rate at mid-ocean ridges. We develop a micromechanical model to quantify the propagation of serpentinisation-induced cracks in olivine. The maximum crystallisation pressure deduced from thermodynamic calculations reaches several hundreds of megapascals but does not necessary lead to crack propagation if the olivine grain is subjected to high compressive stresses. The micromechanical model is then coupled to a simple geometrical model to predict reactive surface area formation during grain splitting, and thus bulk reaction rate. Our model reproduces quantitatively experimental kinetic data and the typical mesh texture formed during serpentinisation. We also compare the model results with olivine grain size distribution data obtained on natural serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papua New Guinea). The natural serpentinised peridotites show an increase of the number of olivine grains for a decrease of the mean grain size by one order of magnitude as reaction progresses from 5 to 40%. These results are in agreement with our model predictions, suggesting that reaction-induced cracking controls the serpentinisation rate. We use our model to estimate that, at mid-ocean ridges, serpentinisation occurs up to 12 km depth and reaction-induced cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values comprised between 10 and 1000 yr. The increase of effective pressure with depth also prevents cracking, which positions the peak in serpentinisation rate at shallower depths, 4 km above previous predictions.

  16. [Influence of pH on Kinetics of Anilines Oxidation by Permanganate].

    PubMed

    Wang, Hui; Sun, Bo; Guan, Xiao-hong

    2016-02-15

    To investigate the effect of pH on the oxidation of anilines by potassium permanganate, aniline and p-Chloroaniline were taken as the target contaminants, and the experiments were conducted under the condition with potassium permanganate in excess over a wide pH range. The reaction displayed remarkable autocatalysis, which was presumably ascribed to the formation of complexes by the in situ generated MnOx and the target contaminants on its surface, and thereby improved the oxidation rate of the target contaminants by permanganate. The reaction kinetics was fitted with the pseudo-first-order kinetics at different pH to obtain the pseudo-first-order reaction constants (k(obs)). The second-order rate constants calculated from permanganate concentration and k,b, increased with the increase of pH and reached the maximum near their respective pKa, after which they decreased gradually. This tendency is called parabola-like shaped pH-rate profile. The second-order rate constants between permanganate and anilines were well fitted by the proton transfer model proposed by us in previous work.

  17. Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes

    PubMed Central

    2017-01-01

    The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential. Analogous data on anatase TiO2 photoanodes indicate similar second-order kinetics for methanol oxidation with a second-order rate constant 2 orders of magnitude higher than that on α-Fe2O3. Kinetic isotope effect studies determine that the rate constant for methanol oxidation on α-Fe2O3 is retarded ∼20-fold by H/D substitution. Employing these data, we propose a mechanism for methanol oxidation under 1 sun irradiation on these metal oxide surfaces and discuss the implications for the efficient PEC methanol oxidation to formaldehyde and concomitant hydrogen evolution. PMID:28735533

  18. Hybrid RANS-LES using high order numerical methods

    NASA Astrophysics Data System (ADS)

    Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael

    2017-11-01

    Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  19. Second order modeling of boundary-free turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Shih, T.-H.; Chen, Y.-Y.; Lumley, J. L.

    1991-01-01

    A set of realizable second order models for boundary-free turbulent flows is presented. The constraints on second order models based on the realizability principle are re-examined. The rapid terms in the pressure correlations for both the Reynolds stress and the passive scalar flux equations are constructed to exactly satisfy the joint realizability. All other model terms (return-to-isotropy, third moments, and terms in the dissipation equations) already satisfy realizability. To correct the spreading rate of the axisymmetric jet, an extra term is added to the dissipation equation which accounts for the effect of mean vortex stretching on dissipation. The test flows used in this study are the mixing shear layer, plane jet, axisymmetric jet, and plane wake. The numerical solutions show that the unified model equations predict all these flows reasonably. It is expected that these models would be suitable for more complex and critical flows.

  20. Reduced Order Modeling of Combustion Instability in a Gas Turbine Model Combustor

    NASA Astrophysics Data System (ADS)

    Arnold-Medabalimi, Nicholas; Huang, Cheng; Duraisamy, Karthik

    2017-11-01

    Hydrocarbon fuel based propulsion systems are expected to remain relevant in aerospace vehicles for the foreseeable future. Design of these devices is complicated by combustion instabilities. The capability to model and predict these effects at reduced computational cost is a requirement for both design and control of these devices. This work focuses on computational studies on a dual swirl model gas turbine combustor in the context of reduced order model development. Full fidelity simulations are performed utilizing URANS and Hybrid RANS-LES with finite rate chemistry. Following this, data decomposition techniques are used to extract a reduced basis representation of the unsteady flow field. These bases are first used to identify sensor locations to guide experimental interrogations and controller feedback. Following this, initial results on developing a control-oriented reduced order model (ROM) will be presented. The capability of the ROM will be further assessed based on different operating conditions and geometric configurations.

  1. Effects of Mass Media and Cultural Drift in a Model for Social Influence

    NASA Astrophysics Data System (ADS)

    Mazzitello, Karina I.; Candia, Julián; Dossetti, Víctor

    In the context of an extension of Axelrod's model for social influence, we study the interplay and competition between the cultural drift, represented as random perturbations, and mass media, introduced by means of an external homogeneous field. Unlike previous studies [J. C. González-Avella et al., Phys. Rev. E 72, 065102(R) (2005)], the mass media coupling proposed here is capable of affecting the cultural traits of any individual in the society, including those who do not share any features with the external message. A noise-driven transition is found: for large noise rates, both the ordered (culturally polarized) phase and the disordered (culturally fragmented) phase are observed, while, for lower noise rates, the ordered phase prevails. In the former case, the external field is found to induce cultural ordering, a behavior opposite to that reported in previous studies using a different prescription for the mass media interaction. We compare the predictions of this model to statistical data measuring the impact of a mass media vasectomy promotion campaign in Brazil.

  2. Estimation of rates-across-sites distributions in phylogenetic substitution models.

    PubMed

    Susko, Edward; Field, Chris; Blouin, Christian; Roger, Andrew J

    2003-10-01

    Previous work has shown that it is often essential to account for the variation in rates at different sites in phylogenetic models in order to avoid phylogenetic artifacts such as long branch attraction. In most current models, the gamma distribution is used for the rates-across-sites distributions and is implemented as an equal-probability discrete gamma. In this article, we introduce discrete distribution estimates with large numbers of equally spaced rate categories allowing us to investigate the appropriateness of the gamma model. With large numbers of rate categories, these discrete estimates are flexible enough to approximate the shape of almost any distribution. Likelihood ratio statistical tests and a nonparametric bootstrap confidence-bound estimation procedure based on the discrete estimates are presented that can be used to test the fit of a parametric family. We applied the methodology to several different protein data sets, and found that although the gamma model often provides a good parametric model for this type of data, rate estimates from an equal-probability discrete gamma model with a small number of categories will tend to underestimate the largest rates. In cases when the gamma model assumption is in doubt, rate estimates coming from the discrete rate distribution estimate with a large number of rate categories provide a robust alternative to gamma estimates. An alternative implementation of the gamma distribution is proposed that, for equal numbers of rate categories, is computationally more efficient during optimization than the standard gamma implementation and can provide more accurate estimates of site rates.

  3. A computational method for computing an Alzheimer’s Disease Progression Score; experiments and validation with the ADNI dataset

    PubMed Central

    Jedynak, Bruno M.; Liu, Bo; Lang, Andrew; Gel, Yulia; Prince, Jerry L.

    2014-01-01

    Understanding the time-dependent changes of biomarkers related to Alzheimer’s disease (AD) is a key to assessing disease progression and to measuring the outcomes of disease-modifying therapies. In this paper, we validate an Alzheimer’s disease progression score model which uses multiple biomarkers to quantify the AD progression of subjects following three assumptions: (1) there is a unique disease progression for all subjects, (2) each subject has a different age of onset and rate of progression, and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. In order to validate this optimization scheme under realistic conditions, we use the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the two lateral hippocampal volumes divided by the intra-cranial volume, followed by (the clinical dementia rating sum of boxes score and the mini mental state examination score) in no particular order and lastly the Alzheimer’s disease assessment scale-cognitive subscale. PMID:25444605

  4. Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge

    NASA Astrophysics Data System (ADS)

    Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi

    2013-03-01

    The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions by activated sludge and dried sludge was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto activated sludge and dried sludge was analyzed with Weber-Morris intra-particle diffusion model, Lagergren first-order model and pseudo second-order model. The rate constant of intra-particle diffusion on activated sludge and dried sludge increased in the sequence of Cu(II) > Ni(II) > Cd(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo second-order model compared to the first-order Lagergren model with R 2 > 0.997. The adsorption capacities of metal ions onto activated sludge and dried sludge followed the sequence Ni(II) ≈ Cu(II) > Cd(II) and Cu(II) > Ni(II) > Cd(II).

  5. Bifactor latent structure of attention-deficit/hyperactivity disorder (ADHD)/oppositional defiant disorder (ODD) symptoms and first-order latent structure of sluggish cognitive tempo symptoms.

    PubMed

    Lee, SoYean; Burns, G Leonard; Beauchaine, Theodore P; Becker, Stephen P

    2016-08-01

    The objective was to determine if the latent structure of attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) symptoms is best explained by a general disruptive behavior factor along with specific inattention (IN), hyperactivity/impulsivity (HI), and ODD factors (a bifactor model) whereas the latent structure of sluggish cognitive tempo (SCT) symptoms is best explained by a first-order factor independent of the bifactor model of ADHD/ODD. Parents' (n = 703) and teachers' (n = 366) ratings of SCT, ADHD-IN, ADHD-HI, and ODD symptoms on the Child and Adolescent Disruptive Behavior Inventory (CADBI) in a community sample of children (ages 5-13; 55% girls) were used to evaluate 4 models of symptom organization. Results indicated that a bifactor model of ADHD/ODD symptoms, in conjunction with a separate first-order SCT factor, was the best model for both parent and teacher ratings. The first-order SCT factor showed discriminant validity with the general disruptive behavior and specific IN factors in the bifactor model. In addition, higher scores on the SCT factor predicted greater academic and social impairment, even after controlling for the general disruptive behavior and 3 specific factors. Consistent with predictions from the trait-impulsivity etiological model of externalizing liability, a single, general disruptive behavior factor accounted for nearly all common variance in ADHD/ODD symptoms, whereas SCT symptoms represented a factor different from the general disruptive behavior and specific IN factor. These results provide additional support for distinguishing between SCT and ADHD-IN. The study also demonstrates how etiological models can be used to predict specific latent structures of symptom organization. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Modelling of Dynamic Rock Fracture Process with a Rate-Dependent Combined Continuum Damage-Embedded Discontinuity Model Incorporating Microstructure

    NASA Astrophysics Data System (ADS)

    Saksala, Timo

    2016-10-01

    This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.

  7. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model.

    PubMed

    Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang

    2018-04-28

    The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.

  8. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang

    2018-04-01

    The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.

  9. A critical evaluation of two-equation models for near wall turbulence

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Abid, Ridha; Anderson, E. Clay

    1990-01-01

    A variety of two-equation turbulence models,including several versions of the K-epsilon model as well as the K-omega model, are analyzed critically for near wall turbulent flows from a theoretical and computational standpoint. It is shown that the K-epsilon model has two major problems associated with it: the lack of natural boundary conditions for the dissipation rate and the appearance of higher-order correlations in the balance of terms for the dissipation rate at the wall. In so far as the former problem is concerned, either physically inconsistent boundary conditions have been used or the boundary conditions for the dissipation rate have been tied to higher-order derivatives of the turbulent kinetic energy which leads to numerical stiffness. The K-omega model can alleviate these problems since the asymptotic behavior of omega is known in more detail and since its near wall balance involves only exact viscous terms. However, the modeled form of the omega equation that is used in the literature is incomplete-an exact viscous term is missing which causes the model to behave in an asymptotically inconsistent manner. By including this viscous term and by introducing new wall damping functions with improved asymptotic behavior, a new K-tau model (where tau is identical with 1/omega is turbulent time scale) is developed. It is demonstrated that this new model is computationally robust and yields improved predictions for turbulent boundary layers.

  10. A Quantitative Description of Suicide Inhibition of Dichloroacetic Acid in Rats and Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keys, Deborah A.; Schultz, Irv R.; Mahle, Deirdre A.

    Dichloroacetic acid (DCA), a minor metabolite of trichloroethylene (TCE) and water disinfection byproduct, remains an important risk assessment issue because of its carcinogenic potency. DCA has been shown to inhibit its own metabolism by irreversibly inactivating glutathione transferase zeta (GSTzeta). To better predict internal dosimetry of DCA, a physiologically based pharmacokinetic (PBPK) model of DCA was developed. Suicide inhibition was described dynamically by varying the rate of maximal GSTzeta mediated metabolism of DCA (Vmax) over time. Resynthesis (zero-order) and degradation (first-order) of metabolic activity were described. Published iv pharmacokinetic studies in native rats were used to estimate an initial Vmaxmore » value, with Km set to an in vitro determined value. Degradation and resynthesis rates were set to estimated values from a published immunoreactive GSTzeta protein time course. The first-order inhibition rate, kd, was estimated to this same time course. A secondary, linear non-GSTzeta-mediated metabolic pathway is proposed to fit DCA time courses following treatment with DCA in drinking water. The PBPK model predictions were validated by comparing predicted DCA concentrations to measured concentrations in published studies of rats pretreated with DCA following iv exposure to 0.05 to 20 mg/kg DCA. The same model structure was parameterized to simulate DCA time courses following iv exposure in native and pretreated mice. Blood and liver concentrations during and postexposure to DCA in drinking water were predicted. Comparisons of PBPK model predicted to measured values were favorable, lending support for the further development of this model for application to DCA or TCE human health risk assessment.« less

  11. Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models

    NASA Astrophysics Data System (ADS)

    De Cruz, Lesley; Schubert, Sebastian; Demaeyer, Jonathan; Lucarini, Valerio; Vannitsem, Stéphane

    2018-05-01

    The stability properties of intermediate-order climate models are investigated by computing their Lyapunov exponents (LEs). The two models considered are PUMA (Portable University Model of the Atmosphere), a primitive-equation simple general circulation model, and MAOOAM (Modular Arbitrary-Order Ocean-Atmosphere Model), a quasi-geostrophic coupled ocean-atmosphere model on a β-plane. We wish to investigate the effect of the different levels of filtering on the instabilities and dynamics of the atmospheric flows. Moreover, we assess the impact of the oceanic coupling, the dissipation scheme, and the resolution on the spectra of LEs. The PUMA Lyapunov spectrum is computed for two different values of the meridional temperature gradient defining the Newtonian forcing to the temperature field. The increase in the gradient gives rise to a higher baroclinicity and stronger instabilities, corresponding to a larger dimension of the unstable manifold and a larger first LE. The Kaplan-Yorke dimension of the attractor increases as well. The convergence rate of the rate function for the large deviation law of the finite-time Lyapunov exponents (FTLEs) is fast for all exponents, which can be interpreted as resulting from the absence of a clear-cut atmospheric timescale separation in such a model. The MAOOAM spectra show that the dominant atmospheric instability is correctly represented even at low resolutions. However, the dynamics of the central manifold, which is mostly associated with the ocean dynamics, is not fully resolved because of its associated long timescales, even at intermediate orders. As expected, increasing the mechanical atmosphere-ocean coupling coefficient or introducing a turbulent diffusion parametrisation reduces the Kaplan-Yorke dimension and Kolmogorov-Sinai entropy. In all considered configurations, we are not yet in the regime in which one can robustly define large deviation laws describing the statistics of the FTLEs. This paper highlights the need to investigate the natural variability of the atmosphere-ocean coupled dynamics by associating rate of growth and decay of perturbations with the physical modes described using the formalism of the covariant Lyapunov vectors and considering long integrations in order to disentangle the dynamical processes occurring at all timescales.

  12. Triple-α reaction rate constrained by stellar evolution models

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2012-11-01

    We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8<=M/Msolar<=25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10Msolar) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8<=M/Msolar<=6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = 1-1.2×108K where the cross section is proportional to Tν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10-29 cm6 s-1 mole-2 at ~ 107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.

  13. SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni

    2010-05-10

    We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, wemore » neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.« less

  14. A METHOD FOR ESTIMATING DISTRIBUTIONS OF MASS TRANSFER RATE COEFFICIENTS WITH APPLICATION TO PURGING AND BATCH EXPERIMENTS. (R825825)

    EPA Science Inventory

    Mass transfer between aquifer material and groundwater is often modeled as first-order rate-limited sorption or diffusive exchange between mobile zones and immobile zones with idealized geometries. Recent improvements in experimental techniques and advances in our understanding o...

  15. Atmospheric Entry Heating of Micrometeorites Revisited: Higher Temperatures and Potential Biases

    NASA Technical Reports Server (NTRS)

    Love, S.; Alexander, C. M. OD.

    2001-01-01

    The atmospheric entry heating model of Love and Brownlee appears to have overestimated evaporation rates by as much as two orders of magnitude. Here we revisit the issue of atmospheric entry heating, using a revised prescription for evaporation rates. Additional information is contained in the original extended abstract.

  16. SCL-90-R emotional distress ratings in substance use and impulse control disorders: One-factor, oblique first-order, higher-order, and bi-factor models compared.

    PubMed

    Arrindell, Willem A; Urbán, Róbert; Carrozzino, Danilo; Bech, Per; Demetrovics, Zsolt; Roozen, Hendrik G

    2017-09-01

    To fully understand the dimensionality of an instrument in a certain population, rival bi-factor models should be routinely examined and tested against oblique first-order and higher-order structures. The present study is among the very few studies that have carried out such a comparison in relation to the Symptom Checklist-90-R. In doing so, it utilized a sample comprising 2593 patients with substance use and impulse control disorders. The study also included a test of a one-dimensional model of general psychological distress. Oblique first-order factors were based on the original a priori 9-dimensional model advanced by Derogatis (1977); and on an 8-dimensional model proposed by Arrindell and Ettema (2003)-Agoraphobia, Anxiety, Depression, Somatization, Cognitive-performance deficits, Interpersonal sensitivity and mistrust, Acting-out hostility, and Sleep difficulties. Taking individual symptoms as input, three higher-order models were tested with at the second-order levels either (1) General psychological distress; (2) 'Panic with agoraphobia', 'Depression' and 'Extra-punitive behavior'; or (3) 'Irritable-hostile depression' and 'Panic with agoraphobia'. In line with previous studies, no support was found for the one-factor model. Bi-factor models were found to fit the dataset best relative to the oblique first-order and higher-order models. However, oblique first-order and higher-order factor models also fit the data fairly well in absolute terms. Higher-order solution (2) provided support for R.F. Krueger's empirical model of psychopathology which distinguishes between fear, distress, and externalizing factors (Krueger, 1999). The higher-order model (3), which combines externalizing and distress factors (Irritable-hostile depression), fit the data numerically equally well. Overall, findings were interpreted as supporting the hypothesis that the prevalent forms of symptomatology addressed have both important common and unique features. Proposals were made to improve the Depression subscale as its scores represent more of a very common construct as is measured with the severity (total) scale than of a specific measure that purports to measure what it should assess-symptoms of depression. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Influence of reaction-induced fracturing on serpentinisation rate

    NASA Astrophysics Data System (ADS)

    Malvoisin, B.; Brantut, N.; Kaczmarek, M. A.

    2017-12-01

    The alteration of mantle rocks at mid-ocean ridges (i.e. serpentinisation) can lead to a solid volume increase responsible for stress build-up and cracking during reaction (reaction-induced fracturing). This mechanism has been proposed to play a key role for maintaining fluid pathways during reaction. However, its impact on the reaction rate is not yet quantified. We propose here a micromechanical model to quantify the influence of the crystallisation pressure generated during serpentine precipitation on crack propagation in olivine. This model is then coupled to a simple geometrical model to calculate the generation of reactive surface area during grain splitting, and thus bulk reaction rate. The model is able to reproduce experimental kinetic data as well as the mesh texture observed in natural samples. The model results are compared to olivine grain size distribution in serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papuan New Guinea). The observations and the model both indicate a decrease of the mean grain size by one order of magnitude as the reaction progresses from 5 to 40 %. Based on this good agreement, we use our model to predict that cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values comprised between 10 and 1,000 yr. The peak serpentinisation is also shifted 4 km above the previous predictions due to effective pressure increase with depth.

  18. Kinetics of p-hydroxybenzoic acid photodecomposition and ozonation in a batch reactor.

    PubMed

    Benitez, F J; Beltran-Heredia, J; Peres, J A; Dominguez, J R

    2000-04-03

    The decomposition of p-hydroxybenzoic acid, an important pollutant present in the wastewaters of the olive oil industry, has been carried out by a direct photolysis provided by a polychromatic UV radiation source, and by ozone. In both processes, the conversions obtained as a function of the operating variables (temperature, pH and ozone partial pressure in the ozonation process) are reported. In order to evaluate the radiation flow rate absorbed by the solutions in the photochemical process, the Line Source Spherical Emission Model is used. The application of this model to the experimental results provides the determination of the reaction quantum yields which values ranged between 8.62 and 81.43 l/einstein. In the ozonation process, the film theory allows to establish that the absorption process takes place in the fast and pseudo-first-order regime and the reaction is overall second-order, first-order with respect to both reactants, ozone and p-hydroxybenzoic acid. The rate constants are evaluated and vary between 0.18x10(5) and 29.9x10(5) l/mol s depending on the temperature and pH.

  19. Stochastic modeling of Lagrangian accelerations

    NASA Astrophysics Data System (ADS)

    Reynolds, Andy

    2002-11-01

    It is shown how Sawford's second-order Lagrangian stochastic model (Phys. Fluids A 3, 1577-1586, 1991) for fluid-particle accelerations can be combined with a model for the evolution of the dissipation rate (Pope and Chen, Phys. Fluids A 2, 1437-1449, 1990) to produce a Lagrangian stochastic model that is consistent with both the measured distribution of Lagrangian accelerations (La Porta et al., Nature 409, 1017-1019, 2001) and Kolmogorov's similarity theory. The later condition is found not to be satisfied when a constant dissipation rate is employed and consistency with prescribed acceleration statistics is enforced through fulfilment of a well-mixed condition.

  20. The outcome of trauma patients with do-not-resuscitate orders.

    PubMed

    Matsushima, Kazuhide; Schaefer, Eric W; Won, Eugene J; Armen, Scott B

    2016-02-01

    Institutional variation in outcome of patients with do-not-resuscitate (DNR) orders has not been well described in the setting of trauma. The purpose of this study was to assess the impact of trauma center designation on outcome of patients with DNR orders. A statewide trauma database (Pennsylvania Trauma Outcome Study) was used for the analysis. Characteristics of patients with DNR orders were compared between state-designated level 1 and 2 trauma centers. Inhospital mortality and major complication rates were compared using hierarchical logistic regression models that included a random effect for trauma centers. We adjusted for a number of potential confounders and allowed for nonlinearity in injury severity score and age in these models. A total of 106,291 patients (14 level 1 and 11 level 2 trauma centers) were identified in the Pennsylvania Trauma Outcome Study database between 2007 and 2011. We included 5953 patients with DNR orders (5.6%). Although more severely injured patients with comorbid disease were made DNR in level 1 trauma centers, trauma center designation level was not a significant factor for inhospital mortality of patients with DNR orders (odds ratio, 1.33; 95% confidence interval, 0.81-2.18; P = 0.26). Level 1 trauma centers were significantly associated with a higher rate of major complications (odds ratio, 1.75; 95% confidence interval, 1.11-2.75; P = 0.016). Inhospital mortality of patients with DNR orders was not significantly associated with trauma designation level after adjusting for case mix. More aggressive treatment or other unknown factors may have resulted in a significantly higher complication rate at level 1 trauma centers. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Onset of fractional-order thermal convection in porous media

    NASA Astrophysics Data System (ADS)

    Karani, Hamid; Rashtbehesht, Majid; Huber, Christian; Magin, Richard L.

    2017-12-01

    The macroscopic description of buoyancy-driven thermal convection in porous media is governed by advection-diffusion processes, which in the presence of thermophysical heterogeneities fail to predict the onset of thermal convection and the average rate of heat transfer. This work extends the classical model of heat transfer in porous media by including a fractional-order advective-dispersive term to account for the role of thermophysical heterogeneities in shifting the thermal instability point. The proposed fractional-order model overcomes limitations of the common closure approaches for the thermal dispersion term by replacing the diffusive assumption with a fractional-order model. Through a linear stability analysis and Galerkin procedure, we derive an analytical formula for the critical Rayleigh number as a function of the fractional model parameters. The resulting critical Rayleigh number reduces to the classical value in the absence of thermophysical heterogeneities when solid and fluid phases have similar thermal conductivities. Numerical simulations of the coupled flow equation with the fractional-order energy model near the primary bifurcation point confirm our analytical results. Moreover, data from pore-scale simulations are used to examine the potential of the proposed fractional-order model in predicting the amount of heat transfer across the porous enclosure. The linear stability and numerical results show that, unlike the classical thermal advection-dispersion models, the fractional-order model captures the advance and delay in the onset of convection in porous media and provides correct scalings for the average heat transfer in a thermophysically heterogeneous medium.

  2. Modelling Sublimation of Carbon Dioxide

    ERIC Educational Resources Information Center

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  3. Porting Inition and Failure to Linked Cheetah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P; Souers, P C

    2007-07-18

    Linked CHEETAH is a thermo-chemical code coupled to a 2-D hydrocode. Initially, a quadratic-pressure dependent kinetic rate was used, which worked well in modeling prompt detonation of explosives of large size, but does not work on other aspects of explosive behavior. The variable-pressure Tarantula reactive flow rate model was developed with JWL++ in order to also describe failure and initiation, and we have moved this model into Linked CHEETAH. The model works by turning on only above a pressure threshold, where a slow turn-on creates initiation. At a higher pressure, the rate suddenly leaps to a large value over amore » small pressure range. A slowly failing cylinder will see a rapidly declining rate, which pushes it quickly into failure. At a high pressure, the detonation rate is constant. A sequential validation procedure is used, which includes metal-confined cylinders, rate-sticks, corner-turning, initiation and threshold, gap tests and air gaps. The size (diameter) effect is central to the calibration.« less

  4. An empirical and model study on automobile market in Taiwan

    NASA Astrophysics Data System (ADS)

    Tang, Ji-Ying; Qiu, Rong; Zhou, Yueping; He, Da-Ren

    2006-03-01

    We have done an empirical investigation on automobile market in Taiwan including the development of the possession rate of the companies in the market from 1979 to 2003, the development of the largest possession rate, and so on. A dynamic model for describing the competition between the companies is suggested based on the empirical study. In the model each company is given a long-term competition factor (such as technology, capital and scale) and a short-term competition factor (such as management, service and advertisement). Then the companies play games in order to obtain more possession rate in the market under certain rules. Numerical simulation based on the model display a competition developing process, which qualitatively and quantitatively agree with our empirical investigation results.

  5. A study of the second and third order closure models of turbulence for prediction of separated shear flows

    NASA Technical Reports Server (NTRS)

    Amano, R. S.

    1985-01-01

    The hybrid model of the Reynolds-stress turbulence closure is tested for the computation of the flows over a step and disk. Here it is attempted to improve the redistributive action of the turbulence energy among the Reynolds stresses. By evaluating the existing models for the pressure-strain correlation, better coefficients are obtained for the prediction of separating shear flows. Furthermore, the diffusion rate of the Reynolds stresses is reevaluated adopting several algebraic correlations for the triple-velocity products. The models of Cormack et al., Daly-Harlow, Hanjalic-Launder, and Shir were tested for the reattaching shear flows. It was generally observed that all these algebraic models give considerably low values of the triple-velocity products. This is attributed to the fact that none of the algebraic models can take the convective effect of the triple-velocity products into account in the separating shear flows, thus resulting in much lower diffusion rate than Reynolds stresses. In order to improve the evaluation of these quantities correction factors are introduced based on the comparison with some experimental data.

  6. Characterization of sorption processes for the development of low-cost pesticide decontamination techniques.

    PubMed

    Rojas, Raquel; Vanderlinden, Eva; Morillo, José; Usero, José; El Bakouri, Hicham

    2014-08-01

    The adsorption/desorption behavior of four pesticides (atrazine, alachlor, endosulfan sulfate and trifluralin) in aqueous solutions onto four adsorbents (sunflower seed shells, rice husk, composted sewage sludge and soil) was investigated. Pesticide determination was carried out using stir bar sorptive extraction and gas chromatography coupled with mass spectroscopy. Maximum removal efficiency (73.9%) was reached using 1 g of rice husk and 50 mL of pesticide solution (200 μg L(-1)). The pseudo adsorption equilibrium was reached with 0.6 g organic residue, which was used in subsequent experiments. The pseudo-first-order, pseudo-second-order kinetics and the intra-particle diffusion models were used to describe the kinetic data and rate constants were evaluated. The first model was more suitable for the sorption of atrazine and alachlor while the pseudo-second-order best described endosulfan sulfate and trifluralin adsorption, which showed the fastest sorption rates. 4h was considered as the equilibrium time for determining adsorption isotherms. Experimental data were modeled by Langmuir and Freundlich models. In most of the studied cases both models can describe the adsorption process, although the Freundlich model was applicable in all cases. The sorption capacity increased with the hydrophobic character of the pesticides and decreased with their water solubility. Rice husk was revealed as the best adsorbent for three of the four studied pesticides (atrazine, alachlor and endosulfan sulfate), while better results were obtained with composted sewage sludge and sunflower seed shell for the removal of trifluralin. Although desorption percentages were not high (with the exception of alachlor, which reached a desorption rate of 57%), the Kfd values were lower than the Kf values for adsorption and all H values were below 100, indicating that the adsorption was weak. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Transportation economics and energy

    NASA Astrophysics Data System (ADS)

    Soltani Sobh, Ali

    The overall objective of this research is to study the impacts of technology improvement including fuel efficiency increment, extending the use of natural gas vehicle and electric vehicles on key parameters of transportation. In the first chapter, a simple economic analysis is used in order to demonstrate the adoption rate of natural gas vehicles as an alternative fuel vehicle. The effect of different factors on adoption rate of commuters is calculated in sensitivity analysis. In second chapter the VMT is modeled and forecasted under influence of CNG vehicles in different scenarios. The VMT modeling is based on the time series data for Washington State. In order to investigate the effect of population growth on VMT, the per capita model is also developed. In third chapter the effect of fuel efficiency improvement on fuel tax revenue and greenhouse emission is examined. The model is developed based on time series data of Washington State. The rebound effect resulted from fuel efficiency improvement is estimated and is considered in fuel consumption forecasting. The reduction in fuel tax revenue and greenhouse gas (GHG) emissions as two outcomes of lower fuel consumption are computed. In addition, the proper fuel tax rate to restitute the revenue is suggested. In the fourth chapter effective factors on electric vehicles (EV) adoption is discussed. The constructed model is aggregated binomial logit share model that estimates the modal split between EV and conventional vehicles for different states over time. Various factors are incorporated in the utility function as explanatory variables in order to quantify their effect on EV adoption choices. The explanatory variables include income, VMT, electricity price, gasoline price, urban area and number of EV stations.

  8. Effects of host social hierarchy on disease persistence.

    PubMed

    Davidson, Ross S; Marion, Glenn; Hutchings, Michael R

    2008-08-07

    The effects of social hierarchy on population dynamics and epidemiology are examined through a model which contains a number of fundamental features of hierarchical systems, but is simple enough to allow analytical insight. In order to allow for differences in birth rates, contact rates and movement rates among different sets of individuals the population is first divided into subgroups representing levels in the hierarchy. Movement, representing dominance challenges, is allowed between any two levels, giving a completely connected network. The model includes hierarchical effects by introducing a set of dominance parameters which affect birth rates in each social level and movement rates between social levels, dependent upon their rank. Although natural hierarchies vary greatly in form, the skewing of contact patterns, introduced here through non-uniform dominance parameters, has marked effects on the spread of disease. A simple homogeneous mixing differential equation model of a disease with SI dynamics in a population subject to simple birth and death process is presented and it is shown that the hierarchical model tends to this as certain parameter regions are approached. Outside of these parameter regions correlations within the system give rise to deviations from the simple theory. A Gaussian moment closure scheme is developed which extends the homogeneous model in order to take account of correlations arising from the hierarchical structure, and it is shown that the results are in reasonable agreement with simulations across a range of parameters. This approach helps to elucidate the origin of hierarchical effects and shows that it may be straightforward to relate the correlations in the model to measurable quantities which could be used to determine the importance of hierarchical corrections. Overall, hierarchical effects decrease the levels of disease present in a given population compared to a homogeneous unstructured model, but show higher levels of disease than structured models with no hierarchy. The separation between these three models is greatest when the rate of dominance challenges is low, reducing mixing, and when the disease prevalence is low. This suggests that these effects will often need to be considered in models being used to examine the impact of control strategies where the low disease prevalence behaviour of a model is critical.

  9. 3D modeling and characterization of a calorimetric flow rate sensor for sweat rate sensing applications

    NASA Astrophysics Data System (ADS)

    Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga

    2017-03-01

    Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.

  10. Modelling the breakup of solid aggregates in turbulent flows

    NASA Astrophysics Data System (ADS)

    B?Bler, Matth?Us U.; Morbidelli, Massimo; Ba?Dyga, Jerzy

    The breakup of solid aggregates suspended in a turbulent flow is considered. The aggregates are assumed to be small with respect to the Kolmogorov length scale and the flow is assumed to be homogeneous. Further, it is assumed that breakup is caused by hydrodynamic stresses acting on the aggregates, and breakup is therefore assumed to follow a first-order kinetic where KB(x) is the breakup rate function and x is the aggregate mass. To model KB(x), it is assumed that an aggregate breaks instantaneously when the surrounding flow is violent enough to create a hydrodynamic stress that exceeds a critical value required to break the aggregate. For aggregates smaller than the Kolmogorov length scale the hydrodynamic stress is determined by the viscosity and local energy dissipation rate whose fluctuations are highly intermittent. Hence, the first-order breakup kinetics are governed by the frequency with which the local energy dissipation rate exceeds a critical value (that corresponds to the critical stress). A multifractal model is adopted to describe the statistical properties of the local energy dissipation rate, and a power-law relation is used to relate the critical energy dissipation rate above which breakup occurs to the aggregate mass. The model leads to an expression for KB(x) that is zero below a limiting aggregate mass, and diverges for x . When simulating the breakup process, the former leads to an asymptotic mean aggregate size whose scaling with the mean energy dissipation rate differs by one third from the scaling expected in a non-fluctuating flow.

  11. Fractional viscoelasticity of soft elastomers and auxetic foams

    NASA Astrophysics Data System (ADS)

    Solheim, Hannah; Stanisauskis, Eugenia; Miles, Paul; Oates, William

    2018-03-01

    Dielectric elastomers are commonly implemented in adaptive structures due to their unique capabilities for real time control of a structure's shape, stiffness, and damping. These active polymers are often used in applications where actuator control or dynamic tunability are important, making an accurate understanding of the viscoelastic behavior critical. This challenge is complicated as these elastomers often operate over a broad range of deformation rates. Whereas research has demonstrated success in applying a nonlinear viscoelastic constitutive model to characterize the behavior of Very High Bond (VHB) 4910, robust predictions of the viscoelastic response over the entire range of time scales is still a significant challenge. An alternative formulation for viscoelastic modeling using fractional order calculus has shown significant improvement in predictive capabilities. While fractional calculus has been explored theoretically in the field of linear viscoelasticity, limited experimental validation and statistical evaluation of the underlying phenomena have been considered. In the present study, predictions across several orders of magnitude in deformation rates are validated against data using a single set of model parameters. Moreover, we illustrate the fractional order is material dependent by running complementary experiments and parameter estimation on the elastomer VHB 4949 as well as an auxetic foam. All results are statistically validated using Bayesian uncertainty methods to obtain posterior densities for the fractional order as well as the hyperelastic parameters.

  12. Rainfall effects on Ku-band satellite link design in rainy tropical climate

    NASA Astrophysics Data System (ADS)

    Mandeep, J. S.; Hassan, S. I. S.; Tanaka, K.

    2008-03-01

    The performance of rain attenuation models in equatorial zones is still a debated issue due to the lack of measurements reported from these areas. Therefore,Therefore the rainfall path attenuation at 12.255 GHz measured at Universiti Sains Malaysia (USM) for three years is presented. It shows that the power law function of rain attenuation with ground rain rate deviates at very high rain rate. A comparison is made between the measured cumulative distributions and current prediction models, in order to determine which model gives the best prediction for this location.

  13. Lattice Boltzmann model capable of mesoscopic vorticity computation

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  14. True and apparent scaling: The proximity of the Markov-switching multifractal model to long-range dependence

    NASA Astrophysics Data System (ADS)

    Liu, Ruipeng; Di Matteo, T.; Lux, Thomas

    2007-09-01

    In this paper, we consider daily financial data of a collection of different stock market indices, exchange rates, and interest rates, and we analyze their multi-scaling properties by estimating a simple specification of the Markov-switching multifractal (MSM) model. In order to see how well the estimated model captures the temporal dependence of the data, we estimate and compare the scaling exponents H(q) (for q=1,2) for both empirical data and simulated data of the MSM model. In most cases the multifractal model appears to generate ‘apparent’ long memory in agreement with the empirical scaling laws.

  15. Multimode VCSEL model for wide frequency-range RIN simulation

    NASA Astrophysics Data System (ADS)

    Perchoux, Julien; Rissons, Angélique; Mollier, Jean-Claude

    2008-01-01

    In this paper, we present an equivalent circuit model for oxide-confined AlGaAs/GaAs VCSEL with the noise contribution adapted to optomicrowave links applications. This model is derived from the multimode rate equations. In order to understand the modal competition process, we restrain our description to a two-modes rate equations system affected by the spectral hole-burning. The relative intensity noise (RIN) measurements which were achieved on a prober in Faraday cage confirm the low frequency enhancement described by the model. We validate our model for a wide frequency-range [1 MHz-10 GHz] and high bias level up to six times the threshold current.

  16. Desorption kinetics of hydrophobic organic chemicals from sediment to water: a review of data and models.

    PubMed

    Birdwell, Justin; Cook, Robert L; Thibodeaux, Louis J

    2007-03-01

    Resuspension of contaminated sediment can lead to the release of toxic compounds to surface waters where they are more bioavailable and mobile. Because the timeframe of particle resettling during such events is shorter than that needed to reach equilibrium, a kinetic approach is required for modeling the release process. Due to the current inability of common theoretical approaches to predict site-specific release rates, empirical algorithms incorporating the phenomenological assumption of biphasic, or fast and slow, release dominate the descriptions of nonpolar organic chemical release in the literature. Two first-order rate constants and one fraction are sufficient to characterize practically all of the data sets studied. These rate constants were compared to theoretical model parameters and functionalities, including chemical properties of the contaminants and physical properties of the sorbents, to determine if the trends incorporated into the hindered diffusion model are consistent with the parameters used in curve fitting. The results did not correspond to the parameter dependence of the hindered diffusion model. No trend in desorption rate constants, for either fast or slow release, was observed to be dependent on K(OC) or aqueous solubility for six and seven orders of magnitude, respectively. The same was observed for aqueous diffusivity and sediment fraction organic carbon. The distribution of kinetic rate constant values was approximately log-normal, ranging from 0.1 to 50 d(-1) for the fast release (average approximately 5 d(-1)) and 0.0001 to 0.1 d(-1) for the slow release (average approximately 0.03 d(-1)). The implications of these findings with regard to laboratory studies, theoretical desorption process mechanisms, and water quality modeling needs are presented and discussed.

  17. Effects of distribution of infection rate on epidemic models

    NASA Astrophysics Data System (ADS)

    Lachiany, Menachem; Louzoun, Yoram

    2016-08-01

    A goal of many epidemic models is to compute the outcome of the epidemics from the observed infected early dynamics. However, often, the total number of infected individuals at the end of the epidemics is much lower than predicted from the early dynamics. This discrepancy is argued to result from human intervention or nonlinear dynamics not incorporated in standard models. We show that when variability in infection rates is included in standard susciptible-infected-susceptible (SIS ) and susceptible-infected-recovered (SIR ) models the total number of infected individuals in the late dynamics can be orders lower than predicted from the early dynamics. This discrepancy holds for SIS and SIR models, where the assumption that all individuals have the same sensitivity is eliminated. In contrast with network models, fixed partnerships are not assumed. We derive a moment closure scheme capturing the distribution of sensitivities. We find that the shape of the sensitivity distribution does not affect R0 or the number of infected individuals in the early phases of the epidemics. However, a wide distribution of sensitivities reduces the total number of removed individuals in the SIR model and the steady-state infected fraction in the SIS model. The difference between the early and late dynamics implies that in order to extrapolate the expected effect of the epidemics from the initial phase of the epidemics, the rate of change in the average infectivity should be computed. These results are supported by a comparison of the theoretical model to the Ebola epidemics and by numerical simulation.

  18. Nucleation of ordered solid phases of proteins via a disordered high-density state: Phenomenological approach

    NASA Astrophysics Data System (ADS)

    Pan, Weichun; Kolomeisky, Anatoly B.; Vekilov, Peter G.

    2005-05-01

    Nucleation of ordered solid phases of proteins triggers numerous phenomena in laboratory, industry, and in healthy and sick organisms. Recent simulations and experiments with protein crystals suggest that the formation of an ordered crystalline nucleus is preceded by a disordered high-density cluster, akin to a droplet of high-density liquid that has been observed with some proteins; this mechanism allowed a qualitative explanation of recorded complex nucleation kinetics curves. Here, we present a simple phenomenological theory that takes into account intermediate high-density metastable states in the nucleation process. Nucleation rate data at varying temperature and protein concentration are reproduced with high fidelity using literature values of the thermodynamic and kinetic parameters of the system. Our calculations show that the growth rate of the near-critical and supercritical ordered clusters within the dense intermediate is a major factor for the overall nucleation rate. This highlights the role of viscosity within the dense intermediate for the formation of the ordered nucleus. The model provides an understanding of the action of additives that delay or accelerate nucleation and presents a framework within which the nucleation of other ordered protein solid phases, e.g., the sickle cell hemoglobin polymers, can be analyzed.

  19. 0-6629 : Texas specific drive cycles and idle emissions rates for using with EPA's MOVES model, [project summary].

    DOT National Transportation Integrated Search

    2013-08-01

    The U.S. Environmental Protection Agencys : newest emissions model, Motor Vehicle Emission : Simulator (MOVES), enables users to use local : drive schedules(representative vehicle speed : profiles) in order to perform an accurate analysis : of emi...

  20. Modeling the Growth Rates of Tetragonal Lysozyme Crystal Faces

    NASA Technical Reports Server (NTRS)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    The measured macroscopic growth rates of the (110) and (101) faces of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. The growth rates decay asymptotically to zero when the supersaturation is lowered to zero and increase rapidly when the supersaturation is increased. When supersaturations are increased still further the growth rates attain a maximum before starting to decrease. However, growth of these crystals is known to proceed by the classical dislocation and 2D nucleation growth mechanisms. This anomaly can be explained if growth is assumed to occur not by monomer units but by lysozyme aggregates. Analysis of the molecular packing of these crystals revealed that they were constructed of strongly bonded 4(sub 3) helices, while weaker bonds were responsible for binding the helices to each other. It follows that during crystal growth the stronger bonds are formed before the weaker ones. Thus, the growth of these crystals could be viewed as a two step process: aggregate growth units corresponding to the 4(sub 3) helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds on dislocation hillocks or 2D islands. This will lead to a distribution of aggregates in the solution with monomers and lower order aggregates being predominant at low supersaturations and higher order aggregates being predominant at high supersaturations. If the crystal grows mostly by higher order aggregates, such as tetramers and octamers, it would explain the anomalous dependence of the growth rates on the supersaturation. Besides the analysis of molecular packing, a comprehensive analysis of the measured (110) and (101) growth rates was also undertaken in this study. The distribution of aggregates in lysozyme nutrient solutions at various solution conditions were determined from reversible aggregation reactions at equilibrium. The supersaturation was defined for each aggregate species with respect to its concentration at saturation in order to apply growth rate models to this process. The measured growth rates were then compared with the predicted ones from several dislocation and 2D nucleation growth models, employing tetramer and octamer growth units in polydisperse solutions and monomer units in monodisperse solutions. For the (110) face, the calculations consistently showed that the measured growth rates followed the expected model relations with octamer growth units. For the (101) face, it is not possible to obtain a clear agreement between the predicted and measured growth rates for a single growth unit as done for the (110) face. However, the calculations do indicate that the average size of the growth unit is between a tetramer and an octamer. This suggests that tetramers, octamers and other intermediate size growth units all participate in the growth process for this face. These calculations show that it is possible to model the macroscopic protein crystal growth rates if the molecular level processes can be account for, particularly protein aggregation processes in the bulk solution. Our recent investigations of tetragonal lysozyme crystals employing high resolution atomic force microscopy scans have further confirmed the growth of these crystals by aggregate growth units corresponding to 4(sub 3) helices.

  1. Gasification Characteristics of Coal/Biomass Mixed Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Reginald

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomassmore » and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures.« less

  2. A Semi-Parametric Bayesian Mixture Modeling Approach for the Analysis of Judge Mediated Data

    ERIC Educational Resources Information Center

    Muckle, Timothy Joseph

    2010-01-01

    Existing methods for the analysis of ordinal-level data arising from judge ratings, such as the Multi-Facet Rasch model (MFRM, or the so-called Facets model) have been widely used in assessment in order to render fair examinee ability estimates in situations where the judges vary in their behavior or severity. However, this model makes certain…

  3. Measurement of Libby Amphibole (LA) Elongated Particle Dissolution Rates and Alteration of Size/Shape Distributions in Support of Human Dosimetry Model Development and Relative Potency Determinations

    EPA Science Inventory

    To maximize the value of toxicological data in development of human health risk assessment models of inhaled elongated mineral particles, improvements in human dosimetry modeling are needed. In order to extend the dosimetry model of deposited fibers (Asgharian et aI., Johnson 201...

  4. Mathematical modelling of the maternal cardiovascular system in the three stages of pregnancy.

    PubMed

    Corsini, Chiara; Cervi, Elena; Migliavacca, Francesco; Schievano, Silvia; Hsia, Tain-Yen; Pennati, Giancarlo

    2017-09-01

    In this study, a mathematical model of the female circulation during pregnancy is presented in order to investigate the hemodynamic response to the cardiovascular changes associated with each trimester of pregnancy. First, a preliminary lumped parameter model of the circulation of a non-pregnant female was developed, including the heart, the systemic circulation with a specific block for the uterine district and the pulmonary circulation. The model was first tested at rest; then heart rate and vascular resistances were individually varied to verify the correct response to parameter alterations characterising pregnancy. In order to simulate hemodynamics during pregnancy at each trimester, the main changes applied to the model consisted in reducing vascular resistances, and simultaneously increasing heart rate and ventricular wall volumes. Overall, reasonable agreement was found between model outputs and in vivo data, with the trends of the cardiac hemodynamic quantities suggesting correct response of the heart model throughout pregnancy. Results were reported for uterine hemodynamics, with flow tracings resembling typical Doppler velocity waveforms at each stage, including pulsatility indexes. Such a model may be used to explore the changes that happen during pregnancy in female with cardiovascular diseases. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. A Control Model: Interpretation of Fitts' Law

    NASA Technical Reports Server (NTRS)

    Connelly, E. M.

    1984-01-01

    The analytical results for several models are given: a first order model where it is assumed that the hand velocity can be directly controlled, and a second order model where it is assumed that the hand acceleration can be directly controlled. Two different types of control-laws are investigated. One is linear function of the hand error and error rate; the other is the time-optimal control law. Results show that the first and second order models with the linear control-law produce a movement time (MT) function with the exact form of the Fitts' Law. The control-law interpretation implies that the effect of target width on MT must be a result of the vertical motion which elevates the hand from the starting point and drops it on the target at the target edge. The time optimal control law did not produce a movement-time formula simular to Fitt's Law.

  6. Modelling the removal of p-TSA (para-toluenesulfonamide) during rapid sand filtration used for drinking water treatment.

    PubMed

    Meffe, Raffaella; Kohfahl, Claus; Holzbecher, Ekkehard; Massmann, Gudrun; Richter, Doreen; Dünnbier, Uwe; Pekdeger, Asaf

    2010-01-01

    A finite element model was set-up to determine degradation rate constants for p-TSA during rapid sand filtration (RSF). Data used for the model originated from a column experiment carried out in the filter hall of a drinking water treatment plant in Berlin (Germany). Aerated abstracted groundwater was passed through a 1.6m long column-shaped experimental sand filter applying infiltration rates from 2 to 6mh(-1). Model results were fitted to measured profiles and breakthrough curves of p-TSA for different infiltration rates using both first-order reaction kinetics and Michaelis-Menten kinetics. Both approaches showed that degradation rates varied both in space and time. Higher degradation rates were observed in the upper part of the column, probably related to higher microbial activity in this zone. Measured and simulated breakthrough curves revealed an adaption phase with lower degradation rates after infiltration rates were changed, followed by an adapted phase with more elevated degradation rates. Irrespective of the mathematical approach and the infiltration rate, degradation rates were very high, probably owing to the fact that filter sands have been in operation for decades, receiving high p-TSA concentrations with the raw water.

  7. Finite driving rate and anisotropy effects in landslide modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piegari, E.; Cataudella, V.; Di Maio, R.

    2006-02-15

    In order to characterize landslide frequency-size distributions and individuate hazard scenarios and their possible precursors, we investigate a cellular automaton where the effects of a finite driving rate and the anisotropy are taken into account. The model is able to reproduce observed features of landslide events, such as power-law distributions, as experimentally reported. We analyze the key role of the driving rate and show that, as it is increased, a crossover from power-law to non-power-law behaviors occurs. Finally, a systematic investigation of the model on varying its anisotropy factors is performed and the full diagram of its dynamical behaviors ismore » presented.« less

  8. A contribution toward rational modeling of the pressure-strain-rate correlation

    NASA Technical Reports Server (NTRS)

    Lee, Moon Joo

    1990-01-01

    A novel method of obtaining an analytical expression of the 'linear part' of the pressure-strain-rate tensor in terms of the anisotropy tensor of the Reynolds stresses has been developed, where the coefficients of the seven independent tensor terms are functions of the invariants of the Reynolds-stress anisotropy. The coefficients are evaluated up to fourth order in the anisotropy of the Reynolds stresses to provide guidance for development of a turbulence model.

  9. Do alcohol excise taxes affect traffic accidents? Evidence from Estonia.

    PubMed

    Saar, Indrek

    2015-01-01

    This article examines the association between alcohol excise tax rates and alcohol-related traffic accidents in Estonia. Monthly time series of traffic accidents involving drunken motor vehicle drivers from 1998 through 2013 were regressed on real average alcohol excise tax rates while controlling for changes in economic conditions and the traffic environment. Specifically, regression models with autoregressive integrated moving average (ARIMA) errors were estimated in order to deal with serial correlation in residuals. Counterfactual models were also estimated in order to check the robustness of the results, using the level of non-alcohol-related traffic accidents as a dependent variable. A statistically significant (P <.01) strong negative relationship between the real average alcohol excise tax rate and alcohol-related traffic accidents was disclosed under alternative model specifications. For instance, the regression model with ARIMA (0, 1, 1)(0, 1, 1) errors revealed that a 1-unit increase in the tax rate is associated with a 1.6% decrease in the level of accidents per 100,000 population involving drunk motor vehicle drivers. No similar association was found in the cases of counterfactual models for non-alcohol-related traffic accidents. This article indicates that the level of alcohol-related traffic accidents in Estonia has been affected by changes in real average alcohol excise taxes during the period 1998-2013. Therefore, in addition to other measures, the use of alcohol taxation is warranted as a policy instrument in tackling alcohol-related traffic accidents.

  10. 3D Higher Order Modeling in the BEM/FEM Hybrid Formulation

    NASA Technical Reports Server (NTRS)

    Fink, P. W.; Wilton, D. R.

    2000-01-01

    Higher order divergence- and curl-conforming bases have been shown to provide significant benefits, in both convergence rate and accuracy, in the 2D hybrid finite element/boundary element formulation (P. Fink and D. Wilton, National Radio Science Meeting, Boulder, CO, Jan. 2000). A critical issue in achieving the potential for accuracy of the approach is the accurate evaluation of all matrix elements. These involve products of high order polynomials and, in some instances, singular Green's functions. In the 2D formulation, the use of a generalized Gaussian quadrature method was found to greatly facilitate the computation and to improve the accuracy of the boundary integral equation self-terms. In this paper, a 3D, hybrid electric field formulation employing higher order bases and higher order elements is presented. The improvements in convergence rate and accuracy, compared to those resulting from lower order modeling, are established. Techniques developed to facilitate the computation of the boundary integral self-terms are also shown to improve the accuracy of these terms. Finally, simple preconditioning techniques are used in conjunction with iterative solution procedures to solve the resulting linear system efficiently. In order to handle the boundary integral singularities in the 3D formulation, the parent element- either a triangle or rectangle-is subdivided into a set of sub-triangles with a common vertex at the singularity. The contribution to the integral from each of the sub-triangles is computed using the Duffy transformation to remove the singularity. This method is shown to greatly facilitate t'pe self-term computation when the bases are of higher order. In addition, the sub-triangles can be further divided to achieve near arbitrary accuracy in the self-term computation. An efficient method for subdividing the parent element is presented. The accuracy obtained using higher order bases is compared to that obtained using lower order bases when the number of unknowns is approximately equal. Also, convergence rates obtained using higher order bases are compared to those obtained with lower order bases for selected sample

  11. 76 FR 58319 - Order Granting Temporary Exemption of Kroll Bond Rating Agency, Inc. From the Conflict of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... Exchange Act of 1934 (``Exchange Act'') prohibits a nationally recognized statistical rating organization... traditionally has operated mainly under the ``subscriber-paid'' business model, in which the NRSRO derives its... Act'') as set forth in the Report of the Senate Committee on Banking, Housing, and Urban Affairs...

  12. Enhanced diffusion of pollutants by self-propulsion.

    PubMed

    Zhao, Guanjia; Stuart, Emma J E; Pumera, Martin

    2011-07-28

    Current environmental models mostly account for the passive participation of pollutants in their environmental propagation. Here we demonstrate the paradigm-changing concept that pollutants can propagate themselves with a rate that is greater than the rate for standard molecular diffusion by five orders of magnitude. This journal is © the Owner Societies 2011

  13. FUNDAMENTAL MASS TRANSFER MODEL FOR INDOOR AIR EMISSIONS FROM SURFACE COATINGS

    EPA Science Inventory

    Emissions from freshly applied paints and other coatings can cause elevated indoor concentrations of vapor-phase organics. Methods are needed to determine the emission rates over time for these products. Some success has been achieved using simple first-order decay models to eval...

  14. Estimating distributions with increasing failure rate in an imperfect repair model.

    PubMed

    Kvam, Paul H; Singh, Harshinder; Whitaker, Lyn R

    2002-03-01

    A failed system is repaired minimally if after failure, it is restored to the working condition of an identical system of the same age. We extend the nonparametric maximum likelihood estimator (MLE) of a system's lifetime distribution function to test units that are known to have an increasing failure rate. Such items comprise a significant portion of working components in industry. The order-restricted MLE is shown to be consistent. Similar results hold for the Brown-Proschan imperfect repair model, which dictates that a failed component is repaired perfectly with some unknown probability, and is otherwise repaired minimally. The estimators derived are motivated and illustrated by failure data in the nuclear industry. Failure times for groups of emergency diesel generators and motor-driven pumps are analyzed using the order-restricted methods. The order-restricted estimators are consistent and show distinct differences from the ordinary MLEs. Simulation results suggest significant improvement in reliability estimation is available in many cases when component failure data exhibit the IFR property.

  15. A Model-Free Diagnostic for Single-Peakedness of Item Responses Using Ordered Conditional Means.

    PubMed

    Polak, Marike; de Rooij, Mark; Heiser, Willem J

    2012-09-01

    In this article we propose a model-free diagnostic for single-peakedness (unimodality) of item responses. Presuming a unidimensional unfolding scale and a given item ordering, we approximate item response functions of all items based on ordered conditional means (OCM). The proposed OCM methodology is based on Thurstone & Chave's (1929) criterion of irrelevance, which is a graphical, exploratory method for evaluating the "relevance" of dichotomous attitude items. We generalized this criterion to graded response items and quantified the relevance by fitting a unimodal smoother. The resulting goodness-of-fit was used to determine item fit and aggregated scale fit. Based on a simulation procedure, cutoff values were proposed for the measures of item fit. These cutoff values showed high power rates and acceptable Type I error rates. We present 2 applications of the OCM method. First, we apply the OCM method to personality data from the Developmental Profile; second, we analyze attitude data collected by Roberts and Laughlin (1996) concerning opinions of capital punishment.

  16. A Computer Model of a Phase Lock Loop

    NASA Technical Reports Server (NTRS)

    Shelton, Ralph Paul

    1973-01-01

    A computer model is reported of a PLL (phase-lock loop), preceded by a bandpass filter, which is valid when the bandwidth of the bandpass filter is of the same order of magnitude as the natural frequency of the PLL. New results for the PLL natural frequency equal to the bandpass filter bandwidth are presented for a second order PLL operating with carrier plus noise as the input. However, it is shown that extensions to higher order loops, and to the case of a modulated carrier are straightforward. The new results presented give the cycle skipping rate of the PLL as a function of the input carrier to noise ratio when the PLL natural frequency is equal to the bandpass filter bandwidth. Preliminary results showing the variation of the output noise power and cycle skipping rates of the PLL as a function of the loop damping ratio for the PLL natural frequency equal to the bandpass filter bandwidth are also included.

  17. Model-based design of an agricultural biogas plant: application of anaerobic digestion model no.1 for an improved four chamber scheme.

    PubMed

    Wett, B; Schoen, M; Phothilangka, P; Wackerle, F; Insam, H

    2007-01-01

    Different digestion technologies for various substrates are addressed by the generic process description of Anaerobic Digestion Model No. 1. In the case of manure or agricultural wastes a priori knowledge about the substrate in terms of ADM1 compounds is lacking and influent characterisation becomes a major issue. The actual project has been initiated for promotion of biogas technology in agriculture and for expansion of profitability also to rather small capacity systems. In order to avoid costly individual planning and installation of each facility a standardised design approach needs to be elaborated. This intention pleads for bio kinetic modelling as a systematic tool for process design and optimisation. Cofermentation under field conditions was observed, quality data and flow data were recorded and mass flow balances were calculated. In the laboratory different substrates have been digested separately in parallel under specified conditions. A configuration of four ADM1 model reactors was set up. Model calibration identified disintegration rate, decay rates for sugar degraders and half saturation constant for sugar as the three most sensitive parameters showing values (except the latter) about one order of magnitude higher than default parameters. Finally, the model is applied to the comparison of different reactor configurations and volume partitions. Another optimisation objective is robustness and load flexibility, i.e. the same configuration should be adaptive to different load situations only by a simple recycle control in order to establish a standardised design.

  18. Bayesian Estimation of Circumplex Models Subject to Prior Theory Constraints and Scale-Usage Bias

    ERIC Educational Resources Information Center

    Lenk, Peter; Wedel, Michel; Bockenholt, Ulf

    2006-01-01

    This paper presents a hierarchical Bayes circumplex model for ordinal ratings data. The circumplex model was proposed to represent the circular ordering of items in psychological testing by imposing inequalities on the correlations of the items. We provide a specification of the circumplex, propose identifying constraints and conjugate priors for…

  19. The Construct of Creativity: Structural Model for Self-Reported Creativity Ratings

    ERIC Educational Resources Information Center

    Kaufman, James C.; Cole, Jason C.; Baer, John

    2009-01-01

    Several thousand subjects completed self-report questionnaires about their own creativity in 56 discrete domains. This sample was then randomly divided into three subsamples that were subject to factor analyses that compared an oblique model (with a set of correlated factors) and a hierarchical model (with a single second-order, or hierarchical,…

  20. Second-Order Fermi Acceleration and Emission in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Asano, Katsuaki; Takahara, Fumio; Toma, Kenji; Kusunose, Masaaki; Kakuwa, Jun

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations, adopt it for 1ES 1101-232, and Mrk 421. The Fermi-II model with radial evolution of the electron injection rate and/or diffusion coefficient can reproduce the spectra from the radio to the gamma-ray regime. For Mrk 421, an external radio photon field with a luminosity of 4.9 begin{math} {times} 10 (38) erg s (-1) is required to agree with the observed GeV flux. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.

  1. Effects of high optical injection levels in polycrystalline Si wafers on carrier transport

    NASA Astrophysics Data System (ADS)

    Steele, Doneisha; Semichaevsky, Andrey

    High levels of carrier injection in polycrystalline Si may arise, for example, in solar cells under concentrated sunlight. Mechanisms for non-radiative carrier recombination include trap-mediated SRH and higher-order processes, e.g., Auger recombination. In this paper we present our experimental results for intensity-dependent carrier lifetimes and conduction currents in polycrystalline Si wafers illuminated with pulses of up to 50 Sun intensity. We also use a computational model for carrier transport that includes both SRH and Auger recombination mechanisms, in order to explain our experiments. The model allows quantifying recombination rate dependence on carrier concentration. Our goal is to relate the recombination rates to Si microstructure and defect densities that are revealed by IR PL images. We acknowledge the NSF support through Grant 1505377.

  2. A neural mechanism for detecting the distance of a selected target by modulating the FM sweep rate of biosonar in echolocation of bat.

    PubMed

    Kamata, Eigo; Inoue, Satoru; Zheng, MeiHong; Kashimori, Yoshiki; Kambara, Takeshi

    2004-01-01

    Most species of bats making echolocation use frequency modulated (FM) ultrasonic pulses to measure the distance to targets. These bats detect with a high accuracy the arrival time differences between emitted pulses and their echoes generated by targets. In order to clarify the neural mechanism for echolocation, we present neural model of inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) along which information of echo delay times is processed. The bats increase the downward frequency sweep rate of emitted FM pulse as they approach the target. The functional role of this modulation of sweep rate is not yet clear. In order to investigate the role, we calculated the response properties of our models of IC, MGB, and AC changing the target distance and the sweep rate. We found based on the simulations that the distance of a target in various ranges may be encoded the most clearly into the activity pattern of delay time map network in AC, when the sweep rate of FM pulse used is coincided with the observed value which the bats adopt for each range of target distance.

  3. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators.

    PubMed

    Backović, Mihailo; Krämer, Michael; Maltoni, Fabio; Martini, Antony; Mawatari, Kentarou; Pellen, Mathieu

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s -channel mediators. We implement such models in the FeynRules/MadGraph5_aMC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s -channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  4. Interest rate next-day variation prediction based on hybrid feedforward neural network, particle swarm optimization, and multiresolution techniques

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-02-01

    Multiresolution analysis techniques including continuous wavelet transform, empirical mode decomposition, and variational mode decomposition are tested in the context of interest rate next-day variation prediction. In particular, multiresolution analysis techniques are used to decompose interest rate actual variation and feedforward neural network for training and prediction. Particle swarm optimization technique is adopted to optimize its initial weights. For comparison purpose, autoregressive moving average model, random walk process and the naive model are used as main reference models. In order to show the feasibility of the presented hybrid models that combine multiresolution analysis techniques and feedforward neural network optimized by particle swarm optimization, we used a set of six illustrative interest rates; including Moody's seasoned Aaa corporate bond yield, Moody's seasoned Baa corporate bond yield, 3-Month, 6-Month and 1-Year treasury bills, and effective federal fund rate. The forecasting results show that all multiresolution-based prediction systems outperform the conventional reference models on the criteria of mean absolute error, mean absolute deviation, and root mean-squared error. Therefore, it is advantageous to adopt hybrid multiresolution techniques and soft computing models to forecast interest rate daily variations as they provide good forecasting performance.

  5. Nonstandard Yukawa couplings and Higgs portal dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishara, Fady; Brod, Joachim; Uttayarat, Patipan

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model,more » the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. In conclusion, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.« less

  6. Nonstandard Yukawa couplings and Higgs portal dark matter

    DOE PAGES

    Bishara, Fady; Brod, Joachim; Uttayarat, Patipan; ...

    2016-01-04

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model,more » the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. In conclusion, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.« less

  7. Reduced-Order Structure-Preserving Model for Parallel-Connected Three-Phase Grid-Tied Inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Purba, Victor; Jafarpour, Saber

    Next-generation power networks will contain large numbers of grid-connected inverters satisfying a significant fraction of system load. Since each inverter model has a relatively large number of dynamic states, it is impractical to analyze complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the point of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loopmore » for grid synchronization. We outline a structure-preserving reduced-order inverter model with lumped parameters for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. We show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as any individual inverter in the system. Numerical simulations validate the reduced-order model.« less

  8. Stability analysis and nonstandard Grünwald-Letnikov scheme for a fractional order predator-prey model with ratio-dependent functional response

    NASA Astrophysics Data System (ADS)

    Suryanto, Agus; Darti, Isnani

    2017-12-01

    In this paper we discuss a fractional order predator-prey model with ratio-dependent functional response. The dynamical properties of this model is analyzed. Here we determine all equilibrium points of this model including their existence conditions and their stability properties. It is found that the model has two type of equilibria, namely the predator-free point and the co-existence point. If there is no co-existence equilibrium, i.e. when the coefficient of conversion from the functional response into the growth rate of predator is less than the death rate of predator, then the predator-free point is asymptotically stable. On the other hand, if the co-existence point exists then this equilibrium is conditionally stable. We also construct a nonstandard Grnwald-Letnikov (NSGL) numerical scheme for the propose model. This scheme is a combination of the Grnwald-Letnikov approximation and the nonstandard finite difference scheme. This scheme is implemented in MATLAB and used to perform some simulations. It is shown that our numerical solutions are consistent with the dynamical properties of our fractional predator-prey model.

  9. Modelling the influence of time and temperature on the respiration rate of fresh oyster mushrooms.

    PubMed

    Azevedo, Sílvia; Cunha, Luís M; Fonseca, Susana C

    2015-12-01

    The respiration rate of mushrooms is an important indicator of postharvest senescence. Storage temperature plays a major role in their rate of respiration and, therefore, in their postharvest life. In this context, reliable predictions of respiration rates are critical for the development of modified atmosphere packaging that ultimately will maximise the quality of the product to be presented to consumers. This work was undertaken to study the influence of storage time and temperature on the respiration rate of oyster mushrooms. For that purpose, oyster mushrooms were stored at constant temperatures of 2, 6, 10, 14 and 18 ℃ under ambient atmosphere. Respiration rate data were measured with 8-h intervals up to 240 h. A decrease of respiration rate was found after cutting of the carpophores. Therefore, time effect on respiration rate was modelled using a first-order decay model. The results also show the positive influence of temperature on mushroom respiration rate. The model explaining the effect of time on oyster mushroom's respiration rate included the temperature dependence according to the Arrhenius equation, and the inclusion of a parameter describing the decrease of the respiration rate, from the initial time until equilibrium. These yielded an overall model that fitted well to the experimental data. Moreover, results show that the overall model is useful to predict respiration rate of oyster mushrooms at different temperatures and times, using the initial respiration rate of mushrooms. Furthermore, predictive modelling can be relevant for the choice of an appropriate packaging system for fresh oyster mushrooms. © The Author(s) 2014.

  10. The Threshold Bias Model: A Mathematical Model for the Nomothetic Approach of Suicide

    PubMed Central

    Folly, Walter Sydney Dutra

    2011-01-01

    Background Comparative and predictive analyses of suicide data from different countries are difficult to perform due to varying approaches and the lack of comparative parameters. Methodology/Principal Findings A simple model (the Threshold Bias Model) was tested for comparative and predictive analyses of suicide rates by age. The model comprises of a six parameter distribution that was applied to the USA suicide rates by age for the years 2001 and 2002. Posteriorly, linear extrapolations are performed of the parameter values previously obtained for these years in order to estimate the values corresponding to the year 2003. The calculated distributions agreed reasonably well with the aggregate data. The model was also used to determine the age above which suicide rates become statistically observable in USA, Brazil and Sri Lanka. Conclusions/Significance The Threshold Bias Model has considerable potential applications in demographic studies of suicide. Moreover, since the model can be used to predict the evolution of suicide rates based on information extracted from past data, it will be of great interest to suicidologists and other researchers in the field of mental health. PMID:21909431

  11. The threshold bias model: a mathematical model for the nomothetic approach of suicide.

    PubMed

    Folly, Walter Sydney Dutra

    2011-01-01

    Comparative and predictive analyses of suicide data from different countries are difficult to perform due to varying approaches and the lack of comparative parameters. A simple model (the Threshold Bias Model) was tested for comparative and predictive analyses of suicide rates by age. The model comprises of a six parameter distribution that was applied to the USA suicide rates by age for the years 2001 and 2002. Posteriorly, linear extrapolations are performed of the parameter values previously obtained for these years in order to estimate the values corresponding to the year 2003. The calculated distributions agreed reasonably well with the aggregate data. The model was also used to determine the age above which suicide rates become statistically observable in USA, Brazil and Sri Lanka. The Threshold Bias Model has considerable potential applications in demographic studies of suicide. Moreover, since the model can be used to predict the evolution of suicide rates based on information extracted from past data, it will be of great interest to suicidologists and other researchers in the field of mental health.

  12. Kinetic rate laws of Cd, Pb, and Zn vaporization during municipal solid waste incineration.

    PubMed

    Falcoz, Quentin; Gauthier, Daniel; Abanades, Stéphane; Flamant, Gilles; Patisson, Fabrice

    2009-03-15

    The kinetic rate laws of heavy metal (HM) vaporization from municipal solid waste during its incineration were studied. Realistic artificial waste (RAW) samples spiked with Pb, Zn, and Cd were injected into a fluidized bed reactor. Metal vaporization wastracked by continuous measure ofthe above metals in exhaust gases. An inverse model of the reactor was used to calculate the metal vaporization rates from the concentration vs time profiles in the outlet gas. For each metal, experiments were carried out at several temperatures in order to determine the kinetic parameters and to obtain specific rate laws as functions of temperature. Temperature has a strong influence on the HM vaporization dynamics, especially on the vaporization kinetics profile. This phenomenon was attributed to internal diffusion control of the HM release. Two types of kinetic rate laws were established based on temperature: a fourth- or fifth-order polynomial rate law (r(x) = k0e(-E(A)/RT)p(x)) for temperatures lower than 740 degrees C and a first-order polynomial (r(x) = k0e(-E(A)/ RT(q-q(f) for temperatures higher than 740 degrees C.

  13. Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate.

    PubMed

    Sun, Kaibiao; Zhang, Tonghua; Tian, Yuan

    2016-09-01

    This work presents a pest control predator-prey model, where rate of change in prey density follows a scaling law with exponent less than one and the control is by an integrated management strategy. The aim is to investigate the change in system dynamics and determine a pest control level with minimum control price. First, the dynamics of the proposed model without control is investigated by taking the exponent as an index parameter. And then, to determine the frequency of spraying chemical pesticide and yield releases of the predator, the existence of the order-1 periodic orbit of the control system is discussed in cases. Furthermore, to ensure a certain robustness of the adopted control, i.e., for an inaccurately detected species density or a deviation, the control system could be stabilized at the order-1 periodic orbit, the stability of the order-1 periodic orbit is verified by an stability criterion for a general semi-continuous dynamical system. In addition, to minimize the total cost input in pest control, an optimization problem is formulated and the optimum pest control level is obtained. At last, the numerical simulations with a specific model are carried out to complement the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Failure rate analysis of Goddard Space Flight Center spacecraft performance during orbital life

    NASA Technical Reports Server (NTRS)

    Norris, H. P.; Timmins, A. R.

    1976-01-01

    Space life performance data on 57 Goddard Space Flight Center spacecraft are analyzed from the standpoint of determining an appropriate reliability model and the associated reliability parameters. Data from published NASA reports, which cover the space performance of GSFC spacecraft launched in the 1960-1970 decade, form the basis of the analyses. The results of the analyses show that the time distribution of 449 malfunctions, of which 248 were classified as failures (not necessarily catastrophic), follow a reliability growth pattern that can be described with either the Duane model or a Weibull distribution. The advantages of both mathematical models are used in order to: identify space failure rates, observe chronological trends, and compare failure rates with those experienced during the prelaunch environmental tests of the flight model spacecraft.

  15. Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides.

    PubMed

    Rakhshaee, Roohan; Khosravi, Morteza; Ganji, Masoud Taghi

    2006-06-30

    Dead Azolla filiculoides can remove Pb(2+),Cd(2+), Ni(2+) and Zn(2+) corresponding to second-order kinetic model. The maximum adsorption capacity (Q(max)) to remove these metal ions by the alkali and CaCl(2)/MgCl(2)/NaCl (2:1:1, molar ratio) activated Azolla from 283 to 313K was 1.431-1.272, 1.173-0.990, 1.365-1.198 and 1.291-0.981mmol/g dry biomass, respectively. Q(max) to remove these heavy metals by the non-activated Azolla at the mentioned temperature range was obtained 1.131-0.977, 1.092-0.921, 1.212-0.931 and 1.103-0.923mmol/g dry biomass, respectively. In order to remove these metal ions by the activated Azolla, the enthalpy change (DeltaH) was -4.403, -4.495, -4.557 and -4.365kcal/mol and the entropy change (DeltaS) was 2.290, 1.268, 1.745 and 1.006cal/molK, respectively. While, to remove these metal ions by the non-activated Azolla, DeltaH was -3.685, -3.766, -3.967 and -3.731kcal/mol and DeltaS was 2.440, 1.265, 1.036 and 0.933cal/molK, respectively. On the other hand, the living Azolla removed these heavy metals corresponding to first-order kinetic model. It was also shown that pH, temperature and photoperiod were effective both on the rate of Azolla growth and the rate of heavy metals uptake during 10 days. It was appeared the use of Ca(NO(3))(2) increased both Azolla growth rate and the rate of heavy metals uptake while the using KNO(3) although increased Azolla growth rate but decreased the rate of heavy metals uptake.

  16. Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones

    NASA Astrophysics Data System (ADS)

    Irimpan, Kiran Joy; Menezes, Viren

    2018-03-01

    Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.

  17. Evaluation of Advanced Reactive Surface Area Estimates for Improved Prediction of Mineral Reaction Rates in Porous Media

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Mitnick, E. H.; Zhang, S.; Voltolini, M.; Yang, L.; Steefel, C. I.; Swift, A.; Cole, D. R.; Sheets, J.; Kneafsey, T. J.; Landrot, G.; Anovitz, L. M.; Mito, S.; Xue, Z.; Ajo Franklin, J. B.; DePaolo, D.

    2015-12-01

    CO2 sequestration in deep sedimentary formations is a promising means of reducing atmospheric CO2 emissions but the rate and extent of mineral trapping remains difficult to predict. Reactive transport models provide predictions of mineral trapping based on laboratory mineral reaction rates, which have been shown to have large discrepancies with field rates. This, in part, may be due to poor quantification of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area are ad hoc and typically based on grain size, adjusted several orders of magnitude to account for surface roughness and reactivity. This results in orders of magnitude discrepancies in estimated surface areas that directly translate into orders of magnitude discrepancies in model predictions. Additionally, natural systems can be highly heterogeneous and contain abundant nano- and micro-porosity, which can limit connected porosity and access to mineral surfaces. In this study, mineral-specific accessible surface areas are computed for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan). Accessible mineral surface areas are determined from a multi-scale image analysis including X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB. Powder and flow-through column laboratory experiments are performed and the evolution of solutes in the aqueous phase is tracked. Continuum-scale reactive transport models are used to evaluate the impact of reactive surface area on predictions of experimental reaction rates. Evaluated reactive surface areas include geometric and specific surface areas (eg. BET) in addition to their reactive-site weighted counterparts. The most accurate predictions of observed powder mineral dissolution rates were obtained through use of grain-size specific surface areas computed from a BET-based correlation. Effectively, this surface area reflects the grain-fluid contact area, or accessible surface area, in the powder dissolution experiment. In the model of the flow-through column experiment, the accessible mineral surface area, computed from the multi-scale image analysis, is evaluated in addition to the traditional surface area estimates.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goltz, M.N.; Oxley, M.E.

    Aquifer cleanup efforts at contaminated sites frequently involve operation of a system of extraction wells. It has been found that contaminant load discharged by extraction wells typically declines with time, asymptotically approaching a residual level. Such behavior could be due to rate-limited desorption of an organic contaminant from aquifer solids. An analytical model is presented which accounts for rate-limited desorption of an organic solute during cleanup of a contaminated site. Model equations are presented which describe transport of a sorbing contaminant in a converging radial flow field, with sorption described by (1) equilibrium, (2) first-order rate, and (3) Fickian diffusionmore » expressions. The model equations are solved in the Laplace domain and numerically inverted to simulate contaminant concentrations at an extraction well. A Laplace domain solution for the total contaminant mass remaining in the aquifer is also derived. It is shown that rate-limited sorption can have a significant impact upon aquifer remediation. Approximate equivalence among the various rate-limited models is also demonstrated.« less

  19. Experimental and modeling studies of small molecule chemistry in expanding spherical flames

    NASA Astrophysics Data System (ADS)

    Santner, Jeffrey

    Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well-defined measurements of nitric oxide formation at high temperatures, contributing to disagreement between chemical models. This work accomplishes several goals. It identifies disagreements in pollutant formation chemistry. It creates a novel database of burning velocity measurements at relevant, sensitive conditions. It presents a simple, conservative estimate of radiation-induced measurement uncertainty in spherical flames. Finally, it utilizes systems-level flame experiments to indirectly measure elementary reaction rates.

  20. How do subvocal rehearsal and general attentional resources contribute to verbal short-term memory span?

    PubMed Central

    Morra, Sergio

    2015-01-01

    Whether rehearsal has a causal role in verbal STM has been controversial in the literature. Recent theories of working memory emphasize a role of attentional resources, but leave unclear how they contribute to verbal STM. Two experiments (with 49 and 102 adult participants, respectively) followed up previous studies with children, aiming to clarify the contributions of attentional capacity and rehearsal to verbal STM. Word length and presentation modality were manipulated. Experiment 1 focused on order errors, Experiment 2 on predicting individual differences in span from attentional capacity and articulation rate. Structural equation modeling showed clearly a major role of attentional capacity as a predictor of verbal STM span; but was inconclusive on whether rehearsal efficiency is an additional cause or a consequence of verbal STM. The effects of word length and modality on STM were replicated; a significant interaction was also found, showing a larger modality effect for long than short words, which replicates a previous finding on children. Item errors occurred more often with long words and correlated negatively with articulation rate. This set of findings seems to point to a role of rehearsal in maintaining item information. The probability of order errors per position increased linearly with list length. A revised version of a neo-Piagetian model was fit to the data of Experiment 2. That model was based on two parameters: attentional capacity (independently measured) and a free parameter representing loss of partly-activated information. The model could partly account for the results, but underestimated STM performance of the participants with smaller attentional capacity. It is concluded that modeling of verbal STM should consider individual and developmental differences in attentional capacity, rehearsal rate, and (perhaps) order representation. PMID:25798114

  1. How do subvocal rehearsal and general attentional resources contribute to verbal short-term memory span?

    PubMed

    Morra, Sergio

    2015-01-01

    Whether rehearsal has a causal role in verbal STM has been controversial in the literature. Recent theories of working memory emphasize a role of attentional resources, but leave unclear how they contribute to verbal STM. Two experiments (with 49 and 102 adult participants, respectively) followed up previous studies with children, aiming to clarify the contributions of attentional capacity and rehearsal to verbal STM. Word length and presentation modality were manipulated. Experiment 1 focused on order errors, Experiment 2 on predicting individual differences in span from attentional capacity and articulation rate. Structural equation modeling showed clearly a major role of attentional capacity as a predictor of verbal STM span; but was inconclusive on whether rehearsal efficiency is an additional cause or a consequence of verbal STM. The effects of word length and modality on STM were replicated; a significant interaction was also found, showing a larger modality effect for long than short words, which replicates a previous finding on children. Item errors occurred more often with long words and correlated negatively with articulation rate. This set of findings seems to point to a role of rehearsal in maintaining item information. The probability of order errors per position increased linearly with list length. A revised version of a neo-Piagetian model was fit to the data of Experiment 2. That model was based on two parameters: attentional capacity (independently measured) and a free parameter representing loss of partly-activated information. The model could partly account for the results, but underestimated STM performance of the participants with smaller attentional capacity. It is concluded that modeling of verbal STM should consider individual and developmental differences in attentional capacity, rehearsal rate, and (perhaps) order representation.

  2. Recent deformation rates on Venus

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.

    1994-01-01

    Constraints on the recent geological evolution of Venus may be provided by quantitative estimates of the rates of the principal resurfacing processes, volcanism and tectonism. This paper focuses on the latter, using impact craters as strain indicators. The total postimpact tectonic strain lies in the range 0.5-6.5%, which defines a recent mean strain rate of 10(exp -18)-10(exp -17)/s when divided by the mean surface age. Interpretation of the cratering record as one of pure production requires a decline in resurfacing rates at about 500 Ma (catastrophic resurfacing model). If distributed tectonic resurfacing contributed strongly before that time, as suggested by the widespread occurrence of tessera as inliers, the mean global strain rate must have been at least approximately 10(exp -15)/s, which is also typical of terrestrial active margins. Numerical calculations of the response of the lithosphere to inferred mantle convective forces were performed to test the hypothesis that a decrease in surface strain rate by at least two orders of magnitude could be caused by a steady decline in heat flow over the last billion years. Parameterized convection models predict that the mean global thermal gradient decreases by only about 5 K/km over this time; even with the exponential dependence of viscosity upon temperature, the surface strain rate drops by little more than one order of magnitude. Strongly unsteady cooling and very low thermal gradients today are necessary to satisfy the catastrophic model. An alternative, uniformitarian resurfacing hypothesis holds that Venus is resurfaced in quasi-random 'patches' several hundred kilometers in size that occur in response to changing mantle convection patterns.

  3. Evolution of seafloor spreading rate based on Ar-40 degassing history

    NASA Astrophysics Data System (ADS)

    Tajika, Eiichi; Matsui, Takafumi

    1993-05-01

    A new degassing model of Ar-40 coupled with thermal evolution of the mantle is constructed to constrain the temporal variation of seafloor spreading rate. In this model, we take into account the effects of elemental partition and solubility during melt generation and bubble formation, and changes in both seafloor spreading rate and melt generation depth in the mantle. It is suggested that the seafloor spreading rate would have been almost the same as that of today over the history of the earth in order to explain the present amount of Ar-40 in the atmosphere. This result may also imply the mild degassing history of volatiles from the mantle.

  4. Long-term predictive capability of erosion models

    NASA Technical Reports Server (NTRS)

    Veerabhadra, P.; Buckley, D. H.

    1983-01-01

    A brief overview of long-term cavitation and liquid impingement erosion and modeling methods proposed by different investigators, including the curve-fit approach is presented. A table was prepared to highlight the number of variables necessary for each model in order to compute the erosion-versus-time curves. A power law relation based on the average erosion rate is suggested which may solve several modeling problems.

  5. New higher-order Godunov code for modelling performance of two-stage light gas guns

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.; Miller, R. J.

    1995-01-01

    A new quasi-one-dimensional Godunov code for modeling two-stage light gas guns is described. The code is third-order accurate in space and second-order accurate in time. A very accurate Riemann solver is used. Friction and heat transfer to the tube wall for gases and dense media are modeled and a simple nonequilibrium turbulence model is used for gas flows. The code also models gunpowder burn in the first-stage breech. Realistic equations of state (EOS) are used for all media. The code was validated against exact solutions of Riemann's shock-tube problem, impact of dense media slabs at velocities up to 20 km/sec, flow through a supersonic convergent-divergent nozzle and burning of gunpowder in a closed bomb. Excellent validation results were obtained. The code was then used to predict the performance of two light gas guns (1.5 in. and 0.28 in.) in service at the Ames Research Center. The code predictions were compared with measured pressure histories in the powder chamber and pump tube and with measured piston and projectile velocities. Very good agreement between computational fluid dynamics (CFD) predictions and measurements was obtained. Actual powder-burn rates in the gun were found to be considerably higher (60-90 percent) than predicted by the manufacturer and the behavior of the piston upon yielding appears to differ greatly from that suggested by low-strain rate tests.

  6. Kinetics of FeII-polyaminocarboxylate oxidation by molecular oxygen

    NASA Astrophysics Data System (ADS)

    Wilson, Jessica M.; Farley, Kevin J.; Carbonaro, Richard F.

    2018-03-01

    Complexation of iron by naturally-occurring and synthetic organic ligands has a large effect on iron oxidation and reduction rates which in turn affect the aqueous geochemistry of many other chemical constituents. In this study, the kinetics of FeII oxidation in the presence of the polyaminocarboxylate synthetic chelating agents ethylene glycol tetraacetic acid (EGTA) and trimethylenediamine-N,N,N‧,N‧-tetraacetic acid (TMDTA) was investigated over the pH range 5.50-8.53. Batch oxidation experiments in the presence of molecular oxygen were conducted using a 2:1 M concentration ratio of polyaminocarboxylate (ligand, L) to FeII. The experimental data resembled first order kinetics for the oxidation of FeII-L to FeIII-L and observed rate constants at pH 6.0 were comparable to rate constants for the oxidation of inorganic FeII. Similar to other structurally-similar FeII-polyaminocarboxylate complexes, oxidation rates of FeII-EGTA and FeII-TMDTA decrease with increasing pH, which is the opposite trend for the oxidation of FeII complexed with inorganic ligands. However, the oxidation rates of FeII complexed with EGTA and TMDTA were considerably lower (4-5 orders of magnitude) than FeII complexed to ethylenediaminetetraacetic acid (EDTA). The distinguishing feature of the slower-reacting complexes is that they have a longer backbone between diamine functional groups. An analytical equilibrium model was developed to determine the contributions of the species FeIIL2- and FeII(H)L- to the overall oxidation rate of FeII-L. Application of this model indicated that the protonated FeII(H)L species are more than three orders of magnitude more reactive than FeIIL2-. These rate constants were used in a coupled kinetic equilibrium numerical model where the ligand to iron ratio (TOTL:TOTFe) and pH were varied to evaluate the effect on the FeII oxidation rate. Overall, increasing TOTL:TOTFe for EGTA and TMDTA enhances FeII oxidation rates at lower pH and inhibits FeII oxidation rates at higher pH. Finally, this work demonstrates that the rate of FeII oxidation is very sensitive to the identity and structure of the polyaminocarboxylate chelating agent, which has implications for any metal or organic chemical that reacts either directly or indirectly with iron.

  7. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalosh, R.G.; Bajpai, S.N.; Short, T.P.

    1980-04-01

    An evaluation of the hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries is presented. Since commercial batteries are not yet available, this hazard assessment is based both on theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate. Six spill tests involving chlorine hydrate indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm road surface. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion modelmore » and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model has been combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fatality rates are several times higher in a city with a warm and calm climate than in a colder and windier city. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatility rates due to fires and asphyxiations.« less

  8. Homogeneous SPC/E water nucleation in large molecular dynamics simulations.

    PubMed

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2015-08-14

    We perform direct large molecular dynamics simulations of homogeneous SPC/E water nucleation, using up to ∼ 4 ⋅ 10(6) molecules. Our large system sizes allow us to measure extremely low and accurate nucleation rates, down to ∼ 10(19) cm(-3) s(-1), helping close the gap between experimentally measured rates ∼ 10(17) cm(-3) s(-1). We are also able to precisely measure size distributions, sticking efficiencies, cluster temperatures, and cluster internal densities. We introduce a new functional form to implement the Yasuoka-Matsumoto nucleation rate measurement technique (threshold method). Comparison to nucleation models shows that classical nucleation theory over-estimates nucleation rates by a few orders of magnitude. The semi-phenomenological nucleation model does better, under-predicting rates by at worst a factor of 24. Unlike what has been observed in Lennard-Jones simulations, post-critical clusters have temperatures consistent with the run average temperature. Also, we observe that post-critical clusters have densities very slightly higher, ∼ 5%, than bulk liquid. We re-calibrate a Hale-type J vs. S scaling relation using both experimental and simulation data, finding remarkable consistency in over 30 orders of magnitude in the nucleation rate range and 180 K in the temperature range.

  9. Estimating short-period dynamics using an extended Kalman filter

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.; Andrisani, Dominick

    1990-01-01

    An extended Kalman filter (EKF) is used to estimate the parameters of a low-order model from aircraft transient response data. The low-order model is a state space model derived from the short-period approximation of the longitudinal aircraft dynamics. The model corresponds to the pitch rate to stick force transfer function currently used in flying qualities analysis. Because of the model chosen, handling qualities information is also obtained. The parameters are estimated from flight data as well as from a six-degree-of-freedom, nonlinear simulation of the aircraft. These two estimates are then compared and the discrepancies noted. The low-order model is able to satisfactorily match both flight data and simulation data from a high-order computer simulation. The parameters obtained from the EKF analysis of flight data are compared to those obtained using frequency response analysis of the flight data. Time delays and damping ratios are compared and are in agreement. This technique demonstrates the potential to determine, in near real time, the extent of differences between computer models and the actual aircraft. Precise knowledge of these differences can help to determine the flying qualities of a test aircraft and lead to more efficient envelope expansion.

  10. A new order splitting model with stochastic lead times for deterioration items

    NASA Astrophysics Data System (ADS)

    Sazvar, Zeinab; Akbari Jokar, Mohammad Reza; Baboli, Armand

    2014-09-01

    In unreliable supply environments, the strategy of pooling lead time risks by splitting replenishment orders among multiple suppliers simultaneously is an attractive sourcing policy that has captured the attention of academic researchers and corporate managers alike. While various assumptions are considered in the models developed, researchers tend to overlook an important inventory category in order splitting models: deteriorating items. In this paper, we study an order splitting policy for a retailer that sells a deteriorating product. The inventory system is modelled as a continuous review system (s, Q) under stochastic lead time. Demand rate per unit time is assumed to be constant over an infinite planning horizon and shortages are backordered completely. We develop two inventory models. In the first model, it is assumed that all the requirements are supplied by only one source, whereas in the second, two suppliers are available. We use sensitivity analysis to determine the situations in which each sourcing policy is the most economic. We then study a real case from the European pharmaceutical industry to demonstrate the applicability and effectiveness of the proposed models. Finally, more promising directions are suggested for future research.

  11. Transport, biodegradation and isotopic fractionation of chlorinated ethenes: modeling and parameter estimation methods

    NASA Astrophysics Data System (ADS)

    Béranger, Sandra C.; Sleep, Brent E.; Lollar, Barbara Sherwood; Monteagudo, Fernando Perez

    2005-01-01

    An analytical, one-dimensional, multi-species, reactive transport model for simulating the concentrations and isotopic signatures of tetrachloroethylene (PCE) and its daughter products was developed. The simulation model was coupled to a genetic algorithm (GA) combined with a gradient-based (GB) method to estimate the first order decay coefficients and enrichment factors. In testing with synthetic data, the hybrid GA-GB method reduced the computational requirements for parameter estimation by a factor as great as 300. The isotopic signature profiles were observed to be more sensitive than the concentration profiles to estimates of both the first order decay constants and enrichment factors. Including isotopic data for parameter estimation significantly increased the GA convergence rate and slightly improved the accuracy of estimation of first order decay constants.

  12. Digamma, what next?

    NASA Astrophysics Data System (ADS)

    Franceschini, Roberto; Giudice, Gian F.; Kamenik, Jernej F.; McCullough, Matthew; Riva, Francesco; Strumia, Alessandro; Torre, Riccardo

    2016-07-01

    If the 750 GeV resonance in the diphoton channel is confirmed, what are the measurements necessary to infer the properties of the new particle and understand its nature? We address this question in the framework of a single new scalar particle, called digamma ( Ϝ). We describe it by an effective field theory, which allows us to obtain general and model-independent results, and to identify the most useful observables, whose relevance will remain also in model-by-model analyses. We derive full expressions for the leading-order processes and compute rates for higher-order decays, digamma production in association with jets, gauge or Higgs bosons, and digamma pair production. We illustrate how measurements of these higher-order processes can be used to extract couplings, quantum numbers, and properties of the new particle.

  13. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  14. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE PAGES

    Hu, Rui

    2016-11-19

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  15. Fracture Behavior in Nylon 6 Fibers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lloyd, B. A.

    1972-01-01

    Electron paramagnetic resonance (EPR) techniques are used to determine the number of free radicals produced during deformation leading to fracture of nylon 6 fibers. A reaction rate molecular model is proposed to explain some of the deformation and bond rupture behavior leading to fracture. High-strength polymer fibers are assumed to consist of a sandwich structure of disordered and ordered regions along the fiber axis. In the disordered or critical flaw regions, tie chains connecting the ordered or crystalline block regions are assumed to have a statistical distribution in length. These chains are, therefore, subjected to different stresses. The effective length distribution was determined by EPR. The probability of bond rupture was assumed to be controlled by reaction-rate theory with a stress-aided activation energy and behavior of various loadings determined by numerical techniques. The model is successfully correlated with experimental stress, strain, and bond rupture results for creep, constant rate loadings, cyclic stress, stress relaxation and step strain tests at room temperature.

  16. An Alternative Approach to the Extended Drude Model

    NASA Astrophysics Data System (ADS)

    Gantzler, N. J.; Dordevic, S. V.

    2018-05-01

    The original Drude model, proposed over a hundred years ago, is still used today for the analysis of optical properties of solids. Within this model, both the plasma frequency and quasiparticle scattering rate are constant, which makes the model rather inflexible. In order to circumvent this problem, the so-called extended Drude model was proposed, which allowed for the frequency dependence of both the quasiparticle scattering rate and the effective mass. In this work we will explore an alternative approach to the extended Drude model. Here, one also assumes that the quasiparticle scattering rate is frequency dependent; however, instead of the effective mass, the plasma frequency becomes frequency-dependent. This alternative model is applied to the high Tc superconductor Bi2Sr2CaCu2O8+δ (Bi2212) with Tc = 92 K, and the results are compared and contrasted with the ones obtained from the conventional extended Drude model. The results point to several advantages of this alternative approach to the extended Drude model.

  17. Path integral for equities: Dynamic correlation and empirical analysis

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Cao, Yang; Lau, Ada; Tang, Pan

    2012-02-01

    This paper develops a model to describe the unequal time correlation between rate of returns of different stocks. A non-trivial fourth order derivative Lagrangian is defined to provide an unequal time propagator, which can be fitted to the market data. A calibration algorithm is designed to find the empirical parameters for this model and different de-noising methods are used to capture the signals concealed in the rate of return. The detailed results of this Gaussian model show that the different stocks can have strong correlation and the empirical unequal time correlator can be described by the model's propagator. This preliminary study provides a novel model for the correlator of different instruments at different times.

  18. Non-equilibrium many-body influence on mode-locked Vertical External-cavity Surface-emitting Lasers

    NASA Astrophysics Data System (ADS)

    Kilen, Isak Ragnvald

    Vertical external-cavity surface-emitting lasers are ideal testbeds for studying the influence of the non-equilibrium many-body dynamics on mode locking. As we will show in this thesis, ultra short pulse generation involves a marked departure from Fermi carrier distributions assumed in prior theoretical studies. A quantitative model of the mode locking dynamics is presented, where the semiconductor Bloch equations with Maxwell's equation are coupled, in order to study the influences of quantum well carrier scattering on mode locking dynamics. This is the first work where the full model is solved without adiabatically eliminating the microscopic polarizations. In many instances we find that higher order correlation contributions (e.g. polarization dephasing, carrier scattering, and screening) can be represented by rate models, with the effective rates extracted at the level of second Born-Markov approximations. In other circumstances, such as continuous wave multi-wavelength lasing, we are forced to fully include these higher correlation terms. In this thesis we identify the key contributors that control mode locking dynamics, the stability of single pulse mode-locking, and the influence of higher order correlation in sustaining multi-wavelength continuous wave operation.

  19. SDIA: A dynamic situation driven information fusion algorithm for cloud environment

    NASA Astrophysics Data System (ADS)

    Guo, Shuhang; Wang, Tong; Wang, Jian

    2017-09-01

    Information fusion is an important issue in information integration domain. In order to form an extensive information fusion technology under the complex and diverse situations, a new information fusion algorithm is proposed. Firstly, a fuzzy evaluation model of tag utility was proposed that can be used to count the tag entropy. Secondly, a ubiquitous situation tag tree model is proposed to define multidimensional structure of information situation. Thirdly, the similarity matching between the situation models is classified into three types: the tree inclusion, the tree embedding, and the tree compatibility. Next, in order to reduce the time complexity of the tree compatible matching algorithm, a fast and ordered tree matching algorithm is proposed based on the node entropy, which is used to support the information fusion by ubiquitous situation. Since the algorithm revolve from the graph theory of disordered tree matching algorithm, it can improve the information fusion present recall rate and precision rate in the situation. The information fusion algorithm is compared with the star and the random tree matching algorithm, and the difference between the three algorithms is analyzed in the view of isomorphism, which proves the innovation and applicability of the algorithm.

  20. Removal of trace organic micropollutants by drinking water biological filters.

    PubMed

    Zearley, Thomas L; Summers, R Scott

    2012-09-04

    The long-term removal of 34 trace organic micropollutants (<1 μg L(-1)) was evaluated and modeled in drinking water biological filters with sand media from a full-scale plant. The micropollutants included pesticides, pharmaceuticals, and personal care products, some of which are endocrine disrupting chemicals, and represent a wide range of uses, chemical structures, adsorbabilities, and biodegradabilities. Micropollutant removal ranged from no measurable removal (<15%) for 13 compounds to removal below the detection limit and followed one of four trends over the one year study period: steady state removal throughout, increasing removal to steady state (acclimation), decreasing removal, or no removal (recalcitrant). Removals for all 19 nonrecalcitrant compounds followed first-order kinetics when at steady state with increased removal at longer empty bed contact times (EBCT). Rate constants were calculated, 0.02-0.37 min(-1), and used in a pseudo-first-order rate model with the EBCT to predict removals in laboratory biofilters at a different EBCT and influent conditions. Drinking water biofiltration has the potential to be an effective process for the control of many trace organic contaminants and a pseudo-first-order model can serve as an appropriate method for approximating performance.

  1. A Bayesian Hierarchical Modeling Scheme for Estimating Erosion Rates Under Current Climate Conditions

    NASA Astrophysics Data System (ADS)

    Lowman, L.; Barros, A. P.

    2014-12-01

    Computational modeling of surface erosion processes is inherently difficult because of the four-dimensional nature of the problem and the multiple temporal and spatial scales that govern individual mechanisms. Landscapes are modified via surface and fluvial erosion and exhumation, each of which takes place over a range of time scales. Traditional field measurements of erosion/exhumation rates are scale dependent, often valid for a single point-wise location or averaging over large aerial extents and periods with intense and mild erosion. We present a method of remotely estimating erosion rates using a Bayesian hierarchical model based upon the stream power erosion law (SPEL). A Bayesian approach allows for estimating erosion rates using the deterministic relationship given by the SPEL and data on channel slopes and precipitation at the basin and sub-basin scale. The spatial scale associated with this framework is the elevation class, where each class is characterized by distinct morphologic behavior observed through different modes in the distribution of basin outlet elevations. Interestingly, the distributions of first-order outlets are similar in shape and extent to the distribution of precipitation events (i.e. individual storms) over a 14-year period between 1998-2011. We demonstrate an application of the Bayesian hierarchical modeling framework for five basins and one intermontane basin located in the central Andes between 5S and 20S. Using remotely sensed data of current annual precipitation rates from the Tropical Rainfall Measuring Mission (TRMM) and topography from a high resolution (3 arc-seconds) digital elevation map (DEM), our erosion rate estimates are consistent with decadal-scale estimates based on landslide mapping and sediment flux observations and 1-2 orders of magnitude larger than most millennial and million year timescale estimates from thermochronology and cosmogenic nuclides.

  2. Grazing-induced losses of biodiversity affect the transpiration of an arid ecosystem.

    PubMed

    Verón, Santiago R; Paruelo, José M; Oesterheld, Martín

    2011-02-01

    Degradation processes often lead to species loss. Such losses would impact on ecosystem functioning depending on the extinction order and the functional and structural aspects of species. For the Patagonian arid steppe, we used a simulation model to study the effects of species loss on the rate and variability (i.e. stability) of transpiration as a key attribute of ecosystem functioning. We addressed (1) the differences between the overgrazing extinction order and other potential orders, and (2) the role of biomass abundance, biomass distribution, and functional diversity on the effect of species loss due to overgrazing. We considered a community composed of ten species which were assigned an order of extinction due to overgrazing based on their preference by livestock. We performed four model simulations to test for overgrazing effects through different combinations of species loss, and reductions of biomass and functional diversity. In general, transpiration rate and variability were positively associated to species richness and remained fairly constant until half the species were lost by overgrazing. The extinction order by overgrazing was the most conservative of all possible orders. The amount of biomass was more important than functional diversity in accounting for the impacts of species richness on transpiration. Our results suggest that, to prevent Patagonian steppes from shifting to stable, low-production systems (by overgrazing), maintaining community biomass is more important than preserving species richness or species functional diversity.

  3. A reduced-order model from high-dimensional frictional hysteresis

    PubMed Central

    Biswas, Saurabh; Chatterjee, Anindya

    2014-01-01

    Hysteresis in material behaviour includes both signum nonlinearities as well as high dimensionality. Available models for component-level hysteretic behaviour are empirical. Here, we derive a low-order model for rate-independent hysteresis from a high-dimensional massless frictional system. The original system, being given in terms of signs of velocities, is first solved incrementally using a linear complementarity problem formulation. From this numerical solution, to develop a reduced-order model, basis vectors are chosen using the singular value decomposition. The slip direction in generalized coordinates is identified as the minimizer of a dissipation-related function. That function includes terms for frictional dissipation through signum nonlinearities at many friction sites. Luckily, it allows a convenient analytical approximation. Upon solution of the approximated minimization problem, the slip direction is found. A final evolution equation for a few states is then obtained that gives a good match with the full solution. The model obtained here may lead to new insights into hysteresis as well as better empirical modelling thereof. PMID:24910522

  4. Some analytical models to estimate maternal age at birth using age-specific fertility rates.

    PubMed

    Pandey, A; Suchindran, C M

    1995-01-01

    "A class of analytical models to study the distribution of maternal age at different births from the data on age-specific fertility rates has been presented. Deriving the distributions and means of maternal age at birth of any specific order, final parity and at next-to-last birth, we have extended the approach to estimate parity progression ratios and the ultimate parity distribution of women in the population.... We illustrate computations of various components of the model expressions with the current fertility experiences of the United States for 1970." excerpt

  5. Methodology and Results of Mathematical Modelling of Complex Technological Processes

    NASA Astrophysics Data System (ADS)

    Mokrova, Nataliya V.

    2018-03-01

    The methodology of system analysis allows us to draw a mathematical model of the complex technological process. The mathematical description of the plasma-chemical process was proposed. The importance the quenching rate and initial temperature decrease time was confirmed for producing the maximum amount of the target product. The results of numerical integration of the system of differential equations can be used to describe reagent concentrations, plasma jet rate and temperature in order to achieve optimal mode of hardening. Such models are applicable both for solving control problems and predicting future states of sophisticated technological systems.

  6. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on themore » temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.« less

  7. Development and Application of a Cohesive Sediment Transport Model in Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Sorourian, S.; Nistor, I.

    2017-12-01

    The Louisiana coast has suffered from rapid land loss due to the combined effects of increasing the rate of eustatic sea level rise, insufficient riverine sediment input and subsidence. The sediment in this region is dominated by cohesive sediments (up to 80% of clay). This study presents a new model for calculating suspended sediment concentration (SSC) of cohesive sediments. Several new concepts are incorporated into the proposed model, which is capable of estimating the spatial and temporal variation in the concentration of cohesive sediment. First, the model incorporates the effect of electrochemical forces between cohesive sediment particles. Second, the wave friction factor is expressed in terms of the median particle size diameter in order to enhance the accuracy of the estimation of bed shear stress. Third, the erosion rate of cohesive sediments is also expressed in time-dependent form. Simulated SSC profiles are compared with field data collected from Vermilion Bay, Louisiana. The results of the proposed model agree well with the experimental data, as soon as steady state condition is achieved. The results of the new numerical models provide a better estimation of the suspended sediment concentration profile compared to the initial model developed by Mehta and Li, 2003. Among the proposed developments, the formulation of a time-dependent erosion rate shows the most accurate results. Coupling of present model with the Finite-Volume, primitive equation Community Ocean Model (FVCOM) would shed light on the fate of fine-grained sediments in order to increase overall retention and restoration of the Louisiana coastal plain.

  8. Fourth-Grade Children are Less Accurate in Reporting School Breakfast than School Lunch during 24-Hour Dietary Recalls

    PubMed Central

    Baxter, Suzanne Domel; Royer, Julie A.; Hardin, James W.; Guinn, Caroline H.; Smith, Albert F.

    2008-01-01

    Objective To compare reporting accuracy for breakfast and lunch in two studies. Design Children were observed eating school meals and interviewed the following morning about the previous day. Study 1 – 104 children were each interviewed one to three times with ≥25 days separating any two interviews. Study 2 – 121 children were each interviewed once in forward (morning-to-evening) and once in reverse (evening-to-morning) order, separated by ≥29 days. Setting 12 schools. Participants Fourth-grade children. Main Outcome Measures For each meal: food-item variables – observed number, reported number, omission rate, intrusion rate, total inaccuracy; kilocalorie variables – observed, reported, correspondence rate, inflation ratio. Analysis General linear mixed-models. Results For each study, observed and reported numbers of items and kilocalories, and correspondence rate (reporting accuracy), were greater for lunch than breakfast; omission rate, intrusion rate, and inflation ratio (measures of reporting error) were greater for breakfast than lunch. Study 1 – for each meal over interviews, total inaccuracy decreased and correspondence rate increased. Study 2 – for each meal for boys for reverse and girls for forward order, omission rate was lower and correspondence rate was higher. Conclusions and Implications Breakfast was reported less accurately than lunch. Despite improvement over interviews (Study 1) and differences for order × sex (Study 2), reporting accuracy was low for breakfast and lunch. PMID:17493562

  9. Uranium bioreduction rates across scales: biogeochemical hot moments and hot spots during a biostimulation experiment at Rifle, Colorado.

    PubMed

    Bao, Chen; Wu, Hongfei; Li, Li; Newcomer, Darrell; Long, Philip E; Williams, Kenneth H

    2014-09-02

    We aim to understand the scale-dependent evolution of uranium bioreduction during a field experiment at a former uranium mill site near Rifle, Colorado. Acetate was injected to stimulate Fe-reducing bacteria (FeRB) and to immobilize aqueous U(VI) to insoluble U(IV). Bicarbonate was coinjected in half of the domain to mobilize sorbed U(VI). We used reactive transport modeling to integrate hydraulic and geochemical data and to quantify rates at the grid block (0.25 m) and experimental field scale (tens of meters). Although local rates varied by orders of magnitude in conjunction with biostimulation fronts propagating downstream, field-scale rates were dominated by those orders of magnitude higher rates at a few selected hot spots where Fe(III), U(VI), and FeRB were at their maxima in the vicinity of the injection wells. At particular locations, the hot moments with maximum rates negatively corresponded to their distance from the injection wells. Although bicarbonate injection enhanced local rates near the injection wells by a maximum of 39.4%, its effect at the field scale was limited to a maximum of 10.0%. We propose a rate-versus-measurement-length relationship (log R' = -0.63 log L - 2.20, with R' in μmol/mg cell protein/day and L in meters) for orders-of-magnitude estimation of uranium bioreduction rates across scales.

  10. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.

    PubMed

    Azadi, Sama; Karimi-Jashni, Ayoub

    2016-02-01

    Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Volcanic conduit failure as a trigger to magma fragmentation

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Benson, P. M.; Heap, M. J.; Flaws, A.; Hess, K.-U.; Dingwell, D. B.

    2012-01-01

    In the assessment of volcanic risk, it is often assumed that magma ascending at a slow rate will erupt effusively, whereas magma ascending at fast rate will lead to an explosive eruption. Mechanistically viewed, this assessment is supported by the notion that the viscoelastic nature of magma (i.e., the ability of magma to relax at an applied strain rate), linked via the gradient of flow pressure (related to discharge rate), controls the eruption style. In such an analysis, the physical interactions between the magma and the conduit wall are commonly, to a first order, neglected. Yet, during ascent, magma must force its way through the volcanic edifice/structure, whose presence and form may greatly affect the stress field through which the magma is trying to ascend. Here, we demonstrate that fracturing of the conduit wall via flow pressure releases an elastic shock resulting in fracturing of the viscous magma itself. We find that magma fragmentation occurred at strain rates seven orders of magnitude slower than theoretically anticipated from the applied axial strain rate. Our conclusion, that the discharge rate cannot provide a reliable indication of ascending magma rheology without knowledge of conduit wall stability, has important ramifications for volcanic hazard assessment. New numerical simulations are now needed in order to integrate magma/conduit interaction into eruption models.

  12. Simulating the volatilization of solvents in unsaturated soils during laboratory and field infiltration experiments

    USGS Publications Warehouse

    Cho, H. Jean; Jaffe, Peter R.; Smith, James A.

    1993-01-01

    This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the soil matrix was added to the model, the calibrated gas-water mass transfer rate constant is 2 orders of magnitude lower than that predicted using the power law model developed for the nonsorbing laboratory soil.

  13. Numerical study of Si nanoparticle formation by SiCl4 hydrogenation in RF plasma

    NASA Astrophysics Data System (ADS)

    Rehmet, Christophe; Cao, Tengfei; Cheng, Yi

    2016-04-01

    Nanocrystalline silicon (nc-Si) is a promising material for many applications related to electronics and optoelectronics. This work performs numerical simulations in order to understand a new process with high deposition rate production of nc-Si in a radio-frequency plasma reactor. Inductive plasma formation, reaction kinetics and nanoparticle formation have been considered in a sophisticated model. Results show that the plasma parameters could be adjusted in order to improve selectivity between nanoparticle and molecule formation and, thus, the deposition rate. Also, a parametric study helps to optimize the system with appropriate operating conditions.

  14. Heating of the Interstellar Diffuse Ionized Gas via the Dissipation of Turbulence

    NASA Astrophysics Data System (ADS)

    Minter, Anthony H.; Spangler, Steven R.

    1997-08-01

    We have recently published observations that specify most of the turbulent and mean plasma characteristics for a region of the sky containing the interstellar diffuse ionized gas (DIG). These observations have provided virtually all of the information necessary to calculate the heating rate from dissipation of turbulence. We have calculated the turbulent dissipation heating rate employing two models for the interstellar turbulence. The first is a customary modeling as a superposition of magnetohydrodynamic waves. The second is a fluid-turbulence-like model based on the ideas of Higdon. This represents the first time that such calculations have been carried out with full and specific interstellar turbulence parameters. The wave model of interstellar turbulence encounters the severe difficulty that plausible estimates of heating by Landau damping exceed the radiative cooling capacity of the interstellar DIG by 3-4 orders of magnitude. Clearly interstellar turbulence does not behave like an ensemble of obliquely propagating fast magnetosonic waves. The heating rate due to two other wave dissipation mechanisms, ion-neutral collisional damping and the parametric decay instability, are comparable to the cooling capacity of the diffuse ionized medium. We find that the fluid-like turbulence model is an acceptable and realistic model of the turbulence in the interstellar medium once the effects of ion-neutral collisions are included in the model. This statement is contingent on an assumption that the dissipation of such turbulence because of Landau damping is several orders of magnitude less than that from an ensemble of obliquely propagating magnetosonic waves with the same energy density. Arguments as to why this may be the case are made in the paper. Rough parity between the turbulent heating rate and the radiative cooling rate in the DIG also depends on the hydrogen ionization fraction being in excess of 90% or on a model-dependent lower limit to the heating rate being approximately valid. We conclude that the dissipation of turbulence is capable of providing a substantial and perhaps major contribution to the energy budget of the diffuse ionized medium.

  15. Exploring sensitivity of a multistate occupancy model to inform management decisions

    USGS Publications Warehouse

    Green, A.W.; Bailey, L.L.; Nichols, J.D.

    2011-01-01

    Dynamic occupancy models are often used to investigate questions regarding the processes that influence patch occupancy and are prominent in the fields of population and community ecology and conservation biology. Recently, multistate occupancy models have been developed to investigate dynamic systems involving more than one occupied state, including reproductive states, relative abundance states and joint habitat-occupancy states. Here we investigate the sensitivities of the equilibrium-state distribution of multistate occupancy models to changes in transition rates. We develop equilibrium occupancy expressions and their associated sensitivity metrics for dynamic multistate occupancy models. To illustrate our approach, we use two examples that represent common multistate occupancy systems. The first example involves a three-state dynamic model involving occupied states with and without successful reproduction (California spotted owl Strix occidentalis occidentalis), and the second involves a novel way of using a multistate occupancy approach to accommodate second-order Markov processes (wood frog Lithobates sylvatica breeding and metamorphosis). In many ways, multistate sensitivity metrics behave in similar ways as standard occupancy sensitivities. When equilibrium occupancy rates are low, sensitivity to parameters related to colonisation is high, while sensitivity to persistence parameters is greater when equilibrium occupancy rates are high. Sensitivities can also provide guidance for managers when estimates of transition probabilities are not available. Synthesis and applications. Multistate models provide practitioners a flexible framework to define multiple, distinct occupied states and the ability to choose which state, or combination of states, is most relevant to questions and decisions about their own systems. In addition to standard multistate occupancy models, we provide an example of how a second-order Markov process can be modified to fit a multistate framework. Assuming the system is near equilibrium, our sensitivity analyses illustrate how to investigate the sensitivity of the system-specific equilibrium state(s) to changes in transition rates. Because management will typically act on these transition rates, sensitivity analyses can provide valuable information about the potential influence of different actions and when it may be prudent to shift the focus of management among the various transition rates. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.

  16. Second-order near-wall turbulence closures - A review

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Lai, Y. G.; Zhang, H. S.; Hwang, B. C.

    1991-01-01

    Advances in second-order near-wall turbulence closures are summarized. All closures under consideration are based on high-Reynolds-number models. Most near-wall closures proposed to date attempt to modify the high-Reynolds-number models for the dissipation function and the pressure redistribution term so that the resultant models are applicable all the way to the wall. The asymptotic behavior of the near-wall closures is examined and compared with the proper near-wall behavior of the exact Reynolds-stress equations. It is found that three second-order near-wall closures give the best correlations with simulated turbulence statistics. However, their predictions of near-wall Reynolds-stress budgets are considered to be incorrect. A proposed modification to the dissipitation-rate equation remedies part of those predictions. It is concluded that further improvements are required if a complete replication of all the turbulence properties and Reynolds-stress budgets by a statistical model of turbulence is desirable.

  17. Predictability of weather and climate in a coupled ocean-atmosphere model: A dynamical systems approach. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.

    1989-01-01

    A dynamical systems approach is used to quantify the instantaneous and time-averaged predictability of a low-order moist general circulation model. Specifically, the effects on predictability of incorporating an active ocean circulation, implementing annual solar forcing, and asynchronously coupling the ocean and atmosphere are evaluated. The predictability and structure of the model attractors is compared using the Lyapunov exponents, the local divergence rates, and the correlation, fractal, and Lyapunov dimensions. The Lyapunov exponents measure the average rate of growth of small perturbations on an attractor, while the local divergence rates quantify phase-spatial variations of predictability. These local rates are exploited to efficiently identify and distinguish subtle differences in predictability among attractors. In addition, the predictability of monthly averaged and yearly averaged states is investigated by using attractor reconstruction techniques.

  18. Dynamic intersectoral models with power-law memory

    NASA Astrophysics Data System (ADS)

    Tarasova, Valentina V.; Tarasov, Vasily E.

    2018-01-01

    Intersectoral dynamic models with power-law memory are proposed. The equations of open and closed intersectoral models, in which the memory effects are described by the Caputo derivatives of non-integer orders, are derived. We suggest solutions of these equations, which have the form of linear combinations of the Mittag-Leffler functions and which are characterized by different effective growth rates. Examples of intersectoral dynamics with power-law memory are suggested for two sectoral cases. We formulate two principles of intersectoral dynamics with memory: the principle of changing of technological growth rates and the principle of domination change. It has been shown that in the input-output economic dynamics the effects of fading memory can change the economic growth rate and dominant behavior of economic sectors.

  19. Test order in teacher-rated behavior assessments: Is counterbalancing necessary?

    PubMed

    Kooken, Janice; Welsh, Megan E; McCoach, D Betsy; Miller, Faith G; Chafouleas, Sandra M; Riley-Tillman, T Chris; Fabiano, Gregory

    2017-01-01

    Counterbalancing treatment order in experimental research design is well established as an option to reduce threats to internal validity, but in educational and psychological research, the effect of varying the order of multiple tests to a single rater has not been examined and is rarely adhered to in practice. The current study examines the effect of test order on measures of student behavior by teachers as raters utilizing data from a behavior measure validation study. Using multilevel modeling to control for students nested within teachers, the effect of rating an earlier measure on the intercept or slope of a later behavior assessment was statistically significant in 22% of predictor main effects for the spring test period. Test order effects had potential for high stakes consequences with differences large enough to change risk classification. Results suggest that researchers and practitioners in classroom settings using multiple measures evaluate the potential impact of test order. Where possible, they should counterbalance when the risk of an order effect exists and report justification for the decision to not counterbalance. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.

    PubMed

    Drury, J L; Dembo, M

    2001-12-01

    It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the initial moments after ramping of pressure remains mysterious.

  1. Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.

    PubMed Central

    Drury, J L; Dembo, M

    2001-01-01

    It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the initial moments after ramping of pressure remains mysterious. PMID:11720983

  2. Numerical optimization of Ignition and Growth reactive flow modeling for PAX2A

    NASA Astrophysics Data System (ADS)

    Baker, E. L.; Schimel, B.; Grantham, W. J.

    1996-05-01

    Variable metric nonlinear optimization has been successfully applied to the parameterization of unreacted and reacted products thermodynamic equations of state and reactive flow modeling of the HMX based high explosive PAX2A. The NLQPEB nonlinear optimization program has been recently coupled to the LLNL developed two-dimensional high rate continuum modeling programs DYNA2D and CALE. The resulting program has the ability to optimize initial modeling parameters. This new optimization capability was used to optimally parameterize the Ignition and Growth reactive flow model to experimental manganin gauge records. The optimization varied the Ignition and Growth reaction rate model parameters in order to minimize the difference between the calculated pressure histories and the experimental pressure histories.

  3. Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation.

    PubMed

    Meesters, Johannes A J; Koelmans, Albert A; Quik, Joris T K; Hendriks, A Jan; van de Meent, Dik

    2014-05-20

    Screening level models for environmental assessment of engineered nanoparticles (ENP) are not generally available. Here, we present SimpleBox4Nano (SB4N) as the first model of this type, assess its validity, and evaluate it by comparisons with a known material flow model. SB4N expresses ENP transport and concentrations in and across air, rain, surface waters, soil, and sediment, accounting for nanospecific processes such as aggregation, attachment, and dissolution. The model solves simultaneous mass balance equations (MBE) using simple matrix algebra. The MBEs link all concentrations and transfer processes using first-order rate constants for all processes known to be relevant for ENPs. The first-order rate constants are obtained from the literature. The output of SB4N is mass concentrations of ENPs as free dispersive species, heteroaggregates with natural colloids, and larger natural particles in each compartment in time and at steady state. Known scenario studies for Switzerland were used to demonstrate the impact of the transport processes included in SB4N on the prediction of environmental concentrations. We argue that SB4N-predicted environmental concentrations are useful as background concentrations in environmental risk assessment.

  4. Theory for long memory in supply and demand

    NASA Astrophysics Data System (ADS)

    Lillo, Fabrizio; Mike, Szabolcs; Farmer, J. Doyne

    2005-06-01

    Recent empirical studies have demonstrated long-memory in the signs of orders to buy or sell in financial markets [J.-P. Bouchaud, Y. Gefen, M. Potters, and M. Wyart, Quant. Finance 4, 176 (2004); F. Lillo and J. D. Farmer Dyn. Syst. Appl. 8, 3 (2004)]. We show how this can be caused by delays in market clearing. Under the common practice of order splitting, large orders are broken up into pieces and executed incrementally. If the size of such large orders is power-law distributed, this gives rise to power-law decaying autocorrelations in the signs of executed orders. More specifically, we show that if the cumulative distribution of large orders of volume v is proportional to v-α and the size of executed orders is constant, the autocorrelation of order signs as a function of the lag τ is asymptotically proportional to τ-(α-1) . This is a long-memory process when α<2 . With a few caveats, this gives a good match to the data. A version of the model also shows long-memory fluctuations in order execution rates, which may be relevant for explaining the long memory of price diffusion rates.

  5. Theory for long memory in supply and demand.

    PubMed

    Lillo, Fabrizio; Mike, Szabolcs; Farmer, J Doyne

    2005-06-01

    Recent empirical studies have demonstrated long-memory in the signs of orders to buy or sell in financial markets [J.-P. Bouchaud, Y. Gefen, M. Potters, and M. Wyart, Quant. Finance 4, 176 (2004); F. Lillo and J. D. Farmer Dyn. Syst. Appl. 8, 3 (2004)]. We show how this can be caused by delays in market clearing. Under the common practice of order splitting, large orders are broken up into pieces and executed incrementally. If the size of such large orders is power-law distributed, this gives rise to power-law decaying autocorrelations in the signs of executed orders. More specifically, we show that if the cumulative distribution of large orders of volume v is proportional to v(-alpha) and the size of executed orders is constant, the autocorrelation of order signs as a function of the lag tau is asymptotically proportional to tau(-(alpha-1)). This is a long-memory process when alpha < 2. With a few caveats, this gives a good match to the data. A version of the model also shows long-memory fluctuations in order execution rates, which may be relevant for explaining the long memory of price diffusion rates.

  6. Refractive indices of liquid crystal E7 depending on temperature and wavelengths

    NASA Astrophysics Data System (ADS)

    Ma, Mingjian; Li, Shuguang; Jing, Xili; Chen, Hailiang

    2017-11-01

    The dependence of refractive indices of liquid crystal (LC) on temperature is represented by the Haller approximation model, and its dependence on the wavelength is expressed by the extended Cauchy model. We derived the refractive indices expressions of nematic LC E7 depending on temperature and wavelength simultaneously by combining these two models. Based on the obtained expressions, one can acquire the refractive indices of E7 at arbitrary temperature and wavelengths. The birefringence, variation rate of refractive indices, macroscopic order parameter Q, and orientational order parameter ⟨P2⟩ of E7 were then discussed based on the expressions.

  7. Improving the prediction of going concern of Taiwanese listed companies using a hybrid of LASSO with data mining techniques.

    PubMed

    Goo, Yeung-Ja James; Chi, Der-Jang; Shen, Zong-De

    2016-01-01

    The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO-NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO-CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO-SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %).

  8. The Study on Flow Velocity Measurement of Antarctic Krill Trawl Model Experiment in North Bay of South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Shuai; Wang, Lumin; Huang, Hongliang; Zhang, Xun

    2017-10-01

    From August 25 to 29, 2014, the project team carried out the experiment of Antarctic krill trawl in the Beihai Bay of the South China Sea. In order to understand the flow field of the network model in the course of the experiment, it is necessary to record the speed of the ship and to grasp the flow field of the ocean. Therefore, the ocean velocity is measured during the experiment. The flow rate in this experiment was measured using an acoustic Doppler flow meter (Vectoring Plus, Nortek, Norway). In order to compensate for the flow rate error caused by ship drift, the drift condition of the ship was also measured by the positioning device (Snapdragon MSM8274AB, Qualcomm, USA) used in the flow rate measurement. The results show that the actual velocity of the target sea area is in the range of 0.06-0.49 m / s and the direction is 216.17-351.70. And compared with the previous research, the influencing factors were analysed. This study proves that it is feasible to use point Doppler flow meter for velocity study in trawl model experiment.

  9. Kinetic modeling and fitting software for interconnected reaction schemes: VisKin.

    PubMed

    Zhang, Xuan; Andrews, Jared N; Pedersen, Steen E

    2007-02-15

    Reaction kinetics for complex, highly interconnected kinetic schemes are modeled using analytical solutions to a system of ordinary differential equations. The algorithm employs standard linear algebra methods that are implemented using MatLab functions in a Visual Basic interface. A graphical user interface for simple entry of reaction schemes facilitates comparison of a variety of reaction schemes. To ensure microscopic balance, graph theory algorithms are used to determine violations of thermodynamic cycle constraints. Analytical solutions based on linear differential equations result in fast comparisons of first order kinetic rates and amplitudes as a function of changing ligand concentrations. For analysis of higher order kinetics, we also implemented a solution using numerical integration. To determine rate constants from experimental data, fitting algorithms that adjust rate constants to fit the model to imported data were implemented using the Levenberg-Marquardt algorithm or using Broyden-Fletcher-Goldfarb-Shanno methods. We have included the ability to carry out global fitting of data sets obtained at varying ligand concentrations. These tools are combined in a single package, which we have dubbed VisKin, to guide and analyze kinetic experiments. The software is available online for use on PCs.

  10. A thermodynamic and heat transfer model for LNG ageing during ship transportation. Towards an efficient boil-off gas management

    NASA Astrophysics Data System (ADS)

    Krikkis, Rizos N.

    2018-06-01

    A non-equilibrium thermodynamic and heat transfer model for LNG ageing during ship transportation has been developed based on experimental data. The measurements reveal that the liquid temperature remains nearly constant, whereas significant variations are observed for the gas temperature. The measurement of the liquid temperature along the tank height suggests that a small scale rollover phenomenon may have taken place in one cargo tank. A time dependent heat transfer mechanism has been considered by taking into account the temperature variations of the atmospheric air, the seawater and the cofferdam environment which affect the cargo tanks. An important finding is that the evaporation rate (boil-of rate) is forced to follow the fuel flow consumption profile imposed by the vessel's propulsion system in order to match the tank pressure and volume constraints. The theoretical model is favorably compared to a comprehensive set on per hour basis of on board measurements of cargo temperatures and pressures, recorded during laden voyages, providing a better understanding of the underlying processes involved. The dominant role of the fuel consumption on the evaporation rate may be utilized in order to devise an efficient cargo management strategy during the laden voyage.

  11. Linking Surface Topography Variations To Subsurface Mixing And Reaction Patterns

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Bandopadhyay, A.; Davy, P.

    2017-12-01

    Fluctuations in surface topography generate nested streamline patterns in the subsurface over scales ranging from millimeters to kilometers. Because solute residence times can be very different for each streamlines, these patterns exert a strong control on biogeochemical reactions. While this effect has been quantified in reactive transport models, solute transfer across streamlines has been generally neglected. Yet, this process can lead to significant solute dilution and may trigger reactions by mixing water with different chemical compositions. Considering topography-driven subsurface flow cells of different sizes, we show that the resulting streamline structures act as shear flows, with shear rates that can vary over orders of magnitude depending on scale, permeability and hydraulic head gradient. This leads to the formation of localized layers of enhanced dilution and reaction, where mixing rates can be orders of magnitude larger than diffusion limited rates (Bandopadhyay et al. under review). We develop a theoretical model that predicts the depth and magnitude of these mixing hotspots and quantifies the resulting exports of conservative and reactive chemical species at discharge locations. We discuss consequences of these findings by applying this model at hyporheic zone, hillslope, and catchment scales.

  12. PeV IceCube signals and Dark Matter relic abundance in modified cosmologies

    NASA Astrophysics Data System (ADS)

    Lambiase, G.; Mohanty, S.; Stabile, An.

    2018-04-01

    The discovery by the IceCube experiment of a high-energy astrophysical neutrino flux with energies of the order of PeV, has opened new scenarios in astroparticles physics. A possibility to explain this phenomenon is to consider the minimal models of Dark Matter (DM) decay, the 4-dimensional operator ˜ y_{α χ }\\overline{{L_{L_{α }}}} H χ , which is also able to generate the correct abundance of DM in the Universe. Assuming that the cosmological background evolves according to the standard cosmological model, it follows that the rate of DM decay Γ _χ ˜ |y_{α χ }|^2 needed to get the correct DM relic abundance (Γ _χ ˜ 10^{-58}) differs by many orders of magnitude with respect that one needed to explain the IceCube data (Γ _χ ˜ 10^{-25}), making the four-dimensional operator unsuitable. In this paper we show that assuming that the early Universe evolution is governed by a modified cosmology, the discrepancy between the two the DM decay rates can be reconciled, and both the IceCube neutrino rate and relic density can be explained in a minimal model.

  13. Modeling of laser-induced ionization of solid dielectrics for ablation simulations: role of effective mass

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2010-11-01

    Modeling of laser-induced ionization and heating of conduction-band electrons by laser radiation frequently serves as a basis for simulations supporting experimental studies of laser-induced ablation and damage of solid dielectrics. Together with band gap and electron-particle collision rate, effective electron mass is one of material parameters employed for the ionization modeling. Exact value of the effective mass is not known for many materials frequently utilized in experiments, e.g., fused silica and glasses. Because of that reason, value of the effective mass is arbitrary varied around "reasonable values" for the ionization modeling. In fact, it is utilized as a fitting parameter to fit experimental data on dependence of ablation or damage threshold on laser parameters. In this connection, we study how strong is the influence of variations of the effective mass on the value of conduction-band electron density. We consider influence of the effective mass on the photo-ionization rate and rate of impact ionization. In particular, it is shown that the photo-ionization rate can vary by 2-4 orders of magnitude with variation of effective mass by 50%. Impact ionization shows a much weaker dependence on effective mass, but it significantly enhances the variations of seed-electron density produced by the photo-ionization. Utilizing those results, we demonstrate that variation of effective mass by 50% produces variations of conduction-band electron density by 6 orders of magnitude. In this connection, we discuss the general issues of the current models of laser-induced ionization.

  14. Progress in turbulence modeling for complex flow fields including effects of compressibility

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Rubesin, M. W.

    1980-01-01

    Two second-order-closure turbulence models were devised that are suitable for predicting properties of complex turbulent flow fields in both incompressible and compressible fluids. One model is of the "two-equation" variety in which closure is accomplished by introducing an eddy viscosity which depends on both a turbulent mixing energy and a dissipation rate per unit energy, that is, a specific dissipation rate. The other model is a "Reynolds stress equation" (RSE) formulation in which all components of the Reynolds stress tensor and turbulent heat-flux vector are computed directly and are scaled by the specific dissipation rate. Computations based on these models are compared with measurements for the following flow fields: (a) low speed, high Reynolds number channel flows with plane strain or uniform shear; (b) equilibrium turbulent boundary layers with and without pressure gradients or effects of compressibility; and (c) flow over a convex surface with and without a pressure gradient.

  15. Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview.

    PubMed

    Vavilin, V A; Fernandez, B; Palatsi, J; Flotats, X

    2008-01-01

    The applicability of different kinetics to the hydrolysis of particulate organic material in anaerobic digestion is discussed. Hydrolysis has traditionally been modelled according to the first-order kinetics. For complex substrate, the first-order kinetics should be modified in order to take into account hardly degradable material. It has been shown that models in which hydrolysis is coupled to the growth of hydrolytic bacteria work well at high or at fluctuant organic loading. In particular, the surface-related two-phase and the Contois models showed good fits to experimental data from a wide range of organic waste. Both models tend to the first-order kinetics at a high biomass-to-waste ratio and, for this reason, they can be considered as more general models. Examples on different inhibition processes that might affect the degradation of solid waste are reported. Acetogenesis or methanogenesis might be the rate-limiting stages in complex waste. In such cases, stimulation of hydrolysis (mechanically, chemically or biologically) may lead to a further inhibition of these stages, which ultimately affects hydrolysis as well. Since the hydrolysis process is characterized by surface and transport phenomena, new developments in spatially distributed models are considered fundamental to provide new insights in this complex process.

  16. Estimating reaction rate coefficients within a travel-time modeling framework.

    PubMed

    Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D; Jardine, P M; Brooks, S C; Criddle, C S; Kitanidis, P K; Luo, J

    2011-01-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  17. Experimental design and modeling of a microscale differential thermal calorimeter for the purposes of cryopreservation

    NASA Astrophysics Data System (ADS)

    Armes, James L.

    In order to develop successful cryopreservation protocols for various biological materials, it is necessary to determine the thermodynamic properties of nanoliter- scale biological samples: ranging from heat capacity to heat of fusion. Differential thermal analysis is a calorimetric technique which is efficacious at determining these thermodynamic properties and will help lend insight into the formation of intracellular ice which depends heavily on the rate at which the sample is cooled. If too much intracellular ice is formed during the cooling process, the biological material can be destroyed. To investigate the effects of a range of cooling and warming rates on a cell, a control system and data acquisition software has been developed for use with a custom microfabricated differential thermal analyzer (muDTA). Utilizing either an a-priori prediction of the muDTA's thermal response or an integrated software-based PID control system, the program developed allows for precise control over the cooling and warming rate of the muDTA. In order to enhance the accuracy of the a-priori predicted current profile, a 2D numeric model was developed of the muDTA. This model also has allowed for geometric optimization to be performed on the next generation prototype of the muDTA. The muDTA has been shown to accurately measure the freezing point and heat of fusion of deionized water samples, with sample volumes on the order of nanoliters. The heat capacity of dimethyl sulfoxide (DMSO) has also been experimentally determined.

  18. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, R; Lu, C; Luo, Jian

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transportmore » over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.« less

  19. The economic impact of state ordered avoided cost rates for photovoltaic generated electricity

    NASA Astrophysics Data System (ADS)

    Bottaro, D.; Wheatley, N. J.

    Various methods the states have devised to implement federal policy regarding the Public Utility Regulatory Policies Act (PURPA) of 1978, which requires that utilities pay their full 'avoided costs' to small power producers for the energy and capacity provided, are examined. The actions of several states are compared with rates estimated using utility expansion and rate-setting models, and the potential break-even capital costs of a photovoltaic system are estimated using models which calculate photovoltaic worth. The potential for the development of photovoltaics has been increased by the PURPA regulations more from the guarantee of utility purchase of photovoltaic power than from the high buy-back rates paid. The buy-back rate is high partly because of the surprisingly high effective capacity of photovoltaic systems in some locations.

  20. Experimental and modeling studies of ultrasound-assisted release of phenolics from oak chips into model wine.

    PubMed

    Tao, Yang; Zhang, Zhihang; Sun, Da-Wen

    2014-09-01

    The enhancement of release of oak-related compounds from oak chips during wine aging with oak chips may interest the winemaking industry. In this study, the 25-kHz ultrasound waves were used to intensify the mass transfer of phenolics from oak chips into a model wine. The influences of acoustic energy density (6.3-25.8 W/L) and temperature (15-25 °C) on the release kinetics of total phenolics were investigated systematically. The results exhibited that the total phenolic yield released was not affected by acoustic energy density significantly whereas it increased with the increase of temperature during sonication. Furthermore, to describe the mechanism of mass transfer of phenolics in model wine under ultrasonic field, the release kinetics of total phenolics was simulated by both a second-order kinetic model and a diffusion model. The modeling results revealed that the equilibrium concentration of total phenolics in model wine, the initial release rate and effective diffusivity of total phenolics generally increased with acoustic energy density and temperature. In addition, temperature had a negative effect on the second-order release rate constant whereas acoustic energy density had an opposite effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    PubMed

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kooperman, Gabriel J.; Pritchard, Michael S.; Burt, Melissa A.

    Changes in the character of rainfall are assessed using a holistic set of statistics based on rainfall frequency and amount distributions in climate change experiments with three conventional and superparameterized versions of the Community Atmosphere Model (CAM and SPCAM). Previous work has shown that high-order statistics of present-day rainfall intensity are significantly improved with superparameterization, especially in regions of tropical convection. Globally, the two modeling approaches project a similar future increase in mean rainfall, especially across the Inter-Tropical Convergence Zone (ITCZ) and at high latitudes, but over land, SPCAM predicts a smaller mean change than CAM. Changes in high-order statisticsmore » are similar at high latitudes in the two models but diverge at lower latitudes. In the tropics, SPCAM projects a large intensification of moderate and extreme rain rates in regions of organized convection associated with the Madden Julian Oscillation, ITCZ, monsoons, and tropical waves. In contrast, this signal is missing in all versions of CAM, which are found to be prone to predicting increases in the amount but not intensity of moderate rates. Predictions from SPCAM exhibit a scale-insensitive behavior with little dependence on horizontal resolution for extreme rates, while lower resolution (~2°) versions of CAM are not able to capture the response simulated with higher resolution (~1°). Furthermore, moderate rain rates analyzed by the “amount mode” and “amount median” are found to be especially telling as a diagnostic for evaluating climate model performance and tracing future changes in rainfall statistics to tropical wave modes in SPCAM.« less

  3. Development of Fast Deterministic Physically Accurate Solvers for Kinetic Collision Integral for Applications of Near Space Flight and Control Devices

    DTIC Science & Technology

    2015-08-31

    following functions were used: where are the Legendre polynomials of degree . It is assumed that the coefficient standing with has the form...enforce relaxation rates of high order moments, higher order polynomial basis functions are used. The use of high order polynomials results in strong...enforced while only polynomials up to second degree were used in the representation of the collision frequency. It can be seen that the new model

  4. Isotopic exchange in mineral-fluid systems. IV. The crystal chemical controls on oxygen isotope exchange rates in carbonate-H 2O and layer silicate-H 2O systems

    NASA Astrophysics Data System (ADS)

    Cole, David R.

    2000-03-01

    Oxygen isotope exchange between minerals and water in systems far from chemical equilibrium is controlled largely by surface reactions such as dissolution-precipitation. In many cases, this behavior can be modeled adequately by a simple pseudo-first order rate model that accounts for changes in surface area of the solid. Previous modeling of high temperature isotope exchange data for carbonates, sulfates, and silicates indicated that within a given mineral group there appears to be a systematic relationship between rate and mineral chemistry. We tested this idea by conducting oxygen isotope exchange experiments in the systems, carbonate-H 2O and layer silicate-H 2O at 300 and 350°C, respectively. Witherite (BaCO 3), strontianite (SrCO 3) and calcite (CaCO 3) were reacted with pure H 2O for different lengths of time (271-1390 h) at 300°C and 100 bars. The layer silicates, chlorite, biotite and muscovite were reacted with H 2O for durations ranging from 132 to 3282 h at 350°C and 250 bars. A detailed survey of grain sizes and grain habits using scanning electron microscopy (SEM) indicated that grain regrowth occurred in all experiments to varying extents. Changes in the mean grain diameters were particularly significant in experiments involving withertite, strontianite and biotite. The variations in the extent of oxygen isotope exchange were measured as a function of time, and fit to a pseudo-first order rate model that accounted for the change in surface area of the solid during reaction. The isotopic rates (ln r) for the carbonate-H 2O system are -20.75 ± 0.44, -18.95 ± 0.62 and -18.51 ± 0.48 mol O m -2 s -1 for calcite, strontianite and witherite, respectively. The oxygen isotope exchange rates for layer silicate-H 2O systems are -23.99 ± 0.89, -23.14 ± 0.74 and -22.40 ± 0.66 mol O m -2 s -1 for muscovite, biotite and chlorite, respectively. The rates for the carbonate-H 2O systems increase in order from calcite to strontianite to witherite. This order clearly reflects the influence of the change in cation chemistry, i.e., Ba > Sr > Ca. A similar pattern is observed for the layer silicate-H 2O systems, where chlorite>biotite>muscovite. The link between cation chemistry and rate is more complicated in this case, but in general, the order follows a trend where Mg-Fe > K-Mg > K, with an associated increase in Si and Al, and decrease in hydroxyl. The isotopic-chemical relations suggest that oxygen isotope exchange behavior monitored experimentally in this study is the net result of bond-breaking and dissolution of the mineral, complex ion formation in solution and growth of the mineral, whose structure is controlled, in large part, by the lattice energy. We compared the rates against the electrostatic attractive lattice energies (neglecting the repulsive forces), normalized per number of cations. The correlations between rates and lattice energies are quite good for both mineral-H 2O systems. The increase in rates correlated with a decrease in the electrostatic attractive lattice energies, i.e., the greater the lattice energy required to break up the crystal, the more sluggish the rates for both chemical and isotopic exchange. By establishing an unambiguous relationship between rate, lattice energy, and ultimately temperature, we can begin to develop empirical equations useful in predicting rates of isotopic exchange for minerals for which experimental data are lacking.

  5. On scaling cosmogenic nuclide production rates for altitude and latitude using cosmic-ray measurements

    NASA Astrophysics Data System (ADS)

    Desilets, Darin; Zreda, Marek

    2001-11-01

    The wide use of cosmogenic nuclides for dating terrestrial landforms has prompted a renewed interest in characterizing the spatial distribution of terrestrial cosmic rays. Cosmic-ray measurements from neutron monitors, nuclear emulsions and cloud chambers have played an important role in developing new models for scaling cosmic-ray neutron intensities and, indirectly, cosmogenic production rates. Unfortunately, current scaling models overlook or misinterpret many of these data. In this paper, we describe factors that must be considered when using neutron measurements to determine scaling formulations for production rates of cosmogenic nuclides. Over the past 50 years, the overwhelming majority of nucleon flux measurements have been taken with neutron monitors. However, in order to use these data for scaling spallation reactions, the following factors must be considered: (1) sensitivity of instruments to muons and to background, (2) instrumental biases in energy sensitivity, (3) solar activity, and (4) the way of ordering cosmic-ray data in the geomagnetic field. Failure to account for these factors can result in discrepancies of as much as 7% in neutron attenuation lengths measured at the same location. This magnitude of deviation can result in an error on the order of 20% in cosmogenic production rates scaled from 4300 m to sea level. The shapes of latitude curves of nucleon flux also depend on these factors to a measurable extent, thereby causing additional uncertainties in cosmogenic production rates. The corrections proposed herein significantly improve our ability to transfer scaling formulations based on neutron measurements to scaling formulations applicable to spallation reactions, and, therefore, constitute an important advance in cosmogenic dating methodology.

  6. Vapor phase nucleation of the short-chain n-alkanes (n-pentane, n-hexane and n-heptane): Experiments and Monte Carlo simulations.

    PubMed

    Ogunronbi, Kehinde E; Sepehri, Aliasghar; Chen, Bin; Wyslouzil, Barbara E

    2018-04-14

    We measured the nucleation rates of n-pentane through n-heptane in a supersonic nozzle at temperatures ranging from ca. 109 K to 168 K. For n-pentane and n-hexane, these are the first nucleation rate measurements that have been made, and the trends in the current data agree well with those in the earlier work of Ghosh et al. [J. Chem. Phys. 132, 024307 (2010)] for longer chain alkanes. Complementary Monte Carlo simulations, using the transferable potentials for phase equilibria-united atom potentials, suggest that despite the high degree of supercooling, the critical clusters remain liquid like under experimental conditions for n-pentane through n-heptane, but adopt more ordered structures for n-octane and n-nonane. For all three alkanes, the experimental and simulated nucleation rates are offset by ∼3 orders of magnitude when plotted as a function of ln S/(T c /T - 1) 1.5 . Explicitly accounting for the surface tension difference between the real and model substances, or alternatively using the Hale [Phys. Rev. A 33, 4156 (1986); Metall. Mater. Trans. A 23, 1863 (1992)] scaling parameter, Ω, consistent with the model potential, increases the offset to ∼6 orders of magnitude.

  7. Vapor phase nucleation of the short-chain n-alkanes (n-pentane, n-hexane and n-heptane): Experiments and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ogunronbi, Kehinde E.; Sepehri, Aliasghar; Chen, Bin; Wyslouzil, Barbara E.

    2018-04-01

    We measured the nucleation rates of n-pentane through n-heptane in a supersonic nozzle at temperatures ranging from ca. 109 K to 168 K. For n-pentane and n-hexane, these are the first nucleation rate measurements that have been made, and the trends in the current data agree well with those in the earlier work of Ghosh et al. [J. Chem. Phys. 132, 024307 (2010)] for longer chain alkanes. Complementary Monte Carlo simulations, using the transferable potentials for phase equilibria-united atom potentials, suggest that despite the high degree of supercooling, the critical clusters remain liquid like under experimental conditions for n-pentane through n-heptane, but adopt more ordered structures for n-octane and n-nonane. For all three alkanes, the experimental and simulated nucleation rates are offset by ˜3 orders of magnitude when plotted as a function of ln S/(Tc/T - 1)1.5. Explicitly accounting for the surface tension difference between the real and model substances, or alternatively using the Hale [Phys. Rev. A 33, 4156 (1986); Metall. Mater. Trans. A 23, 1863 (1992)] scaling parameter, Ω, consistent with the model potential, increases the offset to ˜6 orders of magnitude.

  8. Optimal Cycle Time and Preservation Technology Investment for Deteriorating Items with Price-sensitive Stock-dependent Demand Under Inflation

    NASA Astrophysics Data System (ADS)

    Shah, Nita H.; Shah, Arpan D.

    2014-04-01

    The article analyzes economic order quantity for the retailer who has to handle imperfect quality of the product and the units are subject to deteriorate at a constant rate. To control deterioration of the units in inventory, the retailer has to deploy advanced preservation technology. Another challenge for the retailer is to have perfect quality product. This requires mandatory inspection during the production process. This model is developed with the condition of random fraction of defective items. It is assumed that after inspection, the screened defective items are sold at a discounted rate instantly. Demand is considered to be price-sensitive stock-dependent. The model is incorporating effect of inflation which is critical factor globally. The objective is to maximize profit of the retailer with respect to preservation technology investment, order quantity and cycle time. The numerical example is given to validate the proposed model. Sensitivity analysis is carried out to work out managerial issues.

  9. Start-up, steady state performance and kinetic evaluation of a thermophilic integrated anaerobic-aerobic bioreactor (IAAB).

    PubMed

    Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim

    2012-12-01

    Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Thermal Rate Coefficients for the Astrochemical Process C + CH+ → C2+ + H by Ring Polymer Molecular Dynamics.

    PubMed

    Rampino, Sergio; Suleimanov, Yury V

    2016-12-22

    Thermal rate coefficients for the astrochemical reaction C + CH + → C 2 + + H were computed in the temperature range 20-300 K by using novel rate theory based on ring polymer molecular dynamics (RPMD) on a recently published bond-order based potential energy surface and compared with previous Langevin capture model (LCM) and quasi-classical trajectory (QCT) calculations. Results show that there is a significant discrepancy between the RPMD rate coefficients and the previous theoretical results that can lead to overestimation of the rate coefficients for the title reaction by several orders of magnitude at very low temperatures. We argue that this can be attributed to a very challenging energy profile along the reaction coordinate for the title reaction, not taken into account in extenso by either the LCM or QCT approximation. In the absence of any rigorous quantum mechanical or experimental results, the computed RPMD rate coefficients represent state-of-the-art estimates to be included in astrochemical databases and kinetic networks.

  11. Reduced-Order Structure-Preserving Model for Parallel-Connected Three-Phase Grid-Tied Inverters: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Purba, Victor; Jafarpour, Saber

    Given that next-generation infrastructures will contain large numbers of grid-connected inverters and these interfaces will be satisfying a growing fraction of system load, it is imperative to analyze the impacts of power electronics on such systems. However, since each inverter model has a relatively large number of dynamic states, it would be impractical to execute complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the pointmore » of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loop for grid synchronization. We outline a structure-preserving reduced-order inverter model for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. That is, we show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as an individual inverter in the paralleled system. Numerical simulations validate the reduced-order models.« less

  12. Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method

    NASA Astrophysics Data System (ADS)

    Panesi, M.; Munafò, A.; Magin, T. E.; Jaffe, R. L.

    2014-07-01

    A rovibrational collisional model is developed to study the internal energy excitation and dissociation processes behind a strong shock wave in a nitrogen flow. The reaction rate coefficients are obtained from the ab initio database of the NASA Ames Research Center. The master equation is coupled with a one-dimensional flow solver to study the nonequilibrium phenomena encountered in the gas during a hyperbolic reentry into Earth's atmosphere. The analysis of the populations of the rovibrational levels demonstrates how rotational and vibrational relaxation proceed at the same rate. This contrasts with the common misconception that translational and rotational relaxation occur concurrently. A significant part of the relaxation process occurs in non-quasi-steady-state conditions. Exchange processes are found to have a significant impact on the relaxation of the gas, while predissociation has a negligible effect. The results obtained by means of the full rovibrational collisional model are used to assess the validity of reduced order models (vibrational collisional and multitemperature) which are based on the same kinetic database. It is found that thermalization and dissociation are drastically overestimated by the reduced order models. The reasons of the failure differ in the two cases. In the vibrational collisional model the overestimation of the dissociation is a consequence of the assumption of equilibrium between the rotational energy and the translational energy. The multitemperature model fails to predict the correct thermochemical relaxation due to the failure of the quasi-steady-state assumption, used to derive the phenomenological rate coefficient for dissociation.

  13. COMMENT ON "DERIVATION OF NUMERICAL VALUES FOR THE WORLD HEALTH ORGANIZATION GUIDELINES FOR RECREATIONAL WATERS"

    EPA Science Inventory

    The subject paper describes a procedure for adjusting a risk model based upon a measure of personal exposure (the "UK personal exposure model") in order to attribute an expected rate of gastroenteritis among a group of swimmers to a mean recreational water quality value (enteroco...

  14. Time-dependent Models for Blazar Emission with the Second-order Fermi Acceleration

    NASA Astrophysics Data System (ADS)

    Asano, Katsuaki; Takahara, Fumio; Kusunose, Masaaki; Toma, Kenji; Kakuwa, Jun

    2014-01-01

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101-232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range of Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 1038 erg s-1, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.

  15. Suboptimal and optimal order policies for fixed and varying replenishment interval with declining market

    NASA Astrophysics Data System (ADS)

    Yu, Jonas C. P.; Wee, H. M.; Yang, P. C.; Wu, Simon

    2016-06-01

    One of the supply chain risks for hi-tech products is the result of rapid technological innovation; it results in a significant decline in the selling price and demand after the initial launch period. Hi-tech products include computers and communication consumer's products. From a practical standpoint, a more realistic replenishment policy is needed to consider the impact of risks; especially when some portions of shortages are lost. In this paper, suboptimal and optimal order policies with partial backordering are developed for a buyer when the component cost, the selling price, and the demand rate decline at a continuous rate. Two mathematical models are derived and discussed: one model has the suboptimal solution with the fixed replenishment interval and a simpler computational process; the other one has the optimal solution with the varying replenishment interval and a more complicated computational process. The second model results in more profit. Numerical examples are provided to illustrate the two replenishment models. Sensitivity analysis is carried out to investigate the relationship between the parameters and the net profit.

  16. On the effect of irradiation-induced resolution in modelling fission gas release in UO2 LWR fuel

    NASA Astrophysics Data System (ADS)

    Lösönen, Pekka

    2017-12-01

    Irradiation resolution of gas atoms and vacancies from intra- and intergranular bubbles in sintered UO2 fuel was studied by comparing macroscopic models with a more mechanistic approach. The applied macroscopic models imply the resolution rate of gas atoms to be proportional to gas concentration in intragranular bubbles and at grain boundary (including intergranular bubbles). A relation was established between the macroscopic models and a single encounter of an energetic fission fragment with a bubble. The effect of bubble size on resolution was quantified. The number of resoluted gas atoms per encounter of a fission fragment per bubble was of the same order of magnitude for intra- and intergranular bubbles. However, the resulting macroscopic resolution rate of gas atoms was about two orders of magnitude larger from intragranular bubbles. The number of vacancies resoluted from a grain face bubble by a passing fission fragment was calculated. The obtained correlations for resolution of gas atoms from intragranular bubbles and grain boundaries and for resolution of vacancies from grain face bubbles were used to demonstrate the effect of irradiation resolution on fission gas release.

  17. Inventory model with two rates of production for deteriorating items with permissible delay in payments

    NASA Astrophysics Data System (ADS)

    Roy, Ajanta; Samanta, G. P.

    2011-08-01

    Goyal (1985) ['Economic Order Quantity Under Conditions of Permissible Delay in Payments', Journal of Operational research Society, 36, 35-38] assumed that unit selling price and unit purchasing price are equal. But in real-life the scenario is different. The purpose of this article is to reflect the real life problem by allowing unit selling price and purchasing price to be unequal. Our model is a continuous production control inventory model for deteriorating items in which two different rates of production are available. The results are illustrated with the help of a numerical example. We discuss the sensitivity of the solution together with the changes of the values of the parameters associated with the model. Our model may be applicable in many manufacturing planning situations where management practices for deterioration are stringent; e.g. the two-production rate will be more profitable than the one-production rate in the manufacture of cold, asthma and allergy medicine. Our proposed model might be applicable to develop a prototype advance planning system for those manufacturers to integrate the management science techniques into commercial planning.

  18. A mathematical model of microalgae growth in cylindrical photobioreactor

    NASA Astrophysics Data System (ADS)

    Bakeri, Noorhadila Mohd; Jamaian, Siti Suhana

    2017-08-01

    Microalgae are unicellular organisms, which exist individually or in chains or groups but can be utilized in many applications. Researchers have done various efforts in order to increase the growth rate of microalgae. Microalgae have a potential as an effective tool for wastewater treatment, besides as a replacement for natural fuel such as coal and biodiesel. The growth of microalgae can be estimated by using Geider model, which this model is based on photosynthesis irradiance curve (PI-curve) and focused on flat panel photobioreactor. Therefore, in this study a mathematical model for microalgae growth in cylindrical photobioreactor is proposed based on the Geider model. The light irradiance is the crucial part that affects the growth rate of microalgae. The absorbed photon flux will be determined by calculating the average light irradiance in a cylindrical system illuminated by unidirectional parallel flux and considering the cylinder as a collection of differential parallelepipeds. Results from this study showed that the specific growth rate of microalgae increases until the constant level is achieved. Therefore, the proposed mathematical model can be used to estimate the rate of microalgae growth in cylindrical photobioreactor.

  19. Multiscale Modeling of Diffusion in a Crowded Environment.

    PubMed

    Meinecke, Lina

    2017-11-01

    We present a multiscale approach to model diffusion in a crowded environment and its effect on the reaction rates. Diffusion in biological systems is often modeled by a discrete space jump process in order to capture the inherent noise of biological systems, which becomes important in the low copy number regime. To model diffusion in the crowded cell environment efficiently, we compute the jump rates in this mesoscopic model from local first exit times, which account for the microscopic positions of the crowding molecules, while the diffusing molecules jump on a coarser Cartesian grid. We then extract a macroscopic description from the resulting jump rates, where the excluded volume effect is modeled by a diffusion equation with space-dependent diffusion coefficient. The crowding molecules can be of arbitrary shape and size, and numerical experiments demonstrate that those factors together with the size of the diffusing molecule play a crucial role on the magnitude of the decrease in diffusive motion. When correcting the reaction rates for the altered diffusion we can show that molecular crowding either enhances or inhibits chemical reactions depending on local fluctuations of the obstacle density.

  20. Development of rate expressions for the thermal decomposition of RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, K.L.; Behrens, R. Jr.; Bulusu, S.

    Decomposition and combustion of energetic materials involve processes in both condensed and gas phases. Development of reliable models for design, performance, stability, and hazard analyses requires detailed understanding of the mechanisms for both the initial condensed phase decomposition of the energetic material and the subsequent reaction of the decomposition species to form the ultimate reaction products. Those mechanisms must be described in terms of constitutive rate expressions that can be incorporated into mathematical models. The thermal decomposition of RDX has been studied by Behrens and Bulusu using Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS). Their work provides a basis formore » developing some of the constitutive rate expressions that are needed in models for design, performance, stability and hazard analyses involving RDX. Behrens and Bulusu have identified four primary reaction pathways that control the liquid-phase decomposition of RDX at temperatures between 200 and 215{degrees}C, and one that controls solid-phase decomposition at temperatures below 200{degrees}C. Two of the liquid-phase pathways appear to be first order in RDX. Arrhenius parameters for the first-order rate constants were evaluated from data reported by Behrens and Bulusu. Reaction rates extrapolated to temperatures between 370 and 450{degrees}C are in good agreement with global reaction rates observed by Trott et al. using high-speed photography and laser-heated thin-film samples. Furthermore, the STMBMS results of Behrens and Bulusu appear to be consistent with condensed-phase infrared results reported by Trott et al. and Erickson et al.« less

  1. Development of rate expressions for the thermal decomposition of RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, K.L.; Behrens, R. Jr.; Bulusu, S.

    Decomposition and combustion of energetic materials involve processes in both condensed and gas phases. Development of reliable models for design, performance, stability, and hazard analyses requires detailed understanding of the mechanisms for both the initial condensed phase decomposition of the energetic material and the subsequent reaction of the decomposition species to form the ultimate reaction products. Those mechanisms must be described in terms of constitutive rate expressions that can be incorporated into mathematical models. The thermal decomposition of RDX has been studied by Behrens and Bulusu using Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS). Their work provides a basis formore » developing some of the constitutive rate expressions that are needed in models for design, performance, stability and hazard analyses involving RDX. Behrens and Bulusu have identified four primary reaction pathways that control the liquid-phase decomposition of RDX at temperatures between 200 and 215[degrees]C, and one that controls solid-phase decomposition at temperatures below 200[degrees]C. Two of the liquid-phase pathways appear to be first order in RDX. Arrhenius parameters for the first-order rate constants were evaluated from data reported by Behrens and Bulusu. Reaction rates extrapolated to temperatures between 370 and 450[degrees]C are in good agreement with global reaction rates observed by Trott et al. using high-speed photography and laser-heated thin-film samples. Furthermore, the STMBMS results of Behrens and Bulusu appear to be consistent with condensed-phase infrared results reported by Trott et al. and Erickson et al.« less

  2. Optimal lot sizing in screening processes with returnable defective items

    NASA Astrophysics Data System (ADS)

    Vishkaei, Behzad Maleki; Niaki, S. T. A.; Farhangi, Milad; Rashti, Mehdi Ebrahimnezhad Moghadam

    2014-07-01

    This paper is an extension of Hsu and Hsu (Int J Ind Eng Comput 3(5):939-948, 2012) aiming to determine the optimal order quantity of product batches that contain defective items with percentage nonconforming following a known probability density function. The orders are subject to 100 % screening process at a rate higher than the demand rate. Shortage is backordered, and defective items in each ordering cycle are stored in a warehouse to be returned to the supplier when a new order is received. Although the retailer does not sell defective items at a lower price and only trades perfect items (to avoid loss), a higher holding cost incurs to store defective items. Using the renewal-reward theorem, the optimal order and shortage quantities are determined. Some numerical examples are solved at the end to clarify the applicability of the proposed model and to compare the new policy to an existing one. The results show that the new policy provides better expected profit per time.

  3. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Travis Shane; Mincher, Bruce Jay; Schmitt, Nicholas C

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show thatmore » the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.« less

  4. Modeling of neutrals in the Linac4 H- ion source plasma: Hydrogen atom production density profile and Hα intensity by collisional radiative model

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Shibata, T.; Ohta, M.; Yasumoto, M.; Nishida, K.; Hatayama, A.; Mattei, S.; Lettry, J.; Sawada, K.; Fantz, U.

    2014-02-01

    To control the H0 atom production profile in the H- ion sources is one of the important issues for the efficient and uniform surface H- production. The purpose of this study is to construct a collisional radiative (CR) model to calculate the effective production rate of H0 atoms from H2 molecules in the model geometry of the radio-frequency (RF) H- ion source for Linac4 accelerator. In order to validate the CR model by comparison with the experimental results from the optical emission spectroscopy, it is also necessary for the model to calculate Balmer photon emission rate in the source. As a basic test of the model, the time evolutions of H0 production and the Balmer Hα photon emission rate are calculated for given electron energy distribution functions in the Linac4 RF H- ion source. Reasonable test results are obtained and basis for the detailed comparisons with experimental results have been established.

  5. Model for the orientational ordering of the plant microtubule cortical array

    NASA Astrophysics Data System (ADS)

    Hawkins, Rhoda J.; Tindemans, Simon H.; Mulder, Bela M.

    2010-07-01

    The plant microtubule cortical array is a striking feature of all growing plant cells. It consists of a more or less homogeneously distributed array of highly aligned microtubules connected to the inner side of the plasma membrane and oriented transversely to the cell growth axis. Here, we formulate a continuum model to describe the origin of orientational order in such confined arrays of dynamical microtubules. The model is based on recent experimental observations that show that a growing cortical microtubule can interact through angle dependent collisions with pre-existing microtubules that can lead either to co-alignment of the growth, retraction through catastrophe induction or crossing over the encountered microtubule. We identify a single control parameter, which is fully determined by the nucleation rate and intrinsic dynamics of individual microtubules. We solve the model analytically in the stationary isotropic phase, discuss the limits of stability of this isotropic phase, and explicitly solve for the ordered stationary states in a simplified version of the model.

  6. Population Heterogeneity in Mutation Rate Increases the Frequency of Higher-Order Mutants and Reduces Long-Term Mutational Load

    PubMed Central

    Alexander, Helen K.; Mayer, Stephanie I.; Bonhoeffer, Sebastian

    2017-01-01

    Abstract Mutation rate is a crucial evolutionary parameter that has typically been treated as a constant in population genetic analyses. However, the propensity to mutate is likely to vary among co-existing individuals within a population, due to genetic polymorphisms, heterogeneous environmental influences, and random physiological fluctuations. We review the evidence for mutation rate heterogeneity and explore its consequences by extending classic population genetic models to allow an arbitrary distribution of mutation rate among individuals, either with or without inheritance. With this general new framework, we rigorously establish the effects of heterogeneity at various evolutionary timescales. In a single generation, variation of mutation rate about the mean increases the probability of producing zero or many simultaneous mutations on a genome. Over multiple generations of mutation and selection, heterogeneity accelerates the appearance of both deleterious and beneficial multi-point mutants. At mutation-selection balance, higher-order mutant frequencies are likewise boosted, while lower-order mutants exhibit subtler effects; nonetheless, population mean fitness is always enhanced. We quantify the dependencies on moments of the mutation rate distribution and selection coefficients, and clarify the role of mutation rate inheritance. While typical methods of estimating mutation rate will recover only the population mean, analyses assuming mutation rate is fixed to this mean could underestimate the potential for multi-locus adaptation, including medically relevant evolution in pathogenic and cancerous populations. We discuss the potential to empirically parameterize mutation rate distributions, which have to date hardly been quantified. PMID:27836985

  7. Kinetics of Fe2+-Mg order-disorder in orthopyroxene: experimental studies and applications to cooling rates of rocks

    NASA Astrophysics Data System (ADS)

    Stimpfl, M.; Ganguly, J.; Molin, G.

    2005-10-01

    We determined the forward rate constant (K+) for the Fe2+-Mg order-disorder between the M2 and M1 sites of orthopyroxene (OPx), which is described by the homogeneous reaction Fe2+ (M2) + Mg(M1) ↔ Mg(M2) + Fe2+ (M1), by both ordering and disordering experiments at isothermal condition and also by continuous cooling experiments. The rate constant was determined as a function of temperature in the range of 550-750°C, oxygen fugacity between quartz-fayalite-iron and Ni-NiO buffers, and at compositions of 16 and 50 mol% ferrosilite component. The K+ value derived from disordering experiment was found to be larger than that derived from ordering experiment at 550°C, while at T>580°C, these two values are essentially the same. The fO2 dependence of the rate constant can be described by the relation K+ α (fO2) n with n=5.5-6.5, which is compatible with the theoretically expected relation. The Arrhenius relation at the WI buffer condition is given by ln (C_{text{o}} {text{K}}^+) = - {41511 - 12600{text{X}}_{{text{Fe}}} }/{{T({text{K}})}} + 28.26 + 5.27{text{X}}_{{text{Fe}}}, min^{-1} where C o represents the total number of M2 + M1 sites occupied by Fe2+ and Mg per unit volume of the crystal. The above relation can be used to calculate the cooling rates of natural OPx crystals around the closure temperature ( T c) of Fe-Mg ordering, which are usually below 300°C for slowly cooled rocks. We determined the Fe-Mg ordering states of several OPx crystals (˜ Fs50) from the Central Gneissic Complex (Khtada Lake), British Columbia, which yields T c ˜290°C. Numerical simulation of the change of Fe2+-Mg ordering in OPx as a function of temperature using the above expression of rate constant and a non-linear cooling model yields quenched values of ordering states that are in agreement with the observed values for cooling rates of 11-17°C/Myr below 300°C. The inferred cooling rate is in agreement with the available geochronological constraints.

  8. Effect of dissolved oxygen tension and agitation rates on sulfur-utilizing autotrophic denitrification: batch tests.

    PubMed

    Qambrani, Naveed Ahmed; Oh, Sang-Eun

    2013-01-01

    The effect of dissolved oxygen (DO) and agitation rate in open and closed reactors was examined for sulfur-utilizing autotrophic denitrification. The reaction rate constants were determined based on a half-order kinetic model. Declining denitrification rate constants obtained for open reactors those of 8.46, 8.03, and 2.18 for 50 mg NO(3) (-)-N/L, while 11.12, 9.14, and 0.12 mg(1/2)/L(1/2) h were for 100 mg NO(3) (-)-N/L at agitation speeds of 0, 100, and 200 rpm. In closed reactors, the ever-increasing denitrification rates were 10.13, 22.56, and 37.03, whereas for the same nitrate concentrations and speeds the rates were 13.17, 15.63, and 26.67 mg(1/2)/L(1/2) h. The rate constants correlated well (r ( 2 ) = 0.89-0.99) with a half-order kinetic model. In open reactors, high SO(4) (2-)/N ratios (8.02-75.10) while in closed reactors comparatively low SO(4) (2-)/N ratios (6.10-13.39) were obtained. Sulfur oxidation occurred continuously in the presence of DO, resulting in mixed cultures acclimated to sulfur and nitrate. SO(4) (2-) was produced as an end product, which reduced alkalinity and lowered pH over time. Furthermore, DO inhibited sulfur denitrification in open reactors, while agitation in closed reactors increased the rate of denitrification.

  9. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics.

    PubMed

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; Rehman, Aziz Ur

    2015-07-08

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy ( ∆G° ), enthalpy ( ∆H° ) and entropy ( ∆S° ) were calculated for the adsorption of congo red, indicating an exothermic process.

  10. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics

    PubMed Central

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; ur Rehman, Aziz

    2015-01-01

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process. PMID:28793430

  11. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    DOE PAGES

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,more » the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.« less

  12. Methodology for earthquake rupture rate estimates of fault networks: example for the western Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Chartier, Thomas; Scotti, Oona; Lyon-Caen, Hélène; Boiselet, Aurélien

    2017-10-01

    Modeling the seismic potential of active faults is a fundamental step of probabilistic seismic hazard assessment (PSHA). An accurate estimation of the rate of earthquakes on the faults is necessary in order to obtain the probability of exceedance of a given ground motion. Most PSHA studies consider faults as independent structures and neglect the possibility of multiple faults or fault segments rupturing simultaneously (fault-to-fault, FtF, ruptures). The Uniform California Earthquake Rupture Forecast version 3 (UCERF-3) model takes into account this possibility by considering a system-level approach rather than an individual-fault-level approach using the geological, seismological and geodetical information to invert the earthquake rates. In many places of the world seismological and geodetical information along fault networks is often not well constrained. There is therefore a need to propose a methodology relying on geological information alone to compute earthquake rates of the faults in the network. In the proposed methodology, a simple distance criteria is used to define FtF ruptures and consider single faults or FtF ruptures as an aleatory uncertainty, similarly to UCERF-3. Rates of earthquakes on faults are then computed following two constraints: the magnitude frequency distribution (MFD) of earthquakes in the fault system as a whole must follow an a priori chosen shape and the rate of earthquakes on each fault is determined by the specific slip rate of each segment depending on the possible FtF ruptures. The modeled earthquake rates are then compared to the available independent data (geodetical, seismological and paleoseismological data) in order to weight different hypothesis explored in a logic tree.The methodology is tested on the western Corinth rift (WCR), Greece, where recent advancements have been made in the understanding of the geological slip rates of the complex network of normal faults which are accommodating the ˜ 15 mm yr-1 north-south extension. Modeling results show that geological, seismological and paleoseismological rates of earthquakes cannot be reconciled with only single-fault-rupture scenarios and require hypothesizing a large spectrum of possible FtF rupture sets. In order to fit the imposed regional Gutenberg-Richter (GR) MFD target, some of the slip along certain faults needs to be accommodated either with interseismic creep or as post-seismic processes. Furthermore, computed individual faults' MFDs differ depending on the position of each fault in the system and the possible FtF ruptures associated with the fault. Finally, a comparison of modeled earthquake rupture rates with those deduced from the regional and local earthquake catalog statistics and local paleoseismological data indicates a better fit with the FtF rupture set constructed with a distance criteria based on 5 km rather than 3 km, suggesting a high connectivity of faults in the WCR fault system.

  13. Cosmogenic nuclide production rates as a function of latitude and altitude calculated via a physics based model and excitation functions

    NASA Astrophysics Data System (ADS)

    Argento, D.; Reedy, R. C.; Stone, J. O.

    2012-12-01

    Cosmogenic nuclides have been used to develop a set of tools critical to the quantification of a wide range of geomorphic and climatic processes and events (Dunai 2010). Having reliable absolute measurement methods has had great impact on research constraining ice age extents as well as providing important climatic data via well constrained erosion rates, etc. Continuing to improve CN methods is critical for these sciences. While significant progress has been made in the last two decades to reduce uncertainties (Dunai 2010; Gosse & Phillips 2001), numerous aspects still need to be refined in order to achieve the analytic resolution desired by glaciologists and geomorphologists. In order to investigate the finer details of the radiation responsible for cosmogenic nuclide production, we have developed a physics based model which models the radiation cascade of primary and secondary cosmic-rays through the atmosphere. In this study, a Monte Carlo method radiation transport code, MCNPX, is used to model the galactic cosmic-ray (GCR) radiation impinging on the upper atmosphere. Beginning with a spectrum of high energy protons and alpha particles at the top of the atmosphere, the code tracks the primary and resulting secondary particles through a model of the Earth's atmosphere and into the lithosphere. Folding the neutron and proton flux results with energy dependent cross sections for nuclide production provides production rates for key cosmogenic nuclides (Argento et al. 2012, in press; Reedy 2012, in press). Our initial study for high latitude shows that nuclides scale at different rates for each nuclide (Argento 2012, in press). Furthermore, the attenuation length for each of these nuclide production rates increases with altitude, and again, they increase at different rates. This has the consequence of changing the production rate ratio as a function of altitude. The earth's geomagnetic field differentially filters low energy cosmic-rays by deflecting them away. This effect is strongest at the equator. This filtering reduces the total number of particles, and also biases the spectrum towards the higher energies. This effect is known to generally increase the attenuation length of production with altitude at the same time reducing the overall production rate. Our model now extends from high latitude to the equator. We expect the production rates, attenuation lengths and production ratios to also be functions of latitude. Our radiation model results are being analyzed and nuclide production rate results will be presented at the conference.

  14. The effects of surface chemistry of mesoporous silica materials and solution pH on kinetics of molsidomine adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolinina, E.S.; Parfenyuk, E.V., E-mail: terrakott37@mail.ru

    2014-01-15

    Adsorption kinetics of molsidomine on mesoporous silica material (UMS), the phenyl- (PhMS) and mercaptopropyl-functionalized (MMS) derivatives from solution with different pH and 298 K was studied. The adsorption kinetics was found to follow the pseudo-second-order kinetic model for all studied silica materials and pH. Effects of surface functional groups and pH on adsorption efficiency and kinetic adsorption parameters were investigated. At all studied pH, the highest molsidomine amount is adsorbed on PhMS due to π–π interactions and hydrogen bonding between surface groups of PhMS and molsidomine molecules. An increase of pH results in a decrease of the amounts of adsorbedmore » molsidomine onto the silica materials. Furthermore, the highest adsorption rate kinetically evaluated using a pseudo-second-order model, is observed onto UMS and it strongly depends on pH. The mechanism of the adsorption process was determined from the intraparticle diffusion and Boyd kinetic film–diffusion models. The results showed that the molsidomine adsorption on the silica materials is controlled by film diffusion. Effect of pH on the diffusion parameters is discussed. - Graphical abstract: The kinetic study showed that the k{sub 2} value, the rate constant of pseudo-second order kinetic model, is the highest for molsidomine adsorption on UMS and strongly depends on pH because it is determined by availability and accessibility of the reaction sites of the adsorbents molsidomine binding. Display Omitted - Highlights: • The adsorption capacities of UMS, PhMS and MMS were dependent on the pH. • At all studied pH, the highest molsidomine amount is adsorbed on PhMS. • The highest adsorption rate, k{sub 2}, is observed onto UMS and strongly depends on pH. • Film diffusion was the likely rate-limiting step in the adsorption process.« less

  15. Evaluation of a locally homogeneous model of spray evaporation

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1979-01-01

    A model of spray evaporation which employs a second-order turbulence model in conjunction with the locally homogeneous flow approximation, which implies infinitely fast interphase transport rates is presented. Measurements to test the model were completed for single phase constant and variable density jets, as well as an evaporating spray in stagnant air. Profiles of mean velocity, composition, temperature and drop size distribution as well as velocity fluctuations and Reynolds stress, were measured within the spray. Predictions were in agreement with measurements in single phase flows and also with many characteristics of the spray, e.g. flow width, radial profiles of mean and turbulent quantities, and the axial rate of decay of mean velocity and mixture fraction.

  16. A measurement-based performability model for a multiprocessor system

    NASA Technical Reports Server (NTRS)

    Ilsueh, M. C.; Iyer, Ravi K.; Trivedi, K. S.

    1987-01-01

    A measurement-based performability model based on real error-data collected on a multiprocessor system is described. Model development from the raw errror-data to the estimation of cumulative reward is described. Both normal and failure behavior of the system are characterized. The measured data show that the holding times in key operational and failure states are not simple exponential and that semi-Markov process is necessary to model the system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of different failure types and recovery procedures.

  17. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    USGS Publications Warehouse

    Gomez-Velez, Jesus D.; Harvey, Judson

    2014-01-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  18. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    NASA Astrophysics Data System (ADS)

    Gomez-Velez, Jesus D.; Harvey, Judson W.

    2014-09-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  19. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    USGS Publications Warehouse

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  20. Lessons from the Tennessee Valley Authority

    NASA Astrophysics Data System (ADS)

    Kitchens, Carl Thomas

    This dissertation is a program evaluation of the Tennessee Valley Authority (TVA) the largest publicly owned utility in the United States. The first essay in this dissertation examines the TVA's use of eminent domain in order to acquire property for the construction of reservoirs. It develops a new model of asymmetric information and then tests the model predictions using property level data from TVA property purchases in the 1930's. The second essay of this dissertation examines the unintended consequences of reservoir development my examining changes in the malaria rate associated with TVA reservoirs. Using panel data methods, I find that the presence of a TVA reservoir leads to large increases in the malaria mortality and morbidity rate, which cost up to 30 percent of TVA federal appropriations. The final essay in this dissertation examines the impact of TVA electrification programs on economic growth. It combines archival and panel data methods to show that contrary to the historical account, TVA electric rates did not differ substantially from the rates charged by private utilities, and secondly, shows that counties that had electricity contracts with the TVA did not have differential economic growth rates for a variety of economic outcomes. In order to control for selection into contracts, I adopt an instrumental variables strategy based on the cost of electric service.

  1. Vegetarian or meat? Food choice modeling of main dishes occurs outside of awareness.

    PubMed

    Christie, Chelsea D; Chen, Frances S

    2018-02-01

    It is well established that the amount eaten by other people affects how much we eat, but unanswered questions exist regarding how much the food choices of other people affect the types of food that we choose. Past research on food choice modeling has primarily been conducted in controlled laboratory situations and has focused on snack foods. The current research examines the extent to which food choice modeling of a main dish occurs in a real-life context and whether people are aware of being influenced by others. The lunch orders of café patrons were surreptitiously tracked and participants were recruited after they paid for their lunch. Participants were asked what they ordered, whether they were influenced by the prior order, and what their relationship was to the person ahead of them in line. We analyzed the data of participants who were not acquainted with the person ahead of them (N = 174). As hypothesized, participants' main-dish lunch orders matched the choice of the person ordering ahead of them in line at rates significantly higher than chance. A significant modeling effect was observed even among participants who reported that their order was not influenced by the prior order. This research provided evidence of main-dish choice modeling occurring in real-life eating situations and outside of conscious awareness - demonstrating a powerful social influence on eating behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Theory and Experimental and Chemical Instabilities

    DTIC Science & Technology

    1989-01-31

    Thresholds, Hysteresis, and Neuromodulation of Signal-to-Noise; and Statistical-Mechanical Theory of Many-body Effects in Reaction Rates. T Ic 2 UL3...submitted to the Journal of Physical Chemistry. 6. Noise in Neural Networks: Thresholds, Hysteresis, and Neuromodulation of Signal-to-Noise. We study a...neural-network model including Gaussian noise, higher-order neuronal interactions, and neuromodulation . For a first-order network, there is a

  3. Kinetics of sorption of polyaromatic hydrocarbons onto granular activated carbon and Macronet hyper-cross-linked polymers (MN200).

    PubMed

    Valderrama, C; Cortina, J L; Farran, A; Gamisans, X; Lao, C

    2007-06-01

    Polymeric supports are presented as an alternative to granular activated carbon (GAC) for organic contaminant removal from groundwater using permeable reactive barriers (PRB). The search for suitable polymeric sorbents for hydrocarbon extraction from aqueous streams has prompted the synthesis of new resins incorporating new functionalities or modifying the polymer network properties that solve many of the existing problems. Between them, the new type of polymeric sorbents Macronet Hypersol containing a styrene-divinylbenzene macroporous hyperreticulated network has been evaluated. Because of their potential sorptive properties, tests were conducted to determine the feasibility of using them as a low-cost reactive material for groundwater applications. The present work describes the sorption of six polycyclic hydrocarbons (PAHs) from aqueous solution onto both Macronet polymeric sorbent MN200 and granular activated carbon. Batch experiments were performed to determine loading rates of a family of PAHs (naphthalene, fluorene, anthracene, acenaphthene, pyrene, and fluoranthene), from a simple two-rings PAH (naphthalene) up to a four-ring PAH (pyrene). The behavior of a non-functionalized Macronet support (MN200) was compared with the behavior of a recognized material, granular activated carbon (GAC). Analyses of the respective rate data with three theoretical models (pseudo-first- and pseudo-second-order reaction models and the Elovich model) were used to describe the PAH sorption kinetics. Sorption rate constants were determined by graphical analysis of the proposed models. The study showed that sorption systems followed a pseudo-first-order reaction model, although the pseudo-second-order reaction model provides an acceptable description of the sorption process. Graphical analysis showed that the sorption process with activated carbon is a more complex process than the one observed for hyper-cross-linked polymers (MN200). A simulation of the barrier thickness needed to treat a PAH-polluted plume showed that 0.1-1 m of sorption media is enough even for high water fluxes such as 0.1-2 m(3)/m(2)/day for both sorbents.

  4. Maximum Likelihood Item Easiness Models for Test Theory Without an Answer Key

    PubMed Central

    Batchelder, William H.

    2014-01-01

    Cultural consensus theory (CCT) is a data aggregation technique with many applications in the social and behavioral sciences. We describe the intuition and theory behind a set of CCT models for continuous type data using maximum likelihood inference methodology. We describe how bias parameters can be incorporated into these models. We introduce two extensions to the basic model in order to account for item rating easiness/difficulty. The first extension is a multiplicative model and the second is an additive model. We show how the multiplicative model is related to the Rasch model. We describe several maximum-likelihood estimation procedures for the models and discuss issues of model fit and identifiability. We describe how the CCT models could be used to give alternative consensus-based measures of reliability. We demonstrate the utility of both the basic and extended models on a set of essay rating data and give ideas for future research. PMID:29795812

  5. 76 FR 50204 - Decision and Order Granting a Waiver to Fujitsu General Limited From the Department of Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... Refrigerant Flow (VRF) multi-split commercial heat pump models specified in Fujitsu's petition for waiver. As... to test and rate these AIRSTAGE V-II VRF multi-split commercial heat pumps. DATES: This Decision and...) Standard 1230-2010, ``Performance Rating of VRF Multi-Split Air-Conditioning and Heat Pump Equipment'' to...

  6. Mimicking Aphasic Semantic Errors in Normal Speech Production: Evidence from a Novel Experimental Paradigm

    ERIC Educational Resources Information Center

    Hodgson, Catherine; Lambon Ralph, Matthew A.

    2008-01-01

    Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study…

  7. Simulation of finite-strain inelastic phenomena governed by creep and plasticity

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bloomfield, Max O.; Oberai, Assad A.

    2017-11-01

    Inelastic mechanical behavior plays an important role in many applications in science and engineering. Phenomenologically, this behavior is often modeled as plasticity or creep. Plasticity is used to represent the rate-independent component of inelastic deformation and creep is used to represent the rate-dependent component. In several applications, especially those at elevated temperatures and stresses, these processes occur simultaneously. In order to model these process, we develop a rate-objective, finite-deformation constitutive model for plasticity and creep. The plastic component of this model is based on rate-independent J_2 plasticity, and the creep component is based on a thermally activated Norton model. We describe the implementation of this model within a finite element formulation, and present a radial return mapping algorithm for it. This approach reduces the additional complexity of modeling plasticity and creep, over thermoelasticity, to just solving one nonlinear scalar equation at each quadrature point. We implement this algorithm within a multiphysics finite element code and evaluate the consistent tangent through automatic differentiation. We verify and validate the implementation, apply it to modeling the evolution of stresses in the flip chip manufacturing process, and test its parallel strong-scaling performance.

  8. Tensile characterisation of the aorta across quasi-static to blast loading strain rates

    NASA Astrophysics Data System (ADS)

    Magnus, Danyal; Proud, William; Haller, Antoine; Jouffroy, Apolline

    2017-06-01

    The dynamic tensile failure mechanisms of the aorta during Traumatic Aortic Injury (TAI) are poorly understood. In automotive incidents, where the aorta may be under strains of the order of 100/s, TAI is the second largest cause of mortality. In these studies, the proximal descending aorta is the most common site where rupture is observed. In particular, the transverse direction is most commonly affected due to the circumferential orientation of elastin, and hence the literature generally concentrates upon axial samples. This project extends these dynamic studies to the blast loading regime where strain-rates are of the order of 1000/s. A campaign of uniaxial tensile experiments are conducted at quasi-static, intermediate (drop-weight) and high (tensile Split-Hopkinson Pressure Bar) strain rates. In each case, murine and porcine aorta models are considered and the extent of damage assessed post-loading using histology. Experimental data will be compared against current viscoelastic models of the aorta under axial stress. Their applicability across strain rates will be discussed. Using a multi-disciplinary approach, the conditions applied to the samples replicate in vivo conditions, employing a blood simulant-filled tubular specimen surrounded by a physiological solution.

  9. Source emission and model evaluation of formaldehyde from composite and solid wood furniture in a full-scale chamber

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Mason, Mark A.; Guo, Zhishi; Krebs, Kenneth A.; Roache, Nancy F.

    2015-12-01

    This paper describes the measurement and model evaluation of formaldehyde source emissions from composite and solid wood furniture in a full-scale chamber at different ventilation rates for up to 4000 h using ASTM D 6670-01 (2007). Tests were performed on four types of furniture constructed of different materials and from different manufacturers. The data were used to evaluate two empirical emission models, i.e., a first-order and power-law decay model. The experimental results showed that some furniture tested in this study, made only of solid wood and with less surface area, had low formaldehyde source emissions. The effect of ventilation rate on formaldehyde emissions was also examined. Model simulation results indicated that the power-law decay model showed better agreement than the first-order decay model for the data collected from the tests, especially for long-term emissions. This research was limited to a laboratory study with only four types of furniture products tested. It was not intended to comprehensively test or compare the large number of furniture products available in the market place. Therefore, care should be taken when applying the test results to real-world scenarios. Also, it was beyond the scope of this study to link the emissions to human exposure and potential health risks.

  10. End-to-end Coronagraphic Modeling Including a Low-order Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Krist, John E.; Trauger, John T.; Unwin, Stephen C.; Traub, Wesley A.

    2012-01-01

    To evaluate space-based coronagraphic techniques, end-to-end modeling is necessary to simulate realistic fields containing speckles caused by wavefront errors. Real systems will suffer from pointing errors and thermal and motioninduced mechanical stresses that introduce time-variable wavefront aberrations that can reduce the field contrast. A loworder wavefront sensor (LOWFS) is needed to measure these changes at a sufficiently high rate to maintain the contrast level during observations. We implement here a LOWFS and corresponding low-order wavefront control subsystem (LOWFCS) in end-to-end models of a space-based coronagraph. Our goal is to be able to accurately duplicate the effect of the LOWFS+LOWFCS without explicitly evaluating the end-to-end model at numerous time steps.

  11. Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.

    This study statistically analyzed a grain-size based additivity model that has been proposed to scale reaction rates and parameters from laboratory to field. The additivity model assumed that reaction properties in a sediment including surface area, reactive site concentration, reaction rate, and extent can be predicted from field-scale grain size distribution by linearly adding reaction properties for individual grain size fractions. This study focused on the statistical analysis of the additivity model with respect to reaction rate constants using multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment as an example. Experimental data of rate-limited U(VI) desorption in amore » stirred flow-cell reactor were used to estimate the statistical properties of multi-rate parameters for individual grain size fractions. The statistical properties of the rate constants for the individual grain size fractions were then used to analyze the statistical properties of the additivity model to predict rate-limited U(VI) desorption in the composite sediment, and to evaluate the relative importance of individual grain size fractions to the overall U(VI) desorption. The result indicated that the additivity model provided a good prediction of the U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model, and U(VI) desorption in individual grain size fractions have to be simulated in order to apply the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel size fraction (2-8mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.« less

  12. Jump rates for surface diffusion of large molecules from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen

    2015-04-21

    We apply a recently developed stochastic model for the surface diffusion of large molecules to calculate jump rates for 9,10-dithioanthracene on a Cu(111) surface. The necessary input parameters for the stochastic model are calculated from first principles using density functional theory (DFT). We find that the inclusion of van der Waals corrections to the DFT energies is critical to obtain good agreement with experimental results for the adsorption geometry and energy barrier for diffusion. The predictions for jump rates in our model are in excellent agreement with measured values and show a marked improvement over transition state theory (TST). Wemore » find that the jump rate prefactor is reduced by an order of magnitude from the TST estimate due to frictional damping resulting from energy exchange with surface phonons, as well as a rotational mode of the diffusing molecule.« less

  13. Effects of tunnelling and asymmetry for system-bath models of electron transfer

    NASA Astrophysics Data System (ADS)

    Mattiat, Johann; Richardson, Jeremy O.

    2018-03-01

    We apply the newly derived nonadiabatic golden-rule instanton theory to asymmetric models describing electron-transfer in solution. The models go beyond the usual spin-boson description and have anharmonic free-energy surfaces with different values for the reactant and product reorganization energies. The instanton method gives an excellent description of the behaviour of the rate constant with respect to asymmetry for the whole range studied. We derive a general formula for an asymmetric version of the Marcus theory based on the classical limit of the instanton and find that this gives significant corrections to the standard Marcus theory. A scheme is given to compute this rate based only on equilibrium simulations. We also compare the rate constants obtained by the instanton method with its classical limit to study the effect of tunnelling and other quantum nuclear effects. These quantum effects can increase the rate constant by orders of magnitude.

  14. Persistence of low levels of plasma viremia and of the latent reservoir in patients under ART: A fractional-order approach

    NASA Astrophysics Data System (ADS)

    Pinto, Carla M. A.

    2017-02-01

    Low levels of viral load are found in HIV-infected patients, after many years under successful suppressive anti-retroviral therapy (ART). The factors leading to this persistence are still under debate, but it is now more or less accepted that the latent reservoir may be crucial to the maintenance of this residual viremia. In this paper, we study the role of the latent reservoir in the persistence of the latent reservoir and of the plasma viremia in a fractional-order (FO) model for HIV infection. Our model assumes that (i) the latently infected cells may undergo bystander proliferation, without active viral production, (ii) the latent cell activation rate decreases with time on ART, (iii) the productively infected cells' death rate is a function of the infected cell density. The proposed model provides new insights on the role of the latent reservoir in the persistence of the latent reservoir and of the plasma virus. Moreover, the fractional-order derivative distinguishes distinct velocities in the dynamics of the latent reservoir and of plasma virus. The later may be used to better approximations of HIV-infected patients data. To our best knowledge, this is the first FO model that deals with the role of the latent reservoir in the persistence of low levels of viremia and of the latent reservoir.

  15. Exploring the impact of multiple grain sizes in numerical landscape evolution model

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Braun, Jean; Yuan, Xiaoping; Rouby, Delphine

    2017-04-01

    Numerical evolution models have been widely developed in order to understand the evolution of landscape over different time-scales, but also the response of the topography to changes in external conditions, such as tectonics or climate, or to changes in the bedrock characteristics, such as its density or its erodability. Few models have coupled the evolution of the relief in erosion to the evolution of the related area in deposition, and in addition, such models generally do not consider the role of the size of the sediments reached the depositional domain. Here, we present a preliminary work based on an enhanced version of Fastscape, a very-efficient model solving the stream power equation, which now integrates a sedimentary basin at the front of a relief, together with the integration of multiple grain sizes in the system. Several simulations were performed in order to explore the impact of several grain sizes in terms of stratigraphy in the marine basin. A simple setting is considered, with uniform uplift rate, precipitation rate, and rock properties onshore. The pros and cons of this approach are discussed with respect to similar simulations performed considering only flux.

  16. Recharge and groundwater models: An overview

    USGS Publications Warehouse

    Sanford, W.

    2002-01-01

    Recharge is a fundamental component of groundwater systems, and in groundwater-modeling exercises recharge is either measured and specified or estimated during model calibration. The most appropriate way to represent recharge in a groundwater model depends upon both physical factors and study objectives. Where the water table is close to the land surface, as in humid climates or regions with low topographic relief, a constant-head boundary condition is used. Conversely, where the water table is relatively deep, as in drier climates or regions with high relief, a specified-flux boundary condition is used. In most modeling applications, mixed-type conditions are more effective, or a combination of the different types can be used. The relative distribution of recharge can be estimated from water-level data only, but flux observations must be incorporated in order to estimate rates of recharge. Flux measurements are based on either Darcian velocities (e.g., stream base-flow) or seepage velocities (e.g., groundwater age). In order to estimate the effective porosity independently, both types of flux measurements must be available. Recharge is often estimated more efficiently when automated inverse techniques are used. Other important applications are the delineation of areas contributing recharge to wells and the estimation of paleorecharge rates using carbon-14.

  17. Relationship between soil erodibility and modeled infiltration rate in different soils

    NASA Astrophysics Data System (ADS)

    Wang, Guoqiang; Fang, Qingqing; Wu, Binbin; Yang, Huicai; Xu, Zongxue

    2015-09-01

    The relationship between soil erodibility, which is hard to measure, and modeled infiltration rate were rarely researched. Here, the soil erodibility factors (K and Ke in the USLE, Ki and K1 in the WEPP) were calculated and the infiltration rates were modeled based on the designed laboratory simulation experiments and proposed infiltration model, in order to build their relationship. The impacts of compost amendment on the soil erosion characteristics and relationship were also studied. Two contrasting agricultural soils (bare and cultivated fluvo-aquic soils) were used, and different poultry compost contents (control, low and high) were applied to both soils. The results indicated that the runoff rate, sediment yield rate and soil erodibility of the bare soil treatments were generally higher than those of the corresponding cultivated soil treatments. The application of composts generally decreased sediment yield and soil erodibility but did not always decrease runoff. The comparison of measured and modeled infiltration rates indicated that the model represented the infiltration processes well with an N-S coefficient of 0.84 for overall treatments. Significant negative logarithmic correlations have been found between final infiltration rate (FIR) and the four soil erodibility factors, and the relationship between USLE-K and FIR demonstrated the best correlation. The application of poultry composts would not influence the logarithmic relationship between FIR and soil erodibility. Our study provided a useful tool to estimate soil erodibility.

  18. Rate-independent dissipation in phase-field modelling of displacive transformations

    NASA Astrophysics Data System (ADS)

    Tůma, K.; Stupkiewicz, S.; Petryk, H.

    2018-05-01

    In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.

  19. Sudden spreading of infections in an epidemic model with a finite seed fraction

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takehisa; Nemoto, Koji

    2018-03-01

    We study a simple case of the susceptible-weakened-infected-removed model in regular random graphs in a situation where an epidemic starts from a finite fraction of initially infected nodes (seeds). Previous studies have shown that, assuming a single seed, this model exhibits a kind of discontinuous transition at a certain value of infection rate. Performing Monte Carlo simulations and evaluating approximate master equations, we find that the present model has two critical infection rates for the case with a finite seed fraction. At the first critical rate the system shows a percolation transition of clusters composed of removed nodes, and at the second critical rate, which is larger than the first one, a giant cluster suddenly grows and the order parameter jumps even though it has been already rising. Numerical evaluation of the master equations shows that such sudden epidemic spreading does occur if the degree of the underlying network is large and the seed fraction is small.

  20. Cooling rate dependence of structural order in Al90Sm10 metallic glass

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Zhang, Yue; Zhang, Feng; Ye, Zhuo; Ding, Zejun; Wang, Cai-Zhuang; Ho, Kai-Ming

    2016-07-01

    The atomic structure of Al90Sm10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-Tg annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that "3661" cluster is the dominating short-range order in the glass samples. The connection and arrangement of "3661" clusters, which define the medium-range order in the system, are enhanced significantly in the sub-Tg annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu64.5Zr35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al90Sm10, which has only marginal glass formability.

  1. Angular-Rate Estimation Using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quatemion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quatemion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quatemion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  2. Angular-Rate Estimation using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, Itzhack Y.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quaternion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  3. Latent transition models with latent class predictors: attention deficit hyperactivity disorder subtypes and high school marijuana use

    PubMed Central

    Reboussin, Beth A.; Ialongo, Nicholas S.

    2011-01-01

    Summary Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder which is most often diagnosed in childhood with symptoms often persisting into adulthood. Elevated rates of substance use disorders have been evidenced among those with ADHD, but recent research focusing on the relationship between subtypes of ADHD and specific drugs is inconsistent. We propose a latent transition model (LTM) to guide our understanding of how drug use progresses, in particular marijuana use, while accounting for the measurement error that is often found in self-reported substance use data. We extend the LTM to include a latent class predictor to represent empirically derived ADHD subtypes that do not rely on meeting specific diagnostic criteria. We begin by fitting two separate latent class analysis (LCA) models by using second-order estimating equations: a longitudinal LCA model to define stages of marijuana use, and a cross-sectional LCA model to define ADHD subtypes. The LTM model parameters describing the probability of transitioning between the LCA-defined stages of marijuana use and the influence of the LCA-defined ADHD subtypes on these transition rates are then estimated by using a set of first-order estimating equations given the LCA parameter estimates. A robust estimate of the LTM parameter variance that accounts for the variation due to the estimation of the two sets of LCA parameters is proposed. Solving three sets of estimating equations enables us to determine the underlying latent class structures independently of the model for the transition rates and simplifying assumptions about the correlation structure at each stage reduces the computational complexity. PMID:21461139

  4. Establishing a beachhead: A stochastic population model with an Allee effect applied to species invasion

    USGS Publications Warehouse

    Ackleh, A.S.; Allen, L.J.S.; Carter, J.

    2007-01-01

    We formulated a spatially explicit stochastic population model with an Allee effect in order to explore how invasive species may become established. In our model, we varied the degree of migration between local populations and used an Allee effect with variable birth and death rates. Because of the stochastic component, population sizes below the Allee effect threshold may still have a positive probability for successful invasion. The larger the network of populations, the greater the probability of an invasion occurring when initial population sizes are close to or above the Allee threshold. Furthermore, if migration rates are low, one or more than one patch may be successfully invaded, while if migration rates are high all patches are invaded. ?? 2007 Elsevier Inc. All rights reserved.

  5. Performability modeling based on real data: A case study

    NASA Technical Reports Server (NTRS)

    Hsueh, M. C.; Iyer, R. K.; Trivedi, K. S.

    1988-01-01

    Described is a measurement-based performability model based on error and resource usage data collected on a multiprocessor system. A method for identifying the model structure is introduced and the resulting model is validated against real data. Model development from the collection of raw data to the estimation of the expected reward is described. Both normal and error behavior of the system are characterized. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of apparent types of errors.

  6. Performability modeling based on real data: A casestudy

    NASA Technical Reports Server (NTRS)

    Hsueh, M. C.; Iyer, R. K.; Trivedi, K. S.

    1987-01-01

    Described is a measurement-based performability model based on error and resource usage data collected on a multiprocessor system. A method for identifying the model structure is introduced and the resulting model is validated against real data. Model development from the collection of raw data to the estimation of the expected reward is described. Both normal and error behavior of the system are characterized. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of different types of errors.

  7. Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations

    NASA Astrophysics Data System (ADS)

    Smith, Katherine; Hamlington, Peter; Pinardi, Nadia; Zavatarelli, Marco

    2017-04-01

    Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions that can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parameterizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17) that follows the chemical functional group approach, which allows for non-Redfield stoichiometric ratios and the exchange of matter through units of carbon, nitrate, and phosphate. This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time-series Study and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding of turbulent biophysical interactions in the upper ocean.

  8. Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations

    NASA Astrophysics Data System (ADS)

    Smith, K.; Hamlington, P.; Pinardi, N.; Zavatarelli, M.; Milliff, R. F.

    2016-12-01

    Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions which can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parametrizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17). This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time Series and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding of turbulent biophysical interactions in the upper ocean.

  9. Background Conditions for the October 29, 2003 Solar Flare by the AVS-F Apparatus Data

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Lyapin, A. R.; Troitskaya, E. V.

    The background model for AVS-F apparatus onboard CORONAS-F satellite for the October 29, 2003 X10-class solar flare is discussed in the presented work. This background model developed for AVS-F counts rate in the low- and high-energy spectral ranges in both individual channels and summarized. Count rate were approximated by polynomials of high order taking into account the mean count rate in the geomagnetic equatorial region at the different orbits parts and Kp-index averaged on 5 bins in time interval from -24 to -12 hours before the time of geomagnetic equator passing. The observed averaged counts rate on equator in the region of geomagnetic latitude ±5o and estimated minimum count rate values are in coincidence within statistical errors for all selected orbits parts used for background modeling. This model will used to refine the estimated energy of registered during the solar flare spectral features and detailed analysis of their temporal profiles behavior both in corresponding energy bands and in summarized energy range.

  10. Numerical study of two-dimensional wet foam over a range of shear rates

    NASA Astrophysics Data System (ADS)

    Kähärä, T.

    2017-09-01

    The shear rheology of two-dimensional foam is investigated over a range of shear rates with the numerical DySMaL model, which features dynamically deformable bubbles. It is found that at low shear rates, the rheological behavior of the system can be characterized by a yield stress power-law constitutive equation that is consistent with experimental findings and can be understood in terms of soft glassy rheology models. At low shear rates, the system rheology is also found to be subject to a scaling law involving the bubble size, the surface tension, and the viscosity of the carrier fluid. At high shear rates, the model produces a dynamic phase transition with a sudden change in the flow pattern, which is accompanied by a drop in the effective viscosity. This phase transition can be linked to rapid changes in the average bubble deformation and nematic order of the system. It is very likely that this phase transition is a result of the model dynamics and does not happen in actual foams.

  11. A Continuum Model for the Effect of Dynamic Recrystallization on the Stress⁻Strain Response.

    PubMed

    Kooiker, H; Perdahcıoğlu, E S; van den Boogaard, A H

    2018-05-22

    Austenitic Stainless Steels and High-Strength Low-Alloy (HSLA) steels show significant dynamic recovery and dynamic recrystallization (DRX) during hot forming. In order to design optimal and safe hot-formed products, a good understanding and constitutive description of the material behavior is vital. A new continuum model is presented and validated on a wide range of deformation conditions including high strain rate deformation. The model is presented in rate form to allow for the prediction of material behavior in transient process conditions. The proposed model is capable of accurately describing the stress⁻strain behavior of AISI 316LN in hot forming conditions, also the high strain rate DRX-induced softening observed during hot torsion of HSLA is accurately predicted. It is shown that the increase in recrystallization rate at high strain rates observed in experiments can be captured by including the elastic energy due to the dynamic stress in the driving pressure for recrystallization. Furthermore, the predicted resulting grain sizes follow the power-law dependence with steady state stress that is often reported in literature and the evolution during hot deformation shows the expected trend.

  12. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates.

    PubMed

    Spring-Pearson, Senanu M; Stone, Joshua K; Doyle, Adina; Allender, Christopher J; Okinaka, Richard T; Mayo, Mark; Broomall, Stacey M; Hill, Jessica M; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; McNew, Lauren A; Rosenzweig, C Nicole; Gibbons, Henry S; Currie, Bart J; Wagner, David M; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.

  13. Testing the impact of local alcohol licencing policies on reported crime rates in England

    PubMed Central

    De Vocht, F; Heron, J; Campbell, R; Egan, M; Mooney, J D; Angus, C; Brennan, A; Hickman, M

    2017-01-01

    Background Excessive alcohol use contributes to public nuisance, antisocial behaviour, and domestic, interpersonal and sexual violence. We test whether licencing policies aimed at restricting its spatial and/or temporal availability, including cumulative impact zones, are associated with reductions in alcohol-related crime. Methods Reported crimes at English lower tier local authority (LTLA) level were used to calculate the rates of reported crimes including alcohol-attributable rates of sexual offences and violence against a person, and public order offences. Financial fraud was included as a control crime not directly associated with alcohol abuse. Each area was classified as to its cumulative licensing policy intensity for 2009–2015 and categorised as ‘passive’, low, medium or high. Crime rates adjusted for area deprivation, outlet density, alcohol-related hospital admissions and population size at baseline were analysed using hierarchical (log-rate) growth modelling. Results 284 of 326 LTLAs could be linked and had complete data. From 2009 to 2013 alcohol-related violent and sexual crimes and public order offences rates declined faster in areas with more ‘intense’ policies (about 1.2, 0.10 and 1.7 per 1000 people compared with 0.6, 0.01 and 1.0 per 1000 people in ‘passive’ areas, respectively). Post-2013, the recorded rates increased again. No trends were observed for financial fraud. Conclusions Local areas in England with more intense alcohol licensing policies had a stronger decline in rates of violent crimes, sexual crimes and public order offences in the period up to 2013 of the order of 4–6% greater compared with areas where these policies were not in place, but not thereafter. PMID:27514936

  14. Coupling a Reactive Transport Code with a Global Land Surface Model for Mechanistic Biogeochemistry Representation: 1. Addressing the Challenge of Nonnegativity

    DOE PAGES

    Tang, Guoping; Yuan, Fengming; Bisht, Gautam; ...

    2016-01-01

    Reactive transport codes (e.g., PFLOTRAN) are increasingly used to improve the representation of biogeochemical processes in terrestrial ecosystem models (e.g., the Community Land Model, CLM). As CLM and PFLOTRAN use explicit and implicit time stepping, implementation of CLM biogeochemical reactions in PFLOTRAN can result in negative concentration, which is not physical and can cause numerical instability and errors. The objective of this work is to address the nonnegativity challenge to obtain accurate, efficient, and robust solutions. We illustrate the implementation of a reaction network with the CLM-CN decomposition, nitrification, denitrification, and plant nitrogen uptake reactions and test the implementation atmore » arctic, temperate, and tropical sites. We examine use of scaling back the update during each iteration (SU), log transformation (LT), and downregulating the reaction rate to account for reactant availability limitation to enforce nonnegativity. Both SU and LT guarantee nonnegativity but with implications. When a very small scaling factor occurs due to either consumption or numerical overshoot, and the iterations are deemed converged because of too small an update, SU can introduce excessive numerical error. LT involves multiplication of the Jacobian matrix by the concentration vector, which increases the condition number, decreases the time step size, and increases the computational cost. Neither SU nor SE prevents zero concentration. When the concentration is close to machine precision or 0, a small positive update stops all reactions for SU, and LT can fail due to a singular Jacobian matrix. The consumption rate has to be downregulated such that the solution to the mathematical representation is positive. A first-order rate downregulates consumption and is nonnegative, and adding a residual concentration makes it positive. For zero-order rate or when the reaction rate is not a function of a reactant, representing the availability limitation of each reactant with a Monod substrate limiting function provides a smooth transition between a zero-order rate when the reactant is abundant and first-order rate when the reactant becomes limiting. When the half saturation is small, marching through the transition may require small time step sizes to resolve the sharp change within a small range of concentration values. Our results from simple tests and CLM-PFLOTRAN simulations caution against use of SU and indicate that accurate, stable, and relatively efficient solutions can be achieved with LT and downregulation with Monod substrate limiting function and residual concentration.« less

  15. Solid-phase crystallization of amorphous Si films on glass and Si wafer

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2011-11-01

    When amorphous silicon films deposited on glass by physical or chemical vapor deposition are annealed, they undergo crystallization by nucleation and growth. The growth rate of Si crystallites is the highest in their <111> directions along or nearly along the film surface. The directed crystallization is likely to develop the <110>//ND or <111>//ND oriented Si crystallites. As the annealing temperature increases, the equiaxed crystallization increases, which in turn increases the random orientation. When amorphous Si is under a stress of the order of 0.1 GPa at about 540 °C, the tensile stress increases the growth rate of Si grains, whereas the compressive stress decreases the growth rate. However, the crystal growth rate increases with the increasing hydrostatic pressure, when the pressure is of the order of GPa at 530-540 °C. These phenomena have been discussed based on the directed crystallization model advanced before, which has been further elaborated.

  16. Ribosome flow model with positive feedback

    PubMed Central

    Margaliot, Michael; Tuller, Tamir

    2013-01-01

    Eukaryotic mRNAs usually form a circular structure; thus, ribosomes that terminatae translation at the 3′ end can diffuse with increased probability to the 5′ end of the transcript, initiating another cycle of translation. This phenomenon describes ribosomal flow with positive feedback—an increase in the flow of ribosomes terminating translating the open reading frame increases the ribosomal initiation rate. The aim of this paper is to model and rigorously analyse translation with feedback. We suggest a modified version of the ribosome flow model, called the ribosome flow model with input and output. In this model, the input is the initiation rate and the output is the translation rate. We analyse this model after closing the loop with a positive linear feedback. We show that the closed-loop system admits a unique globally asymptotically stable equilibrium point. From a biophysical point of view, this means that there exists a unique steady state of ribosome distributions along the mRNA, and thus a unique steady-state translation rate. The solution from any initial distribution will converge to this steady state. The steady-state distribution demonstrates a decrease in ribosome density along the coding sequence. For the case of constant elongation rates, we obtain expressions relating the model parameters to the equilibrium point. These results may perhaps be used to re-engineer the biological system in order to obtain a desired translation rate. PMID:23720534

  17. Chemistry and kinetics of I2 loss in urine distillate and humidity condensate

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Wheeler, Richard R., Jr.; Olivadoti, J. T.; Sauer, Richard L.

    1992-01-01

    Time-resolved molecular absorption spectrophotometry of iodinated ersatz humidity condensates and iodinated ersatz urine distillates across the UV and visible spectral regions are used to investigate the chemistry and kinetics of I2 loss in urine distillate and humidity condensate. Single contaminant systems at equivalent concentrations are also employed to study rates of iodine. Pseudo-first order rate constants are identified for ersatz contaminant model mixtures and for individual reactive constituents. The second order bimolecular reaction of elemental iodine with formic acid, producing carbon dioxide and iodine anion, is identified as the primary mechanism underlying the decay of residual I2 in ersatz humidity concentrate.

  18. A low power ADS for transmutation studies in fast systems

    NASA Astrophysics Data System (ADS)

    Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria

    2017-12-01

    In this work, we report studies on a fast low power accelerator driven system model as a possible experimental facility, focusing on its capabilities in terms of measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.

  19. Statistical theory of nucleation in the presence of uncharacterized impurities

    NASA Astrophysics Data System (ADS)

    Sear, Richard P.

    2004-08-01

    First order phase transitions proceed via nucleation. The rate of nucleation varies exponentially with the free-energy barrier to nucleation, and so is highly sensitive to variations in this barrier. In practice, very few systems are absolutely pure, there are typically some impurities present which are rather poorly characterized. These interact with the nucleus, causing the barrier to vary, and so must be taken into account. Here the impurity-nucleus interactions are modelled by random variables. The rate then has the same form as the partition function of Derrida’s random energy model, and as in this model there is a regime in which the behavior is non-self-averaging. Non-self-averaging nucleation is nucleation with a rate that varies significantly from one realization of the random variables to another. In experiment this corresponds to variation in the nucleation rate from one sample to another. General analytic expressions are obtained for the crossover from a self-averaging to a non-self-averaging rate of nucleation.

  20. Mixed Influence of Electronic Health Record Implementation on Diabetes Order Patterns for Michigan Medicaid Adults.

    PubMed

    Corser, William; Yuan, Sha

    2015-08-20

    These 2011-2013 analyses examined the authors' hypothesis that relative diabetes care order changes would be measured after electronic health record (EHR) implementation for 291 Medicaid adults who received all of their office-based care at one midwestern federally qualified health center (FQHC) over a 24-month period (n = 2727 encounters, 2489 claims). Beneficiary sociodemographic, clinical, and claims data were validated with clinic EHR and state Medicaid claims linked to providers' national identifier numbers. Overall pre-post order rate comparisons, and a series of controlled within group binary logistic models were conducted under penalized maximum likelihood estimation terms. After EHR implementation, both the overall order rates and odds ratios of per beneficiary hemoglobin A1C (HbA1C) orders increased significantly (ie, from mean of 0.65 [SD = 1.19] annual tests to 0.96 tests [SD = 1.24] [P < .001]). Although the overall post-EHR order rates of dilated eye exams and microalbumin urine tests appeared fairly stable, the odds of eye exam orders being placed at the claims level decreased significantly (OR = 0.774, P = .0030). These mixed results provide evidence of the varied diabetes care ordering patterns likely seen from increased office use of EHR technologies. The authors attempt to explain these post-EHR differences (or lack of) that generally resemble some of the authors' results from another funded project. Ideally, these findings provide Medicaid and health care officials with a more realistic indication of how EHRs may, or may not, influence diabetes care ordering patterns for vulnerable lower-income primary health care consumers. © 2015 Diabetes Technology Society.

  1. A stream temperature model for the Peace-Athabasca River basin

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  2. Interference in the gg→h→γγ On-Shell Rate and the Higgs Boson Total Width.

    PubMed

    Campbell, John; Carena, Marcela; Harnik, Roni; Liu, Zhen

    2017-11-03

    We consider interference between the Higgs signal and QCD background in gg→h→γγ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the standard model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on the Higgs width in a novel way, using on-shell rate measurements. Our study motivates further QCD calculations to reduce uncertainties. We discuss possible width-sensitive observables, both using total and differential rates and find that the HL-LHC can potentially indirectly constrain widths of order tens of MeV.

  3. NaCl nucleation from brine in seeded simulations: Sources of uncertainty in rate estimates.

    PubMed

    Zimmermann, Nils E R; Vorselaars, Bart; Espinosa, Jorge R; Quigley, David; Smith, William R; Sanz, Eduardo; Vega, Carlos; Peters, Baron

    2018-06-14

    This work reexamines seeded simulation results for NaCl nucleation from a supersaturated aqueous solution at 298.15 K and 1 bar pressure. We present a linear regression approach for analyzing seeded simulation data that provides both nucleation rates and uncertainty estimates. Our results show that rates obtained from seeded simulations rely critically on a precise driving force for the model system. The driving force vs. solute concentration curve need not exactly reproduce that of the real system, but it should accurately describe the thermodynamic properties of the model system. We also show that rate estimates depend strongly on the nucleus size metric. We show that the rate estimates systematically increase as more stringent local order parameters are used to count members of a cluster and provide tentative suggestions for appropriate clustering criteria.

  4. Modeling hexavalent chromium removal in a Bacillus sp. fixed-film bioreactor.

    PubMed

    Nkhalambayausi-Chirwa, Evans M; Wang, Yi-Tin

    2004-09-30

    A one-dimensional diffusion-reaction model was developed to simulate Cr(VI) reduction in a Bacillus sp. pure culture biofilm reactor with glucose as a sole supplied carbon and energy source. Substrate utilization and Cr(VI) reduction in the biofilm was best represented by a system of (second-order) partial differential equations (PDEs). The PDE system was solved by the (fourth-order) Runge-Kutta method adjusted for mass transport resistance using the (second-order) Crank-Nicholson and Backward Euler finite difference methods. A heuristic procedure (genetic search algorithm) was used to find global optimum values of Cr(VI) reduction and substrate utilization rate kinetic parameters. The fixed-film bioreactor system yielded higher values of the maximum specific Cr(VI) reduction rate coefficient and Cr(VI) reduction capacity (kmc = 0.062 1/h, and Rc = 0.13 mg/mg, respectively) than previously determined in batch reactors (kmc = 0.022 1/h and Rc = 0.012 mg/mg). The model predicted effluent Cr(VI) concentration well with 98.9% confidence (sigmay2 = 2.37 mg2/L2, N = 119) and effluent glucose with 96.4 % confidence (sigmay(w)2 = 5402 mg2/L2, N = 121, w = 100) over a wide range of Cr(VI) loadings (10-498 mg Cr(VI)/L/d). Copyright 2004 Wiley Periodicals, Inc.

  5. Climatic controls on the pace of glacier erosion

    NASA Astrophysics Data System (ADS)

    Koppes, Michele; Hallet, Bernard; Rignot, Eric; Mouginot, Jeremie; Wellner, Julia; Love, Katherine

    2016-04-01

    Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. Available data report a wide range of erosion rates from individual ice masses over varying timescales, suggesting that modern erosion rates exceed orogenic rates by 2-3 orders of magnitude. These modern rates are presumed to be due to dynamic acceleration of the ice masses during deglaciation and retreat. Recent numerical models have focused on replicating the processes that produce the geomorphic signatures of glacial landscapes. Central to these models is a simple quantitative index that relates erosion rate to ice dynamics and to climate. To provide such an index, we examined explicitly the factors controlling modern glacier erosion rates across climatic regimes. Holding tectonic history, bedrock lithology and glacier hypsometries relatively constant across a latitudinal transect from Patagonia to the Antarctic Peninsula, we find that modern, basin-averaged erosion rates vary by three orders of magnitude, from 1->10 mm yr-1 for temperate tidewater glaciers to 0.01-<0.1 mm yr-1 for polar outlet glaciers, largely as a function of temperature and basal thermal regime. Erosion rates also increase non-linearly with both the sliding speed and the ice flux through the ELA, in accord with theory. The general relationship between ice dynamics and erosion suggests that the erosion rate scales non-linearly with basal sliding speed, with an exponent n ≈ 2-2.62. Notably, erosion rates decrease by over two orders of magnitude between temperate and polar glaciers with similar ice discharge rates. The difference in erosion rates between temperate and colder glaciers of similar shape and size is primarily related to the abundance of meltwater accessing the bed. Since all glaciers worldwide have experienced colder than current climatic conditions, the 100-fold decrease in long-term relative to modern erosion rates may in part reflect the temporal averaging of warm and cold-based conditions over the lifecycle of these glaciers. Higher temperatures and precipitation rates at the end of glaciations favor the production of water from rainfall, surface melting and internal melting, which promotes sliding, erosion and sediment production and evacuation from under the ice. Hence, climatic variation, more than the extent of ice cover or ice volume, controls the pace at which glaciers shape mountains.

  6. Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth; Sivanesan, S

    2006-08-25

    Pseudo second order kinetic expressions of Ho, Sobkowsk and Czerwinski, Blanachard et al. and Ritchie were fitted to the experimental kinetic data of malachite green onto activated carbon by non-linear and linear method. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo second order model were the same. Non-linear regression analysis showed that both Blanachard et al. and Ho have similar ideas on the pseudo second order model but with different assumptions. The best fit of experimental data in Ho's pseudo second order expression by linear and non-linear regression method showed that Ho pseudo second order model was a better kinetic expression when compared to other pseudo second order kinetic expressions. The amount of dye adsorbed at equilibrium, q(e), was predicted from Ho pseudo second order expression and were fitted to the Langmuir, Freundlich and Redlich Peterson expressions by both linear and non-linear method to obtain the pseudo isotherms. The best fitting pseudo isotherm was found to be the Langmuir and Redlich Peterson isotherm. Redlich Peterson is a special case of Langmuir when the constant g equals unity.

  7. Gravity anomalies near the east Pacific rise with wavelengths shorter than 3300 km recovered from GEOS-3/ATS-6 satellite-to-satellite Doppler tracking data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Marsh, B. D.; Conrad, T. D.; Wells, W. T.; Williamson, R. G.

    1977-01-01

    The velocity of the GEOS-3 satellite measured by Doppler as a function of time from the ATS-6 satellite was used to recover gravity anomalies in the region of the East Pacific. The orbit GEOS-3 at an altitude of 840 km was perturbed by spatial changes in Earth's gravitational field. These perturbations were measured via ATS-6 which is in a synchronous orbit at an altitude of about 40,000 km. The range-rate data were reduced using a gravitational field model complete to the 12 degree and order. A simulation of the possible effects causing the remaining range-rate residuals relative to the 12, 12 field shows that in general the dominant effect is the neglect of the higher degree and order coefficients of the gravitational field model.

  8. Studying the Relationship between Children's Self-Control and Academic Achievement: An Application of Second-Order Growth Curve Model Analysis.

    ERIC Educational Resources Information Center

    Kim, Sooyeon; Murry, Velma McBride; Brody, Gene H.

    The functional relationships between developmental change in children's self-control and academic achievement were examined using longitudinal family data. Multivariate latent growth models (LGM) were specified to determine whether the rate of growth in academic achievement changes as a function of developmental change in self-control. Data came…

  9. Incidence rates and deaths of tuberculosis in HIV-negative patients in the United States and Germany as analyzed by new predictive model for infection

    USDA-ARS?s Scientific Manuscript database

    Incidence and mortality due to tuberculosis (TB) have been decreasing worldwide. Given that TB is a cosmopolitan disease, proper surveillance and evaluation are critical for controlling dissemination. Herein, mathematical modeling was performed in order to: 1) demonstrate a correlation between the i...

  10. Microbial Mortality Rates in Support of Model Development in Three Distinct Ocean Regimes

    NASA Astrophysics Data System (ADS)

    Connell, P. E.; Gellene, A. G.; Campbell, V.; Hu, S. K.; Arrigo, K. R.; Caron, D. A.

    2016-02-01

    Quantitative assessments of trophic interactions have become increasingly important in plankton research with the recognition that delicate balances between predators and prey strongly influence biogeochemical cycles. As the modeling community continues to increase the complexity of ecosystem models in order to improve their predictive power, understanding the balances of production and loss across spatial and seasonal scales is critical. We measured the growth and mortality rates of the total phytoplankton community and key picophytoplankton groups (Synechococcus, Prochlorococcus, and photosynthetic picoeukaryotes) using a modified dilution method, as well as bacterial mortality rates via FLB (fluorescently-labeled bacteria) disappearance incubations. Community composition was assessed using microscopy and flow cytometry. Measurements were conducted in three climatic regions: coastal waters of the Southern California Bight, The Chukchi Sea, and the North Pacific Subtropical Gyre. Local seasonal variability was also assessed quarterly (January, April, July, October) in the Bight. These measurements provided insight into the relative turnover rates of key microbial groups and the microbial population dynamics of disparate ocean regimes. This study will aid our ability to construct predictive ecosystem models through the application of community composition and rate data to model parameterization.

  11. A continuum model of transcriptional bursting

    PubMed Central

    Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R

    2016-01-01

    Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676

  12. Recent topographic evolution and erosion of the deglaciated Washington Cascades inferred from a stochastic landscape evolution model

    NASA Astrophysics Data System (ADS)

    Moon, Seulgi; Shelef, Eitan; Hilley, George E.

    2015-05-01

    In this study, we model postglacial surface processes and examine the evolution of the topography and denudation rates within the deglaciated Washington Cascades to understand the controls on and time scales of landscape response to changes in the surface process regime after deglaciation. The postglacial adjustment of this landscape is modeled using a geomorphic-transport-law-based numerical model that includes processes of river incision, hillslope diffusion, and stochastic landslides. The surface lowering due to landslides is parameterized using a physically based slope stability model coupled to a stochastic model of the generation of landslides. The model parameters of river incision and stochastic landslides are calibrated based on the rates and distribution of thousand-year-time scale denudation rates measured from cosmogenic 10Be isotopes. The probability distributions of those model parameters calculated based on a Bayesian inversion scheme show comparable ranges from previous studies in similar rock types and climatic conditions. The magnitude of landslide denudation rates is determined by failure density (similar to landslide frequency), whereas precipitation and slopes affect the spatial variation in landslide denudation rates. Simulation results show that postglacial denudation rates decay over time and take longer than 100 kyr to reach time-invariant rates. Over time, the landslides in the model consume the steep slopes characteristic of deglaciated landscapes. This response time scale is on the order of or longer than glacial/interglacial cycles, suggesting that frequent climatic perturbations during the Quaternary may produce a significant and prolonged impact on denudation and topography.

  13. The theory of cyclic voltammetry of electrochemically heterogeneous surfaces: comparison of different models for surface geometry and applications to highly ordered pyrolytic graphite.

    PubMed

    Ward, Kristopher R; Lawrence, Nathan S; Hartshorne, R Seth; Compton, Richard G

    2012-05-28

    The cyclic voltammetry at electrodes composed of multiple electroactive materials, where zones of one highly active material are distributed over a substrate of a second, less active material, is investigated by simulation. The two materials are assumed to differ in terms of their electrochemical rate constants towards any given redox couple. For a one-electron oxidation or reduction, the effect on voltammetry of the size and relative surface coverages of the zones as well as the rate constant of the slower zone are considered for systems where it is much slower than the rate constant of the faster zones. The occurrence of split peak cyclic voltammetry where two peaks are observed in the forward sweep, is studied in terms of the diffusional effects present in the system. A number of surface geometries are compared: specifically the more active zones are modelled as long, thin bands, as steps in the surface, as discs, and as rings (similar to a partially blocked electrode). Similar voltammetry for the band, step and ring models is seen but the disc geometry shows significant differences. Finally, the simulation technique is applied to the modelling of highly-ordered pyrolytic graphite (HOPG) surface and experimental conditions under which it may be possible to observe split peak voltammetry are predicted.

  14. Adsorption of pharmaceuticals onto trimethylsilylated mesoporous SBA-15.

    PubMed

    Bui, Tung Xuan; Pham, Viet Hung; Le, Son Thanh; Choi, Heechul

    2013-06-15

    The adsorption of a complex mixture of 12 selected pharmaceuticals to trimethylsilylated mesoporous SBA-15 (TMS-SBA-15) has been investigated by batch adsorption experiments. The adsorption of pharmaceuticals to TMS-SBA-15 was highly dependent on the solution pH and pharmaceutical properties (i.e., hydrophobicity (logKow) and acidity (pKa)). Good log-log linear relationships between the adsorption (Kd) and pH-dependent octanol-water coefficients (Kow(pH)) were then established among the neutral, anionic, and cationic compounds, suggesting hydrophobic interaction as a primary driving force in the adsorption. In addition, the neutral species of each compound accounted for a major contribution to the overall compound adsorption onto TMS-SBA-15. The adsorption kinetics of pharmaceuticals was evaluated by the nonlinear first-order and pseudo-second-order models. The first-order model gave a better fit for five pharmaceuticals with lower adsorption capacity, whereas the pseudo-second-order model fitted better for seven pharmaceuticals having higher adsorption capacity. In the same group of properties, pharmaceuticals having higher adsorption capacity exhibited faster adsorption rates. The rate-limiting steps for adsorption of pharmaceuticals onto TMS-SBA-15 are boundary layer diffusion and intraparticle diffusion including diffusion in mesopores and micropores. In addition, the adsorption of pharmaceuticals to TMS-SBA-15 was not influenced by the change of initial pharmaceutical concentration (10-100μgL(-1)) and the presence of natural organic matter. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Submicrosecond phospholipid dynamics using a long-lived fluorescence emission anisotropy probe.

    PubMed Central

    Davenport, L; Targowski, P

    1996-01-01

    The use of the long-lived fluorescence probe coronene (mean value of tau(FL) approximately 200 ns) is described for investigating submicrosecond lipid dynamics in DPPC model bilayer systems occurring below the lipid phase transition. Time-resolved fluorescence emission anisotropy decay profiles, measures as a function of increasing temperature toward the lipid-phase transition temperature (T(C)), for coronene-labeled DPPC small unilamellar vesicles (SUVs), are best described in most cases by three rotational decay components (phi(i = 3)). We have interpreted these data using two dynamic lipid bilayer models. In the first, a compartmental model, the long correlation time (phi(N)) is assigned to immobilized coronene molecules located in "gel-like" or highly ordered lipid phases (S-->1) of the bilayer, whereas a second fast rotational time (phi(F) approximately 2-5 ns) is associated with probes residing in more "fluid-like" regions (with corresponding lower ordering, S-->0). Interests here have focused on the origins of an intermediate correlation time (50-100 ns), the associated amplitude (beta(G)) of which increases with increasing temperature. Such behavior suggests a changing rotational environment surrounding the coronene molecules, arising from fluidization of gel lipid. The observed effective correlation time (phi(EFF)) thus reflects a discrete gel-fluid lipid exchange rate (k(FG)). A refinement of the compartmental model invokes a distribution of gel-fluid exchange rates (d(S,T)) corresponding to a distribution of lipid order parameters and is based on an adapted Landau expression for describing "gated" packing fluctuations. A total of seven parameters (five thermodynamic quantities, defined by the free energy versus temperature expansion; one gating parameter (gamma) defining a cooperative "melting" requirement; one limiting diffusion rate (or frequency factor: d(infinity))) suffice to predict complete anisotropy decay curves measured for coronene at several temperatures below the phospholipid T(C). The thermodynamic quantities are associated with the particular lipid of interest (in this case DPPC) and have been determined previously from ultrasound studies, thus representing fixed constants. Hence resolved variables are r(O), temperature-dependent gate parameters (gamma), and limiting diffusion rates (d(infinity)). This alternative distribution model is attractive because it provides a general probe-independent expression for distributed lipid fluctuation-induced probe rotational rates occurring within bilayer membranes below the phospholipid phase transition on the submicrosecond time scale. PMID:8889160

  16. A Novel Fractional Order Model for the Dynamic Hysteresis of Piezoelectrically Actuated Fast Tool Servo

    PubMed Central

    Zhu, Zhiwei; Zhou, Xiaoqin

    2012-01-01

    The main contribution of this paper is the development of a linearized model for describing the dynamic hysteresis behaviors of piezoelectrically actuated fast tool servo (FTS). A linearized hysteresis force model is proposed and mathematically described by a fractional order differential equation. Combining the dynamic modeling of the FTS mechanism, a linearized fractional order dynamic hysteresis (LFDH) model for the piezoelectrically actuated FTS is established. The unique features of the LFDH model could be summarized as follows: (a) It could well describe the rate-dependent hysteresis due to its intrinsic characteristics of frequency-dependent nonlinear phase shifts and amplitude modulations; (b) The linearization scheme of the LFDH model would make it easier to implement the inverse dynamic control on piezoelectrically actuated micro-systems. To verify the effectiveness of the proposed model, a series of experiments are conducted. The toolpaths of the FTS for creating two typical micro-functional surfaces involving various harmonic components with different frequencies and amplitudes are scaled and employed as command signals for the piezoelectric actuator. The modeling errors in the steady state are less than ±2.5% within the full span range which is much smaller than certain state-of-the-art modeling methods, demonstrating the efficiency and superiority of the proposed model for modeling dynamic hysteresis effects. Moreover, it indicates that the piezoelectrically actuated micro systems would be more suitably described as a fractional order dynamic system.

  17. Porting Initiation and Failure into Linked CHEETAH

    NASA Astrophysics Data System (ADS)

    Souers, Clark; Vitello, Peter

    2007-06-01

    Linked CHEETAH is a thermo-chemical code coupled to a 2-D hydrocode. Initially, a quadratic-pressure dependent kinetic rate was used, which worked well in modeling prompt detonation of explosives of large size, but does not work on other aspects of explosive behavior. The variable-pressure Tarantula reactive flow rate model was developed with JWL++ in order to also describe failure and initiation, and we have moved this model into Linked CHEETAH. The model works by turning on only above a pressure threshold, where a slow turn-on creates initiation. At a higher pressure, the rate suddenly leaps to a large value over a small pressure range. A slowly failing cylinder will see a rapidly declining rate, which pushes it quickly into failure. At a high pressure, the detonation rate is constant. A sequential validation procedure is used, which includes metal-confined cylinders, rate-sticks, corner-turning, initiation and threshold, gap tests and air gaps. The size (diameter) effect is central to the calibration. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  18. Nonparametric autocovariance estimation from censored time series by Gaussian imputation.

    PubMed

    Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K

    2009-02-01

    One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.

  19. Online Estimation of Model Parameters of Lithium-Ion Battery Using the Cubature Kalman Filter

    NASA Astrophysics Data System (ADS)

    Tian, Yong; Yan, Rusheng; Tian, Jindong; Zhou, Shijie; Hu, Chao

    2017-11-01

    Online estimation of state variables, including state-of-charge (SOC), state-of-energy (SOE) and state-of-health (SOH) is greatly crucial for the operation safety of lithium-ion battery. In order to improve estimation accuracy of these state variables, a precise battery model needs to be established. As the lithium-ion battery is a nonlinear time-varying system, the model parameters significantly vary with many factors, such as ambient temperature, discharge rate and depth of discharge, etc. This paper presents an online estimation method of model parameters for lithium-ion battery based on the cubature Kalman filter. The commonly used first-order resistor-capacitor equivalent circuit model is selected as the battery model, based on which the model parameters are estimated online. Experimental results show that the presented method can accurately track the parameters variation at different scenarios.

  20. Assessment of hemoglobin responsiveness to epoetin alfa in patients on hemodialysis using a population pharmacokinetic pharmacodynamic model.

    PubMed

    Wu, Liviawati; Mould, Diane R; Perez Ruixo, Juan Jose; Doshi, Sameer

    2015-10-01

    A population pharmacokinetic pharmacodynamic (PK/PD) model describing the effect of epoetin alfa on hemoglobin (Hb) response in hemodialysis patients was developed. Epoetin alfa pharmacokinetics was described using a linear 2-compartment model. PK parameter estimates were similar to previously reported values. A maturation-structured cytokinetic model consisting of 5 compartments linked in a catenary fashion by first-order cell transfer rates following a zero-order input process described the Hb time course. The PD model described 2 subpopulations, one whose Hb response reflected epoetin alfa dosing and a second whose response was unrelated to epoetin alfa dosing. Parameter estimates from the PK/PD model were physiologically reasonable and consistent with published reports. Numerical and visual predictive checks using data from 2 studies were performed. The PK and PD of epoetin alfa were well described by the model. © 2015, The American College of Clinical Pharmacology.

  1. Effect of residential air-to-air heat and moisture exchangers on indoor humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barringer, C.G.; McGugan, C.A.

    1989-01-01

    A project was undertaken to develop guidelines for the selection of residential heat and moisture recovery ventilation systems (HRVs) in order to maintain an acceptable indoor humidity for various climatic conditions. These guidelines were developed from reviews on ventilation requirements, HRV performance specifications, and from computer modeling. Space conditions within three house/occupancy models for several types of HRV were simulated for three climatic conditions (Lake Charles, LA; Seattle, WA; and Winnipeg, MB) in order to determine the impact of the HRVs on indoor relative humidity and space-conditioning loads. Results show that when reduction of cooling cost is the main consideration,more » exchangers with moisture recovery are preferable to sensible HRVs. For reduction of heating costs, moisture recovery should be done for ventilation rates greater than about 15 L/s and average winter temperatures less than about (minus) 10{degrees}C if internal moisture generation rates are low. For houses with higher ventilation rates and colder average winter temperatures, exchangers with moisture recovery should be used.« less

  2. Anaerobic treatability of high oil and grease rendering wastewater.

    PubMed

    Nakhla, George; Al-Sabawi, Mustafa; Bassi, Amerjeet; Liu, Victor

    2003-08-29

    This study evaluated the use of a new biosurfactant, BOD-Balance, derived from cactus for the treatment of oil-and-grease-laden rendering wastewater anaerobically. Batch laboratory experimental results and preliminary full-scale data are presented. The biosurfactant affected a significant increase in the COD degradation rate for the raw wastewater. However, after reduction of the oil and grease (O&G) by dissolved air flotation, the biosurfactant did not exhibit any advantages. Modeling of the data indicated that various COD fractions, i.e. both soluble and particulate as well as total COD at various testing conditions conformed well to both zero-order and first-order models. The biosurfactant affected a 164-238 and 164-247% increase in COD and particulate COD biodegradation rate for the raw wastewater. The reduction of O&G concentration to <800 mg/l increased total and soluble COD degradation rates by 106%. Results from the full-scale mesophilic anaerobic digestion system indicated that the addition of the biosurfactant at doses of 130-200 mg/l decreased O&G concentrations from 66,300 to 10,200 mg/l over a 2-month-period.

  3. Quench in the 1D Bose-Hubbard model: Topological defects and excitations from the Kosterlitz-Thouless phase transition dynamics

    PubMed Central

    Dziarmaga, Jacek; Zurek, Wojciech H.

    2014-01-01

    Kibble-Zurek mechanism (KZM) uses critical scaling to predict density of topological defects and other excitations created in second order phase transitions. We point out that simply inserting asymptotic critical exponents deduced from the immediate vicinity of the critical point to obtain predictions can lead to results that are inconsistent with a more careful KZM analysis based on causality – on the comparison of the relaxation time of the order parameter with the “time distance” from the critical point. As a result, scaling of quench-generated excitations with quench rates can exhibit behavior that is locally (i.e., in the neighborhood of any given quench rate) well approximated by the power law, but with exponents that depend on that rate, and that are quite different from the naive prediction based on the critical exponents relevant for asymptotically long quench times. Kosterlitz-Thouless scaling (that governs e.g. Mott insulator to superfluid transition in the Bose-Hubbard model in one dimension) is investigated as an example of this phenomenon. PMID:25091996

  4. Attitude/attitude-rate estimation from GPS differential phase measurements using integrated-rate parameters

    NASA Technical Reports Server (NTRS)

    Oshman, Yaakov; Markley, Landis

    1998-01-01

    A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.

  5. Impacts of cloud superparameterization on projected daily rainfall intensity climate changes in multiple versions of the Community Earth System Model

    DOE PAGES

    Kooperman, Gabriel J.; Pritchard, Michael S.; Burt, Melissa A.; ...

    2016-09-26

    Changes in the character of rainfall are assessed using a holistic set of statistics based on rainfall frequency and amount distributions in climate change experiments with three conventional and superparameterized versions of the Community Atmosphere Model (CAM and SPCAM). Previous work has shown that high-order statistics of present-day rainfall intensity are significantly improved with superparameterization, especially in regions of tropical convection. Globally, the two modeling approaches project a similar future increase in mean rainfall, especially across the Inter-Tropical Convergence Zone (ITCZ) and at high latitudes, but over land, SPCAM predicts a smaller mean change than CAM. Changes in high-order statisticsmore » are similar at high latitudes in the two models but diverge at lower latitudes. In the tropics, SPCAM projects a large intensification of moderate and extreme rain rates in regions of organized convection associated with the Madden Julian Oscillation, ITCZ, monsoons, and tropical waves. In contrast, this signal is missing in all versions of CAM, which are found to be prone to predicting increases in the amount but not intensity of moderate rates. Predictions from SPCAM exhibit a scale-insensitive behavior with little dependence on horizontal resolution for extreme rates, while lower resolution (~2°) versions of CAM are not able to capture the response simulated with higher resolution (~1°). Furthermore, moderate rain rates analyzed by the “amount mode” and “amount median” are found to be especially telling as a diagnostic for evaluating climate model performance and tracing future changes in rainfall statistics to tropical wave modes in SPCAM.« less

  6. Magma differentiation rates from ( 226Ra / 230Th) and the size and power output of magma chambers

    NASA Astrophysics Data System (ADS)

    Blake, Stephen; Rogers, Nick

    2005-08-01

    We present a mathematical model for the evolution of the ( 226Ra / 230Th) activity ratio during simultaneous fractional crystallization and ageing of magma. The model is applied to published data for four volcanic suites that are independently known to have evolved by fractional crystallization. These are tholeiitic basalt from Ardoukoba, Djibouti, MORB from the East Pacific Rise, alkali basalt to mugearite from Vestmannaeyjar, Iceland, and basaltic andesites from Miyakejima, Izu-Bonin arc. In all cases ( 226Ra / 230Th) correlates with indices of fractional crystallization, such as Th, and the data fall close to model curves of constant fractional crystallization rate. The best fit rates vary from 2 to 6 × 10 - 4 yr - 1 . Consequently, the time required to generate moderately evolved magmas ( F ≤ 0.7) is of the order of 500 to 1500 yrs and closed magma chambers will have lifetimes of 1700 to 5000 yrs. These rates and timescales are argued to depend principally on the specific power output (i.e., power output per unit volume) of the magma chambers that are the sites of fractional crystallization. Equating the heat flux at the EPR to the heat flux from the sub-axial magma chamber that evolves at a rate of ca. 3 × 10 - 4 yr - 1 implies that the magma body is a sill of ca. 100 m thickness, a value which coincides with independent estimates from seismology. The similarity of the four inferred differentiation rates suggests that the specific power output of shallow magma chambers in a range of tectonic settings covers a similarly narrow range of ca. 10 to 50 MW km - 3 . Their differentiation rates are some two orders of magnitude slower than that of the basaltic Makaopuhi lava lake, Hawaii, that cooled to the atmosphere. This is consistent with the two orders of magnitude difference in heat flux between Makaopuhi and the East Pacific Rise. ( 226Ra / 230Th) data for magma suites related by fractional crystallization allow the magma differentiation rate to be estimated and, from this, the thermal budget of the magma chamber addressed, and where an independent measurement of heat flux exists, to place constraints on the size of the magma chamber. Such results have the potential to constrain the likely timescale and size of future eruptions of evolved magmas.

  7. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension

    NASA Astrophysics Data System (ADS)

    Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long

    2017-11-01

    We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca  =  0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ  =  0.61, the structure maintains layered HCP for Ca  =  0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.

  8. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension.

    PubMed

    Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long

    2017-11-01

    We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca  =  0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ  =  0.61, the structure maintains layered HCP for Ca  =  0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.

  9. Convergence behavior of the random phase approximation renormalized correlation energy

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn

    2017-05-01

    Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.

  10. Roles of drizzle in a one-dimensional third-order turbulence closure model of the nocturnal stratus-topped marine boundary layer

    NASA Technical Reports Server (NTRS)

    Wang, Shouping; Wang, Qing

    1994-01-01

    This study focuses on the effects of drizzle in a one-dimensional third-order turbulence closure model of the nocturnal stratus-topped marine boundary layer. When the simulated drizzle rate is relatively small (maximum approximately equal to 0.6 mm/day), steady-state solutions are obtained. The boundary layer stabilizes essentially because drizzle causes evaporative cooling of the subcloud layer. This stabilization considerably reduces the buoyancy flux and turbulence kinetic energy below the stratus cloud. Thus, drizzle tends to decouple the cloud from the subcloud layer in the model, as suggested by many observational studies. In addition, the evaporation of drizzle in the subcloud layer creates small scattered clouds, which are likely to represent cumulus clouds, below the solid stratus cloud in the model. The sensitivity experiments show that these scattered clouds help maintain a coupled boundary layer. When the drizzle rate is relatively large (maximum approximately equal to 0.9 mm/day), the response of the model becomes transient with bursts in turbulent fluxes. This phenomenon is related to the formation of the scattered cloud layer below the solid stratus cloud. It appears that the model is inadequate to represent the heat and moisture transport by strong updrafts covering a small fractional area in cumulus convection.

  11. Ultra High Strain Rate Nanoindentation Testing.

    PubMed

    Sudharshan Phani, Pardhasaradhi; Oliver, Warren Carl

    2017-06-17

    Strain rate dependence of indentation hardness has been widely used to study time-dependent plasticity. However, the currently available techniques limit the range of strain rates that can be achieved during indentation testing. Recent advances in electronics have enabled nanomechanical measurements with very low noise levels (sub nanometer) at fast time constants (20 µs) and high data acquisition rates (100 KHz). These capabilities open the doors for a wide range of ultra-fast nanomechanical testing, for instance, indentation testing at very high strain rates. With an accurate dynamic model and an instrument with fast time constants, step load tests can be performed which enable access to indentation strain rates approaching ballistic levels (i.e., 4000 1/s). A novel indentation based testing technique involving a combination of step load and constant load and hold tests that enables measurement of strain rate dependence of hardness spanning over seven orders of magnitude in strain rate is presented. A simple analysis is used to calculate the equivalent uniaxial response from indentation data and compared to the conventional uniaxial data for commercial purity aluminum. Excellent agreement is found between the indentation and uniaxial data over several orders of magnitude of strain rate.

  12. Flow Channel Influence of a Collision-Based Piezoelectric Jetting Dispenser on Jet Performance

    PubMed Central

    Deng, Guiling; Li, Junhui; Duan, Ji’an

    2018-01-01

    To improve the jet performance of a bi-piezoelectric jet dispenser, mathematical and simulation models were established according to the operating principle. In order to improve the accuracy and reliability of the simulation calculation, a viscosity model of the fluid was fitted to a fifth-order function with shear rate based on rheological test data, and the needle displacement model was fitted to a nine-order function with time based on real-time displacement test data. The results show that jet performance is related to the diameter of the nozzle outlet and the cone angle of the nozzle, and the impacts of the flow channel structure were confirmed. The approach of numerical simulation is confirmed by the testing results of droplet volume. It will provide a reliable simulation platform for mechanical collision-based jet dispensing and a theoretical basis for micro jet valve design and improvement. PMID:29677140

  13. Order-of-magnitude estimates of latency (time to appearance) and refill time of a cancer from a single cancer 'stem' cell compared by an exponential and a logistic equation.

    PubMed

    Anderson, Ken M; Rubenstein, Marvin; Guinan, Patrick; Patel, Minu

    2012-01-01

    The time required before a mass of cancer cells considered to have originated from a single malignantly transformed cancer 'stem' cell reaches a certain number has not been studied. Applications might include determination of the time the cell mass reaches a size that can be detected by X-rays or physical examination or modeling growth rates in vitro in order to compare with other models or established data. We employed a simple logarithmic equation and a common logistic equation incorporating 'feedback' for unknown variables of cell birth, growth, division, and death that can be used to model cell proliferation. It can be used in association with free or commercial statistical software. Results with these two equations, varying the proliferation rate, nominally reduced by generational cell loss, are presented in two tables. The resulting equation, instructions, examples, and necessary mathematical software are available in the online appendix, where several parameters of interest can be modified by the reader www.uic.edu/nursing/publicationsupplements/tobillion_Anderson_Rubenstein_Guinan_Patel1.pdf. Reducing the proliferation rate by whatever alterations employed, markedly increases the time to reach 10(9) cells originating from an initial progenitor. In thinking about multistep oncogenesis, it is useful to consider the profound effect that variations in the effective proliferation rate may have during cancer development. This can be approached with the proposed equation, which is easy to use and available to further peer fine-tuning to be used in future modeling of cell growth.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John; Carena, Marcela; Harnik, Roni

    We consider interference between the Higgs signal and QCD background inmore » $$gg\\rightarrow h \\rightarrow \\gamma\\gamma$$ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the Standard Model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on the Higgs width in a novel way, using on-shell rate measurements. Our study motivates further QCD calculations to reduce uncertainties. We discuss potential width-sensitive observables, both using total and differential rates and find that the HL-LHC can potentially indirectly probe widths of order tens of MeV.« less

  15. Determination of Time Dependent Virus Inactivation Rates

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Vogler, E. T.

    2003-12-01

    A methodology is developed for estimating temporally variable virus inactivation rate coefficients from experimental virus inactivation data. The methodology consists of a technique for slope estimation of normalized virus inactivation data in conjunction with a resampling parameter estimation procedure. The slope estimation technique is based on a relatively flexible geostatistical method known as universal kriging. Drift coefficients are obtained by nonlinear fitting of bootstrap samples and the corresponding confidence intervals are obtained by bootstrap percentiles. The proposed methodology yields more accurate time dependent virus inactivation rate coefficients than those estimated by fitting virus inactivation data to a first-order inactivation model. The methodology is successfully applied to a set of poliovirus batch inactivation data. Furthermore, the importance of accurate inactivation rate coefficient determination on virus transport in water saturated porous media is demonstrated with model simulations.

  16. Distributions of Autocorrelated First-Order Kinetic Outcomes: Illness Severity

    PubMed Central

    Englehardt, James D.

    2015-01-01

    Many complex systems produce outcomes having recurring, power law-like distributions over wide ranges. However, the form necessarily breaks down at extremes, whereas the Weibull distribution has been demonstrated over the full observed range. Here the Weibull distribution is derived as the asymptotic distribution of generalized first-order kinetic processes, with convergence driven by autocorrelation, and entropy maximization subject to finite positive mean, of the incremental compounding rates. Process increments represent multiplicative causes. In particular, illness severities are modeled as such, occurring in proportion to products of, e.g., chronic toxicant fractions passed by organs along a pathway, or rates of interacting oncogenic mutations. The Weibull form is also argued theoretically and by simulation to be robust to the onset of saturation kinetics. The Weibull exponential parameter is shown to indicate the number and widths of the first-order compounding increments, the extent of rate autocorrelation, and the degree to which process increments are distributed exponential. In contrast with the Gaussian result in linear independent systems, the form is driven not by independence and multiplicity of process increments, but by increment autocorrelation and entropy. In some physical systems the form may be attracting, due to multiplicative evolution of outcome magnitudes towards extreme values potentially much larger and smaller than control mechanisms can contain. The Weibull distribution is demonstrated in preference to the lognormal and Pareto I for illness severities versus (a) toxicokinetic models, (b) biologically-based network models, (c) scholastic and psychological test score data for children with prenatal mercury exposure, and (d) time-to-tumor data of the ED01 study. PMID:26061263

  17. A Dynamic Model for C3 Information Incorporating the Effects of Counter C3

    DTIC Science & Technology

    1980-12-01

    birth and death rates exactly cancel one another and H = 0. Although this simple first order linear system is not very sophisti- cated, we see...per hour and refer to the average behavior of the entire system ensemble much as species birth and death rates are typically measured in births (or...unit time) iii) VTX, VIY ; Uncertainty Death Rates resulting from data inputs (bits/bit per unit time) 3 -1 iv) YYV» YvY > Counter C

  18. Indistinguishability and identifiability of kinetic models for the MurC reaction in peptidoglycan biosynthesis.

    PubMed

    Hattersley, J G; Pérez-Velázquez, J; Chappell, M J; Bearup, D; Roper, D; Dowson, C; Bugg, T; Evans, N D

    2011-11-01

    An important question in Systems Biology is the design of experiments that enable discrimination between two (or more) competing chemical pathway models or biological mechanisms. In this paper analysis is performed between two different models describing the kinetic mechanism of a three-substrate three-product reaction, namely the MurC reaction in the cytoplasmic phase of peptidoglycan biosynthesis. One model involves ordered substrate binding and ordered release of the three products; the competing model also assumes ordered substrate binding, but with fast release of the three products. The two versions are shown to be distinguishable; however, if standard quasi-steady-state assumptions are made distinguishability cannot be determined. Once model structure uniqueness is ensured the experimenter must determine if it is possible to successfully recover rate constant values given the experiment observations, a process known as structural identifiability. Structural identifiability analysis is carried out for both models to determine which of the unknown reaction parameters can be determined uniquely, or otherwise, from the ideal system outputs. This structural analysis forms an integrated step towards the modelling of the full pathway of the cytoplasmic phase of peptidoglycan biosynthesis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Socio-economic factors and suicide rates in European Union countries.

    PubMed

    Ferretti, Fabio; Coluccia, Anna

    2009-04-01

    Are socio-economic factors valid determinants of suicide? The modern sociological theory of suicide is based on Durkheim's studies. In addition to these fundamental social determinants, modern theorists have put more attention on economic factors. The purpose of the research is to determine the relationship between suicide rates and socio-economic factors, such as demography, economic development, education, healthcare systems, living conditions and labour market. All data were collected from a Eurostat publication and they concern 25 European Union countries. In order to test this relationship, a discriminant analysis was performed using an ordinal dependent variable and a set of independent variables concerning socio-economic factors. A dataset of 37 independent variables was used. We estimated a model with five variables: annual growth rates for industry, people working in S&T (% of total employment), at-risk-of-poverty rate, all accidents (standardized rates), and healthcare expenditures (% of GDP). Highly significant values of Wilk's Lambda assess a good discriminating power of the model. The accuracy too is very high: all cases are correctly classified by the model. Countries with high suicide rate levels are marked by high levels of at-risk-of-poverty rates, high annual growth rates for industry and low healthcare expenditures.

  20. Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations.

    PubMed

    Henry, B I; Langlands, T A M; Wearne, S L

    2006-09-01

    We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.

  1. Advancements in engineering turbulence modeling

    NASA Technical Reports Server (NTRS)

    Shih, T.-H.

    1991-01-01

    Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.

  2. New multirate sampled-data control law structure and synthesis algorithm

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.; Yang, Gen-Sheng

    1992-01-01

    A new multirate sampled-data control law structure is defined and a new parameter-optimization-based synthesis algorithm for that structure is introduced. The synthesis algorithm can be applied to multirate, multiple-input/multiple-output, sampled-data control laws having a prescribed dynamic order and structure, and a priori specified sampling/update rates for all sensors, processor states, and control inputs. The synthesis algorithm is applied to design two-input, two-output tip position controllers of various dynamic orders for a sixth-order, two-link robot arm model.

  3. A Kinetic Model Describing Injury-Burden in Team Sports.

    PubMed

    Fuller, Colin W

    2017-12-01

    Injuries in team sports are normally characterised by the incidence, severity, and location and type of injuries sustained: these measures, however, do not provide an insight into the variable injury-burden experienced during a season. Injury burden varies according to the team's match and training loads, the rate at which injuries are sustained and the time taken for these injuries to resolve. At the present time, this time-based variation of injury burden has not been modelled. To develop a kinetic model describing the time-based injury burden experienced by teams in elite team sports and to demonstrate the model's utility. Rates of injury were quantified using a large eight-season database of rugby injuries (5253) and exposure (60,085 player-match-hours) in English professional rugby. Rates of recovery from injury were quantified using time-to-recovery analysis of the injuries. The kinetic model proposed for predicting a team's time-based injury burden is based on a composite rate equation developed from the incidence of injury, a first-order rate of recovery from injury and the team's playing load. The utility of the model was demonstrated by examining common scenarios encountered in elite rugby. The kinetic model developed describes and predicts the variable injury-burden arising from match play during a season of rugby union based on the incidence of match injuries, the rate of recovery from injury and the playing load. The model is equally applicable to other team sports and other scenarios.

  4. Spatial Patterns of Long-Term Erosion Rates Beneath the Marine West Antarctic Ice Sheet: Insights into the Physics of Continental Scale Glacial Erosion from a Comparison with the Ice-Velocity Field

    NASA Astrophysics Data System (ADS)

    Howat, I. M.; Tulaczyk, S.; Mac Gregor, K.; Joughin, I.

    2001-12-01

    As part of the effort to build quantitative models of glacial erosion and sedimentation, it is particularly important to construct scaled relations between erosion, transport, and sedimentation rates and appropriate glaciological variables (e.g., ice velocity). Recent acquisition of bed topography and ice velocity data for the marine West Antarctic Ice Sheet (WAIS)[Joughin et al., 1999; Lythe et al., in press] provides an unprecedented opportunity to investigate continental-scale patterns of glacial erosion and their relationship to the ice velocity field. Utilizing this data, we construct a map of estimated long-term erosion rates beneath the WAIS. In order to calculate long-term erosion rates from the available data, we assume that: (1) the ice sheet has been present for ~5 mill. years, (2) the initial topography beneath the WAIS was that of a typical ( ~200 m.b.s.l.) continental shelf, and (3) the present topography is near local isostatic equilibrium (Airy type). The map of long-term erosion rates constructed in this fashion shows an intriguing pattern of relatively high rates (of the order of 0.1 mm/yr) concentrated beneath modern ice stream tributaries (ice velocity ~100 m/yr), but much lower erosion rates (of the order of 0.01 mm/yr) beneath both the modern fast-moving ice streams ( ~400 m/yr.) and the slow-moving parts of the ice sheet ( ~10 m/yr). This lack of clear correlation between the estimated erosion rates and ice velocity is somewhat unexpected given that both observational and theoretical studies have shown that bedrock erosion rates beneath mountain glaciers can often be calculated by multiplying the basal sliding velocity by a constant (typically of the order of ~10^-4)(Humphrey and Raymond, 1993 and Mac Gregor et al., 2000). We obtain an improved match between estimated erosion rates and bed topography by calculating erosion rates using horizontal gradients within the ice velocity field rather than the magnitude of ice velocity, as consistent with the steady state deforming till model of Cuffey and Alley (1997). Therefore, we hypothesize that the erosional system beneath the WAIS, which has overridden a thick layer of erodible, Tertiary marine sediments (Studinger et al., in press), is 'transport limited' and that the horizontal gradients in ice velocity and till flux have the predominant control over spatial patterns of subglacial erosion and deposition rates. In contrast, past studies of erosional systems have concentrated on mountain glaciers that derive their debris through erosion of hard bedrock. In those cases, the erosional system may be 'production limited' because erosion rates scale with dissipation of gravitational energy, represented by the velocity-times-constant equation. Thus, this concept of a 'transport limited' system represents a deviation from past thinking regarding the dynamics of bed erosion, and may be unique to marine-based ice sheets. Using this concept as a base, we will construct more accurately parameterized models to better define the relationship between the dynamics of ice streams and the character of the sub glacial bed.

  5. Matrix dominated stress/strain behavior in polymeric composites: Effects of hold time, nonlinearity and rate dependency

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1992-01-01

    In order to understand matrix dominated behavior in laminated polymer matrix composites, an elastic/viscoplastic constitutive model was developed and used to predict stress strain behavior of off-axis and angle-ply symmetric laminates under in-plane, tensile axial loading. The model was validated for short duration tests at elevated temperatures. Short term stress relaxation and short term creep, strain rate sensitivity, and material nonlinearity were accounted for. The testing times were extended for longer durations, and periods of creep and stress relaxation were used to investigate the ability of the model to account for long term behavior. The model generally underestimated the total change in strain and stress for both long term creep and long term relaxation respectively.

  6. Constitutive Behavior Modelling of AA1100-O AT Large Strain and High Strain Rates

    NASA Astrophysics Data System (ADS)

    Testa, Gabriel; Iannitti, Gianluca; Ruggiero, Andrew; Gentile, Domenico; Bonora, Nicola

    2017-06-01

    Constitutive behavior of AA1100-O, provided as extruded bar, was investigated. Microscopic observation showed that the cross-section has a peculiar microstructure consisting in the inner core with a large grain size surrounded by an external annulus with finer grains. Low and high strain rates tensile tests were carried out at different temperature ranging from -190 ° C to 100 ° C. Constitutive behavior was modelled using a modified version of Rusinek & Klepaczko model. Parameters were calibrated on tensile test results. Tests and numerical simulations of symmetric Taylor (RoR) and dynamic tensile extrusion (DTE) tests at different impact velocities were carried out in order to validate the model under complex deformation paths.

  7. Sugeno-Fuzzy Expert System Modeling for Quality Prediction of Non-Contact Machining Process

    NASA Astrophysics Data System (ADS)

    Sivaraos; Khalim, A. Z.; Salleh, M. S.; Sivakumar, D.; Kadirgama, K.

    2018-03-01

    Modeling can be categorised into four main domains: prediction, optimisation, estimation and calibration. In this paper, the Takagi-Sugeno-Kang (TSK) fuzzy logic method is examined as a prediction modelling method to investigate the taper quality of laser lathing, which seeks to replace traditional lathe machines with 3D laser lathing in order to achieve the desired cylindrical shape of stock materials. Three design parameters were selected: feed rate, cutting speed and depth of cut. A total of twenty-four experiments were conducted with eight sequential runs and replicated three times. The results were found to be 99% of accuracy rate of the TSK fuzzy predictive model, which suggests that the model is a suitable and practical method for non-linear laser lathing process.

  8. A Geometric Method for Model Reduction of Biochemical Networks with Polynomial Rate Functions.

    PubMed

    Samal, Satya Swarup; Grigoriev, Dima; Fröhlich, Holger; Weber, Andreas; Radulescu, Ovidiu

    2015-12-01

    Model reduction of biochemical networks relies on the knowledge of slow and fast variables. We provide a geometric method, based on the Newton polytope, to identify slow variables of a biochemical network with polynomial rate functions. The gist of the method is the notion of tropical equilibration that provides approximate descriptions of slow invariant manifolds. Compared to extant numerical algorithms such as the intrinsic low-dimensional manifold method, our approach is symbolic and utilizes orders of magnitude instead of precise values of the model parameters. Application of this method to a large collection of biochemical network models supports the idea that the number of dynamical variables in minimal models of cell physiology can be small, in spite of the large number of molecular regulatory actors.

  9. Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation.

    PubMed Central

    Huang, P Y; Hellums, J D

    1993-01-01

    A population balance equation (PBE) mathematical model for analyzing platelet aggregation kinetics was developed in Part I (Huang, P. Y., and J. D. Hellums. 1993. Biophys. J. 65: 334-343) of a set of three papers. In this paper, Part II, platelet aggregation and related reactions are studied in the uniform, known shear stress field of a rotational viscometer, and interpreted by means of the model. Experimental determinations are made of the platelet-aggregate particle size distributions as they evolve in time under the aggregating influence of shear stress. The PBE model is shown to give good agreement with experimental determinations when either a reversible (aggregation and disaggregation) or an irreversible (no disaggregation) form of the model is used. This finding suggests that for the experimental conditions studied disaggregation processes are of only secondary importance. During shear-induced platelet aggregation, only a small fraction of platelet collisions result in the binding together of the involved platelets. The modified collision efficiency is approximately zero for shear rates below 3000 s-1. It increases with shear rates above 3000 s-1 to about 0.01 for a shear rate of 8000 s-1. Addition of platelet chemical agonists yields order of magnitude increases in collision efficiency. The collision efficiency for shear-induced platelet aggregation is about an order of magnitude less at 37 degrees C than at 24 degrees C. The PBE model gives a much more accurate representation of aggregation kinetics than an earlier model based on a monodispersed particle size distribution. PMID:8369442

  10. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios

    PubMed Central

    Shen, Rui; Suuberg, Eric M.

    2016-01-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures. PMID:28090133

  11. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    PubMed

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  12. Inflated responsibility in obsessive compulsive disorder: validation of an operational definition.

    PubMed

    Rhéaume, J; Ladouceur, R; Freeston, M H; Letarte, H

    1995-02-01

    An excessive sense of responsibility has been identified in obsessive-compulsive disorder (OCD) where patients evaluate their thoughts in terms of the harm they could cause to themselves or others. In a new definition, responsibility was defined as the belief that one possesses pivotal power to provoke or prevent subjective crucial negative outcomes. In order to empirically test the validity of this definition, two studies used a semi-idiographic design to evaluate responsibility across ambiguous situations related to major OCD themes like contamination, verification, somatic concerns, loss of control, making errors, sexuality and magical thinking. In the first study, 397 volunteer adults participated in the experiment. For each situation, subjects briefly described a possible negative outcome and then rated this outcome on four dimensions: (1) probability; (2) severity; (3) influence; and (4) pivotal influence, using a 9-point Likert scale. Finally Ss rated perceived responsibility and personal relevance. Highly relevant situations were retained for the final analysis. Regression analysis suggested that influence and pivotal influence were better predictors of responsibility ratings than probability and severity. The second study examined the effect of the order of the questions on the responsibility ratings. A first group of Ss (n = 85) answered the Responsibility Questionnaire (RQ) in the original order, while a second group (n = 53) rated responsibility before the other ratings. Regression analysis showed that although proportion of variance explained diminished when the order was reversed, pivotal influence was still the best predictor of responsibility. Results are discussed in terms of current models of OCD and implications for future research and cognitive treatment are identified.

  13. 10 CFR 217.32 - Elements of a rated order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Elements of a rated order. 217.32 Section 217.32 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Placement of Rated Orders § 217.32 Elements of a rated order. Each rated order must include: (a) The appropriate priority rating (e.g. DO-F1 or...

  14. 10 CFR 217.32 - Elements of a rated order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Elements of a rated order. 217.32 Section 217.32 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Placement of Rated Orders § 217.32 Elements of a rated order. Each rated order must include: (a) The appropriate priority rating (e.g. DO-F1 or...

  15. 10 CFR 217.32 - Elements of a rated order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Elements of a rated order. 217.32 Section 217.32 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Placement of Rated Orders § 217.32 Elements of a rated order. Each rated order must include: (a) The appropriate priority rating (e.g. DO-F1 or...

  16. Detection of the spatiotemporal trends of mercury in Lake Erie fish communities: a Bayesian approach.

    PubMed

    Azim, M Ekram; Kumarappah, Ananthavalli; Bhavsar, Satyendra P; Backus, Sean M; Arhonditsis, George

    2011-03-15

    The temporal trends of total mercury (THg) in four fish species in Lake Erie were evaluated based on 35 years of fish contaminant data. Our Bayesian statistical approach consists of three steps aiming to address different questions. First, we used the exponential and mixed-order decay models to assess the declining rates in four intensively sampled fish species, i.e., walleye (Stizostedion vitreum), yellow perch (Perca flavescens), smallmouth bass (Micropterus dolomieui), and white bass (Morone chrysops). Because the two models postulate monotonic decrease of the THg levels, we included first- and second-order random walk terms in our statistical formulations to accommodate nonmonotonic patterns in the data time series. Our analysis identified a recent increase in the THg concentrations, particularly after the mid-1990s. In the second step, we used double exponential models to quantify the relative magnitude of the THg trends depending on the type of data used (skinless-boneless fillet versus whole fish data) and the fish species examined. The observed THg concentrations were significantly higher in skinless boneless fillet than in whole fish portions, while the whole fish portions of walleye exhibited faster decline rates and slower rates of increase relative to the skinless boneless fillet data. Our analysis also shows lower decline rates and higher rates of increase in walleye relative to the other three fish species examined. The food web structural shifts induced by the invasive species (dreissenid mussels and round goby) may be associated with the recent THg trends in Lake Erie fish.

  17. Magnetic models for the United States for 1985

    USGS Publications Warehouse

    Peddie, Norman W.; Zunde, Audronis K.

    1990-01-01

    New models describing the magnetic field in the United States at the beginning of 1985 and the rate of change expected during the next few years have been developed. The models--which will serve as the basis for a new set of magnetic charts--were derived from several tens of thousands of original field measurements from land, marine, and aerial surveys; from values derived from the MAGSAT-based International Geomagnetic Reference Field; and from recent data from magnetic observatories and repeat stations. , They are in the form of spherical harmonic series that represent the scalar magnetic potential from which all the field components can be derived. The models for the conterminous States and Alaska are of maximum degree and order 4 (24 coefficients each) and the models for Hawaii are of maximum degree and order 2 (8 coefficients each).

  18. A kinetic model of the formation of organic monolayers on hydrogen-terminated silicon by hydrosilation of alkenes.

    PubMed

    Woods, M; Carlsson, S; Hong, Q; Patole, S N; Lie, L H; Houlton, A; Horrocks, B R

    2005-12-22

    We have analyzed a kinetic model for the formation of organic monolayers based on a previously suggested free radical chain mechanism for the reaction of unsaturated molecules with hydrogen-terminated silicon surfaces (Linford, M. R.; Fenter, P. M.; Chidsey, C. E. D. J. Am. Chem. Soc 1995, 117, 3145). A direct consequence of this mechanism is the nonexponential growth of the monolayer, and this has been observed spectroscopically. In the model, the initiation of silyl radicals on the surface is pseudo first order with rate constant, ki, and the rate of propagation is determined by the concentration of radicals and unreacted Si-H nearest neighbor sites with a rate constant, kp. This propagation step determines the rate at which the monolayer forms by addition of alkene molecules to form a track of molecules that constitute a self-avoiding random walk on the surface. The initiation step describes how frequently new random walks commence. A termination step by which the radicals are destroyed is also included. The solution of the kinetic equations yields the fraction of alkylated surface sites and the mean length of the random walks as a function of time. In mean-field approximation we show that (1) the average length of the random walk is proportional to (kp/ki)1/2, (2) the monolayer surface coverage grows exponentially only after an induction period, (3) the effective first-order rate constant describing the growth of the monolayer and the induction period (kt) is k = (2ki kp)1/2, (4) at long times the effective first-order rate constant drops to ki, and (5) the overall activation energy for the growth kinetics is the mean of the activation energies for the initiation and propagation steps. Monte Carlo simulations of the mechanism produce qualitatively similar kinetic plots, but the mean random walk length (and effective rate constant) is overestimated by the mean field approximation and when kp > ki, we find k approximately ki0.7kp0.3 and Ea = (0.7Ei+ 0.3Ep). However the most striking prediction of the Monte Carlo simulations is that at long times, t > 1/k, the effective first-order rate constant decreases to ki even in the absence of a chemical termination step. Experimental kinetic data for the reaction of undec-1-ene with hydrogen-terminated porous silicon under thermal reflux in toluene and ethylbenzene gave a value of k = 0.06 min(-1) and an activation energy of 107 kJ mol(-1). The activation energy is in reasonable agreement with density functional calculations of the transition state energies for the initiation and propagation steps.

  19. Assessing the effects of pharmacological agents on respiratory dynamics using time-series modeling.

    PubMed

    Wong, Kin Foon Kevin; Gong, Jen J; Cotten, Joseph F; Solt, Ken; Brown, Emery N

    2013-04-01

    Developing quantitative descriptions of how stimulant and depressant drugs affect the respiratory system is an important focus in medical research. Respiratory variables-respiratory rate, tidal volume, and end tidal carbon dioxide-have prominent temporal dynamics that make it inappropriate to use standard hypothesis-testing methods that assume independent observations to assess the effects of these pharmacological agents. We present a polynomial signal plus autoregressive noise model for analysis of continuously recorded respiratory variables. We use a cyclic descent algorithm to maximize the conditional log likelihood of the parameters and the corrected Akaike's information criterion to choose simultaneously the orders of the polynomial and the autoregressive models. In an analysis of respiratory rates recorded from anesthetized rats before and after administration of the respiratory stimulant methylphenidate, we use the model to construct within-animal z-tests of the drug effect that take account of the time-varying nature of the mean respiratory rate and the serial dependence in rate measurements. We correct for the effect of model lack-of-fit on our inferences by also computing bootstrap confidence intervals for the average difference in respiratory rate pre- and postmethylphenidate treatment. Our time-series modeling quantifies within each animal the substantial increase in mean respiratory rate and respiratory dynamics following methylphenidate administration. This paradigm can be readily adapted to analyze the dynamics of other respiratory variables before and after pharmacologic treatments.

  20. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; hide

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

Top